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Preface

Given an application program, traditional approaches to improving performance involve one of two approaches—
improve the performance either of the microprocessor or of the compiler generated code. Both these approaches
are constrained by the fact that they have to confirm to a fized interface between the processor and the software
that executes on it—the Instruction Set Architecture (ISA). The ISA is designed to be suitable for all applications
that will be targeted to the microprocessor. A fixed ISA offers many advantages: compatibility, uniformity and
simplicity. However, due to the very nature of its generality, the instruction mix offered by the ISA need not nec-
essarily be the perfect match for a given application. In addition to the fixed ISA, poor scalability of dynamically
scheduled architectures and limited available “traditional” instruction level parallelism has motivated us to look
for alternative approaches to improving microprocessor performance on general purpose applications.

In this dissertation, we present a novel class of architectures that allow application programs to add and subtract
functional units yielding a dynamically varying instruction set interface to the running application. At the core,
processors belonging to this architectural class are composed of programmable logic as exemplified by a canon-
ical Field Programmable Gate Array (FPGA). This programmable logic resource forms the basis for yielding
such application specific customization. The availability of large amounts of fine-grained parallelism and explicit
control over resource allocation in programmable logic has been shown to yield impressive performance gains
over a large class of applications. However, programmable logic devices such as FPGAs demand a much lower
level of control over micro-architectural elements compared to what a traditional RISC processor allows. This
extra degree of control has made it enormously difficult to program these machines. To quote from the HICSS’97
position paper [117] written by my thesis advisor: “a primary barrier in this regard is the absence of programming
tools and software support to eventually compile algorithms implemented in standard and widely-used languages
such as C onto the hardware platforms.’

4

In the same paper, a need for optimizing programming tools and
compilation support and for real-time embedded system support is stressed. These observations form the basis
for our research approach—to investigate architectures that allow rapid and efficient customization and present
convenient abstractions so that effective compiler techniques may be developed to enable such customizations
without compromising the performance potential of programmable logic.

In the past, several “reconfigurable” processor architectures based on programmable logic have been proposed
[174, 178, 127, 52, 58, 65, 80]. These machines were also designed to be configured in an application specific
manner to improve application performance. However, most of these efforts placed great emphasis at the micro-
architectural level without any thought into how they would be programmed. We believe that this bottom-up
approach is one of the main reasons why it has not been possible to develop compilers that can efficiently target
these machines. This is the reason why these machines have largely remained as “exotic toys”, programmed
manually, confined to research laboratories, instead of gaining acceptance as a viable processor technology for
general purpose applications.

In contrast, this thesis takes a top-down approach that starts with an abstract model of a “reconfigurable proces-
sor”, whose computation can be related to a known computation model for which efficient compilation techniques
are understood, and then successively refines it. The guiding principle at each stage of the refinement being
that of exposing the flexibility offered by programmable logic as much as possible without sacrificing the ability to
compile efficiently to such a machine. A road-map indicating this research approach was presented by us in [90].
The proposed abstract model called Adaptive Instruction Level Parallel (AILP) Processing describes a class of
processor architectures whose data-paths allow multiple instructions to be processed on each cycle and allow

application programs to dynamically alter the functional unit composition of the data-path of the processor using
v



the programmable logic resources provided by the base hardware.

In this dissertation, we present a detailed description of a subset of the AILP space called the Adaptive Explicitly
Parallel Instruction Computing (AEPIC) architectures, whose definition represents a collection of ideas intended
to enable efficient reconfiguration of processor data-paths. While AEPIC processor reconfiguration is af-
fected by the executing program at runtime, the decisions of when and how to reconfigure are determined by the
compiler and embedded in the application’s executable. Our initial ideas and results from preliminary investiga-
tions in this direction were presented in [91].

AEPIC architecture is motivated by a desire to combine the advantages of the EPIC style of architectures
(simpler architectures, known compilation technology) and those of programmable logic (fine-grained parallelism,
explicit control over micro-architectural features). We believe that these architectures are at the right level of
granularity for automatic compilation (unlike many of the purely FPGA based machines) and yet yield many
of the performance benefits of programmable logic. This is evidenced by the similarity between the compilation
techniques targeting conventional ILP architectures and the ones we have proposed for AEPIC architectures. Our
preliminary results also indicate that these architectures are worthwhile direction to pursue.

vi
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Abstract

Current processors are programmed through a fixed interface called the Instruction Set Architecture (ISA).
Consequently, a compiler targeting such a processor is forced to choose instructions from the provided instruction
set while generating code for a given application. Often this instruction set is not a suitable match for the
computational requirements of the application program. With in this context, we ask ourselves the following
questions.

1. Can application performance be improved if the compiler had the freedom to pick the instruction set on a
per application basis?

2. Can we build cost-effective processors that provide the ability to efficiently emulate compiler determined
instruction sets and yet are not application specific?

3. Given that the desired processor capabilities are feasible, can the compiler determine an optimal set of
instructions for a given application and generate code that can effectively exploit the processor capabilities?

In this thesis, we provide sufficient evidence to answer these questions in the affirmative. Through a combination
of architectural innovations and novel compilation techniques, this dissertation demonstrates that it is possible
to attain significant improvement in performance, up to an order of magnitude in some cases, on general purpose
and multimedia applications over comparable fixed ISA processors.

We propose classes of microprocessors that allow application programs to add and subtract functional units
yielding a dynamically varying instruction set interface to the running application without compromising current
compatibility model.

First half of this dissertation describes this novel class of architectures, focusing on a specific subclass called Adap-
tive Explicitly Parallel Instruction Computing (AEPIC) architectures whose definition represents a collection of
ideas intended to enable efficient reconfiguration of processor data-paths. While AEPIC processor reconfiguration
is affected by the executing program at runtime, the decisions of when and how to reconfigure are determined by
the compiler and embedded in the application’s executable.

In the second half, a compilation framework targeting AEPIC processors is proposed. Several key compilation
problems that need to be addressed in order to target AEPIC processors such as partitioning, instruction syn-
thesis, configuration selection, resource allocation and scheduling are defined and efficient techniques for solving
them are proposed for several of them.

Finally, we describe the design of a simulation and performance monitoring framework for AEPIC architectures.
How such architectures can be used to improve application performance is demonstrated using a set of programs
from the SPEC and MediaBench benchmarks. FExperimental results indicate the significant role architectural
features of AEPIC processors play in masking the overheads of micro-architectural reconfiguration.
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Chapter 1

Introduction

“ .. 1 believe that to keep growing single-processor performance, we’ll have to add and subtract func-
tional units, special memories, registers, and customization in a way that current compatibility model
can’t live up to, and in a way that current compiler technology can’t yet handle.” —Joseph A. Fisher,
1997 [48]

1.1 Generic Processors, Application Specific Architectures

Through a combination of architectural innovations and novel compilation techniques, this dissertation demon-
strates that it is possible to attain significant improvement in performance, up to an order of magnitude in some
cases, on general purpose and multimedia applications over comparable processors using known compilation tech-
niques.

The proposed architectures describe classes of simple microprocessors that allow application programs to add
and subtract functional units yielding a dynamically varying instruction set interface to the running application
without compromising current compatibility model.

First half of this dissertation describes this novel class of architectures, focusing on a specific subclass called Adap-
tive Explicitly Parallel Instruction Computing (AEPIC) architectures, whose definition represents a collection of
ideas intended to enable efficient reconfiguration of processor data-paths. While AEPIC processor reconfiguration
is affected by the executing program at runtime, the decisions of when and how to reconfigure are determined by
the compiler and embedded in the application’s executable.

In the second half, a compilation framework targeting AEPIC processors is proposed. Several key compilation
problems that need to be addressed in order to target AEPIC processors such as partitioning, instruction synthe-
sis, configuration selection, resource allocation and scheduling are defined and efficient algorithms are proposed
for several of them. Finally, the design of a simulation and performance monitoring framework is described.
Experimental results using several applications from SPEC and MediaBench benchmarks establish our thesis.

1.1.1 Fixed Instruction Set Architectures

A microprocessor’s Instruction Set Architecture (ISA) can be viewed as a contractual interface between the set of
programs that are written for an architecture and the set of processor implementations of that architecture. The

1B. R. Rau [126]



usual view is that this ISA is fixed and that these processors are manufactured with one particular implementation
that realizes this ISA and the program codes are required to confirm to this ISA (Figure 1.1). A consequence of
these fixed ISA processors is that a compiler targeting such a processor is forced to choose instructions from the
fixed instruction set while generating code for a given application. Often the instruction set is unsuitable for the
computational requirements of the application program. For example, an instruction set which does not include
an “efficient” Multiply-Accumulate (MAC) instruction is a poor match for digital signal processing applications
which rely heavily on MAC operations. Instruction set requirements change with changing application domains.
Current methods for accommodating the instruction set requirements of new application domains primarily follows
the approach of extending the existing instruction sets. This is exemplified by the multi-media extensions to most
commercial architectures (for e.g., the MMX extensions to 1A-32 [120]). Although motivated by an important
need to maintain compatibility with code generated for earlier instruction sets, this trend of extending instruction
sets contributes to the already bloated instruction sets. The benefits are questionable [17] and processors are
getting increasingly complex leading to added compilation difficulties and ever more expensive processors [22].

Source program
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format, semantics

processor state
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IIIE—
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Executable code

Figure 1.1: Fixed interface architectures

1.1.2 Compiler Specified, Dynamic Instruction Set Architectures

In contrast to fixed instruction set architectures, a compiler specified, dynamic instruction set architecture defines
a class of processors whose instruction set interfaces are determined by the compiler and may be changed (from
the point of view of the executing program) at runtime by the executing process. A compiler that generates
code for such a processor takes a source program as input and generates (a) an executable version of the input
program and, (b) a description of the architecture expected by the instructions in the executable (see Figure 1.2).
This description of the architecture not only specifies the interface (names, types and formats of instructions,
etc) but also contains information about how the processor should be reconfigured to efficiently emulate those
instructions. It is likely that this style of processing simplifies processor designs since they are not hardwired
with complex functional units, and, improves application performance since the eventual “configured” (by the
compiler) micro-architecture is tuned to the needs of the application. Within this context, we ask ourselves the
following questions.

1. Can we build cost-effective processors that provide the ability to efficiently emulate compiler synthesized

instruction sets and yet are not application specific?
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Figure 1.2: Compiler specified architectures

2. Given that processor capabilities are feasible, can the compiler determine an optimal set of instructions for
a given application?

3. Once an instruction set is determined, can the program be translated into efficient code composed of
instructions from the synthesized instruction set, possibly interspersed with instructions to reconfigure the
processor to emulate the synthesized instructions?

4. Can the compilation task be performed in reasonable times?

These are some of the questions that form the basis for our research effort.

1.2 An Illustrative Example

1.2.1 A Speech Signal Codec

Here, we motivate our research effort through an application. This application is a speech codec (coder/decoder)
based on Adaptive Differential Pulse Code Modulation (ADPCM) [123]. ADPCM is a form of Pulse Code Mod-
ulation (PCM) that produces a lower bit rate by recording only the difference between samples and adjusting the
coding scale dynamically to accommodate large and small differences. A common implementation takes 16-bit
linear PCM samples and converts them to 4-bit samples, yielding a compression rate of 4:1. Some applications
such as telephony over ISDN or desktop video conferencing systems use ADPCM to digitize and compress a voice
signal so that voice and data can be transmitted simultaneously over a digital facility normally used only for one
or the other.

The “C” program for the decoder part of the speech codec is shown in Program 1. ADPCM code is the Intel/DVI
ADPCM code, an implementation of the algorithm from the IMA Compatibility Project proceedings, Vol 2,
Number 2; May 1992, obtained from the MediaBench benchmark suite [93]. The adpcm_decoder function takes
len bytes of compressed speech data passed via the indata parameter and writes the uncompressed speech data
to the outdata parameter.



Program 1 ADPCM Decoder

/*step variation table */
static int indexTable[16] = {-1,-1,1,-1,2,4,6,8,-1,-1,-1,-1,2,4,6,8};
static int stepsizeTable[89] =

{7,8,9,10,11,12,13,14,16,17,19,21,23,25,28 31,
34,37,41,45,50,55,60,66,73,80,88,97,107,118,130,143,
157,173,190,209,230,253,279,307,337,371,408,449,494,
544,598,658,724,796,876,963,1060,1166,1282,1411,1552,
1707,1878,2066,2272,2499,2749,3024,3327,3660,4026,
4428,4871,5358,5894,6484,7132,7845,8630,9493,10442,
11487,12635,13899,15289,16818,18500,20350,22385,24623,
27086,29794,32767 };

void adpcm_decoder
(char* indata, short* outdata, int len,struct adpcm_state state)

{

int sign, delta, vpdiff, index, inputbuffer, bufferstep = 0;

signed char *inp = (signed char *)indata; short *outp = outdata;
int valpred = state—valprev;

int index = state—index;

int step = stepsizeTable[index];




Program 2 ADPCM Decoder (contd.)

for (;len > 0 ; len—)
{
if ( bufferstep ) delta = inputbuffer & 0xf;
else { inputbuffer = *inp++; delta = (inputbuffer > 4) & 0xf;}
bufferstep = !bufferstep;
index += indexTable[delta];
if (index < 0 ) index = 0;
if (index > 88 ) index = 88;
sign = delta & §;
delta = delta & 7;
vpdiff = step > 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2) vpdiff += step>>1;
if ((delta & 1) vpdiff += step>2;
if ( sign ) valpred -= vpdiff;
else valpred += vpdiff;
if ( valpred > 32767 ) valpred = 32767;
else if ( valpred < -32768 ) valpred = -32768;
step = stepsizeTable[index];
*outp++ = valpred;
}
state—valprev = valpred;
state—index = index;
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1.2.2 Performance On Traditional Architectures

First we look at the performance of the ADPCM codec on a wide-issue EPIC processor using state-of-the-art ILP
compilation techniques. The EPIC processor used for the experiment is a 9-wide (9 functional units comprised
of 4 integer, 2 floating point, 2 memory and 1 branch units) HPL-PD EPIC processor [84]. The Trimaran ILP
compiler [70] was used to target this machine. A summary of the performance is shown in Table 1.3. The first
three columns show the total number of processor cycles consumed to compute the two functions of the program,
using three different region formation methods: basic blocks [5], superblocks [105] and hyperblocks [103]. The
final column shows the total cycle counts when there are no processor resource constraints (meaning, an infinite
number of functional units of each type are assumed to exist on the processor) under the basic block region
formation method.

Function B2 Sa221 Hjyo01 B
main 2274 3829 1975 1975
adpcem_decoder | 5706136 | 3857210 | 5706136 | 3821956

Total cycles 5708410 | 3861039 | 5708111 | 3823931

Figure 1.3: ADPCM decoder cycle counts

Let us take a closer look at how the total cycles are distributed across the code. The basic block level execution
profile is shown in Table 1.4. The BB# column in the table gives the basic block number, the DynCyc column
gives the total number of cycles consumed by that basic block and the SL column gives the length of the static
schedule for that basic block.

BB# | DynCyc | SL BB# | DynCyc | SL BB# | DynCyc | SL
1 444 3 10 590080 4 19 295040 2
2 1184 8 11 57148 2 20 0 2
3 295040 2 12 442560 3 21 295040 2
4 147520 2 13 117902 2 22 0 2
5 368800 5 14 442560 3 23 0 0
6 1032640 7 15 130422 2 24 590080 4
7 13372 2 16 295040 2 25 444 3
8 295040 2 17 140874 2 26 740 5
9 0 2 18 154166 2

Figure 1.4: Basic block execution profile

Let us now consider the most compute intensive regions of the source code. Mapping the basic block level
execution profile (Table 1.4) back to the source code level, we can identify the “hot-spots” (compute intensive
regions) at the source code level of the program. Some of these hot-spots are numbered in the source code (lines
numbered 1 through 14 in the adpcm_decoder function shown above). The total cycles consumed by these
lines of the code and their individual contribution towards the total computation time (in percentage) are shown
in Table 1.5. In all these 14 lines contribute to about 84% of the total execution time of the program. Note: In
the second column of Table 1.5, the numbers in parentheses denote that the source code in that row (from the

first column) contributes to only that many cycles in that basic block per execution of the basic block.
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Source| Basic blocks Cycles Total Percent of
lines per cycles total time
iteration

1 6(4) 4 590080 10.3

2-3 6(2),7,8,9 5.1 750972 13.2

4-5 10(2) 2 295040 5.2

6-9 10(2),11,12,13,14,15,16(2) | 11.1 1633152 28.6

10-11 16(1),18(1),17 2.5 365677 6.4

12-13 19,20,21,22 4 590080 10.3

14 24 4 590080 10.3

Figure 1.5: ADPCM program hot-spots

1.2.3 Compiler Synthesized Instructions And Potential Benefits

From the program “hot-spots” Table 1.5, it seems that the average number of cycles consumed to compute the
source lines marked 1-14 per iteration is higher than what one would expect. Let us examine the marked code
sections individually to see what we mean.

index += indexTable[delta]

indexTable
-
;7 rl: delta; r5: index !

—
shl r2,r1, 2 LUT
add r3, r2, <indexTable>
Id r4,r3
add r5, r5, r4 A B| Cl

delta index index

(@) (b)

Figure 1.6: IR and circuit for line 1

Line 1 The EPIC assembly code for this source line is shown in Figure 1.6(a). For each execution of line (1),
4 processor cycles are consumed assuming each assembly instruction can be computed in a single cycle.
However, note that the indexTable is a static table of 16 constant values (just 5 unique values). Now,
consider the circuit in Figure 1.6(b). The look-up table (LUT) stores the 16 values of the indexTable. Given
the inputs delta and index, this circuit computes the new value of inder through a simple look-up and
addition operation. This combined operation can be performed in a single cycle in current semiconductor
(0.18u BiCMOS, 5 metal layer) technology. Note that this circuit also reduces the memory traffic avoiding
potential cache misses since the memory reads (Id operation in the assembly code) are eliminated.

Lines 2-3 The EPIC assembly code for this source line is shown in Figure 1.7(a). For each execution of lines
7



if (index < 0) index = 0;
if (index > 88) index = 88;

B6 pbrr b1, B7
cmpp_It p,rl, O

brct bl, p
04.
B7 Mux —,
pbrr bl, B8 88—
mov rl, O
bru b1 X—
B8
pbrr bl, B9 z
cmpp_gt p, rl, 88 88—
brct bl, p
04—
B9 z
pbrr bl, B10
mov rl, 88
bru bl

\ B10 index ing

(a) (b)

ex

Figure 1.7: IR and circuit for lines 2-3

marked 2-3, on an average 5.1 processor cycles are consumed. However, these two if statements basically
saturate the value of index variable, an operation that can be performed by a simple circuit composed of
a 4x1 multiplexer and two comparators as shown in Figure 1.7(b). This circuit too can compute the new
value of index in a single cycle.

Lines 4-5 Lines marked 4-5 extract the sign and magnitude of delta and assigns the values to variables sign and

delta. Unless an extra register is used to keep a duplicate copy of delta, these two lines require a minimum
of 2 cycles on any processor. Assembly for HPL-PD EPIC processor is shown in Figure 1.8(a). It is easy to
see that the simple “bit-extract” circuit in Figure 1.8(b) can perform the task in a single cycle.

Lines 6-9 The assembly code shown in the form of an intermediate representation (IR) for these lines is shown

in Figure 1.10(a). On an average this section of the code consumes 11.1 cycles for each iteration of the loop.
Even in the best case (code generated manually), when (a) all the if conditions are computed in parallel,
(b) the shifts are performed in parallel, and (c) the updates to vpdiff are performed in an optimal manner,
the number of cycles required would still be 6. However, the circuit in Figure 1.10(b) can perform this
computation in 3 cycles in the worst case, although it is quite possible that the number of cycles can be
further reduced. Note that the enable signal if “on” would allow the addition to be performed. If enable is
“off”, only the right input operand of the adder is propagated to its output.

Lines 10-11 The assembly code and the circuit for this if statement is shown in Figure 1.9. Again, the circuit

can perform the computation in a single cycle while the EPIC code consumes 2.5 cycles on average per
iteration. Note that even with predication, this statement cannot be computed in less than 2 cycles per
execution.

Lines 12-13 This if statement is identical in structure to the code in lines 2-3. So the expected benefit should

be identical to that obtained in the case of lines 2-3.
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sign =.delta & 8;
delta = delta & 7;

delta
B10
[T T[]
and rl2, r2, 8
and r2, r2, 7 [o[olold3 [ [T ]
@ sign delta

(b)

Figure 1.8: IR and circuit for lines 4-5

Line 14 Again, just as in the case of line 1, here too the stepSizeTable is a table of constant values. Though
the table is somewhat larger, it can still be accommodated inside a functional unit. Here, the look-up table
(LUT) stores the 89 values of the stepSizeTable. Again, the operation can be performed in a single cycle
and there is the added benefit of avoiding memory accesses (after the table is initialized).

Let us for the moment consider that there exists a processor that, in addition to the EPIC instructions also pro-
vides a mechanism that allows the compiler to communicate the 7 special instructions that compute the circuits
identified in the above description for each of the seven (numbered) segments of the source code. If a compiler
were to correctly identify these code sections and map them to the appropriate special instruction, then the total
cycle count of the application can be reduced by 3487144 (See Table 1.11). This yields a speedup of 2.57 compared
to execution on the Byoo1 9-issue EPIC processor using basic-block region formation. Even when compared to any
another EPIC machine configuration (see Table 1.3), the performance benefits can be substantial. For example,
even against an EPIC machine with infinite resources, the speedup is 1.72.

Note that we did not account for the overhead of communicating the “description” of these 7 special instructions
to the processor. First, we do not (yet) have an idea of how much information needs to be communicated to the
processor to “implement” these instructions intended to be used by this application. Second, it is not clear if
the overhead is in addition to the cost of the actual instruction processing (perhaps it could be overlapped with
useful processing). However, the gains are quite substantial and clearly warrants further investigation.

Great performance improvements for several other applications using similar methods such as the one used above
further motivated us to determine if one can achieve such results in practice. Hence we set ourselves the goal
of designing processors such that they can be customized for each application in a way most suitable for that
particular application but at the same time keeping the basic architecture and processor implementation simple,
devoid of any application specific features.

The essence of this dissertation is to show that, indeed, such processors can be built and
effectively targeted to yield gains as estimated in the above example.
9



B16

pbrr bl, B17
cmpp_neq p, r12,0 . .
brct b1, p if (sign) _
valpred -= vpdiff;
else _
817 valpred += vpdiff;
pbrr b1, B19 B18

bru bl add r5, r5, r3

valpred - (-)
‘ Mux | valpred
)

(a) ) sign

Figure 1.9: IR and circuit for lines 10-11

B19 vpdiff —

1.3 Goals, Challenges, Approach

1.3.1 Goal

Our goals are twofold:

1. Design processors that can be efficiently reconfigured at runtime to emulate compiler synthesized instructions
and yet are simple and generic enough to be able to be used as suitable targets for a large class of applications.

2. Develop compilation techniques that can synthesize application specific instructions and generate optimal
code, code that not only performs the intended computation but also efficiently reconfigures the processor to
support the instructions synthesized by the compiler.

In order for the processor to emulate a compiler synthesized instruction I, the processor needs to provide some
sort of programmable hardware resource to the compiler so that such resource can be configured to emulate I.
It is likely that this additional flexibility provided by the processor introduces two negative side-effects: (1) in
order to accommodate the programmability aspect, additional hardware resources might have to be allocated
on the processor die which would otherwise be absent in a processor with hardwired circuits, (2) the extra cost
incurred in configuring such programmable resources to emulate the application specific instruction I synthesized
by the compiler. Our research was motivated by the belief that these negative side-effects can be overcome by
the benefits of application specific customization.

Application specific instruction set synthesis has been attempted before [73, 72, 71, 122, 69, 12, 138, 60]. However,
the problem addressed by past efforts is of a different nature than the one we are attempting here. The key
difference being, in our case, the processor allows dynamic reconfiguration and hence the instruction set synthesis
problem has to also address the costs and benefits of such a capability; not to mention the problem of determining

what type of processors support such a capability.
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B10 vpdiff = step >>3;

pbrr bil, B11 if (delta & 4) vpdiff += step;
Shga r161, r3é 34 if (delta & 2) vpdiff += step>>1;
and rl1l, r2, i iff += >>2:
AT ARG if (delta & 1) vpdiff step>>2;
brct bl, p
“~{pbrr b1,B12 |B11 step delta
add r3, r3, r6
B12 bru bl ‘ ‘
and ril, r2, 2
pbrr b1, B13 |s=step [T [ T ]
cmpp_neq p, ril, O ‘ shifter ‘ d3d2 d1do
brct b1, p
h 11,r6, 1
\;bﬁ} ‘b1 B14 [B13 ¢ S<<15<<25<<3
add r3,r3, ri1 ‘ ‘
B14 / bru bl
and rid, r2, 1 enable
pbrr b1, B15
cmpp_neq p, r11, O
brct bi, p enable
shrar2, r6, 2
\pbrr b1, B16 B1S ¥.__enable
add r3,r3, r2
B16 bru bl
pbrr b1, B17
cmpp_neq p, r12, 0
bret bl, p (a) vpdiff (b)

Figure 1.10: IR and circuit for lines 6-9

1.3.2 Challenges
1.3.2.1 Architecture Challenges

Micro-architectures for customization. The key question is what kind of hardware resource is required for
a given application domain? FPGA like programmable logic is one candidate. Type of this base resource not only
determines the set of computations that can be mapped to it, but also the difficulty in mapping the computation,
the size of the “program” to configure the resource to perform the desired computation and the cost of the device.

Overheads of customization. Application specific customization has its benefits. However, the overheads
of performing the customization have to be considered. Let us consider an example. Table 1.12 lists the code
size required to perform the Inverse Discrete Cosine Transform (IDCT) function - a popular kernel used in
several image/video data processing applications. The first column gives the base hardware. The first two rows
correspond to a regular EPIC architecture [84] while the last two rows correspond to the FPGAs from Xilinx [180].
The second column gives the performance of the architecture (once it is configured) and the last two columns
give the number of instructions and the code size (total size of the instructions). It is clear that the performance
on Xilinx architecture is far superior to that on the EPIC processor. However, the overhead of programming the
machine is prohibitively high in the case of Xilinx machines. Masking this overhead is a serious concern if the

benefits of customization are to affect the final performance.
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Source Average EPIC | Application spe- | Reduction in
lines code schedule | cific instruction | total cycles
length cycles/iteration
1 4 1 442560
2-3 5.1 1 600778
4-5 2 1 147520
6-9 11.1 3 1191760
10-11 2.5 1 219406
12-13 4 1 442560
14 4 1 442560
Total reduction in cycle count | 3487144
Total cycles consumed | 2221266

Figure 1.11: Reduction in cycle counts due to application specific instructions

Architecture | Cycles | Code Code Size
HPL-PD EPIC 12127 | 184 ops <2KB
HPL-PD EPIC 6633 | 196 ops <2KB
Xilinx XC4K 544 | 4920 CLBs >100Kb
Xilinx Virtex 26 | 6140 slices >1Mb

Figure 1.12: Configuration/code size for IDCT

1.3.2.2 Compilation Challenges

Identify, synthesize, use. The key tasks for the compiler in the front-end are to identify the suitable candidates
of the input program that may be grouped together and mapped to the programmable resource as an application
specific instruction. Having identified such candidates, the next task is to convert them into “instructions”
(configurations) that configure the processor to perform that computation and eventually use such configurations
during the code translation. These tasks are usually not present in compilers for fixed ISA processors.

Code generation and optimization. Once the desired application specific instructions are synthesized, the
compiler back-end needs to generate appropriate code that uses the synthesizes the instructions and code that
configures the processor at the right time so that when a certain instruction is executed, the machine is already
configured to perform that instruction. The essential task is to reduce the critical path through the program (in
other words generate optimal schedules). Unlike traditional compilation, here the compiler has to consider the
costs of reconfiguration in performing any of the back-end tasks.

1.3.3 Overview And Motivation For Our Approach

In the past, several “reconfigurable” processor architectures based on programmable logic have been proposed
[174, 178, 127, 52, 58, 65, 80]. These processors or machines were also designed to be configured in an application
specific manner to reduce computation time. However, most of these efforts placed great emphasis at the micro-
architectural level without any thought into how they would be programmed. We believe that this bottom-up
approach is one of the main reasons why it has not been possible to develop compilers that can efficiently target
these machines. This is the reason why these machines have largely remained as “exotic toys”, programmed

manually, confined to research laboratories, instead of gaining acceptance as a viable processor technology for
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general purpose applications.

In contrast, this thesis takes a top-down approach that starts with an abstract model of a “reconfigurable proces-
sor”, whose computation can be related to a known computation model for which efficient compilation techniques
are understood, and then successively refines it. The guiding principle at each stage of the refinement being
that of exposing the flexibility offered by programmable logic as much as possible without sacrificing the ability to
compile efficiently to such a machine. The proposed abstract model called Adaptive Instruction Level Parallel
(AILP) Processing describes a class of processor architectures whose data-paths allow multiple instructions to be
processed on each cycle and allow application programs to dynamically alter the functional unit composition of
the data-path of the processor using the programmable logic resources provided by the base hardware.

Research in instruction-level parallel processing over the past decade has had a great impact both on the archi-
tectural front in the form of super-scalar processing, as well as on compiler technology. While the former (fueled
also by concerns of compatibility) has led the way , poor scalability of the control unit in the face of increasing
parallelism is forcing a trend towards simpler, explicitly parallel ILP architectures with increasing burden being
placed on the compiler to expose, enhance and exploit the available ILP. The resulting style of architectures has
come to be known as Explicitly Parallel Instruction Computing (EPIC). HPL-PD [84] and the more recent Intel’s
TA-64 [42] exemplify the EPIC style. One of the main reasons for the success of traditional RISC style micro-
processor architectures is due to the simple interface presented by the control unit. Reconfigurable architectures,
as exemplified by a canonical FPGA , demand a much greater (low) level of control over the micro-architectural
elements. This extra degree of control has made it enormously difficult to program these machines. The avail-
ability of large amounts of fine-grained parallelism and explicit control over resource allocation has been shown
to yield impressive performance gains warranting further investigation of suitable programmable logic based pro-
cessor architectures. By suitability we mean—being able to automatically compile without losing much of the
performance gains exhibited through “hand” compilation.

Complex
ASIC FPGA
DPGA
RAW

RaPiD MultiChip

CVH AEPIC

EPIC/VLIW

Parallelism ——

Vector
Dataflow

Simple
pipelined

Simple  Early
Xx86

0O 4 16 32 64 128-512 1-10KB 0.1-1MB > 1MB

Instruction packet size ——»

Figure 1.13: Control, parallelism and compilability
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A subset of the AILP space of architectures called Adaptive Explicitly Parallel Instruction Computing
(AEPIC) architectures is chosen as the basis for our research infrastructure. AEPIC architecture is motivated by
a desire to combine the advantages of the EPIC style of architectures (simpler architectures, known compilation
technology) and those of programmable logic (fine-grained parallelism, explicit control over micro-architectural
features). Its definition represents a collection of ideas intended to address the problems of micro-architectural
data-path reconfiguration.

Figure 1.13 illustrates several known interesting architectures placed in a two dimensional space. The X-axis
represents the size of an instruction packet that needs to be issued to initiate processing—it represents the
amount of “control” program has over the architecture. FPGA’s and ASIC’s represent the two extremes on this
axis - the former exposes the maximum amount of control leading to an extremely large instruction packet size
while ASICs are hardwired designs hence are not programmable. The Y-axis represent the amount of parallelism
in the machine that is exploitable by the instruction packet. The shaded region within the plot represents a set of
architectures for which efficient compilation techniques are known. AEPIC class is a good candidate for research
since it is at the boundary of what is known to be efficiently and automatically compilable class of architectures.
We believe that these architectures are at the right level of granularity for automatic compilation (unlike many
of the purely FPGA based machines) and yet yield many of the performance benefits of programmable logic.

1.4 Summary Of Main Contributions

Key contributions of this dissertation are as follows.

1. The proposal of an abstract model called Adaptive Instruction Level Parallel (AILP) Processing that de-
scribes a class of processor architectures whose data-paths allow multiple instructions to be processed on
each cycle and allow application programs to dynamically alter the functional unit composition of the
data-path of the processor using the programmable logic resources provided by the base hardware.

2. A novel, parameterized description of a subset of the AILP space of architectures called Adaptive Ex-
plicitly Parallel Instruction Computing (AEPIC). AEPIC architecture is chosen as the basis for our
research infrastructure. Its definition represents a collection of ideas intended to address the problems of
micro-architectural data-path reconfiguration.

3. In the second part, we present a compilation framework targeting the proposed AEPIC architecture. We
define the compilation problems that need to be addressed, such as partitioning, configuration selection,
resource allocation and scheduling and present efficient algorithms for several of them.

4. Finally, we describe the design of a simulation and performance monitoring framework for AEPIC architec-
tures. How such architectures can be used to improve application performance is demonstrated using a set
of programs from the SPEC and MediaBench benchmarks [93]. Experimental results also indicate how the
novel architectural features of AEPIC may be used to mask the runtime overheads of micro-architectural
reconfiguration.

1.5 Organization Of This Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 provides the necessary definitions and background on programmable logic and on the structure
of machines that contain programmable logic in some form. It gives an insight into the structure and

composition, and the key parameters of devices based on reconfigurable logic. An understanding of the
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device level parameters discussed here will provide better intuition for more realistic system level models
discussed in later sections.

Chapter 3 presents a brief historical perspective of reconfigurable computing research followed by a somewhat
encyclopedic survey of the past and ongoing research in reconfigurable computing systems—work that is
related to our own.

Chapter 4 defines Dynamic Instruction Set (DIS) architectures. After a brief background on Instruction Level
Parallel (ILP) processing, we shift our focus to a subclass of DIS architectures that in addition are also ILP
architectures. This subclass is referred to as Adaptive Instruction Level Processing (AILP) architectures.
Basic structure and features along with a taxonomy of AILP architectures is presented. AILP space itself
is quite large to serve as a starting point for detailed investigation. Hence, a specific subclass of AILP
architectures called Adaptive Explicitly Parallel Instruction Computing architectures (Cagprc) is identified
for further investigation.

Chapter 5 describes a specific instance of (Cagprc) referred to as AEPIC architecture. AEPIC forms the core
of our architectural contribution. Defining aspects of AEPIC architecture, key features and the motivation
behind them, its computation and machine models are described here. Details such as architectural state,
memory hierarchy, instruction set, architectural parameters are also presented.

Chapter 6 presents a basic compilation framework targeting AEPIC processors. Key compilation problems
such as partitioning, operation synthesis, configuration selection, configuration allocation and instruction
scheduling are defined and efficient algorithms are presented for several of them.

Chapter 7 discusses the design of a simulation and performance monitoring framework—useful components of
any compiler research infrastructure targeting AEPIC processors.

Chapter 8 presents the results of our experiments to evaluate the performance of AEPIC processors. Application
domain, experimental methodology, compilation environment, machine configurations, are described.

Chapter 9 concludes the dissertation highlighting the achievements and possible future directions.
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Chapter 2

Background

2.1 Introduction

Section 2.2 defines reconfigurable logic devices and other terms specifically related to this domain. Section 2.3 gives
an insight into the structure and composition, and the key parameters of reconfigurable devices. An understanding
of the device level parameters discussed here will provide better intuition for more realistic system level models
discussed in later sections. Reconfigurable computing systems could be based purely on such reconfigurable
components or on some hybrid mix of reconfigurable and standard processor components. This issue is explored
in section 2.4. In section 2.5, we list a class of applications for which reconfigurable computing holds promise of
orders of magnitude better performance/cost ratio compared to conventional technologies. In the same section,
‘reconfigurable” solution.

¢

we examine application characteristics which make them suitable for a

2.2 Definitions/Terminology

A simple model for a conventional uni-processor (Figure 2.1) consists of a data-path and a control unit and is
externally defined by the instruction set architecture (ISA). ISA specifies the interface between the physical device
and the software system. Typically, the ISA consists of a set of instructions each of which configures the processor
hardware through a set of control signals generated by the control unit. These signals enable/disable specific
portions of the integrated circuit such as ALU’s (specify the particular operation), registers (select sources and
destinations for operands), etc.

Definition 1 A programmable logic device is an integrated circuit that provides a programmable interface
through which the user can dynamically instantiate and emulate almost any desired set of hardware images on
the available circuit.

Figure 2.2(a) shows a typical programmable logic device consisting of an array of fine grained processing ele-
ments (Figure 2.2(c)) embedded in a mesh of programmable interconnect resource. The interconnect is composed
of data interconnect and configuration interconnect (Figure 2.2(b)). The configuration interconnect is used to
route the configuration bit-stream. The configuration data (1) decides the functionality of each of the process-
ing elements and (2) establishes the topology of the communication network between the processing elements, by
programming the customization points. The data interconnect routes data to/from the external pins and the PE’s.
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Figure 2.1: General purpose processor model

Programmability of the PE functionality and routing structure is achieved through customization points. In
today’s technology, these customization points typically are memory cells (most often SRAM based) or anti-fuses.
Anti-fuses are one-time programmable devices (Figure 2.3(a)), which when “blown” create a connection between
two conducting materials, and not otherwise. In the case of FPGA’s, the control bit @ (Figure 2.3(b)) can be
programmatically set any number of times through the data input. @ is typically used as input to a multiplexer.

Definition 2 A configuration is defined to be the set of program bits needed to specify the behavior of all the
customization points. Alternately, it may also refer to the hardware image realized on the programmable logic
device as a result of the customization.

Clearly, the number of configurations that can be specified depends on the number of customization points and
the number of valid settings for each customization point. In order to provide the user an extremely large set of
configurations to choose from, these devices typically contain

e a large number of independently controllable processing elements and,
e a rich programmable interconnection network.

It is conceivable to create a programmable logic device which does not fit the above description. However, for the
sake of simplicity, we consider only those devices that are composed of a reqular array of identical “configurable”
processing elements (PE). All state used for re-timing, like latches, registers, etc., is considered part of the
processing elements. We do not consider devices which can self modify their own controllers. Almost all devices

proposed till date, research prototypes as well as the commercial ones fall into this category.
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Figure 2.2: Generic programmable logic device

Definition 3 The ability to reconfigure the device during the lifetime of a single execution is referred to as run-
time reconfigurability.

Note that anti-fuse based devices are not run-time reconfigurable; in fact they are only “one-time” configurable.

Definition 4 Partial reconfiguration refers to the ability to reconfigure only a select portion of the device.

A vast number of terms have been used in the literature to refer to various kinds of programmable logic devices.
A classification of these terms is shown in Figure 2.4. Simple PLD’s are distinguished from High Capacity
PLD’s based on capacity - those devices with a logic capacity of 600 gates or less. While CPLD’s have a
continuous interconnect resource, FPGA’s are based on segmented interconnect. The segments are joined through
programmable switches.

2.3 Programmable Logic Device: Issues

In this section, we present an argument wherein reconfigurability is viewed as composed of three orthogonal
dimensions. A taxonomy of reconfigurable devices based these dimensions of reconfigurability is presented. Later,
we characterize the space of reconfigurable logic devices through a small set of architectural parameters. This
parameter set has a direct relationship to the performance and cost of the corresponding device and would help

the designer pick a suitable candidate from the space of reconfigurable devices for a given application domain.
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Figure 2.3: Customization Points of A Reconfigurable Device

2.3.1 Dimensions of Reconfigurability

1. Temporal reconfigurability refers to the ability to repeatedly reconfigure the device overtime. The two
options in this case are run-time reconfigurability and static reconfigurability.

2. Spatial reconfigurability concerns the ability to reconfigure select portions of the device. The two choices
are partial and/or full reconfigurability.

3. Type of reconfigurability refers to the type and the extent to which different elements of the device can
be reconfigured. For example, in a particular reconfigurable device only the processing elements might be
reconfigurable while the interconnect is not configurable.

Figure 77 gives a pictorial representation of the three dimensions of reconfigurability. In Table 2.1 we give a

taxonomy of the reconfigurable devices based on these three dimensions.
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Figure 2.4: A Classification of Programmable Logic Devices

PR = Partially Reconfigurable
F R = Only Full Reconfigurability
RTR = Run-time Reconfigurable
OT = One-time Reconfigurable (static)
N = Only Network Reconfigurable
P = Only Processing Element Reconfigurable
NP = Both Network and PE Reconfigurable

Table 2.1: Taxonomy of Reconfigurable Devices

’ Device Spatial | Temporal ‘ Type ‘
Xilinx XC6200 PR RTR NP
ORCA 2Cxx PR RTR NP
QLogic QL3K FR oT NP
ATMEL 6K PR RTR NP
NAPA1K PR RTR NP
Altera Flex10K FR RTR NP
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Table 2.1: Taxonomy of Reconfigurable Devices

Device Spatial | Temporal ‘ Type ‘
Xilinx XC4K FR RTR NP
Actel SX FR oT NP
Triptych PR RTR P
DPGA PR RTR NP
MATRIX PR RTR NP
GARP PR RTR P
RaPiD PR RTR N
PAM FR RTR NP
DISC PR RTR P
PRISC PR RTR P
Chimaera PR RTR NP
CVH PR RTR NP
RAW PR RTR PN

2.3.2 Programmable Logic Device Key Parameters

1. Processing element type and granularity. Processing element (PE) granularity is determined by the
set of operations performed by the PE and the bit width of the input operands. For example, most FPGA
devices operate on single bit operands and the set of operations performed are typically K-input, N-output
truth tables where K and N are small integers (typically in the range : 2-6). Choices for the PE granularity
depend on the computational requirements of the application domain. For example, most image processing
filters operate on a large number of bit or byte level values and hence a fine grained reconfigurable array
would be most efficient. On the other hand, most digital signal processing applications perform linear
filtering on fixed point values of higher bit widths. In such cases, PE’s designed to efficiently implement
fixed point arithmetic are more suitable. A granularity mismatch between the application and the PE can
lead to a very inefficient design.

2. Interconnect. Richness of the interconnect resources and the proportion of it that is reconfigurable
determines the routability of a given application (class of program graphs that can be mapped to the
reconfigurable device.) An interconnection network that is a complete graph on the processing elements
can accommodate any program graph on the processing elements. However, for a given area constraint,
richer the interconnect resource, less is the area available for processing elements, configuration control and
memory elements and, larger the configuration instruction size. Some of the proposed interconnect types
are : crossbar, mesh (regular, hierarchical), nearest-neighbors. Another factor that needs to be addressed is
whether the interconnect itself is programmable. When the interconnect is not programmable, application
specific routing is achieved by using some of the processing elements as switch boxes, whose function is to
route specific inputs to specified outputs.

3. Configuration distribution mechanism. This refers to the allocation of bits of each configuration to
individual processing elements and the dispersal mechanism used to transmit those bits to the associated
customization points from the input pins. Issues that are of concern here are : (1) whether the allocation of
configuration bits is done dynamically or statically, (2) whether the dispersal is sequential, parallel or some
hybrid mix and, in each case whether it is full or partial. Consider case (1). If the allocation is static, then
some form of instruction encoding should be in place to map configuration bit-streams to the customization

points in the processing elements and interconnect. This would increase the bandwidth requirements to
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the configuration store. On the other hand, if the allocation if dynamic, then the reconfigurable device
complexity increases since it has to to include hardware for dynamic allocation.

4. Configuration context depth. The number of configurations associated with each customization point is
referred to as the configuration context depth. The configuration words associated with each customization
point are ordered. The set of configuration words of all the customization points with the same position
in the order is referred to as a configuration context. Multi-context devices are useful due to the fact that
their contexts can be switched rapidly. The mechanism is also beneficial when a particular configuration
needs to be split into multiple smaller configurations which can be overlapped in space (on the device) but
sequentialized in time (during runtime). This might be necessary when the size of the configuration is larger
than the size of configuration of a single context. If the context depth is much larger than the application
critical path length, then most of the context memory is not utilized. If the context depth is too small, the
device would have to load configurations too many times leading to performance degradation.
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2.3.3 Programmable Logic Device Taxonomy

A taxonomy of the various reconfigurable logic devices based on the above four parameters is given in Table 2.2.
The values taken by each of the key parameters are given below.

PFE :Processing Element Granularity
FG = Fine grained (1 bit PE)

MG = Medium grained (2-4 bit PE)
LG = Large grained (4-16 bit PE)
WG = Wide word PE (; 32 bits)

IN :Interconnect Types
NN = Nearest Neighbor
HN = Hierarchical /hybrid Interconnect
CN = Crossbar Interconnect
CR = Channel Routing

CDM :Configuration Distribution Mechanism
SD/PD = Serial/Parallel Distribution

CCD :Configuration Context Depth
SC/MC = Single/Multiple Context

Table 2.2: Taxonomy Based on Key Parameters

| Device | PE [ IN [CDM | CCD |
Xilinx XC6200 FG HN SD SC
ORCA 2Cxx MG HN SD SC
QLogic QL3K FG NN SD SC
ATMEL 6K FG HN SD SC
NAPA1K FG HN/NN SD SC
Flex10K FG NN SD SC
Actel FG HN SD SC
DPGA FG HN PD MC
MATRIX MG HN PD MC
GARP MG HN PD MC
RaPiD LG CR SD MC
PAM FG NN SD SC
DISC MG ? SD SC
PRISC WG - SD SC
Chimaera FG HN ? SC
CVH MG HN PD MC
RAW 44G/WG NN PD MC
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Figure 2.6: Processor-Reconfigurable Coupling Choices

2.4 System Level Issues

Here we present some of the system level issues to be tackled by the designer of a reconfigurable computing system.
The designer’s choices are eventually governed by a trade-off between system complexity and its performance.

1. Coupling. The various options are illustrated in Figure 2.6. The dark colored regions refer to programmable
logic. In case (a), the programmable logic is tightly coupled with the processor core by being embedded on
the processor die itself. And the coupling gets progressively weaker from (b) to (d). In a tightly coupled
system, the semi-conductor budget for reconfigurable logic is very limited. While in a loosely coupled
system (like (c)), it is possible to attach a large amount of reconfigurable logic. This enables mapping
of large applications to be mapped to the reconfigurable logic. However, loose coupling implies additional
communication costs due to limited bandwidth and large communication latencies. The choice is determined
by the application domain of interest.

2. Execution model. Should the eventual system be viewed as a uni-processor or a multi-processor? While
resource allocation issue and programming is very complicated for a multi-processing reconfigurable system,
as discussed later in the research issues section, a uni-processing might not be a convenient model for some
applications.

3. Architectural interface. This determines how the reconfigurable resource is exposed to the software
interface. The resource could be oblivious to the user in which case, it is completely managed by the
processor or it could be explicitly managed by the runtime system.
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2.5 Application Domain

What does reconfigurability buy? Here, we list certain computational characteristics which, if present in an
application, might indicate that a reconfigurable computing system based solution could outperform a conventional
solution. Some of these “desirable” application features are :

2.5.1 Desirable application characteristics

What does reconfigurability buy? Here, we list certain computational characteristics which, if present in an
application, might indicate that a reconfigurable computing system based solution could outperform a conventional
solution. Some of these “desirable” application features are :

Non-standard data-path. A mismatch between application datapath requirements and those presented by
the processor datapath could lead to inefficient use of processor resources. For example, most media processing
involves computing on byte or word level input data and the wide data-path (32/64 bit) of general purpose
processors are an inefficient match for such computation. This explains the proliferation of multimedia processors
and the “media-extended” (MMX) processors. However, MMX style extensions are a temporary fix to this
problem since the number of applications which fall in this category has been growing steadily.

Pseudo static data, adaptive precision, dynamic range. If some of the inputs to the computation are
either static or change infrequently, then such factors can be taken advantage of in specializing the processor
datapaths to either decrease operation latency or improve on power/area usage. An example of this is the use of
constant co-efficient multipliers in most signal processing filtering applications.

Fault tolerance, real-time adaptation, threat sensitive adaptation. In certain applications like cryp-
tographic systems, due to high throughput and computational requirements, it is desirable to perform as much
of the computation in hardware as possible through custom datapath encoding. In extreme cases, some of the
algorithm inputs (e.g. keys, etc) themselves are hard-coded. However, a custom chip (ASIC) is a poor choice for
implementing such application since the chip cannot be altered (in this case, allow key changes) once it has been
manufactured. Other examples are complex systems which become faulty during their usage (due to radiation or
other environmental hazards). In such cases, instead of replacing the entire component, it is cheaper and more
efficient to “rewire” the circuitry around the faults. In all these situations, programmable logic based processors
provide the necessary capabilities to solve the problem.

High-performance multifunction portables. In this category of applications, it is not a good idea to include
a custom chip (for high performance) for every possible functionality offered by the “multi-function” device. An
example of such a device is one which includes multiple demanding functions such as voice recognition, handwriting
recognition, graphic display, basic text processing as in a handheld device. A programmable logic based device
can be more efficient since it can retain the performance advantage without sacrificing the functionality nor
consuming additional power or space (when compared to a multi ASIC solution). This is because several of these
functions are not required simultaneously and hence can be “paged” into the programmable logic on demand.

Regularity and concurrency. Repeated operations of similar types on large regular datasets are an ideal
candidate for programmable logic implementations. Regularity in operations imposes less demands on the in-
struction bandwidth and improves configuration load times and the fine-grained parallelism typically provided by

programmable logic arrays is a good match for these kinds of computations.
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Low latency, high throughput. Response critical applications as in network interface cards, radio modems,
the kernels can be fine tuned for input data specific operation providing even more performance than can be
obtained from an ASIC solution (which are typically designed to be input data independent.)

Fortunately, the kind applications that are likely to dominate in the near future do exhibit characteristics most
suitable for a reconfigurable computing system based solution. These are the applications that exhibit many
of the above characteristics—rely heavily on library codes, are compute intensive with high data throughput
requirements often with real time constraints, are communication and signal processing oriented. Fortunately,
the kind applications that are likely to dominate in the near future do exhibit characteristics most suitable for a
reconfigurable computing system based solution.
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Chapter 3

Related Work

Section 3.1 gives a brief historical perspective of reconfigurable computing research. Several applications have been
mapped to reconfigurable logic devices. A summary past application studies is given in Section 3.2. Section 3.3
presents a somewhat encyclopedic survey of the past and ongoing research in reconfigurable computing systems.

3.1 History

The earliest known computing system based on reconfigurable devices was proposed and implemented by Gerald
Estrin at UCLA [45]. It is a hybrid machine consisting of a general purpose processor augmented with high speed
logic devices (ALU’s, memories) which were interconnected via application specific interconnect. Due to a lack of
enabling technology, the reconfiguration was done manually. Mario Schaffner’s Circulating Page Structure (CPS)
machine [139] implemented a form of hardware paging scheme where the application task was partitioned into
pages which circulate through the programmable hardware to compute the task.

The introduction of a field programmable gate array (FPGA) devices by Xilinx in the mid 80’s [180, 165] spurred
a flurry of research in the development of FPGA based reconfigurable computing engines. PRISM [7] developed
at Brown University demonstrates substantial speedup in the case of large binary operations. PAM, a universal
reconfigurable hardware co-processor developed by researchers at DEC Paris Research Labs [173] has been used to
demonstrate superior performance/cost ratio compared to every other existing technology of its time on a dozen
applications ranging from computer arithmetic, cryptography, image analysis, neural networks, video compression,
high-energy physics, biology and astronomy. Another such reconfigurable co-processor board developed by Super
Computing Research Center at Maryland called SPLASH-2 [52] has been used to achieve two orders of magnitude
speedup on genome sequence matching compared to supercomputers of that time (Cray2). The cover story of
the recent issue of Scientific American [171] written by researchers at UCLA outlines some novel applications
of reconfigurable devices. A complete survey of the past and current ongoing research will be dealt with in
subsequent sections of this survey. From Figure 3.1, it is clear that as a field, reconfigurable computing is rather
new, but it is gaining momentum.

3.2 Application Studies
An exhaustive list of applications that have been mapped to processors which include some form of programmable

logic as part of their construction are listed here. Wireless communications, spread-spectrum communications,IQ
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demodulation [104, 145, 82]. Genetic Algorithms [54, 68, 154, 99, 56, 55]. SAR,ATR [130, 133, 129, 170]. Image
coding, compression [150, 49, 145, 1, 16, 173, 137, 37, 41, 18]. DCT,FFT filters [151, 35, 179, 118, 81, 119, 149, 89].
Viterbi decoder [183]. Parallel object recognition, geometric hashing [119]. Digit-recurrence division, square-
root [102, 101]. Various (big-num, algebra, etc) [16]. Polynomial evaluations [44]. On-line arithmetic [163].
Floating-point arithmetic [46]. CORDIC [6, 106]. Character recognition [167]. DSP [30, 13, 121, 95, 108].
Genome sequence matching [96, 100]. Engineering, sciences applications [16].
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3.3 A Survey of the State of the Art

In this section, we present brief summaries of some of the major reconfigurable computing research efforts. For each
of the research projects described here, our intent is to give a broad overview highlighting goals and achievements
with respect to architecture, systems, language and compilation issues and application studies if any.

3.3.1 Programmable Reduced Instruction Set Computer (PRISC)

The Programmable Reduced Instruction Set Computer (PRISC) architecture was proposed by Razdan and Smith
at Harvard University [127, 128]. The goal of this project is to augment the base instruction set of standard RISC
architectures so that it meets the instruction set needs of any given application better. The constraints are to
minimally impact the RISC cycle time and be able to provide automatic compilation to PRISC.

The Prisc (Figure 3.2) consists of a RISC core whose datapath is augmented with configurable logic in the form of
programmable functional units (PFU’s) in addition to the regular “fixed function” functional units. Even though
PFU’s offer limited hardware-programmable resources (due to the design constraints mentioned earlier), these
resources reside inside the chip, thus, minimizing the costs of loading and accessing the PruU. The claim is that,
using this approach, performance benefits beyond those captured by pipelining and multiple issue techniques are
achievable through pipelining operations at a granularity that is smaller than the existing cycle time. In the fol-
lowing paragraphs, we briefly outline the PFU micro-architecture, instruction set extensions and the compilation
techniques adopted by the PRISC project.

Source operand buses

Register Paddr

File FU FU
Pdata

A 4 A 4
Result bus

expfu rs rt rd LPnum

Figure 3.2: PRISC Data-path
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Figure 3.3: PRISC PFU

Figure 3.3 illustrates the proposed micro-architecture for PFU’s. A PFU is composed of two basic components: (i) a
programmable interconnection matrix and (ii) logic evaluation units implemented as Look-Up Tables (LUT). Each
possible intersection point in the interconnection matrix is controlled by a memory cell whose data bit determines
whether it is a short or an open connection. Programming the PFU to implement a particular operation (func-
tion) consists of loading the appropriate values into the interconnection matrix switches and the LUT memory cells.

A single new instruction expfu (Figure 3.2) has been added to the instruction set (MIPS) of the base processor to
initiate executions on the PFU. The rs and rt fields specify the source operands, the rd the destination register
and the LPnum is the number indicating the logical PFU function to execute. A Pnum register is associated with
each PFU which holds the LPnum of the logical function currently programmed into the the PFU. Consecutive
execution of the same LPnum PFU instruction need not initiate a “PFU programming” phase. The programming
information for each logical PFU function is stored as part of the data segment from where it is loaded when
necessary by the runtime exception handler. For the proposed PRISC-I processor, they used a 32-bit wide in-
struction for expfu, allowing 11 bits for LPnum and estimated that programming a PFU costs anywhere between
100 and 600 processor cycles depending on the number of programmable switches to be set/reset inside the PFU
to emulate the desired custom instruction.

The proposed PRISC compilation is an extension of a standard compilation framework with an additional “hard-
ware extraction” phase inserted after code generation. First, sets of sequential (RISC core) instructions that
could potentially benefit from a mapping to the PFU referred to as PFU-LOGIC operations are identified. Then,
depending on the expected benefit, equivalent new micro-instructions are synthesized for groups of PFU-LOGIC

instructions to be executed on the PFU in their place. All the hardware (PFU programming bits) and software
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images are linked into one executable. The goal is to identify those instructions which can probably be evaluated
using only a portion of the PFU logic. In this way, many such PFU-LOGIC operations may be compressed into
one PFU instruction which can be executed in one cycle. They define the notion of density to determine likely
PFU-LOGIC candidates. Density is determined by the complexity of the instruction which is purely a function of
the opcode and function_width which is an estimate of the maximum number of bits of the result affected by the
opcode. Instruction semantics are required to compute this information. Since in most cases, the values of input
operands are not known at compile time, the function_width is an estimate. Once the compiler has identified
and marked all of the potential PFU-LOGIC operations, sequences of these operations are merged into one expfu
instruction using a suite of optimizations. Further details can be obtained in razdan:94.

Experiments on the SPECint92 benchmark suite indicated performance gains of about 22% on a PRISC processor
consisting of a single PFU. Razdan’s thesis ([128]) contains other examples for which impressive performance gains
were attained.

3.3.2 Gate Array Reconfigurable Processor (GARP)

GARP, proposed by the BRASS research group at UC Berkeley [66], is a hybrid architecture combining a recon-
figurable logic array with a standard MIPS processor core on the same die. As can be seen in the Figure 3.4,
the reconfigurable array and the processor core share the same data cache while the reconfigurable array also
has direct access to the memory subsystem. Use of the reconfigurable array is exclusively under the control of
the process executing on the MIPS core and entirely optional for the current computation. It is expected that
programs will switch to the array temporarily to speedup critical sections of the code.

Memory

Figure 3.4: Basic Organization of GARP Processor
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Execution model. The MIPs instruction set has been extended for the purpose of controlling the reconfigurable
array execution. These instructions serve the purpose of loading configurations, for copying data between the
array and the processor registers, for manipulating the array clock counter and for saving and restoring array
state on context switches. Table 3.1 lists the new instructions. Details about the architecture and the instruction
formats can be found in [65].

Table 3.1: GARP - Array Specific Instructions

Instruction ‘ Description

gaconf reg Load (or switch to) configuration at address given by reg

mtga reg, array-row-reg, count Copy reg value to array-row-reg and set array clock counter
to count.

mfga reg, array-row-reg, count Copy array-row-reg value to reg and set array clock counter
to count.

gabump reg Increase array clock counter by value in reg.

gastop reg Copy array clock counter to reg and stop array by zeroing
clock counter.

gacinv reg Invalidate cache copy of configuration at address given by
reg.

cfga reg, array-control-reg Copy value of array control register array-control-reg to
reg.

gasave req Save all array data state to memory at address given by
reg.

garestore reg Restore previously saved data state from memory at ad-

dress given by reg.

At present, the configurations are manually programmed. The user has to specify the data transports, intercon-
nections and the operations to be implemented by the logic block. This configuration information (text file) is
compiled by a configurator module and converted into the appropriate configuration bit-stream to be down-loaded
into the GARP reconfigurable array. This bitstream is linked into the main executable as part of its data segment.
Example 1 shows (i) the code segment which includes the configuration bit-stream into the source file, and, (ii)
the code for loading the configuration which adds three operands. The names vO, a0, al, a2, and ra refer to
ordinary MIPS registers; la is the MIPS “load address” instruction. The symbols $zi and $di indicate the Z and
D registers of array row i. The MIPS subroutine calling convention passes the first three subroutine arguments
in registers a0, al, and a2 and the return value being passed back in v0. With this assembly language stub, a
program can add any three values a, b and c using the reconfigurable array by executing the ordinary subroutine
call add3(a,b,c).

Mircro-architecture. The reconfigurable array (Figure 3.5) is organized as a two dimensional matrix of pro-
cessing elements called blocks. While the number of columns is fixed at 24, the number of rows is implementation
dependent and is expected to be at least 32. Blocks from the first column are called control blocks while the
rest logic blocks. Control blocks serve as liaisons between the array and the external world. Among other things,
control blocks can initiate memory transfers or interrupt the core. Logic blocks are primarily meant for imple-
menting application logic. All blocks, control as well as logic, have a processing granularity of 2-bits and the
interconnection wires run in pairs. Four memory buses run vertically through the array for information into and
out of the array rows. The information transfer can be between the array and the processor core (through the
register file) or between the array and the memory. In addition to the memory buses, a wire network carries

signals between array blocks. An individual configuration covers some number of complete rows of the array,
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Example 1 GARP Example : 3-Input Adder
char config_add3[] = #include “add3.config”;

function add3;
add3: la v0, config_add3;

gaconf v0;
mtga a0, $z0;
mtga al, $d0;
mtga a2, $d1, 2;
mfga v0, $z1;
Jra;

end function;

which may be less than the total number of physical rows available. Distributed within the array is a cache
of recently used configurations, so that programs can quickly switch between configurations without the cost of
reloading them from memory each time. However, management of the configuration cache is not under program
control (like in traditional caches). The array registers are latched synchronously under the control of array clock
whose frequency is fixed by the implementation. It is required that all configurations be designed so that their
critical delay path is less than that which the array clock can satisfy. This imposes certain restrictions on the
allowed designs for the configurations. An array clock counter governs the array execution. A zero value in the
counter stalls the array execution. It is up to the main processor to initialize the counter depending upon the
configuration to be executed. Each logic block in the GARP array can implement a function of up to four 2-bit
inputs. Operations on wider data types can be formed by adjoining logic blocks along a row.

Software environment. The BRASS group is in the process of building a SUIF based compiler for targeting
GARP. In addition to the traditional back-end code generators, the GARP compiler also includes a data-path
mapping tool called GaAMA [25] for mapping the program intermediate code to the custom instructions on the
GARP array. GAMA takes as input a data-flow graph (G) where each intermediate node in G is some multi-bit
arithmetic operation. GAMA’s task is to implement the given data-flow graph on the reconfigurable array with
the goal to either minimize the number of array logic blocks consumed or the critical path length of the mapping.

A complete GARP hardware implementation does not exist at the time of this writing. However, a simulator has
been built, using which impressive speedups have been demonstrated on three benchmark applications : DES
encryption, image dithering and sorting of a large (1 million) number of records. The speedup factors reported
([66]) are 24, 9.4 and 2.1 respectively.

3.3.3 Dynamic Instruction Set Computer (DISC)

The DISC architecture [178] was one of the first to propose support for demand-driven modification of a pro-
cessor’s instruction set. Every DISC instruction is a custom instruction and every application is expected to be
compiled to an instruction set suited to its own computational needs. It is also expected that the control and
data-path mappings for each instruction used by the application also be specified along with the application code.
Instructions are implemented as partial configurations and individually configured on demand. DISC extensively
relies on partial reconfiguration to implement custom instruction caching. The claim is that this ability to par-
tially reconfigure the DISC processor for the subset of custom instructions currently being used, has the benefit of

substantially reducing the hardware requirements as well as the reconfiguration time overheads. Two novel ideas,
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Figure 3.5: GARP Array

namely, relocatable-hardware and linear hardware space were proposed to achieve the above goal.

Relocatable Hardware. Relocatable hardware, implementable only in partially configurable architectures
provides the ability to relocate or make placement decisions of the configurations corresponding to the custom
instructions at runtime. As noted before, this can substantially improve hardware utilization. This is achieved by
designing each custom instruction module for multiple locations on the base architecture (FPGA). These multi-
ple locations are defined around a firmly defined global context. The global context provides physical placement
positions and a communication network necessary for these modules to operate correctly independent of their
actual location at runtime. In order to design instruction modules that fit within the global context, all DISC
instructions must be physically independent of each other and the physical layout of any module must not have
any effect on the layout of any other module.

Linear Hardware Space. Linear hardware space forms the basis for implementing relocatable hardware (cus-
tom instructions) in the DISC system. The two-dimensional grid of configurable logic cells of a DISC processor
are organized as a linear array of rows. Each of the custom (relocatable) instructions location is specified by
vertical position (row number) and by its height in number of rows. The linear hardware space consists of a
global controller and a uniform communication network. The communication network provides access to global
resources for all instruction modules and performs inter-module communication (through the global controller).
To gain access to all the global signals, modules are designed horizontally across the width of the linear hardware
space. The global controller specifies the communication protocol, controls global signals (such as I/O and global
state) and monitors circuit execution.
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The proposed DISC architecture was implemented on a single CLAy31 FPGA [135] coupled to an external RAM
(Figure 3.6). The DISC processor is attached to a PC-bus, a Configuration controller also implemented on another
CLAy31 and a RAM. The configuration controller monitors the DISC processor execution and requests instruc-
tions from the host PC. The RAM consists of the application program as a sequence of custom instructions. The
DISC execution model is illustrated through the flowchart is shown in Figure 3.7. A DISC application is initiated
first by loading the program memory (RAM) with the target application and configuring the global controller
on the DISC processor. During execution, the processor validates the presence of each instruction requested by
the application program. If the requested instruction is not loaded on the DISC, the DISC processor enters a
halting state and requests the instruction module from the host (through the configuration controller). Before
issuing an instruction load, the global controller checks if enough hardware resources are available for the new in-
struction. If not, then it swaps out one or more currently loaded instructions to make room for the new instruction.

The main achievement of the DISC project was to demonstrate the concept of tackling the density issue of config-
urable devices through novel ideas like relocatable hardware and linear hardware space. Preliminary experiments
on an image filtering application indicated substantial (factor 23 on the median filter) speedup.

3.3.4 Programmable Active Memories (PAM)

Programmable Active Memories (PAM’s) [15, 16, 173], one of the first configurable logic based hardware accelera-
tors, was developed by researchers at the DEC Paris Research Labs. At the time of development, they were able to
exhibit a dozen applications for which PAM accelerators proved superior in both performance and cost categories

to every other existing technology, including supercomputers, massively parallel machines and custom hardware
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of their time. The applications covered diverse fields like long integer arithmetic [147, 36], cryptography [148],
high energy physics [107], image analysis, video compression, sound synthesis [47], thermodynamics, biology and
astronomy [173]. Here we present the motivations, design ideas and the achievements of the PAM project.

The purpose of PAM is to implement a wvirtual machine which can be dynamically configured as one of a large
number of specific hardware devices. Figure 3.8 shows the PAM and its external interface. The inputs/outputs
of the PAM could be from/to the external i/o devices or from/to a host controller. The local RAM attached
to the memory interface can be used by the PAM to buffer and re-order local data or to implement specialized
look-up tables. The PAM array itself is composed of a two dimensional matrix of Programmable Active Bits (PAB)
connected in a nearest neighbor fashion. Each PAB maps four inputs to four computed inputs. Figure 3.9 shows
a complete system consisting of the PAM board attached to a host computer which controls the PAM program, a
local RAM and channels to external data sources. A first generation PAM system called DecPerle-1 consisted of
an array of 16 Xilinx FPGA’s and 7 other FPGA’s for memory access control, program down-load and data transfer
between the host computer and PAM. The FIFO’s are used for data burst control.

A PAM program consists of three components:

o Driver module written in C+-+ which runs on the host machine and controls the PAM hardware.
e Logic equations that describe the synchronous hardware implemented on the PAM board.
e Placement and routing directives that guide the implementation of the logic equations on the PAM board.

The PAM circuit designs are described algorithmically at the structural level, and the structure can be annotated

with geometry and routing information to help generate the final physical design. This middle ground approach
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Figure 3.8: PAM Array

has been taken to alleviate the laborious process of schematic capture and to avoid compute intensive CAD
synthesis process. Algorithmic description of synchronous circuits is done using an minor extended version of
C++. A new type called Net is introduced to capture the effect of signal nets, the boolean operators are overloaded
to describe combinational logic, and a primitive type is added for the synchronous register. Example 3 shows the
code for a ripple carry adder written using these extensions. To specify that the ripple-carry adder should be
aligned vertically, with the paired carry and sum bits generated by the same logic block, addition of the placement
function to the description of the adder would suffice.

3.3.4.1 PAM-Blox, PaModules

PamBlox [111] are parameterizable templates of primitive hardware objects such as counters, shifters, adders,
registers described in a hierarchical manner. A PamBlox hardware object describes the structure, placement,
functionality and the interface of a digital circuit. A generic PamBlox object described in C++ is shown in Ex-
ample 3. PaModules are complex, fixed layout circuits implemented as C++ objects. PaModules are composed of
multiple PamBlox and are optimized for specific data-path width. Examples are constant co-efficient multipliers,
Coordinate Rotation Digital Computer (CORDIC) circuits. A collection of PamBlox, PaModules can be obtained
from the Stanford University adaptive computing research group website (see [111] for details).
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Example 2 Circuit Description in C++

function void placement(Net<N>& s, Net<N>& ¢)
for (1=0;i<N;it++)

cli] <= sif;
sli+1] <= s[i] + OFFSET(0,1);
end for

end function,;

template<int N>
class RippleAdder: Block {
RippleAdder(): Block(“RippleAdder”){};
void logic(Net<N>& a, Net<N>& b,Net<N>& c,
Net<N>& sum, Net<N>& carry) {
input(a); input(b); input(c);
output(sum); output(carry);
for (inti=0;i< N;i++) {
suml[i] = ali] A bl[i] A c]i];
carryi] = (ali] & bi) | (efi] & bfil) | (cf] & af]) ;

Example 3 PAM-Blox Circuit Description in C++

class HWobject : public parent {
public:

/* internal wire declarations */
/* constructor */
HWobject(input parameters, optionals) { /* initialize inputs */ }
out(output parameters, optionals) { /* internal logic */ }
/* additional methods called by out */
place(absolute placement parameters) { /* absolute placement */ }
place() { /* relative placement */; }
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3.3.5 Reconfigurable Pipelined Data-path (RaPiD)

RAPID [58] is a coarse-grained reconfigurable architecture that allows deeply pipelined data-paths to be con-
structed dynamically from a mix of ALU’s, multipliers, registers and local memories. The structure of data-paths
constructed in RAPID is strongly biased towards linear arrays of functional units communicating mostly in a
nearest neighbor fashion. In it’s capabilities, RAPID is more general than systolic arrays in that the pipeline
stages could be heterogeneous both spatially and temporally. RAPID is coarser-grained than standard FPGAS in
terms of processing element granularity and the interconnection data-path widths. Compared to general purpose
architectures, it is finer grained containing smaller distributed memories instead of large instruction and data
memories, distributed register file with limited interconnect instead of the regular register file with a crossbar to
all the functional units.

Figure 3.10: RAPID Cell

Architecture. RAPID is a linear array of cells consisting of uncommitted functional units. An array might have
16 to 32 of RAPID cells. Figure 3.10 shows the architecture of a cell. Each cell (Figure 3.10) comprises of an
integer multiplier, two integer ALU’s, six general purpose registers and three small local memories. These cells
are interconnected using a set of ten segmented buses that run the length of the data-path. Each input to the
functional unit is attached to a multiplexer which can be configured to select one of the eight input buses. Each
output in turn is attached to a De-multiplexer comprised of tristate drivers, each driving one of eight buses. The
buses in different tracks are segmented into different lengths so that bus tracks could be used efficiently and at the
same time limiting the number of switches on longer paths. The limited amount of local memories are provided
for saving and reusing data over many cycles. In many applications, the input or output data is segmented into

blocks that are accessed once from the main memory, saved locally and reused as needed, and later discarded.
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Figure 3.11: RaPiD System

A reconfigurable computer system based on the RAPID array is shown in Figure 3.11. Input and output data enter
and exit from the array via I/O streams at each end of the data-path. The FIFO buffers are used to implement
flow control on the i/o streams between the RAPID array and its external interface.Signals for controlling the
array are divided into static control signals provided by configuration memory as in typical FPGA’s, and dynamic
control signals which must be provided on every cycle. RAPID is programmed for a particular application by first
mapping the computation onto the data-path pipeline using the static programming bits to build this pipeline.
A controller is programmed to generate the dynamic control signals through the control FIFO as shown in the
Figure 3.11. Examples of application mapping to RAPID can be found in [58].

3.3.6 Cached Virtual Hardware (CVH), PipeRench

The objective of the CMU Cached Virtual Hardware (CVH) project is to create architectures, tools, and method-
ologies for what is termed wvirtualization of hardware design for reconfigurable computing. These virtual designs
can be executed on any one of a family of upwardly-compatible FPGA-like hardware platforms. By virtualization
they mean time-multiplexing of a large hardware design on a comparatively smaller physical device. This requires
that the target device support rapid reconfiguration. Techniques proposed to achieve this are (i) widening the
configuration bus width, (i) reducing the access time to configuration data through configuration caching and
(iii) by containing the portion of the device (design) to be reconfigured and finally (iv) by pipelining the reconfig-
uration process. The architecture proposed in [142] supports the above features. The basic unit of reconfiguration

is a pipeline stage and is called the stripe. Application designs are mapped into a sequence of stripes, each stripe
43



representing a portion of the application logic corresponding to a pipeline stage of a set of independent pipeline
stages. The assumption is that the reconfiguration at the granularity of a stripe can increase the throughput of
an implementation, without significantly increasing the latency or the required storage for the configuration data.

Figure 3.12: CVH Architecture

PipeRench Architecture. As shown in Figure 3.12, the proposed PipeRench architecture [23] is composed of
an FPGA fabric, a configuration cache, control units for managing data and configurations, a memory interface
and an interface to a standard processor (not shown in the figure). The design methodology for striped FPGA’s
allows any application to be broken up into a set of stripes which can be run on a compatible striped FPGA. The
control mechanism manages the loading and unloading of stripes onto the striped-FPGA fabric depending on the
needs of the application.

A PipeRench executable is composed of configuration words each of which includes configuration bits (for pro-
gramming the desired section of the fabric), a next address field, and flags used by the configuration and data
controllers. A PipeRench execution is equivalent to the evaluation of a sequence of configuration words (perhaps
in a loop.) The configuration controller flags in the configuration word indicate whether the current word is the
first/last of this sequence. The host specifies a start address (of the first configuration word) and the number of
iterations before the start of each execution.

3.3.7 Chimaera

Similar to many other attempts, Chimaera ([63, 64]) consists of a reconfigurable logic array tightly integrated

with a microprocessor core. The Chimaera architecture is shown in Figure 3.13. The reconfigurable array consists
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of FPaA-like logic and is used to implement reconfigurable functional units (RFU). In order to use instructions in
the RFU, application code includes calls to the RFU, and the corresponding segments of RFU configuration bits
are contained within the instruction segment of that application. The RFU calls are made in a two step process:
(1) tell the cpu to trigger execution on the RFU and (2) specify the identity of the particular RFU to execute. The
RFU calls are just like the execution of many other processor instructions, the inputs read from the register file,
and the results are written back to the register file in the write-back cycle. RFU’s inputs (number,locations) are
specified as part of the RFU. The architecture allows for each RFU to read up to nine operands from the register file.

The Chimaera system (Figure 3.13) consists of a core processor, the reconfigurable array, instruction decode CAM
(content addressable memory) and the caching/prefetch control. Each location in the CAM controls one row of
the reconfigurable array, determining which of the loaded instructions are completed. Loaded instructions occupy
disjoint rows of the reconfigurable array. If the triggered RFU operation is not present in the reconfigurable array,
the caching/prefetch logic stalls the processor and initiates a RFU instruction load from the memory. Reconfigu-
ration can be done on a per row basis with each RFU operation occupying one or more rows.

The reconfigurable logic array is composed of rows of logic cells between routing channels. Within each row, there
is one cell per processor’s memory word. This restricts the row size to equal the memory word size. All cells in a
given column I have access to the I*? bit of the first nine registers. As shown in the Figure 3.14, each cell receives
four inputs I1, 12, I3, I4 and generates four outputs O1, O2, O3, O4. The logic block inside the cell itself can
be configured as a 4-LUT, two 3-LUT’s or a 3-LUT and a carry computation. Unlike most other reconfigurable
logic arrays, em Chimaera reconfigurable array has no state holding elements (flip-flops or latches). This forces

any sequential computation to be implemented by storing/retrieving intermediate values to/from the register file.
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Lack of pipelining latches also requires that the values in the register file be stable as long as the RFU instruction
execution is incomplete. In many respects, Chimaera is very similar to the PRISC reconfigurable processor.

3.3.8 Reconfigurable Architecture Workstation (RAW)

Reconfigurable Architecture Workstation (RAW) proposed by Agarwal and his colleagues at MIT [174, 94, 4]
was motivated by three main concerns : (1) the need to keep chip wires short so that clock speed scales with
feature size, (2) economic constraints of quickly verifying new designs and (3) changing application workloads
that emphasize stream-based multimedia computations. These factors lead to a design that takes an extreme
position by distributing all the processor’s resources such as instruction streams, register files, memory ports
and ALU’s. As shown in Figure 3.15, the RAW processor is a set of interconnected tiles each of which (Fig-
ure 3.16) contains instruction and data memories, an arithmetic-logic unit, registers, configurable logic, and a
programmable switch that supports both dynamic and static (compiler orchestrated) routing. The tiles are in-
terconnected with programmable interconnects. The tightly integrated, synchronous network interface of a RAW
machine allows for inter-tile communication with short latencies similar to those of register accesses. The switch
on a RAW tile contains a static and a dynamic network component. The static switch is programmable, allowing
statically inferable communication patterns to be encoded in the instruction streams of the switches eliminating
the overhead of composing and routing a bi-directional header. The dynamic switch is a worm-hole router that
makes routing decisions based on message headers. The inter-tile communication ports are accessed as register
operands allowing useful computation to be overlapped with a communication operation.

A typical RAW system would consist of a RAW microprocessor tightly coupled with off-chip memory and stream-
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IO devices (Figure 3.17). It is interesting to note that reconfigurability in a RAW machine takes place at two
levels. At the low level, it is possible to use the configurable logic inside each tile to build custom functional
units for bit (or non-standard) data width operations. At a higher level, the RAW processor can reconfigure its
communication network and the distribution of computation over the array of tiles. Compiling to a RAW machine
is complicated by two factors:

e Unlike traditional super-scalars, a RAW processor does not bind specialized logic structures such as register
renaming or dynamic instruction issue logic into hardware. Scheduling and resource allocation are the
responsibility of the compiler.

e Communication patterns within the code need to be analyzed in order to schedule inter-tile communication.

Preliminary experience with compiling to the RAw machine can be found in [4, 94]. The authors also report
impressive speedups [174] on a class of benchmark applications which are now referred to as the RAW benchmark
suite.

3.3.9 Others

Many other groups have been pursuing reconfigurable computing research. However, these shall not be covered
here for two reasons. Either the ideas are not substantially different from what has already been surveyed earlier
or the research is too preliminary to report any outcome of value. Some of these are Map Oriented Machine
(MoM XPuter), Splash-IT, PRISM, HARP (Oxford), Spyder, NSC, FM (Hawaii). Interested reader can refer to
the following references : PRISM [7] , Spyder [80], Xputer [61], Splash [52], Data parallel C [53], Harp [114] and

Functional Memory [59].
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3.4 Summary

In this survey, an overview of the major reconfigurable computing research efforts is presented. Due to a lack of
a well accepted set of definitions, an attempt was made to clarify the terminology and identify key issues and pa-
rameters of reconfigurable computing systems. The main dimensions of reconfigurability and the key parameters
of these devices have been identified and have been used to taxonomize extant reconfigurable computing systems.
A list of applications for which reconfigurable systems hold promise have been presented.

So far, most research efforts have focused on the architectural aspects of reconfigurable systems. Little attention

has been paid to compilation issues. Many performance studies have been done and impressive speedups were
demonstrated. However, important issues like compilation times, target cost have been neglected.
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Chapter 4

Adaptive Instruction Level Parallel
Processing

In this chapter we describe a novel variant of the Instruction Level Parallel (ILP) processing model called Adap-
tive Instruction Level Parallel (AILP) processing. The two key characteristics that define AILP processing are
(a) instruction level parallel processing and, (b) dynamically specified instruction sets.

We start by presenting a brief background on ILP, highlighting key features and limitations. Next we present the
Dynamic Instruction Set Architecture (DISA) model and contrast it with the Static Instruction Set Architecture
model. The proposed AILP architectures are a subset of the DISA space of architectures. We describe the key
features of AILP architectures and then present a taxonomy of the AILP architectures. A specific subset of this
AILP set forms the basis for our architecture and compiler research.

4.1 Instruction Level Parallel Processing

4.1.1 Background

ILP processing is a set of processor and compiler design techniques intended to increase application performance
by enabling parallel execution of multiple RISC style instructions extracted from a sequential instruction stream
(Figure 4.1). In order to achieve this effect, ILP machines are composed of multiple, independent, possibly
pipelined functional units (Fy, Fs, ... Fy in Figure 4.2) that communicate through a local memory space such as
a register file.

The number and types of instructions that can be issued for execution is limited by the number and types of
available functional units. In practice, constraints such as inter-instruction data or control dependences, resource
conflicts, etc., might further restrict the number of choices for parallel instruction issue. To achieve this parallel
record of execution (ROE), the compiler and processor, between them must perform the following tasks:

1. determine dependencies among instructions

2. determine independencies, reduce critical path
3. schedule, allocate and generate code

4. parallel issue

These tasks are normally performed in the above sequence. The task of determining dependencies is a step

towards exposing ILP while the tasks of determining independent instructions, performing transformations to
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reduce critical path length are steps towards enhancing ILP (see Figure 4.3). Scheduling, allocation and code
generation finally exploit the available ILP exposed earlier. Parallel issue is typically performed by the processor
and is the final step in realizing the parallel execution.

Unlike most other types of parallel computation, this type of parallel processing is transparent to the user (the
software developer) and hence any advances in processor or compiler techniques to increase effective parallelism
will provide automatic benefits to the user without their being even aware of it. Automatically and transpar-
ently improving application performance is a tremendously appealing and consequently a tremendous amount of
research has gone into ILP processing [125], [3]-[77], [75]-[78].

Sequential
Code
EEE ILP POE
— 0
— 0
expose reduce generate
parallelism  critical path parallel
schedule

Figure 4.3: ILP processing steps

ILP research has led to two main styles of architectures: the Very Long Instruction Word (VLIW) and the

Superscalar. The code for a VLIW processor is an explicit plan which specifies the set of operations to be issued

on each machine cycle, which functional units to use to execute them and which registers to use as sources and

sinks for input and output operands respectively for operations performed on those functional units. Borrowing

the terminology from [140], this explicit plan is called Plan of Execution (POE). On the other hand, the
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program for a superscalar processor does not specify any such POE. The program submitted to a superscalar
processor is a sequential stream of instructions, from which the processor dynamically generates a valid POE. A
typical superscalar processor examines a window of instructions from the instruction stream, analyzes the chosen
instructions for inter-instruction dependencies (and also checks for dependencies with instructions that have al-
ready been issued and not completed) and performs scheduling and resource allocation with the aim of extracting
as much ILP as possible while processing those instructions [155].

In fact, several “intermediate” architectures are also feasible which are neatly captured in the ILP taxonomy
proposed by Fisher and Rau [125]. This taxonomy categorizes architectures according to how the responsibility
of performing various tasks of ILP processing are split between the processor and the compiler Figure 4.4. On
the one extreme is the superscalar processor where all ILP processing steps (after the front-end processing and
basic compiler optimizations are done) are performed by the processor. VLIW processors on the other hand are
at the other extreme, performing only the final step of executing the instructions while the compiler performs all
the ILP processing steps.

4.1.2 Limitations of current approaches to ILP

Several limitations of current approaches to ILP are highlighted to motivate the proposed ideas.

Limits on available ILP. Determining the limits of exploitable ILP in application programs can help in
making processor design decisions and also indicate the limits of performance benefits one can expect from
ILP processing. However, such studies can never be accurate as they have to make assumptions about the
compilation and processor technology which may never be attained or (better yet) may be bettered in future.
Early studies [164, 131] concluded that there is very limited parallelism in general purpose applications. Since
then several “ILP limit studies” have been conducted [110, 83, 160, 158, 175, 176, 92]. Most of these studies
concluded that, in general, the available ILP is limited, claiming that often the number of maximum instructions
that can be issued on each cycle is typically less than 10. All these studies explain the general perception that

conventional approaches to ILP may not improve performance dramatically. This is also evidenced by the fact
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that several research groups have proposed alternative ILP processing approaches [159, 98, 174, 134, 112, 168].

Fixed Instruction Set Architecture. Current ILP processors are hardwired to support a fized instruction set
whether the application requires those instructions or not. For example, the floating point units on the processor
are wasted if an application does not perform any floating point computations. This greatly limits the ability
to improve performance if the instruction set needs of application change over the lifetime of its execution and
result in poor utilization of processor resources.

Increasing complexity. Poor scalability (of primarily of the control circuitry) of dynamically scheduled ar-
chitectures (superscalars) is a serious limitation to the amount of ILP that can be successfully exploitable. In a
typical dynamically scheduled processor, dependence detection is an O(n?) operation while resource assignment
is an O(2"™) operation where, n is the number instructions processed at each step by the processor. In order to
increase the ILP, a larger number of instructions would have to be examined, which in turn leads to ever more
complex dynamic scheduling hardware. This affects the critical path of the design, increasing design time, design,
verification and test costs [155, 115]. On the other hand, scalability is also an issue for VLIW processors as they
rely heavily in multiple ports between the register files and the functional units (used to communicate several
operands simultaneously on each cycle).

Media application shift. As general purpose processors become faster and cheaper, there has been a big push
to perform traditional DSP and multimedia computations using purpose processors. However, the computational
requirements of these applications do not match with those for which current ILP processors are most suitable.
For example, several of these multimedia applications involve smaller bit-width, SIMD style, stream computations.
Current architectures have been to extended (MMX) to take advantage of this shift. However, this is a temporary
fix. As the variety of multimedia type applications increases, such fixes (which are additions to an already bloated
ISA) add to the complexity of the micro-architecture.

4.2 Dynamic Instruction Set Architectures

We would like to consider architectures that can be customized on a per application basis. Clearly, some form of
programmable micro-architecture seems necessary to allow it to be customized for the processing requirements of
a particular application.

Dynamic Instruction Set Architectures (DISA) is a class of microprocessor architectures that provide an interface
(a base ISA) that allows higher level software (such as the running program or the compiler) to extend the base
ISA with additional instructions. The new instructions are presumably chosen to better support the needs of a
particular application that is intended to be targeted to this processor. Here, extending the base ISA with new
instructions not only means providing newer instructions that perform computations that are different from the
ones supported by the operations from the base ISA; but also to provide efficient implementations for these new
instructions directly in the micro-architecture instead of performing them using the base instructions.

A DISA compiler takes the base ISA and the program source code as inputs and generates the application specific
ISA along with the executable code that makes use of instructions from the application specific ISA and the DISA
processor performs the computations as specified in the executable in turn consulting the application specific ISA
for instructions on how to implement custom instructions from the application specific ISA extensions. In contrast,
compilers for Static Instruction Set Architecture (SISA) processors generate a single executable which uses

instructions from the ISA and the machine is designed to recognized only the instructions from the published
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ISA. This DISA model of extending instruction set architecture of processors is explored further in the remainder
of this thesis.

4.3 Adaptive Instruction Level Parallel Processing

All TLP machines whether superscalar or VLIW, have one common characteristic: the number and types of oper-
ations that can be issued on each machine cycle is fixed. This set of operations is determined by the ISA and the
subset of operations that can be issued on each cycle is smaller, limited by the available functional units (fixed
in the processor) and other resource and data/control flow constraints.

In this section we introduce a new instruction level parallel processing model wherein the runtime system is
allowed to reconfigure the micro-architecture of the base processor presenting a different ILP instruction set in-
terface to the instructions following every processor reconfiguration phase. This class of architectures is referred
to as Adaptive Instruction Level Parallel (AILP) architectures. A program intended for execution on an AILP
machine is composed of computation and reconfiguration instructions leading to an execution that is composed of
an alternating sequence of computation followed by reconfiguration phases (see Figure 4.5). During a computation
phase the AILP machine behaves just like a traditional ILP machine. Each reconfiguration phase switches the
AILP machine from one ILP machine configuration to another ILP machine configuration.
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execution - )

Configured — AILP
— Reconfigure functional Base
—— =/ datapath units Programmable Instruction
— | microarchitectural Set
e ' resources —

Figure 4.5: AILP Computation Figure 4.6: AILP high-level interface

Although there are several aspects of an ILP architecture that can be considered potential targets for reconfigu-
ration, our main interest is on the investigation of architectures that allow controlling software to reconfigure the
machine in terms of its instruction set capabilities at runtime.

In the following, we start by describing AILP class of architectures at a very abstract level. Later we provide a
classification of the AILP space based on some key properties a given instance of an AILP architecture may have.

4.3.1 AILP processing

Figure 4.7 illustrates the basic transformations involved in transforming a sequential program to an executable

intended for execution on an AILP machine. The starting point is an intermediate code that is obtained about
lexical and syntactic analyses of sequential code written in some high-level language such as C or C++. The
critical transformations specific to AILP processing are:

1. Code partitioning. The sequential intermediate code is partitioned into (not necessarily) disjoint regions

of code. Each partition could represent a large piece of computation such as a loop-nest in the source
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program or it could represent a simple abstract operation such as an operation that adds two fixed size
data values. The goal of code partitioning step is to identify the most suitable operation set for the given
application. Each code partition is intended to be replaced by an operation synthesized to perform the
computation specified by that code partition.

. Instruction set synthesis. During this phase, the candidate partitions identified in the earlier phase are
synthesized into suitable micro-architectures (“implementations” of new instructions).

. Instruction selection. Having synthesized the instruction set, the next step is to associate the most
suitable instruction for a given code partition for each of the code partitions identified in step 1. It is quite
possible that multiple implementations have been synthesized for each partition providing different tradeoffs
in terms of performance and cost of resources consumed. Instruction selection phase considers the global
instruction requirements and makes a decision about instruction assignment to each code partition.

. Generate AILP POE. During this phase, the AILP compute and reconfigure instructions are inserted
into the intermediate code and the intermediate code is scheduled and optimized for execution on the AILP
processor. The compute instructions invoke the synthesized instructions associated with each code partition
while the reconfiguration instructions reconfigure AILP micro-architecture so that it is capable of performing
the operation invoked by the compute instructions. Clearly each compute instruction has to be preceded
by at least one instance of reconfigure instruction that instantiates the implementation for the operation
performed by the compute instruction.
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Figure 4.7: AILP processing steps Figure 4.8: AILP machine state

The above description is intended to give a general idea about the steps involved in AILP processing. The specifics
of each of how these steps are performed are better dealt within the context of a specific AILP architecture.

The AILP model represents a wide class of architectures. In order to gain a deeper insight into the architectural
and compilation problems involved in AILP processing, we will proceed to refine the model to arrive at a specific
AILP architecture. This AILP architecture will serve as our basis for AILP processing research.

Our approach for defining this AILP architecture follows these steps: (a) define an abstract machine model for
ATLP, (b) based on the machine model, a taxonomy of AILP architectures is presented and (c) a specific subclass
of AILP architectures is identified for further investigation. In the rest of the thesis, we focus on a specific instance
of this subclass of architectures.
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4.3.2 AILP Machine Model

At an abstract level, an AILP machine is composed of (a) an architectural state possibly composed of pro-
grammable micro-architectural resources and (b) a base ISA (see Figure 4.6). The base ISA is used by the
runtime system to reconfigure the AILP machine. The architectural state and the base ISA are described below.

4.3.2.1 Architectural state

The architecturally visible resources can be partitioned into the following basic categories (refer to Figure 4.8).

1. E-Space is the Execution Space. 1t is an abstraction of programmable logic resources that can be configured
to implement desired functional units—the micro-architectures corresponding to synthesized instructions.

2. C-Space is the Configuration Space. It serves as a local memory for configurations. Configurations are the
program bits that are used to configure the synthesized functional units on the E-Space.

3. O-Space is the Operand Space. O-Space is the local memory intended for storing either the input values or
to provide locations for the output operands of operations performed on the functional units (resident on the
E-Space). O-Space may be comprised of a collection of registers, FIFO’s, vector registers, etc., depending
on the specific instance of AILP architecture of interest.

4. Configuration Register File (CRF). Each configured functional unit on E-Space is associated with
a configuration register from the CRF. These configuration registers serve as aliases to the configurations
currently resident inside the AILP machine and are used by instructions to refer to the configured functional

units.

5. Processor Status Register (PSR). PSR can be initialized with the execution status of a particular
instruction on any of the configured functional units.
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Figure 4.9: AILP machine state and instructions
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4.3.2.2 Instruction set

The Base Instruction Set Architecture (Base ISA) consists of the instructions listed in Table 4.1 grouped into the

following categories.

1.

Reconfiguration instructions. Two instructions inc, outc swap configuration data in/out of E-Space
from C-Space in essence, changing the functional unit composition of the data-path. Before functional
units can be configured on the E-Space, the configuration data should be available in the C-Space. Alloc
and dealloc instructions allocate space on the C-Space for configuration data loaded from memory into
C-Space.

Instructions for data supply. The instructions in and out are used to assign locations from O-Space
to serve as data sources for input operands and destinations for output operands of configured functional
units respectively.

Computation instructions. The basic instructions for controlling the execution of operations on con-
figured functional units are: exec, abort, susp, resume, reset. These instructions initiate instruction
processing, abort, suspend, resume instruction being processed currently. In general, configured functional
units may be capable of performing multiple operations, in which case, opid specifies the specific operation
to perform. Other computation instructions need not specify the opid since configured functional units are
assumed to be capable of executing only one instruction at a time.

. Control flow instructions. The branch instruction provides the necessary control flow change capability.

The condition value could be specified as an immediate or through a register. Status of a particular
instruction execution (on a configured functional unit) can be read into the PSR with the pstat instruction.

Memory access. Finally, load/store instructions move data between external memory and the C-Space
and O-Spaces.

Table 4.1: AILP instruction set

Reconfiguration instructions

allocr, cr Allocate a configuration and associate it with configuration register cr.
Configuration data is loaded from memory location referenced by r into
C-space.

dealloc cr De-allocate a configuration associated with cr. All resources consumed by

the configuration are freed for future allocations.

inc cr, r Configuration associated with cr is brought into the E-Space at the location
specified in r. Loading the configuration into the E-Space effectively creates
a functional unit (the Configured Functional Unit (CFU)) on the E-Space
and is available for processing instructions.

outc cr Configuration associated with cr is moved from E-space to C-Space.

Data supply instructions

incr, k, r Associate register r from the O-Space as a source for the k input operand
values to the CFU associated with cr.

out cr, k, r Associate register r from the O-Space as sink for the k' output operand
values to the CFU associated with cr.

Computation instructions
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Table 4.1: AILP instruction set

exec cr, opid Perform operation opid on CFU associated with cr.

susp cr Suspend operation currently being processed on CFU associated with cr.
resume cr Resume operation currently being processed on CFU associated with cr.
reset cr Reset CFU associated with cr.

abort cr Abort operation currently being processed on CFU associated with cr.

Control flow instructions

brc r, cond Perform a conditional transfer of control depending on the condition value
cond to AILP instruction whose address is the value in r.

pstat cr, cc Load the result condition of type cc of the most recent operation on CFU
associated with cr and save it into the processor status register.

Memory transfer instructions

ldcc cr load configuration data into resources allocated for cr’s configuration.

stcc cr, T store configuration data into memory at offset r of configuration associated
with cr

ldr, a load memory word at address a into register r

st r, a store into memory at address a value from register r

The above description captures the essential features of the architectural interface of the AILP class of architec-
tures.

4.3.3 AILP Taxonomy

A taxonomy of the AILP space based on five essential design decisions is presented here. Choices for these design
decisions would significantly affect how these machines are programmed and their eventual cost-performance
factors. Figure 4.10 lists the five dimensions and the choices available for each. Brief explanation for each follows.

4.3.3.1 Resource allocation

Resource allocation refers to the allocation of programmable logic resources from the E-Space for configured
functional units. This function can be performed by the compiler (static allocation) or can be decided by the
processor at runtime (dynamic allocation). In the former case, either the inc operation is expected to specify
the E-Space region for the functional unit to be configured or the AILP instruction set should be extended
with an additional instruction which communicates compiler’s allocation decisions to the processor. For dynamic
allocation, additional architectural resources may be required to maintain the E-Space resource usage map and
extra logic to perform allocation/de-allocation operations on the E-Space.

4.3.3.2 Temporal reconfigurability

Temporal reconfigurability refers to the ability to alter AILP machine configuration over time. The two possible
choices are static reconfigurability and dynamic reconfigurability. In the former case, the machine allows software to
configure the machine only once: before the start of execution. In the latter case, software is allowed to repeatedly
alter the machine configuration during runtime. While the latter provides greater flexibility, the programmable

logic resource would be less complex in the case of static reconfigurable machines.
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Figure 4.10: AILP taxonomy

4.3.3.3 Spatial reconfigurability

Here we are concerned with the ability to reconfigure the available programmable resources in a piecemeal manner
in which case, the AILP machine is said to be partially reconfigurable. Partial reconfiguration requires that
the machine allow software to address all programmable cells of configurable resources. This could significantly
increase the area consumed by the programmable resources. On the other hand this feature improves performance
it is cheaper to reconfigure only the necessary portion of the device.

4.3.3.4 Instruction Scheduling

Here the distinction is carried over from the ILP domain - namely how the parallel execution (on the multiple
configured functional units) is specified and communicated to the machine. Two classes arise—the statically
scheduled and the dynamically scheduled AILP architectures. A statically scheduled machine is analogous to the
VLIW or EPIC machine. In this case the program specifies (as determined by the compiler) when (the exact cycle)
and where (the functional unit) the operations execute. Similarly, the dynamically scheduled AILP architecture is
analogous to the superscalar architecture - dependence checking among operations and their binding to functional
units is performed in hardware at runtime.

4.3.3.5 Instruction latencies

Here we are concerned about the compiler’s view of operation latencies. The two significant choices are unit la-
tencies and non-unit latencies. Since these latencies need not correspond to the true latencies of these operations,

they are usually referred to as unit assumed latencies (UAL) and non-unit assumed latencies (NUAL). These
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assumed latencies are part of the contract (architecture specification) between the compiler and the processor.
Compiler assumes these as the actual latencies when making its scheduling and allocation decisions while pro-
cessor should provide the illusion that operations actually exhibit such latencies even if the actual latencies are
different from the assumed ones. Most sequential ILP architectures are UAL while typically the statically sched-
uled ILP architectures are NUAL. For statically scheduled machines, since the compiler generates the parallel
POE, a more accurate view of operation latencies can help create compact schedules. Since the actual latencies
may be unknown or non-deterministic, the compiler is only provided with an assumed latency (that hopefully
approximates the actual latencies quite well).

In all, the above categories yield 32 classes of AILP architectures. Several of these architectures are either im-
practical or infeasible. A few interesting ones are shown in Table 4.2.

RA = resource allocation policy RR = Runtime Reconfigurable
TR = Temporal Reconfigurability SC = Statically Configured
SR = Spatial Reconfigurability PR = Partially Reconfigurable
1S = Instruction Scheduling NP = Non-partially Reconfigurable
LA = Latency Assumption SS = Statically Scheduled
C = Compiler DS = Dynamically Scheduled

P = Processor

Table 4.2: A few AILP architectural subclasses

Architecture | RA | TR [ SR | IS | LA

AILP-1 C RR | NP | SS | NUAL
AILP-2 C RR | PR | SS | NUAL
AILP-3 C SC | NP | SS | NUAL
AILP-4 P RR | NP | SS | NUAL
AILP-5 P RR | PR | SS | NUAL
AILP-6 P RR | NP | DS | UAL

AILP-7 P RR | PR | DS | UAL

4.4 Adaptive Explicitly Parallel Instruction Computing

The space of AILP processing architectures is quite large and hence is not a good starting point for a detailed
investigation. Our goal is to pick a suitable member from the AILP space and define it to the extent that a
compiler may be built to target machines of that architecture. Our intent is to learn about the capabilities of
such an architecture. The subset of architectures we shall focus on correspond to the AILP-5 category in Table 4.2.
This set of architectures we call Class of Adaptive Explicitly Parallel Instruction Computing architectures and refer
to it as Capprc. Figure 4.11 captures the relationship between the different classes of architectures introduced
so far. The AILP architectures form a subset of the Dynamic Instruction Set Architectures while the Cagpprc

class is a subset of the AILP set of architectures.
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4.4.1 The CAEPIC Class

A program intended for execution on an machine from the Cagprc AILP subset, would consist of a sequence of
MultiOp instructions where each MultiOp instruction specifies a set of AEPIC operations that are to be issued
for execution concurrently (at the start of a machine cycle). A new MultiOp instruction is issued for execution
every machine cycle. A compiler for targeting an Cspprc machine determines which AEPIC operations can
be issued during the current cycle and then packages them into a MultiOp. The number and types of AEPIC
operations in a MultiOp is dictated by the capabilities of the specific instance of an AEPIC architecture. To
summarize, a C'4gprc machine is defined by:

e instruction scheduling is performed by the compiler

e compiler assumes non-unit latencies for operations

instructions in the program explicitly specifies latencies

the AILP machine is runtime reconfigurable

the AILP machine is partially reconfigurable

4.5 Summary

We presented a novel variant of the Instruction Level Parallel (ILP) processing model called Adaptive Instruction
Level Parallel (AILP) processing. The two key characteristics that define AILP processing are (a) instruction
level parallel processing and, (b) dynamically specified instruction sets. AILP is a subset of a larger space of
architectures called Dynamic Instruction Set Architectures. Key features of AILP architectures are described and
then a taxonomy of the AILP space is presented based on these key features. A specific instance of the Cagprc
class forms the basis for our architecture and compiler research and is the subject of the next chapter.
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Chapter 5

Adaptive Explicitly Parallel Instruction
Computing (AEPIC)

Don’t you have a machine that puts food into the mouth and pushes it down?
—Nikita S. Khrushchev

In the previous chapter we introduced Dynamic Instruction Set Architectures (DISA) and presented a taxonomy
of a subset of DISA called Adaptive Instruction Level Parallel (AILP) processing architectures. This taxonomy
partitions AILP space into 32 subclasses one of which is referred to as Cagprc. In this chapter, we specify an
instance of the C4pprc class called AEPIC in detail. AEPIC architecture is motivated by a desire to

e enable efficient reconfiguration of processor data-path at runtime,
e allow compiler to determine such reconfiguration decisions in a flexible and efficient manner and,
e allow AEPIC researchers to study a wide variety of AEPIC machine instance configurations.

Rest of the chapter is organized as follows. Key issues of to be considered in the design of dynamic instruction
set architecture are presented in Section 5.1. The computation and machine models of the proposed AEPIC
architecture are given in Section 5.2. Also, a summary of the key features of the architecture and how these
features address the issues raised in Section 5.1 are presented in Section 5.2. AEPIC machine state details are
in Section 5.3. A summary of AEPIC instruction set vis presented in Section 5.4 and the architectural parameters
are listed in Section 5.5. Issues related to interrupts and exceptions and other variants of AEPIC machines are
discussed in Section 5.6. Section 5.7 summarizes the chapter.

5.1 Dynamic Instruction Set Architectures: Issues

5.1.1 Long Reconfiguration Times

Let us consider the IDCT kernel, used in several multimedia applications. Table 5.1 lists the code size and
reconfiguration time on various architectures. In the case of the EPIC processors, the reconfiguration time is
simply the number of cycles required to fetch the instructions while in the case of the Xilinx programmable logic
arrays, it is the number of cycles to load the configuration bit-stream. Note that for both cases, we assume equal
memory bandwidth and access latencies (64 bits/cycle).
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Architecture Computation Code Size Reconfiguration
Cycles cycles

HPL-PD EPIC 12127 <2KB (184 ops) 92

Xilinx XC4K 544 >100Kb (4920 CLBs) ~ 1600

Xilinx Virtex 26 >1Mb (6140 slices) ~ 16000

Figure 5.1: Configuration/code size for IDCT

From this table it is clear that even though the execution time is greatly reduced using programmable logic
(column 2 in the table), the overhead of reconfiguring the machine reduces the benefit. We would like to mask the
overheads of reconfiguration or use programmable logic when the costs of reconfiguration are negligible compared
to the gains in execution time (say, if the IDCT kernel were to be executed a lot more times).

5.1.2 Large And Non-uniform Configuration Sizes

From Table 5.1, it is clear that configuration sizes can be quite large. The sizes also vary depending on the
computation that is mapped onto the programmable logic. In the case of traditional processors instructions and
data values have uniform sizes. So these machines can be built with identical storage elements. This implies
that it does not matter which locations are used to store data values in the processor '. In the case of the
configurations, we need fast and efficient schemes to allocate variable amount of storage.

5.1.3 Context Switching Overheads

A @>< (®s

(@) (b)
Figure 5.2: CFU context switching

Context switching is the swapping configurations in/out of programmable logic as the needs CFU needs of the
application change. Context switching costs are the same as that for the reconfiguration. However, in some
cases the slack for masking the reconfiguration overhead is minimal. This situation is illustrated through the
example in Figure 5.2(b). If the computation alternates between the two paths 1-2-4 and 1-3-4 and that the
available programmable logic resources cannot accommodate both the configurations (A and B) simultaneously,

the processor has to be reconfigured rapidly (on every iteration) to switch between A and B configurations.
64



o =

()

Figure 5.3: Effect of function calls

5.1.4 Modular Software Development

In Figure 5.3, function fn could be an external function linked by the current application. We would like fn to
make use of programmable logic for improving its performance. However, when fn is developed, we cannot foresee
all the contexts in which it might be used and hence cannot assume anything specific about which resources are
available for configured functional units instantiated by fn. We would like fn to consider that all the resources
are available and that after return from a call to fn, the resource usage map of the calling function is as if the
call to fn did not cause any changes.

5.1.5 Large Variation In Operation Formats

Formats of operations depends on the code partition that is synthesized as the configured functional unit which
performs that operation. A large variation in operation formats is expected. Hence we would like to design the
processor that allows such variation in operation formats.

5.1.6 Non-deterministic Latencies

In fixed instruction set processors, instruction latencies (when operands are read/written with respect to issue
time) are known at design time and processors are “hard-coded” with this knowledge. In the case of dynamic
instruction set processors, the instruction set is not known and hence the latency information has to be conveyed
to the processor at (or before) runtime.

5.1.7 Other Architecture Desirables

In addition to the issues highlighted above, we would like our “dynamic instruction processor” to satisfy several
other constraints.

e Simplicity in design - simpler architectures reduce design and verification time and are also cheaper to
manufacture.

e Compilability - architecture should support efficient compilation. This is one of the key requirements and
the motivation behind the choices we made for the proposed architecture.

INot all registers are the “same” in certain DSP processors. But for the most part, the variations/exceptions are minor.
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e It has been observed that several of the benchmark applications declare arrays of constants which are often
referenced in compute intensive loops. Our architecture should support local caching of constant arrays as
it can have a big impact on eventual performance.

e It is unlikely we would be able to get configuration right the first time. In fact such a configuration may
not exist (application domains might have different needs).

5.2 Adaptive Explicitly Parallel Instruction Computing

Adaptive Explicitly Parallel Instruction Computing (AEPIC) architecture is motivated by a desire to (1) enable
efficient reconfiguration of the processor data-path at runtime, (2) allow compiler to determine the reconfiguration
decisions in a flexible and efficient manner and (3) allow AEPIC researchers to study a wide variety of AEPIC
machine instance configurations. These motivations and the concerns listed in Section 5.1 crystallized into a set
of architectural features that characterize the AEPIC architecture.

The architectural description is restricted to those aspects of the machine that are needed by a compiler to
generate correct code. Hence for instance, implementation details of a micro-architecture, though important, are
not discussed.

5.2.1 AEPIC Computation Model

Conceptually one can view program execution on an AEPIC machine as being composed of an alternating se-
quence of reconfigure followed by execute phases. During the ezecute phase, the AEPIC processor is functionally
equivalent to an EPIC processor with similar functional unit composition. Each reconfigure phase can be viewed
as a transition between two EPIC machines which differ only in their functional unit composition. In practice, for
an AEPIC machine these two phases may overlap in time dictated by considerations of efficiency (explained later).

The memory space of an AEPIC process is partitioned into multiple segments. One particular segment contains
the program code. Other memory segments contain the set of configurations (segment marked C in the executable
of Figure 5.4), global data, dynamically allocated memory and the program stack.

The set of functional units on the AEPIC data-path can be partitioned into two sets:

1. Hardwired functional units. These functional units execute instructions from the AEPIC ISA. In Figure 5.4,
Fi, Fs, ... F5 are the hardwired functional units.

2. Configured functional units. These are the functional units that have been configured into the data-path
by some of the “reconfiguration” instructions from the AEPIC ISA (which are executed on the hardwired
functional units). Operations performed by the configured functional units are triggered by specific AEPIC
instructions (described in Section ??) invoked on the hardwired functional units. Operation executed by
the configured functional units are not part of the AEPIC ISA. In Figure 5.4, Cy, Cs, C3 are the configured
functional units.

An AEPIC processor relies on the compiler to specify the exact set of operations to be issued on each machine
cycle and on which functional unit they are expected to execute. The mechanism used to communicate this
explicit Plan Of Execution (POE) is called the MultiOp [140]. On each machine cycle, a single MultiOp is
issued containing exactly one operation to be processed by each of the hardwired functional units. Some of the
operations of the MultiOp might trigger reconfiguration of the processor data-path by changing the functional

unit composition of the configurable portion of the data-path. Subsequent MultiOps may contain operations that
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Figure 5.4: AEPIC executable and abstract data-path

trigger execution on the CFUs. These computations are indirectly triggered through the execution of special
operations of the AEPIC ISA (described later) on the hardwired functional units.

AEPIC hardwired functional units are intended for performing non data-processing tasks that are common to
all applications such as control flow changes (branching), data memory transfers, standard arithmetic and logic
operations, exception processing. And some of the hardwired functional units are used to execute operations that
reconfigure the data-path or trigger execution on the configured functional units. The configured functional units
are intended to provide application specific advantages in terms of speedup, cost or power reduction - depending
on the application performance requirements.

5.2.2 Machine Model

An abstract model of an AEPIC machine is shown in Figure 5.5. The processor can be viewed as composed of
two sets of components: (1) the EPIC core and (2) the adaptive extension.

5.2.3 The Adaptive Extension

The adaptive component of the AEPIC processor consists of the Configuration cache hierarchy, Multi-
context Reconfigurable Logic Array (MRLA) and Array Register File (ARF) connected together via
bus interconnect (Figure 5.5). The MRLA provides the programmable logic resources to host the Configured
Functional Units (CFUs). The C-Cache serves as a temporary cache for configurations before they are instan-

tiated on the MRLA. This is analogous to the way registers serve as storage for program values. Rest of the
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configuration cache hierarchy consists of the C1 cache connected to external memory. The Configuration
Register File (CRF) consists of a set of configuration registers (CRs). Each CR serves as an alias to either
a configured functional unit or a configuration allocated in the C-Cache. Most of the AEPIC instructions take a
configuration register as an operand. These are the AEPIC instructions that perform operations such as delete
a CFU, etc. The instruction refers to the CFU by its alias—the configuration register. For example, the delete
CFU operation in AEPIC is DELC cr, L, p. Here, cr is the configuration register associated with the desired
CFU, L the latency assumed by the compiler for this operation and p the predicate guard for this operation.
CRF details and their usage are described in 5.3.2.

C-Cache

C1

MultiOp

CRF
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Figure 5.5: AEPIC machine model

5.2.4 The EPIC Core

The hardwired portion of the AEPIC data-path executes the AEPIC ISA. This hardwired component is composed
of the EPIC architecture as embodied in [140] with additional functional units to execute the non-EPIC instruc-
tions of the AEPIC ISA. Execution of some of these non-EPIC instructions causes CFU instruction execution or
state changes on the adaptive component.

The instruction cache, the standard VLIW/EPIC instruction processing engine and the generation of control

signals for the various control ports of the data-path comprise the control unit. Control logic is not only re-
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sponsible for the fetching and processing of instructions in program order, but is also responsible for flushing or
stalling the pipelines of the functional units caused by program events such as branch operations or interruptions.
Apart from the assumption that a new MultiOp instruction is fetched for issuance every machine cycle, no other
aspect of the control unit is visible to the compiler and is not the subject of any further investigation in this thesis.

Referring back to the AILP model described in Section 4.3.2, the C-Cache corresponds to the C-Space. MRLA
along with the hardwired functional units correspond to the E-Space. The ARF and the standard register files
that are connected to the various functional units comprise the O-Space.

5.2.5 Summary Of Key Features
5.2.5.1 Architectural Support For Runtime Reconfiguration

In order to support efficient runtime reconfiguration, AEPIC architecture provides the following support:

Compiler specified resource allocation. Here we are referring to resources that are intended for hosting
configured functional units (CFUs). AEPIC delegates to the compiler the task of specifying which regions of the
program code will execute on the programmable logic and when they are allocated (deallocated) to (from) the
programmable resources on processor. Allocation of programmable logic resources to configurations is analogous
to allocation of registers to program values. This is explored further in Section 6.5.

Architecturally transparent resource assignment. Although the AEPIC compiler decides which partic-
ular piece of computation should be performed on the programmable logic and at which instant (part of the
resource allocation activity mentioned above), exactly which region of the programmable logic resource is utilized
for hosting the CFU is determined by the processor itself. This is because the programmable logic resource avail-
ability information is more accurate at runtime. Efficient hardware resource assignment schemes are presented
in Section 6.5.12.

Support for efficient context switching and modular software development. AEPIC architecture
allows multiple CFUs to be instantiated simultaneously and group them in different sets where at any instant, a
particular set of CFUs is considered active—these are the ones on which operations can be executed. Architecture
also provides special instructions to alter these CFU sets or switch active set. This mechanism can also be used
to support modular software development.

Explicitly controlled configuration cache hierarchy. AEPIC provides architectural mechanisms to ex-
plicitly control the data placement in the configuration cache hierarchy. These mechanisms can be used by the
compiler to override default hardware cache management policies when the compiler has sufficient information
about the configuration memory access patterns and is able to determine a more efficient policy than that provided
by the hardware. This feature is a natural extension of the explicitly controlled data cache hierarchy mechanisms
provided in some EPIC architectures [140, 84, 42]. It is expected to play an even more significant role in the
AEPIC processing where the costs of configuration cache misses can be very expensive. On the other hand, since
applications are expected to have a much smaller number of configurations than the number of program values
(which go through the traditional cache hierarchy), explicit control of configuration data placement is expected
to be feasible and advantageous.

Implicitly specified operands for configured functional units. Unlike typical RISC operations, some of
the operations performed by CFUs may take a large number of input/output operands. In order to simplify the

instruction decode logic and to keep the instruction format simple, operands for CFU operations are not specified
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as part of the instruction itself. Instead, AEPIC architecture specifies “operand assignment” operations that
associate specified registers as sources (destinations) for input (output) operands for CFU operations.

Explicit parallelism MultiOp frees the hardware from performing dependence checking and resource allocation
tasks at runtime by packaging as one unit the operations to be issued concurrently, and, encoding the functional
unit on which they are expected to execute as part of the MultiOp packet itself. The POE is then an ordered
sequence of MultiOps.

Non-Unit Assumed Latencies (NUAL) Although the POE specifies that a new MultiOp is to be issued on
each machine cycle, it does not imply that the operations in the MultiOp actually finish before the next MultiOp
is issued. Constituent operations of a MultiOp could take several cycles. This is especially true in the context
of reconfigurable computing where the application specific operations are usually large pieces of computation.
In fact, operations of the same MultiOp may generate their results at different times. In contrast, the complete
operation is considered atomic in the case of superscalar architectures. This non-atomicity implies that AEPIC
operations exhibit non-unit latencies. The latency information should be available to both the compiler which
uses this information to generate a valid and optimal POE, and to the processor so that it ensures a correct
interpretation of the compiler specified POE. The NUAL terminology was introduced in the context of the EPIC
architecture work [140, 126].

Explicitly specified latencies In the case of fixed instruction set architectures such as EPIC, both the compiler
and the processor are built with the knowledge of the operation latencies, obviating the need for communicating
the latency information through the POE. However, in the case of AEPIC, the operation set is determined only at
compile time and the processor cannot be built with the knowledge of all possible instruction sets that a compiler
may synthesize. Hence the processor has no knowledge of operation formats, their latencies or their semantics.
Consequently, the compiler has to communicate the latency information to the processor. There are several
possible ways to communicate latency information [141]. The mechanism we advocate is one where the latency of
each operation is explicitly specified as part of the operation itself. Often the custom operations (performed by
the CFUs) not only have long latencies, but the latency behavior is not deterministic and depends on the values
of the input operands. Explicitly specifying latency as part of the instruction field yields the greatest amount of
flexibility since every invocation of the operation can specify a different latency value—the value that the compiler
assumed for this particular instance of the operation. Depending on the difference between the actual latency
and the compiler communicated latency, the processor may take the appropriate action—whether to introduce
stall cycles on the functional unit pipelines or to delay committing the generated results.

Architectural features inherited from EPIC In addition to the above features, AEPIC architecture inherits
several EPIC architectural features. Later we shall see how these features are useful in the context of reconfigurable
computing. Details can be found in [140, 84, 9, §].

1. Speculative execution. Speculation is a technique to break certain types of dependencies between operations
in order to enhance parallelism [157].

2. Predication. Predication is a technique to enforce program control flow without the use of branch operations.
In some cases predication is an efficient way to implement conditional branches and also provides greater
freedom for code motion [103, 141, 10].

3. Decoupled branch architecture. Decoupled branches permit processing of branch operations in stages some
of which may be performed as soon as the required data is available so that the branch target pre-fetching

can be initiated as soon as possible.
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4. Efficient boolean reductions. Critical path reduction is a crucial technique for enhancing available paral-
lelism in program codes. Efficient boolean reductions is a collection of architectural features that allow
rapid computation of boolean functions that may be required to evaluate branch conditions and predicate
expressions guarding non-branch operations.

5. Programmatic data cache management. The architecture supports explicitly controlled cache hierarchy as
in the HPL-PD architecture [84]. The key features are compiler control of data placement in the cache hier-
archy, runtime memory disambiguation and ordered processing of memory operations within the MultiOp.

5.2.5.2 Parameterized Architecture

AEPIC is a parametric processor architecture. This means that several aspects of the AEPIC architecture are not
concretely specified. For example the amount of programmable logic resource available for configured functional
units is specified as a parameter. However, for a particular compilation, concrete values are required. Concrete
values for all the parameters are specified in a machine description database which is read by the various modules
of the compiler and simulator. A parametric description of the architecture facilitates exploration of a wide range
of processors configurations with varying amount of resources.
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5.3 Details Of The Architecture

5.3.1 Multi-context Reconfigurable Logic Arrays

Multi-context Reconfigurable Logic Array (MRLA) is the primary resource used for hosting the configured func-
tional units. Like a typical Field Programmable Gate Array (FPGA), the MRLA is a two dimensional region
of the processor die that is composed of programmable logic and interconnect blocks. We shall use the term
Programmable Element (PE) to refer to both the programmable logic block as well as the programmable
interconnect block. Each PE is associated with a configuration instruction (its “program”) which determines the
behavior of that programmable element. Any given logic design can be emulated on the MRLA by supplying
suitable configuration instructions for all the programmable elements of the array. In the context of AEPIC
machines, these logic designs are the CFUs.

In a standard FPGA only one configuration instruction is associated with each programmable element. This
implies that only one logic design can be resident on the array until the device is reconfigured (i.e., a new set of
configuration instructions are associated with the programmable elements of the array). In an MRLA, each pro-

grammable element can be associated with multiple configuration instructions. This allows multiple logic designs
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(CFUs) to be simultaneously resident on the MRLA. The desired logic design can be activated by selecting the
appropriate configuration instruction for each of the programmable element.

Configuration instruction slots for each PE (called the configuration memory) are stored in an ordered sequence
and all PEs have the same number (D) of configuration instruction slots. MRLA takes an input called context_id
which can take values from 1 to D. A value of k to the context_id input selects the k" configuration instruction
from the configuration memory as the instruction for each PE. The k** configuration instruction is referred to as
the active configuration instruction for that PE.

The set of configuration instructions with identical index in the configuration memory of a PE is referred to as
an execution context. The execution context that is associated with currently active configuration is called the
active context. MRLA can be effectively viewed as an array of FPGAs, one array per execution context; and
the context_id serves as the index into this array. Selection of an execution context, makes all the CFUs of that
context available for instruction processing by subsequent instructions.

We elaborate on a few other restrictions that dictate how the MRLA execution contexts are viewed by the
compiler. The AEPIC compiler views each execution context of the MRLA as composed of a linear sequence of
fixed size slices and a CFU is expected to consume an integral number of consecutive slices. The signals that
supply data to the CFUs on the MRLA are grouped into fixed width ports which are connected to the Array
Register File (ARF). Each slice is associated with one port. The number of slices required for a given CFU might
depend on either the programmable logic resource or the number of i/o ports required by that CFU.

5.3.1.1 Desired Properties Of A Programmable Logic Array

Clearly, there are several possible choices for the micro-architecture of the programmable logic array. However,
since the focus of this thesis is on the compiler’s view of the machine, micro-architectural details of the pro-
grammable logic array (in our case the MRLA) such as the type of embedded interconnect, the granularity and
structure of the programmable logic elements, etc., will not be discussed. We do discuss those features that may
be useful from a compilation perspective.
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Figure 5.8: CFUs on MRLA
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1. Partial, run-time reconfigurability Reconfiguring the entire programmable logic array is a slow and
inefficient method to alter the CFU mix of the data-path. Often it is sufficient to evict only a subset of the
currently configured CFU set in order to bring in new CFUs provided the programmable logic resources are
inadequate to also include the new CFUs into the data-path. This highlights the first required property of
an MRLA: partial, run-time reconfiguration—the ability to reconfigure subregions of MRLA at runtime
to accommodate the changing CFU requirements of the program.

2. Location independent placement of CFUs The placement of CFUs on the MRLA could lead to frag-
mented use of MRLA resources. In order to utilize the MRLA resources efficiently, CFU’s may have to be
relocated to consolidate unused segments of MRLA so that they may be assigned to a CFU that may be
instantiated during a subsequent reconfiguration phase. Clearly, we wish to retain the semantics of the CFU
even after it is relocated. This leads us to the second desired property of an MRLA: location independence.
Location independence guarantees that a CFU may be mapped onto the MRLA at any position subject to
the resource requirements of the CFU. Location independence for hardware, called relocatable hardware was
first proposed in [178]. Subsequently, similar ideas have been proposed in the CVH architecture [142] and
the Chimera architecture [62].

3. Multiple contexts and efficient context switching Applications CFU requirements may change rapidly
during runtime. This implies that the programmable resource should be rapidly reconfigured from one set
of CFUs to another in quick succession. Typically configurations are very large (orders of magnitude larger
than typical EPIC instructions) and hence the reconfiguration time may be substantially larger than ma-
chine cycle time. In order to gain the advantages of custom functional units, the reconfiguration overhead
has to be masked. This calls for a design in which the MRLA can simultaneously host multiple CFU’s such
that (a) a subset of these may be designated to belong to the current execution context (those that may be
used by the instructions until the next reconfigure phase) and (b) the MRLA allows rapid switching between
two different sets of CFU’s so that context switching to a different set of CFUs (those that are required
by subsequent phases of the computation) is very fast and, (c) die area of MRLA is not impacted significantly.

This leads us to the final desirable property of an MRLA: multi-context programmable logic array. Multiple
contexts greatly reduces the number of data transfers that might be necessary to keep the MRLA “supplied”
with configurations in a runtime reconfigurable processor such as AEPIC, allowing much faster switching
between CFU configurations, reducing “idle time” while the system waits for the CFU set to be altered.

The idea of multiple configuration stores in FPGAs was first published in [136]. DeHon later based his
Dynamically Programmable Gate Array (DPGA) architecture around this idea [39, 162] and did a study
of the benefits of multiple configuration stores in various applications [38]. An earlier use of multiple
configuration stores in a different context was described by Snyder [34]. In [166] the architecture of a
time-multiplexed FPGA is proposed. Eight configurations of the FPGA are stored in on-chip memory. This
inactive on-chip memory is distributed around the chip, and accessible so that the entire configuration of
the FPGA can be changed in a single cycle of the memory.

5.3.2 Configuration Register File

When configuration data is present in the C-cache or in the MRLA, configuration is architecturally visible; in
other words, the application is aware of the presence of this particular configuration and where it is located
(whether it is in the C-cache or on the MRLA). Configuration data may also be distributed across the rest of the

configuration memory hierarchy. However in that case, it is invisible to the application. When architecturally
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visible, a configuration is uniquely identified by a configuration register—this is the only way an application may
refer to an on-chip configuration. The configuration register is an alias for the architecturally visible configuration.
Most AEPIC instructions (described in ??) refer to the configuration by specifying the configuration register
associated with it. For example the instruction to invoke an operation opid on a CFU is exec cr, opid where cr
is the configuration register associated with the CFU which performs the operation. In addition, a configuration
register also stores several pieces of information pertaining to the associated configuration, some of which are
listed here.

e Resource allocation map for configurations on the MRLA. This is the bitmap which identifies the resources
allocated on the MRLA to the CFU.

e Resource allocation map for configurations in the C-cache. Similar to the above, this map identifies C-cache
blocks allocated to the CFU.

o Status of the associated CFU. Status indicates whether the CFU is in use (executing an operation), idle,
suspended, etc.

e Latency assumptions of invoked operation on the associated CFU. The latency information is supplied by
the operation itself. If the operation generates multiple result operands, then a latency number is specified
for each of them.

e Operand-register association. This association informs the CFU from which registers it should obtain the
values for its input operands and in which registers it should deposit values of its output operands.

We shall explain the role played by these pieces of information of the configuration register as and when necessary.

5.3.3 Register Files
5.3.3.1 Array Register Files

AEPIC provides a large number of registers grouped into register files. Each MRLA is associated with a single
register file called the Array Register File (ARF). Other register file types are described later. The ARF register
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set is partitioned into scalar and FIFO registers. The FIFO registers are intended for use in applications which
involve processing of large amounts of streaming data or alternatively may be used as rotating registers for software
pipelined loop bodies that are mapped onto the MRLA. The data types of values stored in these registers are
determined by the application itself. Ounly the register widths (number of bits in each register datum) are fixed
and are assumed to be identical for all registers. The number of scalar and FIFO registers in a register file are
architectural parameters.

5.3.3.2 Control Register File

Each AEPIC machine has exactly one control register file. Control register file structure follows the pattern set by
the HPL-PD architecture [84]. The control registers include the program counter (PC), stack pointer (SP), frame
pointer (FP), processor status word (PSW), context pointer (CP), registers for maintaining software pipelined
code status and a few registers used as aliases for groups of predicates or for groups of speculative tag bits.

5.3.3.3 Other Register Files

Branch target register file. Control flow in AEPIC machines is implemented using the decoupled branch
architecture model proposed in [84]. Here the different pieces of branch instruction are computed separately and
as early as possible. One of the pieces of information that is computed in this model is the branch target address.
The branch target register is used to store the branch target address and the static prediction bit which indicates
whether the branch will be taken or not so that instructions that pre-fetch from the predicted target are initiated
concurrent to the issuance (or as early as possible) of the associated branch operation.

Predicate register file. Predicates are one bit values. Predicate register file is composed of 1-bit registers and
is partitioned into the static and the rotating predicate registers. Predicate registers are used to store predicate
values that serve as guards for performing conditional execution of operations.

General purpose integer and floating point register files. General purpose and floating point register
files are the traditional register files meant for storing intermediate values of integer and floating point arithmetic
operations on the dedicated functional units for that purpose. These register files are also split into static and
rotating parts. Details regarding branch target, predicate and general purpose register files can be found in
HPL-PD architecture specification [84].

5.3.4 Instruction And Data Memory Hierarchy

The memory system of AEPIC architecture consists of the standard instruction and data cache memory hierar-
chies similar to the ones in standard EPIC processors. In addition, AEPIC architecture supports a novel memory
system for configuration data.

The instruction cache and the data cache are disjoint at the highest level of the memory hierarchy but share
subsequent levels of the memory hierarchy. The first level cache is followed by a larger second level cache and then
the main memory (which is usually external to the processor). The structure of the caches is not architecturally
visible. Unlike in the memory hierarchy of HPL-PD, a data-prefetch cache is currently not included. However, just
as in HPL-PD, the architecture provides explicit control over the placement of data in the data and configuration
memory hierarchies. The explicit control is provided in the form of additional tags associated with the memory
operations that indicate the memory regions in which the data is to be saved or read from. These tags are merely
hints to the processor as to where the data is expected to be found rather than strict conditions that the memory

controller should enforce. These tagged memory operations also serve as a mechanism to convey to the processor
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the latencies assumed by the compiler for those memory access operations when it (the compiler) generated the
ILP POE. Note that instruction fetching memory access operations are not visible architecturally.

5.3.5 Configuration Memory Hierarchy

The configuration cache memory hierarchy is composed of C-Cache at the highest level followed by a larger next
level cache called C1 cache which is followed by the main memory. Since configurations are immutable data, there
is never any need to write back cached configuration data back to the main memory. However, configuration data
may be transferred between the MRLA and C-Cache or between the C-Cache and C1 cache.

If a CFU is to be instantiated on the MRLA for a particular computation, it is necessary that the whole of the
configuration data be available and loaded onto the MRLA before any operation is issued to it. Unlike instructions
and data values, configurations are much larger in size and need not be of the same size. This calls for a cache
organization that is slightly different from traditional data/instruction caches.
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Figure 5.10: Configuration cache memory hierarchy

C-cache is a linear memory space segmented into blocks. A block is the basic unit of allocation for configuration
data on the C-cache. Blocks in the C-cache are numbered sequentially. A configuration is allocated an integral
number of blocks with monotonically increasing block addresses in the C-cache (allocated blocks need not be
consecutive). In other words, configuration word order in C-cache is identical to its word order of that configura-
tion in the virtual memory of the application process containing that configuration. This C-cache allocation for
the configuration is saved with the configuration register associated with that configuration. Each configuration
register contains a bit-vector called Block Allocation Vector (BAV) of length B. If block i in the C-cache is
allocated to configuration associated with configuration register cr, then er.BAV[i] = 1. If the configuration
register has not been allocated to any configuration, then the BAV values are 0.

A configuration word once brought on chip, is stored in exactly one of three places: (1) C1 cache or (2) C-cache or
(3) MRLA. However, before the first word corresponding to a configuration is written into the C-cache (MRLA),
the architecture specifies that enough space be allocated and reserved for the entire configuration on the C-cache

(MRLA). As configuration data is moved between C-cache and MRLA, the allocated space on either unit may
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be reclaimed (incrementally or in one shot, depending on the implementation). Hardware support for a rapid
C-cache allocator/de-allocator and memory allocation policies are discussed in Appendix 3.

Data in the C1 cache is also stored grouped into blocks. Here the blocks are referred to as pages. Each page can
host fixed amount of data from contiguous locations of the external memory. When a request for a particular
configuration is not met by the C-cache and the C1 cache, the processor issues requests for the appropriate pages
to be loaded from the external memory. The Memory Management Unit (MMU) translates page addresses of
virtual pages to physical addresses in the external memory. The Translation Look-aside Buffer (TLB) is a cache
of virtual page address to physical page address map.

If a desired physical page is not available in the external memory then a page-fault occurs and the page-fault
handler loads the page from the disk and updates the TLB if necessary. The operation of the MMU and the
TLB are similar to their corresponding analogue used in the instruction/data memory hierarchies of standard
microprocessors.

5.4 Instruction Set

Currently, the AEPIC ISA is composed of the HPL-PD ISA extended with a small set of instructions specifically
intended for reconfiguring the processor, that we refer to as the Adaptive Extension (AE) ISA. HPL-PD ISA
is the EPIC component of the AEPIC ISA. On any machine cycle, the operations being processed are either from
the EPIC ISA or the AE ISA or are operations performed by some CFU.

We provide an assembly level description of the AEPIC instruction set. The parametric nature of the AEPIC
architecture does not permit an explicit machine level instruction format for AEPIC instructions. In order
to understand the architecture, however, such a format is not necessary. The AEPIC instruction set can be
partitioned into two groups.

e The EPIC style instruction set

e The specific AEPIC instructions that are intended to handle the adaptive component of the processor are
referred to collectively as Adaptive Extension ISA.

5.4.1 EPIC ISA

The former is based on the HPL-PD ISA and we refer the reader to the HPL-PD architecture specification for
details [84]. For the remainder of this section, we focus only on the AEPIC Extension ISA.

5.4.2 Adaptive Extension ISA

The specific AEPIC instructions that are intended to handle the adaptive component of the processor can be
grouped into the following categories. Details about these instructions are in Table B.1 (Page 141).

1. Resource allocation. Here we are referring to instructions that perform resource allocation for configu-
ration data in the C-cache as well as on the MRLA. The malloc instruction allocates space for CFUs on
MRLA and calloc allocates C-cache space. An architecturally visible configuration is present in either the
C-cache or on the MRLA. Never on both. Hence one free instruction is sufficient to deallocate the space
allocated for the configuration whether it is currently resident on the C-cache or on the MRLA. Both malloc
and calloc should be provided with an unallocated configuration register c¢r. This cr is initialized with the

resource allocation map of the CFU. Free resets the Allocation maps of the configuration register cr.
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. Data-path reconfiguration. Data-path reconfiguration involves two basic tasks: (a) add functional unit
and, (b) remove functional unit. The AEPIC instruction inc is used for instantiating new CFUs and
the instructions outc and delc are used for deleting instantiated CFUs. Latencies of these operations are
dependent on the size of the configuration being instantiated. The sizes of configurations exhibit a large
range, and since the compiler has full knowledge of the actual size, it is appropriate that the compiler convey
the expected latency for every instance to these operations. These two operations perform: (a) the actual
transfer of configuration data from the source to the destination (C-cache or MRLA) and (b) the associated
deallocation of the resource consumed in the source region. The deallocation operation need not necessarily
be atomic. We leave this aspect open for further investigation.

. Managing execution contexts. The setctr operation deactivates the currently active context and acti-
vates the execution context referred to by the operand cid. This is the most efficient mechanism to switch the
CFU mix of the data-path from one set to another. Both the sets of CFUs must already be instantiated on
two different contexts of the MRLA. The clrctx instruction deallocates the space allocated for all the CFUs
on context cid. The corresponding configurations are deleted permanently. This operation is equivalent to
performing delc on each of the CFUs on the context cid individually. This is a fast mechanism to drop an
execution context if it is known that none of the CFUs on that context will be needed again (or at least
not in the immediate future). The switchctr instruction moves the configured functional unit associated
with cr to the new context identified by cid. Space allocated for ¢r CFU on its current context is freed.
The input/output operand associations to the CFU remain the same. The pushctz (popctz) instructions are
used to allocate (deallocate) execution contexts. These instructions are used before (after) making a call to
a function which might also instantiate CFUs.

. Memory access. Memory operations serve two purposes: (a) to transfer data between the register files
(ARF, GPR, FPR, BTR, PR) and the main memory, (b) to transfer data between the C-Cache and the
main memory. In the latter case, the data are the configuration bit-streams while in the former the data are
the input and output operand values for operations on the functional units (CFUs and the EPIC functional
units). Data transfer operations between ARF and main memory are identical to those of that transfer data
between the other register files (those that are used by the hardwired functional units) and main memory.
The semantics of memory operations that transfer configuration data between C-cache and main memory
are different from that of the conventional memory operations due to the nature of the type of data being
transferred. This is due to the (typically) large sizes of configurations and their immutability.

. Operand association. Before initiating an operation on a CFU, the CFU input/output interface should
be associated with concrete locations in the processor state. These locations would serve as the sources
(destinations) of input (output) operands of the CFU operations. The processor locations intended for this
purpose are the ARF registers. Strictly speaking, the CFU inputs and outputs need be associated with
ARF registers only for the read and write intervals of these operands respectively. Note that the same ARF
register may be associated as a source location for input operands of multiple CFUs or with multiple input
operands of the same CFU. An output location may be associated as the destination for multiple output
operands if the write times of the corresponding output operands do not overlap in time. The AEPIC
instructions for associating source locations for input operands are inp and inpr while the operations for
making the association for output operands are outp and outpr.

. CFU computation. CFU operations may be invoked once (a) the operand association for that CFU has
been performed and, (b) the locations of source operands have the desired data during the input sampling
intervals for those operands. The opid input for exec operation specifies the operation to be executed on
the CFU from its opcode set. For the rest of the AEPIC instructions, the opid parameter is not necessary
since only one operation can be issued at a time and that has already been specified by the ezec operation

(which has to issued earlier than any of the other operations).
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5.5 Architectural Parameters

Many aspects of the AEPIC architecture are left unspecified since such details are not relevant to the compilation
centric research problems we address here. Hence, issues such as instruction formats, micro-architectural details of
various components of the machine are not addressed in this work. Also, several aspects of the AEPIC architecture
are described in a parametric manner. For example, the width of the array in MRLA is a parameter. It is expected
that only extensive experimentation will yield the right values for these parameters. Also, such flexibility is
necessary for us to explore a large space of AEPIC machines to determine the most suitable configuration for
various application domains. A list of all the identified architectural parameters that are interesting from the
point of view of architectural exploration is given in Table C.1 (Page 146).

5.5.1 MRLA Parameters

Clearly the size and type of MRLA plays a significant role in determining the amount of computation that can be
mapped onto it. Array width is an upper-bound on the size of any given configuration. The parameters number of
contexts and array width together determine the total amount of computation can be simultaneously resident on
the MRLA at any instant. Number of contexts dictates the maximum function call nesting that can be efficiently
supported without resorting to CFU eviction (spill) from MRLA when a function call is made. This feature is
explained in the chapter on AEPIC compilation. Contezt switch latency is the number of cycles required to switch
from one execution context to another. The latency parameters for loading (unloading) configuration data into
(out) of MRLA play a significant impact on the reconfiguration policies adopted by the compiler. The MRLA
port parameters determine the register bandwidth available for configured functional units for the CFU operands.

5.5.2 Memory System Parameters

Structures of the various memory hierarchies are not architecturally visible. But it is unclear what types and sizes
of cache memories are suitable for a given application domain to which AEPIC machines may be targeted. Since
C-cache and the C1 caches are expected to have the greatest impact on the performance compared to that of the
other caches, a thorough investigation into various choices for C-cache and C1 cache parameters is required.

5.5.3 Fixed Core Parameters

By fixed core, we mean the hardwired functional units of the EPIC core that process the AEPIC instruction set
and the register files attached to those hardwired functional units. Most of these parameters have been used in
the context of EPIC research.

5.6 Additional Notes

5.6.1 Multi-cluster Machines

As the size of the MRLA is increased, the number of ports to the ARF may need to be increased to support
the expected increase in register bandwidth due to additional CFUs that might be mapped on the MRLA. A
large number of ports to a register file can impact the processor cycle time [33]. One way to avoid this problem
is to partition the register file into multiple register banks connected to separate MRLAs. An AEPIC machine
with more than one register file of the same type connected to separate MRLAs is called a multi-cluster AEPIC
machine. Note that registers from two different register files of the same type connected to the same MRLA are
logically equivalent.
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Multi-cluster AEPIC machines introduce the problem of keeping the register files from different clusters coherent.
Coherency can be maintained by introducing copy operations between register clusters. Compiling to clustered
machines requires additional steps such as assigning data and operations to clusters and scheduling copy operations
between registers from different clusters, while simultaneously optimizing the overall schedule. This is inherently
more complex than compiling to single cluster machines.

5.6.2 Heterogeneous Machines

It is unlikely that a single type of MRLA is optimal for hosting all the computations from a given application
domain. Hence it might be advantageous to explore AEPIC machines containing multiple MRLAs of different
types. For example, a single AEPIC machine could host a fine grained programmable logic array for image
processing applications and a larger grained programmable logic array intended for SIMD type computations
found in multimedia applications. Granularity being the word sizes of the data processed by the processing
elements of the MRLA. We call an AEPIC machine that has more than one type of MRLA, a heterogeneous
AEPIC machine.

5.6.3 Interrupts And Exceptions

Interruptions to program execution could be caused due to external factors such as hardware faults, power failure
or could be caused by the program execution such as arithmetic overflows, memory protection violations, I/O calls
or operating system calls, etc. Several solutions to the interrupt problem have been proposed for the interrupt
problem for out-of-order processors such as the reorder buffer, the history buffer, the future file [156], checkpoint
repair [74] and current-state buffer [113]. All issues related to exceptions and exception handling mechanisms are
left for future work on AEPIC architecture.

5.7 Summary

AEPIC is a candidate architecture from the C4 EPIC space of architectures that we have identified as a suitable
platform for reconfigurable computing research. It embodies several innovative architectural features specifically
addressed to tackle the problems of reconfiguration in a way that is suitable for compiling to such a machine.
The characteristic features of this architecture are:

e Compiler specified resource allocation.

e Architecturally invisible resource assignment.

e Explicitly controlled configuration cache hierarchy.

e Implicitly specified operands for configured functional units.
e Explicitly (compiler) specified operation latencies.

e Architectural support for efficient context switching.

e Parametric description of the architecture.

e EPIC features such as MultiOp, NUAL,speculation, predication, decoupled branches, programmatic caches
and efficient boolean reductions.

80



Chapter 6

Compiling For AEPIC Targets

After ecstasy, the laundry.
—Anonymous

An AEPIC processor is designed to enable fast and efficient reconfiguration of its data-path-—a key requirement
in order to avail the benefits of micro-architecture customization without paying for the overheads of performing
the customization. The main features provided by the processor intended for this purpose are the adaptive ex-
tension instructions and the various micro-architectural resources for hosting application specific logic. However,
the burden of realizing the benefits of application specific customization rests mostly on the compiler targeting
these processors since most of the decisions such as which instructions an application requires, when and how the
processor should be reconfigured to emulate these instructions are left entirely to the compiler.

In this chapter, we address the issues involved in targeting an application to AEPIC processors. The key AEPIC
specific compilation problems are partitioning, instruction synthesis, configuration selection, resource allocation
and instruction scheduling. We start by describing a basic compilation framework in Section 6.1. Partitioning is
the problem of identifying code sections that may benefit by mapping them on to the programmable logic resources.
Partitioning is discussed in Section 6.2. The instruction synthesis phase generates suitable implementations for the
candidates partitions and updates the machine description database with the “new” instructions. Issues related
to instruction synthesis are presented in Section 6.3. Configuration selection (Section 6.4) is the problem of
narrowing down the choices of which synthesized instruction (from the set generated by the instruction synthesis
phase) to use for each of the code regions that will be mapped to programmable logic. Configurations are just
like program data values that need to be allocated on-chip resources before their use. Configuration allocation
is the problem of deciding when and which configurations to load into processor local resources from external
memory in the presence of control flow effects and limited programmable logic resource constraints. Compilation
techniques addressing this problem are presented in Section 6.5. Section 6.6 deals with the instruction scheduling
problem in the presence of synthesized operations.

6.1 A Basic Compilation Framework For AEPICs

Inputs to an AEPIC compiler are (a) the application source program written in a high level language such as
C/C++, (b) a description of the particular instance of the AEPIC processor described in a machine description
language (c) a library containing parameterized configurations for popular computational routines such as FFT,
DCT, etc. The input source code may be instrumented with pragmas intended to give partitioning/mapping

hints to the compiler. These cues are communicated to different phases of the compilation process through the
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intermediate code representations.

The first phase is a standard lexical and syntactic analysis phase. The partitioning module will help delin-
eate portions of the program that might benefit from execution on the configurable portion of the target. The
partitioning phase is followed by two independent phases that may be performed in parallel: the high-level opti-
mization phase and the operation synthesis phase. In the high-level optimization phase, the code to be executed
on the hardwired functional units (which execute instructions from the AEPIC ISA) is optimized as is typically
performed in a standard ILP compiler. The instruction synthesis phase generates suitable mappings of the code
partitions identified by the partitioning phase. Each of these mappings are packaged as “custom operations”. The
machine description is updated with the synthesized instructions. The instruction synthesis phase may generate
multiple implementations for the identified partitions reflecting different performance/device-area tradeoffs. The
configuration selection phase tags different regions of the intermediate code with semantically equivalent custom
operations. At the end of the configuration selection phase, every region of the code identified for mapping on to
the configurable part of the target has a unique configuration associated with it.

Subsequent phases of the compilation are similar in structure to back-end phases of a typical ILP compiler suit-
ably adapted to consider the special characteristics of configurations/CFUs.

In most ILP compilers, register allocation is usually not performed prior to scheduling. This is because, register
allocation in its attempt to optimize register usage, introduces too many inter-instruction dependencies that con-
strains scheduling. On the other hand, register allocation also introduces additional code (spill and shuffle code)
that needs to be scheduled requiring a scheduling phase post register-allocation. Hence, a typical ILP compiler
back-end comprises of (at the minimum) the following phases, in sequence: pre-pass scheduling, register alloca-
tion, post-pass scheduling and code generation. In addition to these, AEPIC compilation introduces an extra
phase: configuration allocation. The configuration allocation phase is aimed at optimizing allocation of resources
for configurations—a task analogous to that of register allocation. The resources meant for configuration are
the C-cache and the MRLA. These resources are independent of those intended for register allocation. Hence,
configuration allocation may be performed in parallel or in any order with respect to register allocation. The
main task of the scheduler is to reduce the critical path through the code by masking reconfiguration overheads.

In the above framework, the scheduled and allocated code is transformed into machine code, which is then trans-
lated to object code for simulation. Simulation yields correctness as well as performance data for the program on
the given input data. The execution profile can be re-instrumented into the IR for profile based optimizations.

In subsequent sections, we define the problems encountered in each of the phases of the compilation path identified
above. In some cases we provide techniques that may be used to solve these compilation problems. Substantial
research still needs to be done and we do not make any claims on whether any of these techniques are sufficient
to fully exploit the capabilities of AEPIC processors.

6.2 Partitioning

Partitioning is the task of determining the set of code segments (referred to as “candidates”) in the application
which may be synthesized as application specific instructions. These application specific instructions are imple-
mented on the MRLA as configured functional units.

The partitioning module takes as input (a) an intermediate code representation of the source program and (b) the

machine description of the target AEPIC processor and identifies regions of the intermediate code that can benefit
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from mapping to the MRLA. Although not necessary, the partitioner can only benefit from an execution profile
of the application. The execution profile gives execution frequencies of different regions of the intermediate code.
This information can be obtained by compiling to a base EPIC architecture and re-instrumenting the intermediate
code with the profile data from the simulator. Since the reconfiguration overhead can be quite large, it may not
pay to reconfigure the processor for a certain segment of the code if it is known that this section will rarely be
executed. The execution profile can be used by the partitioner to eliminate such code segments from consideration
for mapping onto the MRLA.

The steps of the partitioning process are described here. (1) Initial run of the compiler on the MPEG2 decoder
application targeting an EPIC processor followed by simulation generates the execution profile for the application.
(2) The profile re-instrumentation module (PIM) updates the IR of the application with the execution frequency
information. (3) Partitioner module traverses the IR and tags intermediate nodes that can benefit from mapping
to the MRLA. The partitioner reads the AEPIC machine description file to determine the resource constraints
and the type of programmable logic—information that is used to determine suitability of selected candidates. In
the case of MPEG2 decoder, the partitioner identifies four candidates as suitable candidates for mapping onto
the MRLA: function IDCT, basic block 4 of function Form_Component, hyperblock 16 of Add_Block and the
Saturate function. (4) The operation synthesis phase processes these tagged partitions and generates the relevant
configurations that can perform the computations of the identified partitions.

Not all candidates are profitable since the overheads of reconfiguring the processor may annul the benefits of
application specific instructions. Considering that the task of synthesizing application specific instructions is
a very compute intensive one (as we shall see later), we would like the partitioner to chose candidates intelli-
gently. The goal of partitioner is to identify as many potentially beneficial candidates as possible in order to enable
enough opportunities for optimization during subsequent phases of AEPIC compilation and perform this task fast.

6.2.1 Partitioning Considerations

What factors determine if a candidate partition can be mapped to MRLA? And if a candidate can be mapped
to the MRLA, will it be profitable to do so? At what stage of the compilation phase should the partitioner be
invoked? These are some of the issues discussed in this section.

6.2.1.1 Machine Constraints

The type and amount of MRLA resources available limit the size and number of candidate partitions that can be
accommodated. The resource consumption of a partition is available only after the instruction synthesis phase
(Section 6.3). However, the partitioner can be provided with heuristics for estimating the resource requirements
for a given piece of intermediate code. For example, given the resource estimates for various types of high-level
operations and a measure of the reconfiguration overhead, it might be possible to develop heuristic techniques to
estimate the resource requirements and reconfiguration overheads for a given partition.

6.2.1.2 Application Considerations

Application factors that determine the suitability of a given piece of code for implementation on a programmable
logic array are may be considered by the partitioner to determine if a code section is a suitable candidate are
, operation mix, word length requirements, execution profile, performance requirements, regularity, parallelism,
resource constraints, task granularity
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6.2.2 A General Framework For Code Partitioning

In order to maximize the number potentially beneficial candidates, our experience indicates the following to be
the most important requirements of a code partitioner.

1. An ability to examine application code at multiple intermediate levels of representation.
2. Availability of execution profile for each intermediate representation.

3. Resource and reconfiguration overhead estimators for high-level language constructs and other primitives
of the intermediate codes (semantic operations).

4. Accurate type and data-width (bit-width) information for program variables.
5. Machine parameters.

The proposed code-partitioner is composed of four main steps as illustrated in Figure ??. These steps are
performed in sequence on each intermediate representation that is created during the compilation process.

Profile. The profile phase is composed of four steps:

1. Instrument: The IR nodes are tagged with code for gathering the execution profile for each node. So for
example, in a basic block IR, each basic block will be associated with a “execution frequency” variable and
a piece of code at the entry of the basic block which updates this variable whenever control enters the basic
block.

2. Translate: During this step the instrumented IR is translated to C language code which is then compiled
using the native compiler to yield a semantically equivalent (to the application program) executable with
one additional attribute: this executable also gathers the runtime properties of the program as specified by
the instrumentation code.

3. FEzecute: The execute step runs the instrumented and compiled application using the inputs associated with
the application program.

4. Re-instrument: After the execute step, the application generates the execution profile (written out by the
instrumented code) and re-instruments the starting IR with the actual execution profile values (such as the
frequency of execution of a basic block, etc.)

Analyze. After the profile step, the IR is tagged with the execution profile. This information is used to identify
the most frequently executing regions of the code. The analyze phase traverses the IR and determines various
properties of the program that may be useful in determining if a region is a candidate for partitioning. Some of
these properties are bit-widths/types of variables, whether certain arrays are constants or are bounded of known
dimensions, etc.

Identify. The identify step performs a bottom-up traversal of the IR and tags each region as a candidate for
mapping using certain heuristics based on control structure, operation types and other attributes identified in the
analyze phase. The identify phase also considers machine resource constraints (from the machine description
database) and any user supplied cues transmitted through the IR, in deciding whether a region of the IR is a
feasible candidate for mapping.

Coalesce. The coalesce phase merges adjacent regions marked by the identify phase if the merged regions can

still be accommodated on the MRLA assuming the given machine constraints.
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6.3 Instruction Synthesis

Instruction synthesis is a systematic technique for defining new instruction set for a given micro-architecture.
The process typically involves analyzing the benchmark(s) to infer the most suitable operation repertoire based
on its computational characteristics for the intended micro-architecture. In certain cases the micro-architecture
itself is synthesized in parallel with the instruction set.

The Instruction Synthesis (IS) module takes a list of candidate partitions that have been identified for mapping
onto the programmable logic and synthesizes a set of functional units that can implement all the computations of
the code partitions. In addition to the candidate partitions list, the IS module may also take as input, a library
of pre-synthesized macros for various basic operators and frequently used kernels such as FFT, DCT, FIR/IIR
filters, etc. The purpose of this library is to speedup the process of mapping a given partition to the MRLA.
It helps to keep these pre-synthesized macros generic so that they are applicable to a wide range of the target
programmable logic parameters, and also accommodate variations in the structure of the input partitions.

6.3.1 Instruction Synthesis Techniques

There are two approaches for the instruction synthesis problem that are relevant to AEPIC style processors:
handling this case:

1. Full synthesis: In this method, the intermediate code of the partition is converted into any of the Hardware
Description Languages RTL format. The RTL code and the target parameters are then provided as input
to EDA synthesis tools whose output is mapping of the original partition onto the given target.

2. Synthesis by construction: Synthesis by construction is a semi-automatic technique wherein, the IS module
generates configurations by composing pre-computed configurations for subproblems (low-level primitives).
For instance, one could have configurations for basic trigonometric operations based on the CORDIC [172]
evaluation technique. For a candidate partition, which might contain trigonometric and other arithmetic
functions, the IS module combines the configurations for each individual primitive without violating any
of the dependencies between the primitive operations within the candidate partition. The initial operation
set that an IS module uses can be (1) often used operations such as integer arithmetic (2) high-level
language statements (configuration bits for an if-stmt) (3) implementations of popular kernels, etc. In
addition to composing primitive configurations, other methods for synthesizing configurations can be based
on (1) specialization, (2) generalization, (3) decomposition and (4) compaction of mappings of known
primitives.

6.4 Configuration Selection

After the partitioning and instruction synthesis phase, all the regions of the intermediate code that may be
mapped to the MRLA have been identified. Each of the candidate partitions can now be replaced with one
of the equivalent configurations synthesized by the IS phase. Configuration Selection (CS) is the problem of
determining which semantically equivalent synthesized configuration (custom instruction) to associate with each
candidate partition that is mapped to MRLA.

To illustrate the CS phase we continue with the MPEG2 decoder example used earlier to illustrate partitioning.
The task of the CS module is to associate suitable mappings for the four candidates identified by the parti-
tioner. A typical partition might have multiple synthesized mappings reflecting to a variety of performance/area
tradeoffs. In such cases, semantically equivalent configuration templates (mappings on the MRLA) are grouped

together and an appropriate tag is associated with the group. In Figure 7?7, the IDCT kernel is shown to have two
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alternate implementations : IDCT_Distributed_Arithmetic and IDCT_Systolic_Array. These two implementations
correspond to the same “semantic opcode” (the IDCT function) represented as IDCT-Configuration_Operation.
Figure ?? also shows other information that is stored as part of each opcode description (for both custom as well
as standard opcodes) — the I/O_Format, Resource_Usage and Latency_Summary. Together, these describe the
input/output formats for the configuration, the actual resources used by them during their lifetime (from issue
time to retirement stage) on the AEPIC processor and a summary of their latencies. For each partition, the CS
module obtains various parameters of all mappings associated with each partition from the machine description
database (where the results of the synthesis phase are saved).

Configuration size impacts code size as well as reconfiguration times. For high throughput applications, it may
be beneficial to use heavily pipelined (which implies larger) configurations. In practice, most partitions may be
associated with a single synthesized configuration. In which case, the selection step is a trivial operation.

We extend the EPIC code generation path to include configuration selection. The key difference compared
to traditional instruction selection is that the selection can happen at multiple levels in the IR. Configuration
selection can happen for leaf level operations as well as higher level structures such as groups of instructions,
program statements, loops, functions, etc.

6.5 Configuration Allocation

6.5.1 Configuration Allocation Problem

After configuration selection, some of the nodes of the intermediate code may be tagged with application specific
instructions. The configuration selection module does not consider availability of resources on chip when it decides
on which configuration to assign with each partition that is synthesized into application specific instruction. Any
realistic AEPIC processor would have limited programmable logic resources available for CFUs and hence it is
quite possible that all the desired configurations cannot be accommodated on chip simultaneously.

Configuration Allocation (CA) is the problem of optimally allocating/de-allocating on-chip resources that
are intended for holding configurations (on C-cache) or CFUs (on MRLA). Poor allocation of resources for con-
figurations can lead to long periods of processor stalls caused either due to waiting for the configurations to load
into the MRLA or due to excessive thrashing in the configuration memory hierarchy. Hence, optimal allocation of
configurations to C-cache and MRLA resources is critical for achieving high performance on an AEPIC processor.
In addition, we would like the allocation algorithm itself to be time and space efficient.

This problem is analogous to the problem of implementing virtual memory on systems with limited physical
memory or to the problem of allocating registers for program variables performed in most standard compilers. In
the remainder of this section, we present a formal definition of the configuration allocation problem and relate it
to the well studied problem of register allocation. We show how extensions to the register allocation techniques
yield solutions to the configuration allocation problem.

6.5.2 Similarities With Register Allocation

Register Allocation (RA) allocates program variables (also referred to as temporaries) to registers in order to
minimize the overall number of accesses to external memory. Fundamentally, both register allocator and con-
figuration allocator perform the same task—allocation of on-chip resources for program values (variables in the
case of RA and configurations in the case of CA). Configuration allocation differs from register allocation in the

following ways:
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6.5.

Non-uniform allocation units. Sizes of configurations are typically much larger and vary widely compared
to the sizes of data values stored in registers which are much smaller and almost always uniform in size.

Heterogeneous resources to be allocated. There are two types of local memories for configurations: (1) the
C-cache and (2) the MRLA. These resources differ in their capacities, access (read/write) costs and sizes of
allocation units. There is only one type of resource to be allocated in register allocation - the register set.

Immutable values. Currently, AEPIC architecture configurations are immutable. So memory write back of
configurations is not an issue.

No copies or moves. AEPIC does not provide any architecturally visible features to create copies or move
configurations with in the MRLA or the C-cache.

3 Machine Model

Here we discuss the resources provided by AEPIC machines for hosting configurations and the instructions from
the AEPIC ISA intended for managing configurations. Two types of storage classes are available for hosting
configurations: (1) C-cache and (2) MRLA. Allocated configurations are present in exactly one of these storage
classes. Every allocated configuration whether it is on the MRLA or in the C-cache is associated with a distinct
configuration register from the configuration register file (CRF). See Section 5.3.2 (Page 73) for details. The unit
of allocation in the C-cache is a C-cache block and on the MRLA it is a slice. All configurations are constrained to
consume an integral number of consecutive slices in the MRLA. Configuration data for each MRLA slice requires
an integral number of blocks in the C-cache. The set of AEPIC instructions intended for performing configuration

allocation/de-allocation are shown in Table 6.1.

The

Table 6.1: Instructions for configuration management

Resource allocation on MRLA malloc, gec, geall, free

Configurations from/to memory ldcc, ldeens, stec, steens

Context allocation on MRLA setctx, clretx, clralletx, switchetx, pushctx,
popctx

CFU instantiation inc, incns, outc, outcns, delc

basic steps involved in using configurations are:
Allocate a configuration register with the configuration to be loaded.

Allocate requisite number of blocks in the C-cache for the configuration. If the C-cache is insufficient for
the configuration, then the allocation fails and application is aborted. If the configuration is smaller than
the C-cache size but the total free space is less than that which the configuration requires, then some of
the resident configurations are evicted (since configurations are immutable, they are simply deleted and not
written back to memory).

Schedule the loading of configuration data into the C-cache into the allocated blocks.

. Allocate consecutive slices on the MRLA to load the configuration that was loaded into the C-cache (to

instantiate the CFU corresponding to the configuration).
Schedule transfer of configuration data from the C-cache to MRLA.

One or more operations are executed on the CFU.
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7. At some point if the MRLA resources are required for another CFU or if this configuration will not be used
any more, then it is evicted to the C-cache (if it may be used again) or just deleted from MRLA.

8. Allocated configuration register is freed - it can be allocated to a new configuration.

Note that the same configuration register refers to the configuration data when it was in the C-cache and to the
corresponding CFU when loaded onto the MRLA. Once the configuration is completely moved to MRLA from
the C-cache, the C-cache resources allocated for the configuration may freed since it is wasteful blocking those
resources as long as the configuration data is available on the MRLA. However, in certain cases it might be useful
to architecturally expose the deallocation operation. For example, if multiple instances of the CFU corresponding
to the configuration are needed on the MRLA, it might be more efficient to copy the configuration data from
the C-cache to the MRLA once for each of the CFU instances instead of loading from external memory into the
MRLA to make copies of the CFU already available on the MRLA.

6.5.4 Cost Model

Configuration allocation costs include the costs of operations that move configuration data between external
memory and the processor local resources (C-cache and MRLA) and, the cost of instructions that perform
configuration moves between different resources on the processor itself. The overhead is measured against a
perfect allocation scheme that assumes a machine with unlimited resources. These overheads fall into three
categories:

1. Spill cost. This is the cost of moving configurations between processor local resources and external memory.
The actual cost depends on the size of this configuration. Since configurations are assumed to be immutable,
they need not be written back to memory. However, a configuration on the MRLA may be copied back
to C-cache for later reuse. Configurations on C-cache are never written back to memory. Load costs from
memory to C-cache and from C-cache to MRLA depend on the latency and bandwidth constraints between
memory and C-cache and that between C-cache and MRLA. Spill MRLA to C-cache: cost = (S./W)* L.
S, is the size of the configuration in bytes, W the number of bytes transferred from MRLA to C-cache per
transfer operation and L ;¢ is the minimum latency between successive MRLA to C-cache moves.

2. Call cost. This is the cost of free/restore of resources allocated for configurations performed upon procedure
entry and exit. This cost is influenced by two factors: (1) the procedure calling convention employed by
the compiler, (2) any architecture specific issues that affect allocation decisions such as passing procedure
parameters through resources reserved for such purposes and, (3) the number of contexts in MRLA that
are available for allocation for called functions.

3. Shuffle cost. This is the cost of moving allocated configurations between different resources on the proces-
sor, typically from one live range to another. The proposed version of AEPIC architecture does not support
moves or performing copies of configurations between different locations on MRLA. And in the C-cache,
there is no use creating duplicates of configurations. Hence shuffle cost does not figure in the configuration
allocation cost function.

6.5.5 Simplified AEPIC Allocation Model

For the remainder of this section we consider a simplified version of the configuration allocation problem. In the
simplified version, the machine is assumed to contain N configuration registers and each “virtual” configuration
in the program intermediate code specifies an integer k which is the number of physical configuration registers
it requires. The only difference between this problem and the conventional register allocation is that, in the

conventional register allocation problem, each virtual register (also called program temporary) is assigned to a
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single physical register.

6.5.6 Allocation Techniques Background

Graph coloring is a powerful technique used for register allocation. Chaitin et al. first abstracted the register
allocation as a graph coloring problem [27, 28]. Nodes in the graph are the live ranges representing variables
(temporaries or virtual registers) used in the intermediate code. The edges in the graph represent interferences
between two live ranges. A live range is said to interfere with another live range if the variables corresponding to
the two live ranges are simultaneously live at some point in the program intermediate code. Allocating the two
variables to the same physical register might violate program semantics. In other words, we desire to associate
registers with the nodes of the graph such that no two adjacent nodes are not assigned the same register. The
graph coloring problem is to assign colors to the nodes such that no two adjacent nodes are assigned the same
color. Clearly, any valid graph coloring yields a valid register allocation for the variables. If the machine con-
tains K registers, then we desire a K coloring of the graph. Since determining a K coloring of general graphs
is NP-complete [51], polynomial time approximation schemes are often used. Chaitin’s algorithm is one such
polynomial time heuristic. If the number of available registers is less than the number of live ranges that need to
be allocated, then the interference graph is modified either by eliminating some of the live ranges (called spilling)
or by splitting the live range into smaller live ranges with the hope that the new interference graphs becomes
colorable.

We adapt ideas from past work on register allocation for the configuration allocation problem. In the rest of
this section, we present a coloring based configuration allocation scheme. We first describe how live ranges of
configurations in the intermediate code and their interference graph are computed. Then we present a technique
to transform the interference graph to enable better opportunities for coloring in case the coloring scheme blocks.
This is followed by an algorithm for allocating configurations which draws from previous work by Chaitin [27, 28],
Briggs [19] and Chow and Hennessy [32].

6.5.7 Interference

Live range construction. A live range is an isolated and connected group of nodes in the control flow graph
that connects the definitions and uses of a given program variable. Live ranges are discovered by finding connected
groups of def-use chains. A single def-use chain connects the definition of a virtual register to all of its uses.
Multiple definitions may reach any use. Live ranges are typically computed through data-flow analysis; live-
variables analysis and reaching definition analysis. A variable is live at block 4 if there is a direct reference of the
variable at block ¢ or at some point leading from block i not preceded by a definition. The reaching attribute is
solved by forward iteration through the control flow graph. A variable is reaching in block i if a definition or use
of the variable reaches block i. The live range Ir(v) of a variable v is constructed as live(v) N reach(v).

Interference graph construction. Two live ranges interfere if one of them is live at the definition point of
the other. If the smallest program units under consideration are instructions (basic blocks), then this definition
point is an instruction (a basic block containing the instruction) that writes to the variable denoted by the live
range. Two algorithms for interference graph construction for configurations, one whose point of definition is an

instruction and the other whose point of definition is a basic-block are presented in 1.
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Algorithm 1 Configuration interference computation

/* Point of definition based computation; I. = configuration instructions */
vll,IQ el.: G[Il,IQ] «— true;
foreach (I € I..) {
foreach (I; € Live(I)) {
foreach (I € Defined(I)) {
G, Iz] « true; G[Iy, I1] < true;
¥
¥
}

/* First compute liveness for each BB using dataflow analysis techniques.
PostLive(B) is the set of live vars (corresp. to configurations) at the exit of B.
Then perform BB liveness based computation of interference. */

Vi, I, €1, : G[Ihlg] «— true;

CurrentLive «— PostLive[B];

foreach ({I € B|I is a configuration instruction}, in reverse order) {

foreach (I; € CurrentLive[I]) {
foreach (I € Defined[I]) {
G, I5] « true; G[Iy, 1] «— true;
}
}

CurrentLive «— CurrentLive — De fined[I];
CurrentLive «— CurrentLive U Used[I];
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6.5.8 Spilling And Splitting Of Live Ranges

Resource assignment is blocked when all legal resources have been allocated. Live range spilling is one tech-
nique where the value corresponding to the live range [r; is assigned to a memory location and all references
to the variable corresponding to Ir; are performed by LOAD/STORE memory access operations. Live range
splitting is one alternative to spilling when no candidates are available and when we need to control the program
points where compensation code gets inserted and which subset of references to the associated variable reside in
registers/processor local memory.

e Spill heuristics aim to find better nodes to spill.

e Live range splitting techniques aim to reduce the length of live ranges with the expectation that smaller
live ranges will interfere with fewer other live ranges.

6.5.9 Pruning For Configuration Allocation

If there are program regions where the total resource requirement of configurations that are live at that point
exceeds the available resources on the processor, configuration allocation will fail. Analogous to the concept of
register pressure, we define the total resource requirement at any program point the resource pressure at that
point. Pruning is a technique of preprocessing the live ranges of configurations to ensure that the resource pressure
never exceeds the total resources available on the machine.

Pruning involves (a) determining the set of live ranges to split and, (b) determining the right split points for the
selected live ranges. Once a live range is split, compensation code needs to be inserted to fetch the values (config-
urations) for the uses encountered in the second (or later, if multiple splits were performed) part of the live range.
One downside of reducing the resource pressure is the additional time taken for executing the compensation code.
Hence pruning decisions cannot be made arbitrarily. In addition to the resource pressure, execution frequency
should be taken into account before a selecting a live range for splitting since that determines the number of
times the compensation code would be executed.

Pruning is not a new concept. However, it has been used only in the context of register allocation in the past. We
adapt those techniques to work in the context of configuration allocation. First, we present a brief survey of past
work related to pruning/live range range splitting. Chow et. al [32] first proposed live range splitting. When their
register allocator fails to assign a color to a live range Ir, it splits Ir into smaller live ranges, each smaller piece
spanning a single basic block over which it is live. To decrease the amount of compensation code, adjacent live
ranges are combined if the register pressure due to the combined live ranges does not exceed the available number
of registers. Briggs [19] in his thesis proposed splitting based on control flow structure. He avoids the problem
of picking optimal live ranges and instead chooses split points based on structure of the control flow graph and
then splits all live ranges that cross that point. Two of the proposals for split points are splitting around loops,
at dominance frontiers or at reverse dominance frontiers. Hansoo [87] proposed a frequency based live range
splitting algorithm which attempts to split along the least frequent edges in the control flow graph. Bernstien et
al. [14] proposed live range selection heuristics. The heuristics give an estimate of a live range’s contribution to
the total resource pressure. Callahan and koblenz [24] proposed a hierarchical method to heuristically prune the
interference graph.

We propose a pruning technique based on the hierarchical technique proposed by Callahan and Koblenz [24]. In
their algorithm, gaps between references to a register in a live range are identified. These are possible regions
which can be spilled to memory. The maximal length live-range gap is referred to as wedges in [31]. Non-

overlapping and maximal wedges are identified using the control tree [109]. The choice of wedges to prune is a
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function of (a) the runtime cost of compensation code that would be added in the pruned region and, (b) size
of the region of the program region that would benefit from the pruning decision. Our algorithm takes into ac-
count the special requirements of configurations (their non-uniform sizes - which implies non-uniform spill costs;
immutability - which implies stores to memory are not required) and also enhances the scheme with regard to
identifying spill candidates and spill locations based on execution profile as well. The algorithm, adapted from
the register live range pruning algorithm from [31] and is described in Algorithm 3. The relevant parameters and
the data-structures used by the algorithm are listed below.

R = total number of recourse units available for allocation
C' = configurations (candidates) to be allocated

T = Control tree of the program

ResUnits|c] = number of resource units required by the configuration ¢
Live[n] = set of configurations live in control node n
Refs[n] = configurations that are referenced in control node n
Wedges[n] = list of candidates with wedges that have heads at n
Freqle] = number of times control traversed along edge e
> ceLiveln) ResUnits[c] — R n € T.Leaves,
Ezcessin Mazx {Ezxcess[c]}  n ¢ T.Leaves.
c€T.Children|n]
1 n € T.Leaves A C € Live[n],
LiveUnits[n,C] =<0 n € T.Leaves A C' ¢ Live[n],

ZpETAChildren[n] LiveUnits[ 70] n ¢ T.Leaves.
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The list of candidate live ranges in Wedges[n| is sorted by the order in which they are most desirable for pruning,.
For example, candidate C' with larger LiveUnits[n,C] is more desirable for pruning since it contributes to the
resource pressure over a larger program size.

Algorithm 2 Pruning

function InitPrune(N) {

if (N € T.Leaves) {
LivePart|N] « Live[N];
EacessIN] — (S e pive ResUnitsfn]) - B
VC € Live[N]: LiveSize[C,N] «— |C|;

} else {
VM € N.children : InitPrune(M);
LivePart|N| «— Upnen.chitdren LivePart[M];
Refs[N] « Unen.chitdrenRefs[M];
Excess[N] «— Maxpren chitdrenExcess|M];
VC € LivePart[N]: LiveSize[C,N]| < 3 \/cn chitaren LiveSize[C, M] ;
VC € Refs[N] A VM € N.children:
if (C ¢ Refs[M] AC € LivePart[M])

NewWedge(C,M);

}
}

function UpdatePressure (W,N) {
if (N € T.leaves) {
Live|N] < Live[N] - {W};
Eaxcess[N] «— Maz{(}_,cpipen) ResUnits[n]) — R, 0};
} else {
Excess|N| «— Mazmen.chitdren{Update Pressure(W, m)};

}

return Ezcess[NJ;

6.5.10 Graph Multi-coloring Configuration Allocator (GMCA)

Here we provide a simple configuration allocator called Graph Multi-coloring Configuration Allocator (GMCA),
based on Chaitin’s graph coloring register allocator [27, 28] with the spill and split decision modifications suggested
by Hansoo and Leung [88] for the simplified AEPIC configuration resource model ??. All past graph coloring based
register allocation schemes are based on the idea of simplification [86]. If a graph G contains a node v with fewer
than K neighbors and if G — v can be colored with K colors, then G is K colorable. In the case of configuration
allocation, multiple colors may be allocated to each node and hence it calls for a stronger version of the simpli-
fication step. We first state and prove this simplification lemma and then show it is used in our GMCA algorithm.

Let G(V, E,w) be an undirected graph where w : v — Z is a weight function defined on the vertices. Let C : v — S

be a function on the vertex set such that S C {1,...,K}. Then C is a valid K-multi-coloring of the graph if
|C(v)| = w(v) and Ve € E,where e = (u,v), C(u) N C(v) = 0.
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Algorithm 3 Pruning (cont’d.)

function Prune (N) {
PrioritizeWedges(N);
while (Excess[N] >0 A |Wedges[N]| > 0) {
W — Wedges|N].top();
PruneWedge(W);
UpdatePressure(W, N);

}

VM € N.Children A Exzcess|N] > 0: Prune(M);

Lemma 1 [Simplification lemma)]
Let vertez v € V' be such that 3, c 44 w(u) < K —w(v). Let G' = G — v be the subgraph obtained by removing
v and its incident edges from G. If G' can be K-multi-colored, then so can G.

Proof: Let C be the K-multi-coloring of G'. Let S, = U, 4q;(») C(). By definition of C, [C(u)| = w(u). This
implies that |Sy| < 37, ¢ 4qj(w) w(w). Given that 3, 4,y w(u) < K—w(v), it implies that | S,| < K —w(v). Con-

sider C, = {r|r € {1,...,K},r ¢ C(u)}}. Clearly, |Cy| > K—w(v). Let ™) be any w(v) sized subset of C,,. Let

C/(p){ Cp) ifpeV(E)

C},U(v) ifp=w

Then, C’ is a valid K-multi-coloring of G. o

A vertex v € V such that }°, ¢ 44,y w(u) < K — w(v) then the vertex is called unconstrained else it is referred
to as an constrained node. Pseudo-code for the Graph Multi-coloring Configuration Allocator (GMCA) based on
the simplification lemma is presented in Algorithm 4. The various phases of the allocator are described here.

Phases of graph multi-coloring configuration allocator.

1. Build: Live ranges are computed and the interference graph is constructed during this phase. The interfer-
ence graph is maintained both as an adjacency list data-structure as well as an adjacency matrix.

2. Coalesce: The coalesce step removes any unnecessary move (copy) instructions effectively merging the live
ranges corresponding to the values connected by the move instruction. The live ranges should not interfere
with each other. In AEPIC since configurations are immutable and there are no copy/move instructions
which take configuration registers as operands, this step is unnecessary. We however mention it here in case
such instructions are later added to the AEPIC architecture.

3. Simplify: The simplification lemma is the basis for this step. Unconstrained nodes are selected and pushed
onto the color_stack and removed from the interference graph. Since the simplification lemma guarantees
that unconstrained nodes can always be colored if the reduced graph is colorable, they are removed from
the graph. This step in turn might enable other constrained nodes to become unconstrained. If so, then it
is repeated until either the graph is empty or all nodes are constrained.

4. Prioritize: Priorities are assigned to Constrained live ranges. Live ranges are selected for coloring in order
of their priority. Priority functions capture the expected benefit of allocating the live range to on chip
resources as opposed to external memory. Several priority functions have been proposed in the context of

register allocation which have been adapted for the special nature of configurations. Details are given in ?7.
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5. ProcessNode: Highest priority node is selected for coloring. For each node, just as in [32], a Forbidden set is
maintained which indicates the set of colors (resources) that have already been allocated and hence cannot
be used for the current node. If there are enough available colors that can satisfy the color requirement
for the current node, the node is colored and the Forbidden sets of its neighbors are updated to reflect the
allocation. If the set of available colors cannot satisfy the demand for this node, then the node is either
spilled or the live range split depending on which one is most beneficial.

6. ProcessStack: Unconstrained nodes eliminated (pushed onto the color_stack) during the simplify phase are
colored in the reverse order in which they were removed from the graph. Original graph is incrementally
reconstructed by adding one node at a time from the top of the color_stack and is assigned the color vector.
The simplification lemma guarantees that enough colors are available to color the inserted node.

K = number of colors (resource units available for allocation)
G = interference graph to be colored
v = node G corresponding to a live range of a configuration
v.Color Req = number of colors required by v
v.Assignment = K bit vector indicating colors assigned to v

v.Forbidden = K bit vector indicating colors that cannot be allocated to v

Algorithm 4 Graph multi-coloring configuration allocator

function GMCA(CFG cfyg) {
G «— Build(cfg);
while (G #0) {
while (Jv|v is unconstrained) {
S.push(v);
G — G—{v}

}
if (G £ 0) {
ComputePriorities(G, h);
v «— HighestPriorityNode(G);
if (IsColorable(v)) {
Color(v);
} else {
G «— Split(G,v);
}

}
ProcessStack(S);

6.5.11 Effect of procedure linkage conventions

Procedure linkage conventions may specify additional constraints on register allocation by specifying that certain
registers be saved by the caller and others by the callee. Typically spill costs for caller-saved register are different
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Algorithm 5 Graph multi-coloring configuration allocator (cont’d.)

function IsColorable(v) {

return (v.ColorReq > (K — 5. wv.Forbidden[i]));
0<i<K

function Color(v) {
availColors «— v.Forbidden;

P= {ﬂé\gg}{}{zkkgavailColors[k] = v.ColorReq};

mask «— 1P0N-F;
v.Assignment «— v.availColors A mask;
Yulu € Adj(v):  u.Forbidden «— wu.Forbidden V v.Assignment;

from callee-saved registers since the caller-callee execution patterns need not be identical. This implies that in
order to optimize performance, register allocator cannot view the set of registers as a uniform resource and hence
cannot make arbitrary decisions about allocating a register for a selected live range.

Similarly, procedure linkage convention may cause splits in live ranges of configurations that cross the procedure
call instructions. However, we bypass the call costs of spilling configuration live ranges due to procedure call
statements by simply allocating a new MRLA context to the called procedure and “pushing” the ezecution context
of the calling procedure. The set of MRLA contexts are viewed as a stack of execution contexts. The active context
is the context of the currently executing procedure. The called procedure uses the new execution context and
when it returns, the pushed context of the calling procedure is “popped” back to become the active context. The
configuration registers (the registers which serve as “aliases” to allocated configurations) are themselves viewed as
grouped into register windows. One window being allocated for each called procedure. Some of the configuration
registers are reserved as global configuration registers and are used to alias the configurations that have either
been allocated or will be allocated to the C-cache.

6.5.12 Hardware support for allocation

Here we present a simple solution to the problem of allocating/de-allocating C-cache resources as configurations are
swapped in/out of it. In other words, we provide efficient hardware implementations of the following instructions
since these are the only instructions that are used to allocate/de-allocate space for configurations on the C-cache.

calloc cr, r, N allocate N blocks in C-cache for configuration located at
address r and associate configuration register cr with
the allocated configuration.
free cr free the C-cache blocks allocated for configuration cr
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CC = denotes C-cache
N = total number of C-cache blocks
CC.FV = N bit binary “free” blocks vector

. 1 if i** C-cache block is unallocated
CC.FV]i] =
0 if 4t C-cache block is allocated to some cr
CC.N = number of free blocks in C-cache
cr = configuration register
cr.N = number of C-cache blocks allocated to cr

cr.AV = allocation vector for cr

. 1 if i*" C-cache block is allocated to cr
er. AV[i| =
0 if i*" C-cache block is not allocated to cr
aP = denotes p bit binary vector in which every bit is  where x € {0,1}
[ X] = leftmost k bits of N bit vector X
[X]r = rightmost k bits of NV bit vector X

A.B = concatenation of binary vectors A and B

Algorithm 6 Semantics of free operation

function free(cr)

{
CC.FV «— CC.FV Ver AV,
CC.N «— CC.N + cr.N;

/* Clear C-cache blocks allocated for ¢r (those that
are marked “1” in cr.AV) */

cr. AV «— cr. AV A OV

cr.N «— 0

6.6 Instruction Scheduling

Consider the IDCT kernel used in many video compression applications (eg. MPEG.) The code size for this
function using our compiler for a 9-issue EPIC processor ([70]) is less than 2KB. The compiler generated 184
operations. We assumed a simple encoding scheme using 32 bits per operation. In [124], it was shown that it would
require 4920 CLB’s on a Xilinx 4K FPGA to implement a 16 bit fixed point version of the IDCT function. The
configuration size for programming the 4920 CLB’s could run into tens of kilobytes. Clearly, it is very inefficient

to load the IDCT configuration every time it is executed. The benefits of faster execution on the reconfigurable
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Algorithm 7 Semantics of calloc operation

function calloc(cr, 1, K)

{

mask «—
CC.FV «— CC.FV Amask;

CC.N « CC.N — K,

cr.AV «— CC.FV A mask;

cr.N «— K;

/* now initiate memory fetches for configuration at r into

if (N < K||CC.N < K)

exit(“error: insufficient number of available blocks.”);

P —  Min {3 _<;CCFVI[k] = K}

{i|0<i<N}
1P0N7P;

C-cache blocks allocated to c¢r (marked in er.AV) */

logic array can be lost due to the high reconfiguration times. We propose the following techniques to address this

problem:

e Decouple configuration loading from and configuration execution. Consider wherein, function f3 executes

configuration C. In order to hide the long configuration load time, our compiler would identify specula-
tively load the configuration data into the configuration cache (C-cache) preceding to the call to C. The
architecture supports a configuration-pointer (as part of the configuration register). This is analogous to
loop counters in DSP processors. It indicates to the configuration load instruction, the appropriate mem-
ory location to read, each time it is executed. This avoids the problem of separate load instructions for a
configuration from reading the same memory location. The slots where the configuration load instruction is
speculated are ranked according to the number of times they might be executed (obtained from an execution
profile) and their proximity to the actual point of use of the configuration. We use this information to select
appropriate slots for the speculated configuration loads. Loading a configuration too early is wasteful if the
control flow never reaches the actual point of use and too late might not effectively mask the configuration
load overhead.

Since configurations can correspond to larger chunks of computations compared to standard RISC/VLIW
style instructions, it is likely that the number of input/output operands to the operation performed by
the configured functional unit is large. Hence we extend the above latency masking idea even further by
decoupling supply of operands to the configuration instructions, from the triggering of their execution. This
is one of the reasons why our architectural space is restricted to those processors for which operands to
configurations are implicitly specified. Compiler schedules the operand assignment and data supply to the
configured functional unit prior to its execution.

In the EPIC core there is already a provision for specifying caching hints to load/store operations indicating
choices for data placement within the cache hierarchy. We extend this feature to the load operations that
fetch the configurations. We believe that an explicitly controlled configuration cache for intelligently caching
configuration data between consecutive uses of the same configuration can vastly alleviate the problem of
high reconfiguration overhead.

In this section, we describe the scheduling problems associated with AEPIC architectures in a formal setting.

These scheduling problems are related to problems related to precedence constrained scheduling with non-unit

latencies and multiple-pipelines, and to various forms of bin packing problems.
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6.6.1 AEPIC Features Relevant To Scheduling

The specific features of an AEPIC processor that determine how instructions are scheduled for execution are
discussed here.

MultiOp. An AEPIC processor relies on the compiler to specify the set of operations to be issued on each
machine cycle and on which functional unit they are expected to execute. This set of operations is specified as a
single packet called MultiOp. An AEPIC processor executable is composed of a sequence of MultiOps. A machine
cycle is the smallest unit of time on the virtual time-line implicitly specified by the POE.

Dynamic ISA. Abstractly, an AEPIC processor data-path is composed of (a) a set of functional units each of
which is capable of performing a set of operations, and (b) a set of register files with an interconnect network
between the two. In addition, AEPIC provides architectural features to add/delete functional units and specify
their interconnection to the register files, during runtime, in effect, varying the instruction set architecture of the
machine dynamically. Functional units that are instantiated during runtime are called configured functional units
(CFUs).

Non-Unit Assumed Latencies (NUAL). Although an AEPIC executable specifies that a new MultiOp is to
be issued on each machine cycle, it does not imply that the operations in the MultiOp actually finish before the
next MultiOp is issued. Operations could take several cycles (especially in the context of reconfigurable computing
where the application specific operations are usually large pieces of computation) and in fact, operations of the
same MultiOp may generate their results at different times. Following the EPIC philosophy which forms the core
of AEPIC, it is actually the read/write events that are considered atomic instead of the instruction itself as is the
practice in superscalar architectures. This implies that AEPIC operations take non-unit latencies and that this
latency information should be available to both the compiler which generates the executable and to the processor
that ensures correct interpretation of the executable. One of the motivations for exposing this non-unit latency
behavior to the compiler is with the hope that the compiler will be able to generate compact schedules if given
the exact time instants at which values are produced and consumed by instructions.

Explicitly specified latencies. In the case of EPIC, the operation set is fixed. Hence both the compiler and
the processor can be built with the knowledge of the operation latencies obviating the need for communicating
the latency information through the executable. However, in the case of AEPIC, the operation set is determined
only at compile time and somehow the compiler has to communicate this information to the processor. There are
several possible ways to do this []. The mechanism we propose is to explicitly specify latency information as part
of the instruction. Often the custom operations not only have long latencies, but also the latency behavior is not
deterministic, most often depending on the values of the input operands. Being able to explicitly specify latencies
as part of the operation itself yields the greatest amount of flexibility since every invocation of an operation
can specify a different latency value — the value that the compiler itself assumed for this particular operation.
The processor takes appropriate action (whether to delay the commitment of results or to stall the processor)
depending on the difference between the actual latency and the compiler communicated latency.

6.6.2 Scheduling Model

AEPIC functional units To simplify the model and subsequent discussion, we assume that we have m’
homogeneous functional units which can process all types of AEPIC instructions (which are basically EPIC-
style instructions). These AEPIC functional units are numbered from 0 to m’ — 1. In a more realistic setting,

instructions and functional units are partitioned by their types — i.e. load/store, floating point, integer, branch
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instructions, etc — and only instructions from the appropriate type can be assigned to a functional unit. We will
assume that all these functional units are pipelined.

Configured functional units In addition to the m’ non-adaptive, pipelined functional units, we assume that
there are an additional m” ALU data-path slices (corresponding to the slices of the execution contexts of the
MRLA) which may be used by the configured functional units (CFU) numbered m’ to m’ + m” — 1. Each CFU
may consume an arbitrary number of these ALU slices while it is active on the AEPIC data-path.

Some of the AEPIC instructions may trigger computations on the CFUs. These instructions executed on the
CFUs are the application specific custom instructions synthesized by the AEPIC compiler. Each such custom
instruction ¢ may utilize a CFU during its execution. CFUs and custom instructions are typed, such that a custom
instruction ¢ can only be executed on an CFU of type type(i). CFUs, unlike the normal functional units, may
not be pipelined, i.e. these instructions have non-unit processing times, and typically have non-zero latencies.

Precedence constraints As in previous work in this area, we assume that the basic block being scheduled is
represented as a DAG, with nodes representing the instructions, and edges representing the precedence constraints
between the instruction. We use i < j to denote that ¢ must precede j in all feasible schedules.

An instruction i requires p; cycles of processing time. On a pipelined machine, processing times are used to model
the number of interlock cycles for an instruction, i.e. if 7 is issued on some pipeline, then no other instructions
may be issued on the same pipeline before p; cycles have elapsed. For EPIC machines, it is natural to assume
that p; = 1 for all 4, i.e. we have an Unit Ezecution Time (UET) model.

Latencies Results computed from one instruction may not be immediately available to subsequent instructions
in the instruction stream. For example, if an instruction i is a load instruction, there might be additional delays
due to access latencies to cache or main memory. An instruction j that is data-dependent on i may have to be
delayed an additional /; cycles. We call the [;; the latency between i and j. This model has been developed in
works such as [116, 97], where we assume that the latency is a function of both the producer of the value, and its
consumers. As in EPIC/VLIW machines, which usually has simpler pipelines than superscalar architectures, it
may be possible to assume that the latency is independent of the consumer even for AEPIC processors. In such
cases we will drop the second subscript and denote the latency of 7 as [;. In addition, instructions executing on
some of the configured functional units may have data (input operand) dependent latencies. In such cases, we
denote the set of latencies associated with i as {lj;,17;,...15;}.

6.6.3 The Resource Constrained AEPIC Scheduling Problem

The recourse constrained AEPIC scheduling problem is to locate a feasible schedule (o,1). Here, o : I — IN maps
each instruction to its start time in the schedule, and ¢ : I — {0...m —1} maps each instruction to the functional
unit that it utilizes.

A schedule (o,)) is feasible <= it satisfies the following constraints:

latency For all instructions ¢, j such that ¢ < j, o(i) + p; + l;; < o(j) for all i < j.
resource For all time ¢, |[{j | o(i) <t < o(i)+pi} <m
resource assignment For all instructions 4, j, if ¢(i) = ¢ (j) then [o(i), o () +p; — 1N [o(j),0(j) +p; —1] = 0.

The first two constraints are essentially the same constraints that are used to model traditional EPIC/VLIW

machines. The resource assignment constraint is used to specify that the same CFU is not utilized by two custom
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Problem Reference

Plp; = 1; prec|Cax Garey and Johnson [51]
1lp; = L;prec(lij)|Crmax Hennessy and Gross [67]
1p; = 1; chains(l; € {0, k1, k2})|Cmax | Palem and Simmons [116]
P2|p; € {1,2},prec|Cax Ullman [169]

Figure 6.1: NP-hard problems from scheduling

Problems Reference

1lp; = 1; prec(li; € {0,1}); ri| Lmax Leung et al. [97]
Plp; = 1;int — order(mono l;;); ;| Lmax
P2|p; = 1;prec(li; € {—1,0}); 7| Linax
Lp; > 1;prec(li; € {0,1})|Crmax

Plp; = 1yintree(lij = )| Linax Bruno, Jones, So [21]
P‘pl = ]-;OUttree(lij = l);ri|Cmax
P‘pi =D; Ti|Lmax Simmons [153]

Figure 6.2: Polynomially Solvable Instances

instructions at the same time step.

Intuitively, we can treat the AEPIC scheduling problem as precedence scheduling on heterogenous functional
units with non-unit processing time and latencies.

6.6.4 Some Complexity Results

For brevity, we will extend the «|3|y notation of Graham et al. [57], and Brucker and Knust [20] to describe
AEPIC scheduling problems. We use P|prec(l;;)|Cmax to denote the general problem of scheduling a precedence
constrained AEPIC scheduling problem on multiple pipelines. Here, P specifies that there are multiple pipelines;
prec(l;;) specifies that general precedence constraints are allowed and general latencies are allowed. Finally Cpax
states that the problem is to minimize the maximal completion time.

Clearly P|prec(l;;)|Cmax is NP-hard, as it reduces to many simpler problems which are also NP-hard known from
deterministic scheduling (see Figure 6.1).

Garey and Johnson [51] have shown UET precedence constrained scheduling on parallel processors is NP-hard.
Dealing with only latencies, Hennessy and Gross [67] have shown that scheduling on one pipeline but with arbi-
trary latencies is also NP-hard. Note that restricting the latency model to the “producer-only” model does not
make the problem easier, as Palem and Simmons [116] have shown that a more restricted problem with chains is
also NP-hard. The problem with only 2 processors, without latencies, and only with processing times of 1 or 2, is
also NP-hard, as Ullman [169] has shown. Note that this implies even the simplest AEPIC scheduling problems
with the most restricted shapes of “tiles” are NP-hard.

In [97] Leung et al., have shown that a similar problem involving arbitrary processing times and latencies of 0
and 1

prec(lij € {0,1);pi > 1{Ciax

is polynomially solvable. However, the algorithm is restricted to 1 pipeline and does not generalize. Other
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polynomially solvable instances related to pipelined scheduling, have also been identified in the paper [97]. All
related polynomially solvable problems in the literature are summarized in Figure 6.2.
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Chapter 7

AEPIC Simulation

7.1 Introduction

In this chapter we present the design of the AEPIC simulator. AEPIC simulator is based on the cycle-level simula-
tor of the HPL-PD EPIC architecture [84] which is distributed with the Trimaran ILP compiler infrastructure [70].

In Section 7.1, AEPIC simulator design goals and requirements are presented. Relevant details of the EPIC
simulator in Trimaran are discussed in Section 7.2. In Section 7.3, we review details of the semantics of AEPIC
program execution, focusing on those aspects that are relevant when constructing the simulator. AEPIC specific
extensions to the Trimaran’s simulator are also presented in this section.

7.1.1 Simulator Requirements

The following are the requirements of the AEPIC simulation environment.

e To convert code generated by AEPIC compiler into a format that can be executed on an existing architecture
and yet simulate AEPIC execution semantics.

e To generate run-time information such as clock cycles taken for execution, average number of operations
executed per cycle, static instruction counts, register allocation overheads, etc.

e To provide detailed information about the execution profile on the adaptive component of AEPIC such as
time spent for data-path reconfiguration, computation time on MRLA, effectiveness of configuration caches,
etc.

e To provide a framework that allows researchers to extend the functionality of the run-time performance
analysis module with additional modules that implement algorithms intended to analyze AEPIC execution
traces.

7.1.2 AEPIC Simulator Design Goals

Parameterized by machine description. The simulator should not be programmed with any inbuilt assump-
tions about the specific instance of AEPIC machine it might be simulating. In other words, all the architectural
parameters of AEPIC are to be read from the AEPIC machine description itself before (or during) every simula-
tion.
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Platform independent design. The simulation system should not make any assumptions either about the
operating system or about the architecture of the host platform on which the simulator executes.

Inter-operability. Here the intent is to allow free inter-mixing of AEPIC and host platform code. In other
words, an executable program can consist of a mix of AEPIC object files and host platform object files. This
allows the application that is being targeted to the AEPIC machine to invoke operating system or library functions
of the host platform.

Hooks for performance monitoring. The AEPIC compilation framework is meant for performing research.
Hence one cannot anticipate all the ways in which the infrastructure may be utilized. Allowing a developer to
extend the performance monitoring framework is a key requirement for performing AEPIC compiler or architecture
research. Examples of such tools include a data and configuration cache memory simulator, tools for determining
runtime reconfiguration overheads and MRLA utilization.

7.2 Trimaran’s EPIC Simulator

7.2.1 Overview

The HPL-PD EPIC architecture simulator-generator is distributed as part of Trimaran [70]. In addition to the
primary task of simulating the HPL-PD EPIC architecture, it provides run-time information on execution time,
branch frequencies, and resource utilization. This information can be used to perform profile-driven optimizations
as well as to validate new optimizations. Trimaran also comes with a Graphical User Interface (GUI) for config-
uring and running the Trimaran ILP compiler. Included in the GUI are tools for the graphical visualization of the
program intermediate representation and of the performance results generated by the simulator. The simulator-
generator is also parameterized by the machine description so that when machine configuration is altered, the
simulator-generator need not be recompiled.

Behavior of the simulator can be controlled through several runtime options. Some of these options may be enabled
to generate execution traces containing runtime information , a feature that is useful to study the performance of
new architectural features. For example, all memory instructions and the memory locations they access can be
output in the trace. Traces can contain billions of instructions and consume a lot of disk space depending on the
level of detail one wishes to probe the execution. Hence, Trimaran employs an execution-driven simulation model
which eliminates the need for producing and storing trace off-line, by dynamically generating the trace stream.
The trace processing and profiling extensions can consume the trace as it is generated.

7.2.2 Simulator Code Generation Process

Simulation process is illustrated through Figure 7.1. Input to the simulator-generator is the benchmark application
source code in C. Trimaran generated code for the intended EPIC target is “assembled” by the Code Processor.
The output generated by the Code Processor is a collection of low-level C files which form the simulator “pseudo-
executable”. These files are described in Section 7.2.3. This C pseudo-executable also contains patch-up code for
entry and exit into the simulator world from external library function calls. Since all the code for the generated
pseudo-executable is in C, a native compiler can be used to generate the equivalent host machine code. The C
code is compiled and linked with the Simulation Library, and the Cache Simulator by the native C compiler.
The Simulation Library contains the EPIC virtual machine interpreter and other simulation specific utilities. The
EPIC interpreter is invoked on every application procedure entry. It simulates the instruction stream in a loop
until the procedure returns. There is one simulation function for every HPL-PD operation. The Cache Simulator
called SMACHS simulates the HPL-PD data cache hierarchy which consists of a streaming cache also called the
104



data pre-fetch cache (V1), a conventional first and second level caches (L1 and L2) and main memory which is
external to the processor.

Simulation
Application Herersy
source
SMACHS
C “pseudo-
executable”
HPL-PD *.inc, *.tbls,
code e,

Native
compiler (gcc)

Code
processor

Host platform
specific simulator
for application

Figure 7.1: EPIC simulator generation in Trimaran

7.2.3 Structure Of The Simulator

The Trimaran simulator-generator generates a set of low-level C files corresponding to each of the application
source files. These low-level C files are compiled by the native compiler and linked with the simulation library
and the cache library. The generated executable is the simulator for this particular application. The low-level C
files created for each application source file zyz.c, are as follows.

1. zyz.inc: External variable declarations, global data, modified structure and union declarations, global data
used by the simulator at runtime are included here.

2. wyz.tbl: This file contains a set of emulation tables for each C function in the source file (zyz.c). An emulation
table is a C array of Op structures. Each Op structure contains pointers to the source and destination
operands of the operation and a pointer to the function in the emulation library that implements this
operation type. In other words, it contains all the information necessary for the simulator to simulate this
operation.

3. zyz.c: This file includes the xyz.tbl and zyz.inc files and also declares wvector functions (described in Sec-
tion 7.2.5) for all the functions invoked in the source file.

In addition, a benchmark_data_init.simu.c file is also generated for the entire application. It contains the definition
of a function that initializes the global data of the application.

Example. Implementation of the subtract literal operation from the HPL-PD EPIC ISA is shown in Program 3
and is explained below. The simulator functions for most operations have a similar structure.

1. Each operation from the ISA is associated with a C function. The
PD_SUBL_W _reg_lit function is associated with the SUBL_W HPL-PD operation.
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2. Code in the function computes the operation and saves the result into local variable r’. In Program 3, the
assignment statement computes the subtract literal operation and saves result into local variable r. This
value is not reflected in the processor state until the operation latency has expired.

3. Schedule the update to the processor state to occur after L cycles where, L is the latency of the operation.
In Program 3, the PD_delay function call schedules the update of processor register op — dest[0] — r (the
processor location that is affected by the execution of this operation) with the value in the local variable r
to occur after op — lat[0] (= L) cycles.

Memory access operations make a call to the Cache_Manager to determine if the particular location is available
in the cache and the number of stall cycles to introduce. Operations that perform procedure calls are described
in Section 7.2.5.

Program 3 Simulator code of an HPL-PD operation
function void PD_SUBL_W _reg_lit(Op *op)
{

REG r = (op — src[0] — reg) — (op — src[l] — lit);
PD _delay(&r, &(op — dest[0] — 1), op — lat[0]);

7.2.4 The Interpreter

The key data structure used by Trimaran’s simulator is the event queue @), which is a queue of pending action
lists L, ordered by virtual time. Action list is simply a list of action items. An action item (or action for short)
is either a write action or a function call action. These actions are created every time an operation is fetched and
processed. A write action copies a value from simulator local state to processor state and is implemented as a
simple assignment statement. Actions that read values from processor state for input operands of instructions,
are performed at the same time as when the operation is issued. Since all the input operands are available at issue
time, the computation corresponding to the operation is also performed at issue time. Hence read actions are
not scheduled on the event queue. Memory reads are also read actions. A function call action transfers control
to the specified function, implicitly updating the processor state and the state of the application that is being
simulated. The target function may be an external library function or a function defined in the application source.
The actions performed by the simulator when the called function is external are different from the actions that
need to be taken when the function is defined within the application source itself. Details are given in Section 7.2.5.

The interpreter fetches the operations in sequence from the table of operations (listed in the xyz.tbls files) as-
sociated with each source function, and schedules the actions specified by the operation on to the event queue,
Q. All operations of a MultiOp are scheduled relative to the same issue time—the virtual time slot during which
the EPIC processor issues the MultiOp. Operations belonging to adjacent MultiOps are separated by a MultiOp
separator (dummy operation) called ACLOCK. When the interpreter encounters an ACLOCK operation, it
commits all the pending actions scheduled for the current virtual time slot on () and advances the virtual time
as well as the program counter.

The function of the application that gets invoked first starts the interpreter. This function is typically the main
function in the C source. Since the simulator allows linkage to external functions and the main function itself
could be external and need not be the function that starts the interpreter. A simplified version of the interpreter

loop in the absence of speculation, and inter-procedural jumps is shown in Program 4. The interpreter sequences
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through the operations of the function (line 1) processing each operation in turn (line 3).

Program 4 EPIC Interpreter loop

function void PD _simulate(Op *opslist)

{

Op* op_ptr;

for (int =0, op_ptr = opslist; !done; op_ptr + +) {
PD_pc = opptr — getPC();
*(op-ptr — op)(PD_pc);
op_ptr = (Op *)PD_pc — getOp();

=W N

7.2.5 Handling Function Calls

A skeleton function called vector function is defined for each function called in the application’s source code.
It is not necessary for the called function to be defined defined within the application itself. The vector func-
tion (1) maps HPL-PD registers to native function parameters followed by (2) code to invoke the function with
the transformed parameters. In Program 5, _vector_test is the vector function associated with the original
source function test. The fand b parameters of source function test are mapped to the architectural registers
PD_Float_pl and PD_Int_pl. The reverse mapping from native function parameters to HPL-PD registers is
performed after the native function returns. This is illustrated by the example shown in Program 5. This is
illustrated by the example shown in Program 5. PDS_Int_Result, PDS_Float_Argl and PDS_Int_Argl are
macros that are mapped to specific registers in the HPL-PD architecture that have been reserved for passing
function parameters.

The actual function that is invoked by the vector function is a wrapper function (defined below) for functions
that are defined with in the application source otherwise is a call to an externally defined function. The wrapper
function for each function defined in the application source contains code that maps native function parameters
to EPIC registers, followed by a call to simulation library function PD_Simulate and then code to perform the
reverse mapping from EPIC registers back to native function parameters. In Program 5, the input parameters f
and b are copied into the parameter passing registers PD_Float_pl and PD_Int_pl. The PD_simulate function

3

from the simulation library invokes the interpreter on the “assembly” code for the test function which is stored
in the C structure _PD_tbl_test. The return value of the original test function saved into the EPIC register

PD_Int_Result is returned by the wrapper function.

Function calls in the HPL-PD architecture are performed using the branch-and-link (BRL) operation. In the
simulator code, the source operand for a BRL operation is a register containing a pointer to the wvector function
associated with the target of BRL (the original function to be invoked). The simulator invokes the vector function,
which in turn performs one of two tasks: (a) it calls an external function if the original function was not defined
in the application source or (b) it invokes the wrapper function otherwise. The wrapper function connects back

to the simulation world through a recursive call to the simulator.
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Program 5 Source function and the associated wrapper and vector functions

/* original function definition */
function int test(float f, int b) ...

/* original definition of test is replaced with a wrapper function which invokes the
simulator recursively to execute the code generated for the original function */
function int _test(float f, int b)
{
/* copy parameters to processor state */
PD_Float_pl = f;
PD_Intpl = b
/* invoke simulator on the code for test */
PD_simulate(_PD_tbl_test);
/* return the result of the computation */
return (int) PD_Int_Result;

}

/* the vector function associated with test. * /
function int _vector_test(void)

{
}

xPD_Int_Result = _test(xPD_Float_pl, xPD_Int_pl);

Program 6 Pseudo-code generated by the simulator

/* code generated for function test is a “C” array of operations*/
Op _PD_tbl _test[315] =
{
{1, __PD_start_procedure, {{(PD_.REG *) ”_test”,0,0x0,0}, ...
{0, __PD_prologue, {{(PD_REG *) 1568,0,0x0,0}, ...
(353, __PD_ADD_W _reg lit, {{(PD_REG *) __PD_RS,0,0x0,1}, ...
{0, __PD_aclock, {{(PD_-REG *) 1,0,0x0,0}, ...
{354, - PD_S_W_C1_reg.reg, {{{PD_REG *) ...
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7.2.6 Performance Monitoring Library

The Performance Monitoring (PM) library provides a C++ interface for building of performance monitoring
tools. Examples of such tools are memory profiler and control flow profiler. The PM framework processes events
generated by the simulator and filters events that are of interest to the user.

Trace events. Control flow information, procedure entry/exit, control block entry/exit, operation nullification,
memory access information are some of the events generated by the simulator. The events the user wishes to
monitor and the region of the program intermediate code (the viewing window) over which these events are to be
monitored are specified in configuration files.

Trace processing. The PM framework includes basic classes for reading the trace and filtering events from
the code region of interest. User specific trace processing tools can be built by extending the base classes. A few
examples and further details about the PM library are included in the Trimaran distribution [70].

7.3 Design Of The AEPIC Simulator

AEPIC simulator design is based on the EPIC simulator in Trimaran. We discuss only the relevant extensions to
the EPIC simulator. Our discussion is split into three parts: (1) modeling AEPIC specific extensions to the EPIC
processor state, (2) implementing AEPIC ISA extensions to the EPIC ISA and, (3) extensions to Trimaran’s
performance monitoring framework.

In the case of EPIC processor, one need only model the register files and the cache memory system. However, in
the case of AEPIC, in addition to the EPIC core state, the simulator needs to model the MRLA, C-cache, con-
figuration memory hierarchy, configuration register files and the set of CFUs. Modeling AEPIC state is discussed
in Section 7.3.1.

Simulation of instructions from the EPIC subset of the AEPIC ISA does not pose any special problems—they
are handled the same way as in the EPIC processor simulation. The adaptive extension instructions and CFU
operations require special handling. We discuss these issues in Section 7.3.2. in Section ?7.

7.3.1 Representing AEPIC Processor State

Since the EPIC core portion of the state is identical to Trimaran’s EPIC processor, we do not discuss that com-
ponent of AEPIC in the AEPIC simulator. The remaining elements of interest are Multi-context Reconfigurable
Logic Array (MRLA), configuration cache hierarchy including C-cache, Array Register File (ARF), Configuration
Register File (CRF) and the Configured Functional Units (CFUs).

7.3.1.1 Configuration Register File (CRF)

CRF is a collection of configuration registers. In the simulator, it is represented as an instance of the CRF class
whose interface is shown in Program 7. The free_list maintains the list of unallocated configuration registers and
is updated by the calloc and free functions. AEPIC latency values have the internal type AE_LAT.

Allocated, configuration register serves as an alias to an allocated configuration. It contains all the informa-
tion pertaining to that configuration—its resource allocation (whether on the MRLA or in the C-cache), its
input/output assignment if it refers to a CFU, execution status of CFUs and temporary storage for buffering the
values read (written) by the associated CFU before they are committed to the processor state. The configuration

register is represented by a ConfigReg object as defined in Program 8. All the methods are invoked only when
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Program 7 CRF interface
class CRF
{

ConfigReg calloc(Reg 1);

void free(ConfigReg cr);

void ldcc(ConfigReg cr, AE_LAT 1);
void ldcens(ConfigReg cr, AE_LAT 1);
void stce(ConfigReg cr, AE_LAT 1);
void stcens(ConfigReg cr, AE_LAT 1);

ConfigReg ConfigRegistersslNUM_CONFIG_REGISTERS];
int *free_list;

the configuration register refers to a CFU (in which case, the is_cfu field is set to true).

The in_reg_refs, out_reg_refs hold references to objects that represent the ARF registers that are intended to
hold the input and output operands for the CFU associated with this configuration register. The tmp_in_reg,
tmp_out_reg serve as temporary storage for values.

The event_queue data structure is identical to that of the event queue (Q) of the EPIC simulator. Since the events
of each individual CFU may proceed asynchronously with respect to the global AEPIC event queue (explained
later), each CFU maintains its own event queue. The clock field indicates the position of the virtual time in the
CFU local event queue. This clock is incremented on every update to the global AEPIC clock except when the
CFU execution has been suspended (by calling susp instruction on this CFU).

The cfg_alloc field holds the resource allocation map for the CFU. Recall that architecturally visible configurations
are either allocated in the C-cache or on the MRLA (in which case, we refer to them as CFUs). If the configuration
data associated with the configuration register is in the C-cache, then the ccBAV vector indicates the C-cache
blocks allocated to this configuration. If the configuration is present on the MRLA, the mrlaAlloc field specifies
the position, context and the number of slices of MRLA allocated to it. Since the slices allocated for CFUs on
MRLA are required to be consecutive, the left_slice_id, num_slices and context_id are sufficient to determine a
CFU’s allocation on the MRLA. The is_cfu field, if true, implies that the configuration data is on the MRLA.
If the is_allocated field is false, then this configuration register is available for allocation to a new configuration.
The member functions of the ConfigReg are explained in Section 7.3.2.

7.3.1.2 Multi-context Reconfigurable Logic Array (MRLA)

The MRLA is represented by the interface in the simulator as shown in Program 10. The malloc function allocates
requisite number of slices for configuration cr, on the MRLA context cid. If the free_list does not have a contiguous
set of slices that can accommodate the desired configuration, an exception is raised. The free method deallocates
the slices allocated to the CFU (c¢r) and adds them to the free_list. The method clctz (clrallctz) frees resources
allocated for all CFUs on the context ctz (on all contexts). The gcc and geall methods are intended for performing
garbage collection on the MRLA. They are left for a future version of the AEPIC processor. The pushctz (popctz)
allocate (deallocate) num contexts for the calling function so that the function may allocate CFUs on the allocated

contexts. The switchctr function moves the CFU referred to by cr to the context ctz. AEPIC processor can issue
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Program 8 ConfigReg interface definition

class ConfigReg

{
bool is_allocated, is_cfu;
AE_CfuStatus cfu_status;
AE_CfgAlloc cfg_alloc;
AE _Reg *in_reg_refs, *out_reg_refs, *pred_reg, *stat_reg;
AE_Reg *tmp_in_reg, *tmp_out_reg;
AE_Lat *lat_in_opnds, *lat_out_opnds;
AE_Q *event_queue;
AE_CFU_FN *cfu_fn;
AE_CLK clock;

int next_in, next_out;

void inpr(AE_Reg r);

void inp(AE_Reg r, int k);

void outpr(AE_Reg r);

void outp(AE_Reg r, int k);

void pred(AE_Reg p);

void stat(AE_Reg r);

void exec(AE_OPCODE opc, AE_LAT 1);
void susp(); void resume(); void abort();
void reset(); void step(); void tick();

Program 9 Configuration allocation data structure

typedef struct AE_CfgAlloc {
union {
bool ccBAV[CC_SIZE]J;
struct AE_MRLA _Alloc {
int context_id;
int left_slice_id;
int num_slices;
} mrlaAlloc;
} cfu_alloc;
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CFU operations to only those CFUs that are on the active context. The setctx method can be used to switch
to a different execution context and make it the active context.

Program 10 MRLA object interface
class MRLA
{

/* MRLA resource allocation */
void malloc(ConfigReg cr, int ctx);
void free(ConfigReg cr);

void gee(int ctx);

void gceall();

/* managing MRLA contexts */

void setctx(int ctx);

void clretx(int ctx);

void clralletx();

void switchetx(int ctx, ConfigReg cr);
void pushctx(int num);

void popctx(int num);

struct AE_MRLA _AllocMap *alloc NUM_CONTEXTS];
struct AE_MRLA _AllocMap *free_listt NUM_CONTEXTS];

7.3.1.3 Configured Functional Units

Every CFU is associated with a configuration register. Hence CFU related data is stored with in the ConfigReg
object itself (Program 8). The cfu_fn is an external function that is linked with the simulator code. It is a
pointer to the function which implements the semantics of the CFU operations. The exec member function of
ConfigReg invokes the cfu_fn with the appropriate opcode. The read (write) latencies of CFU operands are saved
in lat_in_opnds (lat-out_opnds) fields of the ConfigReg data structure.

7.3.1.4 Array Register File

ARF functionality in the simulator is identical to that of the conventional register files of the EPIC core and have
identical representations as the conventional register files. Hence, we do not discuss it any further here. Current
version of AEPIC processor’s ARF does not include register FIFOs.

7.3.1.5 Configuration Cache Hierarchy

The configuration cache hierarchy consists of the C-cache followed by the C1I cache terminating in the external
memory. All accesses to external memory are assumed to “hit”. The C1 cache model is identical to that of L1
cache of the regular data cache hierarchy with a few simplifications. Since the configurations are assumed to the
immutable, there is never any need to write data back to external memory from the C1 cache. Hence there is no
need for a data eviction (from C1 cache) policy. The simulator does not model the contents of the caches. Since
we are only concerned with the “hit/miss” data, only the addresses should be cached. The contents themselves

are stored in the simulator’s own address space. The address cache is to be maintained as a hash map just like
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that of the regular data cache. The hash map is updated with the addresses currently cached due to changes in
cache contents caused by memory access operations.

7.3.2 Simulation Of Instruction Execution
Instructions processed by the AEPIC processor fall into three groups:

1. EPIC core ISA. These are the instructions of the HPL-PD ISA that form the EPIC core of the AEPIC
machine. Section 7.2 describes how these instructions are handled in the simulator.

2. Adaptive extension instructions This is the set of instructions added to the EPIC core that handle
reconfiguration of the adaptive component of the data-path and initiation of computation on CFUs. These
instructions are listed in Table 7.1.

3. CFU operations. These are the operations performed by the CFUs. They are not part of the AEPIC
ISA. However they need to be simulated since they affect the processor state.

We first discuss instruction processing semantics that are common to all these three categories of instructions.
Then we discuss the specifics of each type separately.
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Figure 7.2: Read/write intervals of operands

7.3.2.1 Instruction Processing Semantics

Let us consider the execution of an instruction Op on an AEPIC functional unit F. For correct operation, F is
expected to sample the source registers (for input operands) within their associated read intervals and is expected
to deposit the results of the computation into the output destination registers within the write intervals for the
corresponding output operands (see Figure 7.2).
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Two possibilities for instruction processing styles arise within the above model. If the read and write events for
the operands always take place at single precise instants in time relative to the issue time of the operation, then
the instruction processing model is referred to as Equals (EQ) model. In this case, T2 = T2 for all input
operands and T,

cW

=Ty, for all output operands where, o is the operand. If the processor allows instructions to
sample the inputs or write their outputs at any point in time within their allowed intervals then it is referred to
as a Less-than Equals (LEQ) model of execution. Here, T, < T} for all input operands and 772, < T}, for
all output operands. A discussion of the merits and demerits of EQ and LEQ models is presented in [140].

We restrict our attention to the case where the operations obey NUAL semantics with EQ model of operation.
In addition, we assume that ~MAX {T?} < MIN  {T2} where, T? (T7) is the read (write) time for

o€src-operands o€dest_operands
the input (output) operand o. In other words, each operation samples all of its inputs before writing any of its

results—a strict separation between the set of read events and the set of write events on the virtual time-line.
This assumption simplifies the construction of the simulator since the simulator itself can perform (simulation of)
operation execution instantaneously (for example, as a call to a function that implements the semantics), once all
the required inputs have been sampled.

Here we summarize operation processing on an AEPIC machine in three steps:

1. Schedule read actions. Each of the read actions reads the input operand from the associated processor
register and saves it into a specific local variable of the simulator (in case of CFU operations, it is the local
variable field in the associated ConfigReg: tmp_in_reg). This read action is scheduled to be performed at
time (T + Lg,) where, Ly, is the input read latency of the k" input operand and T is the issue time of the
operation (on the virtual time-lime of execution).

2. Schedule execute action. An ezecute action implements the semantics of the operation. However,
it stores the results of the computation into local variables of the simulator (the tmp_out_reg field of
ConfigReg for CFU operations). These results are committed to the processor state by the write actions.
The execute action is performed “instantaneously”. This action may be performed at any time 7" such that
T>M 1]€4X {T},} where Ty, is the read time for the k*" input operand and T' < M ]{ NA{Tyw} where Ty, is

the write time of the k' output operand.

3. Schedule write actions. The write action writes the computed value of the output operand (which was
saved in the simulator local variable associated with that output operand, by the execute action) to the
processor registers associated with those output operands. The write action for the k** output operand
is scheduled to be performed at time T + Ly, where, Ly, is the output write latency of the k" output
operand and T is the issue time of the operation (on the virtual time-lime of execution).

Figure 7.3 illustrates AEPIC instruction execution by the simulator. Operation Op takes s1, s2, S5 as input source
operands and dj,ds as the destination operands. All the input read latencies equal 0 (Lg, = 0). The output
latencies are Ly, = 3 and Lo, = 5 cycles. If Op was issued at time T, all the input read actions are scheduled to
be performed at time T while the write actions are scheduled to be performed at time instants 7'+ 3 and T+ 5
respectively. The execute action may be performed at 7" where T' < T < (T + 3). Note that all the actions to
be performed at a particular time instant are added to the action list and performed sequentially. Clearly, the
read actions should be ahead of the execute action on the action list if the execute action were scheduled to be
performed at time 7.

7.3.2.2 MultiOp Execution Specifics

Having discussed the semantics of single instruction processing, let us look at the MultiOp execution. Two issues

are under consideration here: (1) In what relative order should the operations of the MultiOp be processed?
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Figure 7.3: AEPIC instruction execution

(2) How are interruptions handled?

To recall, MultiOp is a mechanism to specify multiple operations that can be issued simultaneously along with
information about which functional unit on which each of the operations is to be issued. This model permits two
variations: the MultiOp-P and MultiOp-S [140]. In the former, all the operations are to be issued simultaneously.
In the case of MultiOp-S, operations of the MultiOp may be issued sequentially. MultiOp-P permits operations
that are anti-dependent, to be packed in the same MultiOp. However, in the case of MultiOp-S, bi-directional
dependencies between any two operations of the MultiOp-S are not permitted. Since AEPIC compiler is based on
Trimaran which currently supports MultiOp-S, we restrict to AEPIC machines that support MultiOp-S semantics
for MultiOp processing.

Other issues. Memory operations within the MultiOp are processed in left-to-right order even if there are flow-
dependencies among them. Just as in the HPL-PD EPIC architecture, multiple operations may simultaneously
write to the same register. The architecture specifies that the final value in the register is defined when all the
write operations deposit the same value. Otherwise the end result is undefined. Branch operations take effect
after exactly k cycles after the issue time where k is the branch operation latency. Multiple branch operations
may be scheduled in the same MultiOp. However, only one branch operation is permitted to be “taken”. This
feature is useful in scheduling multiple branch operations when the compiler can be sure that only one of the
branch operations will be taken (such as is the case in the C language switch statement).

7.3.2.3 Adaptive Extension Instructions

Adaptive extension instructions are listed in Table 7.1. For instruction formats and their semantics, see Ap-
pendix B.
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Single-instance and multi-instance operations. The simulator handles most of the adaptive extension
instructions the same way the EPIC instructions are handled. However, some of the instructions such as ldec/ns/,
stee[ns], inc[ns], outc[ns], require special handling. These instructions are actually multiple operations packed
into one instruction and are referred to as multi-instance operations. For example, ldcc instruction (format:
Idec er, L) loads data related to configuration whose address is stored in the configuration register c¢r into the
C-cache. However, due to bandwidth restrictions, all of the configuration data may not be transferred to C-cache
in one cycle. The complete data transfer is performed through a sequence of loads issued by the processor.
Although the program code issued only one Ildcc operation, the processor may convert this operation into several
loads depending on the size of the configuration and the amount of data transferred by each load instruction.
The multi-instance operations are: ldcc, ldcens, stec, stcens, inc, incns, outc and outcns. Rest of the operations
are referred to as single-instance operations.

Simulating multi-instance operations. Unlike single-instance operations, multi-instance operations are held
in the execution pipeline and processed repeatedly until the compiler specified latency expires. All multi-instance
operations of the MultiOp are appended to a special queue called the MultilnstanceFIFO. Instructions in the
MultilnstanceFIFO are processed in FIFO order.

Table 7.1: Adaptive extension instructions

Instruction category Instructions

CFU control exec, susp, resume, abort, reset, step, stat
Operand assignment inpr, outpr, inp, outp, predp, statp

Resource allocation malloc, calloc, gce, geall, free

Memory access ldcc, ldcens, stec, steens

Context allocation setctx, clretx, clralletx, switchetx, pushctx, popctx
Data-path reconfiguration | inc, incns, outc, outcns, delc

Stalling and non-stalling operations. Instructions whose names end in ns are referred to as non-stalling
instructions otherwise they are stalling. This classification applies to only the multi-instance instructions. In
the case of non-stalling instructions, the processor re-issues the multi-instance operation (perhaps with different
operands) as many times as can be accommodated within the compiler specified latency. Consider the Ildccns
instruction with the actual instance of ldccns that was issued as ldcens cr, L. If the configuration data is not
completely loaded within the compiler specified latency L, the ldcens instruction is abandoned. However, if the
compiler chose to use a stalling version of the load operation (ldcc cr, L), the processor would be stalled if the
complete data has not been loaded within L cycles. The rest of the unfinished load is performed during the stall
period.

It is expected that the compiler will issue ldcc operation when it knows that the subsequent operations cannot
be issued unless the full configuration is loaded into the processor. On the other hand, the compiler may issue
ldcens operations to fetch pieces of the configuration speculatively without having to stall the machine when it
knows that the fully loaded configuration is not immediately required.

Non-stalling multi-instance operations are removed from the MultilnstanceFIFO once the compiler specified

latency expires. Whereas a stalling multi-instance operation is first completed (even if it means that the processor

needs to be stalled) and only then it is removed from the MultilnstanceFIFO. Note: there is a minor issue of

how to handle the unfinished operation of a multi-issue operation that is outstanding when the assumed latency

expires. Since it does not matter whether the outstanding operation is finished or not, we do not think it would
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matter which policy is adopted for this case (whether to stall the machine until the pending operation is finished
or to abort the operation). We leave it for future investigation.

7.3.2.4 CFU Operation Processing

Unlike the operations that execute on the hardwired functional units of the AEPIC data-path, execution of the
CFU operations can be controlled i.e., their execution can be suspended and resumed or even aborted on any
given machine cycle. This additional controllability means that the times at which the input(output) operands are
read(written) occur, may vary depending on whether or not the CFU has been interrupted during the operation
execution. Hence, each of the CFUs maintains its own event_queue. The read/write/execute events of the CFU
operation are first scheduled on the CFU local event_queue. The CFU local time (clock) is initialized to the global
issue time of the operation and is updated depending on the status of the CFU (whether it is suspended or in
execution). Events on the CFU event_queue at the current local clock value are processed as if they are scheduled
at that instant on the global event queue.

7.3.3 AEPIC Simulation Framework
7.3.3.1 Overall Architecture

Design of the AEPIC simulation framework is explained here. The optimized, scheduled and allocated AEPIC code
from the compiler is assembled by the AEPIC simulator generator. The AEPIC simulator “pseudo-executable”
which is actually AEPIC assembly in C similar in structure to the EPIC simulator code is compiled by a native
compiler (such as gcc)and linked with the Configuration Library, AEPIC Simulation Library and the Data Cache
Library and Configuration Cache Library to generate the equivalent host machine code—the final application
specific simulator executable.

7.3.3.2 The Simulator

AEPIC Data cache
object manager
code

AEPIC
Interpreter

Configuration
cache manage

Configuration
manager

Figure 7.4: AEPIC simulator components

The AEPIC simulator is composed of five key modules (Figure 7.4). Each of the modules processes a dif-
ferent subset of the AEPIC ISA. The AEPIC Interpreter reads in the AEPIC code and processes instructions
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Algorithm 8 AEPIC simulator algorithm

procedure AE_simulate(code_table)
{ MultiOp m;
/* 1. process the multi-ops in the code_table (AEPIC code for a function) */
while (m = code_table. FetchMultiOp(gPC)) {
/* 2. process current multiop */
OpsList ops = m.OpsInMultiOp();
for (op € ops) {
if (isMultilnstanceOp(op)) {
gMIOpsFIFO.AppendOp(op);
} else {
ScheduleEvents(Qg, op);

}
}

/* 3. process ops in the multi-instance ops FIFO that are ready */
OpsList ops = gMIOpsFIFO.ReadyOps();
for (op € ops) {
ScheduleEvents(Qg, op);
}
/* 4. commit ready events on the global event queue */
EventList elist = Q4.GetEvents(gClock);
for (e € elist) {
e.ProcessEvent();

}

Algorithm 9 AEPIC simulator algorithm(contd.)

/* 5. commit ready events on the CFU event queues that are ready */
for (c € CFU_List) {
elist = c.ReadyEvents();
for (e € elist) {
e.ProcessEvent();
}
¥

/* 6. update global as well as CFU local clocks */
gClock + +;
for (c € CFU_List) {
if (c.isActive()) {
c.UpdateClock();

}
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in sequence as dictated by the compiler generated POE. Non-memory related AEPIC instructions which are
from the EPIC subset of the AEPIC ISA are processed by the interpreter itself. Non-configuration data related
memory operations are processed by the Data_Cache_Manager. Adaptive extension instructions are processed by
the Configuration_Manager. Among these instructions, those that deal with the configuration cache hierarchy
are processed by the Configuration_Cache_Manager while those that deal with array (MRLA) reconfiguration are
processed by the Array_Manager and the rest by the Configuration_Manager itself.

The simulator algorithm is shown in Algorithm 8. The two key data-structures are (1) the global event queue: Qg,
which contains events ordered by virtual time and, (2) the queue which holds the multi-instance operations to be
processed in FIFO order: gMIOpsFIFO. The algorithm describes operation on the code generated for a single
source function. The code is passed in the parameter code_table. The while loop fetches the MultiOps from the
code in sequence, based on the program counter g PC. Each operation in the MultiOp is either a single-instance
operation or a multi-instance operation. Processing a single-instance operation is equivalent to scheduling their
read, execute and write events on to Q),. Multi-instance operations are queued onto the gMIOpsFIFO to be
processed in FIFO order. In step 3, all the multi-instance operations that can be issued in the current cycle are
also processed—meaning, their events are also scheduled onto the @,. Note that a multi-instance operation is
not removed from the queue until either the time allowed for it expires (its assumed latency) if it is a non-stalling
operation or until its operation is completed if it is a stalling operation. In steps 4 and 5, all the ready events
are processed. Ready events are from either the global event queue @4 or are from the CFU local event queues.
Events scheduled on @, for the current virtual time (gClock) are considered “ready”. Similarly, events on CFU
local event queues for the times referred to by the CFU local clocks are considered ready. Step 6 updates the
global clock as well as CFU local clocks (only if the CFU is “Active”, meaning, it is not suspended and has a
operation in process on its pipeline).

7.4 Summary

In this chapter, AEPIC simulator design based on Trimaran’s EPIC simulator is presented. Key simulation issues
regarding AEPIC instruction processing are discussed and the various data-structures for representing AEPIC
machine state are presented.
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Chapter 8

Performance Evaluation

8.1 Introduction

In this chapter, we present a summary of the initial results of our AEPIC research. We start with a description
of the applications used for benchmarking purposes in Section 8.2. This is followed by a our research methodol-
ogy where we explain the compiler infrastructure the machine configuration for our experiments and the type of
experiments we conducted in Section 8.3. Results of our experiments are presented in Section 8.4.

The purpose of these experiments is to determine if compilers can efficiently target various common applica-
tions from various application domains to AEPIC processors and yield improved performance compared to the
performance on equivalent traditional processors. Some of the questions we would like to answer are as follows.

e Are there regions in application code that if mapped to application specific instructions can potentially
improve application performance?

e How many such candidates are “good” (those that can be mapped to the MRLA).

e How many such good candidates can be identified by our compilation techniques?

e How many of these candidates are eventually profitable?

e Can the compiler map them to MRLA efficiently?

e What is the effect of MRLA structure on CFU performance?

e How effective are various AEPIC architectural features?

e What are good choices for AEPIC architectural parameters?

e Which application domains are most suited for AEPIC style architecture?
In Section 8.2, we list the set of applications that were used for our experiments. We also discuss their compu-
tational characteristics. The Trimaran [70] based compilation environment used for our experiments is described

in Section 8.3.1. In Section 8.3.2, we describe the targeted machine configurations, listing the values used for

the relevant architectural parameters. The methodology and results of experiments are presented in Section 8.3.
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8.2 Application Domain

We drew applications from various domains. Some of these applications are from the SPEC benchmark suite [161],
several are from the MediaBench [93] benchmark set and the rest were collected from multiple sources. Some of
these remaining applications were obtained from the Trimaran distribution [70]. The list of applications along
with a brief description for each, is given in Table 8.1.

Table 8.1: Applications used for performance evaluation

Benchmark applications and their descriptions

132.ijpeg: Integer intensive compression/decompression of image files.

023.eqntott: Translates a logical representation of a boolean equation to a truth table.

026.compress: Reduces the size of input files by using Lempel-Ziv coding. Compress is a
pointer-intensive lossless compression scheme. Input to the application is a text file of size
50KB which gets compressed to about 20KB.

052.alvinn: Trains a neural network using back propagation. The program operates on single

precision numbers.

GT721: ANSI-C language reference implementations of the CCITT G.721 voice compression
scheme [26] (Source released by Sun Microsystems, Inc. to the public domain.)

MPEG2: Moving Picture Experts Group (MPEG) [43] is a family of standards used for coding
audio-visual information (e.g., movies, video, music) in a digital compressed format. The version
of the compression standard used in this implementation is MPEG-2. The implementation used
is distributed as part of the MediaBench suite of benchmarks [93].

NBRADAR: Narrow Band Tracking Radar (NBRADAR) [40] identifies targets from a sequence
of synthetic radar images. Program receives a ¢ 1 *d sized complex number array (c=4, r=>512,
d=10) every 5ms. Program outputs a d x w sized 0/1 array (1’s indicate potential targets,
d=10,w=40). The application computes on random image data generated for 50ms (10 data
cubes). It is an FFT-intensive computation. Contains many non-perfectly nested loops (with
constant bounds).

(I)DCT: (Inverse) Discrete Cosine Transform ((I)DCT) is an 8x8 matrix transformation op-
erating on fixed-point/floating point values. It is a heavily used kernel in audio/image/video
compression codes like JPEG/MPEG/H.261. The application source is from the Software Sim-
ulation Group’s (SSG) implementation of MPEG2 video signal codec. This implementation is
a floating point intensive code. Note that there are other implementations of more efficient
IDCT’s (which operate no fixed point values). http://www.mpeg.org/MPEG/MSSG/#source

ADPCM: Adaptive Differential Pulse Code Modulation (ADPCM) [26] is a speech compression
and decompression algorithm. It takes 16-bit linear PCM samples and converts them to 4-
bit samples, yielding a compression rate of 4:1. The ADPCM code used is the Intel/DVI
ADPCM code which is being recommended by the IMA Digital Audio Technical Working Group.
ADPCM codec implementation consists of two separate benchmarks, the coder and the decoder:
rawcaudio and rawdaudio. This is part of the MediaBench [93].

EPIC: Efficient Pyramid Image Coder (EPIC) [152] is an image data compression utility written
in C. The compression algorithms are based on wavelet decomposition and run-length / Huffman
entropy coder. The filters have been designed to allow extremely fast decoding on non-floating
point hardware, at the expense of slower encoding and a slight degradation in compression quality
(as compared to a good orthogonal wavelet decomposition). This is part of the MediaBench [93].
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ZLIB: Zlib [50] is a lossless data-compression library. Unlike the LZW compression method
used in Unix compress and in the GIF image format, the compression method currently used
in zlib essentially never expands the data. Zlib’s memory footprint is also independent of the
input data.

IDEA: International Data Encryption Algorithm (IDEA) [144] operates on 128 bit key for
encrypting a stream of data. It is a pointer-intensive integer code. The sample application
encrypts and decrypts an array of 8 byte data.

DES: Data Encryption Standard (DES) [79] is an algorithm designed to encipher and decipher
blocks of data consisting of 64 bits under control of a 64-bit key.

RC2: RC2 [132] is a conventional secret-key block encryption algorithm from RSA labs. The
input and output block sizes are 64 bits and the key length varies from 1 to 128 bytes. The
algorithm consists of three steps. (1) Key expansion. This takes a (variable-length) input key
and produces an expanded key consisting of 64 16-bit values K[0] ,..., K[63]. (2) Encryption.
This takes a 64-bit input quantity and encrypts it in place. (3) Decryption. This is an inverse
of the encryption step.

A5: A5 [182] is a stream cipher used to encrypt GSM (Group Special Mobile) data. The
implementation is from Bruce Schneier’s Applied Cryptography [143].

CORDIC: Co-Ordinate Rotation DIgital Computer (CORDIC) is an iterative algorithm to
compute two-dimensional vector rotation. It was first developed by Volder [172]. CORDIC
techniques are based on arithmetic shifts and adds and hence are good candidates for mapping
to programmable logic. CORDIC techniques can be used to compute trigonometric, hyperbolic,
exponential functions, natural logarithm, square root, Givens rotation and several other “hard”
to compute functions. The benchmark code reads in a list of initial vector positions and rotation
angles and outputs a list of rotated vectors. All values are represented as 16-bit fixed point values.

POLYPHASE: The polyphase filter bank is a multirate filter, which decomposes a particular
frequency spectrum into sub-bands, which can later on be used for a variety of signal processing
tasks.

WC: UNIX word-count utility

DAG: Simple if-then-else control structure in a for loop.

EIGHT: Similar to DAG but with labels and goto-s.

IFTHEN: Very similar to DAG.

HYPER: Simple one sided if-then with continue in a for loop.

FIB: Computes Nth Fibonacci number.

STRCPY: Initializes and copies a 1K character array.

NESTED: Simple nested loop used to test software pipelining.

MM: Initializes two static float matrices of a given size, multiplies them, then sums up the
elements of the final matrix. Tests loop-based code and modulo scheduling.

BMM: Uses statically declared matrices of double values in above but with a blocked-multiply
algorithm.

WAVE: Simple 2D wavefront calculation. Initializes the left column and the upper row of an
array, then computes the remaining elements as the sum of left and upper neighbors, and finally
sum all the elements together.

SQRT: Uses Newton-Raphson method to compute the square root of a number saving all partial
results in an array.
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PARAFFINS: Computes the number of paraffin isomers with a given number of carbon atoms.
Tests pointer manipulation, structures and complex control structures over multiple procedures.
Perhaps the shortest non-trivial test case.

FIR: Finite Impulse Response. Implements a 32-tap FIR filter on 128 floating point data values.
Both the number of taps and the number of data items are compile-time constants.
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Figure 8.1: Components of compiler infrastructure

8.3 Methodology

We describe the compilation environment used for performing the experiments in Section 8.3.1 and the machine
configurations targeted in Section 8.3.2. In Section 8.3.3, details of the experiments are described.

8.3.1 Compilation Environment

The compiler framework targeting the AEPIC class of processors, currently under development, is based on the
Trimaran [70] ILP research compiler targeting the HPL-PD [70, 84] EPIC architecture.

The infrastructure used for experiments is shown in Figure 8.1. The major components are as follows. The EDG
front-end which performs lexical analysis and parsing on the source program (written in C). The Impact front-
end performs several traditional high-level optimizations, basic ILP optimizations and region formation. The
Elcor module performs ILP optimizations, primarily, register allocation and scheduling. Simulator assembles the
code generated by Elcor module and instruments it for execution profile collection. The Performance Monitoring
framework collects traces generated during the application simulation and also reads in the execution profile
generated by the simulator and re-instruments it into the IR used by Elcor (called REBEL). The compilation
flow is illustrated in Figure 8.2. The major compilation paths that were used for the experiments are 1-2-3-6,
1-2-4-3-6, 1-2-5-3-6. Except for the EDG front-end parsing (first step in 1), 1,2,3,4,5 comprise the Impact front-
end. The various region types are created towards the end of 1 and in 2, 4 and 5 (basic-blocks, super-blocks and
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hyper-blocks).

The compiler uses several types of Intermediate Representations (IR). The type of IR used depends on the stage
of the compilation pipeline. Earlier stages use the Pcode and Hcode formats [177]. These representations are
closer to the source code representation and are used to perform source level transformations. Some of the par-
titioning techniques are applicable during these stages. Subsequent phases use the Lecode [29] and REBEL [70]
(mostly in the step 6 of Figure 8.2) intermediate representations. Most of the back-end phases exclusively operate
on the code represented in REBEL, the low-level machine code equivalent representation. REBEL is a based on
a graph-based intermediate language. It is an extensible IR that allows any number of attributes to be associated
with nodes in the graph for use by various modules of the compiler. For example, the IR can support information
about a program statement’s resource needs, including attributes such as available device area, that are useful in
making decisions regarding configuration selection.

The compiler supports execution profile generation and re-instrumentation at each of these intermediate repre-
sentation levels. This activity is performed as follows. Desired nodes of the intermediate code are instrumented
for profile gathering (for e.g., at the basic block level, each basic block is associated with a variable that keeps
track of the number of times the basic block is entered during runtime.)
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8.3.2 Machine Configurations

We chose three main machine types for our experiments. These are (1) an EPIC architecture EPICy221, (2) an
AEPIC machine with realistic resource bounds whose MRLA is based on the Chimaera Reconfigurable Functional
Unit [63] which we refer to as AEPIC9991_2¢ and, (3) an AEPIC machine with unbounded Xilinx FPGA [181]
style programmable logic resources for the MRLA referred to as AEPIC,. Together, these machines repre-
sent current technology (EPIC4221), what our research suggests (AEPICa291—2¢) and the outer reaches of the
potential benefit of our research direction (AEPICy,) respectively. The parameters for the three machine con-
figurations are shown in Table 8.2. We assume that the programmable logic arrays can be clocked at the same
rate as the processor core. Note that this does not imply that the configured functional unit itself can be clocked
at that rate. The rate at which a configured functional unit (on MRLA) can be clocked is given by the critical
path of the design on the programmable logic that implements the CFU. Since none of these processors have been
manufactured, we do not comment how they compare in terms of their hardware resource requirements.

Table 8.2: Machine configurations

EPICy99

ISA HPL-PD [84]

Issue width 9 instructions per cycle

Functional 4 integer, 2 floating point, 2 memory and 1 branch units

units

Registers 128 general purpose registers, 128 floating point registers, 320 predicate reg-
isters, 16 branch target registers. Integer and floating point registers are
equally split between static and rotating registers. Of the 320 predicate reg-
isters, 64 are rotating registers.

Latencies Most integer arithmetic operations: 1 cycle, integer/floating-point multiply
3 cycles, integer /floating-point divide 8 cycles, L1 cache hit 2 cycles, L2 hit
7 cycles and 35 cycles external memory latency. All branch latencies are 1
cycle.

Caches We do not model caches (all memory accesses are assumed to “hit”).

AEPICs21-2¢

ISA AEPIC ISA (Appendix C) which is based on the HPL-PD ISA [84].

State 128 general purpose registers, 128 floating point registers, 320 predicate reg-
isters, 16 branch target registers. Integer and floating point registers are
equally split between static and rotating registers. Of the 320 predicate reg-
isters, 64 are rotating registers. 64 configuration registers (at most 64 CFUs
can be resident at one time on the MRLA). 128 array registers. The MRLA
is composed of 2 Chimaera Reconfigurable Functional Units (C-RFUs) [63].
Each C-RFU is a programmable logic array composed of 32 rows of 32 pro-
grammable logic cells per row. Each row can be configured to implement
most integer arithmetic operations and requires 1674 bits of configuration
data to configure it. Further details of the C-RFU are in [63].

Issue width 9 instructions per cycle. 2 instructions execute on the AEPIC units.
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Functional
units

2 integer, 2 floating point, 2 memory, 1 branch and 2 aepic units. Each
aepic unit executes instructions from the adaptive extension of the AEPIC
ISA Appendix B. In addition, functional units can be configured onto the
MRLA (chimaera RFU array). However, only 2 CFUs can be simultaneously
active (one on each RFU of the MRLA).

Latencies

Most integer arithmetic operations: 1 cycle, integer/floating-point multiply
3 cycles, integer /floating-point divide 8 cycles, L1 cache hit 2 cycles, L2 hit
7 cycles and 35 cycles external memory latency. All branch latencies are 1
cycle. Latencies to load/store values into ARF same as latencies to load/store
values into GPR. Configuration load/store latencies are proportional to the
size of the configuration.

Caches

We do not model caches (all memory accesses are assumed to “hit”).

AEPIC

ISA

AEPIC ISA (Appendix C) which is based on the HPL-PD ISA [84].

State

128 general purpose registers, 128 floating point registers, 320 predicate reg-
isters, 16 branch target registers. Integer and floating point registers are
equally split between static and rotating registers. Of the 320 predicate reg-
isters, 64 are rotating registers. 64 configuration registers (at most 64 CFUs
can be resident at one time on the MRLA). The number of array and config-
uration registers is assumed to be infinite as well as the sizes of the MRLA
and configuration caches. The MRLA is based on Xilinx XC4000 FPGA.

Functional
units

2 integer, 2 floating point, 2 memory, 1 branch and 2 aepic units. Each
aepic unit executes instructions from the adaptive extension of the AEPIC
ISA Appendix B. In addition, functional units can be configured onto the
MRLA. Any number of CFUs can be simultaneously active. However, at
most two CFU operations can be issued one each cycle.

Latencies

Most integer arithmetic operations: 1 cycle, integer/floating-point multiply
3 cycles, integer /floating-point divide 8 cycles, L1 cache hit 2 cycles, L2 hit
7 cycles and 35 cycles external memory latency. All branch latencies are 1
cycle. Latencies to load/store values into ARF same as latencies to load/store
values into GPR. Configuration load/store latencies are proportional to the
size of the configuration.

Caches

We do not model caches (all memory accesses are assumed to “hit”).

8.3.3 Experiments

Here, we describe some of the experiments performed.

Experiment 1. Computational characteristics of applications. The purpose of this experiment is to determine
static and dynamic opcode distributions, available parallelism in applications, performance hot-spots and other
basic information related to the chosen benchmark applications. This information will be used to categorize
applications, and also give us cues on what the architectural parameters for the AEPIC machine should be. It is
also expected to highlight some of the problems with the fixed ISA architectures. For this experiment, we chose

EPICy92; as the target machine.
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Experiment 2. Having identified limitations of traditional compilation targeting fixed ISA machine (EPICya91),
we would like to determine what the potential benefit of a programmable logic based dynamic ISA machine such
as AEPIC would be. In order to explore the limits of the performance potential of AEPIC machines, we consider
an AEPIC machine with unlimited resources (AEPICy).

Experiment 3. Here we consider performance on machines with realistic configurations and practical compila-
tion techniques. The machine configuration used is the AEPIC591_5c Chimaera-RFU based AEPIC machine.
Although the ultimate goal is to see if performance gains as expected can be achieved, this experiment is also

intended to give us an insight into the type of application computations that may be targets for customized
processing on the MRLA and the benefits of the various features of AEPIC architectures.

8.4 Results And Discussion

8.4.1 Application Characteristics

Table 8.3: Application sizes

Application | #lines Application | #lines Application | #lines

008.espresso | 14850 eight 24 epic 3057

023.eqntott 3466 052.alvinn 272 fib 35

085.ccl | 91050 fir 110 g72lencode 1591

ab 398 compress 525 g721decode 1593

cjpeg | 26865 grep 458 mpeg2decode 9832

bmm 106 djpeg | 26102 mpeg2encode 7605

dag 30 mm 48 ifthen 30

cordic 335 des 6668 idea 1232

hyper 20 nbradar 457 paraffins 388

nested 24 polyphase 549 rawdaudio 314

rawcaudio 314 rc2 1253 we 255
sqrt 34 zlib 8281

Table 8.4: Dynamic opcode distribution

Benchmark ‘ %br ‘ %l1d ‘ Yost ‘ %ia ‘ %fa ‘ %cmpp ‘ %pbr ‘

023.eqntott 11.7 | 12.6 1.8 | 39.2 0 15.6 18.9
052.alvinn 8.7 | 25.3 | 10.7 | 28.3 9.3 8.8 8.8
ab 8.1 4.1 5| 64.3 0 6.3 10.9
bmm 8.4 | 16.8 1.4 | 46.1 7.7 9.6 9.9
ccl-no 7.3 | 18.6 | 13.9 | 40.5 0 7.9 10.9
cjpeg 5.7 | 18.2 | 12,5 | 47.4 0 7.5 8.5
compress 5.8 | 20.3 17 45 0 5.6 6.1
cordic 2| 19.8 | 17.1 | 52.3 2.2 1.9 4.4
dag 12.6 0 0.1 | 54.1 0 12.5 20.6
des 0.3 | 22.7 | 189 | 57.3 0 0.3 0.4
djpeg 1.5 | 21.7 | 18.3 | 54.9 0 1.6 2
eight 13.7 0 0.2 | 484 0 15.4 22.3
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Table 8.4: Dynamic opcode distribution

Benchmark | %br | %Id | %st | %ia | %fa | %cmpp | %pbr |

epic 9.2 9.3 1.3 | 424 15 10.2 12.7
fact2 19 3.8 | 10.1 | 55.7 0 2.5 7.6
fib 14.7 2.8 | 10.1 | 60.6 0 3.7 7.3
fir 14.9 6.9 7.2 | 31.2 1.1 14.4 24.2
g721decode 9.9 | 12.7 7.1 | 441 0 11.5 14.2
g721encode 10.2 | 12.6 6.9 | 434 0 11.8 14.5
grep 13.2 | 12.8 8.7 | 31.5 0 15.9 17.9
hyper 15.2 1 2.2 | 479 0 15.8 18
idea 7.4 9.4 5.2 | 64.3 0 5.8 7.7
ifthen 12.5 0 0.1 | 48.3 0 16.8 22.2
mm 8.8 | 17.2 1.3 | 45.3 7.8 9.2 10.3
mpeg2dec 5.8 | 19.9 5.1 | 47.9 | 10.6 4.5 6.2
mpeg2enc 13.7 4.1 71 385 0.4 15.9 20.2
nbradar 2| 16.1 | 13.6 | 50.3 | 12.9 24 2.7
nested 9| 11.3 9.1 | 45.3 4.3 7.3 13.6
paraffins 4.5 | 12.1 | 22.5 | 49.7 0 5 6.1
polyphase 3.3 21 | 15.1 | 53.6 0 3 4
rawcaudio 14.1 4.8 0.7 | 34.6 0 17.9 27.9
rawdaudio 13.3 4.2 1.7 36 0 16.7 28.1
rc2 4.8 | 14.2 8.4 | 63.6 0 4.3 4.6
sqrt 6.3 | 11.4 6.5 | 39.8 22 6.7 7.2
strepy 10.4 | 10.5 | 10.5 | 47.8 0 10.4 10.4
switch_test 22.4 7.8 3.5 | 22.7 0 17.5 26
unepic 6.6 | 15.7 13 | 43.2 1.7 9 10.8
wave 8.5 | 15.5 4.2 | 406 | 13.6 8.8 8.9
we 15.5 9.9 4.5 | 19.3 0 24.5 26.3
zlib 6.8 | 17.9 9.5 | 47.7 0 8 10.1

8.4.2 Standard ILP Processor Performance

Table 8.5: Performance on 9-issue EPIC processor

Application | IPC DIC SIC
023.eqntott | 3.67 | 730034092 | 25925
hyper | 3.27 1256 196
052.alvinn | 1.75 | 3039488026 6698
idea 1.3 14823 3206

ab | 2.94 93412 3415

ifthen 2.2 2566 92

bmm | 3.46 34651 976

mm | 3.36 36905 585

ccl-no | 1.57 | 239924075 | 270091
mpeg2dec | 2.19 | 4904133874 33840

130



cjpeg | 1.68 21646188 41085
mpeg2enc 2.5 28238 9484
compress | 1.44 48612509 7774
nbradar | 0.91 | 451805415 8931
cordic | 1.18 14618890 11298
nested | 2.46 1498 392

dag | 1.88 2966 87
paraffins | 2.07 141238 1736
des | 1.08 3404516 | 38622
polyphase | 1.29 1242579 4442
djpeg | 1.25 10076349 | 27170
rawcaudio 2.7 4260830 1003
eight | 1.42 2748 72
rawdaudio | 2.87 3853722 581
epic | 2.29 32993344 19977

re2 | 1.84 11619 1413

fact2 | 1.36 58 79

sqrt | 1.28 2277 406

fib | 2.02 54 105

strcpy | 2.46 8006 278

fir | 247 181325 1941
switch_test | 1.55 11833 632
g721decode | 2.32 186395439 6497
unepic | 1.77 9770797 23028
g72lencode | 2.32 205860897 8229
wave | 1.92 11847 511

grep | 2.22 159445 1966

wc | 2.65 940443 894

zlib | 2.06 278235 9421

8.4.3 Hot-spot Distribution

Table 8.6 shows the percentage of code that contribute to a large fraction of application execution time. These
percentages are shown in terms of the number of regions (such as basic-blocks/super-blocks or hyper-blocks). It
is clear from the data that for a majority of the applications, less than 10% of the regions consume more than
90% of the execution time. In fact, for 16 of these benchmarks, less than 10 regions need be examined if the focus

is on the code contributing 90% towards the total execution time.

Table 8.6: Hot-spot distribution

Application | #R | %Rgoy | #Roo%
052.alvinn 90 1.1 1
rc2 72 12.5 9

wave 31 3.2 1
switch_test 65 13.8 9
sqrt 20 ) 1
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compress 153 7.2 11
strepy 10 10 1
rawdaudio 36 33.3 12
wce 69 2.9 2

grep 175 7.4 13
nbradar 107 2.8 3
polyphase 119 10.9 13
eight 11 27.3 3
rawcaudio 43 37.2 16
hyper 8 37.5 3
djpeg | 1899 0.9 17

des 534 0.7 4

epic 514 3.7 19

mm 32 12.5 4

epic 456 4.2 19

dag 12 33.3 4

ab 76 25 19

fact2 9 444 4
paraffins 115 21.7 25
nested 14 35.7 5
mpeg2dec | 1140 2.4 28
fib 11 45.5 5
023.eqntott 143 20.3 29
bmm 63 9.5 6
unepic 278 10.8 30
ifthen 13 46.2 6
cordic 54 57.4 31

rc2 66 12.1 8
g72lencode 203 25.1 51
fir 45 17.8 8
g721decode 195 25.6 51
grep 170 5.3 9

cjpeg | 1635 3.2 53
g721decode 218 28.9 64
g72lencode | 227 31.3 71
mpeg2enc | 1853 3.8 72
zlib | 641 11.9 76

idea | 210 39 82

Table 8.7: Examples of candidates for partitioning in various ap-

plications
Application Characteristics
cjpeg DCT, lookup in array of constants
rc2 hammocks, logical/arithmetic/shift ops
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mpeg2encoder DCT, hammocks, operations on constant arrays

grep logical operations, constant array lookups

g72lencoder logical /shift arithmetic, constant array lookups

EPIC operations on bounded arrays and array of constants

djpeg IDCT, color transformation kernels

compress arith/shift operations, operations on bounded arrays
CORDIC diamonds, arithmetic/shifts, constant operands

wce constant array bounds, small types, compact if/switch statements
eight compact if-switch statements, small types

fib “atoi” kernel, internal registers (avoid register port conflicts)
eqntott compact if-switch statements, high-overhead branches
adpcm constant arrays, shift/logical arithmetic operations

fir constant coefficient multiplications

polyphase constant coefficient multiplications

Program 11 ADPCM sample code

{

if (sign) valpred -= vpdiff;
else valpred += vpdiff;

if (valpred > 32767) valpred = 32767;
else if (valpred < -32768) valpred = -32768;

index += indexTable[deltal;
if (index < 0 ) index = 0;

if ((index > 88 ) index = 88;
step = stepsizeTable[index];

vpdiff = step > 3;

if ( delta & 4 ) vpdiff += step;

if ( delta & 2 ) vpdiff += step>1;
if ( delta & 1) vpdiff += step>>2;

8.4.4 Performance on AEPIC,,

Table 8.8 shows the results of targeting five different applications to EPICy221 and AEPIC,, machines. Columns
2 and 3 give the dynamic instruction counts on the EPIC492; machine for both the standard compilation and
when all suitable optimizations are enabled in the Trimaran compiler. Column 4 gives the instruction count for
the AEPIC,, machine and column 5 the speed up on the AEPIC machine with respect to the performance on the
EPICy591 machine with optimized compilation. The parameters of the two machines are described in Table 8.2.

In order to target AEPIC,, the application is first compiled and simulated on EPICy227 and then all the program
hot-spots are identified. For each program hot-spot, its FPGA implementation is compared with the performance
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Program 12 Pegwit sample code
#define RO(v,w,x,y,2,1) z+=((w&(x¥))y)+blk0(i)+0x5A827999+rol(v,5);w=rol(w,30);
{

/* Hash a single 512-bit block.
This is the core of the algorithm. */

RO(a,b,c,d,e, 0);
RO(e,a,b,c,d, 1);

R4(b,c,d,e,a,79);

on the fixed EPIC core. If found beneficial, the hot-spot is mapped to the MRLA (Xilinx 6200 FPGA [181]). The
FPGA mapping is performed manually (not by the Trimaran compiler). For example, three such mappings were
determined to b beneficial for the MPEG2Decoder application. These correspond to the IDCT, Add_Block and
Saturate functions in the application source. Since MRLA is assumed to be infinite, we do not consider the costs
of swapping in/out of configurations due to resource constraints. For most of the hot-spots, the synthesizing the
mapping is not very complex. However, for the IDCT function, we used the technique described by Sikstrom et.al.,
in [151]. The FIR is a finite impulse response filter implementation. The filter is composed of 32 taps. The taps
are synthesized based on the constant co-efficient multiplier implementations for XC6200 described in [85]. The
IDEA encryption is executed on a single block of data. The NBTR application samples inputs 10 times for the run.

It is unreasonable to expect to build a machine with infinite amount of programmable logic. However, we found
that the actual resource usage is not impractical to consider in a realistic machine and considering the potential
gains in performance, it is certainly worthwhile to explore more realistic machine configurations.

Table 8.8: AEPIC with FPGA array

Application EPICy991 | EPICy201(Opt) | AEPIC,, | AEPIC Speedup
MPEG2Decoder - 439486198 | 80686602 5.4
IDEA 118 118 18 6.4
FIR 31533 13491 384 35
NBTR 22529978 13731573 532800 25.8
IDCT 12127 6633 544 12.2

8.4.5 Performance on AEPIC5991_a2¢

Table 8.9 presents results of targeting several applications on to the Chimaera RFU based AEPIC machine.
Column 2 gives the number of configured functional units that were found beneficial for each of the applica-
tions considered. Column 3 gives the speedup achieved on the given application compared to the performance
on EPICy59, processor. The AEPIC5591_oc machine configuration is described in Table 8.2. Standard input
datasets were used for all of these applications (datasets as supplied by the benchmark set from which these
applications were obtained.)
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Table 8.9: AEPIC with Chimaera RFUs

Application #CFUs | Speedup
RAWCAUDIO 12 1.23
RAWDAUDIO 19 1.89
MPEG2ENC 8 1.12
COMPRESS 28 1.13
G721 8 1.08
PEGWIT 23 1.13
CORDIC 26 2.61
MPEG2DEC 72 2.34
DJPEG 53 1.61

The following are the steps taken to target the applications to AEPICs921_2¢ machine.

1. Profile. All the applications are first targeted to EPICy4221. The application is profiled at each intermediate
stage of the compilation and the execution profile is re-instrumented into the IR of that stage. So for
example, before the Pcode is converted to Hcode, the application is profiled and the execution profile
instrumented into the Pcode. At the end of the simulation, all the intermediate stages have execution
profile data associated with their IR nodes.

2. Partition. The partitioning step is performed in some of the major intermediate forms (Pcode, Hcode and
REBEL) to tag candidates that might be suitable for an MRLA impementation. The partitioner first makes
an intial traversal of the IR and gathers the hot-spots in sorted order. For each hot-spot, depending on the
type of IR, various heuristics are applied to determine the suitability of mapping to MRLA. For example,
regions involving memory accesses or floating point operations are discarded. These heuristics are specific
to the Chimaera RFU. For example, an if-statement guarding a single assignment statement guarded by a
boolean variable or a constant (a common ocurrence) can be mapped to a single row of the RFU. RFUs
do not hold state and only generate one output even though 9 input operands may be supplied. These
constriants further restrict the number of partitions that can be mapped to MRLA.

3. Code generation. Once the partitions have been determined, only those partitions that are actually beneficial
are selected to be incorporated into the output program for use in the generated application code. A partition
is considered beneficial if it can execute faster (produce results in less number of cycles compared to the
number of cycles on the EPIC core) and the reconfiguration overhead can be sufficiently masked so that
even after considering the reconfiguration time, the eventual performance is improved. Once the partition
is determined, the size of the configuration is obtained from a simple heuristic which takes into account
which set of instructions can be mapped to a single row of the RFU and then packs the partition onto as
many rows are required on the RFU. Each row requires 1674 bits of configuration data. Size of the CFU
is simply the product of the number of RFU rows used by the partition with 1674. In order to determine
if the reconfiguration overhead can be masked, the IR is traversed in reverse order starting at the first use
of the CFU and configuration load instructions are speculatively inserted. Each speculative configuration
load will load (f * B * L.)/L number of bits. Here, f is the number of times the speculated configuration
load executes, B the number of bits trasferred on each load, L. the compiler specified latency for this load
instruction and L the memory access latency.
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8.5 Summary

Our initial experiments indicate that there is potential for achieving substantial improvements in performance on
a large class of applications through AEPIC processors and compilation techniques that are not too far removed
from known techniques. Clearly, there is scope for further improvements considering that the MRLA we considered
is very limited in capability and that the compiler optimizations are still unexplored let alone used to achieve the

above results.
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Chapter 9

Concluding Remarks

“..embedded computing will introduce a new theme into computing: the automation of computer architecture.”

-B. R. Rau [11]
Given an application program, traditional approaches to improving performance involve one of two approaches—
improve the performance either of the microprocessor or of the generated code through better compiler optimiza-
tions. Both these approaches are constrained by the fact that they have to confirm to a fixed interface between
the processor and the software that executes on it—the Instruction Set Architecture (ISA). The ISA is designed
to be suitable for all applications that will be targeted to the microprocessor. A fixed ISA offers many advantages:
compatibility, uniformity and simplicity. However, due to the very nature of its generality, one can expect that
the instruction mix offered by the ISA need not necessarily be the perfect match for a given application. In addi-
tion to the fixed ISA, poor scalability of dynamically scheduled architectures and limited available “traditional”
instruction level parallelism has motivated us to look for alternative approaches to improving microprocessor
performance on general purpose applications.

On the other hand, several new opportunities have presented themselves. We list some of these here. (1) Ac-
cording to the international technology road map for semiconductors [146], the number of transistors per device
will reach 500 million by the year 2008, 1.5 billion by 2011 and cross 4 billion by 2014. This represents an order
of magnitude increase in transistor capacity by 2008 compared to year 2000 chip capacities. (2) Advances in
programmable logic devices. Due to the increased demand for rapid prototyping of circuit design there has been
a tremendous progress both at the hardware level in terms of improving programmable logic designs but also in
our understanding of how applications can be mapped beneficially to these devices. (3) There has been a shift
in the types of applications that form a major part of current general purpose computational workload. These
applications are primarily multi-media oriented. Multi-media processing involves a large amount of fine grained
parallel processing on streaming data and involve the use of a small set of frequently used kernels such as discrete
cosine, wavelet and Fourier transforms, color conversion routines etc.

The above observations motivated us to take a radically new approach to microprocessor architectures. Traditional
approaches to processor architectures are based on the needs of a large class of applications. The advent of
programmable logic and advances in semiconductor technology resulted in a vast amount of hardware resources
at the disposal of an architect. In this context, one is tempted to ask if one can build processors based on
programmable logic in a way that a compiler can customize them for a given application. Performance advantages
due to application customization on programmable logic is an established fact now. However, two problems have
remained, hindering the widespread adoption of programmable logic based processors.

1. The costs of reconfiguration are extremely high and hence applications requiring rapid reconfiguration may
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lose all the advantages of customized processing.

2. It has been notoriously difficult to map an application to programmable logic, especially in reasonable
compilation times.

There has been very little progress in developing processors based on programmable logic that provide convenient
abstractions to the compiler to alleviate the two key problems mentioned above.

In this dissertation, we have proposed a novel classes of microprocessors that allow application programs to add
and subtract functional units yielding a dynamically varying instruction set interface to the running application.
We focus on a small subset of these dynamic instruction set architectures called Adaptive Explicitly Parallel In-
struction Computing (AEPIC) architectures whose definition represents a collection of ideas intended to enable
efficient reconfiguration of processor data-paths. While AEPIC processor reconfiguration is affected by
the executing program at runtime, the decisions of when and how to reconfigure are determined by the compiler
and embedded in the application’s executable.

The AEPIC class of architectures is a good candidate for research since it is at the boundary of what is known
to be efficiently and automatically compilable class of architectures. We believe that these architectures are at
the right level of granularity for automatic compilation (unlike many of the purely FPGA based machines) and
yet yield many of the performance benefits of programmable logic. This is evidenced by the similarity between
the compilation techniques targeting conventional ILP architectures and the ones we have proposed for AEPIC
architectures. Our preliminary results also indicate that these architectures are worthwhile direction to pursue.
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Appendix A

AEPIC Architectural Parameters

Table A.1: Architecture parameters

| Architecture parameters

Parameter

‘ Notes

MRLA Parameters

Number and types of
MRLAs

for now AEPIC is restricted to only one MRLA

Number of contexts

depends on the application CFU requirements

Array width (slices per
context)

determines the maximum size of CFU that can be instantiated

Context switch latency

for tradeoff between context switching and datapath reconfigura-
tion

Slice load/reset latencies

load latency depends on bandwidth to C-cache; determines recon-
figuration time

Context reset latency

1-k cycles

Array reset latency

1-k cycles

Array compaction la-

tency

determines how often garbage collection can be invoked on the
array

Allocation/deallocation
latencies

has very little impact on reconfiguration time since it can be per-
formed efficiently (1-2 cycles). See Appendix C.

Number of data ports to
C-cache

bandwidth to C-cache

C-cache parameters

Block size

determines the complexity of the allocation/deallocation circuitry

Total blocks

determines total amount of configuration data that can be cached

Allocation/deallocation
latencies

has very little impact on reconfiguration time since it can be per-
formed efficiently (1-2 cycles). See Appendix C.

Ports to C1

bandwidth to C1 cache

C1 Cache parameters

Number of pages

impacts the total configuration data that can be stored

Page size

internal memory fragmentation depends on page size and average
configuration size; also impacts the
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Data cache (L1 and L2) parameters

Cache type and sizes

associativity, number of lines, line width, port sizes, number of
ports, replacement policy

operation latencies

Load/store hit/miss latencies

Fixed core parameters

Int,Float,Branch
Memory FUs

and

depends on available ILP and how much of it is mapped to CFUs

AEPIC extension FUs

determines how many AEPIC extension instructions can be exe-
cuted in parallel. Note: this is not counting the CFUs which are
executing custom instructions and not AEPIC extension ISA

GPRs, FPRs, BTRs and
Predicates

ARF scalar and FIFO
registers

CRF size

total number of configurations in C-cache and MRLA is upper
bounded by the number of available configuration registers

Number of ARF ports

bandwidth to CFUs

Operation latencies

latencies of operations from the AEPIC ISA and not the CFU
operations
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Appendix B

AEPIC Instruction Semantics

Table B.1: Semantics Of Adaptive Extension Instructions

Instruction

‘ Description

Instructions for controlling CFU execution

exec cr, opid

Trigger the operation opid on CFU associted with cr.

susp cr Suspend the operation in progress on CFU associted with cr.

resume cr Resume the operation in progress on CFU associted with cr.

abort cr Abort the operation in progress on CFU associted with cr.

reset cr Reset the CFU associated with cr.

step cr Step the operation in progress on CFU associted with c¢r for one machine

cycle and then suspend the operation until it is resumed or aborted.

Associate locations for source/sink operands of CFUs

mpr cr, T

Associate register 7 from the ARF as the k' input operand of the CFU
associated with configuration register cr. It is assumed that k—1 inpr oper-
ations have been invoked prior to this call to inpr, all of which take the same
cr as the first operand. Currently we assume that all operations performed
by a CFU have the same input/output format. Hence this specification is
CFU opcode independent.

outpr cr, r

Associate register  from the ARF as the output location for the k** operand
of the CFU associated with configuration register cr. It is assumed that
k — 1 outpr operations have been invoked prior to this call to outpr, all
of which take the same cr as the first operand. Currently we assume that
all operations performed by a CFU have the same input/output format.
Hence this specification is CFU opcode independent.

mp cr, T, k

Associate register 7 from the ARF as the k' input operand of the CFU
associated with configuration register cr. Currently we assume that all
operations performed by a CFU have the same input/output format. Hence
this specification is CFU opcode independent.

outp cr, r, k

Associate register r from the ARF as the output location for the k*" operand
of the CFU associated with configuration register c¢r. Currently we assume
that all operations performed by a CFU have the same input/output format.
Hence this specification is CFU opcode independent.
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predp cr, p Associate predicate register p from the PRF as source for predicate operand
of the operations performed on CFU associated with ¢r. This input will be
ignored if a particular operation does not take any predicate inputs.

statp cr, T Associate register r as the destination for saving status of CFU associated

with er.

MRLA and C-c

ache resource allocation

calloc cr, r

allocate adequate number of blocks in the C-cache for the configuration
located at memory address stored in r and associate configuration register
cr with the configuration. The number of blocks required is obtained from
the configuration header stored along with the rest of the configuration
data in the process’s address space in memory. Blocks in C-cache allocated
for the configuration data need not be consecutive.

malloc cr, cid

allocate requisite number of slices on MRLA on context cid for the config-
uration associated with c¢r. The number of slices required by the CFU is
obtained from the configuration information stored in cr.

gce cid Compact context cid of the MRLA. All CFUs are assigned consecutive slices
so that all free slices are merged into one free block.

gcall Compact all contexts of the MRLA. This is equivalent to calling gec on all
the contexts of MRLA.

ree cr eallocate (Iree/reclaim) space allocated for configuration referred to by
Deall f lai 11 d fi fi i ferred to b

the configuration register c¢r. Note configuration is in either the C-cache or
on the MRLA. If the configuration is in the C-cache, the C-cache blocks
allocated to the configuration are freed and added to the C-cache free block
vector. If the configuration is on the MRLA, then either of two actions can
take place: (a) the configuration is moved to C-cache and the MRLA slices
assigned to the configuration are freed or (b) the configuration is deleted
and the MRLA slices reclaimed. We adopt the latter semantics for the free
instruction when the configuration is on the MRLA.

Load/store configurations from/to memory

ldcc cr, 1

“Stalling till completion” configuration load instruction. Initiate fetch op-
erations for remaining configuration words from memory. The location of
the next word to load, the number of words to load and the destination
for the loaded word are stored in configuration register c¢r. The latency
assumed by the compiler for this instance of the load operation is [

ldcens cr, 1

Non-stalling configuration data load instruction. Initiate fetch operations
for as many as possible configuration words from memory within the allot-
ted [ cycles since the operation issue time. The location of the next word to
load, the number of words to load and the destination for the loaded word
are stored in configuration register c¢r. Unfinished load is either aborted
or completed (by stalling the processor). The choice is implementation
dependent.
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stec cr, 1, 1

Initiate store operations for the remaining configuration words in the C-
cache to memory location starting at address given in r. The location of the
next word to store, the number of words to store are maintained in configu-
ration register cr. The latency assumed by the compiler for this instance of
the store operation is [. If the rest of the configuration is not saved to mem-
ory within the assumed latency interval, the processor is stalled until the
operation completes. If the configurations are assumed to be immutable,
this operation is not of much use.

steens cry, 1, 1

Non-stalling version of stcc operation. Initiate store operations for as many
configuration words as can be transferred from the C-cache to memory
within the stated latency. The location of the next word to store, the
number of words to store are maintained in configuration register cr. The
starting destination address is given in 7. The operation aborts any uncom-

pleted stores after [ cycles.

steens cry, 1, 1

Non-stalling configuration store operation. Initiate store operations for
configuration words in the C-cache to memory. The location of the next
word to store, the number of words to store are maintained in configuration
register cr. The starting destination address is given in r. The latency

assumed by the compiler for this instance of the store operation is I

Manage execution contexts

setctx cid Make execution context corresponding to cid the active context.

clrctz cid Free all configured functional units allocated on execution context referred
to by cid.

clrallctz Free configured functional units from all contexts of the MRLA.

switchctz cr, cid

Move configured functional unit from its current context to context cid. An
exception is raised if context cid has inadequate resources to host the CFU
associated with cr. Latency assumption????

pushctz k

Allocate k consecutive execution contexts to the calling thread.

popctz k

De-allocate the top k consecutive execution contexts.

Configure funct

ional units on MRLA

inc cr, 1

Transfer configuration data associated with cr, from C-cache to MRLA.
Once the entire configuration data is transferred, the MRLA effectively
hosts a new CFU corresponding to that configuration. The latency as-
sumed by the compiler for this instance of the inc operation is [ cycles.
Configuration data is loaded from C-cache. Memory used by the configu-
ration in C-cache is freed once the configuration is moved to MRLA. The
execution context and the specific MRLA slices allotted for the configura-
tion are already specifed in the configuration register c¢r during the malloc
call which allotted that space for this configuration. If the inc operation
requires more then [ cycles, the processor is stalled until the entire configu-
ration data is moved to MRLA. Note: every call to inc instruction should

be preceded by a call to malloc to that cr.
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imens cr, 1

This operation is identical to the inc operation except that the configuration
data transfer is abandoned after the assumed latency expires. Processor
makes “best effort” in transferring configuration data to MRLA within the
allotted [ cycles. Incomplete transfers are aborted. Presumably, subsequent
inc/incns operations resume and complete the configuration data transfer.
Note: every call to incns instruction should be preceded by a call to malloc
to that cr.

outc cr, |

Configuration data corresponding to the CFU on MRLA associated with
cr removed from MRLA and saved in the C-cache. The MRLA space used
by the CFU is freed and necessary space in C-cache is allocated for the
configuration. The configuration in the C-cache is still associated with the
same configuration register cr. The latency assumed by the compiler for
this instance of the outc operation is [ cycles. If the operation does not
complete in [ cycles, the processor is stalled until the operation completes.
Note: every call to outc instruction should be preceded by a call to inc to
that c¢r without an intervening call to free or delc that take the same cr
as operand.

outens cr, [

This operation is identical to outc except that the CFU configuration data
transfer is abandoned after the assumed latency expires. Processor makes
“best effort” in transferring configuration data to C-cache from MRLA
within the allotted [ cycles. Incomplete transfers are aborted. Presumably,
subsequent outc/outcns operations resume and complete the configuration
data transfer.

delc cr, 1

Configured functional unit associated with the configuration register cr is
removed from MRLA. Unlike outc, the configuration is not moved to the C-
cache. The MRLA space is freed for future allocation and the configuration
register cr is available for future configurations. The latency assumed by
the compiler for this instance of the delc operation is [ cycles. Note: every
call to delc instruction should be preceded by a call to inc to that c¢r without
an intervening call to free or outc that take the same cr as operand.
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Appendix C

AEPIC ISA Summary

C.1 Notes On Instruction Format

Since the AEPIC ISA is an extension of the HPL-PD ISA, we use the same notation as in the description of
the HPL-PD architectural interface in [84]. We repeat the description given in [84] here in brief. Format of the
operation description (one row of the table below) is as follows:

< Opcode > < Operation > < IOFormat > < Sp > < Semantics >

e Opcode. This field specifies the major opcode Op and the modifiers A, B ...in the format Op . The
A|B]...
opcode for an instruction is the major opcode followed by exactly one of the modifiers (if present).

e Operation. A short description of the actions performed by the operation are described in this column of
the row.

e IOFormat. The IOFormat lists the explicitly specified input and output operands in the following format:

< predicated > < source > ... < source > :< destination > ... < destination >

If the “predicated” field is P? then the operation takes a predicate register as input otherwise it is an
unpredicated operation. Source and destination are the source and desitnation operands. They can be one
of I, F, P, B, L, C, A and X. These denote registers from the integer (or general purpose), floating-point,
predicate, branch, literal (supplied through the operation), control, array and configuration register files
respectively.

e S. The S field denotes whether the operation has a speculative version (Y) or not (N).

e Semantics. For most operations, a brief description about the effects of execution—the actions performed
by the operation. The semantics for the adaptive extension instructions is given in Appendix B.

C.2 Adaptive Extension Instructions
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Table C.1: Adaptive extension ISA

| AEPIC Instruction Repertoire

Opcode Operation description I/O descrip- | S
tion

CFU operation execution

EXEC initiate CFU operation execution P?X,L: N

SUSP suspend currently executing operation on CFU P? X N

RESUME resume currently suspended operation on CFU P? X N

ABORT abort issued operation on CFU P? X N

RESET for stateless CFUs, same as ABORT P? X N

STEP execute suspended operation on CFU for one cycle | P? X : N
and suspend again

STAT save CFU status into the associated status register | P? X : N
from ARF

CFU input/output association

INPR associate ARF register as source for k" input | P? X, A : N
operand for CFU where k& — 1 INPR operations
have already been issued to this CFU

OUTPR associate ARF register as destination for k' out- | P? X, A : N
put operand for CFU where kK — 1 OUTPR opera-
tions have already been issued to this CFU

INP associate ARF register as source for k" input | P? X, A, L : Y
operand for CFU

ouTP associate ARF register as destination for k** out- | P? X, A, L: Y
put operand for CFU

PREDP associate predicate register as source for the pred- | P? X, P : Y
icate operand of CFU

STATP associate ARF register as the destination for sav- | P7 X, A : Y
ing CFU status

MRLA and C-cache resource allocation

MALLOC allocate space on MRLA on specified context for | P? X, I: Y
CFU

CALLOC allocate adequate number of blocks in the C-cache | P? X, I Y
for a new configuration

GCC compact the CFUs on the specified context of the | P? L : Y
MRLA

GCALL compact the CFUs on all the contexts of the | P?: Y
MRLA

FREE deallocate space allocated for configuration P? X Y

Load (store) configurations from (to) memory

LDCC “Stalling till completion” configuration load in- | P? X, L : N
struction.

LDCCNS Non-stalling configuration load instruction. P?X,L: N
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STCC “Stalling till completion” configuration store in- | P? X, I, L : N
struction.

STCCNS Non-stalling configuration store instruction. P?X, I L: N

Manage execution contexts on MRLA

SETCTX make the specified context the active context of | P? L : Y
the MRLA

CLRCTX free all resources allocated to CFUs on specified | P? L : Y
context

CLRALLCTX clear all contexts of MRLA P?: Y

SWITCHCTX switch CFU context in MRLA P?X, L: Y

PUSHCTX allocate contexts P?L: N

POPCTX de-allocate contexts P?L: N

Configure functional units on the MRLA

INC configure functional unit on the MRLA P?X,L: Y

ouTcC remove configured functional unit from MRLA P?X, L: N

DELC delete configured functional unit from MRLA P?X, L: N
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