
CarnegieMellon
Software Engineering Institute

The CERT Function Extraction

Experiment: Quantifying FX

Impact on Software

Comprehension and
Verification

Rosann W. Collins
University of South Florida and
CERT, Software Engineering Institute

Gwendolyn H. Walton
CERT, Software Engineering Institute

Alan R. Hevner
University of South Florida and
CERT, Software Engineering Institute

Richard C. Linger
CERT, Software Engineering Institute

CMU/SEI-2005-TN-047

December2005

Survivable Systems Engineering

Unlimited distribution subject to the copyri ht

202 0

Z20060123 05b6

__ CarnegieMellon
- Software Engineering Institute

Pittsburgh, PA 15213-3890

The CERT Function Extraction
Experiment: Quantifying FX
Impact on Software

Comprehension and
Verification
Rosann W. Collins
University of South Florida and
CERT, Software Engineering Institute

Gwendolyn H. Walton

CERT, Software Engineering Institute

Alan R. Hevner
University of South Florida and
CERT, Software Engineering Institute

Richard C. Linger
CERT, Software Engineering Institute

CMU/SEI-2005-TN-047

December2005

SurvivableSystems Engineering

Unlimited distribution subject to the copyright.

This work is sponsored by the U.S. Department of Defense.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S. Depart-
ment of Defense.

Copyright 2005 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Executive Summary .. v

Abstract .. vii

1 Function Extraction Research Motivation ... 1

2 Concepts of Function Extraction ... 2

3 The Function Extraction Controlled Experiment 4

4 FX Experimental Results ... 7

5 Analysis of the Experimental Results .. 10

References ... 13

CMU/SEI-2005-TN-047

ii CMU/SEI-2005-TN-047

List of Tables

Table 1: Comparison of Control and Experimental Groups on Experience 6

Table 2: Descriptive Data on Program Comprehension Performance 7

Table 3: Mean Percentages of Estimates of How Time Was Spent 8

Table 4: Participant Evaluation of the FX Prototype .. 8

Table 5: Results of the ANOVA for Program Comprehension Performance 9

CMU/SEI-2005-TN-047 iii

iv CMUISEI-2005-TN-047

Executive Summary

Function Extraction (FX) is an emerging technology that can be applied to automated calcu-
lation of the functional behavior of software for improved human understanding and analysis
[Pleszkoch 04, Hevner 05]. To better understand the impact of FX on software comprehen-
sion and verification, a rigorous, controlled experiment was performed to compare traditional
manual methods of comprehension with automated behavior computation using an FX proto-
type. The experiment required 26 experienced Java programmers (13 using traditional tech-
niques and 13 using FX automation) to evaluate the behavior of three small programs of low-
to-moderate complexity. The following observations summarize the experimental results:

" Use of the FX prototype greatly reduces the time required to derive program behav-
ior by automating this crucial and time-consuming part of program comprehension.
Subjects using traditional manual methods spent significantly more time (between 62%
and 81% of total task time) reading and analyzing code to determine program behavior,
and this percentage increased as the programs became longer and more difficult. In con-
trast, subjects using FX automation determined program behavior directly from the proto-
type output and thus spent very little time (between .2% and .3% of total task time) on
program comprehension. This represents an improvement of several orders of magnitude.

"* Use of the FX prototype improves human performance in program comprehension.
The subjects who used the FX prototype produced significantly more correct answers to
comprehension and verification questions than the subjects using manual techniques; in
the case of the longest, most difficult program correct answers increased by a factor of
3.6. The FX group also required significantly less time to achieve this improved compre-
hension. This difference grew as the programs increased in length and difficulty, ulti-
mately resulting in a reduction of time required by a factor of 4.2. Treating productivity
as a ratio of task output to input (output = accurate program comprehension, input = total
time on task), the FX group achieved a productivity improvement on the order of a factor
of 15for the longest and most difficult program.

"* Developers who were trained on and used the FX prototype agree that it was useful,
supports the comprehension task, and is easy to use. The large improvement in pro-
gram comprehension and productivity for the group using the FX prototype was achieved
with just 45 minutes of instruction, contrasted with years of training and experience in
program reading and inspection for the group using traditional methods.

Standard statistical tests of the significance of the experimental data indicate extremely low
probabilities that these results could be attributed to chance, in some cases computed as zero
to three decimal places.

CMU/SEI-2005-TN-047 v

vi CMU/SEI-2005-TN-047

Abstract

Function Extraction (FX) is a new, theory-based technology for automated calculation of the
functional behavior of software. The CERT Function Extraction experiment was conducted
so as to better understand the impact of FX on human comprehension and verification of soft-
ware and to rigorously quantify the business case for FX technology. This report describes
the results of the controlled experiment that was performed to compare traditional manual
methods of comprehension with automated behavior computation using an FX prototype.
The results of the experiment show a substantial increase in human capabilities for software
comprehension and verification using FX technology.

CMU/SEI-2005-TN-047 vii

viii CMU/SEI-2005-TN-047

1 Function Extraction Research Motivation

Because of the size and complexity of programs, current-generation software engineering
must operate in a world of incomplete knowledge of program behavior. No practical means
exist for programmers to determine the full functional behavior of sizable programs in all
circumstances of use, and no testing effort, no matter how extensive, can exercise more than
a small fraction of possible behavior. Lacking better technology, behavior discovery today is
a haphazard and time-consuming drain on resources carried out by manual techniques of pro-
gram reading and inspection with unavoidable human fallibility. Yet comprehensive knowl-
edge of software behavior is essential for fast and correct development, testing, maintenance,
and evolution of programs.

While this problem is pervasive today, it need not be so in the future. A key enabling capabil-
ity for next-generation software engineering is the transformation of program behavior analy-
sis from an error-prone, resource-intensive process in human-time scale into a precise, auto-
mated calculation in CPU-time scale. The emerging technology of Function Extraction holds
promise towards making this capability a reality.

CMU/SEI-2005-TN-047 1

2 Concepts of Function Extraction

Function Extraction (FX) deals with the semantics of software behavior. All levels of abstrac-

tion in the development of software systems embody behavioral semantics, from low-level

machine language operations to high-level system capabilities. As software systems are de-
veloped and evolve over time, semantic content is continuously created, intentionally or unin-

tentionally, correct or incorrect. Effective development and evolution of a system depends on

how well its behavioral semantics are understood. The complexity and quantity of accumu-
lated behavioral semantics can overwhelm developers, leading to loss of intellectual control.

The ultimate goal of Function Extraction is to calculate full semantic behavior at all levels of

system abstraction, from specification to design to implementation. This goal requires auto-

mating the computation and composition of behaviors in the languages employed to express

such artifacts. These languages, whatever their level of abstraction, embody definitions of the

behavioral semantics of their structures. Function Extractor development begins with a well-

defined language whose semantics can be captured in terms of the functions of its structures
and the rules that govern their combination. Any system artifact written in that language can

then be submitted to the Function Extractor, which will apply the functional semantics of the
structures to produce as output a catalog containing all cases of behavior defined by the arti-

fact. This behavior is expressed in non-procedural form, essentially defining the as-built
specification of the artifact in terms of its mapping of inputs into outputs.

In a miniature illustration, consider the following sequence of operations on small integers x

and y (machine precision is set aside; however, the semantics of finite operations could be
incorporated if necessary):

do
x:=x+y
y:=x-y
x x - y

enddo

In this case, the behavioral semantics of each operation involves deriving the value of the.

right-hand-side expression and assigning it to the variable on the left. The rule of combina-
tion for a sequence of operations is ordinary function composition, easily expressed in the

following trace table and associated algebraic derivations that compute the net functional be-
havior from input to output in non-procedural terms:

2 - CMU/SEI-2005-TN-047

Assignment Value of x Value of y

x:=x+y xl=xO+yO yl=yO

y:=x-y x2 = xl y2 = xl - yl

x:= x -y x3 = x2 - y2 y3 = y2

x3 =x2 - y2 y3 = y2
= xl -(xl -yl) = xl -yl
=yl = xO + yO -yO
= yO = x0

Thus, the computed behavior is

x,y:=y,x

that is, the values of x and y are exchanged by the sequence of operations. It is important to
note that this computed behavior represents exactly what the program does; it is now unnec-
essary to read and inspect the code in an attempt to derive this information. This example
illustrates the Function Extraction process for a sequence control structure. A function theo-

rem defines the mapping of all control structures into such functional forms, and is the

mathematical foundation of FX technology.

In a more general explanation, the function-theoretic model of software treats programs as

rules for mathematical functions or relations [Hevner 02, Hevner 05, Hoffman 01, Linger 79,

McCarthy 63, Mills 86, Mills 02, Pleszkoch 90, Pleszkoch 04, Prowell 99]. While sizable
programs can contain a virtually infinite number of execution paths, they are constructed of a
finite number of nested and sequenced control structures, each of which makes a finite con-

tribution to overall behavior. These structures correspond to mathematical functions or rela-
tions, that is, mappings from inputs to outputs. These functional mappings can be automati-
cally extracted in a stepwise process that traverses the finite control structure hierarchy. At
each step, details of local code and data are abstracted out, while their net effects are pre-
served and propagated in the extracted behavior. While no general theory for loop abstraction

can exist, use of recursive expressions and patterns for loops provides an engineering solu-
tion.

Function Extraction has potential for widespread application across the software engineering

life cycle, as discussed in Hevner [Hevner 05]. Of special interest is use of FX for maintain-
ing and evolving legacy systems, as well as for developing new systems. The technology can

also play a key role in understanding malicious code; CERT is currently developing an FX-
based system for analyzing malicious code expressed in Intel Assembler Language. And be-

cause behavior computation is a key part of both software verification at the program level

and component composition at the system level, FX application is possible in these areas as
well.

CMU/SEI-2005-TN-047 3

3 The Function Extraction Controlled
Experiment

The CERT® organization of the Carnegie Mellon® Software Engineering Institute has imple-
mented Function Extraction technology in an FX prototype that operates on a small subset of
the Java programming language. The prototype takes in a Java program written in the lan-
guage subset and automatically calculates and displays its functional behavior. The behavior
is expressed in a non-procedural, user-readable format in terms of how the outputs of the
program are produced from its inputs in all possible uses, in effect producing the as-coded

specification of the program.

CERT has performed a formal, controlled experiment to quantify the impact of FX technol-
ogy on the ability of programmers to comprehend and verify programs. The experimental
subjects were 26 Carnegie Mellon University (CMU) graduate students with substantial

computer science education and software development experience. The experiment was ap-
proved by the CMU Institutional Review Board (IRB), calibrated in two pilot tests, and con-

ducted according to rigorous experimental protocols.

The 26 subjects signed IRB consent forms and received 45 minutes of classroom instruction
on the purpose of the experiment and the process of program comprehension. They were then
randomly divided into two groups: the control group (manual manipulation) and the experi-
mental group (automated FX manipulation):

The control group subjects were given three Java programs of varying size and difficulty,
together with functional requirements for the programs and. a set of questions to answer.
They applied traditional manual methods of reading and inspection to understand the be-
havior of each program and then answered the questions. All activities were self-timed by
the subjects, and a post-hoc questionnaire was completed.

The experimental group subjects installed the Function Extraction prototype on their per-
sonal laptop computers. These subjects, who had no previous exposure to the prototype,
received an additional 45 minutes of classroom instruction on its use and were then given
the same three Java programs, requirements, and questions. The experimental group ran
the programs through the FX prototype to derive and display their functional behavior,

and then answered the questions. Again, all activities were self timed by the subjects and
a post-hoc questionnaire was completed.

® CERT is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

4 CMU/SEI-2005-TN-047

Both the time required to perform the experimental tasks and the correctness of the answers

were measured. The correctness of the answers provided a measure of the ability of both

groups to understand the program behaviors and to verify the behaviors against requirements.

The validity of the experimental design and procedures was assessed in four ways. Partici-
pants

1. answered the manipulation check question appropriately, which indicated that they un-

derstood their task setting (control or experimental group) accurately

2. ranked and rated the difficulty of each of the three programs, named Algorithm, Order-
ing, and Bonus Points. The participants' assessments were consistent with the experi-
mental design. The shortest, the Algorithm program, was ranked as the least difficult of
the three, and rated as less difficult than the participants' usual program comprehension
tasks. The Ordering program is longer than the Algorithm program. It was ranked as
more difficult to comprehend and rated at about the same level of difficulty as the par-

ticipants' usual program comprehension tasks. The longest Bonus Points program was
ranked as the most difficult and rated more difficult than usual comprehension tasks.

3. agreed that the training they received on program comprehension was sufficient to com-

plete the study tasks, and the participants who used the FX prototype strongly agreed
that the training they received on its use was sufficient

4. were experienced with program comprehension tasks and were randomly assigned. They
had experience in reading and verifying computer code (mean = 5.81 years, range = 2-
15 years) and had taken multiple programming classes (mean = 8.5 classes, range = 3-20

classes). In addition, most participants had paid, non-classroom experience in reading
and verifying code (mean = 1.34 years, range = 0-5). Tests for equality of variance and
means reveals that the control and experimental groups did not differ significantly on
any of the three experience variables (see Table 1). These tests are conducted to rule out
the possibility that, by chance, more experienced individuals were assigned to either the
control or experimental group. (If significantly more experienced individuals had been
put into the experimental group, then that higher level of experience would provide a ri-

val explanation for the results.) Because none of these tests have significant results (p
values are all greater than. 10), there is no significant difference between the control and

experimental groups in their experience in program comprehension; paid, non-classroom
experience; or number of programming classes taken.

CMU/SEI-2005-TN-047 5

Table 1: Comparison of Control and Experimental Groups on Experience

Statistical Test Years of Number of Years of Paid,
Experience in Programming Non-Classroom,
Reading andVerfing Cde Classes IT ExperienceVerifying Code

Levene's Test for Equality of F = 2.716 F = .207 F = .268
Variance p= .112 p = .654 p = .610

Test for Independent Samples t = .937 t = .101 t = -0.333
(t-test for equality of means) p = .358 p = .921 p = .742

6 CMU/SEI-2005-TN-047

4 FX Experimental Results

The results of the experiment strongly demonstrate the significant, positive impact of use of
the FX prototype on subjects' performance, measured by time on task and accuracy of pro-
gram comprehension, as well as on subjects' satisfaction with using the prototype. Subject
performance on the experimental tasks (descriptive data are summarized in Table 2) was
measured by the amount of time required to complete each task and the accuracy of answers
to the questions that tested program comprehension. Subjects reported the time they started
and stopped each task, as well as their estimates of how that time was allocated among the

following three components of each task:

1. understanding the program requirements and program comprehension questions

2. determining the functionality of the programs

3. recording answers to the program comprehension questions on the form

Table 2: Descriptive Data on Program Comprehension Performance

Algorithm Program Ordering Program Bonus Points Program
(least difficult) (average difficulty) (most difficult)

Time on Percentage Time on Percentage Time on Percentage
Task correct out Task correct out Task correct out

(minutes) of 5 (minutes) of 10 (minutes) of 10
questions questions questions

Mean = Mean = Mean Mean Mean = Mean =

Control Group: 9.15 82% 24.4 73% 57 23%

Traditional Range = Range: Range = Range = Range = Range = 0-
Method 5-12 60-100% 15-35 50-90% 29-89 80%

(3 did not
complete)

Mean = Mean = Mean Mean = Mean = Mean =
Experimental 5.62 95% 14.2 89% 13.5 83%
Group:
FX Support Range = Range = Range = Range = Range Range =

3-10 60-100% 7-20 40-100% 5-18 65-95%

The descriptive data on how subjects divided their time are reported in Table 3. Two rows in
this table are highlighted to show the contrast between the two methods of program compre-
hension: with the FX prototype little or no time was spent determining program functionality,
while with the traditional method the majority of time was spent reading and interpreting

code to determine its functionality.

CMU/SEI-2005-TN-047 7

The subjects in the experimental group also evaluated the FX prototype on several standard

criteria and their measures [Venkatesh 00, Wang 05]. The evaluation criteria, the scale reli-
ability (which identified two items for removal in order to achieve adequate reliability of
Cronbach's alpha >.70), and results are shown in Table 4.

Table 3: Mean Percentages of Estimates of How Time Was Spent

Algorithm Ordering Bonus Points
Program Program Program

Control Group: Traditional Method

1. Understanding program requirements and questions 12.4% = 1.1 min 17.8% = 4.3 min 5.0% = 2.9 min

2. Determining program functionality 62.3% =5.7 min 61.6% =15.0Omin 81,1% =46 min~
3. Recording answers on form 25.3% = 2.3 min 20.6% = 5.0 min 13.9% = 7.9 min

Experimental Group: FX Automation

1. Understanding program requirements and questions 28.5% = 1.6 min 46.5% = 6.6 min 35.2% = 4.7 min

2. Determinin~g program functionality 0.3% = 0.02 min 0.2% = 0.03, min 0.3% = 0.04 min
3. Recording answers on form 71.2% = 4.0 min 53.3% = 7.7 min 65.3% = 8.8 min

Table 4: Participant Evaluation of the FX Prototype

Evaluation efinition Reliability Ratings (n=13)
Criterion D(Cronbach's alpha) Rating of 1 = strongly disagree

Rating of 5 = strongly agree

Perceived extent to which participants believe Mean = 4.1
Usefulness that using the FX prototype will en- .755 Range 3-5hance job performance Range_=_3-5

participants' assessment of how well Mean 3.7
Output Quality the FX prototype performs tasks .716

relevant to the participants' job Range = 2-5

participants' assessment of the Mean = 4.25
Technical Utility value, innovativeness, and useful- .780

ness of FX prototype Range= 3-5

Perceived extent to which participants believe .824 Mean = 4.5
Ease of Use that using the FX prototype is free of (2 items removed) Range 3-5effort

Intention to Use participants' intention to use the FX Mean =4.2
prototype in the future .941 Range = 3-5

N/A
Task Support participants' assessment of the (1 item, no Mean = 2.5

amount of work on task that was not
supported by the FX prototype reliability Range = 1-5

p calculated)

Statistical analysis of the study data enables tests of significance of the program comprehen-
sion findings. Performance on the three experimental tasks was measured by three dependent
variables: accuracy of program comprehension, total time on task, and time required to derive

program behavior. Study data were analyzed using analysis of variance (ANOVA), at an al-
pha level of .05. (An alpha level for a statistical test represents the probability that a signifi-

8 CMU/SEI-2005-TN-047

cant result from that test is found when in fact there is no significant difference. In experi-

mental research an alpha level of .05 is typically used.) ANOVA is commonly used to test for

significant differences between the control and experimental groups. In this study nine tests

were run to assess whether or not there were significant differences between groups in the

three types of program performance for each of the three study tasks. The results of these
tests are shown in Table 5.

Table 5: Results of the ANOVA for Program Comprehension Performance

Performance Algorithm Program Ordering Program Bonus Points Program
Measure (least difficulty) (average difficulty) (most difficulty)

Accuracy of F = 6.854 F = 6.251 F* = 75.489
Program

Comprehension P = .015 p .021 p = .000

Total Time F = 15.910 F* = 14.988 F* = 69.527
on Task p=.001 p = .002 p = .000

Time Required to F* = 97.768 F* = 62.446 F* = 174.719
Derive Program

Behavior P= .000 p =.000 p = .000

* = asymptotically distributed F statistic from Welch/Brown-Forsythe Robust Test of Equality of Means

A critical assumption of ANOVA is that the control and experimental groups have equal vari-

ances. For those tests where the assumption of equal variances based on the Levene statistic
is not met (indicated with an asterisk), the Welch/Brown-Forsythe Robust Test of Equality of
Means was used, and the asymptotically distributed F statistic reported. In all cases the F sta-

tistic represents a ratio of how much the observations vary within each of the groups to how
much the observations vary between groups. When the F statistic is near 1 it indicates that
there is no statistically significant difference between observations of the control and experi-
mental groups. Larger values of F indicate that the groups' means differ. The p-value is a
measure of the statistical strength of the differences that are observed. The smaller the p-
value, the stronger the evidence is of statistical significance. It represents the probability that

if we repeated the same experiment we would get results indicating there was no difference
between the groups. (In practical terms, very low p-values indicate a very low probability that

the results were achieved by chance.)

The results reported in Table 5 provide very strong evidence that use of the FX prototype has
a positive impact on program comprehension performance: significantly better accuracy of

comprehension in significantly less time. The results also show that the FX prototype does in

fact automate the derivation of program behavior, since the group using the FX prototype
required significantly less time for this part of the task, and, as reported in Table 3, this time

averaged less than 1% of experimental subjects' total time on task.

CMU/SEI-2005-TN-047 9

5 Analysis of the Experimental Results

The following observations are based on analysis of the experimental data:

1. Use of the FX prototype significantly reduces the time required to derive program

behavior by truly automating this crucial and time-consuming part of program
comprehension. Subjects who used the FX prototype experienced a significant reduc-
tion in the time required for the task of deriving an understanding of program behavior

compared with the control group. Whether in the control or experimental groups, sub-
jects had to spend at least some time on understanding the program requirements and the

program comprehension questions, and on recording their answers. But the control

group subjects using traditional manual methods spent most of their time (between 62%
and 81% of total task time) reading and analyzing code to determine program behavior,

and this percentage increased as the programs became longer and more difficult. In con-
trast, the subjects using the FX prototype were able to determine program behavior di-
rectly from the prototype output, and thus spent very little time (between .2% and .3% of

total task time) on this part of the program comprehension task. Moreover, the percent-
age of time subjects took to determine program functionality using the FX prototype did

not increase with program length and difficulty, suggesting that improvements will be

even more dramatic with further increases in length and difficulty of the programs

analyzed.

2. Use of the FX prototype significantly improves human performance in program

comprehension and verification. Subjects who used the FX prototype produced far
more correct answers to the comprehension questions than the control group; in the case
of the longest, most difficult program by a factor of 3.6. They also required far less time

to achieve this improved comprehension than the subjects who used traditional methods

of reading and inspecting code. While the differences in performance were significant
for all programs, the difference in time performance was relatively small for the initial,
warm-up task (the Algorithm program) but increased as the programs increased in length

and difficulty, ultimately resulting in an improvement factor of 4.2 for the Bonus Points

program. That is, subjects in the experimental group completed this most difficult task in
about a fourth of the time required by the control group. Treating productivity as a ratio

between task output and input (in this case, output = accurate program comprehension
and input = total time on task), the FX group achieved an improvement in productivity

on the order of a factor of 15 for the longest and most difficult program.

3. Developers who were trained on and used the FX prototype agree that it is useful,
supports the comprehension task, and is easy to use. The large improvement in pro.

gram comprehension for subjects using the FX prototype was achieved with just 45 min-

10 CMU/SEI-2005-TN-047

utes of instruction, contrasted with years of training and experience in manual program
reading and inspection in the control group. As stated by one subject in response to an

open-ended question about how well the FX prototype supports program comprehen-
sion: "The FX tool was a good tool for verifying computer code. It allows you to get an
understanding of what the function actually does without being forced to go through the
code line by line. I didn't really read the code because we used the tool."

In summary, this experiment demonstrates significant advantages for FX technology over
traditional methods of code reading and inspection. This objective quantification of the busi-

ness case for FX will guide future development of the technology. Additional experimental
studies are planned to further evaluate human performance in program comprehension with
and without FX support. These studies will provide additional feedback for development of
FX technology, human interfaces, and operational processes.

CMU/SEI-2005-TN-047 11

12 CMU/SEI-2005-TN-047

References

URLs are valid as of the publication date of this document.

[Hevner 02] Hevner, A.; Linger, R.; Sobel, A.; & Walton, CG "The Flow-Service-
Quality Framework: Unified Engineering for Large-Scale, Adaptive
Systems," Proceedings of the 35th Annual Hawaii International

Conference on System Sciences (HICSS-35). Big Island, Hawaii,
Jan. 3-6, 2002. Los Alamitos, CA: IEEE Computer Society Press,
2002.

[Hevner 05] Hevner, A.; Linger, R.; Collins, R.; Pleszkoch, M.; Prowell, S.; &
Walton, G The Impact of Function Extraction Technology on Next-
Generation Software Engineering (CMU/SEI-2005-TR-015) Pitts-
burgh, PA: Software Engineering Institute, Carnegie Mellon Uni-
versity, 2005. http://www.sei.cmu.edu/publications/documents
/05.reports/05tr015.html.

[Hoffman 01] Hoffman D. & Weiss, D. (eds.). Software Fundamentals: Collected
Papers by David L Parnas. Upper Saddle River, NJ: Addison

Wesley, 2001.

[Linger 79] Linger, R.; Mills, H.; & Witt, B. Structured Programming: Theory
and Practice. Reading, MA: Addison Wesley, 1979.

[McCarthy 63] McCarthy, J. "A Basis for a Mathematical Theory of Computation,"

Computer Programming and Formal Systems. Edited by P. Braffort
& D. Hirschberg. Amsterdam, The Netherlands: North-Holland,
1963.

[Mills 86] Mills, H.; Linger, R.; & Hevner, A. Principles of Information Sys-
tem Analysis and Design. San Diego, CA: Academic Press, 1986.

[Mills 02] Mills, H. & Linger, R. "Cleanroom Software Engineering," Ency-
clopedia of Software Engineering, 2nd ed. Edited by J. Marciniak.
New York, NY: John Wiley & Sons, 2002.

[Pleszkoch 90] Pleszkoch, M.; Hausler, P.; Hevner, A.; & Linger, R. "Function-
Theoretic Principles of Program Understanding," Proceedings of
the 23rd Annual Hawaii International Conference on System Sci-
ence (HCSS-23), Kailua-Kona: Hawaii, Jan. 2-5, 1990. Los Alami-

tos, CA: IEEE Computer Society Press, 1990.

CMU/SEI-2005-TN-047 13

[Pleszkoch 04] Pleszkoch M. & Linger, R. "Improving Network System Security

with Function Extraction Technology for Automated Calculation of
Program Behavior," Proceedings of the 3 7 h Annual Hawaii Interna-

tional Conference on System Sciences (HICSS-37). Big Island, Ha-
waii, Jan. 5-8, 2004. Los Alamitos, CA: IEEE Computer Society
Press, 2004.

[Prowell 99] Prowell, S.; Trammell, C.; Linger, R.; & Poore, J. Cleanroom Soft-

ware Engineiering: Technology and Practice, Reading, MA: Addi-
son Wesley, 1999.

[Venkatesh 00] Venkatesh, V. & Davis, F D. "A Theoretical Extension of the Tech-

nology Acceptance Model: Four Longitudinal Field Studies," Man-

agement Science 46, 2 (Feb. 2000): 186-204.

[Wang 05] Wang, C.; Hsu, Y.; & Fang, W. "Acceptance of Technology with
Network Externalities: An Empirical Study," Journal of Information
Technology Theory and Application 6,4, (2005): 15-28.

14 CMU/SEI-2005-TN-047

REPORT DOCUMENTATION PAGE Form Approved
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding
this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORT DATE 3. REPORTTYPEANDDATESCOVERED

(Leave Blank) December 2005 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The CERT Function Extraction Experiment: Quantifying FX Impact on FA8721-05-C-0003
Software Comprehension and Verification

6. AUTHOR(S)

Rosann W. Collins; Alan R. Hevner; Gwendolyn H. Walton; & Richard C. Linger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Software Engineering Institute REPORT NUMBER

Carnegie Mellon University CMU/SEI-2005-TN-047
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

HQ ESC/XPK REPORT NUMBER

5 Eglin Street
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTIONIAVAILABILITY STATEMENT 120 DISTRIBUTION CODE

Unclassified/Unlimited, DTIC, NTIS
13. ABSTRACT (MAXIMUM 200 WORDS)

Function Extraction (FX) is a new, theory-based technology for automated calculation of the functional behav-
ior of software. The CERT Function Extraction experiment was conducted so as to better understand the im-
pact of FX on human comprehension and verification of software and to rigorously quantify the business case
for FX technology. This report describes the results of the controlled experiment that was performed to com-
pare traditional manual methods of comprehension with automated behavior computation using an FX proto-
type. The results of the experiment show a substantial increase in human capabilities for software compre-
hension and verification using FX technology.

14. SUBJECTTERMS 15. NUMBEROFPAGES

Function Extraction, FX, software program comprehension, software 25
program behavior reading, software program behavior analysis

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRACT

OF REPORT THIS PAGE ABSTRACT UL

Unclassified Unclassified Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

