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Sensor Modeling and Multi-Sensor Data Fusion 

 

1. INTRODUCTION  
The desire to enhance the capabilities of modern control systems has led to the development of 

complex systems that are characterized by their increased non-linearity, flexibility, intelligence 
and enhanced ability to handle uncertainty. In order to incorporate autonomous decision making 
abilities, these systems need to possess complex capabilities such as perception, knowledge 
acquisition, learning, adaptability, and reasoning. Moreover, the system should be able to draw 
inference from incomplete, ambiguous or approximate information, and deal with uncertain and 
dynamic situations. The revolutionary advancement in the field of sensor technology that has led 
to development of superior sensing capabilities, and progress in computing and information 
processing has made it possible to develop systems with autonomous decision making 
capabilities. 
 

Dynamic systems generally employ multiple sensors to provide diverse, complementary as 
well as redundant information. The primary goal of a multi-sensor system is to combine 
information from a multitude of sources into a robust, accurate and consistent environment 
description. There are several issues that arise while solving the multiple sensor fusion problem 
including inherent uncertainty in each sensor’s measurements, and diverse and temporally or 
spatially disparate nature of measurements. The uncertainties in sensors not only arise from the 
impreciseness and noise in the measurements, but are also caused by the ambiguities and 
inconsistencies in the environment, and inability to distinguish between them.  The strategies 
used to fuse data from these sensors should be able to eliminate such uncertainties, take into 
account the environmental parameters that affect sensor measurements, and fuse different nature 
of information to obtain a consistent description of the environment.  
 

The algorithms reported in literature to fuse data from multiple sensory sources can be 
classified into three categories: 1) Fusion based on probabilistic methods, 2) Fusion based on 
least-squares techniques, and 3) Fusion based on intelligent methods. All of these methods differ 
in the manner they try to model the uncertainties inherent in the sensor measurements. The 
research carried out in this project combines two different kinds of sensing modalities to obtain 
three-dimensional occupancy profiles of a robotic workspace. The first modality is two vision 
sensors mounted on a stereo rig, and the second one is an Infra-Red (IR) proximity sensor. The 
research presented in this report first discusses a neural network based novel technique to obtain 
probabilistic sensor models. The fusion is carried out in an occupancy grid framework with the 
help of Bayesian approach. Some of the other techniques used in literature for sensor fusion 
include Dempster Shafer theory for evidential reasoning [1-2], fuzzy logic [3-4], and statistical 
techniques [5] such as Kalman filter [6-8]. The following section briefly discusses the Bayesian 
approach. 
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2. BAYESIAN APPROACH FOR SENSOR FUSION 
Bayesian inference [9-11] is a statistical data fusion algorithm based on Bayes’ theorem [12] 

of conditional or a posteriori probability to estimate an n-dimensional state vector ‘X’, after the 
observation or measurement denoted by ‘Z’ has been made. The probabilistic information 
contained in Z about X is described by a probability density function (p.d.f.) p(Z | X), known as 
likelihood function, or the sensor model, which is a sensor dependent objective function based 
on observation. The likelihood function relates the extent to which the a posteriori probability is 
subject to change, and is evaluated either via offline experiments or by utilizing the available 
information about the problem. If the information about the state X is made available 
independently before any observation is made, then likelihood function can be improved to 
provide more accurate results. Such a priori information about X can be encapsulated as the prior 
probability ( )xXP =  and is regarded as subjective because it is not based on observed data. 
Bayes’ theorem provides the posterior conditional distribution of X = x, given Z = z, as 
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Since the denominator depends only on the measurement (the summation is carried out over all 

possible values of state), an intuitive approach to the estimation can be made by maximizing this 
posterior distribution, i.e., by maximizing the numerator of (1). This is called Maximum a 
posteriori (or MAP) estimate, and is given by: 
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Another popular estimation scheme (called Minimum Mean Square Error (MMSE) estimator) 
minimizes the sum of square of errors, i.e., minimizes the Euclidean distance between the true 
state and the estimate after the observation has been made.  
 
To incorporate the measurements from two sensors, (1) can be written as: 
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Fig. 1 shows a process in which the sensory data made available from multiple sensors can be 

fused under the Bayesian scheme.  
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Fig. 1.  Multiple Sensor Fusion using Bayesian Technique 

3. SENSOR MODELS 
Sensor modeling [13] deals with developing an understanding of the nature of measurements 

provided by the sensor, the limitations of the sensor, and probabilistic understanding of the 
sensor performance in terms of the uncertainties. The information supplied by a sensor is usually 
modeled as a mean about a true value, with uncertainty due to noise represented by a variance 
that depends on both the measured quantities themselves and the operational parameters of the 
sensor.  A probabilistic sensor model is particularly useful because it facilitates the 
determination of the statistical characteristics of the data obtained. This probabilistic model is 
usually expressed in the form of probability density function (p.d.f.) ( )xzp |  that captures the 
probability distribution of measurement by the sensor (z) when the state of the measured quantity 
(x) is known. This distribution is extremely sensor specific and can be experimentally 
determined. Gaussian distribution is one of the most commonly used distributions to represent 
the sensor uncertainties and is given by the following equation: 
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The standard deviation of the distribution σ  is a measure of the uncertainty of the data 

provided by sensors. Durrant-Whyte [14] has used the summation of two Gaussian distributions 
to model uncertainty in the sensor measurement.  Researchers have developed a few other 
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methods [15] to iteratively update the parameters of the distribution.  
 

3.1 Estimation of Sensor Model Parameters 
Maximum Likelihood (ML) method is the procedure for finding the value of one or more 

parameters for a given statistical data which maximizes the known likelihood distribution. If 
Gaussian distribution is considered, the distribution representing the sensor model is given by: 
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where the event Di represents the data ( )ii xz , , and σ=Θ  is the parameter to be estimated. The 
likelihood function is the joint probability of the data given by: 
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and the parameter σ  can be estimated via ML method by maximizing ( )ΘL  given by (6). 
 

Most of the previous research on sensor fusion was based on the development of rigid sensor 
models. In practice, the performance of sensors or any source of information depends upon 
several factors, for example the environmental conditions under which the measurements were 
made, and the performance of estimation/calibration algorithm. Establishing dependence of a 
sensor’s performance on various parameters of environment and other signal/feature extraction 
algorithms is not a trivial task. Statistical techniques such as correlation analysis can be used to 
determine the manner in which these factors affect the sensor’s output. Selecting the factors that 
can possibly affect the sensor output is difficult, and is mostly based on heuristics. Many feature 
extraction algorithms include goodness-of-fit function that can be investigated to observe the 
correlation with sensor output.  
 

After the factor which affects the sensor’s performance has been selected, the next challenge is 
to establish the correspondence between the factor and the uncertainty in the sensor’s output. 
Statistical system identification, regression analysis, or any mapping algorithm can be 
investigated to establish the correspondence. It might be difficult, if not impossible, to obtain the 
mathematical relation, and in the absence of such mathematical relation, model based statistical 
approach would be difficult to use. In this research project, the universal approximation 
capabilities of neural networks have been used to establish this correspondence. 

 

3.2 Neural Network based Sensor Models 
A neural network (NN) [16-17] is an information-processing paradigm inspired by the way in 
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which the heavily interconnected, parallel structure of the human brain processes information. 
They are often effective for solving complex problems that do not have an analytical solution or 
for which an analytical solution is too difficult to be found. Currently, they are being applied in 
many real world problems [18]. Three-layered NNs (i.e., one input layer, one output layer and 
one hidden layer), with hidden layer having sufficient nodes and a sigmoid transfer function, and 
linear transfer function in input and output layer [19-21] are considered to be universal 
approximators. In this research project, a three-layered NN has been formulated to obtain the 
correspondence between the standard deviation σ  of Gaussian distribution and the parameter 
which affects sensor’s performance. The output of a typical three-layered NN is given by: 
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where ‘l’ is total number of nodes in the hidden layer, ‘n’ is total number of inputs, ‘m’ is total 
number of outputs, ‘w’ is the weight and ‘b’ is the bias of the network. The function f(x) is the 
activation function associated with nodes. The input to the neural network is the parameter 
vector Ik, and the output is the σ  representing the standard deviation of the Gaussian 
distribution. Hence, 
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or  
( )BWINNET ,,=σ                                    (9) 

 
where I is the vector representing input parameters, W is the weight matrix, and B is the bias 
matrix. Backpropagation (BP), based on gradient descent technique, is one of the most popular 
methods for training neural networks which establishes a particular set of weights obtained by 
adjusting the weights based on the errors between the actual and target output signals. For the 
neural network considered for the system in this research, however, the target data for σ  is 
unknown, and cannot be obtained directly from experiments. Here, the neural network is trained 
in a novel manner from the signals obtained from Maximum Likelihood parameter estimation 
approach. Likelihood function that needs to be maximized is given by (6), in which parameter σ  
is represented by a neural network function given by (8) or (9). Hence, the likelihood function 
that needs to be maximized by choosing appropriate weights and biases of the neural network is 
given by:  
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The weights and biases can be found by the gradient descent method or via evolutionary 

strategies [22]. The above method has been used to obtain models of infra-red proximity sensor 
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and vision sensors in stereo configuration. 
 

3.3 Modeling of Stereo Vision Sensors 
One of the most important components of stereo vision algorithm is stereo matching [23] 

which involves finding out the location of the point in right image plane corresponding to a point 
in the left image plane. The relative displacement of these two points, called disparity, is used to 
estimate the three-dimensional position of the point. The accuracy with which stereo vision 
sensors would be able to specify three-dimensional positional information about a point depends 
on how precisely the stereo vision algorithm is able to find the match of the point. The 
correlation score [24] of the matched points, which measures the correlation between two 
template windows from left and right images, is a measure of “goodness-of-match” of the two 
points. This score for template of size (2n+1) x (2m+1) is given by: 
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where IL is intensity matrix of left image, IR is intensity matrix of right image, and ( )kkk vuI ,  
(k=L, R) is the average value of intensity, ( )kIσ  is the standard deviation of image kI in the 
neighborhood of  (2n+1) x (2m+1) of (u, v). The score ranges from -1 to +1, -1 representing not 
similar at all, and +1 representing most similar. The method formulated in the previous section 
has been used to develop a model for the stereo vision sensors that could take into account the 
performance of the stereo matching algorithm. 
 

An experiment was carried out in the RAMA Laboratory, wherein a set of fifty data points 
consisting of 3-D location of point in world coordinate system obtained via stereo vision sensors 
(via transformation as discussed in reference [23]), correlation score for that point (given by 
(11)), and the actual 3-D location of the point in world coordinate frame. The value of 
correlation between the correlation score of stereo match of two image points and the error 
associated with that point in 3-D coordinates was found to be -0.3780, -0.2131, and -0.2856 
respectively in X, Y, and Z direction. The error represents the absolute error between the actual 
3-D location of a point and that obtained from the stereo vision. A negative correlation value 
represents that when correlation score is large, the error is small, which logically follows from 
the fact that larger correlation score means better stereo match and better estimation of 3-D 
positional information. 
 

The strategy described in the previous section was used to develop a Gaussian model of the 
sensor. In this model the standard deviation of the distribution, which represents the uncertainty 
of the data, is dependent on the correlation score for the specific point. This dependence was 
modeled with the help of a neural network with five nodes in the hidden layer. This neural 
network takes correlation score as input, and outputs the value of standard deviation (sigma) for 
that particular correlation score. In order to ensure global convergence, the neural network was 
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trained via Genetic Algorithm. The sensor model obtained from this approach showed the 
intuitive trend that as the correlation score increases, i.e., as the stereo match gets better, the 
standard deviation decreases. Lesser value of standard deviations implies that the positional 
information obtained from stereo vision is less uncertain, and hence the degree of belief in the 
sensor output is more. 
 

In order to investigate if anything was gained by carrying out the modeling with the help of 
neural network trained by maximum likelihood signal, the standard deviation was obtained by 
maximizing the likelihood function given by (6). This provided a constant value of standard 
deviation (sigma), representing rigid sensor model, for X, Y, and the Z directions for the same 
set of data. The NN based modeling that incorporated correlation score of stereo matching was 
able to improve the likelihood function by a factor 1.213, 1.1021, and 1.1288 in X, Y and Z 
directions respectively as compared to rigid sensor modeling approach. Hence, NN based 
modeling method promises to provide statistically more optimal and accurate results. 

 

3.4 Modeling of Proximity Sensors 
The output of the IR proximity sensor is an analog voltage which is indicative of the distance 

of the object detected by the sensor. In order to calibrate the IR sensor readings, 750 data points, 
comprising of sensor output values in volts and actual distance to the sensed object in mm, were 
taken. The calibration was obtained via neural network which accepted sensor output in volts as 
input and provided distance in mm as output. The neural network was trained from 750 data 
points obtained, and tested with the help of a separate set consisting of 700 data points. Fig. 2 
shows the plot of neural network calibration, and test data. The plot shows sensor output (which 
is input to neural network) along Y axis, versus distance (which is output of the neural network) 
along X axis.  

 
 

Fig. 2.  Neural Network Calibration of IR Proximity Sensor 
 

Once the calibration of the IR sensor was achieved, the next step was to develop the 
probabilistic model of the sensor based on the theory presented in the previous section. In order 
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to develop the sensor model, the most important aspect is to determine the factors that can 
possibly affect the performance of the sensor. From Fig. 2, where round dots show the test data 
obtained from experiments, it can be easily seen that the uncertainty in data increases as the 
distance to the object increases. This can be observed from the horizontal spread in the data as 
the distance to object increases. A larger horizontal spread means that for the same value of 
sensor output, the discrepancy in the actual distance to the object is more. In this research 
project, the model of the IR sensor attempts to capture this dependence of uncertainty on the 
distance to the object. Since the output of the sensor is indicative of the distance, this 
investigation makes use of neural network technique outlined in previous section to capture the 
relationship between sensor’s uncertainties and sensor output. 
 

In the laboratory experiments, the Infra-Red sensor was mounted on the wrist of the robot so 
that it looked vertically down (negative Z direction in world coordinate frame). The IR sensor 
provided the information about the distance to the nearest object detected directly in front of the 
object. Information about the position of end effector of the robot was obtained from the 
encoders of the robot. Hence, IR sensor can be effectively used in conjunction with robot 
encoders to provide 3-D information about any object. Similar to the case of vision sensor, the 
model of the IR sensor has been obtained in all three X, Y, and Z directions. The correlation 
value of the sensor output of a point and the error associated with that point was found to be -
0.3078, -0.3211, and -0.2744 respectively in X, Y, and Z directions. The error represents the 
absolute error between the actual 3-D location of a point and that obtained from the infra-red 
sensor. A negative correlation value represents that when sensor reading is smaller (i.e., distance 
to the detected object is larger), the error is larger, which follows from large horizontal spread in 
Fig. 2 when the sensor reading is smaller. Neural network based modeling technique was used to 
obtain the senor model which represented the dependence of sensor’s performance and inherent 
uncertainty on the distance to the detected object. The variation of standard deviation of the 
Gaussian sensor model obtained from this approach showed a decrease when the sensor output 
increased which implies that when the distance to the object decreases (i.e. sensor’s output is 
larger) the standard deviation becomes smaller, and the sensor’s measurement becomes less 
uncertain. This is also confirmed by Fig. 2 as well as the negative correlation value obtained 
above. 
 

An analysis, similar to the one performed for vision sensors, was carried out to study the 
advantage of the proposed approach over the constant standard deviation (rigid sensor model) 
obtained by maximizing (6). The proposed NN based modeling was able to improve the 
likelihood function by a factor of 3.6690, 27.3505, and 2.3414x104 in X, Y, and Z directions 
respectively as compared to that obtained via rigid sensor modeling. Larger values of likelihood 
functions for modeling based on neural network method, similar to the case of stereo vision, 
reaffirms the fact that the proposed neural network based sensor modeling technique was more 
optimal and accurate. 
 

4. SENSOR FUSION IN OCCUPANCY GRIDS 
The occupancy grid [25-28] is a multi-dimensional field (usually of dimension two or three) 
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where each cell (or unit of the grid) stores or represents the probabilistic estimate of the state of 
spatial occupancy. Occupancy grids are one of the most common low-level models of an 
environment, which provide an excellent framework for robust fusion of uncertain and noisy 
data. If the state variable (occupancy, in this case) associated with a cell, Ci, is denoted by s(Ci), 
then the occupancy probability )]([ iCsP  represents the probabilistic estimate of occupancy of that 
particular cell. If 0])([ ≈= occCsP i , then the cell is assumed to be empty, while, if 1])([ ≈= occCsP i , 
then the cell is assumed to be occupied. 
 

If a single sensor is used to obtain the occupancy grid, Bayes’ Theorem can be used in the 
following manner to determine the state of the cell: 
 

P[s(Ci) = occ | z] = p[z | s(Ci) = occ]P[s(Ci) = occ]
p[z | s(Ci)]P[s(Ci)]

s(Ci )
∑

                       (12) 

 
where z is the sensor measurement. The probability density function (p.d.f.) ])(|[ occCszp i = is 
dependent on the sensor characteristics and is called the sensor model. The probability 

])([ occCsP i =  is called prior probability mass function and specifies the information made 
available prior to any observation.  
 

The sensor models obtained in Section III represent the probability of a sensor providing the 
position z when actual position of the object is x. These models relate the probability of 
occurrence of an object to the distance from the measurement (in one dimension), given that the 
object was detected by the sensor. These models (likelihood functions) alongwith any prior 
information is used to obtain the posterior distribution ( )zxp |  which represents uncertainty in the 
positional information supplied by the sensors. In this research, an occupancy profile has been 
recreated with the help of three-dimensional occupancy grids. Each cell of the grid represents a 
three-dimensional space in the world coordinate system. The occupancy profile of the workspace 
is obtained by determining whether the cells of the grids are occupied or not. A cell is said to be 
occupied if the spatial region represented by this cell has at least one point (detected by sensors) 
within it. Fig. 3 shows a situation in which two points contribute to the probability of a cell (in 
one dimension) being occupied. The probability that point A lies within the cell Ci, represented 
by the space from xi-1 to xi, can be obtained from the equation: 
 

( ) ( )dxzxpCAP
i

i

x

x
Ai ∫

−

=∈
1

|                                  (13) 

 
where zA is the sensor reading, and ( )Azxp |  is the posterior distribution. Similarly, for point B: 
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The probability that either A or B is in the cell Ci is given by: 

 
( ) ( )[ ] ( ) ( ) ( ) ( )iiiiii CBPCAPCBPCAPCBUCAP ∈∈−∈+∈=∈∈               (15) 

 
The above equation makes an assumption that detection of points A and B are independent 

processes. The above approach can be used to determine the probability of cell being occupied 
by at least one point among any number of points detected in the vicinity, and is used to obtain 
individual occupancy grids from IR proximity sensor and stereo vision. 
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Fig. 3.  Two Points Contributing to Occupancy of a Cell 

 

4.1 Fusion of Two Occupancy Grids 
The fusion of grids obtained from individual sensors is carried out by determining probabilistic 

estimates at the cellular level. Most of the previous research work makes use of probabilistic 
evidence combination formula based on Independent Opinion Pool [29] and use of maximum 
entropy priors [25, 27]. This method is applied at each cell to fuse two probabilistic estimates, P1 
and P2, associated with the two grids obtained from two sensors. The mathematical expression 
representing the fusion is given by: 
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There are certain problems associated with the use of this equation to fuse two estimates. For 

example, this equation fails to provide a reasonable estimate if the two sensors have completely 
contradictory measurements. Moreover, this equation puts equal amount of belief in the two 
measurements, and would provide incorrect estimates if the reliability/accuracy of the two 
sensors that are being fused vary by a large amount. In this research, for example, stereo vision 
sensors are fused with infra-red sensors. The stereo vision sensors provide very accurate 
measurements in X direction, while the infra-red sensor does not. It would be unreasonable to 
provide equal weight to the probabilistic estimates obtained from these two sensors. In this 
research project, the two estimates are fused in a Bayesian framework taking into account the 
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certainty and reliability of the sensors. As described in previous sections, sensor models are 
given by the following Gaussian likelihood function: 
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where k=1 represents stereo vision, and k=2 represents IR sensor. 
 
Then, from Bayes’ Theorem the fused MAP estimate is given by: 
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where, 

2

1
σ

σ=r is the ratio of standard deviations. Hence, if there is no prior information 

available about the quantity to be estimated, the Bayesian approach for fusion of the two sensor 
estimates results in a weighted average dictated by the ratio of standard deviations. If two 
Gaussian distributions (given by the two sensor model’s pdfs) are fused, then the posterior 
distribution is jointly Gaussian with a mean given by (19) and the standard deviation given by: 
 

( ) ( ) ( )[ ] 12
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2' −−− += σσσ                                 (20) 
 

Fig. 4 shows the two distributions that get fused to give the posterior distribution. The simple 
product of distribution is also shown in the figure. It may be noted from the figure that the 
standard deviation of fused distribution is smaller representing lesser uncertainty in fused 
estimates. 



 

 12

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

P
ro

ba
bi

lit
y

p(z2 | x)

p(x | z1,z2)

p(z1 | x)

p(z1 | x)p(z2 | x)

 
Fig. 4.  Fusion of Two Gaussian Distributions 

 

5. EXPERIMENTAL RESULTS AND DISCUSSION 
The theories developed in the previous sections were validated with the help of experiments 

performed in the Robotics and Manufacturing Automation (RAMA) Laboratory at Duke 
University. A cylindrical object was placed on the work-table. Fig. 5 shows the images of the 
work-table obtained from the stereo cameras. Fig. 6(a) shows the actual occupancy grid of the 
workspace. This was obtained based on the geometric dimensions of the object and its location 
in the workspace. For the occupancy grid developed in this research, each grid is of size 5mm X 
5mm X 5mm.  
 

 
 
Fig. 5.  Images of the Worktable Obtained from Left and the Right Camera 
 

Once the data points were obtained from the IR proximity sensor and stereo vision sensors, 
Equations (13) to (15) were applied to find the probabilistic estimates of the occupancy of cells 
of the grid, and two separate occupancy grids obtained from the IR and the stereo vision were 
developed. If the probability of the cell being occupied was 5.0])([ >= occCsP i , the cell was 
assumed to be occupied. The occupancy grid obtained from fusion of the two grids via Bayesian 
approach described in previous section is shown in Fig. 6(b).  
 

The occupancy grids obtained above were based on the sensor models derived from the 
proposed neural network based learning scheme. If the sensor models are assumed to be rigid 
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(standard deviation does not depend on any parameter and remains constant for all data points), a 
different set of occupancy grids is obtained. Fig. 6(c) shows the occupancy grid fused from these 
two grids. In order to carry out the comparison, fused occupancy grid was also obtained from the 
independent opinion pool method given by (16), and the fused grid is shown in Fig. 6(d) 
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(d) 

 
Fig. 6.  Occupancy Grids a) Actual Grid, b) Fused Grid (Proposed  NN based Approach), c) 
Fused Grid (Rigid Sensor Model Approach), d) Fused Grid (Independent Opinion Pool Method) 
 

To facilitate the comparison of performance of the fusion process via different algorithms, a 
measure of error was formulated which is given by the following equation: 
 

( ) ( )[ ]2∑ −=
iC

sensoriactuali CsCsError                         (29) 

 
where ( )

actualiCs  is the actual state of the cell, and ( )
sensoriCs  is the state of the cell obtained from 

the sensor and/or fusion process. The state of the cell is either 1 (for occupied) or 0 (for empty). 
The value of this error associated with the occupancy grids obtained from raw sensor 
measurements are 1062 and 1279 respectively for IR proximity sensor and stereo vision. Table I 
provides the error value associated with the occupancy grid obtained from the fusion process 
described above. The table compares the error value obtained via the two approaches. The first 
approach is based on the proposed neural network oriented sensor modeling scheme, and the 
second approach is based on the rigid sensor model. 
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TABLE  I 

 ERROR ASSOCIATED WITH OCCUPANCY GRIDS OBTAINED FROM FUSION PROCESS 
NN Based Modeling Approach Rigid Sensor Model Approach 
IR Sensor Stereo Vision Fused IR Sensor Stereo Vision Fused 
1070 1160 956 1070 1279 1214 
 

From the figures as well as from the table of results, it is evident that the sensor modeling and 
fusion scheme presented in this research report have been able to reduce the uncertainty inherent 
in individual sensors. The fusion process derived from proposed neural network based sensor 
modeling scheme has been able to reduce the error associated with the occupancy grid by over 
25% with respect to raw stereo vision sensor measurements, and by approximately 10% with 
respect to raw IR proximity sensor measurements. On the other hand, the results from fusion 
based on rigid sensor model scheme are not particularly impressive. Although the occupancy 
grid obtained from this method had a reduction of error by 5% with respect to raw stereo vision 
sensor measurement, the fused grid had an increase in error by over 14% with respect to raw 
proximity sensor measurements. The major reason for its poor performance is that this procedure 
assumes equal uncertainty (given by constant standard deviation of sensor model) associated 
with all data points. This assumption leads to erroneous calculation of probabilistic estimates as 
shown by an increase in the error value. The error associated with the occupancy grid obtained 
from independent opinion pool method was found to be 1063. Hence, it shows no improvement 
when compared to raw proximity sensor measurement, and shows an improvement of 
approximately 17% with respect to stereo vision sensor measurements. This method tends to 
yield high probabilistic evidence when both the sensors are in agreement, and gives low 
probabilistic evidence when at least one sensor provides lower value compared to the other. 
Independent opinion pool method indicates equal belief in the probabilistic evidence provided by 
two different sources. For fusion problem investigated in this research that involved sensors 
which have large difference in reliability/accuracy of their measurement, this method is not 
suitable. 

6. CONCLUSION 
This research project proposes a novel technique that utilizes learning and optimizing 

capability of neural networks to obtain a sensor model that automatically learns some of the key 
statistical relations from the data. The research results present a method of obtaining occupancy 
profile of the environment based on a three-dimensional occupancy grid framework, and present 
a novel method for obtaining probabilistic estimates for the occupancy of cells from two 
different kind of sensory sources. The fusion of information from sensors has been carried out 
under Bayesian framework, and its performance has been compared with respect to other 
strategies. It was seen that the fusion process carried out under proposed sensor modeling 
strategy based on neural network had a superior performance than that of fusion process based 
on rigid sensor model and that of fusion based on independent opinion pool method.  
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8. PUBLICATIONS RESULTING FROM THIS PROJECT 
• Kumar, M., Garg, D., and Zachery, R., “Multi-Sensor Fusion Strategy to Obtain 3-D 

Occupancy Profile”, accepted for publication in the Proceedings of the 31st Annual 
Conference of the IEEE Industrial Electronics Society (IECON), Raleigh, NC, November 
2005. 

 
• Kumar, M., Garg, D., and Zachery, R., “Intelligent Sensor Modeling and Data Fusion via 

Neural Network and Maximum Likelihood Estimation”, accepted for publication in the 
Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 
Orlando, FL, November 2005. 

 
• Kumar, M., Garg, D., and Zachery, R., “Intelligent Sensor Uncertainty Modeling Techniques 

and Data Fusion”, submitted to IEEE Transactions on Mechatronics, 2005. 
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