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1. Introduction 

With clever integration of microelectromechanical sensors and actuators into new projectile 
configurations, future weapon systems hope to achieve a notable leap in accuracy and lethality.  
Because some sensors and control mechanisms require different levels of spin to operate 
properly, new multicomponent projectile configurations are being investigated.  The dual-spin 
projectile configuration is one such concept that consists of forward and aft components, 
connected through a bearing, which roll at different rates.   

A potential control mechanism for smart weapons trajectory control is a cluster of lateral 
pulsejets.  Each pulsejet imparts a relatively short duration, yet large lateral body force on the 
projectile.  By mounting a set of pulsejets on either the forward or aft section of a dual-spin 
projectile, a specific trajectory can be tracked.  When designing a projectile pulsejet flight 
control system to minimize terminal miss distance, pulsejet firing logic relies on real-time 
estimation of the effect of firing a particular jet on the miss distance at an arbitrary time and 
system state.  In theory, this can be accomplished by numerically integrating the nonlinear 
equations of motion from a given point to the target.  However, from a practical point of view, 
real-time numerical integration of the nonlinear equations of motion from a given state to the 
target at each flight control system computation cycle represents too large a computational 
burden on the on-board microprocessor.  Hence, computationally-efficient trajectory prediction 
of smart weapon projectile configurations is needed for insertion into control laws.  Along these 
lines, Guidos and Cooper (1) developed closed form expressions for swerve of a rigid nonrolling 
projectile with a lateral pulsejet applied.  Their analysis allows for finite duration impulse loads 
and showed that under mild conditions on spin rate, singular and finite duration impulses yield 
the same effect on the trajectory.   

Although the dynamics of dual-spin spacecraft have been extensively studied (2–12), work  
on the atmospheric flight mechanics of dual-spin projectiles has been comparatively sparse.  
Smith et al. (13) developed a dynamic model of a dual-spin projectile and employed this model 
to simulate a smart artillery shell.  More recently, Costello and Peterson (14) reported a more 
general dual-spin projectile dynamic model which permits asymmetric mass properties and 
generalized bearing friction.  This model was subsequently used to develop a linear theory and 
stability boundaries for this configuration.  The work reported here extends the dual-spin 
projectile linear equations to account for the effect of lateral pulsejets in the prediction of angular 
and swerving motion.  The swerving dynamics are solved in closed form, resulting in 
computationally-simple algebraic expressions for the projectile trajectory under the influence of 
lateral pulsejets.   
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2. Dual-Spin Projectile Dynamic Model 

The dynamic model for a dual-spin projectile admits a total of seven degrees-of-freedom, 
including the components of the position vector of the mass center and the Euler yaw, pitch, aft 
body roll, and forward body roll angles.  Figures 1 and 2 provide indicate coordinates used to 
specify position and orientation for the dual-spin projectile dynamic model.  Linear projectile 
theory is used to simplify the highly nonlinear dynamic equations to a set of linear ordinary 
differential equations.  More details on projectile linear theory can be found in McCoy (15).  The 
linear equations developed by Costello and Peterson (14) neglected gravity, since their primary 
interest was dynamic stability, and also did not include lateral pulsejet forces in the formulation.   
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Figure 1.  Projectile position coordinate definitions. 
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Figure 2.  Projectile orientation definitions. 

Equations 1–10 remove these two limitations and represent a modified set of dynamic equations 
describing the motion of a dual-spin projectile in atmospheric flight. 
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 x = D′ . (8) 

 Dy = v + ψD
V

′ . (9) 

 Dz = w - θD
V

′ . (10) 

In equations 1–10, the ‘ symbol denotes differentiation with respect to nondimensional arc 
length, s .  The constants used in the previous equations are defined as follows:
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The impulse force components IY  and IZ  represent impulse forces that are applied to the 
projectile in the nonrolling reference frame.  These loads and the associated moment arm, IXR , 
are effective forces and moments.  Due to aerodynamic interaction, the force and moment 
generated by the lateral pulsejets is in general different than what would be measured on a test 
stand.  Also, for this report, the impulse forces are mathematically treated as singular impulses.  
The bearing coupling rolling resistance is assumed to be of the hydrodynamic type. 

3. Analytic Solution 

Pulsejet forces and moments that appear in equation 5 are assumed to occur over a relatively 
short duration of time compared to the motion of the projectile; hence, their effect is impulsive in 
nature.  An impulsive force acting on a rigid body creates a discontinuity in the translational and 
rotational velocity of the body at the time of the impulse (16).  To simulate motion of the 
projectile with pulsejets acting on the system, a piecewise solution is constructed that consists of 
free-flight and pulsejet discontinuity segments.  Expressions for free-flight solution segments are 
given in this section, while the pulsejet state discontinuity conditions are provided in the next 
section. 

As seen in equation 1, the total velocity is dynamically uncoupled from the system, but appears 
in a nonlinear fashion in the remaining state dynamic equations.  As is customary in projectile 
linear theory (15), it is assumed that the total velocity changes slowly with respect to the other 
states of the system so it can be treated as a constant in the other dynamic equations.  When 
viewed in this light, the equations of motion become linear and the equations of motion for angle 
of attack and roll motion become uncoupled.   

The total velocity of the projectile exhibits exponential decay as the round flies down range.  
Equation 24 provides the total velocity solution: 

 2-ρSDC s/( m)X0V = V e0 . (24) 

The solution to the roll rate equations is aided by first defining the decay rates, as shown in 
equation 25. 

 

2 2 4
1,2 2

H + L ± H - 2HL+ L + KJσ = .
 

(25)
 

With the roll rate decay rate given by equation 25, the roll rate solution can be written as 
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As given in equation 5, the equations of motion for epicyclic pitching and yawing behavior 
consists of coupled motion of v , w , q , and r .  The slow and fast modes of the epicyclic 
dynamic equations are given by equations 32 and 33: 
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and 

 [ ]CFFS 4
2
1 2 −−=φ . (37) 

Corresponding to the modes given in equations 32 and 33, the right and left Eigenvector matrices 
are given by equations 38 and 39, respectively.  
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The constants utilized in equations 38 and 39 are defined as follows.  Note that the * symbol 
denotes complex conjugate. 
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The vector χ , which represents the initial conditions with the steady state portion removed, is 
used to define the homogeneous response of the epicyclic equations. 
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Using the definitions provided by equations 38, 39, and 46, the homogeneous solution for each 
epicyclic state variable is expressed as a combination of the fast and slow modes. 
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Expressions for the modal amplitudes and phase angles used in equations 47–50 are provided in 
the appendix.  The total epicyclic solution is the summation of the homogeneous and particular 
solutions. 
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The solutions for the Euler pitch and yaw angles are obtained by integrating the solutions for the 
pitch rate and yaw rate, respectively.  
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The trajectory or swerve solution is then obtained by substituting equations 47, 48, and 49 into 
equations 9 and 10 and subsequently integrating.  The final results are given by equations 57 and 58. 
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(58)
 

Equations 57 and 58 provide relatively simple expressions for the altitude and cross range of a 
dual-spin projectile as a function of range.  Both the cross range and altitude solutions contain  
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constant, linear, and oscillatory terms.  The altitude formula has an additional parabolic term to 
account for trajectory bending due to gravity. 

4. Pulsejet Force and Moment Conditions 

The net effect of a pulsejet force is a discontinuity in the translational and rotational velocity of 
the body at the time of the impulse.  The discontinuity conditions are found by transforming 
equation 5 to the Laplace domain and noting the additional impulse terms adding with the pre-
impulse initial conditions.  The results are given by equations 59–62.   

 
0 0

IY Dv v
mV

+ −= + .
 

(59)
 

 
0 0

IZ Dw w
mV

+ −= + .
 

(60)
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IX I

YY

R Z Dq q
I V
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(61)
 

 
0 0

IX I

YY

R Y Dr r
I V

+ −= + .
 

(62)
 

In equations 52–55, the superscript “+” denotes after impulse and the superscript  “–” denotes 
before impulse.  Since the epicyclic solution amplitude and phase angles ( vFΩ , vSΩ , vFΩ , wFΩ , 

wSΩ , qFΩ , qSΩ , rFΩ , rSΩ , vFθ , vSθ , vFθ , wFθ , wSθ , qFθ , qSθ , rFθ , and rSθ ) all depend on  0v , 

0w , 0q , and 0r – χ , the dynamic model must be updated at s+  to accurately account for the 
discontinuity in the epicyclic solution formulas. 

5. Results 

In order to investigate the utility of the simple trajectory formulas derived previously, the results 
that follow compare the trajectory of a dual-spin projectile computed by numerically integrating 
the fully nonlinear equations of motion (13) with the linear theory analytical solution.  The 
numerical solution was generated using a fixed step fourth-order Runge Kutta algorithm with a 
time step of 0.00001 s.  Tables 1 and 2 list the physical parameters and state conditions for the 
projectile considered in trajectory comparison. The linear model is updated for each change in 
range of one caliber.  In all cases, the numerical nonlinear simulation and the analytic closed 
form solution are in agreement.  Figures 3 and 4 show the swerve of the projectile.  A difference 
of approximately 10 ft between the numerical nonlinear solution and the analytic solution at a  
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Table 1.  Projectile physical properties. 

Parameter Value 

Projectile length 4.5 ft 

Projectile reference diameter 0.23 ft 

Projectile weight 15.9 lb 

Composite body mass center location 2.81 ft (from base) 

Forward body mass center location 3.85 ft (from base) 

Aft body mass center location 1.35 ft (from base) 

Forward body roll inertia 0.0022 slug ft2 

Forward body pitch inertia 0.019 slug ft2 

Aft body roll inertia 0.002 slug ft2 

Aft body pitch inertia 0.42 slug ft2 

Bearing location 3.18 ft (from base) 

Bearing viscous damping coefficient 0.0001 

Lateral pulsejet stationline location 3.8 ft (from base) 

Lateral pulsejet buttline location 0.12 ft 

Lateral pulsejet waterline location 0.0 ft 

 

Table 2.  Projectile state conditions. 

State Variable Initial Before Pulse After Pulse 
x  0.0 ft 419.0 ft 419.0 ft 
y  –0.76 ft -1.0 ft –1.0 ft 
z  –287.0 ft –375.0 ft –375.0 ft 

Fφ  4.6° 5.8° 5.8° 

Aφ  168.1° 156.5° 156.5° 

θ  0.2° 0.2° 0.2° 
ψ  –0.0007° 0.0006° 0.0006° 
V  2497.0 ft/s 2420.0 ft/s 2420.0 ft/s 
v  0.17 ft/s –0.1 ft/s 1.8 ft/s 
w  –0.64 ft/s 0.4 ft/s –0.9 ft/s 

Fp  7.3 rad/s 6.7 rad/s 6.7 rad/s 

Ap  –10.1 rad/s –83.8 rad/s –83.8 rad/s 
q  –0.006 rad/s –0.01 rad/s 2.14 rad/s 
r  0.001 rad/s 0.0004 rad/s 3.04 rad/s 
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Figure 3.  Cross range vs. range. 

 

 

Figure 4.  Altitude vs. range. 
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range of 3750 ft is apparent in the altitude trace.  When viewed from the rear, the projectile drifts 
slightly to the left prior to the pulsejet firing.  After the pulsejet is fired, the pulsejet turns and 
drifts to the right.  Toward the end of the trajectory, the lateral pulsejet has changed the cross 
range impact point by approximately 17 ft.  Figures 5 and 6 show that the action of the pulsejet 
induces Euler angle changes exceeding 5°.  Because of the roll orientation when the pulsejet was 
fired, the altitude response does not show an effect from the pulsejet.  The fins mounted on the 
aft body along with inherent roll damping combine to create the aft body roll rate history shown 
in figure 7.  The forward body roll rate history is driven by the viscous friction in the bearing and 
the roll rate of the aft body.  Figure 8 displays the difference in the predicted impact point of the 
numerical nonlinear simulation and the analytic solution as a function of the linear model update 
interval.  At the range of 3750 ft, the impact error prediction is below 10 ft.  Updating the linear 
model used for the analytical solution beyond 4000 cal of travel results in significant increase in 
impact point error.  Figure 9 examines the potential change in impact point location as a function 
of down range position.  After the epicyclic dynamics have settled, the swerve solution is 
dominated by the linear term.  Firing a pulsejet changes the slope of the linear term.  As the 
projectile closes on the target, the potential change in position of the round at the target due to 
firing a lateral pulsejet decreases, since a reduced distance to the target reduces the linear swerve 
changes at the target.  Defining control authority as the potential change in swerve at the target, 
the control authority of a lateral pulsejet decreases as the projectile travels down range.   

 

 
Figure 5.  Pitch angle vs. range. 
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Figure 6.  Yaw angle vs. range. 

 

 

Figure 7.  Roll rate vs. range. 
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Figure 8.  Target prediction error vs. model update interval. 

 

 

Figure 9.  Induced pulsejet swerve vs. range to target. 
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6. Conclusions 

A simple set of formulas has been developed for the swerve motion of a dual-spin projectile 
under the action of lateral pulsejets.  The solutions provide a computationally low cost and 
reasonably accurate means of predicting impact points of a projectile that can be employed in 
future smart weapon flight control systems.  For the best impact point prediction performance, 
the linear model that underlies the analytic solution must be periodically updated.  For the 
example configuration examined here, the linear model should be updated no less than once per 
4000 cal of range.  The ability of lateral pulsejets to change the impact point steadily decreases 
with range to the target. 
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Appendix.  Dual-Spin Linear Theory Coefficients
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In equations A1–A16, the notation j*τ  denotes the jth row of the matrix τ .
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List of Symbols, Abbreviations, and Acronyms 

A
X

F
X CC 00 ,  Zero yaw axial force aerodynamic coefficient for the forward and aft bodies. 

A
X

F
X CC 22 ,  Yaw angle squared axial force aerodynamic coefficient for the forward and aft 

 bodies. 
A
NA

F
NA CC ,  Normal force aerodynamic coefficient for the forward and aft bodies. 

A
NPA

F
NPA CC ,  Magnus force aerodynamic coefficient for the forward and aft bodies. 

A
DD

F
DD CC ,  Roll moment aerodynamic coefficient due to fin cant for the forward and aft 

 bodies. 
A
LP

F
LP CC ,  Roll damping moment aerodynamic coefficient for the forward and aft bodies. 

A
MQ

F
MQ CC ,  Pitch rate damping moment aerodynamic coefficient for the forward and aft bodies. 

Vc  Viscous damping coefficient for hydrodynamic bearing. 

D  Projectile characteristic length.  

g  Gravity constant.  

F
YY

F
XX II ,  Roll and pitch inertia of the forward body projectile section. 

A
YY

A
XX II ,  Roll and pitch inertia of the aft body projectile section. 

m  Total projectile mass. 

Am  Aft body mass. 

Fm  Forward body mass. 

Fp  Roll axis component of the angular velocity vector of the forward body expressed 
in the fixed plane reference frame. 

Ap  Roll axis component of the angular velocity vector of the aft body expressed in the 
fixed plane reference frame. 

rq,  Components of the angular velocity vector of both the forward and aft bodies 
expressed in the fixed plane reference frame. 

fzfyfx rrr ,,  Fixed plane components of vector from composite center of mass to forward body 

mass center. 
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azayax rrr ,,  Fixed plane components of vector from composite center of mass to aft body mass 

center. 

fzfyfx RRR ,,  Fixed plane components of vector from forward body mass center to forward body 

center of pressure. 

azayax RRR ,,  Fixed plane components of vector from aft body mass center to aft body center of 

pressure. 

, ,ax ay azR R R  Fixed plane components of vector from aft body mass center to aft body Magnus 

center of pressure. 

, ,fx fy fzR R R  Fixed plane components of vector from forward body mass center to forward body 

Magnus center of pressure. 

IZIYIX RRR ,,  Fixed plane components of vector from composite body mass center to the 
impulse application point. 

s  Nondimensional projectile arc length. 

zyx ,,  Position vector components of the composite center of mass expressed in the 
inertial reference frame. 

,I IY Z   Pulsejet force components in projectile body axes. 

wvu ,,  Translation velocity components of the composite center of mass resolved in the 
fixed plane reference frame. 

V  Magnitude of mass center velocity. 

ψθ ,  Euler pitch, and yaw angles. 

φ F
 Euler roll angle of the forward body. 

φ A
 Euler roll angle of the aft body. 
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