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Variable Step-Size Selection Methods for

Implicit Integration Schemes

Raymond Holsapple, Ram Iyer

Dept. of Mathematics and Statistics, Texas Tech University, Lubbock, TX 79409

David Doman

USAF Research Laboratory, Wright-Patterson Air Force Base, OH 45433

Abstract

Implicit integration schemes, such as Runge-Kutta and Runge-Kutta-Nyström meth-

ods, are widely used in mathematics and engineering to numerically solve ordinary

differential equations. Every integration method requires one to choose a step-size,

h, for the integration. If h is too large or too small the efficiency of an implicit scheme

is relatively low. As every implicit integration scheme has a global error inherent

to the scheme, we choose the total number of computations in order to achieve

a prescribed global error as a measure of efficiency of the integration scheme. In

this paper, we propose the idea of choosing h by minimizing an efficiency function

for general Runge-Kutta and Runge-Kutta-Nyström integration routines. This effi-

ciency function is the critical component in making these methods variable step-size

methods. We also investigate solving the intermediate stage values of these routines

using both Newton’s method and Picard iteration. We then show the efficacy of this

approach on some standard problems found in the literature.

Key words: Runge-Kutta, Runge-Kutta-Nyström, numerical integration, variable
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step-size, implicit integration schemes

1 Introduction

Recently, there has been interest in the literature concerning the use of geo-

metric integration methods, which are numerical methods that preserve some

geometric quantities. For example, the symplectic area of a Hamiltonian sys-

tem is one such concern in recent literature [1–4]. Tan [5] explores this concept

using implicit Runge-Kutta integrators. Hamiltonian systems are of particular

interest in applied mathematics, and in fact we test our variable step-size selec-

tion method on a well-known Hamiltonian system in Section 4.2. Furthermore,

Hairer and Wanner [6,7] showed that although implicit Runge-Kutta methods

can be difficult to implement, they possess the strongest stability properties.

These properties include A-stability and A-contractivity (algebraic stability).

These are the main reasons we choose to investigate variable integration step-

size selection using Runge-Kutta methods.

First order ordinary differential equations are solved numerically using many

different integration routines. Among the most popular methods are Runge-

Kutta methods, multistep methods and extrapolation methods. Hull, Enright,

Fellen and Sedgwick [8] have written an excellent comparison of these types

of methods. They test a number of Runge-Kutta methods against multistep

methods based on Adams formulas and an extrapolation method due to Bu-

lirsch and Stoer [9]. A goal of that paper was to compare these different types

Email addresses: raymond.w.holsapple@ttu.edu (Raymond Holsapple),

ram.iyer@ttu.edu (Ram Iyer), david.doman@wpafb.af.mil (David Doman).
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of methods as to how they handle routine integration steps under a variety

of accuracy requirements. Implicit or explicit integration methods require one

to choose a step-size, h, for the integration. One of the questions Bulirsch

and Stoer investigate is a strategy for deciding what step-size h to use as the

methods progress from one step to another. Others have investigated this very

same problem in the past [8,10–12].

In this paper, we propose the idea of choosing variable step-sizes by minimiz-

ing an efficiency function for general Runge-Kutta and Runge-Kutta-Nyström

integration routines. As every implicit integration scheme has a global error

inherent to the scheme, we choose the total number of computations in order

to achieve a prescribed global error as a measure of efficiency of the integra-

tion scheme. For illustration purposes, consider Figure 1.0.1, referring to the

solution of (2). Let x̃(tk) be our approximation to x(tk). We determine the

variable step-sizes h1, h2, . . . , h8, where hk = tk− tk−1, so that we minimize an

efficiency function that minimizes the sum of the total number of computa-

tions to compute x̃(tk) for k = 1, 2, . . . , 8 and the global error that propagates

from the local truncation errors at each step of integration. An alternate and

perhaps simple way of understanding our method is that we choose hL‖A‖,
where L is a Lipschitz constant for the differential equation and A is a matrix

that describes the integration scheme used to integrate the differential equa-

tion. Of course, in a fixed step-size method one chooses h. To the best of our

knowledge, our proposed method is novel.

In the rest of this section, we briefly describe the approaches found in the

literature. Hull, Enright, Fellen and Sedgwick [8] approach this topic as follows.

First, they determine hmax, which is a measure of the “scale” of a problem. This

helps to allow them from not stepping past any interesting fluctuations in the

3



Fig. 1.0.1. Illustration of variable step-sizes and error propagation in numerical

integration

solution. Then, for their Runge-Kutta methods they compute τ , an estimate

on the local truncation error, which must be bounded by the tolerance, ε.

They then compute

hnew = min
{
hmax, 0.9hold (ε/τ)1/p

}
. (1)

where p is the order of the Runge-Kutta routine being used.

Stoer and Bulirsch [10] arrive at a very similar solution to this problem. To de-

scribe what they do, we first note that throughout this paper, we will consider

solving the following first order ordinary differential equation:

dx

dt
= f(t, x), x(0) = x0 ∈ IRn, (2)

where f : IR× IRn → IRn is Lipschitz continuous in the second argument, i.e.
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for any t ∈ IR and any vectors x ∈ IRn, y ∈ IRn, we have

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, (3)

where L(·) ∈ L∞[0, T ]. Stoer and Bulirsch consider two discretization methods,

Φ1 and Φ2, of Runge-Kutta type to solve (2), the first with order p and the

second with order p + 1, i.e. we have

x̂k+1 = x̄k + holdΦ1(tk, x̄k; hold) (4)

x̄k+1 = x̄k + holdΦ2(tk, x̄k; hold) (5)

Denoting the tolerance by ε, and given a current step-size, hold, they obtain:

hnew = hold

∣∣∣∣∣
ε

x̄k+1 − x̂k+1

∣∣∣∣∣
1/(p+1)

. (6)

Stoer and Bulirsch go on to recommend after extensive numerical experimen-

tation, that equation (6) be altered to

hnew = 0.9hold

∣∣∣∣∣
εhold

x̄k+1 − x̂k+1

∣∣∣∣∣
1/p

. (7)

As one can see, formulas (1),(6) and (7) depend on some measure of the local

error at the (k+1)st step of integration. Stoer and Bulirsch [10] also point out

that there is another way to determine hnew, but it requires one to estimate

higher order derivatives of f . For example, a fourth order Runge-Kutta method

would require one to estimate derivatives of f of the fourth order. Not only is

this very costly, but this other method uses the local truncation error at the

kth step of integration.

Houwen [11] took a similar approach to adjusting step-sizes. Again let ε be

the tolerance. Houwen then forms a discrepance function d(tk, xk; hold) at the

point (tk, xk). Then the new step-size is determined to be the solution of the
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equation

‖d(tk, xk; hold)‖ = ε. (8)

Houwen considers three types of discrepance functions:

(1) an approximation to the local discretization error

(2) the residual term left when the local difference solution is submitted into

the differential equation

(3) the discrepance of linearity of the differential equation

The first two clearly are functions that are some measure of local error of the

difference scheme being used. The discrepance of linearity method is merely

a way to choose hnew such that the Jacobian matrix for non-linear systems

does not change very much,(i.e. within some tolerance ε), over the interval

[tk, tk + hnew]. This method also deals with some measure of local stability of

the differential equation.

Cano and Duran [12] investigate variable step-size selection using linear mul-

tistep methods. Again consider equation (2). Given a tolerance ε, they let

hn = εs(x(tn), ε) +O(εp), (9)

where p is the order of the method and s is function satisfying the following:

(1) smin ≤ s(x, ε) ≤ smax, with smin, smax > 0,

(2) s is C∞ in both arguments and all the derivatives of s are bounded.
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2 Implicit Integration Methods

Numerical methods for solving initial value problems such as (2) may be either

explicit or implicit. The focus of this paper is concentrated on using implicit

methods. In this section, we describe two classes of implicit numerical inte-

gration schemes and how one might use the methods to solve (2). We assume

the solution exists for t ∈ [0, T ], with T > 0.

2.1 Runge-Kutta Methods

A detailed description of a general s-stage Runge-Kutta method for the so-

lution of (2) can be found in many publications [1,3,13]. The general method

for a fixed step-size, h, is described below:

yik = xk + h
s∑

j=1

aijf(tk + cjh, yjk
), i = 1, ..., s, (10)

xk+1 = xk + h
s∑

i=1

bif(tk + cih, yik), x0 = x(0). (11)

In the above equations, the yik are stage-values that must be computed at

every step of the integration, and xk approximates the exact solution x(tk) at

the point tk = kh, where h is the fixed step-size of integration. The aij and bi

are unique to any particular Runge-Kutta scheme and the ci satisfy

ci =
s∑

j=1

aij , i = 1, . . . , s (12)

7



For notational purposes, define the following:

A =




a11 a12 · · · a1s

a21 a22 · · · a2s

...
...

. . .
...

as1 as2 · · · ass




, Yk =




y1k

y2k

...

ysk




, c =




c1

c2

...

cs




, Xk =




xk

xk

...

xk




, Ā = A⊗ I

(13)

where I is the n × n identity matrix and ⊗ is the Kronecker product. In

other words, Ā is the ns×ns matrix direct product of A and I. Furthermore,

consider the function f̃ : IR× IRns → IRns defined by

f̃(tk, Yk) =




f(tk + c1h, y1k
)

f(tk + c2h, y2k
)

...

f(tk + csh, ysk
)




. (14)

Now we can write the system of ns equations given in equation (10) as

Yk = Xk + hĀf̃(tk, Yk). (15)

For each k this is an implicit equation involving the vectors {yik}s
i=1. Equation

(15) can be solved using Newton’s method or fixed point iteration (Picard

iteration). Let’s consider Picard iteration. We solve (15) for each k using the

following iterative scheme:

Y j+1
k = Xk + hĀf̃

(
tk, Y

j
k

)
= F

(
tk, Y

j
k

)
. (16)

For any fixed k, the iterative scheme given in (16) will converge to the solution
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of (15) provided that F satisfies a favorable condition. The following theorem

addresses this convergence.

Theorem 2.1 Consider the iterative scheme given by (16). Let L(t) be the

function from (3), and let A be the s× s matrix from (13). If hL(tk)‖A‖ < 1

then there exists a unique vector Y ∈ IRns such that F (tk, Y ) = Y for any

point tk ∈ [0, T ] that is fixed. Furthermore, the sequence Y j+1
k = F (tk, Y

j
k )

converges linearly to Y .

Proof. First, let us refer to a very useful result concerning the norms of

Kronecker products. According to Van Loan [14], we get

∥∥∥Ā
∥∥∥ = ‖A⊗ I‖ = ‖A‖ · ‖I‖ = ‖A‖ . (17)

Next, we show that F is Lipschitz continuous in the second argument with

Lipschitz constant hL(tk)‖A‖. We will begin by finding the Lipschitz constant

of the function f̃ . Choose any tk ∈ [0, T ] and any vectors u and v in IRns where

u = [(u1)
T (u2)

T · · · (us)
T ]T and ui ∈ IRn for i = 1, . . . , s. Similarly form

the vector v.

∥∥∥f̃(tk, u)− f̃(tk, v)
∥∥∥ =

∥∥∥∥
[
(f(tk, u1)− f(tk, v1))

T · · · (f(tk, us)− f(tk, vs))
T
]T

∥∥∥∥

≤L(tk)
∥∥∥∥
[
(u1 − v1)

T · · · (us − vs)
T
]T

∥∥∥∥ (18)

= L(tk)
∥∥∥∥
[
(u1)

T · · · (us)
T
]T −

[
(v1)

T · · · (vs)
T
]T

∥∥∥∥ (19)

= L(tk) ‖u− v‖ (20)

Now we may compute the Lipschitz constant of F . Again, choose any tk ∈
[0, T ] and any vectors u, v ∈ IRns.

9



‖F (tk, u)− F (tk, v)‖=
∥∥∥Xk + hĀf̃(tk, u)−Xk − hĀf̃(tk, v)

∥∥∥ (21)

= h
∥∥∥Ā

(
f̃(tk, u)− f̃(tk, v)

)∥∥∥ (22)

≤h
∥∥∥Ā

∥∥∥
∥∥∥f̃(tk, u)− f̃(tk, v)

∥∥∥ (23)

≤hL(tk)
∥∥∥Ā

∥∥∥ ‖u− v‖ (24)

= hL(tk) ‖A‖ ‖u− v‖ . (25)

This shows that F is Lipschitz continuous in the second argument with Lip-

schitz constant hL(tk)‖A‖. Since hL(tk)‖A‖ < 1, we may apply the Contrac-

tive Mapping Theorem to F , [15]. Hence, there exists a unique point Y ∈ IRns

such that F (tk, Y ) = Y for any point tk ∈ IR that is fixed. The theorem also

ensures that Y must be the limit of every sequence obtained from (16) with a

starting point Y 0
k ∈ IRns. 2

Theorem 2.1 suggests how one might implement equations (11) and (16) to

solve (2) on [0, T ]. The starting vector x0 ∈ IRn is known. In general, assume

xk is known. Use the following procedure to compute xk+1.

(1) Choose a tolerance ε > 0 as small as you wish.

(2) Choose a starting guess for the s stage-values, and denote this guess as

Y 0
k .

(3) For j = 0, 1, 2, ..., compute the following:

(a) Y j+1
k = F

(
tk, Y

j
k

)

(b) δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥.

(4) If δ ≤ ε, let Yk = Y j+1
k .

(5) Use the s n× 1 stage-value vectors determined in step four to explicitly

compute xk+1.

The method described above is known as Picard iteration; Newton’s method

might also be used to solve for the stage-values. A theorem on the convergence

10



of Newton’s method is more complicated than Theorem 2.1; it is not sufficient

to assume hL(tk)‖A‖ < 1 in order to guarantee that Newton’s method con-

verges. The Newton-Kantorovich Theorem [10,16,17] provides sufficient condi-

tions for existence of a solution to the iteration and the uniqueness of that so-

lution. To solve for the stage-values using Newton’s method, step three should

be replaced by the following:

(3) Define G(tk, Yk) = F (tk, Yk) − Yk, and for j = 0, 1, 2, ..., compute the

following:

(a) Y j+1
k = Y j

k −
(
DG

(
tk, Y

j
k

)−1
)

G
(
tk, Y

j
k

)

(b) δ =
∥∥∥G

(
tk, Y

j+1
k

)∥∥∥

where DG represents the Jacobian matrix of G.

2.2 Runge-Kutta-Nyström Methods

Runge-Kutta-Nyström (RKN) methods are similar to Runge-Kutta methods,

but are designed to solve second-order systems. Consider the following system:

d2x

dt2
= f(t, x), x(0) = x0 ∈ IRn, ẋ(0) = v0 ∈ IRn, (26)

which can be written as

dv

dt
= f(t, x);

dx

dt
= v, x(0) = x0, v(0) = v0. (27)

We assume a solution exists on [0, T ] for T > 0. A general s-stage RKN method

may be used to solve (27) on [0, T ], and is described by J.M. Sanz-Serna and

M.P. Calvo [3] as follows:
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yik = xk + hγivk + h2
s∑

j=1

aijf(tk + γjh, yjk
), i = 1, ..., s (28)

vk+1 = vk + h
s∑

i=1

bif(tk + γih, yik) (29)

xk+1 = xk + hvk + h2
s∑

i=1

βif(tk + γih, yik). (30)

Exactly as with the Runge-Kutta methods, the yik are the stage-values and

must be solved for implicitly. In addition to the definitions in (13), define

Γ =




γ1 0 · · · 0

0 γ2
. . .

...

...
. . . . . . 0

0 · · · 0 γs




, Vk =




vk

vk

...

vk




, Γ = Γ⊗ I, (31)

where I is the n × n identity matrix. Now, the ns equations in (28) may be

written as

Yk = Xk + hΓVk + h2Āf̃(tk, Yk). (32)

Again, we have an implicit equation for the s stage-value vectors {yik}s
i=1 ⊂

IRn.

Just as in Section 2.1, we may solve (32) using Newton’s method or by using

Picard iteration. If we use Picard iteration, we have the following iterative

scheme:

Y j+1
k = Xk + hΓVk + h2Āf̃(tk, Y

j
k ) = H(tk, Y

j
k ). (33)

Similar to the proof of Theorem 2.1, one can easily prove the following theorem.

Theorem 2.2 Consider the iterative scheme given by (33). Let L(t) be the

function from (3), and let A be the s× s matrix from (13). If h2L(tk)‖A‖ < 1

12



then there exists a unique vector Y ∈ IRns such that H(tk, Y ) = Y for any

point tk ∈ [0, T ] that is fixed. Furthermore, the sequence Y j+1
k = H(tk, Y

j
k )

converges linearly to Y .

Proof. See the proof of Theorem 2.1. 2

If we choose to use Newton’s method to solve (32) for the stage-values, it

is not sufficient to assume h2L(tk)‖A‖ < 1. Once again, we may refer to

Stoer and Bulirsch [10] for conditions that guarantee convergence of Newton’s

method.

3 Step-Size Selection

When implementing a Runge-Kutta (or Runge-Kutta-Nyström) numerical in-

tegration routine, we have shown it is sufficient to assume that hL(tk)‖A‖ < 1

(or h2L(tk)‖A‖ < 1) to guarantee convergence of the implicit scheme when

using a Picard iteration. One might wonder though, is there an optimal choice,

in the sense of computational efficiency, for h? If so, how might it be found?

3.1 Optimization Using Picard Iteration

Consider solving (2) numerically on the interval [0, T ] which is partitioned by

the following sequence of points: {kh}K
k=0. In the k-th sub-interval the conver-

gence of the Picard iteration is linear, so the number of computations required

for convergence, to within ε, to the fixed point of (16) can be written as a func-

tion of the Lipschitz constant of the function F : Nk = φ (hL(tk)‖A‖) . Then

the total number of computations over the interval [0, T ] can be written as

13



N(h) =
∑K

k=1 Nk. In the following, we find an explicit expression for φ(·) for

Runge-Kutta methods. Consider the following inequalities:

∥∥∥Y j+1
k − Y j

k

∥∥∥ =
∥∥∥F (tk, Y

j
k )− F (tk, Y

j−1
k )

∥∥∥ (34)

≤hL(tk)‖A‖
∥∥∥Y j

k − Y j−1
k

∥∥∥ (35)

≤ (hL(tk)‖A‖)2
∥∥∥Y j−1

k − Y j−2
k

∥∥∥ (36)

...

≤ (hL(tk)‖A‖)j
∥∥∥Y 1

k − Y 0
k

∥∥∥ (37)

= Ck (hL(tk)‖A‖)j , (38)

where Ck = ‖Y 1
k − Y 0

k ‖ is fixed for each k and depends on the guess Y 0
k . Since

hL(tk)‖A‖ < 1, we must have
∥∥∥Y j+1

k − Y j
k

∥∥∥ → 0 as j →∞. Suppose we want

δ =
∥∥∥Y j+1

k − Y j
k

∥∥∥ ≤ ε; then, it is sufficient to have Ck (hL(tk)‖A‖)j ≤ ε. As a

stopping criterion in the k-th step of integration, we choose to stop the fixed

point iteration at the smallest natural number Nk greater than or equal to M

where M satisfies Ck (hL(tk)‖A‖)M = ε. Then we have

M =
ln (ε/Ck)

ln (hL(tk)‖A‖) (39)

Nk = dM e (40)

Now let C = max
k

Ck and L = sup
t∈[0,T ]

L(t). In (39), ε and Ck depend on the user.

Once these are chosen, the choice of h depends on the differential equation

being solved, through the Lipschitz constant L(tk), and on the integration

method being implemented, through ‖A‖. We will try to minimize M by

adjusting the choice of h to the problem parameters L(tk) and ‖A‖. Notice

that C(hL‖A‖)M = ε implies that Ck(hL(tk)‖A‖)M ≤ ε for each k. Thus, we

minimize the cost function

14



J1(h) = K
ln (ε/C)

ln
(
hL‖A‖

) (41)

=
T ln (ε/C)

h ln
(
hL‖A‖

) . (42)

This is the same as maximizing the cost function

J2(h) =
h ln

(
hL‖A‖

)

T ln (ε/C)
. (43)

By computing arg min J2(h), one finds the step-size h that minimizes the num-

ber of computations for the iterative scheme to converge. If this were the only

measure of optimality of concern, it is easily shown, through a calculus argu-

ment, that the cost function J2(h) is maximized when

h =
1

eL‖A‖ . (44)

However, one might also want the global error of the numerical solution to be

as small as possible. Global error in any numerical integration scheme depends

on the scheme being used. In this paper, we are concentrating on Runge-Kutta

schemes. The global error for Runge-Kutta schemes also varies depending on

the scheme one chooses to implement. For the purpose of explanation, let us

consider the implicit midpoint rule. The implicit midpoint rule is a one-stage

Runge-Kutta method where a11 = 1
2

and b1 = 1 in (10) and (11). The implicit

midpoint method has global error O(Th2). Then to find h, we alter the cost

function J2 and maximize the following cost function:

J3(h) =
h ln(hL‖A‖)
T ln(ε/C)

− κTh2, (45)

where κ is a number to be chosen. First we compute

dJ3

dh
=

ln(hL‖A‖) + 1

T ln(ε/C)
− 2κTh (46)
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and

d2J3

dh2
=

1

Th ln(ε/C)
− 2κT. (47)

In order to find max
h

J3(h), we must find the h > 0 that solves

ln(hL‖A‖) + 1

T ln(ε/C)
− 2κTh = 0 (48)

such that

1

Th ln(ε/C)
− 2κT < 0. (49)

We must have T and h positive, and for a numerical solution to be meaning-

ful, certainly ε must be very small and in general much less than C. Thus,

ln(ε/C) < 0. We then require κ ≥ 0 to ensure that the second derivative of J3

is negative, which guarantees that the solution to (48) is indeed a maximum.

Now let

κ = −λ2 L‖A‖
2T 2 ln(ε/C)

, (50)

where λ is a free parameter that weights the optimization toward efficiency

in time or toward global error. A better understanding of how λ affects the

variable step-size selection process can best be explained by studying Table

4.1.2 and Table 4.2.2. By substituting this κ into (48), we find that we must

solve

ln(hL‖A‖) + 1 + λ2hL‖A‖ = 0 (51)

for h given an arbitrary value for λ. In practice, we actually make the substi-

tution x = hL‖A‖ and solve

ln x + 1 + λ2x = 0 (52)

for x. We then compute h =
x

L‖A‖ . The solution to this equation exists and is

unique. This is because the h that solves (51) is the unique global maximum

of the function J3, which exists because of the concavity of J3. Furthermore,
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(51) must be solved numerically for λ 6= 0; for example, Newton’s method or

Picard iteration may be used. For λ = 0, notice that the solution is h =
1

eL‖A‖
which was discussed earlier.

If one is interested in finding an equation similar to (51) for a Runge-Kutta

method other than the implicit midpoint method, two things change in (45).

First, ‖A‖ will certainly change when the method changes. It will be necessary

to change the second term as well. Suppose the method chosen has global error

O(Thr). Then, (45) becomes

J̃3(h) =
h ln(hL‖A‖)
T ln(ε/C)

− κThr. (53)

Now we define

κ = −λ2 (L‖A‖)r−1

2T 2 ln(ε/C)
, (54)

and discover that we must now solve

ln x + 1 + λ2xr−1 = 0 (55)

for x after again making the substitution x = hL‖A‖.

3.2 Local Optimization Using Picard Iteration

If one considers the analysis presented in the previous section, an obvious

question might arise. Is it possible to repeat the process while minimizing local

error and local computations instead of global error and total computations?

It turns out that the answer is no.

Instead of minimizing (41), i.e. maximizing (43), if we want to minimize the

17



total number of computations locally we minimize the cost function

Ĵ1(h) =
ln(ε/C)

ln
(
hL‖A‖

) . (56)

Equivalently, we can maximize

Ĵ2(h) =
ln

(
hL‖A‖

)

ln(ε/C)
. (57)

We also want to consider the local truncation error. Just as in the previous

section, we choose the implicit midpoint method for explanation purposes.

The local truncation error for this method is O(h3). Thus, similar to (45), we

want to maximize the cost function

Ĵ3(h) =
ln

(
hL‖A‖

)

ln(ε/C)
− κh3 . (58)

First, we compute

dĴ3

dh
=

1

h ln(ε/C)
− 3κh2 (59)

and set it equal to zero. After doing so and rearranging, we get

h3 =
1

3κ ln(ε/C)
. (60)

Since ε ¿ C in general, (e.g. in our implementations we choose ε = 10−10), it

will certainly be the case that ln(ε/C) < 0. Thus, (60) would imply that it is

necessary to have κ < 0, since it must be that h > 0.

Next, we compute

d2Ĵ3

dh2
=

−1

h2 ln(ε/C)
− 6κh. (61)

Since we are trying to maximize (58), we need
d2Ĵ3

dh2
< 0. However, if we

consider each term in (61), we can easily see that this is impossible. Since

ln(ε/C) < 0, it must be that
−1

h2 ln(ε/C)
> 0. Since we have determined
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that we must have κ < 0, it must also be that −6κh > 0. Hence, the second

derivative would imply that the function we are optimizing is actually concave

up and has no local (or absolute) maximum for h > 0.

The analysis above shows that this method of choosing variable step-sizes

(minimization of a particular efficiency function) fails if one considers local

truncation error and local computations for the efficiency function. Although,

there certainly are ways of choosing h based on local truncation errors as we

described in the Introduction, we simply cannot use local error and computa-

tions when using the methods presented in this paper.

3.3 Lipschitz Constant Unknown

For most initial value problems the Lipschitz constant of f is not easily acces-

sible. In this case, an approach that is slightly different than that of Section

3.1 is taken to optimize h. The idea in this case is to linearize the function f

at each step of integration by computing the Jacobian of f . We essentially find

an optimal h at each step of the integration using the analysis from Section

3.1. The method is described in detail below:

(1) Choose a value for the parameter λ. (A method for choosing λ will be

given in Section 4.1.)

(2) Solve equation (52) for x once.

(3) At t = 0, let L = ‖Df‖, where Df is the Jacobian matrix of f, and

compute h =
x

L‖A‖ .

(4) Perform one step of integration using the implicit midpoint rule.

(5) Recompute L using the new values of the state variables, and use this L
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to find a new optimal h.

(6) Repeat steps four and five until the integration reaches t = T.

3.4 Optimization Using Newton’s Method

We mentioned in Section 2.1 that one might also use Newton’s method to solve

for the stage values Yk. Because of this, the analysis for finding an optimal

value of h can be repeated for Newton’s method. Convergence properties, and

hence convergence theorems, are more complicated for Newton’s method than

for fixed point iteration. Because of this, one might expect the analysis to be

a bit more involved than that of equations (34)-(51).

Before we begin looking at the optimization process for Newton’s method, let

us first consider the following Lemma.

Lemma 3.1 If R is an invertible n× n matrix, then

∥∥∥R−1
∥∥∥ ≤ ‖R‖n−1

|det R| . (62)

Proof. Let λi

(
RT R

)
denote the i-th eigenvalue of RT R. Since RT R > 0, we

have λi

(
RT R

)
> 0 for i = 1, . . . , n and

(
RT R

)−1
> 0. Now using a well-known

property of matrices and the Rayleigh-Ritz inequality, we get the following:
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∥∥∥R−1
∥∥∥
2
= λmax

((
RT R

)−1
)

(63)

=
1

λmin (RT R)
(64)

=

∏n
i=1 λi

(
RT R

)

λmin (RT R) · det (RT R)
(65)

≤
[
λmax

(
RT R

)]n−1

(det R)2 (66)

=
‖R‖2(n−1)

(det R)2 (67)

=

(‖R‖n−1

det R

)2

. (68)

Taking square roots on both sides of the above inequality yields the desired

result. 2

Again, we consider solving (2) numerically on the interval [0, T ] which is par-

titioned by the following sequence of points: {kh}K
k=0. Stoer and Bulirsch [10]

prove a theorem showing that Newton’s method is quadratically convergent.

We will find an optimal choice of h using the results of that theorem. We begin

by defining

ρk =
αkβkγ

2
, (69)

where αk, βk and γ are described below. First we let C be a convex subset of

IRns and mention that the theorem from [10] and the analysis below is valid

only in a neighborhood, Sr (Y 0
k ), of the initial guess Y 0

k such that Sr (Y 0
k ) ⊂ C.

We then let
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αk =
∥∥∥Y 1

k − Y 0
k

∥∥∥ , k = 1, . . . , K (70)

βk = sup
Y ∈C

‖DG (tk−1, Y )‖ns−1

|det DG (tk−1, Y )| , k = 1, . . . , K (71)

γ = hL‖A‖, (72)

where L is a constant that satisfies

∥∥∥Df̃(t, u)−Df̃(t, v)
∥∥∥ ≤ L‖u− v‖, (73)

for any vectors u and v in IRns. Note that this analysis holds whether the

Lipschitz constant of Df̃ , L, is given from the beginning or if it is approximated

similarly to what was done in the previous section; we shall only require that

L be a known constant at the k-th step of integration.

It should also be noted that in practice, i.e. in the example we show later, αk

and βk will not depend on k. For implementation purposes, we elect to choose

Y 0
k to be the same vector for all k. Hence, αk will be the same for each k. In

general, this is not necessary; that is why we define α below for convenience of

analysis. Actually, βk must satisfy
∥∥∥DG (tk−1, Y )−1

∥∥∥ ≤ βk for all Y ∈ C. We

then apply Lemma 3.1 to arrive at the definition given by equation (71). Now,

βk depends on the step-size through the Jacobian matrix of G, i.e. through

DG. Since this is a variable step-size method, this implies that βk should

be computed at each step of the integration using the current step-size. We

quickly found that computing βk at each step of the integration makes the

process computationally inefficient. Instead, we approximate β = max
k

βk

before solving a particular example by first solving the system on a much

smaller time interval. As we solve the problem, we keep track of the current

values of βk and keep the largest value to use as a global constant to solve the

entire example. Putting all this together and using the theorem from Stoer
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and Bulirsch, we know that for k fixed, the iterations of Newton’s method

must satisfy

∥∥∥Y j+1
k − Y j

k

∥∥∥ ≤ αkρ
2j−1
k ≤ αρ2j−1

k , (74)

where α = max
k

αk.

Furthermore, we must assume (as do Stoer and Bulirsch) that ρk < 1. Then

for each k, it is sufficient to stop iterating Newton’s method at the smallest

natural number Nk greater than or equal to M, where M satisfies αρ2M−1
k = ε.

Solving for M , we get

M = log2

(
ln(ρkεα

−1)

ln ρ

)
. (75)

Again, we choose Nk = dMe. Also, we are showing the analysis for the im-

plicit midpoint method which has global error O(Th2). Thus, we minimize the

following cost function:

J4(ρ) =
TαβL‖A‖

2ρk

log2

(
ln(ρkεα

−1)

ln ρ

)
+

4κTρ2
k

(αβL‖A‖)2
. (76)

We now define

κ = λ2 (αβL‖A‖)3

16 ln 2
. (77)

Then, after using a little calculus similar to equations (45)-(49), we find the

optimal h by first finding the ρk that solves

(
ln(ρkεα

−1)
)−1 − (ln ρk)

−1 − (ln 2) log2

(
ln(ρkεα

−1)

ln ρk

)
+ λ2ρ3

k = 0, (78)

and then computing

hk+1 =
2ρk

αβL‖A‖ . (79)

Because of the complexity of (78), we must solve for ρk numerically.
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4 Examples

In this section we explore this variable step-size selection method for two

problems, the Lotka-Volterra model and the Kepler problem.

4.1 The Lotka-Volterra Model

For this example we consider the Lotka-Volterra model of a simple predator-

prey system from mathematical biology. This particular example is taken from

Hairer, Lubich, and Wanner [1]. Consider the following system:




u̇

v̇




=




u(v − 2)

v(1− u)




= f(u, v); t ∈ [0, 50]. (80)

In (80), u(t) denotes the number of predators present at time t, v(t) represents

the number of prey present at time t, and the constants one and two have been

chosen arbitrarily. This system was integrated numerically using the implicit

midpoint rule. Since the system is non-linear and the Lipschitz constant of the

system as a whole is unknown, we will use the method described in Section

3.3.

This procedure was compared to a fixed step-size integration method with

random step-sizes chosen. Two measures were chosen for comparison. The

first measure, T , was total cpu time (in seconds) for 1000 runs with random

initial data uniformly distributed on [0.1, 10]. The second measure, E, was the

maximum absolute variation of the numerical method from

I(u, v) = ln u− u + 2 ln v − v, (81)
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an invariant quantity for this system. The initial data for the system in this

case was chosen to be [u(0) v(0)]T = [2 6]T .

We found that for simple systems such as (80), the numerical computational

overhead in computing the step-size in the optimal h method renders the

method less useful than a simple fixed step-size method. After trying various

fixed step-sizes, it was determined that for 1000 runs with random initial

data, h = 0.125 was the largest fixed step-size attempted that permitted

convergence. For h = 0.125, T = 118.258 and E = 0.064. For the optimal h

method, various values for λ were tried until a comparable value for E was

found. For instance, for λ = 2 we get E = 0.143; for λ = 3 we get E = 0.068;

and for λ = 4 we get E = 0.037. Since λ = 3 yielded a comparable value of

E, λ = 3 was chosen for 1000 runs with random initial data and it was found

that T = 195.570.

Different results arise when we try more challenging problems. Consider this

variation to the Lotka-Volterra problem:




u̇

v̇




=




u2v(v − 2)

v2u(1− u)




= f(u, v); t ∈ [0, 50]. (82)

This system has has the same invariant as (80), but is very sensitive to random

initial data. For this reason the initial data is fixed at [u(0) v(0)]T = [2 3]T

for the computation of both T and E.

Two methods were chosen to solve for the stage value y1 which is defined

implicitly by (10). The first method is the algorithm of Section 2, which is

simply a Picard iteration. Secondly, we used Newton’s method to compute

the stage value y1. The results from this example are given in Tables 4.1.1
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through 4.1.4 and Figures 4.1.2 and 4.1.3.

To compare the fixed step-size method to the variable step-size method, we

must locate times that are comparable from the tables and then compare

the equivalent error. For example, we first notice that for the fixed step-size

h = 0.1 in Table 4.1.1, the method took 160.701 seconds to solve the problem

using a Picard iteration to solve for y1. The error involved for this step-size

was 0.094. Now we look in Table 4.1.2 and find that when λ = 2, the problem

was solved in 168.412 seconds, which is about eight seconds longer than for

h = 0.1. However, we notice that the error has been reduced to 0.004, which is

about 4% of the error from when h = 0.1. We can locate other instances similar

to this from the two tables. For the fixed step-size h = 0.08, the problem is

solved in 234.427 seconds using Newton’s method to find y1, yielding an error

of 0.069. We compare this to λ = 2 which was solved in 229.851 seconds with

an error of 0.004. In addition, for the fixed step-size h = 0.125 using Newton’s

method to solve for y1, the problem is solved in 155.564 seconds with an error

of 0.084. We compare this to λ = 1 in which the problem is solved in 151.649

seconds with an error of 0.025.

In Table 4.1.2, when we computed the stage value y1 using Newton’s method,

we actually used the variable step-sizes determined by the solution of (52) not

(78). For comparison, we recreated these table on another machine; this time

we use (78) to compute the variable step-sizes when we are solving for the

stage value y1 using Newton’s method. The results are given in Table 4.1.3

and Table 4.1.4. There are a couple of interesting things to point out. First, we

notice that for fixed step-sizes, Newton’s method works faster than the fixed-

point iteration. We must note that the MATLABr code that generated the

data for Tables 4.1.1 through 4.1.4 was exactly the same; the only difference is

26



that Tables 4.1.3 and 4.1.4 contain data from a different version of MATLABr

and ran on a different machine. The main goal of this paper is not to compare

Newton’s method versus Picard iteration as much as it is to compare fixed

step-sizes to variable step-sizes. In this regard, the results shown in Tables

4.1.3 and 4.1.4 agree with those given in Tables 4.1.1 and 4.1.2. For example,

when we use the fixed step-size h = 0.05, the problem is solved in 67.701

seconds with an error of 0.031 when solving for the stage value using a Picard

iteration. Using the variable step-size method with λP = 3.6, we see that the

problem is solved in 67.413 seconds with an error of 0.003, which is about 90%

smaller than the fixed-step size error of 0.031. A similar comparison can be

made with h = 0.125 and λP = 2.

The second interesting thing we notice is evidenced by Table 4.1.4 when we

use (78) to compute the variable step-sizes and solve for the stage value y1

using Newton’s method. We notice that the problem takes longer to solve,

but at the same time the error is much smaller. We cannot compare the fixed

step-size data with the variable step-size data as above because of the large

difference in times. However we can note that when the problem is solved with

λP = 0.4 the problem is solved in 27.097 seconds with an error of 0.087; when

the problem is solved with λN = 10, it takes 115.689 seconds to get the error

down to 0.001130. We can quickly compute that the problem is solved 77%

faster using λP , but the error is 98% lower using λN .

The reason it takes so long to solve the problem using this method is because

of the variable step-sizes determined by solving (78). Consider the plot shown

in Figure 4.1.4. This graph shows how far the integration of the problem has

progressed at each iteration for various values of λP and λN . Essentially, the

graph also shows how large (or how small) of a step-size each method chooses
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as the integration proceeds from one step to the next. In addition, we can

see from the plot that when we use (78) to find the step-size update, the

step-sizes determined are much smaller then when (52) is used; hence, many

more iterations are required to integrate the system from t = 0 to t = 50.

We would also like to mention something about the existence of a solution to

(78). Although, we have not proven that a solution does exist, we can plot the

function for reasonable values of the parameters. For example, consider Figure

4.1.5. Here we plot the function g(ρ) where g is the function given by the left

hand side of (78). This plot uses the following values for the parameters given

in (78): λ = 10, ε = 10−10 and α =
∥∥∥[2 3]T

∥∥∥ . The function appears to be quite

smooth in this region and clearly we see that for these parameters, a solution

to (78) exists.

As one can see from the example above, inherent with this variable step-size

selection method is the choice of the parameter λ. We will use the system given

by equation (82) to explain how one should choose an appropriate value of λ

when integrating a system that evolves over a long period of time. Suppose

we are interested in integrating the system described by (82) over the interval

[0, 500] or [0, 1000]. First, we choose a much smaller value for the final time

of integration; in this example that value is T = 50. We then integrate the

system over the interval [0, 50] with a fixed step-size and at the same time

with various values of λ. Essentially, we analyze how λ affects this system

in particular, just as we did in the above example. After we have integrated

the system over the much smaller time interval, we choose the value of λ that

works best for this system to integrate the system over the entire time interval.

This process should be done for any system where the length of the interval

over which the integration must be performed is quite large when compared
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to the evolution of the dynamics of the system.

All computations, except those that generated Tables 4.1.3 and 4.1.4, were

done in MATLABr version 6.1.0.450 Release 12.1 running in Microsoft Win-

dows XP Professional version 5.1.2600 with an AuthenticAMD processor run-

ning at 1544 Mhz.

4.2 The Kepler Problem

This example, taken from Hairer, Lubich, and Wanner [1], is the well known

example describing planetary motion discovered by J. Kepler. We shall con-

sider the following two-body problem:

q̈1 =− q1

(q2
1 + q2

2)
3/2

(83)

q̈2 =− q2

(q2
1 + q2

2)
3/2

, (84)

with the following initial conditions:

q1(0) = 1− e, q2(0) = 0, q̇1(0) = 0, q̇2(0) =

√
1 + e

1− e
, (85)

where 0 ≤ e < 1. To describe the motion of two bodies, one of the bodies

is taken to be the center of the coordinate system and the position of the

second at any time t is given by the two coordinates q1(t) and q2(t). Equations

(83)-(84) are equivalent to the following Hamiltonian system:

q̇i = pi i = 1, 2 (86)

H(p1, p2, q1, q2) =
(p2

1 + p2
2)

2
− 1√

q2
1 + q2

2

(87)

where H(p1, p2, q1, q2) is the Hamiltonian of the system.
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Fig. 4.1.2. Comparison of execution time for h and λ for the Lotka-Volterra model
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Before (83)-(84) can be integrated using the implicit midpoint rule, we convert

the equations to a system of four first-order ordinary differential equations.

Let z1 = q1, z2 = q̇1, z3 = q2 and z4 = q̇2. Define z = [z1 z2 z3 z4]
T . Then

(83)-(84) are equivalent to the following system:

ż =




ż1

ż2

ż3

ż4




=




z2

− z1

(z2
1+z2

3)
3/2

z4

− z3

(z2
1+z2

3)
3/2




. (88)

The above system of equations was solved using the implicit midpoint rule

for t ∈ [0, 50]. Just as in the previous example, both a Picard iteration and

Newton’s method were used to compute the stage value y1. The two measures

we chose for this example are very similar to the those of the previous example.

The first measure is T , the total cpu time required to solve the system 1000

times with eccentricity, e, that is uniformly distributed in the interval [0.4,0.8].

The second measure was E, the maximum absolute error that the integration

deviates from the exact solution with eccentricity e = 0.6. For this measure,

we considered the absolute error at every step of the integration.

The computations were performed on the same machine as the previous ex-

ample, and the results are summarized in Tables 4.2.1 and 4.2.2 and also in

Figures 4.2.1 and 4.2.2. We compare the performance of the variable step-size

method to the fixed-step size method exactly as we did in the previous exam-

ple. In Table 4.2.1 we begin with the fixed step-size h = 0.01. The problem is

solved in 84.842 seconds using Picard iteration to find y1, giving an error of

0.113. We compare this to λ = 8 in Table 4.2.2 where the problem is solved
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in 81.388 seconds with an error of 0.067. Also, when the fixed step-size is

h = 0.05, the problem is solved in 21.190 seconds using Picard iteration to

find y1 and is solved in 29.602 using Newton’s method to find y1. The error in

both cases is 1.581. We compare these to when λ = 2 in Table 4.2.2. Respec-

tively, the times are 21.572 seconds and 29.943 seconds. The error for these

two times is 0.643.

4.3 The Kepler Problem Using Runge-Kutta-Nyström

Once again, we consider the Kepler problem described by equations (83)-(85).

We now solve the problem using a Runge-Kutta-Nyström (RKN) method.

The method we use is the two-stage Gauss method from [3] which is the RKN

method that is induced from the fourth order Gauss method (a Runge-Kutta

routine) found in [1]. For notation, we will refer to this integration routine as

Gauss4. The constants from equations (28)-(30) are

γ1 =
1

2
−
√

3

6
, γ2 =

1

2
+

√
3

6
, β1 =

1

4
+

√
3

12
, β2 =

1

4
−
√

3

12
, b1 =

1

2
, (89)

b2 =
1

2
, a11 =

1

24
, a12 =

1

8
−
√

3

12
, a21 =

1

8
+

√
3

12
, a22 =

1

24
. (90)

The analysis leading to equation (51) used the Lipschitz constant from the

Runge-Kutta methods, hL‖A‖. Since we are actually implementing a RKN

method to solve this system now, we have to repeat that analysis process with

the Lipschitz constant from the RKN methods, h2L‖A‖. Following exactly the

same process given in equations (34)-(52) and using the substitution

x = h2L‖A‖, (91)
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we find that to find the optimal h we must solve

2 + ln x + λ2x3/2 = 0 (92)

for x and then solve for h using (91).

Tan [5] solves the Kepler problem using Gauss4 as a Runge-Kutta routine (not

in its induced RKN form) with a fixed step-size of π
64

for 500,000 iterations.

Just for comparison we did the following:

(1) We solve the problem using the fixed step-size π
64

on the interval [0,50]

and determine the maximum absolute variance from the exact solution.

(2) We compute the total cpu time taken to solve the system using this step-

size for 500,000 iterations as Tan does.

(3) We solve the system on the interval [0,50] using the optimal step-size

selection method to determine the value of λ that gives us a comparable

error as determined in step one.

(4) We solve the system on the entire interval using this value of λ and our

variable step-size selection method.

When we used h = π
64

to solve the system on the interval [0,50], we found

the maximum absolute variance from the exact solution to be 0.0045. Then

using this fixed step-size, we found that it took 101.577 cpu seconds to solve

the problem taking 500,000 iterations. We then determined that a comparable

error on the interval [0,50] was achieved for λ = 55; that error was 0.0046.

When we solve the problem using our variable step-size selection method and

choose λ = 55 to a final time of T = 500000π
64

, we find that the system is solved

in 61.461 cpu seconds, which is 39.5% faster than using the fixed step-size of

π
64

.
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In addition to the above comparison, we also compared the fixed step-size

method to the variable step-size method for various values of h and λ for this

example. The results of this comparison are given in Tables 4.3.1 and 4.3.2.

We only used Picard iteration to solve for the stage values. We used exactly

the same two measures as we did in the previous section, when we solved the

Kepler problem using the implicit midpoint rule. When we solve the system

with the fixed step-size h = 0.05, the solution is found in 198.247 seconds with

an error of 0.0050. Comparatively, we found that for λ = 100, the system is

solved in 193.291 seconds with an error of 0.0036, which is about 28% lower

error. We also found that when the system is solved with the fixed step-size

of h = 0.06, it took 179.498 seconds with an error of 0.0071. We compare this

to the variable step-size with λ = 90, which took only 182.738 seconds to once

again get an error of 0.0036, which is about 49% lower error. In addition to

these positive results, we did not notice a large decrease in the error using

the variable step-size method as we increased λ. When we used the implicit

midpoint rule in the previous two examples, we noticed a steady decline in the

error as λ increased. In this case, we actually noticed that the error only goes

from 0.0036 when λ = 90 to 0.0032 when λ = 1000. We point out that when

λ = 1000, the system is solved in 625.772 seconds which is about 33% faster

than the 927.805 seconds it took with the fixed step-size h = 0.01, where the

error was only 0.0029.

All computations were done in MATLABr version 6.5.0.180913a Release 13

running in Microsoft Windows XP Professional version 5.1.2600 with an x86

Family 15 Model 2 Stepping 7 GenuineIntel processor running at 2392 Mhz.
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5 Conclusion

The collection of implicit numerical integration routines is vast to say the least.

Often times one routine is chosen over another to improve either efficiency or

accuracy. In this paper, we have shown that it is possible to wisely choose a

variable step-size for these integration schemes.

For linear ordinary differential equations or equations in which the Lipschitz

constant for the function f is known, the task becomes quite simple as the

optimal value of the step-size will not change from one step of the integration

to the next. But, if we are dealing with more complicated non-linear differential

equations, we can still choose an optimal time step at each step of integration of

the system. As we have shown, this process often involves solving a non-linear

equation numerically. Because of this, the computational overhead in using

this optimal step-size routine seems to be too much for solving differential

equations in which the function f is quite simple. However, our results have

shown that this is consistently not the case when f is a complicated function

as we describe below.

Tables 4.1.1, 4.1.2, 4.1.3, 4.1.4, 4.2.1 and 4.2.2 clearly show that, for compa-

rable integration times, the variable step-size selection method presented in

this paper drastically reduces the global error in the solution of the problem.

For the Kepler problem, we found that for comparable execution times, the

error was reduced 41% to 59% when the variable step-size method is used. In

the Lotka-Volterra example, we found that for comparable execution times,

the problem is solved with the error reduced 70% to 96% when we use the

variable step-size method. From studying the tables we may choose λ so that
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execution times are comparable, in which case the variable step-size method

noticeably reduces error as evidenced from the above discussion. However, λ

may also be adjusted to find comparable errors between the fixed step-size

and variable step-size methods. When you do this, one notices that the time

required to achieve a comparable error for the fixed step-size is much larger.

We must point out that this optimal step-size selection process is dependent

upon the scheme being used and we have concentrated on Runge-Kutta and

Runge-Kutta-Nyström methods. It should not be too difficult of a task to

adapt this process to the ever growing collection of implicit integration rou-

tines.
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Table 4.1.1

Fixed step-size (Lotka-Volterra model)

h → 0.05 0.08 0.1 0.125 0.2 0.25

T (Picard) 239.995 181.081 160.701 159.590 DNC DNC

E (Picard) 0.031 0.069 0.094 0.084 DNC DNC

T (Newton) 354.380 234.427 187.720 155.564 104.811 93.294

E (Newton) 0.031 0.069 0.094 0.084 0.228 0.228

Table 4.1.2

Variable step-size (Lotka-Volterra model)

λ → 0.25 0.4 0.5 0.75 1 2

T (Picard) 113.834 119.692 118.531 124.759 127.323 168.412

E (Picard) 0.115 0.087 0.078 0.048 0.025 0.004

T (Newton) 117.586 124.294 127.428 140.652 151.649 229.851

E (Newton) 0.115 0.087 0.078 0.048 0.025 0.004
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Table 4.1.3

Fixed step-size (Lotka-Volterra model)

h → 0.05 0.065 0.08 0.1 0.125

T (Picard) 67.701 57.018 50.742 46.178 45.596

E (Picard) 0.031 0.050 0.069 0.094 0.084

T (Newton) 67.801 53.260 43.990 35.574 29.636

E (Newton) 0.031 0.050 0.069 0.094 0.084

Table 4.1.4

Variable step-size (Lotka-Volterra model)

λP → 0.4 0.6 0.8 1 2 3.6

T (Picard) 27.097 28.377 28.761 33.902 43.595 67.413

E (Picard) 0.087 0.066 0.044 0.025 0.004 0.003

λN → 8 10 12 14 16 20

T (Newton) 192.345 115.689 138.058 134.097 140.481 149.867

E (Newton) 0.000459 0.001130 0.000841 0.000891 0.000819 0.000734
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Fig. 4.1.4. Comparison of the variable step-sizes determined by solving (52) versus

(78)

Table 4.2.1

Fixed step-size (Kepler problem)

h → 0.01 0.05 0.1 0.125 0.2 0.25

T (Picard) 84.842 21.190 13.299 11.858 DNC DNC

E (Picard) 0.113 1.581 2.038 2.483 DNC DNC

T (Newton) 137.506 29.602 16.503 14.391 DNC DNC

E (Newton) 0.113 1.581 2.038 2.483 DNC DNC
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Fig. 4.1.5. Plot of ρ versus g(ρ), where g is given by the left hand side of (78)

Table 4.2.2

Variable step-size (Kepler problem)

λ → 1 2 4 6 8 10

T (Picard) 20.199 21.572 37.234 58.505 81.388 111.440

E (Picard) 1.250 0.643 0.295 0.133 0.067 0.037

T (Newton) 22.062 29.943 50.602 79.263 114.673 157.194

E (Newton) 1.250 0.643 0.295 0.133 0.067 0.037
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Fig. 4.2.1. Comparison of execution time for h and λ for the Kepler problem
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Fig. 4.2.2. Error comparison for h and λ for the Kepler problem
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Table 4.3.1

Fixed step-size (Kepler problem using RKN)

h → 0.01 0.025 0.05 0.06 0.1

T (Picard) 927.805 341.167 198.247 179.498 DNC

E (Picard) 0.0029 0.0030 0.0050 0.0071 0.0508

Table 4.3.2

Variable step-size (Kepler problem using RKN)

λ → 90 100 250 500 1000

T (Picard) 182.738 193.291 248.634 352.381 625.772

E (Picard) 0.0036 0.0036 0.0032 0.0032 0.0032
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