Transmitted Reference Ultra Wideband Transceivers
For Multiuser Communication

by Zhengyuan Xu and Brian M. Sadler
NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.
Transmitted Reference Ultra Wideband Transceivers
For Multiuser Communication

Zhengyuan Xu and Brian M. Sadler
Computational and Information Sciences Directorate, ARL
A conventional transmitted reference (TR) modulation scheme is an effective means to combat severe multipath distortion in an ultra wideband (UWB) system, significantly relaxing the equalization requirements at a cost in performance. However, it suffers from multiple access and other interference, and a rate loss of 50%. In this paper we extend TR modulation to the multiuser case, while boosting data transmission to near full rate. To enable multiple access, the proposed multiuser TR (MTR) scheme assigns a pair of frame rate pseudo-random (PN) sequences to each user, modulating the amplitude of each of two consecutive pulses, respectively.

Given a user's reference-pulse modulating PN sequence, mean-based estimation is proposed to obtain a clean waveform template, which is appropriate for both pulse-amplitude (PAM) or pulse-position modulation (PPM). Along with interference reduction, this method enables arbitrarily small spacing of pulse pairs, leading to near full rate transmission. Using the waveform template and the data-pulse modulating PN sequence, any reference pulse interference is subtracted and data demodulation carried out. Aided by the PN sequences, the proposed estimation and data detection scheme is able to mitigate both inter-pulse and multi-access interference. To further reduce interference a time-hopping code can also be employed. Waveform estimation and bit error rate analysis are provided for the multi-user case, and confirmed with simulations. Substantial detection improvements over conventional TR detectors are observed.
Contents

1 Introduction 1

2 Near Full-Rate MTR-UWB Systems 3

2.1 PAM Signaling 4

2.2 PPM Signaling 5

3 Template Acquisition and Symbol Detection 6

4 Performance of Waveform Estimators and Detectors 9

4.1 PAM Signaling 10

4.1.1 UWB downlink 12

4.1.2 UWB uplink 15

4.2 PPM Signaling 16

4.2.1 UWB downlink 17

4.2.2 UWB uplink 18

4.3 Brief Summary 20

5 Numerical Examples 20

5.1 Effect of Sample Size 21

5.2 Effect of Noise 23

5.3 Effect of Number of Users 24

5.4 Near-far Effect 24

5.5 Effect of Channel Characteristics 26

6 Conclusions 27
References 28

Appendices 31

A Optimization of the SINR 31

A.1 Proof of (32) ... 31
A.2 Proof of (43) ... 32
A.3 Proof of (48) ... 34

Distribution 35

List of Figures

1 Block diagram of the MTR-UWB transmitter 5
2 Block diagram of an MTR-UWB receiver. 9
3 Normalized waveform estimation MSE versus data length with PAM signaling. 21
4 BER versus data length with PAM signaling. 22
5 BER versus data length with PPM signaling. 22
6 BER versus EB/No with PAM signaling. 23
7 BER versus Eb/No with PPM signaling. 24
8 Effect of number of users on BER. 25
9 Near-far effect on desired user BER. 25
10 Effect of different communication channels on BER. 26
1 Introduction

The approval of ultra-wideband (UWB) transmission in the United States [1] and elsewhere has sparked significant research interest [2], [3], [4]. Potential applications include not only short-range data and multimedia communications, but also sensing, localization and tracking, as well as collision avoidance and other radar-like scenarios. UWB offers unique features such as high resolvability of multiple paths, fine timing resolution [5], and coexistence via overlay with existing wireless systems [6].

However, UWB communication systems must somehow accommodate the significant channel distortion, and a full accounting requires very high receiver complexity. Generally, UWB receivers sacrifice performance for lowered complexity [7], [8]. Categories include the threshold detector [8], [9], RAKE receiver [5], [10], [11], [12], and autocorrelation receiver [13], [14], [15]. A practical RAKE receiver consists of multiple correlators [10]. It must select a moderate yet limited number of strong paths to combine from dozens to hundreds of possible paths. Despite medium complexity, captured energy may be relatively low and is very sensitive to delay selection. The RAKE also suffers from channel (time of arrival and attenuation) mismatch although high rate sampling helps to estimate channel coefficients in the design of linear receivers [16], [17].

Transmitted reference (TR) modulation appears as an effective means to mitigate multipath distortion in a UWB communication system [18], [19], [20], [21]. TR was proposed for narrowband systems a few decades ago [22], [23], [24]. The first pulse of each doublet is information-free, and the second (delayed) pulse carries the user’s information via binary phase shift keying (BPSK), pulse amplitude modulation (PAM), or pulse position modulation (PPM). The delay of the data pulse is ideally designed to be larger than the channel spread such that the reference pulse does not interfere with the data pulse after multipath propagation (no inter-pulse interference - IPI), although this may be difficult to achieve in an analog delay implementation. The received waveform resulting from the reference pulse can then serve as a template to demodulate the latter data pulse using a low complexity correlation receiver [20], [25]. However, minimum spacing of the two pulses inevitably sacrifices data rate, especially when the channel delay spread is large [26]. As the channel is used only half the time for data at best, there is a 50% rate penalty. In addition, the template may be very noisy, limiting the conventional TR performance. If small spacing between pulses is incorporated in order to increase the transmission rate, then IPI contaminates the template and may consequently yield poor detection performance.

In order to improve template estimation with PAM modulation, [20] and [25] propose to average signals from multiple frames within one symbol interval to minimize the noise effect. Consequently, better detection performance is achieved than a conventional receiver.
built upon an instantaneous estimate of the template. To obtain a clean template for either PAM or PPM modulation based systems, the noise effect can be further alleviated by statistically averaging signals over multiple symbol intervals [27]. The signal waveform estimator utilizes the first order statistic of the received signals. For PAM signaling, the estimated signal waveform directly serves as a template for data detection, while for PPM signaling, a template is constructed based on that estimate. Contrary to all previous TR schemes, no requirement on large pulse spacing at the transmitter is imposed, enabling near full rate data transmission. The mutual interference (IPI) between the reference and data signal at the receiver can be effectively mitigated. During waveform estimation, IPI from the data pulse is tackled by taking into account the input distribution, yielding a more purified template. During detection, IPI from the reference pulse can be subtracted after the reference signal is estimated. At high SNR the waveform estimation mean square error (MSE) decreases in proportion to the number of observation windows, and the MSE is significantly smaller than those from existing methods and the conventional TR scheme. Consequently, detection based on the improved template shows significant performance gain. This gain is slightly better for PAM than for PPM, in terms of both MSE and bit error rate (BER) [27].

In this paper we build on the above ideas, expanding to a multiuser scenario. The proposed multiuser TR (MTR) scheme incorporates pseudo-random coding, similar to that in [28], [29] borrowed from an overlaying code division multiple access (CDMA) system [30], [31]. Since both reference and data pulses need to be differentiated across users in order to easily estimate the desired user’s waveform and demodulate its data, two pseudo-random (PN) sequences are assigned to each user at the frame rate. The first spreading sequence is used to modulate the amplitude of the reference pulse, while the second one is applied to the data pulse. A mean-based estimation algorithm is proposed to obtain an enhanced signal waveform template for either PAM or PPM based UWB systems. Arbitrarily small spacing between reference and data pulses is enabled, leading to near full rate transmission. Assisted by the waveform template for the desired user, and the PN sequence modulating its data pulse, the interfering contribution from its reference pulse is subtracted before demodulation. Reference signals from all users can be suppressed if their PN sequences are known and signal waveforms estimated, such as in uplink communication to an access point initiated by different users/nodes. The proposed estimation and data detection schemes are able to mitigate both IPI and multiple access interference (MAI) mainly due to the pseudo-random sequence properties. In order to enhance the interference mitigation capability of the proposed systems, a time hopping sequence may be applied to the data pulse of each user. The waveform estimator requires only delay elements, adders, and multipliers, while the correlation receiver performs addition, integration, and symbol rate sampling operations. Thus implementation is possible in mixed analog/digital circuitry. Waveform estimation MSE, and BER detection performance, are developed analytically and studied via simulation using the IEEE UWB
channel models [33]. Effects of observation window size, signal to noise ratio (SNR), number of users, signal to interference ratio, and channel models are investigated in detail. Substantial detection improvements over conventional detectors are observed.

The paper is organized as follows. First, in section 2, the proposed MTR transmission schemes and data models are developed for both PAM and PPM. The corresponding waveform estimation and detection methods are described in section 3. In section 4 we analyze the estimation and detection in detail. Our study covers various scenarios including PAM and PPM modulations, as well as downlink and uplink communications exploiting knowledge of the desired user PN code, or all users codes, respectively. For concise presentation of analytical results, several notational definitions are introduced. Numerical examples are shown in section 5 and key contributions of the work are summarized in the conclusions.

2 Near Full-Rate MTR-UWB Systems

A conventional TR UWB system considers single user transmission [19]. A user transmits a doublet in each frame of T_f seconds. The first pulse serves as a reference and is information free. The second pulse is data modulated by either PAM or PPM and delayed by τ seconds. Denote the pulse by $w(t)$ with duration T_w. Assume each symbol repeats N_f frames, so the symbol period is $T_s = N_f T_f$. In order to accommodate multiuser communication, a MTR UWB scheme is necessary. We propose to associate a unique covering PN sequence with the reference pulse at the frame rate. That PN sequence will be used for estimation of signal waveform that is subsequently used as a template by a correlation detector. Meanwhile, the other covering PN sequence is employed to randomize the data modulated pulse, and reduce waveform estimation error and MAI. These two PN sequences together uniquely specify a user. They also help to increase the system capacity, as in a CDMA system [30], [31]. In a multiuser environment, delay of the second pulse is controlled by another user-dependent time hopping sequence to further minimize MAI. It will be revealed that this delay can be arbitrarily small to achieve near full rate transmission, contrary to a conventional TR system that typically sets it to be large enough to avoid IPI at the receiver [18]. In the proposed transmission scheme, data modulation can be either PAM or PPM [18], [20]. For easy illustration of the proposed transmission, estimation, and detection schemes, binary PAM or PPM modulation is assumed, although it is straightforward to generalize the models and methods to high order modulations.
2.1 PAM Signaling

Denote the n-th binary PAM symbol of user k in a K-user UWB system by $I_{k,n} \in \{\pm 1\}$. Transmitted signal with power P_k from user k can be described by

$$s_k(t) = \sqrt{\frac{P_k}{2}} \sum_{n=-\infty}^{\infty} \left[A_{k,n} w(t - nT_f) + I_{k,[n/N_f]} B_{k,n} w(t - nT_f - \tau_{k,n}) \right], \quad (1)$$

where $A_{k,n}$ and $B_{k,n}$ are frame-rate binary PN sequences taking values ± 1. They can also be chosen randomly from a ternary set $\{+1, 0, -1\}$ with pre-specified probabilities, providing more flexibility to MAI rejection and multipath mitigation [32]. Notation $\lfloor \cdot \rfloor$ is an integer floor operator. Delay $\tau_{k,n} = c_{k,n}T_c$ of the second pulse is designed to minimize MAI as well where $c_{k,n} \in \{D, D+1, \cdots, D_{max}\}$ is the hopping code, T_c is the chip duration, $T_f = N_cT_c$. A block diagram of a typical transmitter is presented in Figure 1.

The minimum spacing of two pulses is $T_d = DT_c$. It can be arbitrarily small under a mild $T_d > T_w$ requirement to achieve near full rate data transmission. It thus eliminates a 50% rate penalty, similar to single-user modeling without PN coding [27]. Therefore, signals resulting from reference and data pulses after multipath propagation may severely interfere with each other, causing IPI. If we denote a multipath channel impulse response by $\theta_k(t)$, and transmitter-receiver front end bandpass filter by $g(t)$, the received signal becomes

$$r(t) = \sum_{k=1}^{K} \sum_{n=-\infty}^{\infty} \left[A_{k,n} h_k(t - nT_f) + I_{k,[n/N_f]} B_{k,n} h_k(t - nT_f - c_{k,n}T_c) \right] + v(t), \quad (2)$$

where $h_k(t) = \sqrt{\frac{P_k}{2}} w(t) * \theta_k(t) * g(t)$ is the unknown waveform, $*$ denotes convolution, $v(t) = n(t) * g(t)$ and $n(t)$ represents zero mean Gaussian noise with two-sided power spectral density $\frac{N_0}{2}$. Propagation delay for each user is ignored for simplicity, but is analytically unnecessary. Indeed, it creates the worst communication scenario when other users maximally interfere with the desired user. Generally, MAI may be reduced if the users signals are mis-aligned. This simple reasoning suggests the worst-case detection performance (BER upper bound) based on this model. Even in this case, our analysis of the proposed methods is lengthy. Suppose all $h_k(t)$ have support in $(0, T_h)$. Since both reference and data pulses propagate through the same channel, $h_k(t)$ is not only the received signal due to the reference pulse, but also the waveform of the data symbol after delay $\tau_{k,n}$. Though technically unnecessary, assume $T_h + \tau_{k,n} < T_f$ for simplified analysis of the methods proposed later. Discussions can be easily generalized to other situations. Even so however, severe IPI results. Hence if $h_k(t)$ is directly used as a template for a correlation receiver as in a conventional TR system, it leads to a large data demodulation error.
Therefore, a mean-based estimation technique will be proposed to clean the “dirty” template based on an observation window spanning multiple symbol intervals. The model reduces to a conventional TR system if $K = 1$, $A_{k,n}$ and $B_{k,n}$ take values 1, and delay $\tau_{k,n}$ is set as T_d. $B_{k,n}$ can still be introduced to a subsequently improved single-user system [27] to reduce waveform estimation error. Though technically unnecessary, assume $T_h + \tau_{k,n} < T_f$ for simplified analysis of the methods proposed later. Discussions can be easily generalized to other situations. Even so however, severe IPI results. Hence if $h_k(t)$ is directly used as a template for a correlation receiver as in a conventional TR system, it leads to a large data demodulation error. Therefore, a mean-based estimation technique will be proposed to clean the “dirty” template based on an observation window spanning multiple symbol intervals. The model reduces to a conventional TR system if $K = 1$, $A_{k,n}$ and $B_{k,n}$ take values 1, and delay $\tau_{k,n}$ is set as T_d. $B_{k,n}$ can still be introduced to a subsequently improved single-user system [27] to reduce waveform estimation error.

2.2 PPM Signaling

A PPM transmitter block diagram similar to figure 1 can be drawn by replacing corresponding data modulation and delay control. Similarly, after propagating through a multipath channel, the received signal has the following form

$$r(t) = \sum_{k=1}^{K} \sum_{n=-\infty}^{\infty} \left[A_{k,n} h_k(t - nT_f) + B_{k,n} h_k(t - nT_f - c_{k,n} T_c - \tau_{i_{k,n}/N_f}) \right] + v(t), \tag{3}$$

where $h_k(t)$ is the waveform including the transmitted pulse, multipath channel, and filter, and $\tau_{i_{k,n}} = I_{k,n} \sigma_d$ is the delay controlled by a binary information sequence $I_{k,n}$ that takes $\{0, 1\}$ with equal probability. If modulation parameter σ_d is related to T_c by $\sigma_d = \alpha T_c$, then α can be designed to optimize the detection performance [7].

Our goal is to detect information sequence $I_{k,n}$ in the unknown channel for either PAM or PPM modulation based UWB systems according to the proposed model (2) or (3)
respectively. First, the signal waveform $h_k(t)$ will be estimated from received signal $r(t)$. This will serve as a template to detect the PAM symbol (or used to construct a template to detect the PPM symbol), via a correlation detector [7], [20].

3 Template Acquisition and Symbol Detection

In a conventional TR system, a detection process involves acquisition of a template first and then correlation detection based on that template. The template is directly taken from the reference pulse (the first term in each model). Thus signal $r(t)$ in the first segment of that frame is used as a template to correlate with $r(t)$ in the second segment for PAM signaling, or used to construct a template to detect the PPM symbol. As is known, such a template is very noisy even in a single user system. In [25], averaging of $r(t)$ over N_f frames within one symbol period is performed to reduce noise. In a multiuser system, it is observed that $h_k(t)$ is corrupted by reference signals of other users, all users’ data pulses, and background noise. Thus the conventional detection method will yield a very “dirty” template and consequently cause large detection errors. However, exploiting the PN sequences and zero mean property of the noise, statistical averaging of segments of $r(t)$ (normalized by $A_{k,n}$) from different frames across multiple symbol intervals significantly reduces interference (even for the non-zero mean PPM symbol case). The interference reduction does not depend on the transmit pulse spacing.

Because of repetitive transmission of a reference pulse, each user’s waveform $h_k(t)$ repeats from frame to frame. Therefore it is reasonable to partition the received signal $r(t)$ into segments, each of frame duration T_f, in order to estimate the waveform. Let’s consider user k and estimate $h_k(t)$. Take $r(t)$ in N_s symbol intervals. There are a total of $N_p N_f N_s$ segments. The m'-th ($m' = 1, \cdots, N_p$) segment of $r(t)$ is defined as $r_{m'}(t) = r(t + m'T_f)$ for $t \in [0, T_f)$, and $r_{m'}(t) = 0$ elsewhere. Similarly, define $v_{m'}(t)$ for the noise. For PAM signaling, according to (2) and assisted by the first PN sequence of this user that takes values ± 1, we find

$$A_{k,m'}r_{m'}(t) = h_k(t) + \sum_{l \neq k, l=1}^{K} A_{k,m'} A_{l,m'} h_l(t) + A_{k,m'} v_{m'}(t) + \sum_{l=1}^{K} A_{k,m'} B_{l,m'} I_{l|m'}/N_f h_l(t - c_{l,m'} T_c).$$

(4)

It is observed that this signal contains abundant interference from other users reference signals, noise, and all users data signals. Hence it is very noisy and not appropriate to be directly used as a template. However, after taking expectation, it becomes
E\{A_{k,m}r_{m'}(t)\} = h_k(t) + \sum_{l \neq k, l=1}^{K} A_{k,m'}A_{l,m'}h_l(t), \quad (5)

because \(E\{I_{l,|m'/N_f}\} = 0\) and \(E\{v_{m'}(t)\} = 0\). So, in the mean, interference is attributed to reference signals only. It can be further reduced after considering the PN property, as discussed below. For PPM signaling, using \(A_{k,m}\) to extract the waveform from the \(m'\)-th segment of \(r(t)\) in (3)

\[
A_{k,m}r_{m'}(t) = h_k(t) + \sum_{l \neq k, l=1}^{K} A_{k,m'}A_{l,m'}h_l(t) + A_{k,m'}v_{m'}(t)
\]

\[
+ \sum_{l=1}^{K} A_{k,m'}B_{l,m'}h_l(t - c_{l,m'}T_c - \tau_{I_{l,|m'/N_f}}). \quad (6)
\]

Its expected value is

\[
E\{A_{k,m}r_{m'}(t)\} = h_k(t) + \sum_{l \neq k, l=1}^{K} A_{k,m'}A_{l,m'}h_l(t) + \sum_{i=0}^{1} \sum_{l=1}^{K} \frac{1}{2} A_{k,m'}B_{l,m'}h_l(t - c_{l,m'}T_c - i\alpha T_c), \quad (7)
\]

where expected value of the PPM modulated data pulse has been evaluated with equally probable values in \(\{0, 1\}\), and modulation delay \(\tau_{I_{k,|m'/N_f}} = I_{k,|m/N_f}\alpha T_c\). If high order PPM modulation is employed, then we can adapt the upper limit in the summation for \(i\) (and change probability \(\frac{1}{2}\)) in the above equation. Now interference stems from not only reference signals, but also data signals due to non-zero mean of all inputs, and these depend on the PN sequences. The time average of each of \(A_{k,m'}A_{l,m'}\) and \(A_{k,m'}B_{l,m'}\) over \(N_p\) frame intervals favorably approaches zero as \(N_p\) increases. Therefore, according to (5) and (7), an estimate of the waveform for a multiuser system (either PAM or PPM signaling) can be described along the lines of a single-user waveform estimator in [27] as follows

The time average of each of \(A_{k,m'}A_{l,m'}\) and \(A_{k,m'}B_{l,m'}\) over \(N_p\) frame intervals favorably approaches zero as \(N_p\) increases. Therefore, according to (5) and (7), an estimate of the waveform for a multiuser system (either PAM or PPM signaling) can be described along the lines of a single-user waveform estimator in [27] as follows

\[
\hat{h}_k(t) = \frac{1}{N_p} \sum_{m'=1}^{N_p} A_{k,m'}r_{m'}(t). \quad (8)
\]

The estimator requires delay elements, multipliers, and adders.
Detection of either PAM or PPM symbol continued employing the estimated waveform. Consider detection of the n-th symbol $I_{k,n}$ of user k. Correspondingly, there are N_f segments $r_m(t)$ for $m = nN_f, \ldots, (n+1)N_f - 1$. If we assume all $A_{k,m}$ are known to the receiver such as in the uplink, then contribution of reference signals $A_{k,m}h_k(t)$ from all users can be subtracted from $r_m(t)$ after waveforms from all users are estimated. This subtraction process is essential when reference and data pulses overlap after channel distortion, but unnecessary in the conventional TR scheme because of a restrictive assumption of no overlapping (large enough spacing between two pulses that sacrifices data rate). In a case when only the desired users PN sequence $A_{k,m}$ is known, such as in a downlink, only the desired user’s reference signal is subtracted. Denote the generic signal after subtraction by $\tilde{r}_{k,m}(t)$. This signal contains the signal part $B_{k,m}I_{k,n}h_k(t - c_{k,m}T_c)$ and interference plus noise part according to our PAM data model. Then, assisted by time hopping code $c_{k,m}$ and the other user specific PN sequence $B_{k,m}$ modulating its data pulse, we can obtain the following signal that carries its data

$$\tilde{r}_{k,m}(t) \doteq B_{k,m} \tilde{r}_{k,m}(t + c_{k,m}T_c).$$

(9)

Afterwards, PAM modulated input $I_{k,n}$ can be estimated based on outputs of N_f correlators in the n-th symbol interval via

$$\hat{I}_{k,n} = \text{sign}\left(\frac{1}{N_f} \sum_{m=nN_f}^{(n+1)N_f-1} \int_0^{T_f} \hat{h}_k(t) \tilde{r}_{k,m}(t) \, dt \right).$$

(10)

A simplified receiver block diagram is shown in figure 2, where a reference signal subtraction sub-block is omitted for clearer presentation.

Various summations are required, and upper and lower limits for corresponding indices need to be clearly stated. For notational convenience, we will hereafter omit limits but follow the same convention for time indices m' and m, given by m' from 1 to N_p, and m from nN_f to $(n+1)N_f - 1$. Others include user index l (possibly additional ones as l_1, l_2) from 1 to K, and modulation index i (possibly additional ones as i_1, i_2) from 0 to 1.

For the PPM modulated input, a template from the estimated waveform is constructed as $\hat{h}_k(t) - \hat{h}_k(t - \alpha T_c)$, which replaces $\hat{h}_k(t)$ in (10), and also a simple mapping from $\{\pm 1\}$ to $\{0, 1\}$ is performed. Then, the detection criterion for a PPM symbol becomes [7]

$$\hat{I}_{k,n} = \frac{1}{2}(1 - y_{k,n}),$$

(11)
where $y_{k,n}$ is the detector’s output taking $\{\pm 1\}$
\[
y_{k,n} = \text{sign}\left(\frac{1}{N_f} \sum_m \int_0^{T_f} [\hat{h}_k(t) - \hat{h}_k(t - \alpha T_c)]r_{k,m}(t)dt\right).
\] (12)

A receiver block diagram similar to figure 2 can be obtained. In the next section we jointly analyze PAM and PPM detector performance with waveform estimate given by (8).

4 Performance of Waveform Estimators and Detectors

Given N_p received signal segments, our waveform estimator depends on the received signal statistics. Subsequently, the detector performance is also dependent on these statistics. To quantify the waveform estimation performance, define a waveform estimation error
\[
\delta h_k(t) = \hat{h}_k(t) - h_k(t)
\] for user k, and the corresponding MSE as
\[
MSE_k = \int_0^{T_f} E\left\{[\delta h_k(t)]^2\right\}dt,
\] (13)

where T_f is the maximum channel delay spread. If it is beyond T_f, then the upper limit of the integral needs to be increased together with duration of each segment $r_{m'}(t)$ used for waveform estimation. The BER of each detector with imperfect template will be evaluated. For tractable analysis, we approximate binary PN sequences as random sequences with zero mean and unit variance. This assumption can yield reliable results for a large sample size, as demonstrated in an aperiodic CDMA system [34]. Next we focus on the PAM case, followed by PPM.
4.1 PAM Signaling

MSE evaluation requires $E\{[\delta h_k(t)]^2\}$. Our derivation starts from waveform estimation error $\delta h_k(t)$ based on the estimator and received data model. Substituting (4) in (8), $\delta h_k(t)$ can be expressed as

$$
\delta h_k(t) = \frac{1}{N_p} \sum_{m', l, l \neq k} A_{k, m'} A_{l, m'} h_l(t) + \frac{1}{N_p} \sum_{m'} A_{k, m'} v_{m'}(t) + \frac{1}{N_p} \sum_{l, m'} A_{k, m'} B_{l, m'} I_{l, m' / N_f} h_l(t - c_{l, m'} T_c).
$$

(14)

It consists of noise, reference signals, and data signals. For easy later derivation of BER, consider a general term $E\{\delta h_k(t + a) \delta h_k(\tau + b)\}$, which encompasses the special case required in (13) by setting $a = b = 0$ and $t = \tau$.

The noise statistics are first derived. For ideal bandpass filter $g(t)$ with unit frequency response over $f \in [-\frac{B}{2}, \frac{B}{2}]$, then

$$
g(t) = \frac{\sin(\pi B t)}{\pi t} = B \text{sinc}(\pi B t).
$$

Noticing $v(t) = n(t) \ast g(t)$ and $E\{n(t)n(\tau)\} = \frac{N_0}{2} \delta(t - \tau)$, the autocorrelation of $v(t)$ and $v(\tau)$ becomes

$$
E\{v(t)v(\tau)\} = \frac{N_0}{2} \int_{-\infty}^{\infty} g(t - x) g(\tau - x) dx = \frac{N_0}{2} g(t) \ast g(\tau - t).
$$

Since the Fourier transform of $g(\tau - t)$ is $e^{-j2\pi f\tau}$ for $f \in [-\frac{B}{2}, \frac{B}{2}]$, we obtain

$$
E\{v(t)v(\tau)\} = \frac{N_0}{2} \int_{-\frac{B}{2}}^{\frac{B}{2}} e^{j2\pi f(t-\tau)} df = \sigma_v^2 \phi(t - \tau), \quad \sigma_v^2 \Delta \frac{N_0}{2} B, \quad \phi(t) \triangleq \text{sinc}(\pi B t).
$$

According to (14) and invoking assumptions on PN codes, inputs and noise, we obtain statistics of the waveform estimation error

$$
E\{\delta h_k(t + a) \delta h_k(\tau + b)\} = \frac{1}{N_p} \sum_{l, l \neq k} h_l(t + a) h_l(\tau + b) + \frac{\sigma_v^2}{N_p} \phi(t + a - \tau - b) + \frac{1}{N_p^2} \sum_{l, m'} h_l(t + a - c_{l, m'} T_c) h_l(\tau + b - c_{l, m'} T_c).
$$

(15)
To evaluate MSE in (13), define a deterministic cross correlation of PAM templates of users l_1 and l_2 at offsets $d_1 T_c$ and $d_2 T_c$ as

$$\mathcal{E}_{l_1,l_2,d_1,d_2} \triangleq \int_0^{T_f} h_{l_1}(t - d_1 T_c) h_{l_2}(t - d_2 T_c) dt,$$

For convenience in subsequent discussions, similarly define a cross correlation of a waveform at offset $d_1 T_c$ and a PPM template at offset $d_2 T_c$ as

$$\mathcal{F}_{l_1,l_2,d_1,d_2} \triangleq \int_0^{T_f} h_{l_1}(t - d_1 T_c) \Psi_{l_2,d_2}(t) dt, \quad \Psi_{k,d}(t) \triangleq h_k(t - d T_c) - h_k(t - d T_c - \alpha T_c).$$

and define

$$\mathcal{H}_{k,d} \triangleq \int_0^{T_f} \phi(t - \tau) h_k(t - d T_c) h_k(\tau - d T_c) dt d\tau, \quad Q_{k,d} \triangleq \int_0^{T_f} \phi(t - \tau) \Psi_{k,d}(t) \Psi_{k,d}(\tau) dt d\tau,$$

$$\mathcal{R}_{k,d} \triangleq \int_0^{T_f} [2\phi(t - \tau) - \phi(t - \tau + \alpha T_c) - \phi(t - \tau - \alpha T_c)] h_k(t - d T_c) h_k(\tau - d T_c) dt d\tau,$$

$$\mathcal{X} \triangleq \int_0^{T_f} \phi(t - \tau) [2\phi(t - \tau) - \phi(t - \tau + \alpha T_c) - \phi(t - \tau - \alpha T_c)] dt d\tau, \quad \mathcal{Y} \triangleq \int_0^{T_f} [\phi(t - \tau)]^2 dt d\tau.$$

It will become clear that quantities $\mathcal{E}_{l_1,l_2,d_1,d_2}$, $\mathcal{H}_{k,d}$ and \mathcal{Y} are necessary to evaluate performance of PAM based waveform estimators and detectors, while $\mathcal{F}_{l_1,l_2,d_1,d_2}$, $Q_{k,d}$, $\mathcal{R}_{k,d}$ and \mathcal{X} are needed for the PPM case.

Substituting (15) in (13), and letting $a = b = 0$ and $t = \tau$, the MSE becomes

$$MSE_k = \sum_{l,l' \neq k} \frac{\mathcal{E}_{l,l,0,0}}{N_p} + \sum_{l,m} \frac{\mathcal{E}_{l,l,c_{l,m'},c_{l,m'}}}{N_p^2} + \frac{\sigma^2 T_f}{N_p}. \quad (16)$$

If all users use periodic hopping codes with period of T_f, then the frame index m' in $c_{l,m'}$ can be dropped, and $c_{l,m'}$ is denoted as c_l. Then (16) becomes

$$MSE_k = \sum_{l,l' \neq k} \frac{\mathcal{E}_{l,l,0,0}}{N_p} + \sum_{l} \frac{\mathcal{E}_{l,l,c_{l},c_{l}}}{N_p} + \frac{\sigma^2 T_f}{N_p}. \quad (17)$$

The first summation has autocorrelations of interfering users waveforms without offset; the second summation contains autocorrelations of all users’ waveforms at offsets equal to delays of their data pulses (determined by hopping codes); the last term results from noise. The MSE is inversely proportional to the sample size (number of frame segments N_p). If only one segment from one symbol interval is used in the estimator, then the MSE level may be unacceptable and the template too noisy. That is the case of the conventional
detector. If N_f segments from one symbol interval ($N_s = 1$) are used, then MSE decreases [20], [25]. Our windowed smoothing of received signals across multiple symbol intervals significantly reduces waveform estimation error and improves detection quality. The degree of improvement depends on the window size. Also observe that, if $K = 1$ and $N_f = 1$, then it conforms to the result for a single-user system [27]. But when $N_f > 1$, introducing PN sequence $B_{k,n}$ to the data pulse helps to lower the MSE by a factor of N_f (embedded in N_p) compared to the scheme in [27] without PN sequence covering.

Based upon the above result, analysis of the PAM-based detector can be continued. There are two cases in detection. One corresponds to downlink where only the desired user’s PN sequences and hopping codes are known. The other is for uplink communication where all users’ PN sequences and hopping codes are available.

4.1.1 UWB downlink

The desired user’s waveform is estimated first, based on its PN sequence $A_{k,m'}$. Then, given its PN sequence $A_{k,m}$, its reference signals are subtracted to obtain N_f segments $\tilde{r}_{k,m}(t)$ in the n-th symbol interval. Afterwards, N_f generic signals $(m = nN_f, \cdots, nN_f + N_f - 1)$ are given by

$$\tilde{r}_{k,m}(t) = I_{k,n}B_{k,m}h_{k}(t - c_{k,m}T_c) - A_{k,m}\delta h_{k}(t) + \sum_{l,l\neq k}[A_{l,m}h_{l}(t) + I_{l,n}B_{l,m}h_{l}(t - c_{l,m}T_c)] + v_{m}(t),$$

and subsequently (9) becomes

$$\tilde{r}_{k,m}(t) = I_{k,n}h_{k}(t) + u_{k,m}(t)$$

where $u_{k,m}(t)$ represents waveform estimation error, MAI, plus noise,

$$nu_{k,m}(t) = -A_{k,m}B_{k,m}\delta h_{k}(t + c_{k,m}T_c) + B_{k,m}v_{m}(t + c_{k,m}T_c) + \sum_{l,l\neq k}[A_{l,m}B_{k,m}h_{l}(t + c_{k,m}T_c) + B_{l,m}B_{k,m}I_{l,n}h_{l}(t + c_{k,m}T_c - c_{l,m}T_c)].$$

Expressing the estimated template as $h_{k}(t) + \delta h_{k}(t)$, and substituting (19) into the detector (10), signal and noise components can be identified as

$$z_s = I_{k,n}\mathcal{E}_{k,k,0,0},$$

$$z_n = I_{k,n}\int_0^{T_f}\delta h_{k}(t)h_{k}(t)dt + \frac{1}{N_f}\sum_{m}\int_0^{T_f}h_{k}(t)u_{k,m}(t)dt + \frac{1}{N_f}\sum_{m}\int_0^{T_f}\delta h_{k}(t)u_{k,m}(t)dt.$$
Assume z_n is a Gaussian random variable. According to the central limit theorem, this assumption is reasonable when N_p is large since $\delta h_k(t)$ given by (14) stems from the sum of many terms, and it directly contributes to both $u_{k,m}(t)$ and z_n. Then the BER of the detector depends on the signal to noise ratio. The signal power is easily found to be $\epsilon_s = \mathcal{E}^2_{k,k,0,0}$. To evaluate the power of z_n, statistics of $\delta h_k(t)$ and $u_{k,m}(t)$ are required. If those N_p segments used for waveform estimation exclude N_f segments in the current (n-th) symbol interval, clearly all terms in the expression of $u_{k,m}(t)$ in (20), except the first, are independent of $\delta h_k(t)$. Even if those N_f segments are used, it is still plausible to assume that they are independent of $\delta h_k(t)$ for simplified expressions, since the waveform may be typically estimated based on $N_p \gg N_f$ segments. Under this assumption, we obtain the power $\epsilon_n = E\{z_n^2\}$ as

\[
n\epsilon_n = \int \int_0^{T_f} E\{\delta h_k(t)\delta h_k(\tau)\}h_k(t)h_k(\tau)dt\,d\tau + \frac{1}{N_f^2} \sum_m \int \int_0^{T_f} h_k(t)h_k(\tau)E\{u_{k,m}(t)u_{k,m}(\tau)\}dt\,d\tau + \frac{1}{N_f^2} \sum_m \int \int_0^{T_f} E\{\delta h_k(t)\delta h_k(\tau)\}E\{u_{k,m}(t)u_{k,m}(\tau)\}dt\,d\tau.
\]

(23)

Although statistics of $\delta h_k(t)$ have been derived, simplification of ϵ_n requires statistics of $u_{k,m}(t)$. From (20), we find

\[
E\{u_{k,m}(t)u_{k,m}(\tau)\} = E\{\delta h_k(t + c_{k,m}T_c)\delta h_k(\tau + c_{k,m}T_c)\} + \sigma_v^2\phi(t - \tau) + \sum_{l,l\neq k} h_l(t + c_{k,m}T_c)h_l(\tau + c_{k,m}T_c) + \sum_{l,l\neq k} h_l(t + c_{k,m}T_c - c_{l,m}T_c)h_l(\tau + c_{k,m}T_c - c_{l,m}T_c).
\]

(24)

Applying (15), this becomes

\[
E\{u_{k,m}(t)u_{k,m}(\tau)\} = \frac{1}{N_p} \sum_{l,l\neq k} h_l(t + c_{k,m}T_c)h_l(\tau + c_{k,m}T_c) + (1 + \frac{1}{N_p})\sigma_v^2\phi(t - \tau) + \frac{1}{N_p^2} \sum_{l,m'} h_l(t + c_{k,m}T_c - c_{l,m'}T_c)h_l(\tau + c_{k,m}T_c - c_{l,m'}T_c) + \sum_{l,l\neq k} h_l(t + c_{k,m}T_c)h_l(\tau + c_{k,m}T_c) + \sum_{l,l\neq k} h_l(t + c_{k,m}T_c - c_{l,m}T_c)h_l(\tau + c_{k,m}T_c - c_{l,m}T_c).
\]

(25)
Once again, the power is observed to depend on autocorrelations as well as cross correlations in codes, the smaller their correlations. Thus introduction of different hopping codes helps to reduce interference power since hopping codes alleviate terms at a typical offset \((c_l - c_k)T_c\) in (27), such as the second to the last term in the first line, as well as two terms in the second and third lines, respectively. It is expected that if asynchrony is considered in the received data model to characterize different time of arrivals, then \(\epsilon_n\) will be further decreased based on the same
reasoning. Noise contributions are reflected by terms \(\mathcal{H}_{k,d} \) and \(\mathcal{Y} \). Most terms in (27) are inversely proportional to sample size \(N_p \), so increasing \(N_p \) will decrease \(\epsilon_n \) as well. However, there is a lower bound dominated by those terms dependent only on \(N_f \), which corresponds to the limiting case \(N_p \to \infty \). The result in this case is given by

\[
\epsilon_n = \frac{\sigma_v^2}{N_f} \mathcal{H}_{k,0} + \sum_{l,l \neq k} \left(\frac{\sigma_{l,0,-c_k}^2}{N_f} + \frac{\sigma_{k,l,0,-c_k}^2}{N_f} \right).
\]

(28)

This means that even in the absence of waveform estimation error \((\text{MSE}_k \to 0 \text{ as } N_p \to \infty \) according to (17)), interference from other users data pulses plus noise in those \(N_f \) segments of the \(n \)-th symbol interval are non-trivial. In this case, \(\epsilon_n \) is inversely proportional to \(N_f \). So, increasing \(N_f \) is desirable while meeting the data rate requirement. Similar observations can be made for other communication scenarios described below.

4.1.2 UWB uplink

In this case, each user’s waveform can be estimated by (8) based on PN sequence \(A_{k,m'} \). Then the estimated reference signal \(A_{k,m} \hat{h}_k(t) \) is subtracted, yielding the following signal

\[
\tilde{r}_{k,m}(t) = I_{k,n} B_{k,m} h_k(t-c_{k,m}T_c) - A_{k,m} \delta h_k(t) - \sum_{l,l \neq k} A_{l,m} \delta h_l(t) + \sum_{l,l \neq k} I_{l,n} B_{l,m} h_l(t-c_{l,m}T_c) + v_m(t).
\]

(29)

Now

\[
\tilde{r}_{k,m}(t) = I_{k,n} h_k(t) + u_{k,m}(t),
\]

(30)

where \(u_{k,m}(t) \) is given by

\[
u_{k,m}(t) = -\sum_l A_{l,m} B_{k,m} \delta h_l(t + c_{k,m}T_c) + B_{k,m} v_m(t + c_{k,m}T_c) + \sum_{l,l \neq k} B_{l,m} B_{k,m} I_{l,n} h_l(t + c_{k,m}T_c - c_{l,m}T_c).
\]

(31)
For the detector (10), signal z_s, interference and noise z_n still follow (21) and (22), and $\epsilon_s = \mathcal{E}_{k,k,0,0}^2$. However, $u_{k,m}(t)$ in (31) is different from (20), so ϵ_n needs to be re-derived. It is shown in Appendix subsection A.1 that if all time hopping sequences are periodic, then

$$
\varepsilon_n = \frac{\sigma_v^2}{N_f} + \frac{\sigma_v^2}{N_p} + \frac{K \sigma_v^2}{N_f N_p} \mathcal{H}_{k,0} + \frac{\sigma_v^4}{N_f N_p} + \sum_l \left(\frac{\mathcal{E}_{k,l,0,c_l}^2}{N_f} + \frac{\sigma_v^2}{N_f N_p} \mathcal{H}_{l,c_l} \right) + \sum_{l,l \neq k} \frac{\mathcal{E}_{k,l,0,c_l-c_k}^2}{N_f} + \sum_{l_1,l_2} \sum_{l_1 \neq l_2} \frac{\mathcal{E}_{k,l_1,l_2,0,c_{l_1}-c_{l_2}}^2}{N_f} + \frac{\mathcal{E}_{l_1,l_2,0,c_{l_1}-c_{l_2}}^2}{N_f}.
$$

(32)

If $N_p \gg 1$, then

$$
\varepsilon_n = \frac{\sigma_v^2}{N_f} + \sum_{l,l \neq k} \frac{\mathcal{E}_{k,l,0,c_l-c_k}^2}{N_f}.
$$

(33)

Compared with (28), this power is smaller since reference signals from interfering users are subtracted. This observation also suggests that the first term in the summation of (28) is due to reference signals of interfering users, while the second from their data signals as above.

4.2 PPM Signaling

Substituting (6) into (8), $\delta h_k(t)$ can be expressed as

$$
\delta h_k(t) = \frac{1}{N_p} \sum_{m', l \neq k} A_{l,m'} A_{k,m'} h_l(t) + \frac{1}{N_p} \sum_{m'} A_{k,m'} v_{m'}(t)
$$

$$
+ \frac{1}{N_p} \sum_{l,m'} A_{k,m'} B_{l,m'} h_l(t - c_{l,m'} T_c - I_{l_{\mid m' / N_f}} \alpha T_c).
$$

(34)

Then invoking our assumptions on PN codes, inputs, and noise, and considering PPM modulation where $I_{l_{\mid m' / N_f}}$ takes 0 and 1 with equal probability, we obtain

$$
E\{\delta h_k(t + a) \delta h_k(\tau + b)\} = \frac{1}{N_p} \sum_{l, l \neq k} h_l(t + a) h_l(\tau + b) + \frac{\sigma_v^2}{N_p} \phi(t + a - \tau - b)
$$

$$
+ \frac{1}{2N_p^2} \sum_{i,l,m'} \sum_{i = 0}^1 h_l(t + a - c_{i,m'} T_c - i \alpha T_c) h_l(\tau + b - c_{i,m'} T_c - i \alpha T_c). \tag{35}
$$
Substituting (35) in (13), and letting \(a = b = 0 \) and \(t = \tau \), the template estimation MSE becomes

\[
MSE_k = \sum_{l,l \neq k} \frac{\mathcal{E}_{l,l,0,0}}{N_p} + \sum_{i,l,m'} \frac{\mathcal{E}_{l,l,c_i,c_i,m'+\alpha,c_{l,m'}+\alpha}}{2N_p^2} + \frac{\sigma_v^2T_f}{N_p}.
\] (36)

If all users use periodic hopping sequences, then (36) becomes

\[
MSE_k = \sum_{l,l \neq k} \frac{\mathcal{E}_{l,l,0,0}}{N_p} + \sum_{i,l} \frac{\mathcal{E}_{l,l,c_i,c_i+\alpha}}{2N_p} + \frac{\sigma_v^2T_f}{N_p}.
\] (37)

Next we consider the two cases for detection of PPM symbols.

4.2.1 UWB downlink

In the \(n \)-th symbol interval, \(N_f \) generic signals are given by

\[
\tilde{r}_{k,m}(t) = B_{k,m}h_k(t - c_{k,m}T_c - \tau_{k,n}) - A_{k,m}\delta h_k(t) + \sum_{l,l \neq k} [A_{l,m}h_l(t) + B_{l,m}h_l(t - c_{l,m}T_c - \tau_{l,n})] + v_m(t).
\] (38)

Subsequently (9) becomes

\[
\tilde{r}_{k,m}(t) = h_k(t - I_{k,n}\alpha T_c) + u_{k,m}(t),
\] (39)

where modulation delay has been substituted by information controlled shift amount, \(u_{k,m}(t) \) represents waveform estimation error, MAI, plus noise, as

\[
u_{k,m}(t) = -A_{k,m}B_{k,m}\delta h_k(t + c_{k,m}T_c) + B_{k,m}v_m(t + c_{k,m}T_c) + \sum_{l,l \neq k} [A_{l,m}B_{l,m}\delta h_l(t + c_{k,m}T_c) + B_{l,m}B_{k,m}h_l(t + c_{k,m}T_c - c_{l,m}T_c - I_{l,n}\alpha T_c)].
\] (40)

Expressing estimated waveform (12) used in the detector (11) by \(h_k(t) + \delta h_k(t) \), the signal and noise components in \(y_{k,m} \) are

\[
z_s = \int_0^{T_f} \Phi_{k,0}(t)h_k(t - I_{k,n}\alpha T_c)dt,
\] (41)

\[
z_n = \int_0^{T_f} \delta\Phi_{k,0}(t)h_k(t - I_{k,n}\alpha T_c)dt + \frac{1}{N_f} \sum_m \int_0^{T_f} \Phi_{k,0}(t)u_{k,m}(t)dt + \frac{1}{N_f} \sum_m \int_0^{T_f} \delta\Phi_{k,0}(t)u_{k,m}(t)dt.
\] (42)
The BER of the detector depends on the signal to noise ratio. Given \(I_{k,n} = 0 \) is transmitted, the signal power is \(\epsilon_{0,n} = \mathcal{F}_{k,0,0}^2 \) while for transmitted \(I_{k,n} = 1, \epsilon_{1,n} = \mathcal{F}_{k,0,0}^2 \). It is reasonable to assume the BERs, conditioned on the two different inputs, are approximately the same, a result that we have confirmed with simulation. So we focus on the case when \(I_{k,n} = 0 \) is transmitted. The signal power is denoted as \(\epsilon_s \). The interference and noise power \(\epsilon_n = E\{z^2_n\} \), conditioned on \(I_{k,n} = 0 \), is required to evaluate BER based on the \(Q \)-function as \(Q(\sqrt{\frac{\epsilon_s}{\epsilon_n}}) \). In appendix subsection A.2 it is shown that if each hopping sequence is periodic, then

\[
\epsilon_n = \frac{\sigma_v^2}{N_p} \mathcal{R}_{k,0} + (\frac{\sigma_v^2}{N_f} + \frac{\sigma_v^2}{N_f N_p}) \mathcal{Q}_{k,0} + \frac{\sigma_v^2}{N_f N_p} \mathcal{X} + \sum_{i,l \neq k} \left[\frac{\mathcal{F}_{k,l,0,0}^2}{N_p} + \left(\frac{1}{N_f} + \frac{1}{N_f N_p} \right) \mathcal{F}_{l,k,-c_k,0}^2 + \frac{\sigma_v^2}{N_f N_p} \mathcal{R}_{l,-c_k} + \frac{\sigma_v^2}{N_f N_p} \mathcal{Q}_{l,0} \right] + \sum_{i,l} \left(\frac{\mathcal{F}_{k,l,0,0}^2}{2 N_p} + \frac{\mathcal{F}_{k,l,c_1 - c_k + \alpha,0}^2}{2 N_f N_p} + \frac{\sigma_v^2}{2 N_f N_p} \mathcal{Q}_{l,c_1 + \alpha} \right) + \sum_{i,l} \sum_{l,l \neq k} \left(\frac{\sigma_v^2}{2 N_f N_p} \mathcal{R}_{l,c_1 - c_k} + \frac{\mathcal{F}_{k,l,c_1 - c_k + \alpha,0}^2}{2 N_f} \right) + \sum_{l_1,l_2,l_3 \neq k} \frac{\mathcal{F}_{l_1,l_2,c_1 - c_k,0}^2}{N_f N_p} + \sum_{i,l} \sum_{l,l \neq k} \frac{\mathcal{F}_{l_1,l_2,c_1 - c_k + \alpha,0}^2}{2 N_f N_p} + \sum_{i,l} \sum_{l,l \neq k} \frac{\mathcal{F}_{l_1,l_2,c_1 - c_k + \alpha,0}^2}{4 N_f N_p}.
\]

(43)

Note that \(\mathcal{F}_{l_1,l_2,d_1,d_2}, \mathcal{Q}_{k,d}, \mathcal{R}_{k,d} \) and \(\mathcal{X} \) are necessary to evaluate PPM performance. When \(N_p \gg 1, \epsilon_n \) becomes

\[
\epsilon_n = \frac{\sigma_v^2}{N_f} \mathcal{Q}_{k,0} + \sum_{l,l \neq k} \frac{\mathcal{F}_{l,k,-c_k,0}^2}{N_f} + \sum_{i,l} \sum_{l,l \neq k} \frac{\mathcal{F}_{l,k,c_1 - c_k + \alpha,0}^2}{2 N_f}.
\]

(44)

4.2.2 UWB uplink

In this case, each user’s waveform can be estimated by (8) and its estimated reference signal \(A_{k,m} \hat{h}_k(t) \) is subtracted, yielding the following signal
\[\tilde{r}_{k,m}(t) = B_{k,m}h_k(t - c_{k,m}T_c - \tau_{I_{k,n}}) - A_{k,m}\delta h_k(t) - \sum_{l,l\neq k} A_{l,m}\delta h_l(t) + \sum_{l,l\neq k} B_{l,m}h_l(t - c_{l,m}T_c - \tau_{I_{l,n}}) + v_m(t). \] (45)

Then
\[\tilde{r}_{k,m}(t) = h_k(t - I_{k,n}\alpha T_c) + u_{k,m}(t), \] (46)

with \(u_{k,m}(t) \) given by
\[u_{k,m}(t) = -\sum_l A_{l,m}B_{k,m}\delta h_l(t + c_{k,m}T_c) + B_{k,m}v_m(t + c_{k,m}T_c) + \sum_{l,l\neq k} B_{l,m}B_{k,m}h_l(t + c_{k,m}T_c - c_{l,m}T_c - I_{k,n}\alpha T_c). \] (47)

For the detector (10), desired signal \(z_s \), interference, and noise \(z_n \) have the same forms as (41) and (42), and the signal power is still \(\epsilon_{0,s} = \mathcal{F}_{k,k,0,0}^2 \). Interference plus noise power is shown in Appendix subsection A.3 to be

\[
\epsilon_n = \frac{\sigma_v^2}{N_p} Q_{k,0} + \left(\frac{\sigma_v^2}{N_f} + \frac{\sigma_v^2 K}{N_f N_p} \right) Q_{k,0} + \frac{\sigma_v^4}{N_f N_p} \mathcal{X} + \sum_{l,l\neq k} \left(\frac{\mathcal{F}_{k,l,0,0}^2}{N_p} + \frac{\sigma_v^2}{N_f N_p} Q_{l,0} \right) + \sum_{l,l\neq k} \left(\frac{\mathcal{F}_{l,k,c_l,i\alpha}^2}{2 N_f N_p} \mathcal{R}_{l,c_l-i\alpha,0} + \frac{\mathcal{F}_{l,k,c_l-i\alpha,0}^2}{2 N_f N_p} \mathcal{R}_{l,k,c_l-i\alpha,0} \right)
\] + \left(\sum_{l_1,l_2,l_1 \neq l_2} \frac{\mathcal{F}_{l_1,l_2,c_{l_1}-c_{l_2},0}^2}{N_f N_p} + \sum_{l_1,l_2} \frac{\mathcal{F}_{l_1,l_2,c_{l_1}-c_{l_2},i\alpha,0}^2}{2 N_f N_p} \right) + \sum_{l_1,l_2,l_1 \neq l_2} \left(\frac{\mathcal{F}_{l_1,l_2,c_{l_1}-c_{l_2},i\alpha,0}^2}{2 N_f N_p} + \sum_{l_1,l_2} \sum_{l_1 \neq k} \frac{\mathcal{F}_{l_1,l_2,c_{l_1}-c_{l_2},i\alpha,0}^2}{4 N_f N_p} \right) \] (48)

when each hopping sequence is periodic. In a case of \(N_p \gg 1 \), it becomes
\[
\epsilon_n = \frac{\sigma_v^2}{N_f} Q_{k,0} + \sum_{l,l\neq k} \frac{\mathcal{F}_{l,k,c_l-i\alpha,0}^2}{2 N_f} \] (49)

which is smaller than (44).
4.3 Brief Summary

Although some observations have been made before, it is helpful to compare different detectors. For each data modulation, the uplink detector outperforms the downlink detector. For example, compare (27) or (28) with (32) or (33) with PAM signaling; compare (43) or (44) with (48) or (49) with PPM signaling. However, the uplink detector does not attempt to detect inputs from all users simultaneously even though all users’ signal waveforms can be estimated concurrently. Rather, each detector estimates user input one at a time. The estimated data signals from other users can be successively cancelled, similar to cancellation of reference signals. Although perhaps not obvious, the superiority of PAM over PPM signaling, in terms of estimation and detection performance, has been observed for a single-user system without PN coding [27], and will also be supported by simulation results presented next.

5 Numerical Examples

The proposed waveform estimators and detectors are tested, and their corresponding analytical results are verified by computer simulation. Both MSE, normalized by the autocorrelation of the waveform at zero offset, and detection BER are presented. The second derivative of Gaussian pulse \(w(t) = \left[1 - 4\pi \left(\frac{t-D_g/2}{\tau_m}\right)^2\right] \exp\left[-2\pi \left(\frac{t-D_g/2}{\tau_m}\right)^2\right] \) is adopted as the transmitted pulse with \(D_g = 0.7ns \) and \(\tau_m = 0.2877ns \) [7]. For the PPM based UWB system, modulation delay is \(\sigma_d = 0.156ns \) [7]. Except when stated otherwise, the following typical parameters are set: \(N_s = 500, N_f = 2, T_c = 1ns, K = 4, E_b/N_0 = 10B, \) \(D = 3, D_{max} = D + K \). Binary PN sequences are generated randomly. Each user’s TH code is chosen randomly from a set \(\{D, \cdots, D_{max}\} \) in each of 100 independent channel realizations where channels are generated according to the IEEE UWB CM1 channel model [33]. To avoid unnecessary calculations, only multipath components are used to ensure 99% total energy capture, while many small trailing coefficients are ignored. The bandwidth of the front-end bandpass filter is chosen to be twice the higher 3 dB cut-off frequency of the monopulse. \(T_f \) is set to be slightly larger than the maximum channel delay spread, on the order of tens of nanoseconds, because of long channel tails. Considering a relatively small \(D \) and large channel delay spread, severe IPI at the receiver occurs. Effects of sample size \(N_s \), noise in terms of \(E_b/N_0 \), number of users, near-far interference, and channel conditions (using the IEEE channel models CM1 to CM4) are studied. For each scenario, both PAM and PPM results are shown, including uplink and downlink cases.
5.1 Effect of Sample Size

The MSE is predicted to be inversely proportional to sample size and the BER is lower bounded the when sample size is sufficiently large. Figure 3 shows MSE versus sample size for PAM signaling. Results marked by "*" are based on experiment, while the solid line is from analysis. Clearly, analytical results are consistent with those from experiments. The MSE level is favorably low. For example, it is below 1×10^{-1} with 500 symbols transmitted. (We have compared MSE analysis and simulation for our other cases and observed an exact match, and so only BER results will be shown hereafter.) BER performance is demonstrated in figure 4. Curves with upward point triangles are for uplink, and those with downward triangles are for downlink, with stars for the conventional receiver. Solid lines are experimental results. Dashed lines represent bounds, where the true noise-free waveforms are used in the detector. Dashed-dotted lines are based on analysis. Experimental results converge to both analytical ones and bounds as the sample size increases to about 1000. The uplink detector is better than the downlink one for a large sample size. Both detectors significantly outperform the conventional one that uses a very noisy template.

For PPM signaling, BER results are plotted in figure 5. Similar conclusions can be made. Comparing to PAM signaling, BER convergence of experimental results to both analytical results and bounds appear faster as early as 500 samples. But the BERs are larger. For both PAM and PPM modulation formats, the raw BERs can achieve 3×10^{-2} with only 50 samples used for waveform estimation.

![Waveform estimation MSE versus data length (PAM)](image)

Figure 3: Normalized waveform estimation MSE versus data length with PAM signaling.
Figure 4: BER versus data length with PAM signaling.

Figure 5: BER versus data length with PPM signaling.
5.2 Effect of Noise

Noise is another factor that significantly affects detection performance. Figure 6 shows its effect on the BER with PAM signaling. The signal to noise ratio E_b/N_0 ranges from 0 dB to 12 dB. Reliable detection is seen from figure 6, and the proposed detectors substantially outperform the conventional TR scheme. Uplink detector is better than downlink detector at high SNR. For each proposed detector, analytical curves agree well with experimental ones. Again, small gaps from associated bounds are due to the finite sample effect on the proposed detectors, as already observed from the result of figure 4, e.g., at the point 500 samples with $E_b/N_0 = 10 dB$. Corresponding BERs for PPM signaling are presented figure 7. Comparing with PAM results, the BERs are slightly larger than those with PAM, and gaps between experimental and analytical results are smaller. This is consistent with observed faster convergence with respect to sample size indicated by figure 5.

Due to excellent convergence of analytical and experimental results observed in the above cases, we will rely on the analytical results hereafter to study receiver performance when the number of users, interference power, and channel conditions vary.

![Figure 6: BER versus Eb/No with PAM signaling.](image)
5.3 Effect of Number of Users

It is desirable for a UWB system to maximize its capacity. However, the number of users in the system controls the interference level to the desired user. Based on our analytical results, figure 8 demonstrates the MAI effect on BER of downlink and uplink detectors for both PAM and PPM. Again, 100 independent channel realizations are conducted under $E_b/N_0 = 10$ dB, and $N_s = 500$. K varies from 1 up to 36, but D_{max} is fixed at 8 to make a fair comparison. Solid lines are for PAM signaling and dashed lines for PPM signaling. Each detector degrades with increasing K, and all detectors are able to provide raw BERs as low as 1×10^{-2} with 5 users. Uplink detector with PAM signaling performs the best, while downlink detector with PPM signaling the worst. Downlink detector with PAM signaling performs better than uplink detector with PPM signaling when there are fewer than 8 users, with the conclusion reversed with many users. Overall, PAM signaling is advantageous to PPM signaling, and the performance difference between an uplink and downlink detector increases as K increases.

5.4 Near-far Effect

Next we consider a near-far scenario, with results shown in figure 9. Define the signal to interference ratio (SIR) as the ratio of the desired user’s transmitted power to each of equally powered interfering users in a 4-user system with $10dB$ noise. SIR ranges from
−20dB to 20dB. If it is desirable to achieve BER about 1×10^{-2}, then −5dB SIR can be tolerated. Convergence levels coincide with the single user bounds for each modulation, shown by starting points in figure 8.

Figure 8: Effect of number of users on BER.

Figure 9: Near-far effect on desired user BER.
5.5 Effect of Channel Characteristics

IEEE UWB channel model CM1 to generate independent channels. Currently, four UWB channel models are available from the IEEE, namely CM1 to CM4 [26]. They capture typical link characteristics for short to medium range, line of sight (LOS) or non-line of sight (NLOS) communications. CM1 is for LOS at range 0-4m, CM2 is for NLOS at the same range, CM3 is for NLOS at 4-10m, CM4 is to fit a 25ns root mean square delay spread to represent an extreme NLOS multipath channel. All those models are considered to generate different channel characteristics. Their effects on analytical BERs are investigated. In order for manageable realization of detectors in a computer, multipath channels generated by CM4 are truncated at the point of 80% total energy capture. Figure 10 shows results under a similar setup as described above. Interestingly, all four detectors favor CM4. Rich scattering is not an adverse factor to a correlation detector, contrary to a RAKE receiver that usually seeks a limited number of dominant paths.

![BER for different channel conditions](image)

Figure 10: Effect of different communication channels on BER.
6 Conclusions

Incorporating PN sequences, multiuser transmitted reference (MTR) schemes are proposed for both PAM and PPM UWB systems. To obtain a satisfactory template for each correlation detector, a mean-based waveform estimation method is derived. Detailed analyses of waveform estimators and detector BERs are provided for various communication scenarios including uplink and downlink with both PAM and PPM. All analytical results are confirmed by experiments. Simulation results also demonstrate that the proposed detectors substantially outperform conventional TR detectors since they utilize significantly improved correlation templates. PAM signaling is slightly advantageous compared to PPM. Aided by PN sequences, multiuser communication is enabled, leading to large system capacity; the proposed systems can support many users at a reasonable raw BER level, while almost doubling the data rate of a conventional TR system.
References

28

A Optimization of the SINR

A.1 Proof of (32)

Power ϵ_n involves $E\{u_{k,m}(t)u_{k,m}(\tau)\}$. One may wonder if cross term $\delta h_k(t + a)\delta h_l(\tau + a)$ with $a = c_{k,m}T_c$ for $k \neq l$ plays an role. Towards this end, we express $\delta h_k(t + a)$ explicitly as

$$
\delta h_k(t + a) = \frac{1}{N_p} \sum_{m'} A_{l,m'} A_{k,m'} h_l(t + a) + \frac{1}{N_p} \sum_{m', l' \neq l, l' \neq k} A_{l',m'} A_{k,m'} h_{l'}(t + a)
$$

$$
+ \frac{1}{N_p} \sum_{m'} A_{k,m'} B_{l',m'} I_{l'[m'/N_f]} h_{l'}(t + a - c_{l',m'} T_c)
$$

$$
+ \frac{1}{N_p} \sum_{m'} A_{k,m'} v_{m'}(t + a)
$$

(A.1)

according to (14), similarly for $\delta h_l(t + a)$

$$
\delta h_l(t + a) = \frac{1}{N_p} \sum_{m'} A_{k,m'} A_{l,m'} h_k(t + a) + \frac{1}{N_p} \sum_{m', l' \neq l, l' \neq k} A_{v,m'} A_{l,m'} h_{v}(t + a)
$$

$$
+ \frac{1}{N_p} \sum_{m'} A_{l,m'} B_{l',m'} I_{l'[m'/N_f]} h_{l'}(t + a - c_{l',m'} T_c)
$$

$$
+ \frac{1}{N_p} \sum_{m'} A_{l,m'} v_{m'}(t + a).
$$

(A.2)

Considering $A_{k,m}$ and $A_{l,m}$ are zero mean and independent, cross term has no effect on $E\{u_{k,m}(t)u_{k,m}(\tau)\}$. Therefore,

$$
E\{u_{k,m}(t)u_{k,m}(\tau)\} = \sum_l E\{\delta h_l(t + c_{l,m}T_c)\delta h_l(\tau + c_{l,m} T_c)\} + \sigma^2_\epsilon \phi(t - \tau)
$$

$$
+ \sum_{l,l \neq k} h_l(t + c_{k,m} T_c - c_{l,m} T_c) h_l(\tau + c_{k,m} T_c - c_{l,m} T_c).
$$

(A.3)

Applying (15), it becomes

$$
E\{u_{k,m}(t)u_{k,m}(\tau)\} = \frac{1}{N_p} \sum_{l_1, l_2 \neq l_1} h_{l_2}(t + c_{l_1,m}T_c) h_{l_2}(\tau + c_{l_1,m}T_c) + (1 + \frac{K}{N_p}) \sigma^2_\epsilon \phi(t - \tau)
$$

$$
+ \frac{1}{N_p^2} \sum_{l_1, l_2, m'} h_{l_2}(t + c_{l_1,m}T_c - c_{l_2,m'} T_c) h_{l_2}(\tau + c_{l_1,m} T_c - c_{l_2,m'} T_c)
$$

$$
+ \sum_{l,l \neq k} h_l(t + c_{k,m} T_c - c_{l,m} T_c) h_l(\tau + c_{k,m} T_c - c_{l,m} T_c).
$$

(A.4)
Substituting (A.4) and (15) into (23), the interference plus noise power becomes

\[
\epsilon_n = \sum_{l,l\neq k} \frac{\mathcal{E}_{k,l,0,0}^2}{N_p} + \left(\frac{\sigma_v}{N_f} \frac{\sigma_v}{N_f} + \frac{\sigma_v^2}{N_f N_p} \right) \mathcal{H}_{k,0} + \sum_{l,m,m'} \frac{\mathcal{E}_{k,l,0,0,l,m,m'}^2}{N_p^2} \\
+ \sum_{l_1,m_1,l_2, l_2 \neq l_1} \frac{\mathcal{E}_{k,l_2,0, c_{l_1,m_1}}^2}{N_f N_p} + \sum_{l_1,l_2,m,m'} \frac{\mathcal{E}_{k,l_2,0, c_{l_1,m_1}, c_{l_1,m_1}}^2}{N_f N_p^2} + \sum_{l,l \neq k} \frac{\mathcal{E}_{k,l,0, c_{l_1,m_1} - c_{l_2,m_2}}^2}{N_f} \\
+ \sum_{l,l \neq k} \frac{\sigma_v^2}{N_f N_p} \mathcal{H}_{l,0} + \sum_{l,m,m'} \frac{\sigma_v^2}{N_f N_p^2} \mathcal{H}_{l,c_{l_1,m_1}, m,m'} + \sum_{m} \sum_{l_1,l_2,l_2 \neq l_1} \frac{\mathcal{E}_{l_1,l_2,0, c_{l_1,m_1}, c_{l_2,m_2}}^2}{N_f N_p^2}.
\] (A.5)

If all hopping sequences are periodic, then it reduces to (32).

A.2 Proof of (43)

From the expression of \(z_n \), we obtain

\[
\epsilon_n = \int_0^{T_f} \int_0^{T_f} E\{\delta \Psi_{k,0}(t) \delta \Psi_{k,0}(\tau)\} \dot{h}_k(t) \dot{h}_k(\tau) dt \, d\tau \\
+ \frac{1}{N_f} \sum_{m} \int_0^{T_f} \Psi_{k,0}(t) \Psi_{k,0}(\tau) E\{u_{k,m}(t) u_{k,m}(\tau)\} dt \, d\tau \\
+ \frac{1}{N_f} \sum_{m} \int_0^{T_f} E\{\delta \Psi_{k,0}(t) \delta \Psi_{k,0}(\tau)\} E\{u_{k,m}(t) u_{k,m}(\tau)\} dt \, d\tau. \tag{A.6}
\]

It requires statistics of PPM template estimation error \(\delta \Psi_{k,0}(t) \) and \(u_{k,m}(t) \). According to (34), we have

\[
E\{\delta \Psi_{k,0}(t) \delta \Psi_{k,0}(\tau)\} = \frac{1}{N_p} \sum_{l,l \neq k} \Psi_{l,0}(t) \Psi_{l,0}(\tau) \\
+ \frac{\sigma_v^2}{N_p} \left[2 \phi(t - \tau) - \phi(t - \tau + \alpha T_c) - \phi(t - \tau - \alpha T_c) \right] \\
+ \frac{1}{2N_p^2} \sum_{i,l,m,m'} [h_l(t - c_{l,m} T_c - i \alpha T_c) - h_l(t - c_{l,m} T_c - (i + 1) \alpha T_c)] \\
\times [h_l(\tau - c_{l,m} T_c - i \alpha T_c) - h_l(\tau - c_{l,m} T_c - (i + 1) \alpha T_c)]. \tag{A.7}
\]
From (40), we find statistics of $u_{k,m}(t)$

$$E\{u_{k,m}(t)u_{k,m}(\tau)\} = E\{\delta h_k(t + c_{k,m}T_c)\delta h_k(\tau + c_{k,m}T_c)\} + \sigma^2 v(t - \tau) + \sum_{l,l \neq k} h_l(t + c_{k,m}T_c)h_l(\tau + c_{k,m}T_c) + \frac{1}{2}\sum_i \sum_{l,l \neq k} h_i(t + c_{k,m}T_c - c_{l,m}T_c - i\alpha T_c)h_l(\tau + c_{k,m}T_c - c_{l,m}T_c - i\alpha T_c). \quad (A.8)$$

Applying (35), it becomes

$$E\{u_{k,m}(t)u_{k,m}(\tau)\} = (1 + \frac{1}{N_p}) \sum_{l,l \neq k} h_i(t + c_{k,m}T_c)h_l(\tau + c_{k,m}T_c) + (1 + \frac{1}{N_p})\sigma^2 v(t - \tau)
+ \frac{1}{2N_p^2} \sum_{i,l,m'} h_i(t + c_{k,m}T_c - c_{l,m'}T_c - i\alpha T_c)h_l(\tau + c_{k,m}T_c - c_{l,m'}T_c - i\alpha T_c)
+ \frac{1}{2} \sum_i \sum_{l,l \neq k} h_i(t + c_{k,m}T_c - c_{l,m}T_c - i\alpha T_c)h_l(\tau + c_{k,m}T_c - c_{l,m}T_c - i\alpha T_c). \quad (A.9)$$

Substituting (A.7) and (A.9) into (A.6), the interference plus noise power becomes

$$\epsilon_n = \sum_{l,l \neq k} \frac{\mathcal{F}^2_{k,l,0,0}}{N_p} + \frac{\sigma^2_v}{N_p} \mathcal{R}_{k,0} + \sum_{i,l,m'} \frac{\mathcal{F}^2_{k,0,c_{i,m'}+i\alpha}}{2N_p^2} + \sum_m \sum_{l,l \neq k} \frac{1}{N_f^2}(1 + \frac{1}{N_p})\mathcal{F}^2_{l,k,-c_{k,m},0}
+ (\frac{\sigma^2_v}{N_f N_p} + \frac{\sigma^2_v}{N_f N_p}) \mathcal{Q}_{k,0}
+ \sum_{i,l,m,m'} \frac{\mathcal{F}^2_{l,c_{i,m'}-c_{k,m}+i\alpha,0}}{2N_f^2 N_p^2} + \sum_{i,m} \sum_{l,l \neq k} \frac{\mathcal{F}^2_{l,k,c_{i,m}-c_{k,m}+i\alpha,0}}{2N_f^2 N_p}
+ \sum_m \sum_{l,l \neq k} \frac{\mathcal{F}^2_{l,0,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p^2} + \sum_{i,m} \sum_{l,l \neq k} \frac{\mathcal{F}^2_{l,0,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p}
+ \sum_m \sum_{l,l \neq k} \frac{\mathcal{F}^2_{l,0,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p} + \sum_{i,m} \sum_{l,l \neq k} \frac{\mathcal{F}^2_{l,0,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p}
+ \sum_{i,l,m,m'} \sum_{l_1,l_2,l_1 \neq k,l_2 \neq k} \frac{\mathcal{F}^2_{l_1,l_2,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p^2}
+ \sum_{i,l,m} \sum_{l_1,l_2,l_1 \neq k,l_2 \neq k} \frac{\mathcal{F}^2_{l_1,l_2,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p^2}
+ \sum_{i,l,m} \sum_{l_1,l_2,l_1 \neq k} \frac{\mathcal{F}^2_{l_1,l_2,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p^2}
+ \sum_{i,l,m} \sum_{l_1,l_2,l_1 \neq k} \frac{\mathcal{F}^2_{l_1,l_2,c_{i,m}-c_{k,m}+i\alpha}}{2N_f^2 N_p^2} \quad (A.10)$$

where all terms of order $\frac{1}{N_p}$ in simplifying the third term of (A.6) have been ignored. If all hopping sequences are periodic, then it reduces to (43).
A.3 Proof of (48)

According to (47), we obtain

$$E\{u_{k,m}(t)u_{k,m}(\tau)\} = \sum_l E\{\delta h_l(t + c_{l,m}T_e)\delta h_l(\tau + c_{l,m}T_e)\} + \sigma_v^2 \phi(t - \tau)$$

$$+ \frac{1}{2} \sum_{l,l \neq k} h_l(t + c_{k,m}T_e - c_{l,m}T_e - i\alpha T_c)h_l(\tau + c_{k,m}T_e - c_{l,m}T_e - i\alpha T_c). \quad (A.11)$$

Applying (35), it becomes

$$E\{u_{k,m}(t)u_{k,m}(\tau)\} = \frac{1}{N_p} \sum_{l_1,l_2 \neq 1} h_{l_1}(t + c_{l_1,m}T_e)h_{l_1}(\tau + c_{l_1,m}T_e) + \left(1 + \frac{K}{N_p}\right)\sigma_v^2 \phi(t - \tau)$$

$$+ \frac{1}{2N_p^2} \sum_{i,l_1,l_2,m'} h_{l_2}(t + c_{l_1,m}T_e - c_{l_2,m'}T_e - i\alpha T_c)h_{l_2}(\tau + c_{l_1,m}T_e - c_{l_2,m'}T_e - i\alpha T_c)$$

$$+ \frac{1}{2} \sum_{l,l \neq k} h_l(t + c_{k,m}T_e - c_{l,m}T_e - i\alpha T_c)h_l(\tau + c_{k,m}T_e - c_{l,m}T_e - i\alpha T_c). \quad (A.12)$$

Substituting (A.7) and (A.12) into (A.6), the interference plus noise power becomes

$$\epsilon_n = \sum_{l,l \neq k} \frac{F_{k,l,0,0}^2}{N_p} + \frac{\sigma_v^2}{N_p} R_{k,0} + \sum_{i,l,m'} \frac{F_{k,l,0,c_{i,m'} + i\alpha}^2}{2N_p^2} + \sum_{l_1,m \neq l_2} \frac{F_{l_2,k,-c_{l_1,m},0}^2}{N_p^2 N_p} + \left(\frac{\sigma_v^2}{N_f} + \frac{\sigma_v^2 K}{N_f N_p}\right) Q_{k,0}$$

$$+ \sum_{i,l_1,l_2,m,m'} \frac{F_{l_1,k,c_{i,m'},-c_{l_1,m} + i\alpha,0}^2}{2N_p^2 N_p^2} + \sum_{i,m} \sum_{l,l \neq k} \frac{F_{i,m,-c_{k,m} + i\alpha,0}^2}{2N_f^2 N_p} + \sum_{i,m} \sum_{l,l \neq k} \frac{\sigma_v^4}{2N_f^2 N_p} R_{i,c_{l,m} - c_{k,m} + i\alpha}$$

$$+ \sum_{i,m} \sum_{l,l \neq k} \frac{\sigma_v^2}{2N_f^2 N_p} Q_{l,c_{i,m'} + i\alpha} + \sum_{i_1,i_2,l,m,m'} \frac{F_{l_1,l_2,c_{i_1,m'},-c_{k,m} + i\alpha,0}^2}{4N_f^2 N_p^2} \quad (A.13)$$

where all terms of order $\frac{1}{N_p}$ in simplifying the third term of (A.6) have been ignored, similarly as before. It reduces to (48) if periodic hopping sequences are employed.