In Search of High Ground....
The Airpower Trinity and the Decisive Potential of Airpower

D. K. (Bob) Edmonds
In Search of High Ground... The Airpower Trinity and the Decisive Potential of Airpower

1. REPORT DATE
 - 1997

2. REPORT TYPE

3. DATES COVERED
 - 00-00-1997 to 00-00-1997

4. TITLE AND SUBTITLE
 - In Search of High Ground... The Airpower Trinity and the Decisive Potential of Airpower

5. AUTHOR(S)

6. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 - National War College, 300 5th Avenue, Fort Lesley J. McNair, Washington, DC, 20319-6000

7. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSOR/MONITOR'S ACRONYM(S)

10. SPONSOR/MONITOR’S REPORT NUMBER(S)

11. DISTRIBUTION/AVAILABILITY STATEMENT
 - Approved for public release; distribution unlimited

12. SUPPLEMENTARY NOTES
 - see report

13. ABSTRACT
 - see report

14. SECURITY CLASSIFICATION OF:
 - a. REPORT unclassified
 - b. ABSTRACT unclassified
 - c. THIS PAGE unclassified

15. SUBJECT TERMS

16. LIMITATION OF ABSTRACT
 - 18. NUMBER OF PAGES 31

19. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
"The art of employing troops is that when the enemy occupies high ground, do not confront him." — Sun Tzu

Throughout history, military leaders have sought better ground, usually higher ground, from which to fight. Great military theorists proclaimed the benefit of the high ground. With the advent of aircraft, that high ground became the air. With this in mind, many of the early airpower theorists saw the great potential in exploiting this new dimension and promised that airpower would be the preeminent instrument of battle.

Unfortunately, in the early days of airpower, these promises rang hollow, as theory was ahead of capability. Nations were chasing the technology that would allow the capability to live up to the promising early theories. In the United States, even when the capability existed during the Korean and Vietnam wars, the practice of airpower had not been developed sufficiently, nor was the political situation suitable, to exploit airpower's unique characteristics on which the theory was based.

The evolution of three key elements—theory, technology, and practice—is critical to the evolution of airpower, just as it is for other elements of military power. If airpower is to be employed to its maximum potential in combat, each of these elements must evolve in concert with each other. Individually, theory, technology, and employment practices are continually evolving, therefore, the challenge is to have them converge at the right time and place and to maintain that balance. When this has occurred, as it did for Israel during the ‘67 Arab-Israeli War and Bekaa Valley in 1982 and for the United States during the recent Persian Gulf War—airpower exhibited its maximum potential and was decisive in the final outcome of each war. Of course, airpower's success in any war is founded during the years that precede the war. Since combat situations are
separated by longer periods of peacetime, the intervals between wars need to be exploited to ensure that airpower is ready when the need arises again.

This paper will introduce an original construct to explore the relationship of the key elements to airpower and help understand the factors necessary for the most effective employment of airpower in combat. This construct—The Airpower Trinity, consisting of theory, technology, and practice—is derived from the concept of the Clausewitzian Trinity. After an introduction of the Airpower Trinity, the evolution of these key elements will be reviewed. This review will reveal the criteria and circumstances required for balance among the three. Finally, a look to the future of airpower will explore how the balance could be maintained in peacetime and exploited in war.

The Clausewitzian Trinity and Airpower

The first theories and principles of airpower, the newest military instrument, flowed naturally from the existing warfare theory, written primarily by such land-power theorists as Carl von Clausewitz, Sun Tzu, and Sir Basil Liddell Hart. Largely as a response to World War I, the development of airpower began in earnest to enable direct strikes on the enemy’s ability to wage war by leapfrogging conventional ground battles. At the same time, ironically, Clausewitz’s principles were criticized, primarily by Liddell Hart, for causing this bloody and costly war. However, Clausewitz’s reputation was never seriously hurt, because his basic concepts of warfare are not only valid, but timeless—particularly the concepts embodied in his Trinity. He defined the essence of warfare through a trinity comprised of *prudential violence and passion, chance and probability influenced by creativity*, and *an instrument of policy subjected to reason alone*.² The Clausewitzian Trinity, depicted in schematic form in figure 1, is a construct used at the National
War College to illustrate these three elements—the passion, the reason, and the chance of war—and the associated links among them.

The interaction among these three elements, as represented by the connecting arrows, depicts the critical relationship that creates a "paradoxical trinity" of these dominant tendencies. Clausewitz states:

"these three tendencies are like three different codes of law, deep-rooted in their subject and yet variable in their relationship to one another. A theory that ignores any one of them or seeks to fix an arbitrary relationship between them would conflict with reality to such an extent that for this reason alone it would be totally useless."

Accordingly, they shape the battlefield, if one element gets out of balance, then, as Clausewitz warns, war has the tendency to spiral out of control. He uses the metaphor of three magnets to maintain the necessary balance: "Our task therefore is to develop a theory that maintains a balance between these three tendencies, like an object suspended between three magnets." War was allowed to spiral out of control in WWI as the element of primordial violence and passion.

Figure 1

[Diagram showing the interaction between passion, reason, and chance.]
overwhelmed the element of *reason*, which should maintain war as subordinate to policy

Clausewitz further identifies the elements: the *primordial violence* mainly concerns the people: the *chance and probability* embodies the commander and his army (in the generic military sense), and the *reason* is the responsibility of the government alone.

The arrows (and, specifically, the direction of the arrows) graphically display the relationship and interaction critical to maintaining this balance. The "War subordinated to policy and subject to reason" tenet is where political objectives are defined by the government, the link to the *Chance & probability influenced by creativity* (the military) is that military strategy is shaped by political objectives. This relationship between the military and the government is defined profoundly by Clausewitz's declaration that "the first, the supreme, the most far-reaching act of judgment that the statesman and commander have to make is to establish by that test the kind of war on which they are embarking, neither mistaking it for, nor trying to turn it into, something that is alien to its nature."

Although people are inherently a part of all the elements, public opinion (the people's will) influences the government and justifies the effort required to achieve the political objectives. Clausewitz's best known quote, "War is merely the continuation of policy by other means" links the *reason* to the *violence*. Policy is set by the government and should subordinate war to reason. The "other means" is violence and in that element, passion can cause people to disregard reason. As will be discussed below, these two elements and their relationship got out of balance during the Vietnam War. Just as witnessed in this conflict, the people's will definitely influences both the military and the government—a very critical relationship for success. Thus, the Clausewitzian Trinity depicts the necessary and crucial relationships that link together the three elements of the government, the people, and the military to keep war in balance. Maintaining this balance
restrains war, a stated--if not always practiced--goal for both political and military leaders following WWI.

The people's will, one of the hardest factors to predict correctly, will more likely remain strong and positive when war is restrained by maintaining the necessary balance. Airpower's capability, when used to its maximum potential, can be a primary factor in maintaining the necessary balance in the Clausewitzian Trinity. The government, and thus the military, could exploit airpower at the strategic level—it promises an improved chance of victory with less casualties through its inherent capabilities such as speed, flexibility, and a maneuver in new dimension.

Many of Clausewitz's key concepts, such as concentration of force, centers of gravity, unity of command and effort, the culminating battle, and the moral and physical aspects of war were reflected in airpower theory. Liddell Hart's indirect approach is particularly suited to airpower's capability. After the protracted bloodshed of WWI, airpower theory promised speed, not just to and on the battlefield, but, more significantly, to victory. But, if the advocates push theoretical promises too far in front of practice and technology, as in WWI, airpower can not live up to its decisive potential.

The Airpower Trinity: An Initial Construct

Clausewitz's Trinity defines the *essence* of war; the Airpower Trinity defines the *essence* of airpower through the critical (and paradoxical) relationship between *theory, technology, and practice*. Figure 2, in an initial construct, draws a parallel between these two trinities. The associated links, necessary to balance these elements and provide airpower with maximum potential (center) will be added in a subsequent diagram. Clausewitz's Trinity deals with political and psychological factors such as reason, passion, creativity; these factors are also embodied in
the Airpower Trinity and exert similar influences. Creativity, for example, can “open up new doors” in the development of new technologies, spur new concepts for the practice of employing new technologies, and conceive of a new theory for the use of airpower. Leadership and people—critical and necessary ingredients to employ airpower to its maximum potential—are among the other factors that pervade the trinity. Finally, experience is particularly important to the development of employment practices and is an excellent complement to reason.

Like the universality of Clausewitz’s principles, the key elements comprising the Airpower Trinity are applicable to other services and forms of warfare. Land and sea warfare depend on the blend of theory, technology, and practice as well. The proper relationship and evolution is similarly critical to the maximum use of these military instruments in a joint campaign. Although this paper does not explore the concept, a logical extension would be a “Joint Force Trinity” construct of these elements, with the “essence of war” at the center. This would be helpful for the
integration of new and advanced technologies into weapon and support systems across the spectrum of joint military force.

The Airpower Trinity: The Relationship between Theory, Technology, and Practice

As with the interconnecting relationships in Clausewitz's Trinity, the relationship among the three elements is the critical part of the Airpower Trinity. Figure 3 adds the connecting links that define this relationship. The interaction among these three elements, as represented by the connecting arrows, reveals a paradoxical relationship: each element can evolve independently at its own pace, yet there exist critical dependent relationships between them. Clausewitz's statement above about the reality of the relationships among the three tendencies of his trinity is directly applicable here. *Theory, technology, and practice* are “deep-rooted in their subject and yet variable in their relationship to one another. A theory that ignores any one of them or seeks to fix an arbitrary relationship between them would conflict with reality to such an extent that for this reason alone it would be totally useless.” Accordingly, the Airpower Trinity does not ignore this critical relationship as each element evolves and seeks to define the major factors necessary to maintain the proper relationships.

The *Theory* element provides reason (parallel to the element in the same position in Clausewitz's Trinity) to the Airpower Trinity as it defines the promise and potential of airpower. It also drives *technology* by establishing the requirements of the capability, and additionally, it presents a necessary conceptual framework to the *Practice* element. Doctrine and theory, obviously, are not exactly the same, but doctrine is derived from theory and practice. Hence, note its relative position in the Airpower Trinity and the “back-and-forth” interaction of doctrine, theory, and practice. The debatable position of doctrine in the trinity comes from our lack of focus on it in the past. USAF Chief of Staff General Fogleman explains that the “Air Force
traditionally has not thought a lot about doctrine.” He further stated that the early airmen leaders used theory to develop employment practices and doctrine and “had doctrine in their heads—thely lived it and passed it on.” Consequently, doctrine has not always been written. Recently, the Air Force set up a Doctrine Center to help formulate and integrate doctrine into Air Force operations—leveraging the Trinity’s three key elements.

The Technology element, through equipment and systems, provides the capability to reach airpower’s maximum potential. Technology, with its foundation in science, inherently involves reason, but it also requires people with creativity to produce useful inventions. Although mostly “pushed” by the requirements of promising theory, technological advancements sometimes can push theory to keep up with emerging capabilities. For example, as satellite technology rapidly opens up new opportunities for information and weapons use, the theory of airpower has been pushed (particularly from the viewpoint of those wearing pilot’s wings) to include space and warfighting concepts in space.
Another factor that affects the development of technology is the available budget for research, development and procurement of new systems. Although not a large percentage of the total life cycle cost for a wing of 72 fighter aircraft, for instance, this “up-front” investment of R&D and procurement sometimes does not compete well with current readiness and quality of life budget demands. This becomes a particularly contentious issue when the overall budget is declining, as it has been in recent years. Consequently, the available budget to explore new technologies has been reduced. When this is combined with the lack of a peer competitor on the near horizon, increased modernization funding to keep our technological edge is a difficult position to support. These budget constraints will have a significant effect on the development of the technologies required for such capabilities as space-based weapons, stealth precision strike platforms, and integrated satellite and aircraft laser systems. Additionally, the budget process between DoD and Congress can sometimes result in inconsistent outcomes and lengthy acquisition programs. This can lead to systems that the Services do not want and/or the incorporated technology is out-of-date by the time the system reaches the field. This is another challenge to maintaining a balance.

Technology can become so advanced and complex that it presses the limits of human capability. This is most evident in the advanced cockpits of future fighter aircraft. The amount of information is so huge and the flow so rapid that the pilot has a more difficult time absorbing and processing it all--this “information overload” could marginalize the technological advance. Additionally, not only are the physical structures of these fighter aircraft becoming more “stealthy,” the aircraft can “pull more Gs” (the force of gravity) than the human body is capable of withstanding. Even as employment practices change to take advantage of these advances, such as through the use of unmanned vehicles, the human is still necessary somewhere “in the loop.” This
potentially limits technology. Consequently, both of these elements must be developed in tandem, so that they maximize their contribution to airpower.

While necessity fosters invention, technology also has its limits. The ultimate "high ground" to employ airpower is from space, but satellites, lasers, and spaceships are not yet advanced enough in the operational area to do the practical weaponized missions. The key is that as technology advances, it must be through concurrent and integrated development with theory and practice. If not, the Airpower Trinity will not be in balance to "feed the center." Together the elements shape airpower's potential. Without this synergy, airpower will not provide its maximum potential—the ability to restrain warfare through quick, decisive, and low casualty outcomes. The balance of theory, practice, and technology will be attained only through the lessons of history that follow.

Beginning the Journey of Airpower Evolution: WWI and WWII

The evolution of the theory of airpower, the technology that enables capability, and employment practices took time. Each of these elements developed individually, but there were also natural relationships between them that influenced this evolution. Airpower changed the conduct of war immediately at the tactical level, airpower as a decisive factor at the strategic level took a bit longer to emerge. However, in comparison to the history of warfare, the time frame was relatively short—from WWI to Desert Storm is only about 75 years. And, in several limited cases, airpower provided strategic decisiveness earlier than that. The challenge, of course, is to ensure that airpower evolution continues such that it provides its maximum potential in future conflicts.

In WWI, application of early theory did not immediately make airpower a decisive factor. Clausewitz, obviously, did not address airpower specifically and a translation of his theories to
this instrument had not yet happened. Since there was no written airpower theory, development happened concurrently with practice and, even then, it was not widely disseminated. The three elements of the Airpower Trinity were not in balance. The potential promised by the early advocates was way “out in front” of what technology could provide. This lack of technological capability restrained employment. During the ensuing years, airpower enthusiasts, such as Giulio Douhet, General Billy Mitchell, and Sir Hugh Trenchard, addressed airpower theory directly—using many of Clausewitz’s concepts of warfare. These men recognized that airpower, with its mobility to maneuver in the new dimension of air, was the technological advancement to change the face of the WWI battlefield, despite these initially limited results. They promised that the next war would be different.

In the years leading up to WWII, Army Air Corps strategists at the Air Corps Tactical School (ACTS) developed and taught five core principles, derived from Mitchell’s vision, to guide the development of airpower:

1. Modern great powers rely on major industrial and economic systems. The disruption and paralysis of these systems undermines both the enemy’s capability and will to fight.
2. Such major systems contain critical points whose destruction will break down these systems, and bombs can be delivered with adequate accuracy to do this.
3. Massed air forces can penetrate air defenses without unacceptable losses to destroy selected targets.
4. Proper selection of vital targets in the industrial/economic/social structure of a modern industrialized nation, and their subsequent destruction by air attack, can lead to victory through air power.
5. If enemy resistance still persists after successful paralysis of selected target systems, it may be necessary as a last resort to apply force upon the sources of enemy national will by attacking cities

These principles seemed also to reflect the pages on “center of gravity” and “national will” in Clausewitz’s On War. Moreover, as a foundation for strategic bombing during the war, the
principles reflected the core belief in the decisive nature of airpower. In particular, the statement that the "proper selection of vital targets and their subsequent destruction by air attack, can lead to victory through airpower" (principle #4) implied that victory could be achieved following this prescription.

However, again, the Airpower Trinity was not in balance. The theory derived from the ACTS principles was valid and proven in later conflicts, but "victory through airpower" did not occur in WWII. Airpower did make significant contributions—in some battles at the tactical level, others, such as in the ultimate surrender of Japan at the strategic level. In practice, airpower was a part of the overall campaign in most battles, but it was not employed to utilize its maximum potential. Theory required airpower to be a primary and integral part if it was to be a decisive factor in the joint campaign. There was some attempts at joint staffs and operations, most notably the British joint staff, however, the lack of centralized control of air assets severely limited effectiveness and positive impact. The promises of Douhet, Mitchell, and the ACTS were not fulfilled.

The reality of employment proved more difficult and complex than theory suggested. Again, technology limited capability. Even with the most sophisticated bombsight, WWII aviators were unable to deliver the promised precision bombing. This capability was a must to fulfill the ACTS fourth principle (and promise). Additionally, the "will of the people," a critical relationship in Clausewitz's Trinity, significantly affected the balance of the Airpower Trinity as well. Two occurrences in the use of airpower by the enemy forces reveal the complex nature of balancing theory and practice.

Intended to have a positive effect, the bombing of Pearl Harbor and the air strikes on London during the Battle of Britain had unexpected and opposite effects for the Japanese and the
Germans. In each case, the intent was to use airpower strategically, to destroy the will of the people to resist. Yet, these bombings solidified rather than shattered public will. In fact, the reaction of the American people to the Pearl Harbor bombings pushed the wavering Roosevelt Administration into the war. Clearly, the leaders of Japan and Germany did not fully understand the nature of war with regard to the will of the people. However, an important lesson about employment was universally learned—air superiority was a requirement for any successful operation. Still, airpower theory promised more than air superiority. The good news was the vision of that fully-realized promise could be seen more clearly at the end of the war.

Limited Wars, Limited Use—Korea and Vietnam

In the Korean and Vietnam limited wars, with their unclear nature and restrained conduct, Clausewitz’s Trinity was forced out of balance. Political objectives (reason) were not properly connected to military objectives and employment (the other two elements). In the Airpower Trinity, technology had closed the gap between promise and capability (for example, jet engines significantly improved speed and upgraded weapons delivery systems provided more precise bombing). But, even with this technological advantage, airpower was not employed as an intended decisive factor. Even though tactical employment of airpower saved the US Army from defeat early in the Korean conflict, airpower was not an integral part of General MacArthur’s overall battle plan. Also, this conflict occurred relatively soon after the establishment of the United States Air Force as a separate service at a time when early emphasis was on strategic nuclear deterrence and heavy bombers.

The Vietnam war, also fought in the shadow of the Cold War, saw airpower employed in a limited and disparate fashion—like the rest of the US military force. Airpower had not been “unleashed” to fully exploit its capabilities for maximum impact. This was primarily due to
political considerations (White House control of targeting, etc.) that impacted and constrained
employment practice—a critical element of the Airpower Trinity. Also, the lack of centralized
control over all the air assets, again, diluted the ability to maximize the force. Air campaigns like
Rolling Thunder and Linebacker, while accomplishing some limited tactical success, could not
provide a decisive factor without integration into an overall joint war effort.

Israeli Success in The Six Day War and the Beka’a Valley—Airpower Trinity in Balance

The maximum potential of this unique capability is achievable. The success of Israeli
airpower in the ’67 Arab-Israeli war and the Beka’a Valley air campaign in the ’82 Lebanon war
showed that airpower can be a decisive factor. These successes occurred when the available
theory, technology, and employment concepts supported each other in the strategic application of
airpower. Airpower had finally fulfilled the early promises, albeit on a relatively small scale. In
both conflicts, the Israeli leaders showed a clear understanding of Clausewitzian theory—the
trinity and its linkages, Hart’s indirect approach, and the principles of surprise, deception, and
concentration of forces that airpower could exploit. They also understood the elements of the
Airpower Trinity and their relationships.

At 0745 on Monday, June 5, 1967, Israel used the element of surprise (the principle of
war that is airpower’s strongest advantage[^12]) to launch a preemptive strike at two dozen Arab
airbases in Egypt, Syria, Jordan, and Iraq. This precisely-timed and coordinated strike consisted
of two 80-minute attacks which destroyed the offensive potential of the Arab air forces. In this
first three hours of the war, 387 Arab aircraft were destroyed, and Egypt’s air force, the largest
in the Arab world, went from 520 planes to 220[^13] With early air supremacy, the IAF could
provide timely interdiction and close air support that enabled the ground forces to accomplish
magnificent feats.
General Hod, commander of the IAF, when asked how they managed such unprecedented success, stated four key reasons: sixteen years of planning for the initial 80 minutes, good intelligence about the enemy, flexible and centralized control of the air assets, and skilled execution. Although the Israeli strategy relied heavily on Liddell Hart's theory (when using its inherent advantage of surprise, airpower is both the ultimate indirect approach and a critical force multiplier for a numerically-inferior military), Clausewitzian theory was clearly recognized (war plans supporting clear political objectives, and the criticality of the human factor in war).

Strategically, Israel knew that victory had to be quick and decisive. Surprise was the key to success, airpower, with its speed, range, flexibility, and ability to directly attack enemy centers of gravity, was the only force that could provide a decisive blow. Airpower sealed Israeli victory within hours of the first strike. This was the promise of airpower theory; the available technology provided the necessary capability, and, the IAF pilots exploited both in their employment--the Airpower Trinity was in balance at this point in time.

The Israeli air operation over Lebanon in 1982, although very limited in scope, objectives, and the number of participants, requires mention in light of the decisive nature of airpower for at least three reasons. First, airpower probably prevented a future war with the absolute destruction of the Syrian forces. Accomplished very quickly and with very few casualties, the air war in the Bekaa Valley exhibited almost perfect employment by the IAF in the 8-minute battle. Second, this air campaign constituted the first full-scale test of current-generation American technology in tactical aircraft and weapons. But, although there were lessons to be learned about technology of weapons and equipment, a more important lesson was about airpower employment practices. High-technology weapons are required in a real-time electronic warfare environment, but, to be decisive, airpower still must be employed using the basic principles of war. Third, it was also
about the human factor in war. In the end, despite divergent military philosophies and more
sophisticated American equipment, the Syrians were simply outflown and outfought by the
Israelis

Desert Storm--Our Theory, Practice, and Technology Balanced in the Airpower Trinity

In August of 1990, Saddam Hussein boldly stated, “The United States relies on the Air
Force and the Air Force has never been the decisive factor in a battle in the history of wars” \(^{17}\) He
was right about the United States Air Force up to that time, but he obviously was not a student of
the evolution of airpower—or, for that matter, of military strategy. Consequently, Saddam lived
to regret his statement. From the first night reports of F-117s and Tomahawk cruise missiles
striking Baghdad (via live CNN reporting) to nightly precision bombing videos, it became evident
that this war was different. The United States was at a point in time when *theory, technology,*
and *practice* converged at the right time and place to allow employment of airpower to its
maximum potential. The Airpower Trinity was in balance and, as such, played a prime role in the
balance of the Clausewitzian Trinity. As David Hackworth concluded, “air power did a most
impressive job and virtually won this war by itself” \(^{18}\). Based on the objectives of this war,
airpower could not have “won it by itself,” but it was the decisive factor in the quick, low-casualty
allied victory.

While airpower *theory*, in general, promised the decisive battle, United States Air Force
written doctrine was mired in the Cold War. The basic doctrine manual, *Air Force Manual*
(AFM) 1-1 was dated 13 August 84 and had not changed significantly since 1959.\(^{19}\)

Consequently, approaching the Persian Gulf War, airpower leaders did not have a written doctrine

\(^{17}\) See earlier remarks by USAF Chief of Staff. Doctrine can be written, like AFM 1-1, or unwritten, like that
practiced by airmen day-to-day.
on which to base a conventional air campaign plan. However, they did have unwritten doctrine that had been developed through their many experiences and study of the best concepts of such theorists, as Clausewitz, Hart, and, of course, Mitchell and Douhet. Luckily, there were Air Force leaders, like the early airmen, who understood these concepts of theory and had them "written down in their minds." Generals Chuck Horner and "Buster" Glosson and Colonel John Warden, to name the most visible. Colonel Warden had laid the foundation of an air campaign in his book, *The Air Campaign Planning for Combat*. He led the joint working group that took his European theater plan and built the comprehensive, integrated Desert Storm air campaign.

These leaders certainly understood Clausewitz's concept of center of gravity (see footnote 10). Warden's modified and updated version of the center of gravity with his five concentric rings became the central focus of the air campaign. General Powell, commenting on Warden's concept at one of the first strategy planning meetings in August 1990, stated that "Warden's approach could destroy or severely cripple the Iraqi regime." It remained the heart of the air campaign. With initial domestic public support tenuous due to a vivid memory of the protracted and costly Vietnam War, a quick crippling of Iraq's warfighting capability was required. Additionally, the fragile nature of the coalition added a further requirement for a quick war, with low loss of allied lives, and minimal collateral damage. A mandate from the United Nations and our allies—as well as domestic public support—gave the United States the opportunity to "unleash" airpower. To sum up the philosophy, in true Clausewitzian sense, General Powell explained the battle plan, "We were using our airpower first to render the enemy deaf, dumb, and blind... Our strategy in going after this army is very simple, first we are going to cut it off, and then we are going to kill it."
The air campaign was carried out by an employment concept of simultaneous and synchronized strikes, mass and concentration of forces, surprise and deception, outstanding intelligence, and flexibility through centralized control—all universal principles of warfare. As with the evolution of technology, these employment practices were perfected over many years. Airpower clearly benefited from a transformation in the way U.S. forces train for combat. This was true for the entire joint arms team, as one Army general officer stated, “We didn’t start winning this war last August. We started winning this war ten to fifteen, if not twenty years ago.”

This applied to Air Force training as well.

Doctrine had advanced, although not in the written form of AFM 1-1, but in other written forms, such as journals and reports. This was supported by changes in employment practices at large-scale exercises like Red Flag, which began after the Vietnam War, and significant organizational changes in flying units in the early 1990s. Finally, probably the key reason for airpower’s decisive nature was the centralized control of all air assets by one commander, the Joint Force Air Component Commander. Through one integrated air tasking order for all coalition air forces, General Horner directed air assets to the missions that would provide the most decisive impact. At long last, the theory element and the practice element were in balance with the technology element.

“The technology finally caught up with the doctrine,” proclaimed General Dugan, as he asserted the vindication of precision bombing. Dramatic improvements in precision weapons and stealth technology provided the necessary means to reach the ambitious ends of the air campaign. Attacking the will of the populace, while minimizing collateral damage—once only a promise—was now a reality. Additionally, technology improvements in many other areas like communications, sensors, and aircraft production and maintenance resulted in superior
intelligence and situational awareness, nearly flawless synchronization of simultaneous missions, very high aircraft sortie rates, and even immediate bombing results sent to leaders in Riyadh and Washington. This minimized the "Dover factor" (caskets arriving at this east coast base) by reducing the loss of American lives and the "CNN factor" (immediate, real-time TV coverage) by providing very successful targeting video. Airpower provided an overwhelming, technologically superior, decisive force—the American "way of war" continually promoted by General Powell.

The Future for Decisive Airpower

"Billy Mitchell was right." Hung above the door at the USAF's Air Command and Staff College during Desert Storm, this saying is finally more than theory—at least for this war. Airpower can and did provide a decisive contribution to the final outcome of that war. However, now in another period of peacetime, the challenge is to keep the elements of the Airpower Trinity in balance for the next war.

In the expected conflicts of today and tomorrow, airpower, like land or sea power, cannot provide the sole means to all ends. Depending on the purpose and nature of the conflict—and the intended political objectives—the relative importance and contribution of air, land, and sea forces vary. These forces are intended to work together to achieve the military objectives. However, even if one of the goals is to move an enemy's army, airpower can provide the decisive means to this end. Without it, the accomplishment of that objective may be threatened or require a very high price in terms of lives lost and material resources expended. To this end, employment practices must keep pace with theory and technology advancements to ensure the Air Force fights Powell's "way of war."

United States airpower doctrine (AFM 1-1, March 1992), written and published after Desert Storm, describes the basic principles and tenets for the effective application of airpower.
The unique capability of airpower to operate from the “high ground” means that it can be employed quickly, anywhere needed, against any facet of enemy power. Derived through experience, this current doctrine, dynamic and flexible like airpower, allows for advances in technology and threats, as well as changes in warfare. It reflects a core belief in the decisive nature of airpower with the definition of strategic air warfare.

Air combat and supporting operations designed to effect, through the systematic application of force to a selected series of vital targets, the progressive destruction and disintegration of the enemy’s war-making capacity to a point where the enemy no longer retains the ability or the will to wage war.

Theory and doctrine will continue to evolve, as they must, to maximize and exploit the capability of airpower.

According to Clausewitzian theory, the nature of war is timeless. But not so for the conduct of war—it changes with advances in technology. In turn, technology drives practice, with theory a critical factor in both. Desert Storm, a balance of airpower theory, technology, and practice, could be the culmination of a technological revolution, a mid-phase test of the evolution, or the verge of the next revolution in weapons and warfare. As weapons become more precise, with better standoff capability, satellites move the “high ground” further up into space, and information warfare develops, tomorrow’s wars will, likely, differ from the ones we know. As future technology promises a capability to conduct warfare more cleanly—in a precise, limited, almost bloodless fashion—and quickly, how employment practices and theory (and doctrine) develop will be critical.

Future Air and Space Operations

This question about whether Desert Storm and the technologies employed constitute a Revolution in Military Affairs (RMA) has been widely discussed. Certainly, these technological
advances resulted in a high-intensity battlefield, a “hyper war,” that was a profound change in the conduct of war. James Fitzsimmonds, an Army officer writing in a 1995 article, described many of the advanced technologies used during Desert Storm that will shape the future battlefield:

Advanced sensors and communications now provide much greater information about the enemy as well as a higher degree of operational control over our own forces. Stealth and precision-guided warheads have reduced significantly the number of platforms and amount of ordnance necessary to destroy individual targets. Conventional weapon lethality has increased, while attrition and collateral damage have been significantly reduced. These developments portend perhaps an entirely new regime of high-technology warfare in the early 21st century.

Lieutenant General David McCloud, USAF, Director of JCS J8, echoed this assessment, listing stealth, computer systems, lasers, and information systems as revolutionary technologies that will help change the future battlespace. His definition of a “revolutionary technology” focused directly on the operational environment—a technology that warfighters can use. The opportunity that the U.S. has to merge these technologies into future weapon systems means, according to General McCloud, that the “relative U.S. military capabilities will undergo stunning improvements by 2010.”

Whether we have experienced a RMA or not, one thing on which everyone can agree is that the battlefield will be different in the future. The CJCS’s Joint Vision 2010 recognizes this fact and sets the goal of “full spectrum dominance” by the U.S. across the range of military operations in the future. General Shalikashvili’s vision is American capability to dominate any opponent—Full Spectrum Dominance will be the key characteristic for our Armed Forces to achieve this vision. JV 2010 provides the conceptual template to “leverage technological opportunities to achieve new levels of effectiveness in joint warfighting.” Each Service, through the application of new operational concepts, is expected to develop their “unique capabilities.
within a joint framework of doctrine and programs.” These new operational concepts are dominant maneuver, precision engagement, full dimension protection, and focused logistics. Power projection remains one of two fundamental strategic concepts of our military strategy, accordingly, long-range precision capability is a necessary integral part of power projection and is a “key factor in future warfare.”

Airpower will play a significant role in achieving this goal. The USAF follow-on strategic vision to “Global Reach, Global Power” was recently published under the title: “Global Engagement A Vision for the 21st Century Air Force.” This USAF vision for the first quarter of the 21st century states that Full Spectrum Dominance depends on the inherent strengths of modern air and space power—speed, global range, stealth, flexibility, precision, lethality, global/theater situational awareness, and strategic perspective. While air and space power resides in all the Services, the USAF is the lead Service for employing this capability. Hence, the USAF vision and planning for the future will be used in this discussion.

This new vision details how the USAF fits into the National Security Strategy of “Engagement and Enlargement” and the National Military Strategy (NMS). The NMS centers around two major concepts to meet the security challenges of the new century: Global Presence and Power Projection. Since these challenges will occur across a wide range of contingencies, the Joint Force Commander will demand flexible capabilities. The Air Force contributes these capabilities to the joint team through its “core competencies” of air and space superiority, global attack, precision engagement, rapid global mobility, agile combat support, and information superiority. Air Force Secretary, Dr. Sheila Widnall, points out that coping with the new challenges and their effect on the battlefield “was no accident.” The USAF anticipated this new
way of war because "of vision, systematic planning and investing in our people, and the right modernization programs."31

The Airpower Trinity--Maintaining the Balance

Maintaining the balance in the Airpower Trinity requires deliberate planning and execution. "Vision" has been the word used in most of the documents relating to future operations. Vision is not exactly the same as theory, but for the purposes of projecting the future, the airpower advocates of today--our airpower theorists--use vision to explain what airpower hopes to do for warfare. This is where vision (theory) pushes technology to produce the necessary capability, but this vision is possible only when the advocates have some glimpse of the "art of the possible."

For example, with such a glimpse, the authors of the *Battlefield of the Future: 21st Century Warfare Issues* identified four new potential warfare areas: space warfare, precision strike, dominating maneuver, and information warfare.32 Space warfare, by extension, is in airpower's domain (more specifically, air and space power's domain in the future). George Friedman, who heads the GPA Strategic Forecasting Group, argues in his book *The Future of War*, "the age of the gun is over and the future is the age of precision-guided munitions or smart weapons. He who controls space controls the battlefield." He adds that the U.S. will have the edge in the 21st century due to high-speed missiles and space-based reconnaissance to gather information and quickly disseminate it.33 Precision strike, dominating maneuver, and information warfare are not the sole domain of airpower, however, airpower will play a significant role in each and a major role in the precision strike area. While all of these areas are supported by the core competencies of the USAF, precision strike is the farthest along conceptually and practically. This allows a look at the future potential for airpower from the familiar perspective of the present.
By 2020, new technologies that will enable precision strike could provide commanders with "wide-area surveillance and target acquisition, near-real-time responsiveness, and highly accurate, long-range weapons" to achieve strategic effects at intercontinental distances. This will be a dramatic increase in capability. In 1943, the U.S. Eighth Air Force prosecuted only 50 strategic targets in an entire year. In the first 24 hours of Desert Storm, the coalition air forces prosecuted 150 strategic targets. By the year 2020, the potential could exist to prosecute 500 strategic targets in the first minute of a war. This accomplishment will come only from the synergistic effect of linking the technologies required in all of these new warfare areas. For airpower to live up to its potential in this vision of warfare, technology will have to produce the necessary capabilities—it seems the technological advancements, thus far, make that highly probable.

These current technological advancements are so rapid and dramatic, a potential problem is that employment practices may not be able to keep up with that pace. Since the "cause and effect" relationship discussed earlier between theory and technology keeps these two elements more closely in balance, the more critical relationship is between technology and practice. And, technology will be the driver in this relationship. The development of employment practices to take advantage of this advanced technology will be required for airpower to make the vision a reality. Consequently, new operational concepts and organizational modifications may provide greater leverage for future success than the technologically advanced systems themselves.

As the future battlespace becomes more lethal and complex, the technologies required to survive in this environment will likely result in systems that are not compatible with manned flight. New operational concepts will increasingly employ unmanned systems to reduce the loss of life, to utilize technologies that exceed the limits of human capability, and to meet signature requirements.
in a more stealth-necessary environment. The organizational modifications required to operationalize these concepts have already begun in the USAF. The first unmanned aerial vehicle (UAV) squadron has been established at Nellis AFB, NV. The establishment of the squadron and the location are significant, because this organizational modification strikes directly at the heart of the founding identity of the USAF—the pilot in the cockpit (with a scarf flowing in the breeze). Not only will this challenge the core institutional culture, it will challenge the warrior ethos. How ironic—the first UAV squadron is at Nellis AFB, the “home of the fighter pilot.” The development of UAV technology and practices is an example of where concerted effort, planning, and leadership will be required to keep the Airpower Trinity in balance.

Conclusion

The synergistic evolution of three key elements—*theory, technology, and practice*—is critical to the evolution of airpower in order to achieve its maximum combat potential. This is the essence of airpower—a force that can provide a decisive factor to the outcome of conflict. This paper introduced the Airpower Trinity, originating from the concept of the Clausewitzian Trinity with his “three magnets balancing the trinity.” This new construct explores the relationship of *theory, technology, and practice* to the essence of airpower. Like in the Clausewitzian Trinity, the interaction among these elements must produce a balance of the Airpower Trinity. This is necessary for the maximum effective employment of airpower in combat. When this has occurred, as it did for Israel during the '67 Arab-Israeli War and Bekaa Valley in 1982 and for the United States during the recent Persian Gulf War, airpower exhibited its maximum potential and was decisive in the final outcome of each war.

The balance of *theory, technology, and practice* is a necessary ingredient for success in subsequent wars. The future battlespace will be a new regime of high-technology and complex
warfare—extended into space, with more precision strike, and greater demand for accurate and timely information. Full Spectrum Dominance, the JV 2010 objective for this battlespace, depends on the inherent strengths of airpower. This *theory* and *practice* must stay in balance with the rapidly-changing *technology*. Attention in the future to the concept of the Airpower Trinity will ensure *air and space power* provides a decisive factor in future conflict. And, once developed, the “Joint Force Trinity” could prove the *sine qua non* of future victories.
SELECTED BIBLIOGRAPHY

Dugan, Michael “First Lessons of Victory” US News and World Report, 18 Mar 91

“Excerpts from Interview with Hussein on Crisis in Gulf” New York Times, 31 Aug 90

Fitzsimmonds, James R “The Coming Military Revolution Opportunities and Risks” Parameters, Summer 1995

Hackworth, David H “Lessons of a Lucky War” Newsweek, 11 Mar 91

Hansell, Haywood S, Jr The Strategic Air War Against Germany and Japan A Memoir Washington, DC Office of Air Force History, 1986

“Israel’s Swift Victory” Life, Special Edition, 1967

Joint Vision 2010, Chairman of the Joint Chiefs of Staff Washington Joint Chiefs of Staff, 1996

Sun Tzu, trans Samuel B Griffith The Art of War New York Oxford University Press, 1963

“US Arms Used in Lebanon War Outstrip Soviets” Wall Street Journal, 5 Aug 1982

Vickers, Michael G Warfare in 2020 A Primer Washington Center for Strategic and Budgetary Assessments, 1996

ENDNOTES

3 Ibid
4 Ibid
5 Ibid
6 Ibid, pg 88
7 General Folgeman’s Commander’s Call remarks to National War College, 18 Feb 97. With regard to the early airborne leaders, he referred to those in 1945, the 60s, and the mid-70s.
8 Ibid. To put the R&D and procurement costs of new tactical air (F-22, F/A-18 E/F, and JSF) into perspective, General Folgeman presented a comparison of modernization costs (R&D and procurement are the primary ones) to the total cost over a 35-year life span of several major weapons and their organization—such as, an F-22 fighter wing, an aircraft carrier, a heavy mechanized division. The intent was not to compare a heavy mech division to a fighter wing on any type of cost-benefit relationship, but rather to show that the “up-front” costs in all of these capabilities are rather low compared to the cost to maintain the capability over a 35-year life span.
10 Clausewitz’s defined center of gravity as “the hub of all power and movement, on which everything depends—the point at which all our energies should be directed.” Carl von Clausewitz, *On War*, trans. and ed. Michael Howard and Peter Paret, (Princeton: Princeton University Press, 1976), 595-596
11 Dr. Ilana Kass, Seminar M, 28 Oct 96, National War College, Washington, DC
12 According to AFM 1-1, Vol I, 16. Most aviators believe *Flexibility is the key to airpower*. Flexibility allows for surprise.
15 The Israeli cabinet was terrified at the prospect of a premature cease-fire. They remembered when United States pressure forced defeat on them (with the British and the French) in 1956 when victory was only hours away. The Israeli plan in 1967 was based on the belief that time would be short and victory would have to be as swift and decisive as possible. Randolph and Winston Churchill, *The Six Day War*, 93
17 “Excerpts from Interview with Hussein on Crisis in Gulf,” *New York Times*, 31 Aug 90, A-10
20 Colonel Warden discusses his concept of center of gravity in his book and adds it is the point where the enemy is most vulnerable and where attacks will have the best chance of being decisive. For Desert Storm, he defined the enemy’s center of gravity to consist of five concentric rings (from the center out): leadership, production facilities, infrastructure, population, fielded military forces. The vital targets were at the center and should be attacked first, or, at least, simultaneously. Something that airpower could do—concentrating force at the decisive point. John A. Warden, III, *The Air Campaign Planning for Combat*, (Washington, DC: National Defense University Press, 1988), 9-11 and Clodfelter, 23
22 Ibid, 509-510
26 AFM 1-1, Vol II, 302. This doctrine also identifies on page 116 at least three decisive uses for the capability of airpower forces.

1 To produce direct and immediate *strategic* effect by attacking an enemy’s political, military, economic, and social structure simultaneously or separately.
2. To affect the outcome of surface battles and campaigns before a shot is fired by surface forces by exploiting the principles of mass and maneuver simultaneously to a far greater extent than surface forces.

3. To assist directly in surface battles, perhaps with decisive effects by delivering precision firepower quickly and accurately at very close quarters.

28 Lt Gen McCloud lecture to the National War College Class of 1997, 13 Mar 97

29 “Joint Vision 2010,” Chairman of the Joint Chiefs of Staff, The Joint Chiefs of Staff, 1-11

33 “Why the 21st Could Be the American Century,” *Parade/Washington Post*, 6 Apr 97, 8

34 Blackwell, 79

35 Blackwell, 78

Lieutenant Colonel David K. Edmonds, USAF

Colonel William R. (Rich) Higgins Award; National War College Class of 1985

“In Search of High Ground: The Airpower Trinity and the Decisive Potential of Airpower”