Award Number: DAMD17-03-1-0363

TITLE: Therapeutic Vascular Targeting and Irradiation: Correlation of MRI and Tissue Changes at Cellular and Molecular Levels to Optimizing Outcome

PRINCIPAL INVESTIGATOR: Dawen Zhao, M.D., Ph.D.

CONTRACTING ORGANIZATION: University of Texas Southwestern Medical Center
Dallas, TX 75390

REPORT DATE: June 2005

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 01-06-2005
2. REPORT TYPE Annual
3. DATES COVERED (From - To) 1 Jun 2004 - 31 May 2005

4. TITLE AND SUBTITLE
Therapeutic Vascular Targeting and Irradiation:
Correlation of MRI and Tissue Changes at Cellular and Molecular Levels to Optimizing Outcome

5a. CONTRACT NUMBER

5b. GRANT NUMBER DAMD17-03-1-0363

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S) Dawen Zhao, M.D., Ph.D.

E-Mail: dawen.zhao@utsouthwestern.edu

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Texas Southwestern Medical Center
Dallas, TX 75390

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Abstract follows.

15. SUBJECT TERMS
Vascular targeting, magnetic resonance imaging (MRI), pO2, perfusion, irradiation

16. SECURITY CLASSIFICATION OF:
a. REPORT U
b. ABSTRACT U
c. THIS PAGE U

17. LIMITATION OF ABSTRACT UU
18. NUMBER OF PAGES 77

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18
ABSTRACT

Vascular targeting agents (VTA) are new types of anticancer drugs that act on existing tumor vasculature, causing vascular disruption, which ultimately leads to extensive ischemic tumor cell death. One major goal of this project is to assess physiological changes at different time points following VTA in breast tumors. Continuous studies of tumor vascular perfusion and tissue oxygenation by MRI confirmed our previous findings during Year 1. Complementary data during this annum showed that a significant drop in mean tumor pO_2 within 90 min after administration of combretastatin A4 phosphate (CA4P) and a further decrease was observed at 2 h. Intriguingly, the initial changes in pO_2 in central and peripheral regions were parallel, but by 24 h post treatment significant difference was apparent: pO_2 in the periphery improved significantly, while the center remained hypoxic. These data are consistent with DCE (dynamic contrast enhanced) MRI, which revealed a ~70% decrease in perfusion/permeability at 2 h, which recovered fully after 24 h in a thin peripheral region, but not the tumor center. Based on the imaging results, the radiation treatment has been designed and initiated. We believe that quantitative pO_2 measurements are potentially important for optimizing therapeutic combination of CA4P with irradiation.
Table of Contents

- Cover.. 1
- SF 298... 2
- Table of Contents.. 3
- Introduction.. 4
- Body.. 4-9
- Key Research Accomplishments... 9
- Reportable Outcomes.. 10
- Conclusions.. 10
- References.. 11-12
- Appendices... 13
Background:
Tumor growth, survival and metastasis depend critically on the development of new blood vessels [1]. Therefore, extensive research has focused on developing strategies to attack tumor vasculature [1,2]. Tubulin binding agents, e.g., combretastatin A-4-phosphate (CA4P) represent one kind of vascular targeting agent (VTA) [3,4]. Promising preclinical studies have shown that such agents selectively cause tumor vascular shutdown and subsequently trigger a cascade of tumor cell death in experimental tumors [4,5]. Although massive necrosis can be induced, tumors usually regrow from a thin viable rim. Thus, a combination of VTAs with additional conventional therapeutic approaches will be required [6,7]. Indeed, several studies involving the combination of the VTAs with irradiation or chemotherapeutic agents have shown enhanced tumor response [8-10]. To better understand the mode of action, and hence, optimize such combinations, in vivo imaging approaches have been initiated to monitor physiological changes resulting from VTA administration [11-13]. Dynamic contrast enhanced (DCE) MRI based on the transport properties of gadolinium-DTPA (Gd-DTPA) is the most commonly used imaging approach to study tumor vascular perfusion and permeability [14,15]. For combination with radiotherapy, measurement of tumor oxygen dynamics will be especially important since hypoxia affects radiation response. By applying 19F FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for Dynamic Oxygen Mapping) MRI [16], dynamic tumor oxygenation can be monitored following the treatment with CA4P.

Body:
Continuing from Year 1, tumor physiological changes after CA4P injection have been extensively studied in Year 2. Consistent with previous results of Year 1, DCE MRI showed a ~70% decrease, averaged over a group of 13762NF rat breast tumors (n = 5), in perfusion/permeability (initial area under signal-intensity curve (IAUC)) at 2 h. The IAUC recovered fully after 24 h in a thin peripheral region, but not the tumor center (Fig. 1 and Table 1) [17].

![Pre CA4P 2hr CA4P 24hr](image)

![IAUC graph](image)
Figure 1. Dynamic contrast enhanced (DCE) MRI with respect to CA4P (30 mg/kg) treatment. A) Normalized T1-weighted contrast enhanced images were acquired 23 s after a bolus injection of contrast agent pre, and 2 h and 24 h after treatment. Significantly less signal enhancement was observed for the whole tumor region 2 h after treatment. A full recovery was apparent in the tumor rim 24 h post-treatment. B) IAUC frequency of DCE MRI on voxel by voxel basis obtained on the same tumor at pre, 2 h and 24 h after CA4P. Compared with pre, curves of 2 h and 24 h after showed a significant increase in the number of voxels with no signal enhancement (typically IAUC < 0.05). However, the frequency of highly enhancing voxels (IAUC > 1.5) at 24 h recovered to the pre-treatment level.

Table 1 Normalized IAUC by dynamic contrast enhanced MRI

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean IAUC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>baseline</td>
<td>2 h</td>
</tr>
<tr>
<td>CA4P (n = 6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>periphery</td>
<td>0.88 ± 0.06</td>
<td>0.31 ± 0.08*</td>
</tr>
<tr>
<td>center</td>
<td>0.44 ± 0.11+</td>
<td>0.13 ± 0.08*</td>
</tr>
<tr>
<td>Control (n = 3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>periphery</td>
<td>1.09 ± 0.04</td>
<td>0.93 ± 0.13</td>
</tr>
<tr>
<td>center</td>
<td>0.52 ± 0.19+</td>
<td>0.46 ± 0.05+</td>
</tr>
</tbody>
</table>

IAUC: initial area under signal-intensity curve;
* p < 0.05 from baseline; + p < 0.05 from periphery; † p < 0.05 from control.

19F FREDOM MRI further demonstrated that a significant decrease in the mean pO2 for the group of 7 tumors was found at 90 min after CA4P (23 ± 5 vs. 9 ± 3 torr; p < 0.05) and a further decrease at 2 h (2 ± 2 torr). The mean pO2 increased to 15 ± 4 torr at 24 h, which was still significantly lower than pretreated baseline (p < 0.05). More interestingly, the initial changes in pO2 in central and peripheral regions were parallel, but by 24 h post treatment significant difference was apparent: pO2 in the periphery improved significantly, while the center remained hypoxic (Figs. 2 and 3) [17].

A

B

Baseline air oxygen return to air CA4P 30 min

CA4P 60 min CA4P 90 min 2 h air 2 h oxygen

CA4P 24 h air oxygen
Figure 2 A) Distribution of hexafluorobenzene (HFB) in a representative tumor. An overlay of 19F signal density on the anatomic image indicates HFB in both peripheral and central regions. B) pO_2 maps obtained from the same tumor comprise two separated groups of voxels, which correspond to the locations of HFB on the anatomic image. Twenty five individual voxels were traceable from the pretreated baseline to 2 h after CA4P with oxygen breathing. Thirty one voxels could be followed 24 h post-treatment. Significant decrease in pO_2 was evident for all the individual voxels after CA4P, and pO_2 did not respond to oxygen inhalation after 2 h. The 24 h maps showed improved pO_2 and significant response to oxygen breathing in the peripheral region (right), but not in the central region (left).

Figure 3 Mean pO_2 curves are shown for the peripheral (■) and central (○) voxels of the tumor shown in Fig. 2. Significant decrease in pO_2 was found as early as 30 min after CA4P (30 mg/kg) for both peripheral and central tumor. * $p < 0.05$ from baseline air, + $p < 0.05$ from 24 h air, † $p < 0.05$ from periphery.

As a normal tissue control, pO_2 in femoral muscle was also monitored before and after injection of CA4P. Unlike the tumor behavior, normal muscle showed no decreased pO_2 at any time points after CA4P (Table 2) [17,18]. These results suggest that the vascular targeting agent, CA4P selectively attack the tumor blood vessels with little effect on normal vasculature.

| Table 2 Tumor oxygen dynamics assessed by 19F MRI with respect to CA4P treatment |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Groups | no. animals | Time course | pO$_2$ (mean ± se torr) |
| | | baseline 60 min 90 min 2 h oxygen 24 h base oxygen |
| CA4P (30 mg/kg) | 7 | 23 ± 5 13 ± 5 9 ± 3* 2 ± 2* 5 ± 3* 15 ± 4 58 ± 11† |
| Breast tumor | | | | |
| Saline (0.25 ml) | 3 | 31 ± 10 38 ± 16 36 ± 16 35 ± 14 79 ± 23† 39 ± 15 108 ± 26† |
| CA4P (30 mg/kg) | 3 | 24 ± 1 25 ± 8 25 ± 7 24 ± 5 79 ± 18† NA NA |
| Normal muscle | | | | |

* $p < 0.05$ from baseline; † $p < 0.05$ from 24 h air (24 h after injection of CA4P); NA: no measurement.
I have also performed extensive studies on tumor blood vessels, perfusion, and hypoxia in the 13762 rat breast tumors. Immunohistochemical studies of tumor hypoxia and vasculature using hypoxic marker pimonidazole and endothelium marker CD31 showed that a higher microvascular density (MVD) and lower labeling index of pimonidazole (Figs 4 and 5).

Figure 4 Comparison of pimonidazole and CD31 in a representative tumor. Fluorescent immunostaining for CD31 (left, red) and hypoxia (pimonidazole; right, green) indicated extensive vasculature and disperse hypoxic regions.

Figure 5 Perfusion marker Hoechst staining pre, 2 h, and 24 h post CA4P (left). Vascular endothelium of the same field was immunostained by anti-CD31 (red, middle). A good match (right) between Hoechst and anti-CD31 stained vascular endothelium was found in the pretreated tumor. Two hours after treatment, significant reduction in perfused vessels was detected, followed by a recovery at 24 h point. Bar = 100 μm.
As proposed time frame, the Task 1 in the Statement of Work is complete. One peer-review paper based on MRI and histological studies of the vascular targeting agent has been published [17].

In accordance with the Statement of Work Task 2, experimental radiation therapy has been designed and initiated based on the MRI oximetry data. Preliminary data of control group (n = 6) and irradiation alone group (n = 6) showed a single dose of 10 Gy significantly inhibited tumor growth (Fig. 6). Studies of combination of radiation and CA4P are underway.

![Normalized tumor volume over time](image)

Figure 6. Tumor growth was significantly delayed by a single dose of 10 Gy radiation (●) compared to control tumors (□).

By collaborating with Drs. Hanli Liu and Ralph Mason (Co-investigator), non-invasive interrogation of breast tumor response to CA4P has also been performed using Near-Infrared Spectroscopy (NIRS) and Bioluminescent imaging (BLI) [19]. Consistent and complementary results have been acquired from these studies (Figs. 7 and 8).

![NIRS detection of tumor hemodynamic changes](image)

Figure 7 Qualitative NIRS detection of tumor hemodynamic changes before, 2 h (a) and 24 h (b) after CA4P (30 mg/kg; i.p.) administration. Significant decrease in concentration of both oxygenated [HbO₂] and total hemoglobin ([Hb]total, blood volume) was observed immediately after CA4P. In contrast to pretreated baseline study, there was no response to oxygen inhalation 2 h after treatment. Twenty four hours later, significant increase in [HbO₂] was found in response to oxygen, but the extent of increase was about 6 times lower than baseline level.
Figure 8 Application of BLI in human breast tumor xenograft. A nude mouse with MDA-MB-231-luc mammary tumor was monitored temporally before and after treatment with the vascular targeting agent combretastatin (CA4P). Significant reduction in signal intensity was observed 2 h after CA4P (Right), compared to pre-treatment (Left).

Based on the above results, one peer reviewed paper, one paper of book section and two abstracts of conference proceeding have been published during this annum. Several other manuscripts are being prepared.

Key Research Accomplishments

- Assessment of dynamic perfusion and oxygenation in the breast tumors in response to the vascular targeting agent, Combretastatin A4 phosphate, by in vivo MR approaches
 a. 1H DCE MRI showed significant reduction in tumor perfusion and permeability 2 h after administration of CA4P (30 mg/kg, i.p.), while recovery was found in tumor periphery but not center.
 b. 19F FREDOM MRI revealed that tumor pO$_2$ dropped significantly at 90 min and further decreased at 2 h after CA4P.
 c. Tumor pO$_2$ improved 24 h later, but it was still significantly lower than the pretreated baseline pO$_2$. With respect to oxygen breathing, pO$_2$ in the periphery improved significantly, while the center remained hypoxic pure oxygen inhalation at this time point.

- Correlation of MR findings with biological studies
 a. Immunohistochemical studies of tumor hypoxia and vasculature using hypoxic marker pimonidazole and endothelium marker CD31.
 b. Consistent with MRI findings, histological study of tumor perfusion using Hoechst dye 33342 showed a significant reduction in perfused vessels at 2hr after CA4P, which recovered 24 h later.

- Experimental radiation therapy
 a. Irradiation alone on tumor growth has been accomplished.

- Complementary studies using other non-invasive techniques
 a. Near-Infrared Spectroscopy (NIRS) and Bioluminescent imaging (BLI) approaches have been applied for assessment of tumor response to the vascular targeting agent CA4P. The data is consistent with MRI observation.
Reportable Outcomes

Reportable outcomes that have resulted from this research endeavor in this annual period include:

- Peer Reviewed Publications:

- Sections of Edited Books:

- Abstracts (Published Conference Proceedings):

- Manuscripts in preparation:
 Peer reviewed papers:

- Employment or research opportunity:

 Ya Ren, an experienced research technician, has been recently recruited as a Research Assistant by our department. Mrs. Ren will contribute 40% of her effort to this project.

Conclusion:

Results reported here were successful in accordance with the outlined tasks cited in the original proposed statement of work. Five publications have been achieved during the Year 2. More importantly, these results lay foundation for the undergoing combination treatment of vascular targeting agent with irradiation in terms of order and timing. I am confident that the proposed radiation study will be fulfilled by the next term.
References:

Appendices

List of publication enclosed:

results exhibit a linear correlation between ΔHbO and ΔPO$_2$ of the tumors under hyperoxic gas intervention, suggesting that the NIRS approach could have a good potential value in the clinic. Finally, the newly developed tumor hemodynamic model allows us to reveal tumor heterogeneities at different tumor locations based on the multichannel NIRS results. Through this chapter, we lay a foundation for an NIR imaging technique to be further developed to facilitate investigations of tumor heterogeneity and vascular perfusion. Such a noninvasive imaging approach can enhance our understanding of the dynamics of tumor oxygenation and the mechanism of tumor physiology under baseline and perturbed conditions.

Acknowledgments

This work was supported in part by the Department of Defense Breast Cancer Research grants BC990287 (HL) and BC000833 (YG), and NIH R01 CA79515 (NCT)/EB002762 (NIBIB) (RPM). We are grateful to Vincent Bourke for his collaborative work on multichannel pO_2 measurements and Dr. Anca Constantinescu for her assistance with all the tumor investigations. We also gratefully acknowledge Dr. Britton Chance for his technical support on the multichannel NIR system.

[18] Measuring Changes in Tumor Oxygenation

By DAWEN ZHAO, LAN JIANG, and RALPH P. MASON

Introduction

Significance of pO_2 in Oncology

It has long been appreciated that hypoxic tumor cells are more resistant to radiotherapy.1 Indeed, a 3-fold increase in radio resistance may occur when cells are irradiated under hypoxic conditions compared with oxygen pressure $pO_2 > 15$ torr for a given single radiation dose. However, recent modeling has indicated that the proportion of cells in the range 0–20 torr may be most significant in terms of surviving a course of fractionated radiotherapy.2 Certain chemotherapeutic drugs also present differential efficacy, depending on hypoxia.$^3,^4$ Increasingly, there is evidence that hypoxia also

influences such critical characteristics as angiogenesis, tumor invasion, and metastasis. Moreover, repeated bouts of intermittent hypoxic stress may be important in stimulating tumor progression. Thus the ability to measure \(P_{O_2} \) noninvasively and repeatedly, with respect to acute or chronic interventions, becomes increasingly important.

Early work examined cells in vitro, where ambient oxygen concentrations are readily controlled. In vivo, hypoxia may be achieved by clamping the blood supply to a tumor, but other levels of oxygenation reflect the interplay of supply and consumption. Robust fine-needle polarographic electrodes opened the possibility of measuring \(P_{O_2} \) in tumors in situ and in vivo to define local \(P_{O_2} \) under baseline conditions or with respect to interventions. In early work, Cater and Silver showed the ability to monitor \(P_{O_2} \) at individual locations in patients' tumors with respect to breathing oxygen. Later, Gatenby et al. showed that \(P_{O_2} \) in a tumor was correlated with clinical outcome. Tumor oximetry received its greatest boost with the development of the Eppendorf Histograph polarographic needle electrode system. This computer-controlled device equipped with a stepper motor can reveal distributions of tumor oxygenation and has been applied extensively to clinical trials. Many reports have now shown that tumors are highly heterogeneous and have extensive hypoxia; furthermore, strong correlations have been shown in cervix and head and neck tumors between median \(P_{O_2} \) or hypoxic fraction and survival or disease-free survival. Extensive hypoxia also has been found in tumors of the prostate and breast. Thus tumor oxygenation is now recognized as a strong

9 R. A. Cairns, T. Kalliomaki et al., Cancer Res. 61, 8903 (2001).
17 M. Höckel, K. Schlenenger et al., Cancer Res. 56, 4599 (1996).
prognostic indicator, and this device has laid a convincing foundation for the value of measuring pO$_2$ in patients. However, the Histograph is highly invasive, and it is not possible to make repeated measurements at individual locations, precluding dynamic studies to assess the influence of interventions on tumor pO$_2$.

Given that hypoxic tumors are more resistant to certain therapies, it becomes important to assess tumor oxygenation as part of therapeutic planning. Patients could be stratified according to baseline hypoxia to receive adjuvant interventions designed to modulate pO$_2$, or more intense therapy as facilitated by intensity modulated radiation therapy (IMRT). Tumors, which do not respond to interventions, may be ideal candidates for hypoxia-selective cytotoxins (e.g., tirapazamine24). Noting that any therapy and intervention may have side effects or simply add to clinical costs, it is vital that efficacy be established and therapy be optimized for an individual patient. Whether initially hypoxic regions of a tumor can be modified to become better oxygenated has long been considered a key to improving outcome of irradiation. However, many attempts to improve therapeutic outcome by manipulation of tumor oxygenation have shown only modest success in the clinic,25 and it is thought that lack of success may have resulted from inability to identify those patients who would benefit from adjuvant interventions.

Although pO$_2$ determinations could be of great clinical value, they are also vital to many laboratory investigations of new drugs and studies of tumor development. Given the potential importance of measuring pO$_2$, many diverse techniques have been developed, as reviewed by others previously,$^{26-29}$ and here, in the next section.

Methods of Measuring Tumor Oxygenation

Table I lists various techniques that have been reported to provide quantitative estimates of pO$_2$. Historically, polarographic needle oxygen electrodes have been considered a “gold standard,” and they have been applied in the clinic since the 1950s. One or more electrodes may be placed in a tumor, facilitating measurement of baseline pO$_2$ and dynamic response to

Initially, the focus was on generating finer needles, which would be less invasive, and tips as fine as a few microns have been applied to animal tissues. However, such needles are progressively brittle and generate such small current that stray electromagnetic fields can interfere. Stationary electrodes sample limited volumes, and recognizing tumor heterogeneity, the Eppendorf Histograph was developed to generate multiple measurements along tracks in tumors. Following extensive studies in animals, the Histograph has found widespread application in the clinical setting and has unequivocally revealed hypoxia in many tumor types, for example, head and neck, cervix, breast, and prostate. Moreover, pO2 distributions have been found to have prognostic value. Disease-free survival is significantly worse for patients with hypoxic tumors, though the optimal prognostic parameter has variously been median pO2 or percent measurements <5 torr (HF5).

Although the Eppendorf Histograph uses a large invasive needle (size = 26 G or about 0.35 mm), it has provided great impetus for further investigations. One aspect is the application of less invasive probes. Fiber-optic probes are typically finer and do not consume oxygen during measurement. Typically, only two or four locations are sampled simultaneously, but as with the earlier electrodes, these optical probes facilitate observation of dynamic changes in pO2 in response to interventions. Both the current commercial systems, the OxyLite (http://www.oxford-optronix.com/tissmon/oxylite/oxylite.htm) and FOXY (http://www.oceanoptics.com/Products/foxyfqs.asp), exploit the fluorescent quenching by oxygen of a ruthenium complex coating. OxyLite measures fluorescent lifetime, whereas FOXY uses a simple intensity integration and is correspondingly much cheaper. Fibers are fragile, and coatings have a limited lifetime.
<table>
<thead>
<tr>
<th>Technique</th>
<th>Reporter</th>
<th>Parameter measured</th>
<th>Invasiveness</th>
<th>Characteristic resolution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>FREDOM</td>
<td>HFB</td>
<td>R₃</td>
<td>Minimal 32-G needle</td>
<td>Map multiple locations each 8 mm³</td>
<td>Hunjan, Zhao et al.; Zhao, Constantinescu et al.; Song, Constantinescu et al.; Zhao, Constantinescu et al.; Kim, Zhao et al.; Zhao, Constantinescu et al.; Zhao, Ran et al.</td>
</tr>
<tr>
<td>¹⁹F MRI</td>
<td>PFC</td>
<td>R₃</td>
<td>IV</td>
<td>Perfused regions min</td>
<td>Hees and Sotak; Dardzinski and Sotak; McIntyre, McCoy et al.; Fan, River et al.; Wang, Su et al.</td>
</tr>
<tr>
<td>¹⁹F MRS</td>
<td>PFC</td>
<td>R₃</td>
<td>IV</td>
<td>Perfused regions s to min</td>
<td>Hees and Sotak; Mason, Antich et al.; Baldwin and Ng; McIntyre, McCoy et al.; van der Sanden, Heerschap et al.</td>
</tr>
<tr>
<td>DCE MRI</td>
<td>Gd-DTPA</td>
<td>Contrast kinetics</td>
<td>IV</td>
<td>Maps</td>
<td>Cooper, Carrington et al.; Lyag, Vorren et al.; Wang, Su et al.</td>
</tr>
<tr>
<td>ESR/EPR</td>
<td>Charcoal, phthalocyanine</td>
<td>Linewidth Needle</td>
<td>Single location 23 G IT seconds</td>
<td>O’Hara, Goda et al.; Goda, Bacic et al.; O’Hara, Goda et al.</td>
<td></td>
</tr>
<tr>
<td>ESR/EPR OMRI</td>
<td>Nitroxides</td>
<td>Linewidth</td>
<td>IV</td>
<td>Global or map mm³ maps</td>
<td>s to min 10 min</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----</td>
<td>------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Needle electrode</td>
<td>Oxygen</td>
<td>Overhauser enhancement</td>
<td>Current Needle 26 G IT</td>
<td>Single location ~1 s</td>
<td></td>
</tr>
<tr>
<td>(Histogram)</td>
<td>Oxygen</td>
<td>Current Needle 26 G IT</td>
<td>Multiple tracks 1 s per location</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cater and Silver⁵; Evans and Naylor⁶⁰; Hasegawa, Rhee et al.⁵; Gatenby, Kessler et al.¹⁴; Song, Shakil et al.²⁸; Zhao, Constantinescu et al.³²
Eble, Wenz et al.¹; Falk, Laurence et al.¹; Vaupelet, Kelleher et al.⁵⁵; Brizel, Snively et al.¹⁶; Höckel, Schlenger et al.²; Nozue, Lee et al.¹²; Fyles, Mikulic et al.¹⁶; Siemann, Johansen et al.¹; Mason, Constantinescu et al.³⁵; Aquino-Parsons, Green et al.³⁸; Jenkins, Evans et al.⁷⁵; Höckel and Vaupelet
<table>
<thead>
<tr>
<th>Technique</th>
<th>Reporter</th>
<th>Parameter measured</th>
<th>Invasiveness</th>
<th>Characteristic resolution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optical probe (OxyLite, FOXY)</td>
<td>Rh complex</td>
<td>Fluorescent lifetime</td>
<td>Needle (26 G)</td>
<td>2–4 locations</td>
<td>Real time Griffiths(^a), Bussink, Kaanders et al.(^b); Braun, Lanzen et al.(^c); Zhao, Constantinescu et al.(^d); Gu, Bourke et al.(^e); Jordan, Beghein et al.(^f)</td>
</tr>
<tr>
<td>Phosphorescence PD complex</td>
<td>Lifetime</td>
<td>IV</td>
<td>Maps</td>
<td><1 min</td>
<td>Wilson(^g); Vinogradov, Lo et al.(^h); Dewhirst, Ong et al.(^i); Wilson, Vinogradov et al.(^j); Erickson, Braun et al.(^k)</td>
</tr>
<tr>
<td>Fluorescence EFS</td>
<td>Fluorescent intensity</td>
<td>IV + biopsy</td>
<td>Maps microscopic</td>
<td>Once</td>
<td>Koch(^l)</td>
</tr>
<tr>
<td>Mass spectrometry</td>
<td>Oxygen Atoms</td>
<td>Needle</td>
<td>Single location</td>
<td></td>
<td>Potapov, Sirovskii et al.(^m)</td>
</tr>
</tbody>
</table>

\(^c\) F. Goda, G. Bacic et al., Cancer Res. 56, 3344 (1996).
\(^h\) C. W. Song, A. Shakil et al., Int. J. Hyperthermia 12, 367 (1996).

Reporter molecules have been developed for use with electron spin resonance (ESR or EPR), where the line width is highly sensitive to oxygen.\(^{28,44-55}\) Two primary approaches are used: (1) direct intratumoral (IT) injection of char crystals,\(^{49,56}\) phthalocyanine,\(^{57}\) or India ink\(^{58}\) into a tissue or (2) intravenous (IV) infusion of water-soluble agents which disseminate throughout the tumor vasculature.\(^{47,53}\) Direct IT injection is invasive and has generally been applied as a spectroscopic approach to report \(P_0^2\) at single locations only. Nonetheless, significant data have been achieved demonstrating hypoxiation and reoxygenation with respect to irradiation, and the importance of timing successive radiation doses to coincide with reoxygenation.\(^{59}\) Char particles may be stable in tissue for weeks to years, allowing measurements of chronic changes in tissues (e.g., accompanying tumor growth).\(^{28}\) The IV approach is noninvasive, but reporter molecules may predominately distribute in the well-perfused vasculature, potentially biasing measurements toward the well-oxygenated tumor regions. Progressive uptake and clearance of agents produces variable concentrations, and some agents degrade in tissue requiring appropriate correction factors.\(^{47}\) Nonetheless, images of tumor oxygen distribution have been reported, including three-dimensional representations.\(^{53}\) Spin radicals also may be applied to a combined ESR-NMR (nuclear magnetic resonance) approach, Overhauser-enhanced magnetic resonance imaging (OMRI), exploiting the Overhauser enhancement in the tissue water proton MRI signal that occurs by polarization transfer from free radicals upon electromagnetic irradiation.\(^{60}\)

Vascular oxygenation has been probed by fluorescence or phosphorescence imaging based on reporter complexes delivered IV. Historically, the approach was limited to superficial tissues due to limited light penetration. The latest molecules are active in the near-infrared, permitting greater depth of signal penetration.

NMR facilitates interrogation of deep tissues noninvasively, and 19F NMR approaches will be reviewed in detail in the following section. The methods discussed earlier provide direct quantitative measurements of pO_2 based on various physiochemical parameters, such as electric current, fluorescent lifetime, magnetic resonance linewidth, or relaxation. Other approaches are less direct, but can reveal hypoxia or correlates of pO_2.

Specific classes of reporter molecules have been developed to reveal hypoxia (e.g., pimonidazole, EF5, CCI-103F, Cu-ATSM, galactopyranoside IAZA). Following IV infusion, these agents become reduced in tissues and are trapped. However, in the presence of oxygen they are reoxidized and ultimately clear from the body. Histologic assessment of the distribution of these agents provides microscopic indications of local hypoxia. EFS, pimonidazole, and Cu-ATSM are currently being tested in clinical trials, and correlations have been reported with clinical outcome. Many variants have been proposed over the past 20 years, and incorporation of radionuclides has facilitated noninvasive investigations using positron emission tomography (PET) or single photon emission computed tomography (SPECT), while 19F labels permitted NMR spectroscopy. Generally, only a single time point is investigated, but dynamic variations in hypoxia may be assessed, even in biopsy specimens, by applying pairs of hypoxia reporters in a pulse-chase fashion with respect to an intervention, as shown by Ljungkvist et al.
Several studies have shown a lack of correlation between hypoxic marker binding and pO2 assessed using the Eppendorf Histograph, which may be related to chronic versus acute hypoxia, or the extent of necrosis. The ultimate value of the techniques is evidenced by correlations between uptake and outcome. Recent data also indicate that EF5 fluorescence may be correlated with pO2.

The techniques discussed so far all depend on exogenous reporter molecules or probes. Ideally, oxygenation could be related to endogenous characteristics. Because many biochemical pathways are under oxygen regulation, they can provide an elegant window on hypoxia, for example, induction of hypoxia-inducible factor 1 (HIF-1) and glucose transporter 1 (Glut-1) together with secondary responses, such as increased production of vascular endothelial growth factor (VEGF), NIP3 and tumor-associated macrophage activity. Such molecules indicate hypoxia, though they may be induced by other factors. Intrinsic radiation sensitivity also may be assessed using the Comet assay. These assays each require biopsy. Other markers potentially associated with hypoxia may be found in the plasma or urine and have been correlated with clinical outcome.

An attractive alternative is the introduction of transgenes with hypoxic response elements (HREs) as promoter sequences coupled to reporter genes such as GFP (green fluorescent protein) or luciferase. GFP synthesis is an energetic process, which could be hindered under hypoxia conditions. Likewise, bioluminescence accompanying action of luciferase on luciferin requires adenosine triphosphate (ATP) and O2, but reports suggest that even under exceedingly low pO2, sufficient oxygen remains to reveal hypoxia.

Many practical considerations govern clinical application of oximetry methods. Proton MRI is routinely applied for anatomic evaluation of tumors and would provide an ideal conduit for prognostic investigations. Application of contrast agents may reveal tumor boundaries to enhance detectability, and the dynamic contrast enhancement (DCE) changes provide insight into vascular perfusion and surface permeability area.

Specific studies have shown a correlation between DCE and P_{O_2}, and indeed, a theoretical underpinning has been provided based on the Krogh cylinder model. However, the correlation is unlikely to be widely applicable, since DCE is sensitive to vascular flow, perfusion, and permeability, where P_{O_2} depends on oxygen consumption as well as delivery.

Blood oxygen level dependent (BOLD) contrast proton NMR facilitates rapid interrogation of vascular oxygenation and is particularly appropriate for examining dynamic responses to interventions. Deoxyhemoglobin is paramagnetic and induces signal loss in T_2^*-weighted images. However, BOLD does not provide absolute P_{O_2} values and is confounded by the influence of blood flow, as investigated extensively by Howe et al., who termed the expression FLOOD (flow and oxygen level dependent) contrast. In addition, variation in vascular volume can introduce signal perturbation. Nonetheless, some studies have indicated a correlation with relative P_{O_2}, but poor indication of absolute P_{O_2}.

Near-infrared spectroscopy (NIRS) offers an alternative approach based on the differential light absorption of the strong chromophores oxyhemoglobin and deoxyhemoglobin. NIRS provides a noninvasive means to monitor global tumor vascular oxygenation in real time based on endogenous molecules. Although many NIRS investigations have been conducted in the brain and breast in both laboratory and clinical settings over the past decade, there have been relatively few reports regarding solid tumors. Most studies to date have used reflectance mode. By contrast, we have favored transmission mode, so as to interrogate deep tumor regions, and we have presented preliminary studies in rat breast...
and prostate tumors with respect to various interventions.43,101,106 NIR approaches are presented in detail in Chapter 17 of this volume.

Each technique has specific virtues and drawbacks, which must be considered for any given application, particularly the degree of invasiveness, the ability to generate maps of heterogeneity, and the ability to assess dynamic changes. In addition, the location of a measurement (e.g., vascular versus tissue compartments, the precision of measurements, and spatial and temporal resolution) must be considered. For further details of the techniques described earlier, the reader is referred to the references. In the next section, we present 19F NMR approaches in greater detail.

19F NMR Approaches to Measuring pO_2

Nuclear magnetic resonance (NMR) is attractive because it is inherently noninvasive. Liquid-state NMR is characterized by several parameters, including signal amplitude, chemical shift (δ), spin–spin relaxation (T_2), and spin–lattice relaxation (T_1). Oxygen could be quantified using 17O NMR, but this is rather esoteric.107 Alternatively, it has long been recognized that the oxygen molecule (O_2) is paramagnetic, causing increased spin–lattice relaxation rates ($R_1 = 1/T_1$). Indeed, physical and theoretical chemists must go to great lengths to rigorously remove oxygen from solutions (using freeze–thaw procedures) to achieve inherent relaxation rates for studying nuclear interactions.108 Proton NMR studies have reported changes in the water relaxation rate as a result of tissue oxygenation,109 but many other processes (metal ions, cellularity, pH, ionic strength) also cause relaxation, and thus it is not suitable for detecting pO_2, except under rare circumstances, such as with the eye.110 There is also a substantial temperature response, whereas the relaxivity due to oxygen is only 0.0002 s$^{-1}$/torr.110

However, several investigators showed that the 19F NMR spin–lattice relaxation rates for fluorocarbons are much more sensitive to pO_2.111,112 Thomas et al.112 pioneered the application of 19F NMR relaxometry to measure pO_2 in tissues, \textit{in vivo}, including lung, liver, and spleen; several other investigators demonstrated feasibility and applications,114–120 as

\begin{thebibliography}{120}
\end{thebibliography}
reviewed some years ago by Mason. The 19F NMR R_1 of perfluorocarbons (PFCs) varies linearly with pO_2, and each resonance is sensitive to pO_2, temperature, and magnetic field, but importantly, is essentially unresponsive to pH, CO$_2$, charged paramagnetic ions, mixing with blood, or emulsification.

A particular PFC molecule may have multiple resonances, and each resonance has a characteristic R_1 response to pO_2. This is attributed to steric effects of O_2, as it approaches the molecule, which implies that perfluorinated groups, which are both geometrically and magnetically comparable, should have similar R_1 responses to oxygen tension. At a fixed temperature and magnetic-field strength, the R_1 response to pO_2 of any single resonance obeys the simple formula

$$R_1 = R_{1a} + (R_{1p}X)$$

where X is the mole fraction of O_2 dissolved in the PFC, R_{1a} is the anoxic relaxation rate, and R_{1p} is the relaxation rate due to the paramagnetic contribution of oxygen. According to Henry's law, the dissolved mole fraction is related directly to the partial pressure of oxygen,

$$pO_2 = KX$$

where K represents Henry's constant for a given solution of gas at a specified temperature. By substitution,

$$R_1 = R_{1a} + (R_{1p}/K)pO_2$$

The slope (R_{1p}/K) indicates the response of a particular resonance to pO_2.

PFCs essentially act as molecular amplifiers, since the solubility of oxygen is greater than in water, but thermodynamics require that the pO_2 in the PFC will rapidly equilibrate with the surrounding medium, and estimates of diffusion suggest the equilibration can occur within seconds.

Because relaxation is proportional to oxygen concentration, the effect will be greater at a given pO\textsubscript{2} than for water. Importantly, ions do not enter the hydrophobic PFC phase, and thus do not affect the bulk relaxation. Indeed, PFCs are typically exceedingly hydrophobic and do not mix with the aqueous phases, but rather form droplets or emulsions. Based on these principles, PFCs have been applied to \textit{in vivo} pO\textsubscript{2} measurements. Characteristics of many diverse PFCs are summarized in Table II.

At any given magnetic field (B\textsubscript{0}) and temperature (T), sensitivity to changes in pO\textsubscript{2} is given by R\textsubscript{1} = a + bpO\textsubscript{2}. Thus a greater slope is important, and the ratio \(\eta = b/a\) has been proposed as a sensitivity index.128 Generally, a small “a” value (intercept) represents greater sensitivity, but it also generates longer T\textsubscript{1} values under hypoxic conditions, potentially increasing data acquisition times. Indeed, the T\textsubscript{1} of hexafluorobenzene (HFB) at 4.7 T may reach 12 s, potentially creating long imaging cycles, but this is readily overcome by applying single-shot (echo planar) imaging techniques, as presented in a later section.

Many PFCs, such as perfluorotributylamine (PFTB), perfluorobron (formerly referred to as perfluoroocetyl bromide; PFOB), and Therox (F44-E), have several F NMR resonances, which can be exploited to provide additional information in spectroscopic studies, but seriously hamper effective imaging. Multiple resonances can lead to chemical shift artifacts in images, which compromise the integrity of relaxation time measurements, though they can be avoided by selective excitation, or detection, chemical shift imaging, deconvolution, or sophisticated tricks of NMR spin physics.116,119,129-133 These approaches add to experimental complexity and are generally associated with lost signal to noise ratio (SNR). Thus we strongly favor PFCs with a single resonance, and we will describe the use of HFB,27,32,42,106,134-137 though some research groups favor 5-crown-5-ether (15CS).88,117,138,139

137 D. Zhao, S. Ran \textit{et al.}, Neoplasia \textbf{5}, 308 (2003).
<table>
<thead>
<tr>
<th>PFC</th>
<th>Sensitivity to pO₂ (\text{a})</th>
<th>Temp. sensitivity (torr(^{\text{a}}))</th>
<th>Magnetic field (B_0(T))</th>
<th>Application/comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexafluorobenzene (HFB)</td>
<td>(A = 0.0835)</td>
<td>0.13</td>
<td>4.7</td>
<td>Rat breast tumor, prostate tumor, human lymphoma xenograft</td>
<td>Hunjan, Zhao \textit{et al.}159</td>
</tr>
<tr>
<td></td>
<td>(B = 0.001876)</td>
<td></td>
<td></td>
<td></td>
<td>Zhao, Constantinescu \textit{et al.}32,134,136; Mason, Ran \textit{et al.}27; Song, Constantinescu \textit{et al.}135; Zhao, Ran \textit{et al.}137</td>
</tr>
<tr>
<td>HFB</td>
<td>(A = 0.074)</td>
<td></td>
<td>4.7</td>
<td>Rat prostate tumor</td>
<td>Hunjan, Mason \textit{et al.}161; Mason, Constantinescu \textit{et al.}175</td>
</tr>
<tr>
<td></td>
<td>(B = 0.00158)</td>
<td></td>
<td></td>
<td></td>
<td>Mason, Rodumrung \textit{et al.}143</td>
</tr>
<tr>
<td>Perfluoro-15-Crown-5-ether (15C5)</td>
<td>(A = 0.345)</td>
<td>2.94</td>
<td>2.0</td>
<td>Tumor cells</td>
<td>Helmer, Han \textit{et al.}157</td>
</tr>
<tr>
<td></td>
<td>(B = 0.0034)</td>
<td></td>
<td></td>
<td></td>
<td>Dardzinski and Sotak117</td>
</tr>
<tr>
<td>15C5</td>
<td>(A = 0.333)</td>
<td>3.98</td>
<td>2.0</td>
<td>Mouse tumor, spleen, liver</td>
<td>van der Sanden, Heerschap \textit{et al.}100; van der Sanden, Heerschap \textit{et al.}138</td>
</tr>
<tr>
<td></td>
<td>(B = 0.0033)</td>
<td></td>
<td></td>
<td></td>
<td>Fan, Rivet \textit{et al.}95</td>
</tr>
<tr>
<td>15C5</td>
<td>(A = 0.44)</td>
<td></td>
<td>4.3</td>
<td>Human glioma tumor in mice</td>
<td>Duong, Ladecola \textit{et al.}139</td>
</tr>
<tr>
<td></td>
<td>(B = 0.0028)</td>
<td></td>
<td></td>
<td></td>
<td>Thomas, Pratt \textit{et al.}128</td>
</tr>
<tr>
<td>15C5</td>
<td>(A = 0.375)</td>
<td></td>
<td>4.7</td>
<td>Rat breast tumor</td>
<td>Pratt, Zheng \textit{et al.}133; Thomas, Gradon \textit{et al.}163</td>
</tr>
<tr>
<td></td>
<td>(B = 0.00198)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15C5</td>
<td>(A = 0.362)</td>
<td></td>
<td>4.7</td>
<td>Rat brain</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(B = 0.1239)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorotributyl-amine (FC-43) PFTB</td>
<td>(A = 1.09)</td>
<td>4.43</td>
<td>0.14</td>
<td>Pig liver, spleen, lung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(B = 0.00623)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFTB</td>
<td>(A = 1.48)</td>
<td></td>
<td>0.14</td>
<td>Rat liver, spleen, lung</td>
<td></td>
</tr>
</tbody>
</table>

(continued)
<table>
<thead>
<tr>
<th>PFC</th>
<th>Sensitivity to pO$_2$</th>
<th>Temp. sensitivity (torr$^{-1}$)</th>
<th>Magnetic field B$_0$(T)</th>
<th>Application/comments</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFTB</td>
<td>A = 0.684</td>
<td>4.7</td>
<td></td>
<td>Rabbit eye</td>
<td>Berkowitz, Wilson et al.166; Wilson, Berkowitz et al.67</td>
</tr>
<tr>
<td></td>
<td>B = 0.00305</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFTB</td>
<td>A = 0.9072</td>
<td>1.5</td>
<td></td>
<td>Human eye</td>
<td>Wilson, Berkowitz et al.67</td>
</tr>
<tr>
<td></td>
<td>B = 0.004486</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFTB</td>
<td>A = 0.8848</td>
<td>8.17</td>
<td>7</td>
<td>Mouse Meth-A tumor</td>
<td>Mason, Shukla et al.141</td>
</tr>
<tr>
<td></td>
<td>B = 0.1307</td>
<td></td>
<td></td>
<td>and heart</td>
<td></td>
</tr>
<tr>
<td>Perfluorotripropylamine</td>
<td>A = 0.314</td>
<td>1.9</td>
<td></td>
<td>Rat subcutaneous</td>
<td>Fishman, Joseph et al.6</td>
</tr>
<tr>
<td>(FTPA)</td>
<td>B = 0.002760$^{-3}$</td>
<td></td>
<td></td>
<td>tumor</td>
<td></td>
</tr>
<tr>
<td>FTPA</td>
<td>A = 0.301</td>
<td>1.4</td>
<td></td>
<td>Rat spleen, lung,</td>
<td>Fishman, Joseph et al.114</td>
</tr>
<tr>
<td></td>
<td>B = 0.00312</td>
<td></td>
<td></td>
<td>liver</td>
<td></td>
</tr>
<tr>
<td>FTPA</td>
<td>A = 0.4052</td>
<td>2.0</td>
<td></td>
<td>Rat liver, spleen</td>
<td>Holland, Kennan et al.115</td>
</tr>
<tr>
<td></td>
<td>B = 0.0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTPA</td>
<td>A = 0.3421</td>
<td>4.4</td>
<td></td>
<td>Cells</td>
<td>Taylor and Deutschd</td>
</tr>
<tr>
<td>Bis-perfluoro-butylethylene</td>
<td>B = 0.11172</td>
<td></td>
<td></td>
<td>Rat, alginate capsules</td>
<td>Noth, Grohn et al.164</td>
</tr>
<tr>
<td>(F-44E)</td>
<td>A = 0.342</td>
<td>7.05</td>
<td></td>
<td></td>
<td>Noth, Morrissey et al.118</td>
</tr>
<tr>
<td></td>
<td>B = 0.1201</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-44E</td>
<td>A = 0.2525</td>
<td>0.59</td>
<td>2.0</td>
<td>Mouse tumor</td>
<td>Hees and Sotak153</td>
</tr>
<tr>
<td></td>
<td>B = 0.16527</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluoroctyl-bromide</td>
<td>A = 0.517</td>
<td>9.4</td>
<td></td>
<td>Rat heart</td>
<td>Shukla, Mason et al.5</td>
</tr>
<tr>
<td>(perfluoron) (PFOB)</td>
<td>B = 0.0038</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFOB</td>
<td>A = 0.2677</td>
<td>1.26</td>
<td>4.7</td>
<td>Prostate tumor in rat</td>
<td>Antich et al.162</td>
</tr>
<tr>
<td></td>
<td>B = 0.12259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>A</td>
<td>B</td>
<td>t</td>
<td>Tissue Type</td>
<td>Reference</td>
</tr>
<tr>
<td>------------------</td>
<td>-------</td>
<td>---------</td>
<td>---</td>
<td>----------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>PFOB</td>
<td>0.328</td>
<td>1.2137</td>
<td>2.85</td>
<td>Phantom</td>
<td>Mason, Shukla et al.</td>
</tr>
<tr>
<td>PFOB</td>
<td>0.085</td>
<td>0.0033</td>
<td>1.5</td>
<td>Rat tumor</td>
<td>Sostman, Rockwell et al.</td>
</tr>
<tr>
<td>PFOB</td>
<td>0.085</td>
<td>0.0033</td>
<td>1.5</td>
<td>Rabbit liver</td>
<td>Tran, Guo et al.</td>
</tr>
<tr>
<td>PFOB</td>
<td>0.085</td>
<td>0.0033</td>
<td>8.5</td>
<td>Pig liver, lung, spleen</td>
<td>Millard and McGoron</td>
</tr>
<tr>
<td>PFOB</td>
<td>0.085</td>
<td>0.0033</td>
<td>1.45</td>
<td>Rat lung, Mouse lung</td>
<td>Thomas, Clark, Jr. et al.</td>
</tr>
<tr>
<td>Perfluoro-2,2,2',2''-tetramethyl-4,4''-bis(1,3-dioxolane) (PTBD)</td>
<td>0.50104</td>
<td>0.1672</td>
<td>2.0</td>
<td>Phantom</td>
<td>Scholz et al.</td>
</tr>
</tbody>
</table>

Some original papers presented calibration curves in other forms (e.g., including coefficients for temperature dependence). In those cases, equations have been derived assuming 37^a. Where a PFC has more than one resonance, the equation presented is either for the most sensitive signal, or the equation used where the signal may have been unresolved.

- R_1 (s$^{-1}$) = $A + B \times pO_2$ (torr).
R_1 is sensitive to temperature, although the response varies greatly between PFCs and between individual resonances of each individual PFC. Over small temperature ranges, a linear correction to calibration curves is appropriate, but over larger temperature ranges, the response can be complex, as investigated extensively by Shukla et al.140 for several PFCs. Differential sensitivity of pairs of resonances to pO$_2$ and temperature allowed Mason \textit{et al.}141 to simultaneously determine both parameters by solving simultaneous equations. However, generally it is preferable for a pO$_2$ sensor to exhibit minimal response to temperature, since this is not always known precisely \textit{in vivo} and temperature gradients may occur across tumors. As shown in Table II, even a relatively small error in temperature estimate can introduce a sizable discrepancy into the apparent pO$_2$; for example, the relative error introduced into a pO$_2$ determination by a 1° error in temperature estimate ranges from 8 torr$^\circ$ for PFTB141 to 3 torr$^\circ$ for PFOB (perflubron)142 or 15 torr$^\circ$ and 0.1 torr/° for HFB,143 when pO$_2$ is actually 5 torr. It must be noted that error depends on actual pO$_2$ and the error varies with magnetic field and temperature. R_1 response does depend on magnetic field, necessitating calibration curves for each type of magnet system (e.g., 1.5, 4.7, or 7 T). Thus comparison of PFC utility for pO$_2$ measurements is complicated by the field used for specific published investigations, and in Table II, we consider sensitivity as presented.

Choice of PFC may be governed by practical considerations, such as cost and availability, since several products, particularly proprietary emulsions, may be difficult to obtain. HFB and 15C5 offer the immediate advantage of a high symmetry and a single 19F NMR resonance. This offers maximum SNR and simplifies imaging, which may otherwise require frequency selective excitation, deconvolution, or other NMR tricks to avoid chemical shift artifacts.

\textit{Route of Administration.} The most popular route for the delivery of PFCs is as emulsions injected intravenously. Given the extremely hydrophobic nature of PFCs, they do not dissolve in blood directly, but may be formulated as biocompatible emulsions. Much effort has been applied to formulate stable homogenous emulsions, as reviewed elsewhere.144 Following IV infusion, the emulsion circulates in the vasculature with a

typical half-life of 12 h, (depending on the nature of the emulsion) providing substantial clearance within 2 days. Primary clearance is by macrophage activity, leading to extensive accumulation in the liver, spleen, and bone marrow. Indeed, this is a major shortcoming of IV delivery, since animals may exhibit extensive hepatomegaly or splenomegaly. The emulsions are not toxic, and other than causing swelling, appear not to cause health problems. PFC clearance occurs from the liver with a typical half-life of 60 days for perfluorotripropylamine and 3 days for perflubron, with primary clearance by migration to the lungs and exhalation.

Some investigators have examined \(\text{pO}_2 \) of tissues, while PFC remained in the blood, providing a vascular \(\text{pO}_2 \). Flow can generate artifacts, and correction algorithms have been proposed. Many investigators have measured \(\text{pO}_2 \) in liver, spleen, and tumors following clearance from the blood, thus providing measurement of tissue \(\text{pO}_2 \).

Both spectroscopic and imaging approaches have been applied to tissue \(\text{pO}_2 \) measurements depending on the available SNR. It appears that uptake and distribution efficiency vary with tumor type, but in general, maximum signal is detected from the tumor periphery corresponding with regions of greater perfusion. Several reports have examined changes in tumor \(\text{pO}_2 \) in response to acute interventions such as vasoactive drugs and hyperoxic gases. Spectroscopic time resolution has ranged from seconds to minutes, whereas imaging often takes longer.

Long tissue retention facilitates chronic studies during tumor development, and progressive tumor hypoxiation has been observed over extended time periods of many days. Correlated \(^{19}\text{F}\) and proton MRI suggest

159 D. J. O. McIntyre, C. L. McCoy et al., Curr. Sci. 76, 753 (1999).
that PFC does not redistribute, but remains associated with specific tissues, analogous to tree rings.154,156 Thus in principle, a whole tumor can be investigated by administering successive doses of PFC emulsion during growth.

PFC emulsions may also be administered intraperitoneally (IP), resulting in similar distribution to IV administration (unpublished observations). Given the volatile nature of many PFCs, they could be inhaled, but although this is a popular route for delivery of anesthetics and blood flow tracers, it does not appear to have been widely exploited for oximetry. Nonetheless, aerosols have been delivered to the lungs by inhalation to facilitate pO_2 measurements.165

Two approaches have been applied to circumvent reticuloendothelial uptake. PFC has been incorporated in polyalginate beads for direct implantation at a site of interest.164,165 We favor direct IT injection of neat PFC, allowing any region of interest in a tumor to be interrogated immediately. Use of a fine needle ensures minimal tissue damage, as described in detail in a later section. Others have used direct injection of emulsions into tumors, but this increases the volume considerably, making it more invasive.88 Investigators have suggested that emulsification improves retention at the site of injection. Direct injection of neat PFC also has been used to investigate retinal oxygenation166–168 and cerebral oxygenation in the interstitial and ventricular spaces.139

As described in the following section we favor direct intratumoral injection of neat HFB followed by echo planar imaging to generate pO_2 maps in tumors.

FREDOM (Fluorocarbon Relaxometry using Echo Planar Imaging for Dynamic Oxygen Mapping)

Recognizing that tumors are heterogeneous and that pO_2 may fluctuate, we developed a procedure, which allows repeated quantitative maps of regional pO_2 to be achieved with multiple individual locations simultaneously in 6.5 min with a precision of 1–3 torr, when pO_2 is in the

167 C. Wilson, B. Berkowitz \textit{et al.}, \textit{Arch. Ophthalmol.} \textbf{110}, 1098 (1992).
Fig. 1. Hexafluorobenzene (HFB) is a perfluorocarbon (PFC) exhibiting extensive symmetry.

range 0–10 torr. We have applied FREDOM to diverse tumor types and interventions, as reviewed in a later section.

MRI is attractive because it is readily available at many institutions. For small animal work, 19F NMR is widely available at 4.7, 7, and 9.4 T by minor adaptation of routine instrumentation, [e.g., retuning proton radio-frequency (RF) coils]. Within the recent past 19F MRI is also becoming available on clinical systems, facilitating translation of these techniques to patients. 19F NMR is particularly facile because there is essentially no background signal in tissues to interfere with measurements, yet the resonance frequency and sensitivity approach that of proton NMR. The pioneering work of Thomas showed that tissue pO_2 could be imaged in various organs based on the 19F NMR spin–lattice relaxation rate (R_1) of PFC reporter molecules following IV infusion. Prompted by these studies, we surveyed a number of PFCs and identified that HFB (Fig. 1) has many virtues as a pO_2 reporter. Symmetry provides a single narrow 19F NMR signal, and the spin–lattice relaxation rate is highly sensitive to changes in pO_2, yet minimally responsive to temperature (Fig. 2). HFB also has a long spin–spin relaxation time (T_2), which is particularly important for imaging investigations. From a practical perspective, HFB is cheap (<$2/g) and readily available commercially in high purity (≥99%). We obtain supplies from Lancaster Synthesis (Windham, NH), though many other fine chemical supply houses also offer HFB. We do favor bottles over sealed ampoules, since they are easier to handle. HFB is well characterized in terms of lack of toxicity, exhibiting no mutagenicity, teratogenicity, or fetotoxicity, and the manufacturer’s material

Methodology

Tumor Preparation. We have applied this technique to tumors in rats and mice, but our methodology will focus on our standard application to rats. As for electrode techniques, the tumor must be accessible (e.g., subcutaneous in flank of thigh), though we favor the pedicle model, which provides a tumor remote from the body, analogous to an additional limb. This model is optimal for selective therapy such as local hyperthermia, irradiation, or excision. Noting the increasing interest in orthotopic tumors, the approach is also facile in breast tumors in the mammary fat pad and applicable in the prostate with a little practice.

Rats are preanesthetized with ketamine hydrochloride (100 mg/ml) as a relaxant and maintained under general gaseous anesthesia with air (1 dm3/min) and 1.2% isoflurane [we do note that the appropriate concentration of anesthesia may depend on strain; for example, Copenhagen rats require (and tolerate) higher concentrations than Fisher rats]. In our latest refinement of the procedure, isoflurane may be stopped for a period of minutes during HFB administration, since rats occasionally exhibit respiratory distress, which may be caused by the anesthetic properties of HFB interacting with isoflurane. Within a few minutes, rats are stable and routine isoflurane anesthesia is maintained. In our earlier work we used 0.5% methoxyflurane in 33% oxygen with 66% N$_2$O, but isoflurane appears to be a less stressful anesthetic.

HFB is deoxygenated by bubbling nitrogen for 5 min before use. We have previously shown in hypoxic tumor biopsies that use of aerated HFB may introduce a systematic apparent elevation in pO$_2$ (~2–3 torr). HFB is injected directly into tumors using a gas tight syringe with a custom-made fine sharp needle (32G #7803-04; Hamilton, Reno, NV). Generally, HFB is administered along three to five tracks in the form of a fan in a single central plane of the tumor coronal to the rat’s body (Fig. 3A). The needle is inserted manually to penetrate across the whole tumor and withdrawn ~1 mm to reduce pressure, and 3 μl HFB is deposited. The needle is repeatedly withdrawn a further 2–3 mm, and additional HFB is deposited. Typically, HFB is deliberately deposited at about 16 individual locations per tumor, in both the central and peripheral regions of the tumors, to ensure that the interrogated regions are representative of the whole tumor.

The animal is placed on its side in a cradle with a thermal blanket to maintain body temperature. A fiber-optic probe is inserted rectally to monitor core temperature. Temperature measurement is optional, since the R$_1$ is essentially invariant with temperature and does not need correction for pO$_2$ estimates. Of course, temperature regulation and measurement is important to ensure stable tumor physiology. An MR-compatible pulse oximeter equipped with “rat” software (8600V; Nonin, Inc., Plymouth, MN) may be applied to a hind foot to monitor arterial oxygenation (S$_a$O$_2$) and heart rate (optional, but provides additional useful data regarding animal health and physiology).

Most of our MR experiments were performed using an Omega CSI 4.7 horizontal bore magnet system with actively shielded gradients (GE systems, acquired by Bruker Instrument, Inc., Fremont, CA). Recently, our MR system has been upgraded to a Varian Unity INOVA, providing

Fig. 3. (A) Recommended pattern of IT injection. Several tracks in the form of a fan in a single plane. (B) Four contiguous MR images (5 mm thick) of a representative Dunning prostate R3327-AT1 tumor (volume = 1.6 cm3). Top: 1H MRI; middle: corresponding 19F; bottom: overlay to show interrogated regions. B marks point of attachment of the tumor to back of rat.
enhanced data acquisition and processing software and stronger imaging gradients. A tunable ($\text{^1H/}^{19}\text{F}$) MR coil, 2 or 3 cm in diameter matched to the tumor size (constructed from a cylindrical copper tube about 2 cm deep and acting as a single-turn solenoid), is placed around the tumor-bearing pedicle. Shimming is performed on the proton water signal to a typical linewidth of 60–100 Hz. Proton images are obtained for anatomic reference using a three-dimensional (3D) spin–echo sequence. The coil is then retuned in place to 188.27 MHz, and corresponding ^{19}F MR images are obtained. Overlaying the ^{19}F MR images on the corresponding proton images reveals the distribution of HFB (Fig. 3B). Typically, ^{19}F NMR signal is obtained from 6–10% of the total tumor voxels.136,137,175

pO_2 maps are obtained using our standard MR oximetry protocol.116,160,176 This applies pulse burst saturation recovery (PBSR) echo planar imaging (EPI) relaxometry using the ARDVARC (alternated relaxation delays with variable acquisitions to reduce clearance effects) acquisition protocol to map the tumors (Fig. 4).175,177 EPI uses a single spin–echo with “blipped” phase encoding (modulus-blipped echo-planar single-pulse technique [MBEST]), although other EPI sequences should be equally applicable. We chose the PBSR approach to T_1 relaxation measurements for historical reasons; our earliest work used ^{19}F NMR spectroscopy of tumors with excitation and detection based on surface coils.152 The PBSR approach is suitable for use with the nonuniform excitation typical of surface

Fig. 5. Typical relaxation curve showing order of data acquisition. $y = A [1 - (1 + W) \exp(-R_1 \times \tau)]$ and $T_1 = 10.34 \pm 0.16$, $A = 99.5$, $W = 0.04$, and hence $pO_2 = 7.0 \pm 0.7$ torr.

coils as presented by Evelhoch and Ackerman.\(^{178}\) For EPI, we do apply carefully calibrated $\pi/2$ pulses to ensure accurate refocusing of images, but we continue to favor the PBSR approach, since it provides particularly rapid estimation of T_1 by avoiding the need for extended relaxation recovery times between acquisitions. Saturation is achieved by a series of 20 non-spatially selective $\pi/2$ pulses with 50-ms spacing, which is sometimes called a "Comb" format.

Typical FREDOM parameters use 32×32 data points across a field of view of 40×40 mm, providing 1.25 mm in-plane resolution. Recently, we have applied a slice selection gradient, providing 5-mm-thick slices, and hence, 8-μl voxels. However, the deposition of HFB is designed to occur in a plane, and thus the discrete distribution of the reporter molecule itself can be used to define the slice. We apply a PBSR preparation sequence because it is ideally suited for measuring diverse, long T_1 values. Unlike more traditional inversion recovery sequences, there is no need to wait $>5 T_1$ between successive images. As shown in Fig. 5, we use 14 delays in the order 90 s, 200 ms, 60 s, 400 ms, 40 s, 600 ms, 20 s, 800 ms, 16 s, 1 s, 8 s, 1.5 s, 4 s, and 2 s, selected to cover the whole range of T_1s (viz pO$_2$ values). Many papers have been published on optimizing relaxation curves and choosing parameters to enhance precision.\(^{179-181}\) Our experience suggests that our

parameters are appropriate for interrogating a broad range of pO₂ values, though they have not been rigorously or theoretically optimized. More delays could improve curve fitting, but would increase experiment time. We believe fewer delays would degrade quality of the curve fitting.

Traditional T₁ measurement sequences acquire data with delays in monotonic order, whereas we alternate longer and shorter delays to minimize any systematic errors, which would be introduced if the signal amplitude varies during the measurement. We have found that HFB clears from tissue with a typical half-life of 600 min,¹⁶² which would introduce errors into the amplitude. Although the total acquisition time for a T₁ map is 6.5 min, we reduce the time between first and last acquisitions further by applying the longest delay first. Our experience shows that it is important to measure at least two data points on the plateau of the curve (i.e., 5 × T₁), and we choose 60 and 90 s, respectively. The data points with longer recovery times have greater SNR, and we find that a minimum SNR = 10 is required to produce satisfactory T₁ curves and pO₂ estimates. The variation in amplitude between longest and shortest delays approaches 100-fold. The poorest SNR data points (short delay; τ) could compromise the quality of the T₁ curves, and thus we obtain multiple acquisitions at these times to provide enhanced SNR by signal averaging. Because the τ values are short, it adds little to the overall experimental time. We use NA = 12 for τ < 1 s; NA = 8 for τ = 1 s; NA = 4 for τ = 1.5, 2, and 4 s; NA = 2 for τ = 8 s; and 16 s and NA = 1 for the longer delays. Signal amplitudes are corrected for the additional acquisitions, and a 2-d Fourier transform (FT) is applied to each image. Curve fitting is then applied on a voxel-by-voxel basis to each image set. Data quality could probably be enhanced by application of apodization and filtering functions, such as Fermi and Hanning filters, though we have not yet implemented these approaches. The acquisition protocol is not part of the standard software supplied by the manufacturer, but we can assist interested investigators.

Data are transferred to a personal computer (PC) for further analysis using a program created in our laboratory (T₁map [Fig. 6], PASCAL by Dennis Le). T₁map recognizes issues in data analysis and provides filters, clustering algorithms, and temporospatial correlation to assist in effective data reduction. At top right of Fig. 6 is a map, which may be toggled to display signal amplitude, T₁, T₁ error (T₁ err), or pO₂ (Fig. 7). Blank pixels indicate that no curve fit could be achieved. Gray pixels indicate a successful curve fit and potential pO₂ value, but with errors beyond the specified range. In this example, thresholds were set as T₁ err < 2.5 s and the ratio T₁ err/T₁ < 50%. Tightening these thresholds can produce higher-quality data, but eliminates more data. Colored pixels report measurements satisfying the threshold criteria, and these are tabulated in the form of a
Fig. 6. Example T1 map used for data filtering, clustering, and analysis.
DYNAMIC ASSESSMENT OF TUMOR OXYGENATION

Fig. 7 (continued)
histogram (center), which can be plotted with selected data bins and ranges of interest. At bottom right of Fig. 6 are data for each pixel, including coordinate and fitted parameters. In the box on the left are shown the number of fitted data points, number of accepted data points, and statistics such as mean \(T_1 \), \(pO_2 \), and corresponding amplitude-weighted values.

\(pO_2 \) is calculated on the basis of a curve fit to exponential data. Any curve fitting is associated with uncertainty, and indeed our procedure determines \(T_1 \) errors. Although the concept of negative \(pO_2 \) values may appear impossible, it is perfectly reasonable, provided that error bars and uncertainties are considered. Thus a value of \(-2 \) torr ± 3 torr legitimately indicates an actual \(pO_2 \) very close to zero. Some oximetry approaches ignore negative values or bin them all as zero. We accept any value providing that the error estimated for \(T_1 \) is within a specified range.

The most powerful aspect of FREDOM is the ability to follow the fate of individual voxels, and thus we usually acquire at least three baseline \(pO_2 \) maps, followed by further maps accompanying interventions, such as hyperoxic gas breathing. Even under baseline conditions, fluctuations in \(T_1 \) are apparent. These may arise from uncertainty in \(T_1 \), which may be reflected in \(T_1 \) errors or transient fluctuations in \(pO_2 \).

\(T_1 \) map allows us to investigate sequential maps and select only those pixels that consistently show small \(T_1 \) errors, for example, white regions of interest (ROI). In subsequent maps we may include only these regions, which satisfy the inclusion criteria for every map. This allows us to follow population dynamics based on specific tumor regions, avoiding potential anomalies due to varying numbers of “good quality” pixels in sequential images. Typically, 50–150 pixels provide high-quality data in any given map, but generally 20–80 pixels may be followed for a series of 23 maps associated with interventions.

The ROI tool also facilitates clustering, for example, selection of only those tumor regions, which consistently have \(pO_2 < 10 \) torr throughout the baseline period (these may be considered as chronically hypoxic, as opposed to regions, which fluctuate and may only be \(<10 \) torr in some

Fig. 7. Maps showing (A) \(^{19}F \) NMR signal intensity, (B) spin–lattice relaxation times (\(T_1 \)), (C) estimated errors in \(T_1 \), and (D) \(pO_2 \) values. Black squares show regions where signal to noise or data quality was so poor as to not provide a \(T_1 \) curve fit. Gray voxels show regions that provided a curve fit, but where the uncertainty in the data exceeded the threshold criteria (i.e., \(T_1 \) error > 2.5 s or \(T_1 \) error/T1 > 50%). All colored voxels \((n = 100)\) provided a curve fit within the acceptance criteria in this map, but only those 56 voxels within the white regions of interest (ROI) provided consistently high-quality data throughout the sequence of eight maps acquired during baseline and with oxygen breathing. Data were obtained using the FREDOM approach from a representative Dunning prostate R3327-AT1 tumor \((2 \text{ cm}^3) \).
baseline maps). The ability to follow groups of pixels with particular baseline characteristics has revealed heterogeneity in response to many interventions—often those regions initially well oxygenated show rapid and large response to hyperoxic gas breathing, whereas those that are initially poorly oxygenated show little and sluggish response (e.g., Fig. 8). This approach can also reveal phenomena such as the "steal" effect, whereby initially well-oxygenated regions decrease in \(\text{pO}_2 \), while others increase, which might appear as "no change," when histogram-based population statistics are used.

Figure 9 shows that the data quality is strongly related to signal amplitude. Although these data represent 56 voxels from a single tumor, we have previously shown similar data for the alternate PFC perflubron. Given the high solubility of \(\text{O}_2 \) in PFCs, there could be a concern that PFCs act as reservoirs, perturbing local \(\text{pO}_2 \). Fig. 9B shows that there is no correlation \((r^2 < 0.05) \) between signal amplitude (viz. HFB concentration) and \(\text{pO}_2 \).

As with any measurement, sampling is a critical issue. FREDOM is analogous to the Eppendorf Histogram in that it samples multiple locations, which appear to reflect interstitial \(\text{pO}_2 \). Histogram data suggest that a minimum of 100–140 data points are required to accurately represent the \(\text{pO}_2 \) distribution of a tumor, though such criteria depend on tumor size and heterogeneity. We applied Monte Carlo simulation to assess the data requirements for FREDOM. A data set was selected, which provided 120 high-quality data points, and these data points were accessed in random order with continuous calculation of mean \(\text{pO}_2 \) to assess the asymptotic trend lines toward the actual mean \(\text{pO}_2 \) (Fig. 10). It appears that about 50 data points are required to well represent the \(\text{pO}_2 \) distribution of the tumor, which is generally achievable in any individual \(\text{pO}_2 \) map. However, the unique ability to observe dynamic changes in \(\text{pO}_2 \) at multiple locations simultaneously is the greatest strength of FREDOM. Detection of heterogeneous responses is useful even if fewer data points are examined, since each location serves as its own control.

Validation of Measurements. The spin–lattice relaxation rate (\(R_1 \)) is determined for each voxel using a three-parameter fit of signal intensities to

\[
y_1 = A[1 - (1 + W) \exp(-R_1 \times \tau)]
\]

using the Levenberg–Marquardt least squares fitting protocol. Typically, \(\sim 100–300 \) voxels provide an \(R_1 \) fit and potential \(\text{pO}_2 \) value. Because noise

FIG. 9. (A) Relationship of $R_1\text{err}$ with signal amplitude showing strong correlation ($r^2 > 0.69$). (B) Relationship of pO_2 and signal amplitude showing lack of correlation ($r^2 < 0.05$).

FIG. 8. pO_2 maps obtained using the FREDOM approach from the tumor shown in Fig. 3. (A) Under baseline conditions, those voxels ($n = 56$) within the white region provided consistently reliable data during repeated measurements. (B) Baseline map (breathing air: $FO_2 = 21\%$): mean $pO_2 = 7.2 \pm 2.6$ (SE) torr, median $pO_2 = 1.3$ torr (range -7-88 torr). (C) Breathing oxygen ($FO_2 = 100\%$): fourth map obtained 24-32 min after switching from air: mean $pO_2 = 47.2 \pm 10.7$ torr ($p < 0.0001$ compared with baseline), median $pO_2 = 8.3$ torr (range -3-204 torr). (D) Breathing carbogen ($FO_2 = 95\%$): fifth map after switching to carbogen: mean $pO_2 = 43.1 \pm 9.2$ torr ($p < 0.0001$ compared with baseline), median $pO_2 = 5.6$ torr (range -10-216 torr).
Fig. 10. Monte Carlo simulation of tumor oxygenation. Asymptotic behavior shows that tumor may be characterized by about 50 data points. For this large AT1 tumor in a rat breathing oxygen, all estimates converge on the mean \(\text{pO}_2 = 31.7 + 1.0 \) (SE) torr.

itself may give an apparent relaxation curve \((R_1) \) fit, data are selected within a region of interest, having \(T_1_{\text{err}} < 2.5 \) s and the ratio \(T_{1_{\text{err}}}/T_1 < 50\% \). With respect to respiratory interventions, only those voxels that provided consistently reliable data throughout the measurements are included for further analysis. At 37° and 4.7 T

\[
\text{pO}_2(\text{torr}) = [R_1(s^{-1}) - 0.0835]/0.001876
\]

Equation (5) provides \(\text{pO}_2 \) in units of torr. The literature can be complicated by use of various units, and it may be instructive to provide conversion factors. We favor torr (1 torr = 1 mmHg), since radiobiologic hypoxia develops in the range 0–15 torr and this is the traditional unit favored by radiation biologists and oncologists. Further, 760 torr = 1 standard atmosphere (atm.), and gases are often quoted in %atm. For SI units, 101, 325 Pa (or N/m²) = 1.01325 × 10⁶ dynes/cm² = 1 atm. Some investigators quote oxygen concentrations in \(\mu M \), often assuming that the solubility of oxygen in water at 37° is 1.35 \(\mu M/\text{torr} \). Quoting concentrations can be confusing because the solubility of oxygen is highly variable in solutions. FREDOM calibration is based on \(\text{pO}_2 \) values, and as shown by Eqs. 1–3,
these are directly related to the solubility of oxygen in HFB. However, partitioning of oxygen between the aqueous and PFC phases depends on pO₂, not concentrations. Thus the pO₂ determined by FREDOM will accurately reflect the ambient tissue pO₂ and if the solubility of oxygen can be estimated in the particular milieu, then [O₂] could be calculated.

Both systematic and random errors may interfere. Random errors may be diminished by performing multiple repeat measurements (provided that the biologic system is stable). Systematic errors are more complex and could arise inter alia from erroneous calibrations, inappropriate curve fitting, and temperature changes. Appropriate curve fitting may be the greatest problem in relaxation analysis. Provided signal/noise > 10 for the most intense signals, we generally obtain excellent curve fits. Each voxel (or ROI) will comprise HFB at a range of pO₂ values, creating a multiexponential curve. However, modeling shows that the fit provides an "average" value. For population data, we sometimes determine error-weighted means [Σ(x/σ²)]/[Σ(1/σ²)] in order to exploit as much available data as possible.

In terms of absolute pO₂ values, the most critical aspect is effective calibration curves. Over the years we have achieved pO₂-dependent ¹⁹F NMR relaxation curves for many PFCs¹¹⁶,¹⁴¹-¹⁴³,¹⁶⁰ and encountered potential pitfalls. The calibration curve we recommend at 4.7 T and 37⁰ is given by Eq. (5) which was originally presented by Hunjan et al.¹⁶⁰ Briefly, 125 μl HFB was added to each of four gas-tight NMR tubes together with 0.5 ml water and saturated at 37⁰ by bubbling with carbon dioxide, 1% O₂ (balance N₂), 9.8% O₂ (balance N₂), or air, respectively. Tubes were sealed, and the phantom was maintained at 37⁰ in a water bath within a coil in the magnet. FREDOM was applied using the parameters described earlier, and the spin–lattice relaxation rates were estimated on a voxel-by-voxel basis using three-parameter fit. Equation (5) was established using linear regression analysis of amplitude squared weighted mean values for each gas.¹⁵⁹

Although the relationship R₁ = f (pO₂) is theoretically expected to be linear and empirically found to be so, we believe that it is important to use calibration gases in the range of physiologic pO₂. We recommend purchase of rigorously calibrated gases. We bubble gases for 30 min and use gas-tight Wilmad NMR tubes, which may be sealed with ground glass joints. Samples are used within hours of saturation. As desired, multiple tubes may be prepared at given pO₂, but since a linear relationship is expected, it may be equally appropriate to use additional gases. T₁ may be determined multiple times for each sample, and we recommend using the pulse sequence to be applied for in vivo investigations. In 1997, we published a calibration curve.
\[
R_1(s^{-1}) = 0.074(\pm 0.003) + 0.012(\pm 0.0002)pO_2(\% \text{atm.})
\]
(6)
for HFB at 37° and 4.7 T.177 Considering temperature sensitivity gave
\[
R_1(s^{-1}) = 0.77(\pm 0.03) - (0.00089\pm 0.001)T(°C)
+ (0.018\pm 0.003)P(\% \text{atm.}) - (0.00004\pm 0.00008)TP(°C\% \text{ atm.})
\]
(7)

More recently, we achieved Eq. (5) as a new calibration curve at 37° and 4.7 T using the ARDVARC approach.160 This calibration curve is based on higher-quality data and provides superior pO\textsubscript{2} estimates. In particular, when tissue is expected to be hypoxic (excised tissue), we find fewer apparently negative pO\textsubscript{2} values.

A major strength of the FREDOM approach is that calibration curves remain valid between samples and across experimental platforms. Calibration curves obtained \textit{in vitro} are valid \textit{in vivo}. Thus we believe other investigators can apply Eq. (5) without the need to establish their own calibrations, provided that studies are undertaken at about 4.7 T and in the range 30–45°. As discussed in an earlier section and Table II, a 1° error in temperature estimates will only introduce a 0.13-torr error in pO\textsubscript{2} estimate, when pO\textsubscript{2} is about 5 torr. We also note that the calibration curves for HFB are relatively insensitive to magnetic field.111,143

We have previously investigated microbiodistribution of HFB based on Oil Red O stain, which indicated that HFB occurs as microscopic droplets (1–20 \(\mu\)m) widely distributed across tumor tissue.175 Significantly, there was no evidence for formation of films, which could act as conduction conduits, causing oxygen equilibration. Occasionally, an animal (viz. tumor) will move slightly during a long time series of measurements. In this case the requirement of consistently high-quality curve fits throughout the data set for individual voxels fails because the tissues have moved relative to the voxel grid. Such motion is immediately apparent when examining the images. There is a choice of eliminating such a data set or relaxing the acceptance criteria and examining pO\textsubscript{2} population distribution without spatial continuity. It is important to recognize that all methods include a degree of sampling. In some approaches, this involves the selective placement and tracking of electrodes; in others, the choice of locations for biopsy and the number of microscopic fields of view. Sampling can be avoided by obtaining global measurements, as commonly acquired using near-infrared approaches, but this may itself mask the fundamental tumor heterogeneity101 (see Chapter 17 in this volume).

We have previously shown that HFB shows little macroscopic redistribution over a period of hours.177 It does clear from the tumors with a
typical half-life of HFB of about 600 min, though some tumors show essentially no detectable clearance over a period of 6 h.143,162 Clearance of HFB precludes long-term studies of chronic oxygenation, unless further doses of HFB are administered.

Comparison of pO\textsubscript{2} distributions using FREDOM or the Eppendorf Histograph has shown close similarity in both small and large tumors.175 Dynamic studies in several tumor types have shown equivalent behavior when assessed using polarographic oxygen electrodes or OxyLite or FOXY optical probes.32,43,134 Relative hypoxia has been compared with the histologic reporter pimonidazole, revealing similar trends across tumor types.137

\textit{Applications of FREDOM}

FREDOM has been applied to investigations of diverse tumor types (syngeneic rat prostate and breast tumors and xenograft human lymphomas) with respect to growth and acute interventions.27,22,134-137,160 Perhaps the greatest strength is the ability to investigate regional dynamic changes in pO\textsubscript{2} accompanying acute interventions. Figure 8 shows changes in regional pO\textsubscript{2} in an ATI tumor accompanying hyperoxic gas breathing. As published previously,137,160,162 the areas that were initially better oxygenated responded with elevated pO\textsubscript{2}, whereas those relatively hypoxic regions showed little response. Data also may be presented as histograms (Fig. 11), revealing significant differences between mean and median pO\textsubscript{2} and hypoxic fractions between small and large tumors, and between the slow- and fast-growing sublines H and ATI of the Dunning prostate R3327. Figure 12 shows variation in global mean pO\textsubscript{2} accompanying respiratory challenge with oxygen or carbogen and return to baseline following the intervention. Because individual tumor regions may be observed, local response may be compared at identical locations, efficiently comparing the efficacy of interventions (Fig. 13). Figure 14 shows the differential behavior of regions in undifferentiated Dunning prostate R3327-ATI tumors versus highly differentiated H tumors. In each tumor type there are both well and poorly oxygenated regions under baseline conditions (see Fig. 11). In response to hyperoxic gas breathing, well-oxygenated regions in both tumor types show a rapid and significant elevation in pO\textsubscript{2}, which is reversible when inhaled gas is returned to air (Fig. 14). Poorly oxygenated regions in H tumors respond slowly, but ultimately rise above the range of radiobiologic hypoxia, whereas corresponding regions in ATI tumors do not. We also have investigated vasoactive drugs42 and vascular targeting agents,27 and the short-term changes in pO\textsubscript{2} following irradiation also have been examined.184 Perhaps the most significant results to date
show that pO_2 measurements and detection of changes in pO_2 accompanying interventions correlate with the efficacy of tumor irradiation.136

Future

Ultimately, the value of a technique depends on its robustness, ease of use, and widespread implementation. To date, few laboratories had adopted the FREDOM approach because efficient investigation of HFB requires an unusual NMR pulse sequence. With the recent upgrade of our own instrumentation to the Varian Unity INOVA, the software is

DYNAMIC ASSESSMENT OF TUMOR OXYGENATION

Fig. 12. Dynamic pO_2 (mean ± SE) obtained from sequential maps of the AT1 tumor shown in Fig. 8 with respect to respiratory challenge. *, $p < 0.001$; **, $p < 0.0001$ versus baseline.

Fig. 13. Correlation between maximum pO_2 detected in each of 56 voxels from the AT1 tumor shown in Fig. 8, when the rat breathed oxygen versus carbogen ($r^2 > 0.85$).

now available on this popular platform, facilitating ready implementation elsewhere. In terms of research applications, it is known that tumor tissue pO_2 varies rapidly in response to many acute interventions, ranging from irradiation to photodynamic therapy, and various chemotherapies. We foresee FREDOM as a valuable tool for assessing the dynamic time course
FIG. 14. Variation in pO_2 with respiratory challenge for individual regions chosen as initially well oxygenated ($pO_2 > 10$ torr) or hypoxic ($pO_2 < 5$ torr) from an AT1 (dotted lines) and H (solid lines) tumor, respectively. All the well-oxygenated regions in the two sublines increased significantly in pO_2 in response to oxygen breathing ($p < 0.01$). The hypoxic regions from the H tumor increased, whereas those in the AT1 tumor did not.

of such interventions to provide clear insight into the mode of action of therapeutic approaches and aid in the high-throughput screening of new drugs, such as vascular targeting and antiangiogenic agents.

Acknowledgments

This work was supported in part by NIH R01 CA79515 (NCI)/EB002762 (NIBIB), DOD Breast Cancer Initiative IDEA Award (DAMD 17–03–1–0363) (DZ) and predoctoral fellowship (DAMD 17–02–1–0592) (LJ) in conjunction with Cancer Imaging Program P20 CA 86354 and NIH BRTP Facility P41-RR02584. We are grateful to Dr. Anca Constantinescu for facilitating all the tumor investigations, Ms. Soon-Hee Sul for undertaking the Monte Carlo simulations, and Professor Eric Hahn for mentoring us in tumor biology.
TUMOR PHYSIOLOGIC RESPONSE TO COMBRETASTATIN A4 PHOSPHATE ASSESSED BY MRI

DAWEN ZHAO, M.D., PH.D., LAN JIANG, M.S., ERIC W. HAHN, PH.D., AND RALPH P. MASON, PH.D.

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX

Purpose: To evaluate the effect of the vascular targeting agent, combretastatin A4 phosphate, on tumor oxygenation compared with vascular perfusion/permeability.

Methods and Materials: 19F MRI oximetry and dynamic contrast-enhanced (DCE)-MRI were used to monitor tumor oxygenation and perfusion/permeability in syngeneic 13762NF rat breast carcinoma.

Results: A significant drop was found in the mean tumor pO2 (23 to 9 mm Hg, p < 0.05) within 90 min after treatment (30 mg/kg of combretastatin A4 phosphate) and a further decrease was observed at 2 h (mean 2 mm Hg; p < 0.01). The initial changes in pO2 in the central and peripheral regions were parallel, but by 24 h after treatment, a significant difference was apparent: the pO2 in the periphery had improved significantly, and the center remained hypoxic. These data are consistent with DCE-MRI, which revealed an ~70% decrease in perfusion/permeability (initial area under signal-intensity curve) at 2 h (p <0.001). The initial area under signal-intensity curve recovered fully after 24 h in a thin peripheral region, but not in the tumor center.

Conclusion: The response observed by DCE-MRI, indicating vascular shutdown, paralleled the pO2 measurements as expected, but quantitative pO2 measurements are potentially important for optimizing the therapeutic combination of vascular targeting agents with radiotherapy.

MRI, Vascular targeting agent, Vasculature, Oxygenation, Breast tumor.

INTRODUCTION

Tumor growth, survival, and metastasis depend critically on the development of new blood vessels (1). Therefore, extensive research has focused on developing strategies to attack the tumor vasculature (1, 2). Tubulin-binding agents (e.g., combretastatin A4 phosphate [CA4P] and ZD6126) represent one kind of vascular targeting agent (VTA) (3, 4). Promising preclinical studies have shown that such agents selectively cause tumor vascular shutdown and subsequently trigger a cascade of tumor cell death in experimental tumors (4, 5). Although massive necrosis can be induced, tumors usually regrow from a thin viable rim. Thus, a combination of VTAs with additional conventional therapeutic approaches will be required (6, 7). Several studies involving the combination of VTAs with radiotherapy (8–11) or chemotherapeutic agents (12) have shown enhanced tumor response.

To better understand the mode of action, and hence, optimize such combinations, in vivo imaging approaches have been initiated to monitor the physiologic changes resulting from VTA administration (13–15). Dynamic contrast-enhanced (DCE)-MRI based on the transport properties of gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) is the most commonly used imaging approach to study tumor vascular perfusion and permeability. DCE-MRI was included as part of the Phase I clinical trials of CA4P (16, 17). The results of preclinical and clinical DCE-MRI studies have shown a reversible change in vascular perfusion in the tumor periphery after a single dose of VTA (18–21). For combination with radiotherapy, measurement of tumor oxygen dynamics will be especially important, because reduced perfusion can induce hypoxia, potentially modulating the radiation response. A number of studies have reported an improved response when administering VTAs after radiotherapy, with the enhancement reduced or lost, if VTAs were administered before radiotherapy, implying increased hypoxia induced by VTAs (8, 10). Direct measurements of tissue pO2 using the Eppendorf electrode, conducted by Horsman et al. (22, 23), found increased hypoxia 3 h after CA4P or ZD6126 administration. We have
developed a method for measuring tumor oxygenation and dynamics based on \(^{19}\)F nuclear magnetic resonance echo planar imaging after direct intratumoral injection of the reporter molecule hexafluorobenzene (HFB) called "fluoro-carbon relaxometry using echo planar imaging for dynamic oxygen mapping" (FREDOM) (24, 25). This technique provides \(p_O^2\) measurements at multiple specific locations simultaneously within a tumor and reveals the dynamic changes at individual locations with respect to interventions. We have previously evaluated the tumor oxygen response to varying interventions such as hyperoxic gas breathing (26, 27). We also had an anecdotal example of \(p_O^2\) response to a tumor-selective infarcting agent (28). We have now applied both DCE-MRI and FREDOM to evaluate tumor perfusion/permeability and oxygen dynamics in response to CA4P in conjunction with confirmatory histologic examination.

METHODS AND MATERIALS

Tumor model

Rat mammary carcinoma 13762NF was implanted syngeneically in a skin pedicle surgically created on the fore back of Fisher 344 adult female rats \((n = 25, \sim 150\) g, Harlan), as previously described in detail (29). Of the 25 rats, 9 were used for DCE-MRI, 10 for FREDOM, and 6 for histologic study. The Institutional Animal Care and Use Committee approved the investigations.

Drug preparation and dosing

CA4P was provided by OXiGENE (Waltham, MA). CA4P was dissolved in 0.9% saline at a concentration of 30 mg/mL before each experiment. A single dose of 30 mg/kg CA4P was chosen for this study, because it is considered a clinically relevant dose (18).

MRI experiments

When tumors reached \(\sim 1\) cm diameter (\(\sim 0.6\) cm\(^3\)), MRI was performed using a 4.7 T horizontal bore magnet with a Varian Unity Inova system. Each rat was given intraperitoneal ketamine hydrochloride (120 AL; 100 mg/mL, Aveco, Fort Dodge, IA) as a relaxant and maintained under general anesthesia (air and 1% isoflurane, Baxter International, Deerfield, IL). A 27-gauge butterfly catheter (Abbott Laboratories, Abbott Park, IL) was placed intraperitoneally for infusion of CA4P or saline alone. For DCE-MRI, a tail vein was catheterized using a second 27-gauge butterfly catheter for contrast agent administration. For oximetry, hexafluorobenzene (50 \(\mu\)L, Lancaster, Gainesville, FL) was injected directly into the tumor along two or three tracks in a single central plane of the tumor, coronal to the rat's body using a Hamilton syringe (Reno, NV) with a custom-made, fine, sharp needle (32-gauge), as previously described in detail (25). A tunable \(^{1}H/\(^{19}\)F) volume radiofrequency (RF) coil was placed around the tumor-bearing pedicle. Each animal was placed on its side in the magnet with no change in position during the whole study, so that individual regions could be tracked. A thermal blanket was used to maintain body temperature.

\(^{1}H\) DCE-MRI

Nine tumor-bearing rats were studied before CA4P injection \((n = 6)\) or saline alone \((n = 3)\) and 2 and 24 h after treatment. On each occasion, a series of \(T_ow\)-weighted spin echo images (TR 160 ms, TE 16 ms, field of view 40 \(\times\) 40 mm, matrix 128 \(\times\) 128, voxel size 2.0 \(\times\) 0.3 \(\times\) 0.3 mm, total time for 3 slices 23 s) was acquired before and after a bolus injection of \(\text{Gd-DTPA-BMA}\) (injection within 1 s; 0.1 mmol/kg, Omniscan, Amersham Health, Princeton, NJ) on three 2-mm-thick cross-sections parallel to the animal. Data were processed on a voxel-by-voxel basis using software written by us using Interactive Data Language (IDL), version 5.3/5.4 (Research Systems, Boulder, CO). For each slice, the tumor was separated into central and peripheral regions. The tumor periphery was taken to be a 1–2-mm-thick rim aligned around the whole tumor. Signal intensity vs. time curves were plotted and relative signal intensity changes \((\Delta S)\) of each tumor voxel were analyzed using the equation: \((\Delta S) = (S_I - S_F)/S_F\), where \(S_F\) refers to the enhanced signal intensity in the voxel and \(S_I\) is defined as the average of the baseline images. The area under the normalized signal intensity-time curve (IAUC) for the first 1.5 min after \(\text{Gd-DTPA-BMA}\) injection was integrated.

\(^{19}\)F tumor oximetry—FREDOM

A separate cohort of 10 tumors (7 treated and 3 controls) was used for \(p_O^2\) measurement. A single 4-mm slice parallel to the rat body containing the strongest fluorine signal was chosen for the \(^{19}\)F MRI \(p_O^2\) studies. \(^{1}H\) and \(^{19}\)F MR images were acquired using a spin-echo sequence. Overlaying the \(^{19}\)F MR image on the corresponding \(^{1}H\) image revealed the distribution of HFB. After conventional MRI, tumor oxygenation was estimated on the basis of \(^{19}\)F pulse burst saturation recovery echo planar imaging relaxometry of the HFB, as previously described (24). This approach provided \(p_O^2\) maps with 1.25 mm in plane resolution and 6-\(\mu\)L voxel size in 6.5 min. The spin-lattice relaxation rate \((R_1(s^{-1}) = 1/T_1)\) was estimated on a voxel-by-voxel basis using a three-parameter monoexponential function. \(p_O^2\) was estimated using the relationship \(p_O^2\) mm Hg \(= (R_1 - 0.0835)/0.001876\) (24). The data are presented in bins of 5 mm Hg, except for the highest and lowest bins, which were open ended. Before CA4P or saline injection, a series of \(p_O^2\) maps was acquired with respect to respiratory challenge with oxygen: typically, two baseline measurements, three with oxygen and four on return to air. Immediately after the last (fourth) air measurement, CA4P (30 mg/kg) or saline (0.15 mL) was injected intraperitoneally. An additional series of \(p_O^2\) maps was acquired after 10, 30, 60, 90, and 120 min, and finally another three maps while breathing oxygen. The 24 h follow-up study comprised two measurements with air and four with oxygen. The oxygen challenge was included to evaluate vascular function.

Markers of vascular perfusion and endothelium

Six animals were used to study the total blood vessels and perfused vessels before \((n = 2)\), 2 h \((n = 2)\), and 24 h \((n = 2)\) after CA4P. The blue fluorescent dye Hoechst 33342 (Molecular Probes, Eugene, OR) was injected into the tail vein of the anesthetized rats at a concentration of 10 mg/kg in 0.9% saline (0.1 mL), and the tumors were excised 1 min later. Tumor specimens were immediately immersed in liquid nitrogen and then stored at \(-80^\circ\)C. Immediately after cryostat sectioning (6 \(\mu\)m thick), the slices were imaged for Hoechst 33342 under ultraviolet wavelength (330–380 nm). Perfused vessels were determined by counting the total number of structures stained by Hoechst 33342 in four fields per section selected to show high perfusion and calculating.
the mean number of vessels per millimeter squared. On the following day, the same slices, as well as their adjacent slices, were immunostained for the endothelial marker, CD31. A primary mouse anti-rat CD31 monoclonal antibody (1:20 dilution, Serotec, Raleigh, NC) was added and incubated for 2 h at 37°C in a humid box. The slides were incubated with Cy3-conjugated goat anti-mouse secondary antibody (1:100 dilution, Jackson Immunoresearch Laboratories, West Grove, PA) for 1 h at 37°C. After mounting with Vectorshield medium (Vector Laboratories, Burlingame, CA), the slides were observed under red fluorescence (530–550 nm excitation) to detect anti-CD31 and then the corresponding Hoechst 33342 again under ultraviolet light. Image analysis was performed using Metaview software (Universal Imaging, West Chester, PA).

Statistical analysis
Statistical significance was assessed using analysis of variance on the basis of Fisher’s Protected Least Significant Difference (StatView, SAS Institute, Cary, NC) or Student’s t tests.

RESULTS

DCE-MRI findings
Baseline 1H MRI showed stable signal throughout the tumor (not shown). Immediately after a bolus injection of Gd-DTPA-BMA, the signal intensity increased significantly, reaching a peak after 23–69 s, and then gradually decreasing toward baseline. The maximal signal enhancement averaged over the whole tumor in all three slices ranged from ~52% to 85% for the nine tumors.

A single dose of CA4P 30 mg/kg caused a dramatic decrease in signal enhancement at the 2 h point, and a 24 h follow-up image showed signal recovery in a thin tumor rim, as shown for a representative tumor (Fig. 1). Distribution of the IAUC values showed a distinct shift to the left at both 2 and 24 h after treatment (Fig. 1b). The highly enhancing fraction (IAUC >1.5) at 24 h after CA4P reached the pretreatment level, indicating complete recovery in the tumor periphery (Fig. 1b). For all six tumors treated with
CA4P, a significant decrease in IAUC was observed for the whole tumor region at 2 h; the tumor peripheral and central region was reduced by 65% and 70%, respectively (p <0.05; Table 1). A complete recovery in IAUC for the tumor periphery was seen 24 h after treatment, but the tumor center remained low (Table 1). IAUC frequency data from these six tumors also showed a significant increase in the number of nonenhancing voxels (IAUC <0.05), and the percentage of voxels with IAUC >0.5 decreased from 55% to 5% 2 h after administration of CA4P (p <0.05, Table 2). In control tumors treated with saline, the IAUC was similar at all points (Tables 1 and 2).

Tumor oximetry—FREDOM

Overlay of 19F on 1H image (Fig. 2a) confirmed that HFB was distributed in both peripheral and central regions of a central plane of the tumor. In the series of echo planar imaging relaxation data sets, typically ~40–100 voxels provided an R1 fit, and potential PO2 value. Because noise may give an apparent relaxation curve (R1) fit, data were selected by applying thresholds of T1 error <2.5 s and T1 error/T1 ratio <50%. Only those voxels, which provided consistently reliable data throughout the time course, were included for additional analysis. As an example (Fig. 2b), 25 voxels qualified for all these prerequisites and could be followed through the 17 measurements from baseline to 2 h after CA4P. At 24 h, 31 voxels were traceable through the six measurements with respiratory challenge. As expected, on the basis of the distribution of HFB (Fig. 2a), each PO2 map (Fig. 2b) comprised two distinct groups of voxels, representing the peripheral and central location of HFB, respectively. Variations in the mean PO2 with respect to intervention for these two groups of voxels are presented separately in Fig. 2c. Before CA4P administration, the mean PO2 was 45 mm Hg in the tumor periphery and 36 mm Hg in the center during air breathing. Both regions responded significantly to oxygen breathing (p <0.05), and this was reversed on return to air breathing. A significant decrease in PO2 was detected as early as 30 min after CA4P administration in the tumor periphery and by 60 min in the center (p <0.05). The decline continued with the lowest PO2 values (13 mm Hg and 10 mm Hg) at the 2-h point. At this time, oxygen challenge no longer produced an increase in PO2 for either region. At 24 h later, the peripheral PO2 had increased significantly (24 mm Hg), but was still significantly lower than the pretreatment value (p <0.05). After 24 h, PO2 again responded significantly to breathing oxygen in the tumor periphery (p <0.01). However, PO2 in the central regions (4 mm Hg) was even lower at 24 h than at 2 h and did not respond to oxygen breathing. Histograms of pooled voxels assessed for the seven tumors showed significantly decreased PO2 at 1, 2, and 24 h after treatment (p <0.01). The hypoxic fraction <5 mm Hg (HF5) increased significantly from a pretreatment value of 21% to 36% at 1 h and 68% at 2 h, but was only 34% at 24 h (Fig. 3). For the seven treated tumors, two tumors showed a significant decrease in PO2 as early as 30 min after treatment (p <0.05). A significant decrease in the mean PO2 for the group was found at 90 min after CA4P (23 ± 5 vs. 9 ± 3 mm Hg; p <0.05) and a further decrease at 2 h (2 ± 2 mm Hg; Table 3). The mean PO2 increased significantly to 15 ± 4 mm Hg at 24 h compared with 2 h (p <0.05). For the control tumors, no significant differences in PO2 were found among any of the measurements (before and 2 or 24 h after).

Histologic examination and immunohistochemistry

On the basis of the perfusion assessed by distribution of Hoechst 33342, a significant decrease in the number of perfused vessels was evident at 2 h (21 ± 6/mm² vs. 145 ± 23/mm² pre-CA4P, p <0.01), followed by recovered perfusion at 24 h (114 ± 19/mm²). Comparisons of perfused vessels marked by Hoechst 33342 and with the total vessels labeled by anti-CD31 before and 2 and 24 h after CA4P are shown in Fig. 4.

DISCUSSION

In common with previous reports in the literature (15, 18), CA4P caused a significant reduction in tumor perfusion within 2 h. DCE-MRI showed that the IAUC in the tumor

<table>
<thead>
<tr>
<th>Group</th>
<th>Baseline</th>
<th>2 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA4P (n = 6) (30 mg/kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periphery</td>
<td>0.88 ± 0.06</td>
<td>0.31 ± 0.08</td>
<td>0.86 ± 0.06</td>
</tr>
<tr>
<td>Center</td>
<td>0.44 ± 0.11</td>
<td>0.13 ± 0.08</td>
<td>0.12 ± 0.05</td>
</tr>
<tr>
<td>Control (n = 3) (saline)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periphery</td>
<td>1.09 ± 0.04</td>
<td>0.93 ± 0.13</td>
<td>0.86 ± 0.05</td>
</tr>
<tr>
<td>Center</td>
<td>0.52 ± 0.19</td>
<td>0.46 ± 0.05</td>
<td>0.44 ± 0.03</td>
</tr>
</tbody>
</table>

Abbreviations: IAUC = initial area under signal-intensity curve; DCE = dynamic contrast enhanced; CA4P = combretastatin A4 phosphate.

*p <0.05 from baseline.

† p <0.05 from periphery.

‡ p <0.05 from control.
Table 2. Comparison of weakly (IAUC < 0.05) and strongly (IAUC > 0.05) responding voxels with respect to DCE-MRI and drug administration

<table>
<thead>
<tr>
<th>Group</th>
<th>IAUC</th>
<th>Baseline</th>
<th>2 h</th>
<th>24 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA4P (n = 6) (30 mg/kg)</td>
<td><0.05</td>
<td>16</td>
<td>54*</td>
<td>41*</td>
</tr>
<tr>
<td></td>
<td>>0.5</td>
<td>55</td>
<td>5*</td>
<td>32*</td>
</tr>
<tr>
<td>Control (n = 3) (saline)</td>
<td><0.05</td>
<td>14</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>>0.5</td>
<td>62</td>
<td>58</td>
<td>51</td>
</tr>
</tbody>
</table>

Individual voxels (total = 10,508 in CA4P vs. 5376 in control) categorized according to IAUC.
Abbreviations as in Table 1.
*p < 0.01 from baseline.
* p < 0.05 from control.

administration and had not recovered fully at 24 h (Figs. 2C and 3).

Oxygen challenge before and after treatment was used to compare vascular function in this study. In common with our previous observations (31, 32), oxygen breathing significantly increased tumor oxygenation in mammary carcinoma 13762NF under control conditions (Fig. 2 and Table 3). The po2 response to CA4P was equally effective in the peripheral and central regions through 2 h after administration (Fig. 2C). po2 decreased in both regions within 30 min and continued to decrease for 2 h. Differential behavior with respect to oxygen challenge between the peripheral and central tumor regions was observed only after 24 h. At 24 h, po2 in the tumor center was even lower than the pretreatment baseline or the 2-h level and showed no response to oxygen inhalation (Fig. 2). However, oxygen breathing produced a significant increase in po2 of the peripheral region, even though the po2 was significantly lower than before treatment (Fig. 2). These observations provide further evidence that CA4P at 30 mg/kg induces irreversible vascular damage in the tumor center, and peripheral vessels survived and were functional by 24 h. One would expect that hypoxia modifiers (e.g., oxygen breathing), if given 24 h after CA4P, might improve tumor radiosensitivity.

Hypoxia in solid tumors has been widely recognized as a potent factor that leads to resistance to radiotherapy and some anticancer drugs (33). Recently, increasing evidence has shown that tumor malignant progression may be associated with a hypoxic microenvironment (34, 35). Given the importance of oxygen, many techniques for monitoring po2 have been developed (25, 36). Although each method has specific attributes, many are highly invasive and impractical for longitudinal studies of specific regions of interest. The Eppendorf has been considered the gold standard for perfusion measurement, but it is not suitable for a longitudinal study of specific regions of interest. The Eppendorf technique is contraindicated in the presence of hemorrhage or necrosis.

In vivo, proton MRI (e.g., DCE-MRI and blood oxygen level-dependent MRI) provides a noninvasive approach to assess tumor vasculature, particularly useful in response to interventions, but neither DCE nor blood oxygen level-dependent MRI provides a straightforward correlation with po2. FREDOM not only provides po2 values simultaneously at multiple specific locations within a tumor, but also reveals dynamic changes at individual locations with respect to interventions.

Central necrosis develops in 13762NF tumors even at a small size and becomes substantial when tumors become bigger, which has been confirmed previously by histologic examination (32). In some of the tumors used in this study, a low-intensity central region was observed in T1-weighted images, in which little enhancement was noted after infusion of the contrast agent. After treatment with CA4P, the area of these regions of low-signal intensity increased slightly (data not shown). A similar observation was reported by Beauregard et al. (39) in human colon carcinoma xenograft. In common with our previous study of 13762NF tumors (31, 32), we found considerable intratumoral heterogeneity in the distribution of po2 values, ranging from
Fig. 2. (a) Distribution of hexafluorobenzene (HFB) in representative tumor (No. 4 in Table 3). Overlay of 19F signal density on anatomic image indicates HFB in both peripheral and central regions. (b) pO_2 maps obtained from same tumor comprise two separated groups of voxels that correspond to locations of HFB on anatomic image; 25 individual voxels were traceable from pretreated baseline to 2 h after CA4P with oxygen breathing; and 31 voxels could be followed 24 h after treatment. Significant decrease in pO_2 was evident for all individual voxels after CA4P. pO_2 did not respond to oxygen inhalation after 2 h; 24-h maps showed improved pO_2 and significant response to oxygen breathing in peripheral region (right), but not in central region (left). (c) Mean pO_2 curves shown for peripheral (black squares) and central (white circles) voxels of tumor. *$p < 0.05$ from baseline air, †$p < 0.05$ from 24-h air, ‡$p < 0.05$ from periphery.
Fig. 3. \(\text{pO}_2\) histograms based on relative numbers of voxels in seven tumors showing left shift after CA4P. Ordinate ranges (e.g., 15 refers to 10 mm Hg \(<\text{pO}_2\) < 15 mm Hg). \(x = \text{mean}; m = \text{median.}\)

Previous studies showed little macroscopic redistribution of HFB during a period of hours (40), but it did clear from the tumors with a typical half-life about 600 min (41). The clearance of HFB normally precludes chronic long-term studies of oxygenation, unless additional doses of HFB are administered. For all three control tumors in this study, additional HFB (50 \(\mu\)L) was required for the 24-h follow-up study. However, no additional HFB was required for studies 24 h after CA4P, presumably owing to vascular shutdown.

These results provide the first insight into regional tumor oxygen dynamics in response to CA4P in a syngeneic rat

<table>
<thead>
<tr>
<th>Group</th>
<th>Case No.</th>
<th>Size (cm(^3))</th>
<th>Baseline air</th>
<th>30 min</th>
<th>60 min</th>
<th>90 min</th>
<th>2 h</th>
<th>Oxygen (24 h base)</th>
<th>Oxygen 24 h air (24 h after injection of CA4P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA4P (30 mg/kg) ((n = 7))</td>
<td>1</td>
<td>2.0</td>
<td>36 ± 1</td>
<td>NA</td>
<td>NA</td>
<td>2 ± 3*</td>
<td>5 ± 2*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.9</td>
<td>12 ± 2</td>
<td>NA</td>
<td>NA</td>
<td>-3 ± 2*</td>
<td>-3 ± 2*</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1.2</td>
<td>13 ± 0</td>
<td>11 ± 3</td>
<td>9 ± 4</td>
<td>1 ± 2*</td>
<td>2 ± 2*</td>
<td>5 ± 0*</td>
<td>30 ± 6(^\dagger)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.7</td>
<td>29 ± 3*</td>
<td>21 ± 3*</td>
<td>20 ± 2*</td>
<td>13 ± 1*</td>
<td>16 ± 5*</td>
<td>20 ± 2*</td>
<td>48 ± 7(^\dagger)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.4</td>
<td>12 ± 2</td>
<td>5 ± 3*</td>
<td>9 ± 3</td>
<td>4 ± 2*</td>
<td>2 ± 1*</td>
<td>7 ± 3*</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.7</td>
<td>15 ± 1</td>
<td>19 ± 3</td>
<td>9 ± 2*</td>
<td>4 ± 2*</td>
<td>1 ± 2*</td>
<td>0 ± 3*</td>
<td>12 ± 1</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.3</td>
<td>28 ± 6</td>
<td>29 ± 2</td>
<td>16 ± 4</td>
<td>6 ± 2*</td>
<td>1 ± 1*</td>
<td>7 ± 2*</td>
<td>23 ± 2*</td>
</tr>
<tr>
<td>Mean (0.9 ± 0.2)</td>
<td>23 ± 5</td>
<td>23 ± 13</td>
<td>13 ± 5</td>
<td>9 ± 3*</td>
<td>2 ± 2*</td>
<td>5 ± 3*</td>
<td>15 ± 4</td>
<td>58 ± 11(^\dagger)</td>
<td></td>
</tr>
<tr>
<td>Saline ((n = 3))</td>
<td>8</td>
<td>0.6</td>
<td>34 ± 2</td>
<td>47 ± 5</td>
<td>40 ± 5</td>
<td>36 ± 10</td>
<td>31 ± 8</td>
<td>88 ± 10*</td>
<td>37 ± 0</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0.2</td>
<td>47 ± 2</td>
<td>62 ± 8</td>
<td>65 ± 6</td>
<td>64 ± 5</td>
<td>61 ± 4</td>
<td>114 ± 8*</td>
<td>67 ± 1</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.6</td>
<td>13 ± 1</td>
<td>16 ± 6</td>
<td>10 ± 4</td>
<td>9 ± 4</td>
<td>12 ± 6</td>
<td>35 ± 10*</td>
<td>14 ± 1</td>
</tr>
<tr>
<td>Mean (0.5 ± 0.1)</td>
<td>31 ± 10</td>
<td>42 ± 14</td>
<td>38 ± 16</td>
<td>36 ± 16</td>
<td>35 ± 14</td>
<td>79 ± 23*</td>
<td>39 ± 15</td>
<td>108 ± 26(^\dagger)</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: NA = no measurement; other abbreviations as in Table 1.

Data presented as mean ± SE.

* \(p < 0.05\) from baseline.

† \(p < 0.05\) from 24 h air (24 h after injection of CA4P).
A distinct similarity was noted between the results of the \(P_0 \) measurements and the more traditional DCE, but the quantitative \(P_0 \) values provide the potential for exploiting synergy with other oxygen-dependent therapies. The observations also demonstrate the value of FREDOM in assessing dynamic changes in regional tumor \(P_0 \) \textit{in vivo} in response to intervention. We believe that dynamic measurements are particularly valuable for understanding the mode of action of therapeutic response to VTAs. Most significantly, these measurements lay a foundation to optimize the timing of combination therapy involving fractionated radiotherapy and multiple doses of VTAs.

REFERENCES

Chemotherapeutic (Cyclophosphamide) Effects on Rat Breast Tumor Hemodynamics Monitored by Multi-Channel NIRS.

Jae G. Kim, Dawen Zhao, Ralph P. Mason, Hanli Liu

ABSTRACT

We previously suggested that the two time constants quantified from the increase of tumor oxyhemoglobin concentration, $\Delta[HbO_2]$, during hyperoxic gas intervention are associated with two blood flow/perfusion rates in well perfused and poorly perfused regions of tumors. In this study, our hypothesis is that when cancer therapy is applied to a tumor, changes in blood perfusion will occur and be detected by the NIRS. For experiments, systemic chemotherapy, cyclophosphamide (CTX), was applied to two groups of rats bearing syngeneic 13762NF mammary adenocarcinomas: one group received a single high dose i. p. (200 mg/kg CTX) and the other group continuous low doses (20 mg/kg CTX i. p. for 10 days). Time courses of changes in tumor $\Delta[HbO_2]$ were measured at four different locations on the breast tumors non-invasively with an inhaled gas sequence of air-oxygen-air before and after CTX administration. Both rat body weight and tumor volume decreased after administration of high dose CTX, but continuous low doses showed decrease of tumor volume only. Baselines (without any therapy) intra- and inter-tumor heterogeneity of vascular oxygenation during oxygen inhalation were similar to our previous observations. After CTX treatment, significant changes in vascular hemodynamic response to oxygen inhalation were observed from both groups. By fitting the increase of $\Delta[HbO_2]$ during oxygen inhalation, we have obtained changes of vascular structure ratio and also of perfusion rate ratio before and after chemotherapy. The preliminary results suggest that cyclophosphamide has greatest effect on the well perfused tumor vasculature. Overall, our study supports our earlier hypothesis, proving that the effects of chemotherapy in tumor may be monitored non-invasively by using NIRS to detect changes of hemodynamics induced with respiratory challenges.

Keywords: Breast Cancer, Cyclophosphamide, Hemodynamics, NIR Spectroscopy, Tumor vascular oxygenation

1. INTRODUCTION

In addition to surgical resection, many other types of cancer therapy are available for patients including radiotherapy, photodynamic therapy and chemotherapy. Chemotherapy plays an important role to treat cancers even though it has some side effects. Currently, the effect of chemotherapy is monitored by MRI or CT that can measure the tumor volume changes during cancer treatment. However, it can take up to 3 weeks to detect such changes, and this is considerably late for clinicians to decide whether initial therapeutic strategy should be continued or modified. This delay in detection of chemotherapy effect can reduce the quality of a patient’s life and ineffective therapy is costly. Therefore, many researchers are trying to develop tools that can detect the early response to cancer treatment. For example, Li et al. have used 3P nuclear magnetic resonance spectroscopy (NMRS) to measure the effectiveness of cyclophosphamide (CTX) treatment in radiation-induced fibrosarcoma (RIF). They found that the ratio of inorganic phosphate to other phosphate metabolites in CTX treated group was significantly decreased during the tumor growth delay period compared to age-matched controls. Poptani et al. studied the effects of CTX treatment in RIF-1 tumors in terms of tumor oxygenation...
and glycolytic rate changes by utilizing 13C MRS, Eppendorf electrode, and Redox scanning. They observed that CTX treatment caused reduction in glycolytic rate, a significant decrease in tumor tissue pO_2, and also an increase of NADH levels 24 hours after the treatment while tumor volume did not show any significant difference between the CTX-treated and control groups. Zhao et al. have reported significant changes in rat breast tumor perfusion following either single dose CTX or continuous low dose “metronomic” therapy.

In the last decade, near infrared spectroscopy (NIRS) has been developed to examine tissue oxygenation and has been widely applied to investigate hemoglobin oxidations of muscles, the brain, and animal tumors. Since tumors have higher vascular density and also higher metabolism than normal tissues, total hemoglobin concentration ($[Hb_{total}]$), oxyhemoglobin concentration ($[HbO_2]$), and reduced scattering coefficient (μ_s') were used as markers to identify tumors from the human breast by using NIRS. In addition, an NIR spectrometer is a low-cost, portable, and real-time display instrument. Therefore, NIRS has a good potential to be used as a monitoring tool for tumor treatment planning and tumor prognosis.

We have previously studied breast tumor oxygenation under gas intervention using NIRS and found that oxyhemoglobin concentration changes ($\Delta[HbO_2]$) during gas intervention can be fitted by a two-exponential equation containing two time constants. Based on the model, we formed a hypothesis that changes in oxygenated hemoglobin concentration result from well perfused and poorly perfused regions of an animal tumor to explain why there are two different time constants in the $\Delta[HbO_2]$ data. The model further allows us to associate the signal amplitudes and time constants to the ratio of vascular density and the ratio of the perfusion rates in the two different regions, respectively.

In this study, we applied the NIRS system to monitor the tumor oxygenation changes during oxygen intervention before and after CTX administration. The purpose for this study is to explore the NIRS as a possible tool for monitoring tumor responses to chemotherapy. This work is based on the following hypothesis: when tumor is treated with chemotherapy, changes in blood perfusion and vascular density in the tumor will occur and will be seen as changes of the two fitted parameters from the NIRS measurements. In addition, by developing a non-invasive tool for monitoring cancer therapy, we are not only monitoring the reduction of tumor size, but also detecting the changes of tumor physiological conditions, which are essential for tumor treatment planning and tumor prognosis.

2. MATERIALS AND METHODS

2.1 Tumor Model and Experimental Procedure

Rats were divided into three groups for this study. Two groups were treated with CTX at different doses, and the other group was administered saline instead of CTX as a control group. Cyclophosphamide was chosen as a chemotherapeutic agent for this study since our tumor line is highly responsive to alkylating agents and platinum chemotherapeutic agents. CTX is an antineoplastic alkylating agent, and it has been used to treat lymphomas, cancers of the ovary, breast and bladder, and chronic lymphocytic leukaemia. The tumor line was rat mammary adenocarcinomas 13762NF (cells originally provided by the Division of Cancer Therapeutics, NCI), and the tumors were implanted in the hind limb of adult female Fisher 344 rats (200 g).

The rats were anesthetized with 0.2 ml ketamine HCl (100 mg/ml; Aveco, Fort Dodge, IA) when the tumors reached approximately 1 cm in diameter and maintained under general gaseous anesthesia using a small animal anesthesia unit with air (1 dm3/min) and 1% isoflurane through a mask placed over the mouth and nose. During the experiments, the rat was placed on a warm blanket to maintain body temperature, which was monitored with a rectally inserted thermal probe connected to a digital thermometer (Digi-Sense, model 91110-50, Cole-Parmer Instrument Company, Vernon Hills, IL). Tumors were shaved before measurements to improve optical contact for transmitting light. A pulse oximeter (model: 8600V, Nonin, Inc.) was placed on the hind foot to monitor arterial oxygenation (S_O_2) and heart rate. For the single high dose group (n=5), a light source and four detectors from a multi-channel, CW (continuous wave) NIRS (NIM, Inc, Philadelphia, PA) were attached to the tumor using posts and swivel post clamps (see Figure 1(a)). For the multi low dose (n=3) and control (n=3) groups, we have used four-channel, frequency domain (FD), NIRS (ISS, Champaign, IL). In the latter case, the four sets of light sources replaced four detectors shown in Figure 1(b), and one detector fiber was placed on the top center of the tumor to obtain signals from four different regions of tumor.
Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

All the measurements were performed in a dark room, and the measurements were initiated while the rats breathed air for 10 minutes to get a stable baseline. After 10 minutes of baseline measurement, the inhaled gas was switched to oxygen for 15 minutes, and then back to air for 15 minutes. This experimental procedure was repeated before and after the CTX treatment, and the four detectors were intended to be located at the same positions for each measurement on different days. Using an ellipsoidal approximation, tumor volume \(V \) \((\text{cm}^3) \) was estimated as \(V = \frac{\pi}{6} LWH \) where \(L, W, \) and \(H \) are the three respective orthogonal dimensions. Raw amplitude data from four locations were recorded simultaneously during the experiments and processed after the experiments to obtain the \([\text{HbO}_2] \) and \([\text{Hbtotal}] \). The amplitude and time constant of \([\text{HbO}_2] \) were calculated by fitting the two-exponential model to the data using Kaleidagraph (Synergy Software, Reading, PA). The corresponding ratios of vasculature coefficients and perfusion rates, i.e., \(\gamma_1/\gamma_2 \) and \(f_1/f_2 \), were also calculated to show static and dynamic heterogeneities of the tumors at different locations.

2.2 Measurement System
As mentioned above, we have used two NIRS systems for this study: a multi-channel, CW, NIRS system was used in the single high dose study, while an ISS, 4-channel, frequency-domain, NIRS system was applied in the continuous low dose study. The original CW NIRS system has the ability to measure light signals from eight different locations, but due to the finite tumor size, we used only four detectors to monitor tumor vascular oxygenation dynamics during respiratory challenges. In common with our previous work12,20, we assume that oxyhemoglobin and deoxyhemoglobin are the only significant absorbing materials in the blood-perfused tumor tissue in the NIR range. The absorption coefficients comprise the extinction coefficients for deoxyhemoglobin and oxyhemoglobin multiplied by their respective concentrations (Eqs. 1 and 2) at 730 nm and 850 nm, that have been employed in our multi-channel NIRS system.

\[
\begin{align*}
\mu_\text{a,730} &= \varepsilon_\text{HbO}_2 \text{730}[\text{HbO}_2] + \varepsilon_\text{Hb} \text{730}[\text{Hb}] , \\
\mu_\text{a,850} &= \varepsilon_\text{HbO}_2 \text{850}[\text{HbO}_2] + \varepsilon_\text{Hb} \text{850}[\text{Hb}] .
\end{align*}
\]
Based on modified Beer-Lambert's law, the data presented in this paper were analyzed using amplitude values to find the changes in absorption (Eq. 3). By manipulating Equations 1-3, changes in oxygenated hemoglobin, deoxygenated hemoglobin and total hemoglobin concentrations were calculated from the transmitted amplitude of the light through the tumor (Eqs. 4, 5 and 6).

\[
\mu_{ab} - \mu_{at} = \log \left(\frac{A_b}{A_t} \right) / L, \tag{3}
\]

\[
\Delta[HbO_2] = \left[-0.674 \times \log \left(\frac{A_b}{A_t} \right)_{730} + 1.117 \times \log \left(\frac{A_b}{A_t} \right)_{850} \right] / L, \tag{4}
\]

\[
\Delta[Hb] = \left[0.994 \times \log \left(\frac{A_b}{A_t} \right)_{730} - 0.376 \times \log \left(\frac{A_b}{A_t} \right)_{850} \right] / L, \tag{5}
\]

\[
\Delta[Hb_{total}] = \Delta[Hb] + \Delta[HbO_2] = \left[0.32 \times \log \left(\frac{A_b}{A_t} \right)_{730} + 0.741 \times \log \left(\frac{A_b}{A_t} \right)_{850} \right] / L, \tag{6}
\]

where \(A_b \) = baseline amplitude; \(A_t \) = transition amplitude; \(L \) = optical pathlength between source/detector. The constants contained in these equations were computed with the extinction coefficients for oxy and deoxyhemoglobin at the two wavelengths used.\(^{21}\) Notice that these coefficients have accounted for four hemes per hemoglobin molecule. In principle, \(L \) should be equal to the source-detector separation, \(d \), multiplied by a differential pathlength factor (DPF), i.e., \(L = d \times \text{DPF} \). Little is known about DPF for tumors, although a DPF value of 2.5 has been used by others.\(^{10}\) Since our focus is on dynamic changes and relative values of tumor \([HbO_2]\) in response to oxygen intervention, we have taken the approach of including the DPF in the unit, and eq. (4) becomes as follows:

\[
\Delta[HbO_2] = \left[-0.674 \times \log \left(\frac{A_b}{A_t} \right)_{730} + 1.117 \times \log \left(\frac{A_b}{A_t} \right)_{850} \right] / d, \tag{7}
\]

where \(d \) is the direct source-detector separation in cm, and the unit of \(\Delta[HbO_2] \) in Eq. (7) is mM/DPF.

Since the wavelengths of light sources from the ISS, frequency-domain system were 750 nm and 830 nm, the corresponding equations for \(\Delta[HbO_2], \Delta[Hb], \text{ and } \Delta[Hb_{total}] \) are modified as follows.

\[
\Delta[HbO_2] = \left[-0.709 \times \log \left(\frac{A_b}{A_t} \right)_{750} + 1.404 \times \log \left(\frac{A_b}{A_t} \right)_{830} \right] / d, \tag{8}
\]

\[
\Delta[Hb] = \left[0.9546 \times \log \left(\frac{A_b}{A_t} \right)_{750} - 0.4992 \times \log \left(\frac{A_b}{A_t} \right)_{830} \right] / d, \tag{9}
\]

\[
\Delta[Hb_{total}] = \Delta[Hb] + \Delta[HbO_2] = \left[0.2456 \times \log \left(\frac{A_b}{A_t} \right)_{750} + 0.9048 \times \log \left(\frac{A_b}{A_t} \right)_{830} \right] / d. \tag{10}
\]

2.3 Bi-exponential Model of Tumor Vascular Oxygenation

In our previous report,\(^{12}\) we followed an approach used to measure regional cerebral blood flow (rCBF) with diffusible radiotracers, as originally developed by Kety\(^{22}\) in the 1950's. By applying Fick's principle and defining \(\gamma \) as the ratio of \(HbO_2 \) concentration changes in the vascular bed to that in veins, we arrived at Eq. (11):

\[
\Delta HbO_2_{\text{vasculature}}(t) = \gamma H_a \left[1 - \exp \left(-t/v \right) \right] = A_1 \left[1 - \exp \left(-t/v_1 \right) \right] \tag{11}
\]

where \(\gamma \) is the vasculature coefficient of the tumor, \(H_a \) is the arterial oxygenation input and \(f \) is the blood perfusion rate.

If a tumor has two distinct perfusion regions, and the measured signal results from both of the regions (Figure 2), then it is reasonable to include two different blood perfusion rates, \(f_1 \) and \(f_2 \), and two different vasculature coefficients, \(\gamma_1 \) and \(\gamma_2 \), in the model. Therefore, Eq. (11) can be modified to count for the double exponential feature observed in the experiments:

\[
\Delta HbO_2_{\text{vasculature}}(t) = \gamma_1 H_a \left[1 - \exp \left(-f_1 t/v_1 \right) \right] + \gamma_2 H_a \left[1 - \exp \left(-f_2 t/v_2 \right) \right]
\]

\[
= A_1 \left[1 - \exp \left(-t/v_1 \right) \right] + A_2 \left[1 - \exp \left(-t/v_2 \right) \right] \tag{12}
\]

where \(f_1 \) and \(\gamma_1 \) are the blood perfusion rate and vasculature coefficient in region 1 for the well perfused region, respectively; \(f_2 \) and \(\gamma_2 \) have the same respective meanings in region 2 for the poorly perfused region, and \(A_1 = \gamma_1 H_a, A_2 = \gamma_2 H_a \).
\[\gamma H_2 = \gamma f_1, \quad \tau_2 = \gamma f_2. \] Then, if \(A_1, A_2, \tau_1, \) and \(\tau_2 \) are determined by fitting the measurements with the model, we can obtain the ratios of two vasculature coefficients and the two blood perfusion rates:

\[
\frac{\gamma_1}{\gamma_2} = \frac{A_1}{A_2}, \quad \frac{f_1}{f_2} = \frac{\tau_1}{\tau_2}. \tag{13}
\]

With these two ratios, we are able to understand more about tumor physiology, such as tumor vasculature and blood perfusion.

3. RESULTS

3.1 Body weight and tumor volume changes during chemotherapy

Body weight and tumor volume were monitored before and after the CTX treatments to see the tumor responses and side effects from chemotherapy. In the single high dose treatment group, body weight decreased until 6 days after the treatment, but later increased for the rest of days of observation. Two rats among five in this group failed to survive at day 6 due to the toxicity from the high dose CTX treatment. Therefore, the data shown at day 8 and 10 represent the smaller group of rats which survived during the high dose treatment. Tumor volume did not further decreased after day 4. (Fig. 2(b)) In comparison, rats in the continuous low dose group initially lost weight after a low dose of CTX administration, but gradually gained the weight during the treatment, presenting low toxicity from the treatment. This group also showed a significant reduction in tumor volume during the treatment. For a control group, saline was injected into the rats instead of CTX, and a gradual decrease of body weight was observed, while their tumor volumes increased exponentially. Changes in rat body weight and tumor volume were normalized to day 0 (before CTX or saline administration). (Figures 2(a) and (b)) Solid circles represent the data from a control group, and open squares and open diamonds represent the continuous low dose group and single high dose group, respectively.

![Normalized Changes in Rat Body Weight and Tumor Volume](image)

Fig. 2. Normalized changes in rat body weight (a) and tumor volume (b) during the saline and CTX treatments.

3.2 Intratumoral heterogeneity of vascular oxygenation observed by the multi-channel NIRS

In our experiment, we have utilized either one light source and four detectors and from the CW system (NIM, Inc) or four light sources and one detector from the FD system (ISS, Inc.) for the rat breast tumor measurements, and the setups (Fig. 1). After 10 minutes of baseline measurement with air breathing, gas was switched to pure oxygen, causing a rapid increase in tumor [HbO2]. These changes were measured simultaneously from four locations of the tumor. Figure 3 shows a representative set of data before the CTX treatment, with the DC NIRS system. Open circles show the raw data.
measured by multi-channel NIRS, and the solid black lines represent the fitted curves using our bi-exponential model for hemodynamics during oxygen intervention.12 It is apparent that the data from each location differs though there are similar trends of Δ[HbO\textsubscript{2}].

Fig. 3. Dynamic changes of tumor [HbO\textsubscript{2}] from four locations in a rat breast tumor. The rising parts of Δ[HbO\textsubscript{2}] from the four locations were fitted using a double-exponential expression. Figures 3(a)-3(d) were taken from locations #1-#4, respectively. In this case, the tumor was not treated yet.

Table 1. Summary of vascular oxygen dynamics determined at the four detectors from tumor shown in the Fig. 3.

<table>
<thead>
<tr>
<th>Location</th>
<th>A\textsubscript{1}</th>
<th>A\textsubscript{2}</th>
<th>τ\textsubscript{1}</th>
<th>τ\textsubscript{2}</th>
<th>A\textsubscript{1}/A\textsubscript{2} (=γ\textsubscript{1}/γ\textsubscript{2})</th>
<th>τ\textsubscript{1}/τ\textsubscript{2}</th>
<th>f\textsubscript{1}/f\textsubscript{2}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Fig. 3a)</td>
<td>0.013</td>
<td>0.027</td>
<td>0.48</td>
<td>24.3</td>
<td>0.48</td>
<td>0.02</td>
<td>24</td>
</tr>
<tr>
<td>2 (Fig. 3b)</td>
<td>0.029</td>
<td>0.026</td>
<td>0.09</td>
<td>29.8</td>
<td>1.12</td>
<td>0.003</td>
<td>373</td>
</tr>
<tr>
<td>3 (Fig. 3c)</td>
<td>0.008</td>
<td>0.036</td>
<td>0.15</td>
<td>10.6</td>
<td>0.22</td>
<td>0.014</td>
<td>16</td>
</tr>
<tr>
<td>4 (Fig. 3d)</td>
<td>0.021</td>
<td>0.037</td>
<td>0.12</td>
<td>7.25</td>
<td>0.57</td>
<td>0.017</td>
<td>34</td>
</tr>
</tbody>
</table>

To compare the data taken from four locations of the tumor more clearly, the time constants and amplitudes from the four fitted curves are summarized in Table 1. The ratios of γ\textsubscript{1}/γ\textsubscript{2} and f\textsubscript{1}/f\textsubscript{2} characterize tumor vascular structure and blood...
perfusion within the volume of tumor interrogated by light12. In principle, when \(\gamma_1/\gamma_2 \) is close to 1, it implies that the measured optical signal results equally from both regions 1 (i.e., well perfused region) and 2 (i.e., poorly perfused region); if \(\gamma_1/\gamma_2 < 1 \), the measured signal results more from region 2 than region 1 [Figures 3(a), 3(c) and 3(d)]. As Table 1 demonstrates, only location #2 has a ratio of \(\gamma_1/\gamma_2 \) slightly higher than 1, and the readings from locations #1, #3 and #4 have the ratios of \(\gamma_1/\gamma_2 \) less than 1. This may suggest that the tumor volume that was optically interrogated from location #2 was dominated by well perfused regions, while most of other tumor volumes detected from locations #1, #3 and #4 are composed of more poorly perfused regions. Furthermore, all the ratios of \(f_1/f_2 \) from four locations of the tumor shown in Fig. 3 are much greater than 1, indicating that the blood perfusion rate in well perfused region is much greater than that in poorly perfused region. Especially, \(f_1/f_2 \) from location #2 is 10 to 20 times higher than those from locations #1, #3, and #4, showing a high level of intratumoral heterogeneity in dynamic vascular structure.

3.3 Monitoring vascular hemodynamics of breast tumors before and after chemotherapy

The tumor hemodynamics during oxygen intervention were measured before and after administration of CTX and saline. The representative data from the control group and continuous low dose group are shown in Figs. 4(a) and 4(b), respectively. Similar to Figure 3, open symbols are the raw data from measurements, and solid lines are the fitted curves using our double exponential model. As mentioned before, there were 4 light sources placed on the surface of tumor. Figure 4 shows the acute and then gradual changes of \([HbO_2]\) after switching the breathing gas from air to oxygen, and the data were observed at the same (or nearly the same) location of tumor from day 0 to day 6. From Figure 4(a), we can see different tumor hemodynamics at different days, but having similar trends and maximum \(\Delta[HbO_2] \) for the control group. However, the data taken from the continuous low dose group show quite different hemodynamics throughout the treatment days (Fig. 4(b)). Especially, we notice that the fast increase part became much smaller at Days 2 and 6 compared to Day 0, implying a significant decrease in signal from the well perfused region.

Fig. 4. Dynamic changes of \(\Delta[HbO_2] \) taken at location #1 from a rat breast tumor before and after administration of (a) saline and (b) continuous low dose of CTX (20 mg/kg for 10 days). The rising part of \(\Delta[HbO_2] \) from location #1 was fitted using the double-exponential expression.

Figure 5 also shows the changes of tumor hemodynamics during oxygen intervention, before and after a single high dose of CTX treatment, measured by the CW NIRS. This figure clearly demonstrates that we can observe significant changes in tumor hemodynamics after chemotherapy by using respiratory challenge as a mediator. The fitted parameters from our mathematical model are summarized in Table 2 to compare the changes in hemodynamic parameters before and after administration of CTX. The rising part of \(\Delta[HbO_2] \) from location #1 was fitted using either a single- or double-exponential expression.
Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.

Fig. 5. Dynamic changes of [HbO$_2$] taken at location #1 from a rat breast tumor before and after a single high dose of CTX treatments (200mg/kg). The rising part of Δ[HbO$_2$] from location #1 was fitted using either a single- or double-exponential expression.

Table 2. Summary of vascular oxygen dynamics determined at location #1 from the tumor shown in Fig. 5 before and after CTX treatment.

<table>
<thead>
<tr>
<th>Day</th>
<th>A_1</th>
<th>A_2</th>
<th>τ_1</th>
<th>τ_2</th>
<th>A_1/A_2</th>
<th>γ_1/γ_2</th>
<th>γ_1/τ_2</th>
<th>f_1f_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0444</td>
<td>0.031</td>
<td>0.23</td>
<td>25.21</td>
<td>1.42</td>
<td>0.0091</td>
<td>156</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.032</td>
<td>0.033</td>
<td>0.13</td>
<td>11.36</td>
<td>0.97</td>
<td>0.0114</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.0087</td>
<td>0.014</td>
<td>0.089</td>
<td>8.36</td>
<td>0.62</td>
<td>0.0106</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.0087</td>
<td></td>
<td>1.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. DISCUSSION

Changes of rat body weight and tumor volume clearly show that CTX treatment is effective for the tumor type that we have used in this study. For the control group, the average rat body weight gradually decreased during the entire course of treatment, which implies the sickness of rats possibly due to the tumor growth (cachexia). (At Day 10, the tumor volume was ~5 times larger than that at Day 0.) It is clear that there is a different effectiveness of CTX treatment between the single high dose group (200mg/kg) and continuous low dose group (20mg/kg for 10 days). Both of the CTX treatments delayed the tumor growth and even further reduced the tumor volume. However, a single high dose of CTX treatment caused the death of two rats, and the tumor volume was not decreased further 4 days after the treatment, while the continuous low dose CTX treatment continued to provide tumor regression without causing severe sickness. From this observation, it is obvious that continuous low dose of CTX treatment is working much better than a single high dose of CTX treatment for a rat mammary adenocarcinomas 13762NF tumor.

NIRS is a portable, low cost, and real time measurement system that can monitor changes of vascular oxygen levels by using two wavelengths. We have previously used a single-channel NIRS system with one light source and one detector for global measurements of Δ[HbO$_2$] and Δ[Hb$_{tot}$] in tumors during respiratory challenges. Through those experiments, we have found that most tumors have a bi-phasic behavior in Δ[HbO$_2$] increase (i.e., a rapid increase followed by a slow and gradual increase) after switching the gas from air to carbogen/oxygen. To explain this bi-phasic behavior, we developed a mathematical model and formed a hypothesis that the bi-phasic behavior of Δ[HbO$_2$] during carbogen/oxygen inhalation results from two different vascular regions in tumor with two blood perfusion rates and vascular structures.
By giving an oxygen intervention, tumor blood vessels are acutely subject to an increase of [HbO$_2$] due to higher supply of oxygenated blood from artery compared to that from air breathing. However, due to the irregular vascular structure in tumor, the well perfused regions in tumor may have an increase in [HbO$_2$] much faster than other parts of tumor that are poorly perfused. Therefore, two time constants obtained from tumor hemodynamic measurements during oxygen intervention are able to reveal two blood flow/perfusion rates in tumor, more precisely, two speeds of blood flow within the tumor blood vessels. More recently, we have shown that the bi-phasic increase in optical density changes occurs when there exist two different flow rates in tumor vascular phantom. The bi-phasic model is a basis of our current study where we wish to detect any changes in vascular structures, hemodynamic features, or perfusion rate within a tumor after CTX treatment.

The amplitude and time constants obtained from Δ[HbO$_2$] increase (Fig. 5) are summarized in Table 2. At day 0, we can see that γ_1/γ_2 is higher than 1, indicating that the measured signal results more from the well perfused region than poorly perfused region. However, this ratio becomes less than 1 after injection of cyclophosphamide (Day 1 and 3). This may be explained by destruction of vascular structure in tumor after chemotherapy. We expect that after a single high dose administration of CTX, the drug circulates in the blood vessels and is delivered to the tumor cells more in the well perfused region than in the poorly perfused region. This will lead to death of tumor cells in the well perfused region more effectively than that in the poorly perfused region, eventually resulting in decreases in tumor volume in the well perfused region more than in the poorly perfused region. Then, the tumor volume containing the well perfused regions will consequently decrease, so will the contribution of detected NIR signals from the well perfused region. In other words, a decrease in γ_1/γ_2 may indicate deceases in well perfused regions in tumor volume, after the administration of CTX.

As shown in Table 2, moreover, the perfusion rate ratio, f_1/f_2, was also decreased after a single high dose of CTX administration. At Day 0, f_1/f_2 was very high, meaning that there was a big difference of perfusion rate between the well perfused and poorly perfused region in tumor. However, this ratio significantly decreased at Day 1 and 3 after CTX treatment, representing that the perfusion rate gap between the well perfused region and poorly perfused region became much smaller than that at day 0. At Day 5, changes in [HbO$_2$] during oxygen intervention do not show any bi-phasic behavior anymore, and it was fitted by a single-exponential model. This may indicate that most of tumor cells and/or tumor vasculature in the well perfused region are possibly destroyed by the effect of CTX, resulting in quite different hemodynamic behavior.

5. CONCLUSION

In conclusion, we have conducted this study to show the possibility of using NIRS to monitor tumor hemodynamics in response to chemotherapy by comparing the changes in tumor vascular oxygenation before and after CTX treatment. The heterogeneity of tumor vasculature was easily observed by quantifying the blood perfusion rate and vascular coefficients at four different locations of the tumor. Tumor hemodynamics has been significantly changed before and after CTX treatment compared to the saline-treated control group, showing high possibility of the NIRS system to be used as a monitoring tool for cancer treatments. Our future studies will include the development of NIR imaging systems to obtain a map of tumor hemodynamic changes from whole tumor, allowing us to predict the efficacy of tumor treatment.

ACKNOWLEDGEMENTS

This work was supported in part by the Department of Defense Breast Cancer Research grants DAMD 170310353(JGK), DAMD 170310363 (DZ), and DAMD 170010459 (HL) and by NIH/NCI P20 CA086354 (RPM). We are grateful to Ammar Adam for technical assistance and to Dr. Britton Chance at the University of Pennsylvania, Philadelphia for the support of the multi-channel NIRS system.
REFERENCES

Tumor physiological response to antivascular agent combretastatin A4 phosphate assessed by magnetic resonance imaging

Dawen Zhao, Lan Jiang, Ammar Adam, Eric W. Hahn, Ralph P. Mason. UT Southwestern Medical Ctr., Dallas, TX.

Tumor oxygenation has been widely recognized as a potent factor, which influences tumor response to chemo- and radio-therapy. The vascular targeting agent, combretastatin A-4-phosphate (CA4P) causes tumor vascular shutdown and a combination of CA4P with radiotherapy has shown enhanced tumor response. We have recently established a novel magnetic resonance approach to measuring regional tumor oxygen tension FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for Dynamic Oxygen Mapping) with hexafluorobenzene, as a reporter molecule. Here, the effect of CA4P on real-time tumor oxygenation and perfusion/permeability was monitored in vivo in NF13762 rat breast carcinomas by ^{19}F FREDOM and ^1H dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI). Syngeneic NF13762 rat breast carcinomas were implanted in a skin pedicle on the foreback of Fisher 344 adult female rats. When tumors reached ~1 cm diameter (~0.6 cm3) MRI was performed using a 4.7 T horizontal bore magnet with a Varian Unity Inova system. A series of pO$_2$ maps acquired at 10, 30, 60, 90, and 120 minutes after i.p. CA4P (30 mg/kg; OXiGENE, Inc. Waltham, MA) showed a significant decrease in pO$_2$ of some tumors as early as 30 min post injection. For all tumors there was a significant drop in tumor pO$_2$ within 90 min after treatment (mean baseline pO$_2$ = 23 torr to 9 torr, p < 0.05) and a further decrease was observed at 2 h (mean = 2 torr; p < 0.01). Intriguingly, the initial changes in pO$_2$ in central and peripheral regions were parallel, but by 24 h post treatment significant difference was apparent: the pO$_2$ in periphery improved significantly, while center remained hypoxic. These data are consistent with DCE MRI, which revealed a ~70% decrease in perfusion/permeability (initial area under signal-intensity curve (IAUC)) at 2 h after 30 mg/kg CA4P (p < 0.001). IAUC fully recovered in a thin peripheral region, but not the tumor center 24 h post-treatment. Vascular perfusion marker Hoechst 33342 staining confirmed that the number of perfused vessels decreased significantly at 2 h, and then recovered at 24 h. We conclude that magnetic resonance imaging can monitor in vivo dynamic changes in tumor vasculature and oxygenation following VTA administration. These results provide the first insight into regional tumor oxygen dynamics in response to CA4P in a syngeneic rat tumor. While dynamic contrast MRI indicates vascular shut down, the critical pO$_2$ measurements are potentially more important for optimizing therapeutic combination of VTAs with conventional therapy, in particular, irradiation. Supported by DOD Breast Cancer IDEA Award (DAMD 170310363), in conjunction with NCI RO1 CA79515/EB002762 and the Cancer Imaging Program, a P20 Pre-ICMIC CA86354.

Copyright © 2005 American Association for Cancer Research. All rights reserved. Citation format: Proc Amer Assoc Cancer Res 2005;46:3799.

Hypoxic cells in tumors has long been recognized as a significant factor influencing tumor response to chemo- and radio-therapy. The vascular targeting agent, combretastatin A-4-phosphate (CA4P) causes tumor vascular shutdown and a combination of CA4P with radiotherapy has shown enhanced tumor response. For the potential combination with radiotherapy, measurement of tumor oxygen dynamics will be especially important. Here, we applied a novel magnetic resonance imaging (MRI) approach to measuring regional tumor oxygen tension: FREDOM (Fluorocarbon Relaxometry using Echo planar imaging for Dynamic Oxygen Mapping) with hexafluorobenzene, as a reporter molecule. FREDOM allowed us to quantitatively determine the in situ, in vivo dynamic action of CA4P on real-time tumor oxygenation.

Syngeneic NF13762 rat breast carcinomas were implanted in a skin pedicle on the foreback of Fisher 344 adult female rats. When tumors reached ~ 1 cm diameter (~ 0.6 cm³) MRI was performed using a 4.7 T horizontal bore magnet with a Varian Unity Inova system. A series of pO2 maps acquired at 10, 30, 60, 90, and 120 minutes after i.p. CA4P (30 mg/kg; OXIGENE, Inc. Waltham, MA) showed a significant decrease in pO2 of some tumors as early as 30 min post injection. For all tumors there was a significant drop in tumor pO2 within 90 min after treatment (mean baseline pO2 = 23 torr to 9 torr, p < 0.05) and a further decrease was observed at 2 h (mean = 2 torr; p < 0.01). Intriguingly, the initial changes in pO2 in central and peripheral regions were parallel, but by 24 h post treatment significant difference was apparent: the pO2 in periphery improved significantly, while center remained hypoxic. In contrast to tumor behavior, there was no significant change in pO2 of thigh muscles of rat at any time point after CA4P. These data are consistent with dynamic contrast enhanced (DCE) MRI, which revealed a ~70% decrease in perfusion/permeability (initial area under signal-intensity curve (IAUC)) at 2 h after 30 mg/kg CA4P (p < 0.001). IAUC fully recovered in a thin peripheral region, but not the tumor center 24 h post-treatment. Vascular perfusion marker Hoechst 33342 staining confirmed that the number of perfused vessels decreased significantly at 2 h, and then recovered at 24 h.

These results provide the first insight into regional tumor oxygen dynamics in response to CA4P in a syngeneic rat tumor. While dynamic contrast enhanced MRI will reveal vascular changes, dynamic pO2 measurements are potentially more important for optimizing combinations of VTAs with conventional anti-cancer therapies against breast cancers.

The U.S. Army Medical Research and Materiel Command under DAMD17-03-1-0363 supported this work.