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Supervisory Control of Networked Control Systems 
 
Michael Lemmon 
Dept. of Electrical Engineering 
University of Notre Dame 
Notre Dame, IN 46556, USA 
574-631-8309 (fax: 574-631- 4393) 
lemmon@nd.edu 
 
ARO GRANT Proposal Number: 41918-CI 
FINAL TECHNICAL REPORT: January 15, 2006 
 
Problem Statement:    
 
A networked control system is a control system whose feedback path is realized over a 
computer communication network.  Networking feedback paths in such a manner can 
greatly reduce the hardware complexity of a large control system.  Networked systems 
are often easier to manage and reconfigure.  Traditional examples of networked control 
systems include networking of PID loop in the control of large-scale process control 
facilities.  More recent applications involve the coordinated control of multiple 
autonomous vehicles over ad hoc wireless networks.   
 
In many networked control applications, the network is shared between many different 
users.  These users can be other control loops or they can be data logging tasks.   In 
applications using ad hoc wireless networks, the bandwidth available to a single control 
loop may be severely limited.  Moreover, competition for network resources between 
different users may reduce the reliability with which a single feedback path can access 
network resources.   Network bandwidth in such applications is difficult to predict ahead 
of time and the inevitable variations in such bandwidth can severely compromise the 
anticipated stability and performance of the closed loop system.   
 
The purpose of this project was to study the impact that limited feedback information has 
on the stability and performance of networked control systems.  This project was 
extremely interested in establishing fundamental bounds on the best performance 
achievable over feedback links with fixed bit-rates and randomly dropped data packets.   
It attempted to use these theoretical results to develop real-time scheduling protocols that 
would minimize the impact that firm deadlines have on control system performance.  
Finally, this project studied the coordinated control of multi-agent autonomous systems 
when there is limited communication between agents.  The project sought to build a 
wireless robotic testbed to study issues associated with the real-life implementation of 
networked control over ad hoc wireless networks.   
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Summary of Results: 
 
The primary results from this project will be found in the published conference and 
journal papers listed in the following section.  These results are itemized below. 
 
1. This project developed a method for designing liveness-enforcing supervisors of 

concurrent discrete-event systems.  The synthesis method was based on a partial order 
analysis of Petri nets.   The publications describing this work are [He02] [Lem02]. 

2. This project developed methods for analyzing the controlled composition of hybrid 
automata through the use of viability kernels [Shang02].   

3. This project analyzed the impact that independent and identically distributed dropouts 
had on control system performance.  Our initial efforts used a power spectral analysis 
of a linear scalar feedback system with dropouts to study performance [Ling02].  
Subsequent work developed a dropout compensator that minimized the impact such 
dropouts had on closed loop performance [Ling03b] [Ling04]. 

4. This project analyzed the impact that dropouts generated by a Markov chain had on 
the performance of linear feedback control systems.  Using results from jump linear 
systems theory, we characterized the closed loop system performance [Ling03a] as a 
function of the dropout process’  Markov chain.  We used these results to determine a 
Markov chain that minimized the overall performance loss due to dropouts under a 
fixed average dropout rate.   

5. Results from [Ling03a] were used to develop a firm real-time scheduling constraint.  
We used the optimal dropout Markov chain as a specification on the desired dropout 
patterns that a firm real-time scheduler should attempt to enforce.   Several heuristic 
algorithms were proposed for realizing this constraint.  Simulation results [Hu03] 
[Liu05] [Liu06] demonstrated that the MC-constraint could indeed be realized in a 
way that approaches the theoretical bounds derived in [Ling03a].      

6. The feedback information in a networked control system is quantized due to the 
digital nature of network communication.  This project focused on developing bit 
allocation strategies that maximize the overall closed loop performance.  In a 
quantized feedback system, we have a fixed number, Q, bits that are used to encode 
the state vector.  Bit assignment protocols determine how many of these Q bits should 
be allocated to a particular component of the state vector.  In this part of the project 
we studied optimal bit assignments that minimized the error of dynamically quantized 
feedback strategies.   
 
The impact that dynamic bit assignment has on the asymptotic stability of noise free 
systems was examined in [Ling04b] [Ling05].  The performance of scalar linear 
systems with dynamically quantized feedback was studied in [Lem04].  The stability 
of quantized linear systems with bounded noise under dynamic bit assignment was 
studied in [Ling04a].   A characterization of the optimal performance (minimum 
quantization error) achieved under dynamic quantization for second order noise-free 
linear systems was presented in [Ling05a].  We’ve recently [Lem06] extended the 
work in [Ling05a] to characterize the optimal performance achieved in multivariable 
linear systems with bounded noise.  The work in [Lem06] essentially generated what 
may be called performance-rate functions for dynamically quantized feedback 
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systems.  A brief synopsis of that unpublished manuscript will be found in the 
technical appendix. 

7. Recent results have examined the performance and stability of multi-agent robotic 
systems that communicate over ad hoc wireless networks.  We [Sun05] proposed the 
use of periodic communication logics for the decentralized control of multi-agent 
systems.   This work characterized the optimal periodic schedule of message 
transmissions that minimize average the mean square estimation error within the 
multi-agent system.  We’ve recently [Lem06a] determined uniform ultimate bounds 
on multi-agent swarms that are moving under the guidance of a consensus filter.  This 
work also added integral action to ensure asymptotic stability of the consensus filter.  
A brief synopsis of the unpublished manuscript [Lem06a] will be found in the 
technical appendix. 

8. This project built a multi-robotic testbed consisting of 3 Koala robots [Lem06b].  The 
robots are controlled by MICA2 wireless processor modules.  The robots 
communicate over the MICA2’s radio.  The network middleware implements a 
consensus filter that estimates the geometric center of the robotic group.  This 
estimate is then used to guide the motion of the entire group.  A more detailed 
description of the testbed [Lem06b] will be found in the technical appendix. 
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Publications: 
 
Refereed Journal Papers 
 
1. [He02] K.X. He and M.D. Lemmon (2002), Liveness-Enforcing Supervision of 

Bounded Ordinary Petri Nets using Partial Order Methods",  IEEE Transactions on 
Automatic Control, July 2002, Volume 47, pages 1042-1055. 

2.  [Ling05] Q. Ling and M.D. Lemmon (2005), Stability of Quantized Control Systems 
under Dynamic Bit Assignment,  IEEE Transactions on Automatic Control, volume 
50,  June 2005. 

3. [Ling04] Q. Ling and M.D. Lemmon (2004), Power Spectral Analysis of Networked 
Control Systems with Data Dropouts, IEEE Transactions on Automatic Control, 
Volume 49(6), pages 955-959, June 2004. 

4. [Liu06]  D. Liu, X. Hu, M.D. Lemmon, and Q. Ling (2006), Firm Real-Time System 
Scheduling Based on a Novel QoS Constraint, IEEE Transactions on Computers, 
March, 2006. 

 
Referred Conference Papers: 
 
1. [Hu03] Sharon Hu, Donglin Liu, , Michael D. Lemmon, and Qiang Ling (2003), Firm 

Real-Time System Scheduling Based on a Novel QoS Constraint, Real Time Systems 
Symposium (RTSS’03), Cancun Mexico, November 2003. 

2. [Lem02] M.D. Lemmon and K.X. He (2002), Liveness enforcing monitors for safe 
and controllable Petri nets,   2002 IEEE Conference on Decision and Control, Las 
Vegas, Nevada, December 2002. 

3.  [Lem04] M.D. Lemmon and Q. Ling (2004), Control system performance under 
dynamic quantization: the scalar case, Conference on Decision and Control 
(CDC’04), Bahamas, Dec. 2004 

4.  [Ling03] Q. Ling and M.D. Lemmon (2003), Optimal Dropout Compensation in 
Networked Control Systems, IEEE Conference on Decision and Control (CDC03), 
Hawaii, December 2003. 

5.  [Ling03a] Q. Ling and M.D. Lemmon (2003), Soft real-time scheduling of networked 
control systems with dropouts governed by a Markov chain, American Control 
Conference, Denver, Colorado, June 2003. 

6. [Ling03b] Q. Ling and M.D. Lemmon (2002), Robust performance of soft real-time 
networked control systems with data dropouts,  2002 IEEE conference on decision 
and control, Las Vegas, Nevada, December 2002  

7. [Ling04a] Q. Ling and M.D. Lemmon (2004), Stability of quantized linear systems 
with bounded noise under dynamic bit assignment, Conference on Decision and 
Control (CDC’04), Bahamas, Dec. 2004  

8. [Ling04b] Q. Ling and M.D. Lemmon (2004), Stability of Quantized Control Systems 
under Dynamic Bit Assignment, American Control Conference (ACC’04), Boston, 
MA, Dec. 2004  

9.  [Ling05a] Q. Ling and M.D. Lemmon (2005) , Optimal dynamic bit assignment in 
noise-free quantized linear control systems, IEEE Conference on Decision and 
Control, Seville Spain, Dec. 2005. 
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10. [Liu05] D. Liu, X. Hu, M.D. Lemmon, and Q. Ling (2005), Scheduling Tasks with 
Markov-Chain Constraints, 17th Euromicro Conference on Real-time Systems, July 
2005. 

11. [Shang02] Y. Shang and M.D. Lemmon (2002), The controlled composition of hybrid 
automata through the use of inner viability kernels, MTNS 2002, Univ. of Notre 
Dame, August 2002. 

12.  [Sun05] Y. Sun and M.D. Lemmon (2005), Periodic Communication Logics for the 
Decentralized Control of Multi-agent Systems,  IEEE Conference on Control 
Applications, Toronto, Canada, August 2005. 

 
Manuscr ipts in Preparation: 
1. [Lem06] M.D. Lemmon and R. Sun (2006), Optimal Dynamic Bit Assignment for 

Dynamically Quantized Feedback Systems, to be submitted to IEEE Conference on 
Decision and Control 2006. 

2. [Lem06a] M.D. Lemmon and Y. Sun (2006), Cohesive Swarming under Consensus, 
to be submitted to IEEE Conference on Decision and Control 2006. 

3. [Lem06b] M.D. Lemmon and Y. Sun, Cohesive Swarming under Consensus: robotic 
testbed, in preparation, 2006. 

 
Invited Presentations: 
1. Fundamental Limitations of Networked Control due to Dropouts and Quantization, 

Old Dominion University, Virginia, October 2003. 
2. Fundamental Limitations of Networked Control due to Dropouts and Quantization, 

Queens University, Canada, October 2003. 
3. Stability and Performance of Feedback Control Systems over Wireless Sensor-

Actuator Networks, Purdue University, April 2004. 
4. Detection and Control of Combined Sewer-Overflow Events using Embedded Sensor 

Network Technology, Purdue University,  November 2004. 
5. Control of Environmental Processes over Embedded Sensor-Actuator Networks, 

Johnson Controls Inc., Milwaukee, April 11, 2005. 
6. Detection and Control of Combined Sewer Overflow Events using Embedded Sensor 

Network Technology, June 2005, Notre-Dame/Johnson Control/City of South Bend 
ideation session. 

7. Sensor Networks at Notre Dame, Hewlett-Packard Research Center, Palo Alto 
California, August 2005. 

8. Embedded Sensor-Actuator Network Research at Notre Dame, Argonne National 
Laboratories, October, 2005 

9. Embedded Sensor-Actuator Network Research at Notre Dame, General Electric 
(remote diagnostics division), November 2005. 

10. Monitoring and Control of Environmental Processes over Embedded Sensor-Actuator 
Networks,  Crane Naval Base, Evansville Indiana, May 18, 2005.  



8 

 
Scientific Personnel:   
1. Michael Lemmon, Professor, Dept. of Electrical Engineering, University of Notre 

Dame 
2. Kevin X. He, Ph.D., Morgan, Lewis and Bockius LLP, New York, NY (Ph.D. 

completed under this grant in 2002). 
3. Qiang Ling, Ph.D., Seagate Technologies, Pittsburgh, PA (Ph.D. completed under this 

grant in 2005) 
4. Yashan Sun, Dept. of Electrical Engineering, University of Notre Dame, Ph.D. 

student. (Ph.D. expected spring 2007) 
5. Ying Shang, Dept. of Electrical Engineer, University of Notre Dame, Ph.D. student, 

(Ph.D. degree expected spring 2006) 
6. Donglin Liu, Dept. of Computer Science and Engineering, University of Notre Dame, 

M.S. student (degree completed Summer 2005) 
 
Report of Inventions: None 
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Appendix A  -  Per formance-Rate Functions for  Quantized Feedback Systems 
 
Consider a quantized feedback system shown in figure 1A   The discrete-time system has 
a state  x[k]   that satisfies the state equations, 

[ 1] [ ] [ ] [ ]x k Ax k Bu k w k+ = + +  

for k=0,…,∞.  The signal, w[k] ,  is an exogenous disturbance such that |w[k] |∞ ≤ M, 
where M is a finite constant.  The signal u[k]  is the feedback control law of the form 

[ ] [ ]qu k Fx k=  
 

where xq[k]  is a quantized approximation of the state at time k.  We assume that (A,B) is 
controllable with A being diagonalizable with unstable eigenvalues (|λi|>1) and F is a 
stabilizing state feedback gain matrix of appropriate dimensions. 
 

 
 
Figure 1A shows how the system state, x[k] , is quantized and transmitted over the 
feedback channel.  In this figure, the system state is measured at time k by the encoder 
and that measurement is mapped onto a symbol s[k]  that is drawn from the discrete set 
{0,1,…,2Q-1}.  The symbol s[k]  is therefore represented by Q bits.  This symbol is 
transmitted across a lossless communication channel with a single step delay.  The 
decoder receives a symbol s’ [k] =s[k-1]  that is a one-step delayed version of the 
transmitted symbol.  The decoder uses s’ [k]  to construct the quantized approximation, 
xq[k] , of the system state. 
 
The quantization method used to construct xq[k]  originates in the uncertainty set 
evolution method introduced in [Brockett].  This approach presumes that at the beginning 
of the kth time interval, the encoder and decoder agree that the state lies in the set 

[ ] [ ] [ ]qx k x k U k∈ + . 
U[k]  is a rectangular set of the form 

plant 
 

[ 1] [ ] [ ] [ ]

[ ] [ ]q

x k Ax k Bu k w k

u k Fx k

+ = + +
=

 

Encoder 

][][ kPkx ∈  

}12,,1,0{][ ][ −∈ kQks �  

[ ]w k  

Figure 1A 

Decoder 

Channel 
][' ks  

][kxq  



10 

[ ]
1

[ ] [ ], [ ]
n

i i
i

U k L k L k
=

= −∏  

where xq[k]  is the quantized state and Li[k]  is the half length of the ith side of the 
rectangle U[k]  at time k.  We sometimes refer to U[k]  as the uncertainty set.  The 
quantization error between the true state and quantized state is denoted as e[k]  = x[k] -
xq[k] .   
 
The encoder measures the system’s current state x[k]  immediately after the start of the 
kth time interval.  The encoder then uses this measurement to determine that  

[ ] [ ][ ] q
s k s kx k x U∈ +  

where [ ]
q
s kx is the center of a smaller subset and  

[ ] [ ] [ ]
1

[ ] [ ]
,

2 2i i

n
i i

s k b k b k
i

L k L k
U

=

� �= −� �� �
∏  

bi[k]  represents the number of bits used to quantize the ith component of the state vector 
at time k.  The new center and smaller uncertainty set are indexed by the symbol s[k]  
which is transmitted across the communication link with a one-step delay. 
 
The decoder receives the symbol, s[k]  at time k+1.  As soon as it receives the symbol, it 
knows that the system state at time k lies in the new uncertainty set  [ ] [ ]

q
s k s kx U+ .  

However, time has now marched ahead from k to k+1, so the decoder must propagate the 
uncertainty set through the state dynamics to determine the state at time k+1.  This is 
done by the following equations 

[ ]
1

[ ] [ ]

[ ]

[ ] [ 1] [ 1]

[ 1] [ 1], [ 1]

[ 1]

[ 1] [ ]
2 i

q

n

i i
i

q q q
s k s k

i
i ib k

x k x k U k

U k L k L k

x k Ax BFx

L k L k M
λ

=

∈ + + +

+ = − + +

+ = +

+ = +

∏
 

 
Throughout this paper we impose a constant bit rate constraint which require bi[k]  ≥ 0 
and  

1

[ ]
n

i
i

b k Q
=

=�  

where Q is a fixed positive integer representing the number of bits used to encode the 
state.   
 
This paper will determine bit assignments that are optimal in the sense of minimizing the 
worst-case summed quantization error over a finite horizon of length N.  In other words, 
we seek to minimize  

( )
2

[0]
1 1

sup [ ] [ ]
N n

q
x

k i

P x k x k
= =

= −� �  
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through our bit assignments, bi[k]  for a fixed Q.  Note that because we take the sup over 
all initial condition, there exists a worst case initial condition such that this squared 
quantization error is in fact equal to Li[k] .  So the optimization problem can be restated as  

2

1 1

1

[ ]

min [ ]

with respect to [ ]

[ ] 0

subject to [ ]

[ 1] [ ]
2 i

N n

i
k i

i

i

n

i
i

i
i ib k

L k

b k

b k

Q b k

L k L k M
λ

= =

=

≥

=

+ = +

� �

�
 

This problem will be solved using dynamic programming.    The basic result is described 
below.  Proofs have been omitted. 
 
Proposition: If  

2
1

log

[0]

[0]

n

i
i

i

Q

Q

n

λ
=

>

Λ=
Λ

�
 

for i=1,…,n, then the bit assignment 

2

[ ]
[ ] log

[ ]i
i

Q k
b k

n k

� 	Λ= − 
 �Λ� 

 

locally optimizes the bit assignment problem. 
 
Remark: Note that the first constraint is the stabilizing bit rate constraint for unstable 
systems.  The second constraint requires that the initial uncertainty set be balanced.  Note 
that the bit assignment has an intuitive interpretation that requires us to equally distribute 
the Q available bits between all channels and then to adjust that “average” bit assignment 
to the ith side based on the balance between that side’s uncertainty set and the geometric 
average of all sides of the uncertainty set.  This means that optimal bit assignments seek 
to balance the uncertainty amongst all components of the state vector. 
 
The preceding proposition may be proven using dynamic programming.   The proof is 
interesting for it characterizes the optimal bit assignment as a feedback control law that is 
a function of the current uncertainty sets.  Moreover, we can find an explicit closed form 
expression for the value function, which provides what we can think of as a performance-
rate function.  This is a function that plots the optimal achievable performance (minimum 
quantization error) as a function of the constant bit rate Q.   For example, if we consider 
an n-dimensional linear system with noise amplitude M and take the horizon N to go to 
infinity, then the optimal performance as a function of Q is  
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2

* 2
/

1
2 (1 )Q n

P nM
λ

ρ
� 	

= +
 �−� 

 

where λ  is the geometric average of the system’s eigenvalues and 
/2Q n

λρ = .  Figure 2A 

plots the predicted performance levels for a 3-d system and the associated simulation 
results.  The figure shows close agreement between the predicted and simulated results.  
To our best knowledge, this is one of the first complete characterizations of the optimal 
performance attainable with multivariable quantized linear systems with noise. 
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−2
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10
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10
2     for i=n:-1:1 

        [tmp,imin]=min(Lambar./Lam); 
        bc=Qm/i- log2(tmp); 
        if i==1; 
            b(imin)=Qm; 
        else 
            b(imin)=ceil(bc); 
        end 
        Qm=Qm-b(imin); 
        Lam(imin)=.00001; 
    end 

5        10       15      20      25      30      35  
            Q  = bit rate 
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0.01 

Summed Squared 
Quantization Error  vs  Bit Rate 

Integer bit assignments 

Analytic Bound 

Figure 2A – per formance rate curve 
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Appendix B -  Cohesive Swarming under Consensus 
 
Problem Statement:  Consider a swarm of N dynamical agents that exchange 
information over an ad hoc communication network.  Each agent is characterized by two 
types of states; its physical state representing the agent’s position in the real world and its 
consensus state representing the agent’s esetimate of the swarm’s geometric center.  The 
physical state of the ith agent at time t is denoted as the vector xi(t) in Euclidean n-space.  
The trajectory of the ith agent’s physical state satisfies the ordinary differential equation 

( ) ( ) (|| ||)( )i i i j i j
j i

x t u t g x x x x
≠

= + − −�
�

 

The vector ui is an external input and g:R→R is a function representing long-range 
interactions between agents.  We use the notation gij  to denote g(||xi-xj||).   
 
The summation represents long range attraction and short-range repulsive interactions 
between agents.  In particular, we assume this interaction may be decomposed into an 
attractive and repulsive component as 

( ) ( ) ( )g r r rρ α= −  
This paper restricts its attention to attraction and repulsion functions of the form 

0
2

0

( )

( )

r
r

r
r

ρρ

αα

=

=
 

where ρ0 and α0 are positive constants. 
 
The consensus state of the ith agent at time t is denoted as a vector ˆ ( )ix t .  The trajectory 

of the consensus state satisfies the consensus filter equations [Saber-Olfati/Shamma 
CDC2005], 

( ) ( )0ˆ ˆ ˆ ˆ ˆ ˆ( )
n n

i i ij j i ij j i
j i j i

d
x x x A u x A x x

dt ≠ ≠

= − + − + −� �  

The vector x0 is the target state that the swarm is trying to track.   The coefficients Aij are 
the elements of the matrix I+Adj(G) where Adj(G) is the adjacency matrix of a directed 
graph G.  This directed graph models the communication network’s connectivity within 
the swarm.   
 

Figure 1B shows the entire swarm may be 
viewed as an interconnection of the swarm 
dynamics equation and the consensus filter.  
 
 
The swarm dynamic’s input from the jth agent 
to the consensus filter’s ith agent is the 
position of the jth agent.  In other words, 
ˆ j ju x= .  The consensus filter’s input from the 

jth agent to the swarm dynamic’s ith agent is 

Consensus 
filter 

Swarm 
Dynamics 

- 

+ 

ˆixˆiu

iuix 0x

Figure 1B 
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the estimate of the swarm center (consensus state) relative to the target.  In other words, 

0 ˆj ju x x= − .  The consensus filter tries to estimate the center of the swarm and the swarm 

uses those estimates to guide the swarm toward the target.  The overall dynamics of this 
system may therefore be written as 

0

0

ˆ( ) ( )

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )

i i ij i j
j i

i i ij j i ij j i
j i j

d
x x x g x x

dt

d
x x x A x x A x x

dt

≠

≠

= − + −

= − + − + −

�

� �
 

We’re interested in establishing whether or not the swarm is cohesive and achieves 

consensus.  Let 
1

( ) ( )j
j

x t x t
N

= �  denote the swarm center at time t.  Define the swarm 

error and consensus error of the ith agent as 
( ) ( ) ( )

ˆ ˆ( ) ( ) ( )
i i i

i i i

e t x t x t

e t x t x t

= −
= −

 

The swarm is cohesive if its swarm error is uniform ultimately bounded.  The swarm 
achieves ε-consensus if the consensus error is less than a finite ε.   
 
Error  Equations:   Since our analysis is concerned with the asymptotic behavior of the 
error vectors, it will be convenient to transform the original swarm dynamics and 
consensus filter into a set of coupled error equations.  With some analysis it can be shown 
that these error equations are 

( )

( ) ( )

1
ˆ ˆ( )

ˆ ˆ ˆ ˆ ˆ 1

i ij i j j i
j i j

i i ij i ij j i ij j
j j i j

d
e g e e e e

dt N

d
e e A e A e e A e

dt

≠

≠

= − + −

= − − + − + −

� �

� � �
 

where 
1

ij ijA A
N

= + .  The consensus error equation is sometimes more conveniently 

represented in matrix-vector form. 

1 12 1 11 12 1

2 21 2 221 2 2

1 21 2

ˆ ˆ

ˆ ˆ0 ( 1) ( 1)2(1 )

ˆ ˆ( 1) 0 ( 1)2(1 )

ˆ ˆ( 1) ( 1) 02(1 )

NN

NN

N N N NN N N

d
e Ae Be

dt

e A I A I eI A I A I

e A I A I eA I I A I

e A I A I eA I A I I

= +

− −� �− + ∆ � � � � � �
� � � � � � �− −− + ∆� � � � � � �= +
� � � � � � �
� � � � � � �− −− + ∆ � � � � �� � � � � � �� �

��

��

� � � � � �� � � �

��

�
�
�
�
��

 

 
where ∆i denotes the out degree of the ith node.   
 
Results:   The main result establishes a bound on the level of consensus and the swarm 
size as a function of the swarm parameters.  This is accomplished by studying the 
uniform ultimate boundedness (UUB) of the swarm dynamics and consensus filters.   
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The following lemma studies the directional derivative of a candidate Lyapunov function 
1

( )
2

TV e e e=  and determines conditions under which it is guaranteed to be negative 

definite. 
 

Lemma 1:  Consider the swarm error system and let 
1

( )
2

TV e e e= .  If there exists a 

positive constant β  such that 

|| || || ||i j
i j

x x eβ− ≤� �  

and if  

0

0

( 1)
|| ||

N N
e

ρ
βα

−≥  

then ( ) 0V e ≤
�

. 
 
 A related instability result based on the above lemma characterizes the set of ||e|| for 
which ( )V e

�

 is positive. 
 

Lemma 2: Consider the swarm dynamics and let 
1

( )
2

TV e e e= .  If there exists 0β > such 

that  
|| || || ||i j

i j

e x xβ ≤ −� �  

and if 

0

0

( 1)
|| ||

N N
e

ρ
βα

−≤  

Then ( ) 0V e ≥
�

. 
 
Remark:  The above conditions in these lemmas are bounds on the average interagent 
distance.  One natural question is to ask whether or not such bounds actually exist.  This 
question can be answered as follows.  Let 1|| || | |i

i

x x= �  denote the 1-normof the vector x 

and let ||x||2 denote the 2-norm.  There always exist constants c and C such that 

2 1 2|| || || || || ||c x x C x≤ ≤  
So now consider the swarm error vector e and note that 

1 1

2

1
|| || || ||

      || ||

i j
i j

i j
i j

e x x
N

C
x x

N

= −

< −

� �

� �
 

which implies there exists a constant β  satisfying our constraint.  Similar types of 

bounding arguments can be used to determine β .  So such bounds always exist. 
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Remark:  The actual values for the bounds β  and β  may be obtained by solving the 

following optimization problem.   
2

2 2
2

minimize || ||

with respect to

|| ||

subject to
0

i j
i j

i

i
e

i
i

J e e

e

e E

e

= −

=

=

� �

�

�

 

The optimal cost then becomes our bound.   
 
Ultimate bounds can also be obtained for the consensus error.  These bounds are given in 
the following lemma. 
 

Lemma:  Consider the consensus filter and let 
1

ˆ ˆ ˆ( )
2

TV e e e= .  Let ∆  and ∆  denote the 

maximum and minimum out-degree of any node in the communication graph.  If  
| |

ˆ|| || || |
1

N
e e

− ∆>
+ ∆

 

then ˆ( ) 0V e ≤
�

.  If  

| |
ˆ|| || || ||

3(1 )

N
e e

− ∆≤
+ ∆

 

Then ˆ( ) 0V e ≥
�

. 
 
We can now establish the cohesion of the swarm under consensus by examining the 
regions identified in lemmas 1-3.  This examination allows us to identify a compact 
region that is an attracting invariant set of the system.    This result is stated in the 
following proposition. 
 
Proposition:  Consider the interconnected system and assume there exist β  and β  such 

that 
|| || || || || ||i j

i j

e x x eβ β≤ − ≤� �  

Let        

0

0

0

0

( 1)
ˆ( , ) :|| ||

( 1)
ˆ( , ) :|| ||

| |
ˆ ˆ( , ) :|| || || ||

1

| |
ˆ ˆ( , ) :|| || || ||

3(1 )

s

s

c

c

N N
e e e

N N
e e e

N
e e e e

N
e e e e

ρ
βα

ρ
βα

−

+

−

+

� �−Ω = ≥� �
� �

� �−� �Ω = <� �
� �� �

� �− ∆Ω = ≥� �+ ∆� �

� �− ∆Ω = <� �+ ∆� �
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For any initial state ˆ( (0), (0))e e , the set  

( ) ( ) ( ) ( )c c c c
s s c c
+ − + −Ω = Ω ∩ Ω ∩ Ω ∩ Ω  

is an attracting invariant set. 
 
Proof:  The proof of this result follows immediately from the regions shown in figure 2B.  
This figure plots the 4 regions identified above and shows that the intersection of their 
complements is a compact set, Ω.   
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A Matlab simulation was written to simulate the system equations in equations. 
This simulation was performed with 20 agents in which the repulsion coefficient ρ0 and 
the attraction coefficient, α0 were both equal to one.  The communication graph was 
specified at time 0 and that graph was kept static over the length of the run.  This 
simulation's communication graph had a maximum connectivity of about 15∆ = .  The 
swarm was attempting to intercept a target that started at (0,150) and moved with a 
constant velocity of (-10,-10).  The swarm was initialized to be uniformly distributed 
over a rectangular region with side length 30 centered at the (15,15).  The simulation was 
run for 100 time steps with a step size of T=0.02.    
 
Figures 3B  is similar to the plot shown in figure 2B.  In this figure, however, not only do 
we plot Ω, but we show the final swarm and consensus errors achieved by the simulation.  
This final error vector is shown by the blue circle.  The region Ω is marked by the dark 
black quadrilateral   The four plots in figure 3B  show these regions and simulation data 
assuming α0=2 and with ρ0 ranging from0.5 to 2.0.   In viewing the plots, we want to see 
the experimental prediction lie within the set Ω .  This happens in most cases with the 
simulation result usually resting at the far lefthand side of the set.  Simulation results 
were outside of Ω when the simulation was run for too short a time, or else the 
integration step-size might have been too large to ensure simulation accuracy. 
 

ê  

e  

 ( )s
+∂ Ω  

 ( )c
−∂ Ω  

ρ0 = 1, α0 = 2, N=20, ∆ = 15 

 ( )c
+∂ Ω  

 Ω  

 ( )s
−∂ Ω  

Figure 2B 
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 Per fect Consensus:   The consensus filter generates estimates of the swarm center 
which are then used by agents to guide the swarm to the target.  The analytical bounds 
and simulation results presented above indicate that using the consensus filter, the best 
we can hope for is  ε-consensus where the size of ε is given in preceding proposition.  
Obviously what we'd like to do is identify conditions under which we might drive ε to 
zero and thereby achieve  perfect consensus. 
    
One obvious way of achieving perfect consensus is through the introduction of integral 
action in the consensus filter equation.  The state equations for the consensus filter with 
integral action are shown below, 

ˆ ˆ

ˆ

d
e Ae Be KIz

dt
d

Ae
dt

= + +

=
 

where z is the integrated error, K is an integrator gain and I is an Nn by Nn identity 
matrix.   
 
To see how integral action achieves perfect consensus, let’s first consider vectors ˆsse  and 

zss such that 
0

ˆ0
ss

ss

Be KIz

Ae

= +
=
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Figure 3B 
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The augmented system equations may now be rewritten in matrix form as 
ˆ ˆ

0 0

e A KI e Bd
e

z A zdt

� � � � � � � �
= +� � � � � � � �

� � � � � � � �
 

In the preceding equations, it should be apparent that ˆsse  and zss are equilibrium points of 

the unforced system (i.e. e=0).  Inserting ˆsse  and zss into the above equation we see that 

1
ssz Be

K
=  and ˆ0 ssAe= .  From our earlier work, we know that A is of full rank which 

means that ˆ 0sse = .  Since this is the steady stte consensus error, we see the addition of 

integral action should enable perfect consensus. 
 
  A Matlab script was written to simulate swarming under consensus with integral action.  
In this particular simulation, we set K = 20 with α0=1, ρ0=2, N=20, and 
 ∆=15.  Figure 4B plots the swarm position error, the consensus error, and the integrator 
vector z  as a function of time.  The plots show that the consensus error clearly converges 
to zero for all agents.   
 

0 20 40 60 80 100 120
-20

0

20

0 20 40 60 80 100 120
-20

0

20

0 20 40 60 80 100 120
-5

0

5

 
time 

time 

time 

swarm error, e(t) 

ˆconsensus error, ( )e t  

integrator variable, z(t) 

Figure 4B 
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Appendix C – Multi-agent Robotic Testbed 
 
This paper provides preliminary documentation of a wireless autonomous robotic testbed.  
The system consists of 3 Koala (K-team Inc.) robots that are controlled by the MICA2 
(Crossbow Inc.) wireless processor module.   This testbed is being used to experimental 
test the swarming under consensus algorithms being developed by this project. 
 
MICA-KoalaBot Hardware:  The Koala robot is an autonomous wheeled vehicle that 
has 16 infrared (IR) proximity sensors around its perimeter.  The robot’s position is 
determined from encoders on the wheels.  Basic motion commands and sensor commands 
are issued as ASCII strings to the robot over a RS-232 serial port.   The Koala robot was 
augmented with a MICA2 processor.  The MICA2 processor module is an embedded 
sensor node consisting of an 8-bit microprocessor and a Chipcon 1000 embedded radio.  
The MICA2 was connected to the Koala robot’s serial port  using Crossbow’s MIB500 
serial interface board.    The MICA-KoalaBot is shown below. 
 
 

 
Commands are issued to the robot over its serial I/F.  The basic motor and sensor 
commands for this robot are listed below.  

• D,x,y-set speed of right and left wheels to x and y, respectively.  
• E-get wheel speed  
• G,x,y-set wheel encoder counters (right/left)  
• H-get wheel encoder counter values.  
• N-get proximity sensor measurements  

 After receiving the command, the robot responds with an ASCII string that contains 
acknowledgement of the commands receipt and any data.  For instance, if the MICA2 
issues the command N, it is requesting the sensor data.  A reply from the robot might take 
the form n,21,13,14,15,16,20,255,233,250,120,34,23,24,25,45,50 which is the echoed 
lower case command letter followed by the 16 sensor measurements using commas as 
token separators.  

MICA-KoalaBot Middleware:   The MICA-KoalaBot is programmed using TinyOS. 
TinyOS is a object-oriented operating system developed at U.C. Berkeley to support the 
development of embedded sensor networks. TinyOS programs consist of software objects 
(components) that communicate with each other through well-defined signal interfaces. 
All computation within the system is in response to some received signal that may be 

Mica2 

Serial I/F 
Borad 

Radio Antenna 
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generated from the external environment (such as a sensor signal), from the processor 
hardware (i.e. a clock or radio), or from other TinyOS components. The MICA-KoalaBot 
software can therefore be viewed as a set of interconnected TinyOS components that 
encapsulate various tasks ranging from low-level control of the UART connection 
between the MICA2 and Koala to high-level updating of the vehicle's physical state. The 
major TinyOS components developed for the robot were  

• Planner  - high-level planning of basic robot commands  
• BasicBehavior  - implementation of raw robot commands  
• KoalaCmd - translation of raw robot commands to ASCII string  
• KoalaBase - sends and catches ASCII strings from robot  
• Sync - clock synchronization  
• Low Level - low level components controlling MICA2 hardware  

 
These components are arranged in three layers as shown below.  The highest layer 
control robot command functions, the second layer translates the commands into 
ASCII strings that are sent to the UART. The lowest level consists of the basic 
TinyOS components that control the MICA2 hardware. 
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Swarming under Consensus:  The “swarming under consensus”  algorithms have been 
implemented in the KoalaBot middleware.  Swarming dynamics have been implemented 
as an obstacle avoidance strategy in the BasicBehavior component.  These dynamics 
simply have the robot stop when it detects an obstacle in front of it.  The consensus filter 
has been implemented in the PathPlanner component.   
 
The consensus filter estimates the swarm’s center.  One important issue with regard to the 
implementation concerns the amount of network traffic.  In order to reduce network 
traffic, a robot broadcasts its consensus state and true physical state only when it decides 
to change its direction.  In other words, this platform implements an asynchronous 
version of the traditional consensus filter.  In order to assure that all nodes have 
consistent estimates of the swarm’s center, we use a fine-grained clock synchronization 
algorithm based on components originally developed at UCLA to assure that events can 
be time stamped to a 1 msec jitter.  Each vehicle, then maintains an internal estimator of 
its neighbor’s state that runs in a synchronous fashion.  In this way, we can force our 
asynchronous consensus filter to appear as if it were operating in a synchronous manner. 
 
The following picture shows the output of a java GUI that was written to control and 
monitor the swarm’s operation.  The java GUI runs on a desktop system that is listening 
to network traffic using a MICA2  running the GenericBase application.   The menu on 
the bar has several text fields that are used to address and format commands that can be 
transmitted to the nodes.  The application listens into network traffic which consists 
primarily of messages declaring the robot’s current physical and consensus state.  The 
righthand picture is a photograph of the actual robot positions.  The lefthand picture 
shows the corresponding positions in the java GUI.  The robots are represented by blue 
squares with a bar to indicate the front of the vehicle.  The consensus state is shown by 
the small blue dots in the figure.   In this case, we see that one of the robot’s consensus 
state has indeed converged to the true center of the swarm.   
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