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1 Abstract

The main objectives of this effort were to develop a theoretical foundation for Time
Domain Non-Linear SAR Processing, and corresponding DSP algorithms to efficiently im-
plement the process on existing computer architectures. We formulated the equations to
convert a flight path GPS/INS data into ECEF data that were suitable for mapping into a
desired slant imaging plane. The GPS data of an existing SAR platform were used for testing
this mapping. Codes were developed for simulating the non-linear SAR signature of targets
for a given set of flight path GPS data. We established the mathematical foundation and
MATLAB codes for backprojection and wavefront image formation algorithms for on a non-
linear SAR trajectory using multi-processor computers. We conducted parallel computing
for the proposed reconstruction algorithms on a shared memory SGI computer and a dis-
tributed memory Dell computer using MatlabMPI and C. We also converted the algorithms
into parallel Matlab code and created graphical user interfaces for both programs. Parallel
algorithms for a SAR-MTI problem were also developed. The two imaging algorithms were
studied and tested using both actual and simulated SAR data. These algorithms have also
been chosen and implemented for a US Army platform under the WAAMD (Wide Area
Airborne Mine Detection) Program.

2 Non-linear SAR, Signal Processing and Imaging

The geometry for a non-linear SAR system is shown in Figure 1. The main task to be
performed under this project is to provide a SAR image in a fixed (desired) target coordi-
nate system for the human (Navy) operator irrespective of the portion of a general non-linear
flight path (slow-time interval) that is used for coherent integration. This reduces the com-
plexity of the information that is conveyed to the human operator by the displayed SAR
image. Any other information constructed by the computer from the raw SAR phase history
data or the complex formed image (for example, change detection, MTI, GMTI, etc.) can be
displayed in the same coordinate system; this facilitates the integration of these data with
the visual SAR image by the operator.

The basic principle (starting point) behind this approach is the general squint SAR
image formation. The frames of the SAR video (time series imagery) are generated in a
common spatial coordinate system though they are originated from different aspect angles
or, equivalently, Doppler data. Each frame is formed via the (slow-time) coherent integration
of a contiguous segment of the flight path that, in general, is non-linear; the segments may
or may not overlap.

We have studied two SAR imaging methods for this purpose: time domain correlation-
based backprojection algorithm, and Gabor’s wavefront reconstruction method. These algo-
rithms are guided by the GPS/INS data and, if available, DTED (or any other survey data).
The main objective is to develop accurate and computationally-efficienit recursive versions
of these two methods that provide the operator with a video SAR image as the SAR phase
history data are being collected in the slow-time domain. These methods are dlscussed in
the next sections. :




3 SAR Reconstruction via Time Domain Correlation
and Backprojection

SAR imaging may be formulated via convolving the SAR signdl with a shift—varying‘
filter [bar]. In this section, we present two correlation-based SAR digital reconstruction
algorithms which utilize this principle, and their application in non-linear SAR.

3.1 Time Domain Correlation Algorithm for Linear SAR

The basic principle behind the TDC imaging method is simply correlation implemen-
tation of the SAR matched filtering [bar]. Denote the transmitted radar signal with p(t)
where ¢ is the fast-time domain. Suppose we are interested in forming the target function at
a set of two-dimensional sampled points (z;,y;)’s in the spatial domain. The TDC processor
correlates the SAR signature at a given grid point (z;,y;) which is

2y/x? + (y; — u)?

] )
with the measured SAR data in the fast-time and slow-time (¢,u) domain, that is, s(t, u).
The result is a measure of reflectivity at that grid point. The imaging equation for TDC is

o, 2o+ )
fawy) = [ [stwpft- 2= dt d

= / /t s(t,u) p'lt — ti;(w)|dt du, | (2)

where p*(t) is the complex conjugate of p(t), and

bis(w) = 2/} + (y; — ) ’ 3)

c
is the round trip delay of the echoed signal from the target located at (z,y) = (;,y;). This
is depicted in Figure 1 for a general non-linear slow-time v domain.

plt -

In practice, the two-dimensional integral in the fast-time and slow-time domain (,u)
is converted into a double sum over the available discrete values of (t,u), that is, the do- -
main of the measured SAR data. The reconstruction is performed for discrete values of the
spatial (z,y) domain on a uniform grid, that is, (z;,4;)’s. To reduce the numerical errors,
the measured signal s(t,u) is upsampled (interpolated) in both the fast-time and slow-time
domains. :

The correlation for the TDC method may also be performed in the (w,u) domain via
utilizing the following identity which can be obtained from the general Parseval’s theorem:

/t s(t,u) p*[t — ty;(w)] dt = /w s(w, u) P*(w) expljwty;(u)] dw. (4)
Substituting this identity in the TDC imaging equation, one obtains the following:
flzi,y;) = /u /w s(w,u) P*(w) exp[jwt;;(u)] dw du. . (5)

It is not difficult to see that the (w, ) domain correlation method to reconstruct the target
function can be converted into the convolution-based reference signal matched-filtering of
the range stack reconstruction method.




3.2 Backprojection Algorithm for Linear SAR
We denote the fast-time matched-filtered SAR signal ‘via
SM(t, ’U,) = S(ta ’U,) * p*(_t)a (6)

where * denotes convolution in the fast-time domain. Using this in the TDC equation, we
obtain

2 -
f(wi,yj) _ /u SM[2 xT; +(Eyj »’Uf)2,,u] du

= / sulti;(w), u) du (7)
2o + (y; — u)?

tij(u) = . (8)

is the round trip delay of the echoed signal for the target at (z;, y;) when the radar is at
(0,u). Thus, to form the target function at a given grid point (z;,y;) in the spatial domain,
one could coherently add the data at the fast-time bins that corresponds to the location of
that point for all synthetic aperture locations u.

where

This algorithm is known as the backprojection SAR reconstruction. This is due to the
fact that for a given synthetic aperture location u, the fast-time data of sp(t,u) are traced
back in the fast-time domain (backprojected) to isolate the return of the reflector at (z;, y;).

- A block diagram for the backprojection algorithm is shown in Figure 2.

To implement this method in practice, the available discrete fast-time samples of s m(t,u)
must be interpolated to recover
' Smtij(uw), u].
If a sufficiently accurate interpolator was not used, this would result in the loss of high-
resolution information.

3.3 Backprojection Algorithm for Non-Linear SAR

As we mentioned earlier, the backprojection reconstruction algorithm is based on tracing
back the signature of a given reflector in the fast-time domain of the matched-filtered signal
sm(t,u) at a given slow-time u, and coherently adding the results at the available u values.
The algorithm can be easily modified to incorporate a known non-linear motion for the flight
path of the radar-carrying aircraft. This is shown in the following.

At the slow-time u, the radar is located at the coordinates [z,(u), y-(u)]; see Figure 1.
For a given reflector at the spatial coordinates (z;,y;), the 51gnature of this target in the
matched-filtered signal can be traced back to the fast-time:

2\/[1'1 — z(u)? + [y; yr(u)]2

tij(u) = - (9)
Thus, the backprojection r‘econstructiqn becomes
2y/[zi =z (W) + [y; — ()]
f(wi,yj)=/usM[ v - ’ ju] du. (10)




The algorithm can still be identified using the block diagram in Figure 2 with t,;(u) defined
via the above equation that depends on the non-linear flight-path.

3.4 Recursive Video Image Formation

To formulate image formation for the generation of a video SAR, we denote the discrete
slow-time points at which the target area is irradiated with the radar signal by u,, n =
1,2,3,4,.... We also denote the backprojection image that is formed with the data from a
single slow-time (transmission) at u, via :

Afn(xi, yj) _ SM[Z\/@i - $r(un)]c+ [yj - yr(un)] ,Un]- (11)

We identify the above reconstruction as the n-th differential SAR image. Note that this
image has an extremely poor azimuth resolution since it is formed using a single PRI.

Suppose the user wishes to integrate K PRIs to form a single frame of the video SAR
image. Thus, at the N-th slow-time PRI, the image formed can be expressed as:

flzoy) = D, Afalmiy). (12)

n=N-K+1
Note that the image that is constructed at the previous frame, that is, (N — 1)-st is

N-1
framoy) = Y. Afalzsys). . : (13)
n=N-K
Thus, we can use the following recursive or updating equation to form the N-th frame using
the previous frame and two differential SAR images:

fN(ﬂvi,yj) = fN—1(90i, yj) + Afn (s, yj) - AfN—K(miayj)- (14)

The main issue in implementing the above-mentioned methods is the computational
cost particularly if the user wishes to realize these algorithms in (near) real-time. Recently a
method known as quad-tree backprojection has been introduced to reduce the computational
load of the SAR backprojection algorithm; this method uses certain approximations. As we
mentioned earlier, in the case of the original backprojection method, one has to use an
accurate interpolator in the fast-time domain. For example, the Matlab code in [s99] uses
a 1:100 upsampling FF'T interpolator; anything less accurate, e.g., a cubic spline or bilinear
interpolation, would result in noticeably less accurate results. In the case of the quad-tree
algorithm, the problem is further compounded due to the need for decimation in the slow-
time domain at each step of the quad-tree.

A subtle way that an approximation contaminates a SAR image is the manner it distorts
the phase data without altering magnitude information; i.e., the ideal image and a quad-tree
image may look the same though they carry different phase information. (Phase information
turns out to be an important feature in SAR.) Based on our processing of realistic SAR
data, the quad-tree is not a viable option for SAR imaging. We believe the best option for
implementing the backprojection method is to preserve the integrity of the coherent data.
The main challenge that we face for the backprojection-based video non-linear SAR image
formation is to develop efficient and accurate algorithms to implement the above-mentioned
recursive backprojection method.



3.5 Backprojection Program and Parallelization

The original Matlab program is bp_sim_patch.m. It was parallelized using MatlabMPI
and a GUI was created for it by using guide. The parallel version is named bp.m and GUI
files start with bp_function.m. Figure 3 shows the backprojection output image.

There are two for loops in bp_sim_patch.m for which parallelization is required. The
structure of those loops in the sequential program is as follows:

for (ii = 1: mx)
for (jj = 1: my)
... (Computation algorithm)
end ' '
end

Before creating the parallel version, these two for loops were converted into a single for
loop. The new structure is as follows:

for (ind = 1: mx*my)
ii = ceil (ind/my);
jj = ind-(ii-1)*my;
... (Computation algorithm)
end
The modified loop, called ind loop, performs the same operations as the original, but
it is conceptually easier to understand and partition for parallel processing. This loop is in
turn nested in another for loop called the j loop. For each iteration of the j loop, the ind
loop has mz*my number of iterations. To parallelize the ind loop, the mz*my number of

iterations is split among the number of processors available to the user. The new structure
is as follows: : ‘

parts = ceil(mx*my/procs);
start = rank*parts+1;
ending = (rank-+1)*parts;
for (ind = start:ending)

ii = ceil (ind/my);

jj = ind-(ii-1)*my;

... (Computation algorithm)

end

For example, if the user specified four processors are available for parallel processing,
then each processor will perform mz*my/4 number of iterations of the ind loop. The ind
loop is nested inside the j loop and therefore is repeated j number of times. But for each
repetition of the ind loop, ind=mz*my is constant. The parallelization is designed so that
for each repetition of the ind loop, each processor processes the same indexes.

In other words, for the “j=1" loop, session 1 will process, say, ind=1:100, and for the
“j=2" loop, session 1 will also process ind=1:100, and so on. When the j loop has completely
finished running, the slave sessions will send their computed data to the master session. The
master session combines these segmented data and outputs the result.




Simulation Results

The simulation results were obtained on both machines Stingray and Hellfire. Here,
Stingray is an SGI Origin 2000 machine with 16 MIPS 300 MHz IP27 R12000 processors.
The share memory size is 8192MB and the OS used is IRIX64 version 6.5. Hellfire is a
DELL cluster with 33 computenodes and there are two Intel Xeon 2.4 GHz processors per
computenode. The OS used is Linux 2.4.18-4smp (i686-linux). The MATLAB used on both

.machines are version 6.5.

Table 1 shows the runtime of the parallelized backprojection program. Every set of
parameters is only run once because of the length of time it needs to run. This table shows
that the speedup of this program is not very significant when the number of the nodes goes
up. This is due to the effect of the diminishing returns stated in the Amdahl’s law.

The most common measure of parallel programs’ performance is speedup. For number

Table 1: Performance Comparison of the Backprojection Program

Number of nodes 1 2 | 4 4 4 8 16 32

~ range(m) 400 400 400 400 200 400 400 400 -
azimuth(m) 600 600 600 300 600 600 600 600
sub-range(m) 50 50 50 50 50 50 50 50

sub-azimuth(m) 50 50 50 50 50 50 50 50

Runtime(sec) on Stingray 47478 | 3083.0 | 2239.7 | 17745 | 18214 | 1818.9 | 1665.7 N/A
" Runtime(sec) on Hellfire | 1539.2 | 1212.0 | 1025.9 | 960.2 | 969.1 | 953.2 | 917.2 | 921.7
Ratio (Hellfire/Stingray) | 32.4% | 39.3% | 45.8% | 54.1% | 53.2% | 52.4% | 55.1% | N/A

of nodes N, speedup is the ratio between between the serial and parallel runtime.

ti ;
speedup(N) VMEserial

= __— 15
: tzmepamllel(N) ( )

Amdahl’s law states that if f is the fraction of a program which is sequential (i.e. cannot
benefit from parallelization), and 1-f is the fraction that can be parallelized, then the speedup
that can be achieved by using N nodes satisfies

1
speedup(N) < FR=4 | o (16)
Figure 4 shows the theoretical maximum speedups for parallel programs with different
values of £ As we can see, how much of a program can be parallelized is an important
factor in determining the maximum possible speedup. Table 2 shows the estimated value of
f for the three programs in this report. It should be noted that the value of f for the same
program may be different on different machines. The value of f in this table is then used to

calculate the theoretical boundary, which is shown and compared with the actual speedups
in the following figure.

‘Figure 5 shows the speedup' as a function of the number of the nodes for the ba,ckpro-




Table 2: The value of f for different programs and machines

: Stingray | Hellfire
Backprojection 0.302 0.561

Wavefront Reconstruction | < 10~ | < 107*

Multi-Channel SAR-MTI | <10™° | < 10°

jection program. We can see the actual speedups reach the theoretical boundary when the
number of nodes is small, but there is almost no improvement when it reaches a certain
point. According to Amdahl’s law:

A}im speedup(N) < =. : (17)

o} =

Therefore for a program with large f, the improvement of performance is mainly obtained
for a few nodes. -

4 SAR Wavefront-Based Signal Processing and Recon-
struction

4.1 Wavefront Reconstruction

The SAR wavefront imaging [born|, [mor], [s92], [s99] method is a Fourier-based approxi-
mation-free algorithm that provides high-resolution and accurate coherent target information
that is useful for advanced SAR information post-processing. The basic principle for image
formation is a Fourier (Doppler) processing of the SAR phase history signal that relates the
SAR signal 2D spectrum S(w, k) directly to the the target function 2D spectrum F(ky, k).
The wavefront algorithm was originally introduced for linear SAR systems. The algorithm
yields SAR images that are superior to the images that are formed via the backprojection
algorithm; the computational cost of the wavefront algorithm is also significantly less than -
that of the backprojection method.

In recent years, national security and safety issues created the need for developing FO-
liage PENetrating (FOPEN) SAR systems that utilize Ultra WideBand (UWB) UHF/VHF
radars for detection of concealed targets [s94], [s94], [s99], [s01b]. These wide-beamuwidth
FOPEN systems could be viewed as non-linear SAR due to large motion errors across their
long synthetic apertures. The SAR wavefront digital signal processing issues associated
with these FOPEN reconnaissance SAR systems brought new complexities and misunder-
standings for those familiar with the traditional SAR systems. This is mainly due to the
wide-bandwidth of these SAR systems. In fact, various FOPEN SAR processors which are
found in the literature suffer from various misunderstandings, misconceptions, and incorrect
implementation of the SAR wavefront reconstruction [s01a], [s01b].

Many who failed in implementing the wavefront-based method suggested the use of the
simple correlation-based backprojection method despite its high computational cost. These




authors also claimed that the Fourier-based wavefront algorithm cannot handle non-uniform
motion errors over long synthetic apertures, i.e., a non-linear SAR scenario. However, the
tools that are provided by SAR wavefront-based signal processing and, in particular, the
mapping of the aspect angle domain into the Doppler domain via the Fourier properties of
AM-PM signals, enables a user to apply this algorithm in non-linear SAR systems. ’

Note that due to inaccuracies in the navigational and GPS data, range-gate slip, imper-
fections in the radar radiation pattern, etc., no matter which algorithm is used (e.g., back-
projection, wavefront, etc.), the user has to perform further motion compensation and/or 2D
focusing on the formed image using, e.g., in-scene targets, entropy maximization methods,
etc., particularly for high-resolution (e.g., X or Ku band) SAR systems.

4.2 Subaperture-Based Recursive Video Image Formation

- The basic principle behind the wavefront-based non-linear SAR imaging is to form
lower-resolution images of the target area from subsets of the synthetic aperture or synthetic
subapertures over which the flight path can be approximated by a linear path plus some
known residual motion errors (i.e., the difference between the actual non-linear path within
a subaperture and the linear path that is used to approximate it); this is shown in Figure 6.

The slope of the line that is used to approximate each subaperture could vary. The
sizes of the subapertures is determined based on the non-linear path of the radar-carrying
aircraft and/or the rate at which the video SAR is to be updated/refreshed. The scenario
that is shown in Figure 6 involves subapertures with varying length; this is an option. The
user may use subapertures that are equal in length.

Note that a subaperture is typically comprised of about a hundred or less PRIs. In this
case, with a PRF of, e.g., 1 kHz and an aircraft speed of 150 m/sec, it is physically impos-
sible for the aircraft to have rapid jumps within a subaperture slow-time interval. Thus, a
linear approximation for the flight-path within a subaperture is a valid assumption. Again
we should point out that the user should also apply appropriate residual motion error (i.e.,
the difference between the actual non-linear path within a subaperture and the linear path .
that is used to approximate it) compensation; this is a straightforward operation.

It should also be noted that a typical video that is used for human inspection has a
refresh rate of 10-30 Hz. With a PRF of 1 kHz and a refresh rate of 20 Hz, the number of
PRIs used for each subaperture processing is about 50; this is within the desired subaperture
size that we mentioned earlier that can be approximated by a linear flight path.

The key for the success of the algorithm is that the approzimation-free wavefront-
based subaperture imaging algorithm preserves the coherent information among the lower-
resolution images. Thus, the user could coherently add the lower-resolution images to form
the desired high-resolution SAR image. Figure 6 shows the parameters that are associated
with the low-resolution image formation with Subaperture 4. For this subaperture, the
squint angle and squint range with respect to the scene center are (6.4, R.4). The conven-
tional reconstruction is typically formed in the corresponding range and azimuth domain of

($0c4’ y004 ) *

However, since we are interested in forming the image in the (desired) coordinate sys-
tem (z,y), a 2D interpolation is used to translate the 2D spectrum of the SAR signal for




Subaperture 4, call it Sy(w, kyg,,), into a segment of the target function 2D spectrum in the
desired coordinate system spatial frequency domain, that is, (kz, k,); the variable kyg,, is the
Doppler domain for the linear path that is used to approximate Subaperture 4.

We identify the segment of the target 2D spectrum that is formed by Subaperture
4 data via FSi(kg, ky). The inverse 2D Fourier transform of this 2D spectrum yields a
low-resolution image; however, that low-resolution image on its own is not sufficient for vi-
sualization. Suppose the user wishes to integrate the data within K, subapertures to form
a single frame of the high-resolution video SAR image. Thus, after acquiring the SAR data.
for the subaperture number N, the user forms the 2D spectrum of the new frame via

Fy, (kg ky) = % FSu(ky, ky). (18)

n=Ns—Ks+1
The 2D spectrum that is constructed for the previous frame is

' Ns—1
FNS—I(km, ky) = Z FSn(km, ky) ' (19)

n=Ns—K,

Thus, we can use the following recursive or updating equation to form the 2D spectrum of
the N,-th frame: '

Fn, (Ko, ky) = Fr,-1(ko, ky) + FSn, (kz, ky) — FSn,-k,(kay ky). -~ (20)

To form the spatial domain image (updated frame), the 2D inverse Fourier transform of
the above 2D spectrum is obtained. The main challenge that we face for the wavefront-based
video non-linear SAR image formation is to incorporate all the necessary phase functions for
each subaperture data that would accurately calibrate the subaperture-based target spectra.
We have successfully demonstrated this concept with a wide-bandwidth (12,000 PRIs per
pixel) FOPEN SAR database [sOla], [sO1b]. The algorithm has also been used to form
images for a 4 GHz X-band spotlight SAR system with an integration angle of over 30
degrees (around 80,000 PRIs) with noticeably non-linear flight path. (The results have not
been published, and are available at the Air Force’s Wright Laboratory.) That approach
forms the basis for the formulation of the general subaperture-based video image formation
in non-linear SAR.

4.3 Wavefront Reconstruction Program and Parallelization

The original Matlab program is wave xy4 sim.m. It was parallelized using MatlabMPI
and a GUI was created for it by using guide. The parallel version is named wave.m and GUI
files start with wave_function.m. Figure 7 shows the wavefront reconstruction output image.

The main structure of the code is as follows:

... (Seq. code)

for (ia =1:n_sub.aper)
... (Outer for loop code)
for (is=1:ns)
... (Inner for loop code)




end
end
... (Seq. code)

Several different approaches can be taken in parallelizing this code. But because the
program must be able to run on any data input parameters and on any number of processors,
the outer for loop parallelization is adopted. The user first specifies how many processors
are available for parallel computation. Depending on the input parameters, the number of
iterations in the outer for loop and the inner for loop will differ. The number of iterations
in the outer for loop is equal to the input parameter “n_sub_aper”. -

To describe the parallelization scheme, we use a simple example.

If “nsub_aper=6” and “procs=4” (i.e. there are six iterations in the outer for loop
and four processors available), the 1st session will execute “ia=1", 2nd session will execute
“la=2", the 3rd session will execute “ia=3", the 4th session will execute “ia=4", the 1st
processor will execute “ia=5" after it has finished the “la=1" iteration, and 2nd processor
will execute “la=6" after it has finished the “ia=2” iteration. ~ '

This way, the program will execute concurrently until all the iterations in the outer for
loop has been executed by the processors. For each iteration in the outer for loop, a data
file is created that contains the results of each iteration.

Simulation Results

Table 3 shows the runtime of the parallelized wavefront reconstruction program. Every
set of parameters is run 5 times and the average runtime is shown. From this table, we
can find that Hellfire is generally two times faster than Stingray. Besides that, it behaves
similarly to Stingray. When the number of nodes is increased, the runtime is decreased
almost proportionally. h

Figure 8 shows the speedup as a function of the number of nodes for the wavefront

Table 3: Performance Comparison of the Wavefront Reconstruction Program

Number of nodes 1 2 4 8 8 8 16 | 32
range(m) 1000 | 1000 | 1000 | 1000 | 1000 100 1000 | 1000
azimuth(m) 1000 | 1000 | 1000 | 1000 100 1000 | 1000 | 1000

Error in offset(m) 0 0 0 0 0 -0 0 0

Number of sub-sub-apertures 1 1 1 1 1 1 1 1

Number of sub-apertures 18 18 18 18 18 18 18 18
Runtime(sec) on Stingray 365.2 | 173.9 | 110.7 | 71.6 53.3 39.3 66.0 | N/A
Runtime(sec) on Hellfire | 172.2 | 104.1 | 59.6 41.0 25.2 18.0 29.0 | 15.0
Ratio (Hellfire/Stingray) 47.2% | 59.9% | 53.8% | 57.3% | 47.3% | 45.8% | 43.9% | N/A

reconstruction program. Due to the parallelizing structure of this program, it can be observed
that the speedup mainly occurs when the number of nodes is the factor of 18. Because the
runtime of the serial version is only about 3 minutes, the results seen here are quite volatile.
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This is not the case of the other two programs, both of which need multiple hours to run;
therefore the results are more steady and valuable.

5 Multi-Channel SAR-MTI Processing

5.1 Overview

The Department of Defense has been developing prototype multi-channel airborne radar
systems to improve its capability for intelligence gathering, surveillance and reconnaissance.
These airborne array radar systems are intended to collect rich databases that could be
exploited for various tasks such as moving target detection and tracking, target imaging
and recognition, etc. The multi-channel airborne radar systems provide a large volume of
multidimensional information regarding the imaging scene that is being interrogated. For-
these systems, the task of a radar signal processor is to develop information processing algo-
rithms that fully exploit the measured large-volume multi-channel airborne radar databases.
Some of the issues include interpreting and/or coherently combining the airborne array data
via imaging algorithms of Synthetic Aperture Radar (SAR), calibrating the data in various
channels to detect subtle information that are critical for Airborne/Ground Moving Target
Indicator (AMTI/GMTI) problems, etc.

Multi-Channel Airborne Radar Measurement (MCARM) system [slo] developed by the
Air Force Research Laboratory at Rome, New York, is one of the data acquisition programs
that was established in support of the above-mentioned objectives. Under the MCARM
program, multichannel clutter data were collected using an L-band active aperture and mul-
tiple IF receivers. The data were collected at a variety of pulse repetition frequencies (PRF)
and over various terrains including mountains, rural, urban, and land/sea interface. The
MCARM data were obtained from a multi-channel sub-aperture architecture and a low side-
lobe sum and difference analog beamformer. The multi-channel architecture is a sub-aperture
configuration with 22 degrees of freedom (receivers).

The MCARM data were primarily collected for the exploration of adaptive array process-
ing algorithms such as Space Time Adaptive Processing (STAP). In a recent paper [s02], we
introduced methods to interpret and process the MCARM data via the SAR-based imaging
and MTT algorithms. Such SAR-based signal processing algorithms had not been attempted
with the MCARM data, since this airborne radar system possessed a relatively small band-
width (0.8 MHz) and synthetic aperture (less than 8 m at its medium PRF of 2 kHz). These
result in a relatively poor range-dependent resolution, e.g., 150 by 150 m at the range of 8
km. Note that certain conventional SAR systems possess even worse resolution. Moreover,
the signal measured via an individual receiver (with an aperture of a few centlmeters) d1d
not have sufficient power to yield an 1mage with a good fidelity.

- The fundamental concept that we exploited in [s02] was to interpret and process the
MCARM data within the governing principles for an along-track monopulse SAR system
[s97]. The along-track monopulse SAR imaging system utilizes two radars for its data col-
lection. One radar is used as a transmitter as well as a monostatic receiver. The other radar
is used only as a bistatic receiver. We have developed a two-dimensional adaptive filtering
method, called Signal Subspace Processing (SSP) [s99, Ch 8], to blindly calibrate the two
channels of an along track monopulse SAR system. In this case, the two monostatic and




bistatic databases of the along track monopulse SAR system yield two coherently identical
SAR images of the stationary targets in the scene. While the stationary targets appear the
same in the monostatic and bistatic SAR images, however, the same is not true for moving
targets. Thus, the difference of the SSP-calibrated monostatic and bistatic data yields a
statistic that is suitable for AMTI/GMTL

5.2 MCARM SAR-MTI Processing

The MCARM system used in this study is shown in Figure 9. In the transmit mode, all
the sub-apertures of the system are used in a phased array configuration to radiate the target
scene. The data were collected using a wide-beamwidth and narrow—beamw1dth radiation
patterns (via appropriate phasing of the transmitting sub-apertures.

In the receive-mode, 22 sub-apertures were used to record the echoed signals. In Figure
9, these are identified as Modules 2-8 and 10-24. For simplicity, we refer to these as Receiver
- Elements 1-22. Our study (calibration results) indicates that the transmit-mode phase (time)
delays were not turned off during the individual receptions of the 22 elements.

For the n-th receiving element, the continuous domain measured signal can be identified
as sp(t,u), where ¢ represents the fast-time domain (in-seconds) and u is the synthetic
aperture domain (in meters). Let the (Doppler) Fourier transform of the received signal
with respect to the slow-time be .

| Sn(t, ky) = Fuylsn(t, u)]. ‘ (21)
Then, the target reconstruction is achieved via the following mapping: .
where
-z =rcosf and y=rsind (23)
and o k | -
c -
=g and 6 = arcsin (% ) (24)

In the above, c is the wave propagatlon speed and k. is the wavenumber at the carrier radar
frequency.

Note that in theory the above target function can be formed us_ing‘the received signal of
any of the 22 elements. However, in practice due to noise and other sources of errors, a one-
element imaging does not yield a high fidelity image. Thus, our first task is to combine /add
the data of the 22 elements. However, there is a practical impasse in doing so; this is
described and treated next. :

~ We call the signal that is recorded by the first element, i.e., s1(t, ), the reference signal.
For a stationary scene and when the elements possess a common radiation pattern, the signal
that is recorded by the n-th element can be related to the reference signal via

5t 1) = ansa(t, u+ ). (25)

a, is a complex number that represents a difference in gain and phase of the two signals;
one source of this gain/phase is-the relative physical distance of the n-th element from the




first element in the slant-range domain. wu, is the relative shift of the data in the slow-time
domain; this shift is primary due to the relative physical distance of the n-th element from
the first element in the along-track (azimuth) domain. Both (an,un) are also dependent of
the internal circuitry of the two elements.

The above is a relatively simplistic way to relate the recorded signals, which assumes that
the signals that are recorded by the two elements are related by a global gain/phase and slow-
time delay (both of which are unknown). We will treat this problem via a more complicated
model later. However, to get started, we estimate these global parameters (a,,u,) via
constructing the two-dimensional (2D) cross-correlation of s, (t u) and the reference signal
S1 (t ’lL)

We identify the globally-calibrated signal for the n-th receiver channel via

. ,
Su(t,u) = &—sn(t, U — Gp). (26)
Consider the calibrated data from any two of the 22 receiver elements, e.g., n=1 and 2.
Let Si(t,k,) and Sa(t,k,) be the slow-time (Doppler) Fourier transforms of §;(¢,u) and
85(t, u), respectively. Provided that all the 22 channels were cahbrated the user could use
the following statistic for MTT/GMTI: :

Sat, ku) = S5(t, ku) — Sl(t ku). (27)

Let fa(z,y) and fi(z,y) be the SAR images that are formed from Sg(t k,) and Sl(t ku),
respectively. In this case, an equivalent MTI/GMTT information can be constructed in the
target scene reconstruction domain via

. fd(x)y) :fZ(xry) ;f1($7y)‘ » ‘ (28)
Note that fi(z,y) is the SAR image that can be formed from S’d(t, k).

Due to various sources of errors (variations of the elements’ radiation patterns in space,
etc.), the global calibration of the 22 channels of MCARM would not be sufficient to guaran-
tee the success of the above MTI processing. In fact, in practice the MTI/GMTI signatures
are relatively weak, and can be dominated by even small miscalibrations.

To model these miscalibrations, we consider the two synthesmed along—track channels
of MCARM in the (¢, k,) domain or, equivalently, spatial (z,y) domain. The calibration
errors result in a spatially-varying point spread function (PSF) or Image Point Response
(IPR) [s99, Ch 8]. However, within a small sub-patch of the target domain (e.g., a few
hundred meters in both range and azimuth), the miscalibration PSF could be assumed to
be spatially-invariant. For example, if Syp(t, k,) and Sim(t, k,) are the data for the m-th
sub-patch that are centered at t =1, and ky, = kyun, we can relate these two signals (when
there is no moving target) via the following 2D convolution:

Som(t, ku) = Stm(t, ku) ® hun(t, ku), ~(29)

where the 2D (complex) filter (PSF)kfunction hm(t, ky) is unknown. Note that the filter
function may also be represented as a spatially-varying PSF with respect to the center of
the sub-patch via

ot ) = bty b b ). | (30)
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A procedure to estimate the unknown filter function h,,(t, k,) via 2D adaptive filtering
within a sub-patch is described in [s99, Ch 8]; this procedure is referred to as Signal Subspace
Processing (SSP). Let h(t, k,) be the resultant estimated filter. Then, the MTI/GMTI
statistic for the m-th sub-patch is formed via:

) S’dm(t, ku) = S’2m(ta ku) - S’Im(ta ku) oy ]/:Lm(t) ku) | . . (31)

We refer to the above as the Local Signal Subspace Difference (LSS'D) image.

Our study of the along-track SAR data for MTT or change detection for various radar
bands and SAR platforms has indicated that at times the Localized SSP algorithm not
only removes the stationary targets but also performs a partial calibration with respect to
a moving target at a sub-patch. This results in a weaker signature of the moving target in
the LSSD image. To counter this problem, we hypothesized that since a radar system is a
physical entity, the coefficients of the miscalibration filter/PSF h,,(t, k,) should not exhibit
rapid fluctuations from one patch to its neighboring sub-patches for a stationary scene; a
rapid change in a coefficient of the filter is most likely caused by adaptation of the SSP
method to the signature of a moving target in that sub-patch.

Thus, the estimated filters that exhibit rapid fluctuations are not only unreliable but also
are likely to be the ones that are adapting to moving target signatures and weakening their
presence in the LSSD image. A simple remedy for this is to fit a low order 2D polynomial of
the sub-patch location, i.e., (1, kum) in the (¢, k,) domain to each estimated filter coefficient.
The resultant smooth spatially-varying filter function can then be applied to Channel 1 signal
S81(t, k.); the outcomé is then subtracted form Channel 2 signal Sy(¢, k) to form what we
refer to as the Global Signal Subspace Difference (GSSD) image.

5.3 Synthesis of Aiong—’I‘r'ack SAR Channels

In the previous section, we presented the basic principles to interpret the data from a
single receiver element of the MCARM system as a SAR signal. We then identified the data
from two of the elements as the signal from an along-track SAR system, and an adaptive
method for 2D adaptive calibration of such a SAR system was presented for MTI/GMTI
purposes. :

We now examine one method for converting the data from all the 22 receiver elements
of the MCARM system into a dual channel along-track SAR database.

. Our approach is based on using a pair of elements of the MCARM as the two channels
of an along-track monopulse SAR system. We perform SSP on the resultant two channels.
This step is then repeated using other pairs (231 cases); the resultant 231 SSP differences are
added up to construct the information that is used for MTI. For this method, the coherent
information in the individual elements are exploited in these 231 parings. Furthermore, since
one anticipates more clutter and noise suppression in averaging the 231 SSP differences, this
is the most promising approach for generating the MTI statistic. ’

In fact, when calibrating one element versus another element, a speckle pattern (noise)
is generated due to subtle miscalibration at certain range and Doppler bins; however, when

another pair is processed, the speckle noise miscalibraion at the same range-Doppler bin

would most likely be different. This is known as speckle averaging effect in optics literature
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This method carries the highest computational burden. Yet, since the individual pairings
are based on independent SSP operations that do not require the usage a significant amount
of memory, the algorithm can be easily implemented on an on-board distributed memory
multi-processor system.

5.4 Multi-Channel SAR-MTI Program and Parallelization

The original Matlab progrém is step2.m. It was parallelized using MatlabMPI. The par-
allel version is named step2_para.m. Figure 10 shows the Multi-Channel SAR-MTI output
image.

‘There are two for loops in step2.m for which parallelization is required. The structure
of those loops in the sequential program is as follows:

for (im = 1: 21)
for (jm = im+1: 22)
... (Computation algorithm)
end _ .
end

Compared with the backprojection program, it'is a little more difficult to convert the
two for loops into a single for loop. Therefore, we retain the two for loops structure and
add a counter in the parallelized program. The new structure is as follows:

ic=0; A

for (im = 1: 21)

for (jm = im+1:22)
ic=ic+1;
rank_run = mod(ic-1,procs);
if (rank run == my rank)
... {Computation algorithm)
end

end

end

Through this process, the original 231 loops are evenly distributed to every available
processor. Unlike the previous program, it is not predetermined that a specific processor
should perform which loop. Instead, the assignment of each loop is determined inside the
loop. Although this structure wastes a little time, it ensures that only minor changes need
to be made to the sequential program. This greatly reduces the burden of the programmer
and makes the parallelized program more readable and understandable. Like the backpro-
jection program, at the end of each loop, the slave processors send their computed data to
the master. The master then combines these data and outputs the result.

Simulation Results

Figure 11 shows the speedup for Multi-Channel SAR-MTI ﬁrogram. This is an “em-
barrassingly parallel” program and theoretically the speedup can reach infinity. However,




the effect of communication overhead will kick in when the number of nodes is large enough.
As we can see from Figure 11, the speedup gradually deviates from the theoretical boundary
when the number of node goes up.

To assure the transplantathn of the parallelized algorithms from shared-memory system

Table 4: Slightly Different Results on Different Machines

Program Average Difference | Maximum Difference

Backprojection 4.6923 x 1071 2.2893 x 10~13
Wavefront Reconstruction | 3.1670 x 10~ 3.6238 x 10713
Multi-Channel SAR-MTI 7.3025 x 10719 2.4286 x 10~17

Stingray to distributed-memory system Hellfire is correct, we also compared the results from
- both machines. Table 4 shows the difference of the results of both programs. This difference
is mainly due to the fact that the MATLAB on two machines utilizes different Basic Linear
Algebra Subroutines (BLAS) libraries. BLAS libraries are used to speed matrix multiplica-
tion and LAPACK functions. MATLAB usually includes multiple versions of these BLAS
libraries which are optimized for different processors. At startup, MATLAB automatically
detects the type of the processor and select the most appropriate BLAS library. One can
actually set the environment variable LAPACK_VERBOSITY to let MATLAB display the
version of BLAS library being used.

Eg. , _
>> setenv LAPACK_VERBOSITY 1; % On Stingray
>> export LAPACK_VERBOSITY=1; % On Hellfire

From the startup message of MATLAB, we can know that the BLAS library used on Hellfire
is atlas_P4.so, and the BLAS library used on Stingray is atlas_R12000.so.

6 Conclusions

The parallelization of the nonlinear SAR algorithms and multi-channel SAR-MTT pro-
cessing was successfully implemented on two different machines by using MatlabMPI. Our
study has shown that the parallelized programs share similar performance in spite of dif-
ferent running environment. Communication overhead is always a big obstacle to efficient
parallelization. Thanks to careful arrangements, communication was utilized to a minimum
in all three programs and was not a big issue. Besides communication, f (the fraction of the
program which cannot be parallelized) is the most important limiting factor in paralleliza-
tion. This suggests that reducing f should be the focus of the future study. We are currently
in the process of implementing these programs by using pMatlab - the next generation of
MatlabMP] released by MIT Lincoln Laboratory. The concept of distributed matrix intro-
duced by pMatlab holds promise for parallelizing most part of a specific program, if not the
entire program.
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