Chemistry in Action: Space Shuttle Fuel Chemistry

Ghanshyam L. Vaghjiani

Space and Missile Propulsion Division
Propellant Branch
Air Force Research Laboratory
AFRL/PRSP
10 E Saturn Blvd
Edwards AFB, CA 93524, USA

Tel: 661 275 5657
Fax: 661 275 6245

Email: ghanshyam.vaghjiani@edwards.af.mil

Distribution A: Approved for public release, distribution is unlimited
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUG 2005</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry in Action: Space Shuttle Fuel Chemistry (Briefing Charts)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghanshyam Vaghjiani</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2303</td>
<td>0423</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Force Research Laboratory (AFMC), AFRL/PRSP, 10 E. Saturn Blvd., Edwards AFB, CA, 93524-7680</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Approved for public release; distribution unlimited
Outline

- **Student’s Perception of Chemistry**

- **Role In Science and Technology**
 - Traditional Areas
 - Recent and Emerging Technologies

- **Space Shuttle-Atmospheric Interactions**

- **New Hypergolic Fuels**

- **Closing Remarks**
 - Acknowledgements
 - Career in the Government
 - Web Resources
Student’s Perception of Chemistry

- It is too Hard! Too Much Math! I do not Like Cooking!
- It is Only for Academicians!
- What use is it for Getting Good Jobs?
- I Also Thought This! Until I met my Mentor, Ian Worthington

- **Definition:**
 - Study of MATTER and the Changes That Take Place With That MATTER

- **Importance:**
 - MATTER is Everywhere! Therefore it Matters a lot!
 - To Understand the Energetics of Breaking and Making Chemical Bonds
 - We Seek Microscopic Explanation of Macroscopic Changes we Experience
Role in Science and Technology

TRADITIONAL CHEMISTRY

- Organic
- Physical
- Analytical
- Inorganic
- Quantum
- Petrochemicals
- Pharmaceuticals
- Chemical Physics
- Chemical Engineering
- Electro Chemistry
- Math Nerd
- ?...

RECENT CHEMISTRY

- Atmospheric Chemistry
- Combustion Chemistry
- Biochemistry
- Geochemistry
- Astrochemistry
- Nuclear Chemistry
- Air Pollution
- Ozone Hole
- Fuels, Energy Production
- DNA Gene Mapping
- Volcanoes
- Earthquakes
- Space Matter
- Energy/Weapons
- ?...

EMERGING CHEMISTRY

- NanoChemistry
- InfoChemistry
- Chemometrics
- Femtosecond Chemistry
- Attosecond Chemistry
- Super Materials for Propulsion,
- Electronics
- Chemical Data Processing
- Real-time Bond Breaking/Forming
- Lasers/Computers
- Real-time Electron Movement
- Lasers/Computers
- ?...

Distribution A: Approved for public release, distribution is unlimited
Space Shuttle Propulsion System

- **Space Propulsion (PRC, OMS, Veneers):**
 - **Hypergolic Liquids**
 - \(\text{CH}_3\text{NHNH}_2 + \text{N}_2\text{O}_4 \rightarrow \text{products} + \Delta H \)
 - **NO External Ignition Required!**

- **Boost Phase (2 x 3.1 Mlb):**
 - **Solids**
 - \(\text{HTPB} + \text{NH}_4\text{ClO}_4 \rightarrow \text{products} + \Delta H \)
 - **One-time Squib**

- **Launch (3 x 0.4 Mlb):**
 - **Cryogenic Liquids**
 - \(2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} + \Delta H \)
 - **One-time Torch**

Distribution A: Approved for public release, distribution is unlimited
Affirmative: Approved for public release, distribution is unlimited.

Strong Emissions From CO(a):

Cause of Chemiluminescence:

Rocket Plume-Atmospheric Interactions

UV-Chemistry Questions:

Precursors?
Its Formation?
Its Reactions?

Space Experiment

Observation Platforms

Space Shuttle
Mir Space Station
MSX

Thrusters

Space Shuttle
Progress-M
Soyuz-TM
Proposed CO(a) Source Chemistry

Unreacted CH₃NHNH₂ → Precursor(s)

Precursor(s) + O → Products

→ CO(aᵥ'), R
→ CH₂ + OR'
→ CH + OR''

CH₂ + O → Products

k = 1.3 x 10⁻¹⁰
→ CO(aᵥ≤8), aᵥ(≤5), dᵥ(≤1) + H₂

CH + O → Products

k = 9.5 x 10⁻¹¹
→ CO(aᵥ≤8), aᵥ(≤5), dᵥ(=0) + H

- CO + H₂ (Main)
- 2H + CO (~ 20%)
- CH + OH (~ 6%)

- CO + H (Main)
- HCO (HCO*)
- HCO⁺ + e⁻ (~ 0.03%)
- C + OH (? +ve Eₐ)

200 km-Thermosphere
[O] >> [O₂]
Apparatus

He/CHBr$_3$

He/O$_2$(O-atoms)

248-nm Laser

Pump

Calorimeter

vuv-Spectrometer

uv/vis-Spectrometer

Distribution A: Approved for public release, distribution is unlimited
CHBr₃ Photolysis To Produce CH Radicals

\[
\begin{align*}
\text{CHBr} + \text{Br}_2 & \rightarrow \text{Br} + \text{CHBr}_2 (\Delta H = -49.6) \\
\text{(H + Br)} & \rightarrow \text{CBr}_2 + \text{HBr} \\
\text{CBr}_2 + \text{HBr} & \rightarrow \text{Br} + \text{CHBr} \\
\text{CH} & \rightarrow \text{CH(A)} + \text{Br} \\
\end{align*}
\]

\[
\begin{align*}
\text{CH} + \text{Br} & \rightarrow \text{CHBr} \\
\text{CHBr} + \text{Br} & \rightarrow \text{CH}(^4\Sigma^-) + \text{Br} \\
\text{CH}(^2\Pi) + \text{Br} & \rightarrow \text{HBr} + \text{C} \\
\end{align*}
\]
CO(A) Source Reactions

Chemiluminescence Intensity Varied as (Laser Fluence)2

\[
\begin{align*}
C(^3P) + O(^3P) & \rightarrow CO(A^1\Pi) \\
CHBr + O(^3P) & \rightarrow HBr(X^1\Sigma^+) + CO(A^1\Pi) \\
CH + O(^3P) & \rightarrow H(^2S) + CO(A^1\Pi) \\
CBr + O(^3P) & \rightarrow Br(^2P_{3/2}) + CO(A^1\Pi) \\
CBr_2 + O(^3P) & \rightarrow Br_2(^1\Sigma^+) + CO(A^1\Pi)
\end{align*}
\]

ΔH_{298K}° (kcal mol$^{-1}$)

\(-71.8\) \hspace{1cm} (+1.3) \hspace{1cm} (+9.2) \hspace{1cm} (+3.8) \hspace{1cm} (+29.1)

Diatomics or Triatomics Need to be Internally Excited
Comparison of CO & OH-Chemiluminescence

Strong CO(A) Signal in O/O₂

Very Weak CO(A) Signal in O₂ only

Weakened OH(A) Signal in O/O₂

Strong OH(A) Signal in O₂ only

\[k = (2.3-5.9) \times 10^{-11} \]

\[\text{CH} + \text{O}_2 \rightarrow \text{Products} \]
\[\rightarrow \text{CO}(a'_{v\leq4}, a'_{v'=0}) + \text{OH} \]

Distribution A: Approved for public release, distribution is unlimited
Bimolecular Reaction Rate Coefficients of Added Substrate When CH₄ Present

\[k_{O_2} = (2.2 \pm 0.3) \times 10^{-11} \]
\[k_{N_2O} < 7 \times 10^{-14} \]
\[k_{NO} = (3.4 \pm 0.5) \times 10^{-11} \]
\[k_{H_2} < 2 \times 10^{-13} \]
\[k_{CH_4} < 6 \times 10^{-14} \]

(C + O) not the Source

Distribution A: Approved for public release, distribution is unlimited
CHBr$_3$ Versus CBr$_4$ Photolysis

- Stronger VUV Signal in CHBr$_3$ Photolysis
 \[\text{(CH}^\# \text{ (or CHBr}^\#\text{) + O) Important} \]

- Signal in CBr$_4$ Photolysis Varies as (Fluence)2
 \[\text{(CBr}_2^\# + O) \text{ not Important, Since Br}_2^* \text{ Signal Varies as (Fluence)}^1 \]

Distribution A: Approved for public release, distribution is unlimited
CBr$_4$ Photolysis

- CBr$_2$ + O → CO + Br$_2^*$
- CBr$_2$ Formed in Absence of Photolysis
- CBr$_2$ Formed in Photolysis
- CBr + O → CO* + Br

CBr$_2$ + O → CO* + Br$_2$ not Important

Distribution A: Approved for public release, distribution is unlimited
CHBr$_3$ Versus CBr$_4$ Photolysis

- **CHBr$_3$**

 \[
 k_{O_2} = (2.2 \pm 0.3) \times 10^{-11}
 \]

- **CBr$_4$**

 \[
 k_{O_2} = (2.4 \pm 0.4) \times 10^{-12}
 \]

\[\downarrow\]

(CBr\# + O) Source is not as Important as (CH\# + O) in CHBr$_3$ Photolysis

- **CHBr\#** has Very Short Lifetime (~ 5 \(\mu\)s) and \(k_{(CHBr + O_2)} < 2 \times 10^{-14}\)

\[\downarrow\]

(CHBr\# + O) Source not Important in CHBr$_3$ Photolysis

Distribution A: Approved for public release, distribution is unlimited
CH(a^4\Sigma^-) + O

Reaction Rate Coefficient

\[
(\kappa' - \kappa_{eff}) \text{ (s}^{-1})
\]

Excess CH\textsubscript{4}, 2 Torr He

\[
[O] \text{ (1 x 10^{14} molec cm}^{-3})
\]

- \[k_{(CH(a) + O)} = (1.35 \pm 0.47) \times 10^{-10}\]

Previously:
- \[k_{(CH(X) + O)} = (9.5 \pm 1.4) \times 10^{-11}\]
Space Shuttle-Atmospheric Interaction: Conclusions

- 248-nm Photolysis of CHBr₃/O-atom Mixtures

 Strong Emissions From:
 - CO(A), CO(a)
 - OH(A) when O₂ Present
 - Br₂(D)

 Kinetic & Laser Fluence Trend Analyses of the Chemiluminescence:
 - CH(X²Π, a⁴Σ⁻) + O
 - CBr₂ + O

- Plume Fragments (CH) + Thermosphere (O-atoms) → UV Emissions
New Hypergolic Fuels

AFRL’s Motivation:
- Replace Highly Toxic CH₃NHNH₂ (MMH)
- Design Better Performing Fuels

AFRL’s Approach:
- Tune Fuel Structure for;
 - Energy Content: High Heat of Combustion
 - Oxygen Balance: Lower Spacecraft Mass
 - Physical Properties: Higher \(\rho \), Lower \(mp \), Reduced Sensitivities
 - Ignition/Combustion Behavior: Short ID Time

Propellant Performance \((I_{sp})\)

Fuel + Oxidizer \(\rightarrow\) Products + \(\Delta H\)

\[
\Delta H = K.E = \frac{1}{2}mv^2
\]

\[
I_{sp} = \frac{1}{g} \int F(t) dt / \int \dot{M}(t) dt = \frac{1}{g} (2H/m)^{1/2}
\]

Distribution A: Approved for public release, distribution is unlimited
Search For Hypergolic Fuels

- **Definition:** A Pair of Compounds, Upon Contact, Chemically React and Release Sufficient Heat to Spontaneously Ignite

- **Discovery/Research of Hypergolic Propellants:** 1930’s, Germany (e.g. BMW)

- **No a Priori Method to Predict Hypergolicity:** NEW Fuel & Oxidizer Hypergol Pair Must be Experimentally Verified!

<table>
<thead>
<tr>
<th></th>
<th>N₂O₄/MMH</th>
<th>N₂O₄/HEHN</th>
<th>N₂O₄/HEATN</th>
</tr>
</thead>
<tbody>
<tr>
<td>KE(MJ kg⁻¹)</td>
<td>4.7</td>
<td>3.9</td>
<td>4.0</td>
</tr>
<tr>
<td>ρ(kg m⁻³)</td>
<td>1189</td>
<td>1424</td>
<td>1454</td>
</tr>
<tr>
<td>FOM</td>
<td>1.0</td>
<td>1.03</td>
<td>1.05</td>
</tr>
</tbody>
</table>

Distribution A: Approved for public release, distribution is unlimited
Screening Fuels For Hypergolicity

Drop-test Apparatus Employed: O/F = ~ 20

<table>
<thead>
<tr>
<th>Fuel</th>
<th>IRFNA</th>
<th>N₂O₄</th>
<th>WFNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH₃NHNH₂ (L) (MMH)</td>
<td>HGI</td>
<td>HGI</td>
<td>HGI</td>
</tr>
<tr>
<td>HOCH₂CH₂N⁺H₂NH₂ NO₃⁻ (L) (HEHN)</td>
<td>HGI*</td>
<td>VR</td>
<td>HGI*</td>
</tr>
<tr>
<td>(1-ethan-2-ol)-4-amino-1,2,4-triazolium nitrate (L) (HEATN)</td>
<td>SR</td>
<td>VR</td>
<td></td>
</tr>
<tr>
<td>1H-1,2,3-triazole (L)</td>
<td>SR</td>
<td>SR</td>
<td></td>
</tr>
<tr>
<td>1-amino-1,2,3-triazole (M)</td>
<td>HGI*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-methyl-1-amino-1,2,3-triazolium nitrate (S)</td>
<td>VR</td>
<td>VR</td>
<td></td>
</tr>
<tr>
<td>ν−≡−H (L)</td>
<td>VR</td>
<td>VR</td>
<td>VR</td>
</tr>
<tr>
<td>ν−≡−ν (L)</td>
<td>HGI*</td>
<td>HGI*</td>
<td>HGI*</td>
</tr>
<tr>
<td>ν−≡−≡−ν (L)</td>
<td>HGI*</td>
<td>HGI*</td>
<td>HGI*</td>
</tr>
</tbody>
</table>

HGI=hypergolic ignition, VR=vigorous reaction, SR=slow reaction. At room temperature, fuel is solid (S), liquid (L), or heated to its melting point (M).

*New hypergols

Distribution A: Approved for public release, distribution is unlimited
Fuel Functionality Affects Ignition

WFNA / $\checkmark \equiv \checkmark$ is Hypergolic

$\checkmark \equiv \checkmark$ H

Not Hypergolic

$\checkmark \equiv \equiv \equiv \checkmark$

Is Hypergolic;
ID = 5.0 ms
Complexity of the Pre-ignition Chemistry

\[\nabla \equiv \nabla / N_2O_4 \]

ID = 40.6 ms
Characterization of Pre-ignition Chemistry is the Key for Designing new Hypergols

- Apply Spectroscopic Probing Tools
 - Rapid-Scan FTIR
 - Time-Resolved Raman
 - Time-Resolved Emission
 - High Speed Video
- Develop Global Initiatory Mechanism
- Construct Pre-Ignition Models
- Kinetic Modeling of Ignition
- Tune Fuel Chemical Functionalities

- Apply Quantum Chemistry Tools
 - ΔH of Intermediates
 - PES (Reaction Coordinates)
 - Reaction Rates
- Provide Initial Rationale to Experimental Observations

Focused/Intelligent Approach to new Synthesis of Hypergolic Fuels

New Hypergolic Fuels: Conclusions

Distribution A: Approved for public release, distribution is unlimited
Closing Remarks

Acknowledgements:

- AFOSR
 - Drs. M. Berkin & M. Berman ($$$$
- AFRL/PRSP
 - Drs. Alfano (Experimental), Mills & Boats (Theory), Suri & Hawkins (Synthesis)

Career in the Government:

- DoD
 - AFRL, ONR, ARL, etc
- DoE
 - LLNL, ANL, ONL, LANL, etc
- DoC
 - NOAA, NIST, etc
- NASA
 - Dryden, Ames, JPL, etc
- And Many More ……

Web Resources:

- American Chemical Society www.chemistry.org
- Edwards AFB www.edwards.af.mil
- NASA www.nasa.gov
- New Scientist www.sciencesjob.com

Distribution A: Approved for public release, distribution is unlimited
Backup Slides
UV/Vis Plumes

Radiance Data

⇔ Plume Data ⇔

↓

Modeling Studies

↓

Laboratory Studies

↓

Chemiluminescent Processes

↓

Identify Spacecraft Atmospheric Interactions

Distribution A: Approved for public release, distribution is unlimited
Absence of O-atoms

X-trace: \((O_2, 8.8 \times 10^{14})\)

\(\Delta\)-trace: \((O_2) + (CH_4, 5.0 \times 10^{15})\)

\[
CH(X^2\Pi) + O_2 \rightarrow CO + OH(A)
\]

\[
CH(a^4\Sigma^-) + O_2 \rightarrow CO + OH(A)
\]

5.0 x 10^{13} of O-atoms

- trace: \((O_2, 8.8 \times 10^{14})\)

- trace: \((O_2) + (CH_4, 5.0 \times 10^{15})\)

\[
CBr_2 + O \rightarrow CO + Br_2(D)
\]

(CBr_2 + CH_4) Slow Reaction
Br$_2^*$-Chemiluminescence

<table>
<thead>
<tr>
<th>Laser off</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHBr$_3$ + O → CBr$_3$ + OH</td>
</tr>
<tr>
<td>CBr$_3$ + O → CBr$_2$ + BrO</td>
</tr>
<tr>
<td>⊳</td>
</tr>
<tr>
<td>CBr$_2$ + O → Br$_2^*$ + CO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laser on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br$_2^*$ ∝ (Fluence)1</td>
</tr>
<tr>
<td>⊳</td>
</tr>
<tr>
<td>CHBr$_3$ + hν → CHBr$_2^*$ + Br</td>
</tr>
<tr>
<td>CHBr$_3$ + hν → CBr$_2$ + HBr</td>
</tr>
<tr>
<td>CHBr$_2^*$ + hν → CBr$_2$ + H</td>
</tr>
<tr>
<td>CHBr$_2^$ + O ↝ Br$_2^$ + HCO</td>
</tr>
<tr>
<td>CHBr$_2$ + O → CBr$_2$ + OH</td>
</tr>
<tr>
<td>CHBr$_2^*$ + O ↝ CBr$_2$ + OH(A)</td>
</tr>
<tr>
<td>CHBr* + O ↝ CBr + OH(A)</td>
</tr>
</tbody>
</table>

Distribution A: Approved for public release, distribution is unlimited
Time Resolved Br$_2^*$-Signal

- Fast Br$_2^*$ Rise
- Also:
 - $k_{O_2} < 9 \times 10^{-14}$
 - $k_{CH_4} < 7 \times 10^{-14}$
 - $k_O = (5.4 \pm 1.0) \times 10^{-11}$

\[CHBr_3 + h\nu \rightarrow CBr_2 + HBr \]

Less Important
\[CBr_3 + h\nu \rightarrow CBr_2 + Br \]

- Since:
 - $CBr_4 + h\nu \rightarrow CBr_3^* + Br$
 - $CBr_2 + Br$

\[CBr_4 + h\nu \rightarrow CBr_2 + Br_2 \{ ? \} \]
$\text{CH}^\# + \text{O} \rightarrow \{\text{HCO}\}^* \rightarrow \text{CO}^* + \text{H}$

$\text{M} \rightarrow \text{CO}(X,a,a',d,A)$

CO* Production Mechanism
Hypergolic Action

- **No a Priori Method:** Hypergolicity Between any Pair of Fuel & Oxidant System Must be Experimentally Verified

- **Know Your Calories:** < 0.05 cc of a Fuel can Lead to a Spectacular Interaction With an Oxidizer

\[
2N_2H_4 + N_2O_4 \rightarrow 3N_2 + 4H_2O \quad \Delta H = -279 \text{ kcal/mol} \quad (51 \text{ mg} = 220 \text{ calories})
\]

Distribution A: Approved for public release, distribution is unlimited