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IV. Scientific Progress and Accomplishments 
 
Classification of images is a problem of long-standing interest, because of applications in 
target identification, medical diagnosis, character recognition, etc. We propose a new 
technique, employing expansion matching and a hidden Markov tree (EXM-HMT), to 
classify two-dimensional forward-looking infrared (FLIR) images of three-dimensional 
targets. As we move around the target, certain parts in the two-dimensional projection 
(image) of the object become visible, and certain others remain hidden, depending on the 
target-sensor orientation. The images of an target therefore vary depending on the 



orientation of the sensor with respect to the object, while also being a function of the 
target history (e.g., how long the target engine has been on or off). For example, if the 
object under consideration is a car, the images of the front of the car are often 
dramatically different from the images of the sides. Moreover, there is not simply one 
realization of the FLIR signature of a vehicle at a given orientation, but rather an 
ensemble of such accounting for variable target history.  
 
The classification problem involves assigning each image to a class, where a class is 
defined as a set of object-sensor orientations, for a given target, over which the images 
remain relatively invariant or stationary (with respect to target-sensor variation and target 
history). There is a set of classes for each of multiple targets.  
 
The fundamental idea behind the image classification scheme introduced in this work is 
that images can be classified by identifying the parts of the object that are visible in each 
class of images, and by considering the relative position of the various parts in the image. 
We represent the target parts by a set of templates, and use expansion matching (EXM) 
filters [5] instead of the more commonly used matched filters, to correlate the image with 
the templates. The response of the EXM filters has sharper peaks, which facilitates the 
process of locating the template in an image.  

 
Since the images belonging to a particular class are statistically stationary, the feature 
vectors of the images can be characterized by a single statistical model. A two-state 
model is used to represent each coefficient of the feature vector, and the statistics of the 
coefficient within each such state is modeled via a distinct Gaussian density [3]. Further, 
the states sampled by successive coefficients of the feature vector are modeled as a 
Markov process. This formulation results in a hidden Markov tree (HMT): 'hidden' 
because the states sampled by the coefficients are unknown. The feature vector is 
arranged in a tree [3,4]. The performance of the HMT based on EXM filters, tied to target 
parts, is compared to HMT performance based on a Haar-wavelet decomposition [4]. 

 
We derive the templates for each target class by partitioning the images into several 
subimages. We have an additional template for the overall image, to characterize the 
global target shape and size. In Fig. 1, for example, an image is divided into six 
subimages, numbered 2-7 in the figure, and the template of the entire image is indexed as 
1. It can be seen from Fig. 1 that subimages 2 and 3 represent the body of the car, and 
subimages 4, 5, 6 and 7 represent the tires and the lower half of the car.  
 

 
 
 



 
 
 
 
 
 
 
 
                                      

Figure 1.  Image divided into several subimages 
 
For a given feature template, the matched filter is an optimal filter in the sense that the 
SNR is maximized, with SNR defined as the ratio of the filter's response at the center of 
the pattern to the variance of the filter's response to noise. However, one of the 
drawbacks of a matched filter [5] is that the response off the center of the feature can be 
high (as the matched filter is optimized only with respect to the response at the center of 
the template); as a result the response has a broad peak, and it is difficult to locate the 
feature in the image, especially if the image has several similar features close to each 
other.  
 
This limitation of a matched filter is alleviated by the Expansion Matching (EXM) filter 
[5] which maximizes a criterion called Discriminative SNR  (DSNR, [5]), by seeking to 
minimize the off-center response of the filter; EXM filters generate sharper peaks, 
enhancing the localization of features in an image. The EXM filter obtained by 
maximizing DSNR is the same as the Wiener filter [5] formulation for restoring images 
in the presence of noise and blurring effects. In this context, the feature template 
corresponds to the blurring function, and a delta function is to be restored. Hence, the 
EXM filter of a template is given as  
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),( 21 ϖϖΦ  is the complex conjugate of the Fourier transform of the feature template 
),( 21 ϖϖΦ , and S???and Scc are the power spectral densities of the noise and the input 

sequence that is to be estimated, respectively. 
 

 
Assume there are  M image classes, and let Nm denote the number of training images 
associated with class m (1 Mm ≤≤ ). Assume P feature templates (e.g., P=7 for the image 
in Fig. 1) are derived from each of the Nm images belonging to the training set of class m. 
Therefore, there are Nm realizations of each of the P templates of class m. In order to 
correlate the feature templates with each image, EXM filters are generated from each 
template using (1).  

 
By using Nm EXM filters for each of the P feature detectors, we incorporate the 
variations in the templates of the images belonging to the same class into the feature 



detectors. We use the Karhunen-Loeve transform (KLT) [6] to reduce the computational 
complexity of correlating the image with Nm filters. The KLT produces an orthonormal 
set of basis functions for the Nm realizations of template p of class m. The eigenvectors 
are arranged in the descending order of eigenvalues; MSE can be minimized by using the 
top Neig eigenvalues as a truncated basis to represent the entire set of Nm filters. In 
general, meig NN < . It should be noted that Neig is not a fixed value: the value of Neig 
depends on the EXM filter set under consideration. 
 
 
Each image is reduced to a feature vector by correlating the image with the eigen 
detectors of the EXM filters of P templates of a particular class m, summing the 
responses from the respective EXM filters, and determining the maximum value of the 
correlation in a particular neighborhood in the image. Since P feature detectors 
characterize class m, the length of the feature vector equals P. The feature vector for 
image n, class m is  
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,φ is the jth eigenvector of the EXM filter set of template p, belonging to image class m. 

One of the limitations of both matched filters and EXM filters is that they produce a high 
response at certain locations that have high amplitudes, despite the absence of the 
template at those locations. In order to offset the effect of high amplitude regions, we use 
correlation as the feature, and not energy extracted by the template from the image, as 
correlation is a better indicator of the 'match' between templates. We thereby nullify the 
effects of high-amplitude regions by dividing the inner product in (3) by the energy in the 
image over the support of the filter under consideration.  
 
We do not search for the maximum value of the correlation in (3) over the entire image, 
rather we restrict our search to a prescribed neighborhood. Since the subimages are 
formed by dividing the image into parts, and all the images of the training set are located 
at a known reference point and oriented at a particular angle, for a given class we know 
where each template should be located approximately. We look for maximum correlation 
only in the neighborhood of the corresponding image component.  
 
It is not necessary, however, to know the location and the orientation of the test images. 
The test images can be centered by correlating the image with the set of EXM filters 
derived from the entire image, and then shifting the image such that maximum value of 



correlation lies in the center of the image (or at any other reference point). Similarly, we 
can use the training set to develop EXM filters of the images oriented at different angles, 
and determine the orientation of the test image by correlating it with the rotated set of 
EXM filters. The orientation of the test image corresponds to the orientation of the EXM 
filter set for which the maximum value of correlation is obtained, and the test image can 
be oriented as the training images by rotating it through this angle. The EXM-HMT 
scheme is, therefore, approximately shift and rotation invariant. 
 
The value of nm

pcorr , in (3) can be either 'high' or 'low' [3,4] depending on whether that 
particular feature is present or occluded in the FLIR image being considered. For 
example, if a given target part is cool, it will have a low value in the FLIR image, with 
the opposite true for hot target parts. Occlusions can also play a role in the strength of a 
given target component. We call the 'high' and 'low' correlation values 'high' and 'low' 
states, respectively, of a feature. The statistics of the 'high' and 'low' states, corresponding 
to each element of the feature vector, are modeled via a distinct Gaussian density (or, 
possibly, a Gaussian mixture). Also, if the nm

pcorr , is 'high', it is still possible that nm
pcorr ,

1+
 is 

'low'. Such interactions between the states of different elements, for a given class of 
images, are modeled as a Markov process [5]. This formulation results in a hidden 
Markov tree, since the state of the coefficient being sampled is 'hidden', and the tree 
nature of the feature vector n

mC .   
 

 

 

 

 

 
                                       Figure 2.  Hidden Markov Tree  

 
The feature vectors of the images can be cast into a tree structure, similar to the wavelet 
coefficients for which the HMT was developed in [4].  Figure 2 shows a 3-level HMT 
used to classify the images belonging to the same class as the one shown in Fig. 1, and 
the index p in each node of the HMT indicates that the node is occupied by nm

pcorr , . The 
correlation with the EXM filter of the entire image, nmcorr ,

1 , occupies the position at the 
top of the tree. Subsequent levels are occupied by the correlation values with templates 2 
to P, which for the image shown in Fig.1 correspond to the body and the tires of the car 
(for this example).  

 
The EXM-HMT scheme is demonstrated on FLIR images of vehicles (Sec. 5), with the 
intensity of these images a function of the temperature of the vehicles. As discussed, in 
such images 'high' and 'low' states correspond to whether a particular part of the object is 
'hot' or 'cold'. The model in Fig. 2 is compatible with our understanding of the physical 
nature of infrared images. Referring to Figs. 1 and 2, the state of nodes 2 and 3, i.e., 

1 
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4 5 6   7 

node j+1 

node jr node jl 



correlation with the templates corresponding to the body of the car, are dependent on the 
state of the correlation with the entire image, i.e. node 1. For example, if node 1 is in the 
'high' state, it means that the vehicle is generally 'hot', and therefore it is likely that the 
nodes 2 and 3 are also in the 'high' state. Since parts 4 and 5 are close to 2, states of 4 and 
5 are likely to be influenced by the state of 2, and similarly states of 6 and 7 are 
dependent on the state of 3. We note, however, that there are multiple ways of devising 
the tree structure. The goal is to link the decomposition of the Markov tree to the physical 
(thermal) characteristics of the target. 
 
All but the lowest HMT nodes are connected with two "children" at a lower level. 
Referring to Fig. 2, let jl and jr represent the "children" nodes to the left and right of node 
j+1. Each node of the HMT, as mentioned, is characterized by a two-state Gaussian 
model. Let H and L represent the "high" and "low" states of node j+1, with Hl and Ll 
similarly defined for jl. There are four possible state transitions from j+1 to jl: the node 
j+1 could be H and the element at jl could be Hl, [H,Hl]; similarly we could have [H,Ll], 
[L,Hl] or [L,Ll]. Each state transition, listed above, is characterized by an associated 
probability. A similar set of state transitions is defined for transition from j+1 to jr. The 
initial-state probability for the top node is defined as the probability that element nmcorr ,

1  
is in the "high" or "low" state. The hidden Markov tree is completely characterized by the 
dual-state Gaussian model for each element, the state-transition probabilities, and the 
initial-state probability for the top node. The HMT construct developed here is motivated 
by [4], in which it was applied to a wavelet decomposition. 

 
Since the HMTs were first developed [4] to characterize wavelet coefficients, we 
compare the classification results obtained via the EXM-HMT algorithm with results 
from the wavelet-HMT scheme. The resulting wavelet-HMT structure is a quadtree [4], 
in which each parent node is connected to four child nodes (in the HMT model discussed 
in Sec. 3 each parent is connected to two children). We here employ a decomposition 
based on the Haar wavelet, although the study of HMT performance with alternative 
wavelets will also be considered. The wavelet decomposition of the FLIR images is 
performed to the coarsest level, and quadtree HMTs are developed for the sequence of 
high-high, high-low and low-high images, using the coarsest and two subsequent finer 
levels (a total of three levels). Due to the fact that the FLIR images are not spatially 
stationary, we do not perform tying [4]. Consequently, with the finite imagery available 
for training, we cannot accurately estimate HMT parameters for more than three wavelet 
levels. 
 
As indicated, there is a wavelet quadtree for the sequence of high-high, high-low and 
low-high FLIR imagery (for three levels), with these here taken as statistically 
independent, for simplicity. Therefore, the total likelihood that a given image is 
associated with a given class is computed as the product of the likelihoods of the three 
associated wavelet-quadtree HMTs. 
 
We employ the EXM-HMT classification technique to classify FLIR images of four 
distinct vehicles: three tanks and one truck. We observe that the images, formed at 5o 

intervals around the vehicle, vary as a function of the target-sensor orientation (and as a 



function of target history). We identify two sets of angular regions (classes) for each 
vehicle over which the images are relatively unchanged (stationary). Let 0o be defined as 
looking at the front end of the vehicle. Class 1 of a target type is defined as FLIR images 
of the front and rear of the vehicle (angles 0-15o, 345-360o and 165-195o), and class 2 
comprises images of the sides of the vehicle (angle 20-160o and 200-340o). There is not 
sufficient resolution and training data to separately distinguish the front and back of the 
targets. Since there are two classes for each vehicle, there are a total of M=8 image 
classes (four vehicles with 2 classes per vehicle). The data was provided by the US Army 
Research Laboratory [7], with example FLIR images shown in Fig. 3. For vehicle 1, class 
1 and class 2, a set of Nm=260 images are used to train the HMT. For the other image 
classes, Nm=152. Seven EXM filters are developed for each image: one for each 
subimage (see Fig. 1), and one EXM filter for the entire image. We perform KLT, and 
Neig is set such that 90% of the energy in the original set of filters can be extracted by the 
eigen-detectors. For vehicle 1, class 1 and class 2, Neig =30, and for the rest Neig =50.  

 
The average correct classification of the EXM-HMT was 92% (the associated confusion 
matrix is shown in Table 1), while the wavelet-based HMT yielded 72% correct  
 
 
 
 
 
 
 
 
 
 
 
classification (Haar wavelets). The testing and training data was completely independent. 
 
We have designed a hidden Markov tree (HMT) for target classification, based on 
expansion-matching filters. Such a model has been developed previously based on a 
wavelet decomposition. The principal contribution reported here is an extension of the  

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Confusion matrix for EXM-HMT classifier, for FLIR data from four vehicle targets (Vn), with two classes per target (C1 
and C2). Example FLIR imagery shown in Fig. 3. 
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Figure 3. Example FLIR imagery from targets V1-V4, with two 
classes (C1 and C2) per target. 

V1,C1 V1,C2 V2,C1 V2,C2 

V3,C1 V3,C2 V4,C1 V4,C2 

V1 C1 V1 C2 V2 C1 V2 C2 V3 C1 V3 C2 V4 C1 V4 C2

V1C1 95.5 0 0.38 0 2.31 0 2.31 0

V1 C2 0 96.54 0.77 0 1.92 0 0.38 0.38

V2 C1 0.67 2.63 82.24 1.32 12.50 0 0.66 0

V2 C2 0 0 0.66 98.03 0.66 0 0.66 0

V3 C1 1.97 4.61 7.89 0 84.87 0 0.66 0

V3 C2 0 0 1.32 0.66 0 98.03 0 0

V4 C1 1.32 1.32 1.97 0 7.89 0 85.53 1.97

V4 C2 0 0 2.63 0 0 0 1.97 95.39

 



 
 
 
 
 
 
 
 
 

HMT to more general filters, in particular to EXM (Wiener) filters [5] matched to 
fundamental components of the targets of interest. The method was tested on FLIR data 
from similar targets [7]. 
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V. Technology Transfer 

 
The research reported here has been undertaken in close collaboration with the Army 
Research Laboratory (ARL), Adelphi, MD. In particular, we are now processing 
measured IR imagery provided to us by ARL. Also, as indicated above, we have 
transitioned to ARL much of the software developed under this program. 


