NANO-PATTERNED QUANTUM STRUCTURES FOR INFRARED DETECTION

Daniel C. Tsui

Princeton University
Department of Electrical Engineering
E-quad, B426
Princeton, NJ 08544

30 September 2005

Final Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.
AFRL-VS-PS-TR-2005-1192

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data, does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report has been reviewed by the Public Affairs Office and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nationals.

If you change your address, wish to be removed from this mailing list, or your organization no longer employs the addressee, please notify AFRL/VSSS, 3550 Aberdeen Ave SE, Kirtland AFB, NM 87117-5776.

Do not return copies of this report unless contractual obligations or notice on a specific document requires its return.

This report has been approved for publication.

//signed//

DANHONG HUANG
Project Manager

//signed//

JOHN P. BEAUCHEMIN, Lt Col, USAF
Acting Chief, Spacecraft Technology Division
Space Vehicles Directorate
This is the final report of work accomplished under contract #F29601-02-C-0267 from the Air Force Research Laboratory (Kirtland), which was a three-year research project with two focused objectives: (1) To develop voltage tunable two-color superlattice QWIPs and broadband QWIPs, and (2) to fabricate quantum-dot QWIPs using nano-patterning and to investigate their infrared detection characteristics arising from the three-dimensional confinement of electrons in the semiconductor device structure.

The project was funded from October 2002 to July 2004, approximately 2/3 of the originally agreed 3 years. Consequently, part of the second objective was not reached. More specifically, the nano-patterned quantum-dot QWIPs were fabricated, but their infrared detection characteristics were not investigated.
I. Introduction

This is the final report of work accomplished under contract #F29601-02-C-0267 from the Air Force Research Laboratory (Kirtland), which was a three year research project with two focused objectives: (1) To develop voltage tunable two-color superlattice QWIP’s and broadband QWIP’s, and (2) to fabricate quantum-dot QWIP’s using nano-patterning and to investigate their infrared detection characteristics arising from the three-dimensional confinement of electrons in the semiconductor device structure.

The project was funded from October 2002 to July 2004, approximately 2/3 of the originally agreed 3 years. Consequently, part of the second objective was not reached. More specifically, the nano-patterned quantum-dot QWIP’s were fabricated, but their infrared detection characteristics were not investigated.

II. Technical Accomplishments

a. Two-color QWIP’s and broadband QWIP’s.

a1. We have studied two approaches in achieving voltage tunable two-color detection. In one of the approaches, we adopted a QWIP structure with coupled quantum well pairs as its unit cell. Under a finite bias, the ground state of one of the QWs in the pair is the lowest energy state. The doped electrons reside exclusively in this state, which leads to certain infrared absorption wavelength determined by this QW’s parameters. When the bias is reversed, the other QW has the lowest energy state, which causes the transfer of doped electrons into this well. The detection wavelength is thus changed. Under this approach, we have demonstrated the switching of wavelength from 7 to 9 μm when the bias changes from 1 V to -3 V. Fig. 1 shows the spectral response under different bias polarities. By monitoring the strength of responsivities of the two wavelengths, we are able to deduce the change of electron occupation in these two wells as a function of temperature. Fig. 2 shows the changes.
Fig. 1 Spectral response under different bias.

Fig. 2 The change of electron density in the left and right QWs as a function of bias and temperature

a2. The second approach in voltage tunable detection has been reported in our previous progress report. We will describe it briefly here. The approach uses superlattice pairs as unit cells in the QWIP structure. In each SL pair, there is a barrier blocking the electrical conduction of the ground minibands. In this structure, we utilize the fact that only one SL in the pair in each bias polarity is able to provide photoelectrons to the conduction band of the blocking barrier and affect the barrier conductivity. By designing a different absorption wavelength for each SL in the pair, one can achieve voltage tunable two-color detection. Using this approach, we have demonstrated wavelength switching between 5.8 and 9.5 μm in one sample and 3.9 and 9.2 μm in another.

a3. QWIP is usually a narrow band detector. Although some broadband detectors exist, they are usually sharply peaked at certain wavelengths. The spectral linewidth is temperature dependent, and a large bias is needed. We have designed a binary superlattice structure to achieve uniform responsivity within 8 - 14 μm window with
negligible temperature dependence. These performance characteristics are achieved by judiciously choosing the binary basis of the superlattice with the desirable QW wavefunctions for uniform dipole oscillator strength and wavelength distribution across the spectrum. Fig. 3 shows the band structure of the superlattice unit cell. With this structural design, the calculated spectra for different doping density are shown in Fig. 4. The measured spectral response in Fig. 5 compares well the calculation. The small difference is due to the decreasing tunneling probability of the photoelectrons out of the superlattice.

Fig. 3 The band structure of a binary superlattice infrared photodetector.

Fig. 4 The calculated absorption spectra for two doping densities.
a4. Two-color QWIPs and broadband QWIPs are of little value if normal incident radiation cannot be coupled into detector across a wide spectrum. The usual grating is known to be narrow band. We have studied the corrugated light coupling scheme, and demonstrated its effectiveness in these QWIP structures.

The approach in this work is to create three-dimensionally quantum confined structures. Their energy level spacing due to size quantization is in the infrared regime. In contrast to the usual methods of obtaining quantum dots, which is through material growth techniques, we start with the multiple quantum well structures. These structures create one-dimensional quantum quantization vertical to the material layers, and they are the usual quantum well infrared photodetector (QWIP) material used for infrared imaging. With this material, we start out with a detector system that is sensitive to infrared and exhibits good material quality.

We then create additional size quantization through nano-lithography, first to create nanowires for two-dimensional confinement, and then crossed-grids for three-dimensional confinement. The latter utilizes the fact that when the physical width is less than the charge depletion width at the two sidewalls, the conducting width along the channel will be zero. In such case, only pockets of electrons remain at the intersections of the grids, where there are no sidewalls. three-dimensional confinement is thus created.
The top contacts of these nanostructures are connected through the top metal layer, which remains conducting even down to submicron scale. Fig. 1 shows the different patterns of the detectors fabricated. Fig. 1(a) is a series of quantum dots connected by nanowires. Fig. 1(b) is a series of nanowires. Fig. 1(c) is the crossed grid structure. Fig. 1(d) is the cross-section of the grid.

![Fig. 1](image)

Fig. 1 (a) is the quantum dots, (b) is the quantum wires, (c) is the quantum grid and (d) is the cross-section of the structure in 1(c).

To characterize the quantum wires, we measured the resistance R of the wires between the top contact and the bottom contact with different physical width w_l. As expected, the value of R increases as w_l decreases. Meanwhile, we also measured the resistivity ρ of the material from a large area detector. By equating $R = \rho t / w_e L$, where t is the material thickness, w_e is the “conducting” width and L is the length of the wires, the value of w_e can be deduced. The quantity w_e is the actual region of the wire that is occupied by electrons. The rest of the width is occupied by the depletion region. Thus, $w_l = w_e + d$, where d is the total depletion width along the two sidewalls.

Fig. 2 shows the relation between w_e and w_l for two wafers with different doping densities. Wafer #2 has a 10 times higher doping density than wafer #1, and the depletion region appears to be smaller. Fig. 2(a) shows that when $w_l < 0.3 \mu m$, w_e is reduced to zero, and therefore $d = 0.3 \mu m$ for wafer #1. Likewise, $d = 0.25 \mu m$ for wafer #2. However, wafer #2 shows nonzero conductivity even when $w_l < d$, i.e. the wires are never completely pinched off, and a very thin layer of electrons remains along the center of the wire. If we assume the same resistivity, the value of w_e is deduced to be 16 nm for the thinnest lines fabricated, where w_l is 82 nm. This work thus shows that nanostructures can be obtained using e-beam fabrication techniques because of the existence of the natural depletion layers.
Fig. 2 The relationship between the conducting width w_c and the physical width w_l for wafers with (a) $5 \times 10^{17} \text{ cm}^{-3}$ and (b) $5 \times 10^{18} \text{ cm}^{-3}$.

Fig. 3 shows the corresponding infrared responsivity normalized to the same dark current level. The normalization factors out the amount of active materials contained in different widths. The dashed curve connects the data from wafer #1. It has a local maximum at $w_l = 1.5 \mu\text{m}$. As well known, QWIPs do not absorb normally incident light. The peak at 1.5 μm is due to the resonant scattering effect of the top metal contact on the incoming light. This resonant light coupling effect is confirmed by rigorous EM field modeling.

When w_l is less than 1.5 μm, EM modeling predicts a continual reduction of the photoresponse, where it is zero at zero width. Unpredictably, the normalized responsivities, NR, ratio (which is divided by the responsivity of the edge coupled large QWIP detector) starts to increase when w_l is less than 0.5 μm. This could signify the intrinsic infrared absorption in this nanostructure due to horizontal quantization across the wire. To study in detail the possible normal incident absorption, more wires from wafer #2 were made thinner than 0.5 μm. Fig. 3 shows that when w_l is less than 0.5 μm, the response increases as the width decreases. It strongly indicates the quantum size effects.
To further support the size quantization, the spectral characteristics need to be investigated. The wire conducting width of ~16 nm is wider than the layer thickness of 5 nm. The energy spacing due to horizontal quantization should be smaller than that due to vertical quantization. As a result, the spectrum of the nanowires should be red shifted. In order to make narrower wires, we adopted wet etching instead of dry etching. When wet etching through a metal mask, the material is etched sideways in addition to downward. This creates a thin constriction under the wire mask, where the active layer is located. Fig. 4 and Fig. 5 show the wire cross-sections.

Fig. 3 The photoresponse of the nanowires for different wire width. The dashed curve is for wafer #1 and the solid curve is for wafer #2.

Fig. 4 The quantum wire with $w_l = 0.12 \mu m$ at the constriction.
Fig. 5 The quantum wire with $w_l = 0.03 \, \mu\text{m}$ at the constriction.

Fig. 6 shows the spectral responses of wires with different top contact widths from 1.15 to 1.45 μm. The widths of the constrictions were not measured, but were estimated to be $w_l \sim 50 \, \text{nm}$ and $w_c \sim 10 \, \text{nm}$. As expected, the wires in general have a longer wavelength response than the monitoring sample, labeled as the null sample. The fact that the wire samples has the same spectral response as the monitoring sample at the shorter wavelengths rules out the effects of inhomogeneous broadening due to material composition fluctuation. Therefore, the observation of the longer cutoff response that is absent in the original QWIP material strongly suggests the creation of new quantum quantization across the wires.
Fig. 6 The broader spectral responses of the nanowires suggest the creation of a new set of energy level spacing by the wire confinement in addition to the original spacing created by the layer confinement.

The investigation of the final three-dimensional confinement of the grids has not been carried out due to the lack of funds.

III. Publications

a. Refereed Journals:

b. Presentations and conference proceedings:

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 1 cy

AFRL/VSIL
Kirtland AFB, NM 87117-5776 1 cy

AFRL/VSIH
Kirtland AFB, NM 87117-5776 1 cy

Princeton University
Department of Electrical Engineering
E-quad, B426
Princeton, NJ 08544 1 cy

Official Record Copy
AFRL/VSSS, Dr. Danhong Huang 1 cy