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1.) FORWARD

We have used tools from theory of harmonic analysis and number theory to extend existing theories
and develop new approaches to problems. This work has focused on several areas. We have
developed algorithms on extensions of Euclidean domains which have led to new computationally
straightforward algorithms for parameter estimation for periodic point processes, and in particular,
for sparse, noisy data. This is useful in the analysis of radar and sonar data, among other things. We
have shown why Fourier analytic methods, e.g., Wiener’s periodogram, do not produce maximum
likelihood estimates for the sparse data sets on which our methods work. We are also working on
extending our work to multiply periodic processes. We have also extended our work on multichannel
deconvolution. We have used the tools from multichannel deconvolution to develop a new procedure
for multi-rate sampling. We have investigated applying these techniques to develop a new procedure
for A–D conversion. We have also extended the work on both deconvolution and sampling to
radial domains, exploiting coprime relationships among zero sets of Bessel functions. We have also
discussed applications of these ideas to specific applied problems, including radar and sonar. We
have developed interlinked wavelet bases, interlinked via number-theoretic conditions that proved
useful for both multi-channel deconvolution and multi-rate sampling. We have extended these
ideas to operator theory, creating sets of strongly coprime chirp and chirplet operators. Finally,
we have developed a new way of visualizing mappings of the complex plane. We have a given
function evolve in time, starting from the unaltered complex plane and ending with the range of
the function. We use a computer to develop a frame-by-frame movie of the evolution, which appears
to be a continuous deformation. We are using this technique to create an electronic dictionary of
conformal mappings.
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3.) STATEMENTS OF PROBLEMS STUDIED

Our work on multichannel deconvolution included the following.
i.) Fit our general models of system kernels with models of currently deployed active and passive
remote sensors as convolution equations. Then apply our theory to develop systems in which
complete signal information can be recovered. In particular, we are looking to apply the theory in
general imaging systems (e.g., for sub-pixel resolution), radar (e.g., strongly coprime chirp pulses),
etc. (see [2], [8], [38]).
ii.) Develop a basis in which to develop the multichannel theory which is more amenable to
discretization. This would then be directly applicable to (i.) (see [2], [8]).
iii.) Coordinate the theory with filtering systems for the removal of noise and/or other unwanted
information (see [15]).
iv.) Coordinate the theory with irregular sampling theory, and wavelet and Gabor analysis (See
[11], [12], [10], [2]).

We also continued our work on parameter estimation.
v.) Develop computationally straightforward techniques for spectral analysis of a very broad class
of periodic processes, including procedures so that estimates achieve the Cramer-Rao bound (see
[9]).
vi.) Extend these techniques to the complete analysis of multiply periodic point processes, including
the recovery of the fundamental period(s), phase information, the multiples of the periods, and the
deinterleaving of the data (see [7]).
Additional items include new results on derivatives and monotonicity (see [5], [6]) and new proce-
dures for visualizing complex mappings (see [3]).

4.) SCIENTIFIC PROGRESS AND ACCOMPLISHMENTS

Sampling on Unions of Non-Commensurate Lattices via
Complex Interpolation Theory [11], [12]

Main Results

Solutions to the analytic Bezout equation associated with certain multichannel deconvolution prob-
lems are interpolation problems on unions of non-commensurate lattices. These solutions provide
insight into how one can develop general sampling schemes on such sets. We give specific examples of
non-commensurate lattices, and use a generalization of B. Ya. Levin’s sine-type functions to develop
interpolating formulae on these sets. Let t ∈ R, and let α be an irrational that is poorly approxi-
mated by rationals, e.g.,

√
2, or (1 +

√
5)/2. Let µ1(t) = χ

[−1,1](t) , µ2(t) = χ
[−α,α](t) model the
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impulse response of the channels of a two-channel system. Then µ̂1(ζ) = sin(2πζ)
πζ , µ̂2(ζ) = sin(2παζ)

πζ .
Since α is poorly approximated by rationals, {µi} is strongly coprime. Now let

Γ1 =
{
±k
2

}
, Γ2 =

{
±k
2α

}
for k ∈ N, and Γ = Γ1 ∪ Γ2 .

Note that the information contained in the original signal is reconstructed by creating deconvolvers
defined initially on Γ ∪ {0}. Order the elements of Γ, denoting this as Γ = {λk}. We have the
following.

Theorem 1 Let α be an irrational that is poorly approximated by rationals, and let f be a (1+α)-
band-limited function. Then f is uniquely determined by {f(λk)} ∪ {f(0), f ′(0)} .

Note, for a (1+α)-band-limited function, the Nyquist rate is 1/(2(1+α)). However, our individ-
ual sampling rates are 1/2 and 1/(2α). Both these rates are below Nyquist. The reconstruction of
f from this lattice is achieved by using complex interpolation theory. These techniques go back to
basic Lagrange interpolation, and were developed for entire functions by various mathematicians.
We first solve the problem on Γ ∪ {0}. Let G(z) = sin(2πz) sin(2παz) . Then, G(z) is an entire
function, which is almost periodic on R, and has simple zeros on Γ, and a double zero at {0}.

Proposition 1 Let λk ∈ Γ and let

Hk(z) =
G(z)

G′(z)(z − λk)
, and so Hj(λk) = δjk .

At z = 0, we have to construct interpolating functions K1, K2 so that

K1(0) = 1 , K ′
1(0) = 0 , K2(0) = 0 , K ′

2(0) = 1 .

Using the Taylor expansion of G, we derive the following.

Proposition 2

K1(z) =
G(z)

(G′′(0)/2!)(z2)
=

G(z)
(4π2α)(z2)

, K2(z) =
G(z)

(G′′(0)/2!)(z)
=

G(z)
(4π2α)(z)

.

Combining these two propositions gives us the reconstruction formula.

Theorem 2 Let α be an irrational that is poorly approximated by rationals, and let f be a (1+α)-
band-limited function. Let Γ1 =

{±k
2

}
, Γ2 =

{±k
2α

}
, for k ∈ N, and let Γ1 ∪ Γ2 = Γ = {λk} .

Then f is uniquely determined by {f(λk)} ∪ {f(0), f ′(0)} . Moreover, f can be approximated from
its values on Γ ∪ {0} by the formula

f(t) ≈
∑

λk∈Γ

f(λk)
G(t)

G′(λk)(t− λk)
+ f(0)

G(t)
(4π2α)(t2)

+ f ′(0)
G(t)

(4π2α)(t)
,

where
G(t) = sin(2πt) · sin(2απt) .
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We need to point out two items. Let r1 = 1, r2 = α. First, the sampling grid is rigid.
Perturbation of the grid results in a loss of information. Second, that because sampling points in Γ
can get arbitrarily close together (inf{|λm−λn|} = 0, and so inf{

∏
k 6=j | sin(2πrkλ)| : λ ∈ Γj} = 0),

the dual elements of the interpolating functions can not form a Riesz basis and the interpolating
formula can not converge in norm. In fact, the dual elements of the interpolating functions do form
a Bessel sequence, but do not form a frame and therefore do not form a Riesz basis. The problems
occur at points where the sampling points get close together. The interpolating function follows the
original function along exactly, except for a very subtle “ripple” at those points where the sampling
points get close together. We are currently exploring ways to stabilize the construction. The first
involves continuously backing off the bandwidth. This works, but we need to set up exact bounds.
The second approach involves rewriting Γ in terms of the “separated” and “close” points. At the
close points, we may be able to rewrite the formulae in terms of f ′.

The result generalizes. We can create sampling sets on ` lattices using a set of numbers {ri}`
i=1

such that (ri/rj) is poorly approximated by rationals for i 6= j. Again, if {pi}`−1
i=1 is a set of primes,

{1,√p1,
√
p1p2, . . . ,

√
p1p2 · · ·p`−1}

is a set of numbers whose ratios are poorly approximated by rationals. Let Γk =
{

±n
2rk

}
for n ∈ N,

and let
⋃̀

k=1

Γk = Γ = {λk} .

We reconstruct on Γ ∪ {0}, letting

G(z) =
∏̀

k=1

sin(2πrkz) and letting Hm(z) =
G(z)

G′(z)(z − λm)
.

Then Hm(λn) = δmn .

The interpolating functions at the origin are a linear combination of gj = G(z)
(zj)

, j = 1, . . . , ` ,

chosen so that K(j−1)
k (0) = δkj , k, j = 1, . . . , ` . We can also create these as unions of regular

lattices in higher dimensions.
We close the paper by proving that, from a measure-theoretic and thus probabilistic point of

view, the strongly coprime condition on which our constructions lie is quite natural. The numbers
in the complement of our condition are called the Liouville numbers L. We show the following.

Theorem 3 The class of Liouville numbers L has Lebesgue measure zero.

Thus if one chooses an irrational number at random (say, using the uniform distribution on
any finite interval), one would almost surely choose an irrational which is poorly approximated by
rationals. However, the situation is even better than this.

Theorem 4 Let L denote the class of Liouville numbers. Then, for every σ > 0, L has σ-
dimensional Hausdorff measure zero.

New Directions in Sampling and Multi-Rate A-D Conversion
Via Number Theoretic Methods [10]
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Main Results

This paper uses the new sampling theory developed in the paper above to provide a new approach
to multi-rate A-D conversion. This uses multiple converters with different rates. Consider a 1 + α
bandlimited signal, with Nyquist sampling rate fN = 2(1 + α) (samples / sec). Let the sampling
rates be denoted fi, i = 1, · · · , K. These rates are such that (i) their ratios are strongly coprime,
and (ii) 1

K

∑K
i=1 fi = fN , (the average of the rates is equal to the Nyquist rate).

As above, the signal may be reconstructed from two samplers running at rates f1 = 2, and
f2 = 2α. We emphasize that this choice of f1 is arbitrary and may take any value so long as the
above conditions are satisfied. While f1 remains fixed at a predetermined rate, f2 → fN from below
as α becomes large. Thus, the introduction of the fixed low rate sampler at f1 has relaxed the faster
sampling rate below the Nyquist rate. Because the multiple rates are non-commensurate, they will
eventually yield sampling points that are arbitrarily close to one another, within δ > 0 say. In this
case, there exists an ε > 0 such that one of the samples occurring within the δ neighborhood may
be omitted, while guaranteeing unique reconstruction for signals bandlimited to 1+α− ε. It is also
possible to look at reconstruction f ′ locally.

The multi-rate sampling approach can be extended to more than two rates. Consider a 1+α+β
bandlimited signal, with α and β selected to satisfy the coprime condition (for example, choose α
and β to be square roots of products of primes). Now, three parallel samplers may be used with
rates f1 = 1/2, f2 = 1/(2α), and f3 = 1/(2β). (Again we emphasize that these choices are not
unique.) We consider two cases. First, if α ≈ β, then f2 and f3 approach fN/2 from below as α
increases. Second, if β ≈ kα, for k > 0 integer, then f2 → fN/(1 + k), while f3 → fNk/(1 + k) as
α grows. Thus, many combinations of slow and fast rates are possible.

It is interesting to contrast this scheme with the more conventional case of K interleaved iden-
tical parallel A-Ds, sampling at the same rate, fi = fN/K. The coprime multi-rate approach allows
the A-Ds to run at different rates, without the need for signal preconditioning, e.g., bandpass fil-
tering. Thus, the proposed multi-rate scheme generalizes the conventional interleaved case. Also,
the slower A-Ds could utilize more quantization levels. The multi-rate approach requires non-
commensurate rates, so a scheme must be developed for generating these rates while maintaining
the underlying synchronism. This requires close approximation to irrationals from rational num-
bers. In addition, the multiple rates will cause sampling times to become arbitrarily close. However,
as noted above, when neighboring samples fall into a δ neighborhood, one sample may be omitted
(with a corresponding ε small reduction in the achievable signal bandwidth).

Sinusoidal Frequency Estimation via Sparse Zero Crossings [9]

Main Results

We consider estimation of the period of a sinusoid in additive Gaussian noise, based on observations
of the zero-crossing (ZC) times. The problem is treated in a continuous-time framework. It is
assumed that the signal-to-noise ratio is sufficient (roughly ≥ 8 dB) such that the noise may
be approximated as additive in the phase. An exact mean-square error analysis is provided for
this approximation. We apply modified Euclidean algorithms (MEA’s) and their least-squares
refinements in this framework, to estimate the period of the sinusoid, with low complexity. Unlike
linear regression methods based on phase samples, the proposed approach works with very sparse
ZC measurements, and is resistant to outliers. The MEA-based approach is motivated by the fact
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that, in the noise-free case, the greatest common divisor (gcd) of a sparse set of the first differences
of the zero crossing times is very highly likely to be the half-period of the sinusoid. The MEA acts
to robustly estimate the gcd of the observed noisy data. The MEA period estimate may be refined
via a least-squares approach, that asymptotically achieves the appropriate Cramer-Rao bound.
Simulation results illustrate the algorithms with as few as 10 zero-crossing times. The algorithm
behavior is also studied using Bernoulli and random burst models for the missing ZC times, and
good performance is demonstrated with very sparse observations.

The observed data is modeled as a time series – a sampled sinusoid in Gaussian noise, expressed
as x(n) = A exp i(ω0nρ+ φ) + z(n) , for n = n0, n0 + 1, . . . , n0 +N − 1. The noise z(n) is assumed
to be a white Gaussian zero-mean complex noise sequence with variance σ2

z . The amplitude A,
frequency ω0, and phase φ are regarded as unknown constants for a particular realization. The
value ρ is the sampling period. We can write

x(n) = A exp i(ω0nρ+ φ) + z(n) =
[
1 +

z(n)
A

exp(−i(ω0nρ+ φ))
]
A exp(i(ω0nρ+ φ))

= [1 + ν(n)]A exp(i(ω0nρ+ φ)) ,

where ν(n) = z(n)
A exp [−i(ω0nρ+ φ)]. Note that E[ν(n)] = 0 and var{ν(n)} = σ2

z/A
2 = SNR−1, so

ν(n) −→ 0 as SNR −→ ∞. If we split ν into real and imaginary parts, writing ν = w + iu, we can
express 1 + ν(n) in terms of modulus and phase as

1 + ν(n) =
[
[1 + w(n)]2 + [u(n)]2

] 1
2 exp

(
i arctan

[
u(n)

1 + w(n)

])
.

We give two proofs of the following result in the paper.

Theorem 5 If A2/σ2
z � 1, (i.e., high SNR), then [1 + ν(n)] ≈ exp [iu(n)] . This in turn gives

x(n) = A exp i(ω0nρ+ φ) + z(n) ≈ A exp(i(ω0nρ+ φ+ u(n))) .

Residue and Sampling Techniques in Deconvolution [8]

Main Results

In this paper we will study techniques for solving the following general problem, which we will refer
to as the Multisensor Deconvolution Problem or MDP: Given a collection of compactly supported
distributions, {µi}m

i=1 ⊆ E ′(Rd), how can we recover an arbitrary function f ∈ C∞(Rd) from the
data {si}m

i=1 = {f ∗ µi}m
i=1? The solution technique that we consider involves the construction of

deconvolvers, which come in a variety of types but which are essentially a collection of distributions
which (1) depend only on the convolvers {µi}m

i=1 and (2) allow for the solution of the MDP with
only simple linear operations on the data {si}m

i=1.
We describe a solution to a modified analytic Bezout equation. The technique of solution

involves the Jacobi interpolation formula and the Cauchy residue calculus. We create an approxi-
mate deconvolution system by solving the Bezout equation

∑m
i=1 µ̂i · ν̂i,ϕ = ϕ̂, where, for 0 < ε < 1,

ϕ(x) = ψε(x) = ε−1 ψ(ε−1x). Thus, ψ̂ε −→ 1 as ε −→ 0+. This gives us our deconvolving functions.
Then, as ϕ −→ δ, f ∗ ϕ −→ f in the sense of distributions. That is, the signals si are filtered by
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the νi,ϕ (which have been created digitally, optically, etc., in coordination with the creation of the
system and possibly tailored to be optimized under some constraint) and added, resulting in the
reconstruction of f ∗ ϕ. By controlling ε, f can be reconstructed to any predetermined accuracy.
We also create these solutions by using techniques from real-variable sampling theory.

On Positive Derivatives and Monotonicity [5], [6]

Main Results

A fundamental result of calculus states that a function f with a positive derivative Df on an
interval is increasing on that interval. The result follows directly from the Mean Value Theorem.
We explore the extent to which the hypotheses of the Mean Value Theorem can be weakened and
f still shown to be increasing. Let f be a continuous function on an interval. By constructing
counterexamples using Cantor sets, we show that the assumption Df > 0 a.e. does not imply
that f is increasing. We can, however, show that if Df > 0 except on a countable subset of an
interval, then f is increasing. We call this the Countable Exceptional Set Theorem. This theorem
is generalized by the Goldowsky-Tonelli Theorem, which tells us that if Df exists except on a
countable subset of an interval and Df > 0 a.e., then f is increasing. However, we then go on
to show, in a very natural sense, that Goldowsky-Tonelli is a vacuous extension of the Countable
Exceptional Set Theorem. We close by exploring a few related questions, asking to what extent
monotonicity implies positive derivative.

Complex Analysis An Animated Approach [3]
Sample Lessons

Sample Lesson 1: An Introduction to Animated Graphs
One of the most fundamental skills needed in understanding complex analysis is visualizing complex
functions. This is, however, a challenging task. The graph of a complex function f : C −→ C lives
in C×C (two complex dimensions), which is four real dimensions. Given that we only live in three
spatial dimensions, visualization is difficult. We can, however, get around this by using our fourth
dimension – time – as a tool to help us visualize complex functions. We will watch a given function
evolve in time, starting from the unaltered complex plane and ending with the range of the function.
The computer provides us with an ideal tool to see this evolution. We compute a frame-by-frame
movie of the evolution “off-line,” and show it at relatively high speeds, giving the appearance of a
continuous deformation. These “movies” of complex functions will be called animated graphs.

A mathematical framework for animated graphs already exists. This deformation of the function
is a homotopy, from the identity to the target function. We will give a formal definition of homotopy
elsewhere. For now, we can think of these graphs as movies in time t, 0 ≤ t ≤ T , where we are
looking at F (z, t) = (1− t)z+ tf(z) . Since a complex function could have a domain as large as the
entire complex plane, we will highlight some of the interesting curves and arcs in the domain.

The animated graphs were developed using f(z), a software package for complex variables written
by Martin Lapidus of Lascaux Graphics. The animated graphs are programs developed by the
author within f(z), just as one would write Notebooks inside of Mathematica. The animated graphs
consist of curves and arcs in the domain on the left and their images under mapping on the right.
However, it is very important to note that you will not just see the static images, but rather a
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“continuous” (actually, frame-by-frame) deformation of the curves and arcs in the domain to their
corresponding images in the range. It is also important to note that this is an extension of the
traditional representation of complex mappings, namely by drawing curves, arcs, and or regions in
the domain, and then showing their images in the range.

We also have a set of animated graphs for linear mappings, and will expand upon the matrix
model of C. The animated graphs will include linear mappings, and will demonstrate that the
action of multiplying by a complex number is the same as the action of a 2×2 matrix on the
vector z. The animations of the linear maps show the actions of the maps on rectangular grids.
For example, the mapping iz = eiπ/2reiθ = reiθ+π/2 rotates a complex number counterclockwise by
π/2. Note that this is the same result as multiplying the complex vector z = (x, y) by the matrix

Mi =
(

0 −1
1 0

)

Sample Lesson 2: Local Behavior of Polynomial and Rational Functions
This second group of sample lessons is included to show that the animated graphs can be used
to effectively demonstrate certain principles. An important concept in complex variables is that,
thanks to the power of Taylor and Laurent expansions, the behavior of an analytic or meromorphic
function in a neighborhood of a zero or a pole can be understood by factoring the function. For
example, let f be an analytic function which has a zero of order k at z0. In a sufficiently small
neighborhood N of z0, f can be written as f(z) = (z− z0)kF (z) , where F is analytic and non-zero
in N . Moreover, the behavior of the mapping f in N is essentially f(z) ≈ (z − z0)kF (z0) , that
is, the mapping looks like the polynomial (z− z0)k multiplied by the complex number F (z0). This
important principle is demonstrated for the functions f(z) = (z−(1+ i))(z−(1

2 − i
1
2)) and f(z) =

z4 − 1. The animations show how the function maps neighborhoods of the zeros onto a region
in a neighborhood of the origin in the range. Even though the circles and line segments in the
neighborhoods of zeros end up on the same curves in the image, the paths they take to get there
are quite different. The different magnifications and rotations that the circles and line segments
undergo are the result of multiplying the map (z − z0) by the appropriate F (z0).

Similarly, let g be a meromorphic function which has a pole of order l at w0. In a sufficiently
small neighborhood M of w0, g can be written as g(z) = (z − w0)−lG(z) , where G is analytic and
non-zero in M. Moreover, the behavior of the mapping g in M is essentially g(z) ≈ (z−w0)−lG(w0) ,
that is, the mapping looks like the function (z − w0)−l multiplied by the complex number G(w0).
This important principle is demonstrated for the functions g(z) = 1

z−(1+i)
and g(z) = 1

z4−1
.

Let f be a non-trivial analytic function in a region Ω with a zero of order k at z0 ∈ Ω. Thus by
the Taylor expansion of f , f(z) =

∑∞
n=k

f (n)(z0)
n! (z − z0)n , because f(z0) = f ′(z0) = f ′′(z0) = . . . =

f (k−1)(z0) = 0 . Also, since zeros of a non-trivial analytic function may not cluster, there exists a
neighborhood N in which we may write f(z) = ((z − z0)k)F (z) , where F is a non-zero analytic
function in N such that limz→z0 F (z) = f (k)(z0)

k! 6= 0 . We get the Taylor series for F by factoring

F (z) =
∑∞

n=k
f (n)(z0)

n! (z − z0)(n−k) . Therefore, in N , the behavior of the mapping f is essentially
f(z) ≈ (z − z0)kF (z0) , that is, the mapping looks like the polynomial (z − z0)k multiplied by the
complex number F (z0).

We will first demonstrate this important principle for the function f(z) = (z−(1+i))(z−(1
2−i

1
2))

has two simple zeros. In a neighborhood of 1+ i, f(z) ≈ (1
2 + i32)(z−(1+ i)) = f ′(1+ i)(z−(1+ i)) .

In a neighborhood of (1
2 − i12), f(z) ≈ (−1

2 + i−3
2 )(z − (1

2 − i12)) = f ′(1
2 − i12)(z − (1

2 − i12)) .
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The function f(z) = z4 − 1 has a little more interesting behavior. Neighborhoods of each of the
four simple zeros 1, i,−1,−i get mapped to neighborhoods of the origin. However, each of these
neighborhoods takes a different path to get there. We can compute the different rotations and
magnifications that each neighborhood undergoes by factoring. If we index the zeros as z1 = 1,
z2 = i, z3 = −1, z4 = −i, then f(z) = (z− zi)F (zi) = (z− zi)f ′(zi) , where F (z1) = (z1)3 + (z1)2 +
(z1) + 1 = 4 = f ′(z1) , F (z2) = (z2)3 + i(z2)2 − (z2) − i = −4i = f ′(z2) , F (z3) = (z3)3 − (z3)2 +
(z3)− 1 = −4 = f ′(z3) , F (z4) = (z4)3− i(z4)2− (z4)+ i = 4i = f ′(z4) . This same behavior extends
to general analytic functions.

Similarly, let g be a meromorphic function which has a pole of order l at w0. Using the
Laurent expansion in a deleted neighborhood M of w0, we have g(z) =

∑∞
n=0 an(z − w0)n +∑l

m=1 bm(z − w0)(−m) , where the coefficients are given by the integrals an = 1
2πi

∫
Γ

g(z)
(z−w0)n+1 dz ,

bm = 1
2πi

∫
Γ g(z)(z−w0)m−1 dz , for Γ = {z : |z−w0| = r} contained in M. Of course, we can use the

techniques given in section 6.4 to compute the coefficients. We can once again factor this expansion,
writing g as g(z) = ((z − w0)(−l))G(z) , where G is a non-zero analytic function in M such that
limz→w0 G(z) = bk 6= 0 . The Taylor series for G is G(z) =

∑l
m=1 bm(z − w0)(l−m) +

∑∞
n=0 an(z −

w0)(n+l) . Therefore, in M, the behavior of the mapping g is essentially g(z) ≈ (z − w0)−lG(w0) ,
that is, the mapping looks like the rational function (z−w0)(−l) multiplied by the complex number
G(w0).

This important principle is demonstrated for the function g(z) = 1
z4−1

, which has four simple
poles at i, i,−1,−i. We can compute the different rotations and magnifications that each neigh-
borhood undergoes by factoring. If we index the poles as w1 = 1, w2 = i, w3 = −1, w4 = −i, then
g(z) = 1

(z−wi)
G(wi) , where G(w1) = 1

(w1)3+(w1)2+(w1)+1
= 1

4 , G(w2) = 1
(w2)3+i(w2)2−(w2)−i

= 1
−4i =

i
4 , G(w3) = 1

(w3)3−(w3)2+(w3)−1 = −1
4 , G(w4) = 1

(w4)3−i(w4)2−(w4)+i = 1
4i = −i

4 .

This same behavior extends to general meromorphic functions. However, the situation is quite
different in a neighborhood of an essential singularity. Recall that the Casorati-WeierstrassTheorem
told us that a deleted neighborhood of an essential singularity gets mapped densely onto the entire
complex plane. The behavior is actually more amazing. One of the theorems we will prove is the
Great Picard Theorem, which tells us that if a function g is analytic in a deleted neighborhood
of a point w0 and has an essential singularity at w0, then in every deleted neighborhood of w0, g
assumes every complex number, with one possible exception, an infinite number of times.

Systems of Convolution Equations, Deconvolution, Shannon Sampling,
and the Wavelet and Gabor Transforms [2]

See enclosed table of contents.
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Turkey) – “Two problems from industry and their solutions via harmonic and complex analysis
pp. 116–120 (2005).

Accepted for Publication

9



“On positive derivatives and monotonicity,” to appear in the Missouri Journal of Mathemat-
ical Sciences, 13 pp. (2005).

“Two Problems from Industry and Their Solutions via Harmonic and Complex Analysis, to
appear in The Journal of Applied Functional Analysis, 24 pp. (2005).

Submitted for Publication

(With R. Holzsager) “Monotonicity with/without Mean Values” submitted to Mathematics
Magazine, 17 pp. (2004).

“Deconvolution and sampling on non-commensurate lattices via complex interpolation the-
ory,” submitted to Sampling Theory in Signal and Image Processing, 59 pp. (2005).

CURRENT RESEARCH ACTIVITIES

Complex Analysis (An Animated Approach), proposed text for Addison–Wesley Advanced
Text Series.

(With C. Berenstein and D. Walnut) Systems of convolution equations, deconvolution, Shan-
non sampling, and the wavelet and Gabor transforms, research monograph for SIAM Mono-
graphs on Mathematical Modeling and Computation (invited).

(With C. Berenstein and D. Walnut) “Exact multichannel deconvolution,” survey article for
Advances in Imaging and Electron Physics (invited).

“How to Teach Some Old Dogs Some New Tricks: Deconvolution and Sampling on Non-
Commensurate Lattices via Complex Interpolation Theory,” Survey paper for SIAM Review.

Books in Progress

(With C. A. Berenstein and D. F. Walnut) Systems of convolution equations, deconvolution,
Shannon sampling, and the wavelet and Gabor transforms, research monograph for SIAM
Monographs on Mathematical Modeling and Computation (invited).

Complex Analysis (An Animated Approach), proposed text for Addison–Wesley Advanced
Text Series.

Technical Reports

ARO Interim Progress Report for Signal Reconstruction and Analysis via New Techniques in
Harmonic and Complex Analysis – January 2003.

ARO Interim Progress Report for Signal Reconstruction and Analysis via New Techniques in
Harmonic and Complex Analysis – January 2004.

ARO Interim Progress Report for Signal Reconstruction and Analysis via New Techniques in
Harmonic and Complex Analysis – January 2005.

Presentations
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International Conference on Sampling Theory and Applications (SampTA ’05) – “Two prob-
lems from industry and their solutions via harmonic and complex analysis – Samsun, Turkey
– July 2005 (30 minute presentation).

American Mathematical Society, Western Regional Meeting at the University of New Mexico
– “Two problems from industry and their solutions via harmonic and complex analysis –
October 2005 (30 minute presentation).

Washington-Baltimore Section of the Society for Industrial and Applied Mathematics – “How
to teach some old dogs some new tricks: deconvolution and sampling on non-commensurate
lattices via complex interpolation theory - A DVD of this lecture was created by the section
and submitted to the SIAM national society for release in their lecture series – October 2004
(90 minute presentation).

United States Naval Academy Mathematics Department Colloquium – “How to teach some
old dogs some new tricks: deconvolution and sampling on non-commensurate lattices via
complex interpolation theory - October 2004 (1 hour presentation).

International Conference on Sampling Theory and Applications (SampTA ’03) – “Sampling
theory via complex interpolation theory - Strobl, Salzburg, Austria – May, 2003 (30 minute
presentation).

National Institute of Science and Technology – “Complex mappings from an evolutionary
viewpoint (A new way to see some classical mathematics),” – April 2002 (1 hour presentation).

James Madison University Mathematics Department Colloquium – “Pi, the Primes, Period-
icities, and Probability,” – March 2002 (1 hour presentation).

New Mexico Analysis Seminar – “Sampling on non-commensurate lattices via complex inter-
polation theory,” – February 2002

6.) SCIENTIFIC PERSONNEL – PROMOTIONS, HONORS, AND AWARDS

“How to Teach Some Old Dogs Some New Tricks: Deconvolution and Sampling on Non-
Commensurate Lattices via Complex Interpolation Theory,” Invited Lecture presented to
Washington-Baltimore Section of the Society for Industrial and Applied Mathematics (SIAM)
- A DVD of this lecture was created by the section and submitted to the SIAM national society
for release in their lecture series – October 2004.

Promoted to rank of Full Professor – May 2001.

Finalist for Teacher of the Year at American University (Student Award) – (For Academic
Year 2000-2001).

Selected as Program Chair Elect of the Mathematical Association of America MD–VA–DC
Section (2002).

Editorial Boards

Associate Editor, Sampling Theory in Signal and Image Processing.
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