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Abstract

Title of Dissertation: Control and Stabilization of a Class of

Nonlinear Systems with Symmetry

Vikram Manikonda, Doctor of Philosophy, 1998

Dissertation directed by: Professor P.S. Krishnaprasad

Department of Electrical Engineering

The focus of this dissertation is to study issues related to controllability and

stabilization of a class of underactuated mechanical systems with symmetry.

In particular we look at systems whose configuration can be identified with a

Lie group and the reduced equations are of the Lie-Poisson type. Examples of

such systems include hovercraft, spacecraft and autonomous underwater vehi-

cles. We present sufficient conditions for the controllability of affine nonlinear

control systems where the drift vector field is a Lie-Poisson reduced Hamilto-

nian vector field. In this setting we show that depending on the existence of a

radially unbounded Lyapunov type function, the drift vector field of the reduced

system is weakly positively Poisson stable. The weak positive Poisson stability



along with the Lie algebra rank condition is used to show controllability. These

controllability results are then extended to the unreduced dynamics. Sufficient

conditions for controllability are presented in both cases where the symmetry

group is compact and noncompact.

We also present a constructive approach to design feedback laws to stabilize

relative equilibria of these systems. The approach is based on the observation

that, under certain hypotheses the fixed points of the Lie-Poisson dynamics

belong to a locally immersed equilibrium submanifold. The existence of such

equilibrium manifolds, along with the center manifold theory is used to design

stabilizing feedback laws.
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Chapter 1

Introduction

In the middle of the 19th century Sophius Lie made a far reaching discovery that

techniques designed to solve particular unrelated types of ordinary differential

equations (ODE’s), such as separable, homogeneous and exact equations, were

in fact all special cases of a general form of integration procedure based on the

invariance of the differential equation under a continuous group of symmetries.

Roughly speaking a symmetry group of a system of differential equations is

a group that transforms solutions of the system to other solutions. Once the

symmetry group has been identified a number of techniques to solve and classify

these differential equations becomes possible. In the classical framework of Lie,

these groups were local groups and arose locally as groups of transformations on

some Euclidean space. The passage from the local Lie group to the present day

definition using manifolds was accomplished by Cartan.

These continuous groups, which originally appeared as symmetry groups of dif-

ferential equations, have over the years had a profound impact on diverse ar-

eas such as algebraic topology, differential geometry, numerical analysis, control
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theory, classical mechanics, quantum mechanics etc. They are now universally

known as Lie groups.

One of the main foci of this dissertation is to model and study a class of controlled

mechanical systems, whose configuration space can be identified with a finite di-

mensional Lie group, and whose dynamics can be modeled as Euler-Lagrange or

Hamiltonian dynamics. Examples of such systems include hovercraft, spacecraft

and underwater vehicles modeled as rigid bodies. To model the dynamics of

these mechanical systems we adopt the Hamiltonian formulation. Rather than

adopt the canonical Hamiltonian or Euler Lagrange formulation on a Euclidean

space, in this dissertation, instead we adopt a more general differential geomet-

ric approach to mechanics. We use a non-canonical Hamiltonian formulation,

modeling these systems on Poisson manifolds and using the associated Poisson

structure to write down the Hamiltonian dynamics.

Hamiltonian mechanics and its relation to the concept of Poisson manifolds has

its origins in the original work of Poisson, Hamilton, Liouville and others. The

more general notion of a Poisson structure apparently first appears in Lie’s theory

of “function groups”. It was later rediscovered many times under different names

in the works of Lie, Dirac, Pauli, Martin, Sudarshan and Mukunda, Hermann,

and others. A geometric approach to the study of mechanical systems has had a

profound influence in the qualitative analysis of dynamics of mechanical systems.

Playing an essential role in this are recent developments in reduction theory

which draws its inspiration from Lie’s original work (cf. [Marsden and Ratiu,

1994], for further details). Some of the reduction techniques developed include

Lagrangian reduction [Marsden and Scheurle, 1993a; R.Yang et al., 1993] which
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involves dropping the Euler-Lagrange equations to the quotient of the velocity

phase space by the symmetry group. Hamiltonian reduction, on the other hand,

involves projecting the Poisson bracket to the reduced (quotient) space which

also inherits a Poisson structure. In particular, if the configuration space of

the system can be identified with a Lie group G, a left invariant Hamiltonian

on T ∗G gives rise to reduced dynamics on T ∗G/G, which is isomorphic to g
∗

the dual of the Lie algebra of G. The Poisson structure on g
∗ is attributed

to Lie and Berezin-Kirillov-Kostant-Souriau. (See the work of Weinstein for

historical remarks [Weinstein, 1983a]). Apparently Lie was also aware of the

Poisson structure on the dual of a Lie algebra, but it was only recently that it

became clear that this bracket is obtained by a simple reduction procedure i.e.

it is induced from the canonical bracket on T ∗G by passing to T ∗G/G which is

isomorphic to g
∗. This bracket associated with the dual of the Lie algebra is now

universally known the Lie-Poisson bracket.

Using this differential geometric approach to mechanics, in Chapter 2 we derive

the reduced dynamics of hovercraft, spacecraft, underwater vehicles and surface

vehicles. In each case we identify the configuration space with a Lie group, iden-

tify the symmetry group of the dynamics, and write down the reduced dynamics

on the reduced phase space in terms of the Poisson structure associated with

the reduced phase space. The examples discussed in Chapter 2 are of practical

interest. For example the amphibious versatility of hovercraft has given them a

role in specialized applications including search and rescue, emergency medical

services, ice breaking, Arctic off-shore exploration, and recreational activities

[Amyot, 1989]. Certain environmental aspects (such as ice-roughness, Arctic

rubble fields etc.) also provide a niche for operations by hovercraft. Similarly a
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growing industry in underwater vehicles for deep sea explorations has lead to the

demand for more versatile, robust and high performance autonomous vehicles

that can cope with actuator failures, disturbances, exploit sensor based local

navigation etc. The design and control of autonomous versions of these vehicles

has also been of much recent interest.

Given a particular input to the actuator the approach adopted to write down

the dynamics plays a crucial role in providing an insight into the controllability

and stability properties of the dynamics of these systems. As we see in Chapter

4 and Chapter 5 the geometric approach to modeling these systems has many

advantages over conventional approaches especially in providing insight into con-

trollability and stability properties of these systems. The hovercraft is modeled

as a planar rigid body subject to an external force. Its configuration space is iden-

tified with the Lie group SE(2), and the reduced dynamics are written on se(2)∗.

The configuration space of the underwater vehicle and surface vehicle is identified

with the Lie group SE(3). The underwater vehicle is modeled as a completely

submerged body, in an inviscid, incompressible and irrotational fluid of infinite

volume. The study of completely submerged bodies in ideal fluids has a long his-

tory dating back to the classic work of Kirchhoff, Lamb and Birkhoff [Lamb, 1945;

Birkhoff, 1960]. More recently in [Leonard, 1995] the equations are derived in

the geometric framework. We also study the motions of floating bodies (e.g.

ships) in quiet water without the consideration of resistance forces. While ship

motions arise very rarely in quiet water, there is a great practical value in their

study since the characteristics of ships in agitated seas are governed by the char-

acteristics of motion in quiet water. Unlike the case of the completely submerged

vehicle, in the case of a tossing vessel as a result of the change in the shape of

4



the submerged volume the force due to buoyancy changes its magnitude, and

point of application. In each of the cases we identify the symmetry groups and

write down the reduced dynamics on the reduced spaces.

The impact of Lie theory in control theory in the context of nonlinear control

became prominent around the early 1970. The fundamental observation that

almost all the information in the Lie group is contained in its Lie algebra, and

questions about systems evolving on Lie groups could be reduced to their Lie

algebras, is the cornerstone of the applications of Lie algebras and Lie groups

to control theory. In the early 1970’s Brockett, Jurdjevic, Sussmann and others

exploited this observation and introduced the theory of Lie groups and their as-

sociated Lie algebras into the context of nonlinear control to express notions such

as controllability, observability and realization theory for right-invariant systems.

One of the most notable application of Lie-theoretic techniques in control theory

has been in determining controllability of nonlinear systems. Results in this area

have inspired many interesting approaches in the designing constructive control

laws to steer and stabilize nonlinear control systems.

Some of the early work [Lee and Markus, 1976] (and references therein) on non-

linear controllability was based on linearization of nonlinear systems. It was

observed that if the linearization of a nonlinear system at an equilibrium point

is controllable, the the system itself is locally controllable. Later a differential

geometric approach to the problem was adopted in which a control system was

viewed as a family of vector fields. It was observed that (c.f. [Hermann, 1968;

Hermann and Krener, 1977; Hermes, 1974; Krener, 1974; Sussmann and Jurd-

jevic, 1972; Lobry, 1970])) a lot of the interesting control theoretic information
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was contained in the Lie brackets of these vector fields. It was realized [Hermann

and Krener, 1977; Krener, 1974] that Chow’s theorem [Hermann, 1968] lead to

the characterization of controllability for systems without drift. Chow’s theorem

provides a Lie algebra rank test, for controllability of nonlinear systems without

drift, similar in spirit to that of Kalman’s rank condition test for linear systems.

In the setting of controlled mechanical systems while drift free dynamics arise

when one writes down the kinematics, once dynamics are included the system

is no longer drift-free. Chow’s theorem can no longer be used to conclude con-

trollability. Studying controllability of systems of general systems with drift is

usually a hard problem. Important contributions in this direction have been due

to Bonnard, Lobry, Crouch, Byrnes, Jurdjevic and Kupka [Jurdjevic and Kupka,

1981], and others. In [Crouch and Byrnes, 1986] sufficient conditions are given,

in terms of a “group action”, that a locally accessible system is also locally reach-

able. In [Lobry, 1974] sufficient conditions for the controllability of a conservative

dynamical polysystem on a compact Riemannian manifold are presented. More

recently this result was extended by [Lian et al., 1994] to dynamical polysystems

where the drift vector field was required to be weakly positively Poisson stable.

A main contribution of this dissertation is discussing controllability of under

actuated mechanical systems with symmetry. In this Chapter 4 we present suf-

ficient conditions (Theorem 4.2.2) for controllability of affine nonlinear control

systems where the drift vector field is a Lie-Poisson reduced Hamiltonian vec-

tor field. We show that depending on the existence of a radially unbounded

Lyapunov function, the drift vector field (of the reduced system) is weakly pos-

itively Poisson stable. The Weak Positive Poisson stability of the drift vector

field along with the Lie algebra rank condition [Lian et al., 1994] is used to show
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controllability of the reduced system.

Having shown controllability of the reduced dynamics we then present sufficient

conditions for controllability of the unreduced dynamics depending on whether

the symmetry group is compact or noncompact. In the setting where the sym-

metry group is compact we show that under assumptions of Theorem 4.2.2, we

can conclude that the drift vector field on T ∗G is also weakly Positively Poisson

stable. This again enables us to conclude controllability on T ∗G. In the setting

where the symmetry group is noncompact, we show (Theorem 4.4.17) that we

can conclude controllability of the unreduced dynamics. The proof relies on that

of Theorem 4.2.2. and earlier work by Murray and Lewis [Lewis and Murray,

1996] on configuration controllability. Our result gives a manageable tool to

check for controllability of a wide class of mechanical systems with symmetry.

These results are then applied to the examples discussed in chapter 3, in each

case drawing conclusions on the controllability of the dynamics. Some other

results in this chapter are on small time local controllability of these systems.

In Chapter 5 we study stability and feedback stabilization of mechanical system

with symmetry. We focus our attention of stability on fixed points of the reduced

dynamics. These give rise to relative equilibria, i.e. trajectories that are group

orbits in the unreduced phase space. While one can ascertain in a straightfor-

ward manner spectral stability of Hamiltonian systems, concluding nonlinear or

Lyapunov stability is more difficult as the linearization of a stable Hamiltonian

dynamics has eigenvalues on the imaginary axis. For canonical Hamiltonian sys-

tems the Lagrange Dirichlet criterion provides sufficient conditions for stability.

This result was extended by Arnold [Arnold, 1969], as the method now known
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as the energy-Casimir method [Bloch et al., 1992a; Bloch and Marsden, 1990;

Krishnaprasad and Marsden, 87]. In Chapter 5 we study the stability of the

fixed points of the reduced dynamics using the energy Casimir method. We

identify the unstable relative equilibria for the example systems discussed in

Chapter 3. Having identified the unstable equilibria the main focus of the rest

of the chapter is in constructing linear dissipative feedback laws to stabilize the

unstable equilibria. We present a general approach (Theorem 5.3.5), based on

center manifold theory, to construct stabilizing feedback laws to stabilize relative

equilibria of mechanical systems with symmetry. The approach is based on the

observation that, under certain hypotheses, the fixed points of the Lie-Poison

reduced dynamics can be shown to belong to a locally immersed equilibrium

manifold. The existence of this equilibrium manifold is used to construct stable

center manifolds. Some other results in this chapter include a discussion and

some results on Hamiltonian feedback laws to stabilize relative equilibria of the

example systems.

In Chapter 6 we summarize the contributions of this dissertation and present

some future topics for research. We also discuss some conjectures on the existence

of discontinuous feedback laws to stabilize the origin of the reduced dynamics.

8



Chapter 2

Preliminaries

In this chapter we review some basic definitions, notations and important the-

orems in differential geometry and geometric mechanics. Mathematical tools,

concepts and results that will be used frequently in the following chapters are

collected together in this chapter. As one of our main goals we outline the

process of reduction of nonlinear control systems with symmetry. In particular

we consider the case when the “free dynamics” are derived from a Hamiltonian

that is invariant under the action of a Lie group G. The reduction procedure

plays a key role in deriving the reduced dynamics, controllability results and

constructive control laws for a large class of mechanical systems discussed in

later chapters.
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2.1 Differential Geometry and Geometric Me-

chanics

As mathematical tools and theorems from geometric mechanics and differential

geometry will play an important role in the discussions that follow in the later

chapters, in this section we introduce some relevant definitions and theorems.

[Abraham and Marsden, 1977; Marsden and Ratiu, 1994; Marsden, 1992; Olver,

1993; Arnold, 1989; Crampin and Pirani, 1986; Nomizu, 1956] will serve as our

main sources of reference.

2.1.1 Lie Groups and Group Actions

A Lie group G is a manifold G that has a group structure consistent with its

manifold structure, i.e. the group operations : product and inverse, are differen-

tiable maps. The maps Rg : G→ G;h 7→ hg, and Lg : G→ G;h 7→ gh, g, h ∈ G

are called the right and left translation maps.

A Lie algebra is a vector space V together with an operation [·, ·] : V × V → V

called the Lie bracket for V , satisfying

(i) Bilinearity

[cv + c′v′, w] = c[v, w] + c′[v, w], c, c′ ∈ R

(ii) Skew-Symmetry

[v, w] = −[w, v]
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(iii) Jacobi Identity

[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0

∀ u, v, v′, w ∈ V .

A vector field X on G is called left invariant if for every g ∈ G

L∗gX = X i.e. (ThLg)X(h) = X(gh), ∀h ∈ G (2.1)

where Th(·) is derivative of the map Lg.

Given an element ξ ∈ TeG, the tangent space at the identity of G, a left invariant

vector field Xξ on G is defined as Xξ(g) = TeLg(ξ). Defining the Lie bracket on

TeG as

[ξ, η] := [Xξ, Xη](e),

TeG forms a Lie algebra which is isomorphic to the set of left invariant vector

fields on G. The vector space TeG with its Lie algebra structure is called the Lie

algebra of G and is denoted by g. Its dual space is denoted by g
∗.

Let M be a smooth manifold. A left action of a Lie group G on M is a smooth

mapping Φ : G×M →M such that

(i) Φ(e, x) = x

(ii) Φ(g,Φ(h, x)) = Φ(gh, x) ∀g, h,∈ G, x ∈M .

For every g ∈ G let Φg : M → M be given by Φ(g, x). At various times it will

be useful to hold one variable fixed and consider the action Φ as a function of

the remaining variable. Hence Φg : M → M denotes the map x 7→ Φ(g, x) and

Φx : G → M denotes the map g 7→ Φ(g, x). In the special case where M is a
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Banach space V and each Φg : V → V is a continuous linear transformation, the

action Φ of G is called a representation of G on V .

The orbit of x ∈M under the action Φ is defined by

Orb(x) = {Φg(x) | g ∈ G} ⊂M.

In finite dimensions Orb(x) is an immersed submanifold of M . An action Φ

of G on a manifold M defines an equivalence relation on M , by the relation

of belonging to the same orbit. Let M/G (also called the orbit space) denotes

the set of equivalence classes, π : M → M/G : x 7→ Orb(x); then the quotient

topology on M/G is given by defining U ⊂M/G to be open if and only if π−1(U)

is open.

An action Φ : G×M →M is said to be free if it has no fixed points, i.e. Φg(x) = x

implies that g = e or, equivalently, if for each x ∈ M, g 7→ Φg(x) is one-to-one.

An action Φ : G ×M → M is proper if the mapping φ̃ : G ×M → M ×M ,

defined by Φ̃(g, x) = (x,Φ(g, x)) is proper. (See also Section 4.4)

Remark 2.1.1 In finite dimensions properness means that if K ⊂ M ×M is

compact, then φ̃−1(K) is compact. In general, this means that if {xn} is a con-

vergent sequence in M and if φgnxn converges in M , then {gn} has a convergent

subsequence in G. If G is compact, properness is automatically satisfied.

Proposition 2.1.2 If Φ : G×M → M is a proper and free action, then M/G

is a smooth manifold and π : M →M/G is a smooth submersion.

Proof: See [Abraham and Marsden, 1977] Proposition 4.1.23, page 266.
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Of particular interest to us are the adjoint and the coadjoint actions of G on g

and g
∗ respectively, and the induced action of G on the tangent bundle TM and

the cotangent bundle T ∗M of M . The adjoint action, denoted by Ad, of G on

its Lie algebra g is given by

Ad : G× g→ g, Adg(ξ) = Te(Rg−1 ◦ Lg)ξ, g ∈ G, ξ ∈ g. (2.2)

Let Ad∗g : g∗ → g
∗ be the dual of Adg defined by

〈Ad∗gα, ξ〉 = < α,Adgξ >, α ∈ g
∗, ξ ∈ g,

where < ·, · > denoted the natural pairing between g and g
∗. The coadjoint

action of G on g
∗ is defined by

Ad∗ : G× g
∗ → g

∗; (g, α) 7→ Ad∗g−1α. (2.3)

The tangent lift, denoted by ΦT , of the action of G on TM is given by

ΦT : G× TM → TM : (g, vq) 7→ TΦg · vq (2.4)

where vq ∈ TqM .

The cotangent lift, denoted by ΦT ∗, is given by

T ∗Φ : G× T ∗M : (g, αq) 7→ T ∗Φg−1αq, (2.5)

where αq ∈ T ∗qM and T ∗q Φg−1 is the dual of TqΦg−1

Given an action Φ : G ×M → M , for each ξ ∈ g, the map Φξ : IR ×M → M ,

defined by Φξ(t, x) = Φ(exptξ, x), is an IR-action on M . The corresponding

vector field on M given by
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ξM(x) :=
d

dt
|t=0 Φexptξ(x), (2.6)

is called the infinitesimal generator of the action corresponding to ξ.

2.1.2 Hamiltonian Systems

Though, in this dissertation we mainly concern ourselves with Hamiltonian sys-

tem on Poisson manifolds, understanding the symplectic foliations of Poisson

manifolds plays a key role in some of our proofs in later chapters. Hence we

start with a description of Hamiltonian systems on symplectic manifolds and

then proceed to a description on Poisson manifolds.

A symplectic manifold is a pair (P,Ω) where P is an even-dimensional manifold

and Ω is a closed non-degenerate two-form on P .

A vector field X on P is called a Hamiltonian vector field, if there exists a

function H : P → IR called the Hamiltonian, such that

iXΩ = dH ⇔ Ωz(X(z), v) = dH(z).v z, v ∈ P, (2.7)

where iX is the interior product and dΩ is the exterior derivative of Ω.(cf. [Mars-

den and Ratiu, 1994]). A Hamiltonian vector field is denoted by XH . If such a

function is defined on a neighborhood, we say X is locally Hamiltonian.

Given a manifold M the cotangent bundle T ∗M has a natural symplectic struc-

ture. When M is the configuration space of a mechanical system, T ∗M is called

the momentum phase space. Choosing (q1, . . . qn) as local coordinates forM , and

(dq1, . . . dqn) as a basis for T ∗qM , α ∈ T ∗qM can then be written as α = pidq
i.
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Hence (q1, . . . qn, p1, . . . pn) are local coordinates on T ∗M . With respect to these

local coordinates the symplectic form

Ω0 =
n∑
i=1

dqi ∧ dpi,

defines a two form on T ∗M and is called the canonical symplectic form on T ∗M .

Let φ : M → N be a C∞ map from the manifold M to the manifold N , given a

k-form α on N , the pull back, φ∗α, of α by φ is the k-form on M given by

(φ∗α)q(v1, . . . vm) = αφ(q)(Tqφ · v1, . . . Tqφ · vm), (2.8)

where v1, . . . vk ∈ TqM.

Given two symplectic manifolds (P1,Ω1) and (P2,Ω2), a C∞-mapping φ : P1 →

P2 is called symplectic or canonical if

φ∗Ω2 = Ω1 (2.9)

Proposition 2.1.3 Let φt denote the flow of a vector field X. Then φt consists

of symplectic transformations ( i.e. for each t, φ∗tΩ = Ω ) if and only if X is

locally Hamiltonian.

Proof: See [Marsden and Ratiu, 1994] Proposition 5.4.2, page 141.

An n-dimensional manifoldM is said to be orientable if there is a nonvanishing n-

form µ called a volume form defined on it. A 2n-dimensional symplectic manifold

is oriented by the Liouville volume Ξ which in local coordinates has the expression

Ξ = dq1 ∧ · · · ∧ dqn ∧ dp1 ∧ · · ·dpn.
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(P,Ξ) is called a volume manifold and the measure associated with Ξ is called

the Liouville measure.

The divergence of a vector field X relative to a volume form µ, denoted by

divµ(X), is given by

LXµ = divµ(X)µ where LXµ =
d

dt
φ∗tµ |t=0 .

The flow φt of X is said to be volume-preserving if

divµ(X) = 0. (2.10)

Hence it follows that

divµ(X) = 0 iff φ∗tµ = µ. (2.11)

Proposition 2.1.4 The flow φt of a Hamiltonian vector field XH defined on a

symplectic manifold (P,Ω) is volume preserving and is a local diffeomorphism.

Proof: The proof follows from Proposition 2.1.3 and Equation 2.11.

We now consider Hamiltonian systems on Poisson manifolds. A Poisson manifold

is a pair (P, {·, ·}) where P is a smooth manifold and {·, ·} : C∞(P )×C∞(P )→

C∞(P ) is a map called the Poisson bracket which satisfies

(i) Bilinearity

{cF + c′F,G} = c{F,G}+ c′{F,G}, c, c′ ∈ IR

(ii) Skew symmetry

{F,G} = −{G,F}
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(iii) Jacobi Identity

{{F,G}, P}+ {{P, F}, G}+ {{G,P}, F} = 0

(iv) Leibniz Rule

{F,G.P} = {F,G} · P +G · {F, P}, G, F, P ∈ C∞(P ),

where · denotes the ordinary multiplication of smooth real valued functions on P .

Observe that C∞(P ) forms a Lie algebra under the Poisson bracket. A Poisson

structure can be uniquely expressed through a contravariant skew-symmetric

two-tensor Λ, called (cf. [Marsden and Ratiu, 1994]) the Poisson tensor such

that

{F,G}(z) = Λ(z)(dF (z),dG(z)) ∀z ∈ P. (2.12)

Given a smooth function H : P → IR defined on a Poisson manifold P , the

Hamiltonian vector field associated with H is a unique smooth vector field, de-

noted by XH , satisfying

XH(F ) = {F,H}, for every F ∈ C∞(P ). (2.13)

The equations governing the flow of XH are referred to as the Hamilton’s equa-

tions for the Hamiltonian function H. Defining the Poisson bracket on a sym-

plectic manifold (P,Ω) as

{F,G}(z) = Ω(XF (z), XG(z)) z ∈ P (2.14)

one observes that the definition (2.13) agrees with (2.7).

A smooth mapping f : P1 → P2 between two Poisson manifolds (P1, {·, ·}1) and

(P2, {·, ·}2) is called a canonical or Poisson map if

f ∗{F,G}2 = {f ∗F, f ∗G}1 ⇔ {F,G}2 ◦ f = {F ◦ f,G ◦ f}1. (2.15)
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As in the symplectic case, flows of Hamiltonian vector fields are Poisson maps,

and hence preserve the Poisson structure. Further Poisson maps push Hamilto-

nian flows to Hamiltonian flows (cf. [Marsden and Ratiu, 1994] Prop. 10.5.2).

Theorem 2.1.5 Let f : P1 → P2 be a Poisson map. If φt is the flow of XH and

ψt is the flow of Xh◦f , then φt ◦ f = f ◦ ψt and Tf ◦XH◦f = XH ◦ f

In finite dimensions one can show that to compute the Poisson bracket of any

pair of functions F,G ∈ C∞(P ) in some given local set of coordinates, it suffices

to know the Poisson bracket between the coordinate functions themselves. Let

x = (x1, . . . xm) be local coordinates on P . Then

{F,G} =
m∑
i=1

m∑
j=1

{xi, xj}
∂F

∂xi

∂G

∂xj
,

or

{F,G} = ∇FΛ(x)∇G, where Λij = {xi, xj}. (2.16)

Λ is a skew symmetric matrix and is again referred to as the Poisson tensor.

For example, on IR2n, with coordinates (q1, . . . , qn, p
1, . . . , pn) (for a mechanical

system p’s would represent momenta and q’s positions) the associated canonical

bracket is given by

{F,G} =
n∑
i=1

∂F

∂qi

∂G

∂pi
−
∂F

∂pi
∂H

∂qi
F,G ∈ C∞(IR2n), (2.17)

and the Poisson tensor Λ then takes the form

Λ =

 0 I

−I 0

 where I = n× n identity matrix.
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Hence, given a Hamiltonian H : P → IR the associated system of Hamilton’s

equations take the form

q̇ = {q,H} =
∂H

∂p
,

ṗ = {p,H} = −
∂H

∂q
.

One of the important examples of Poisson structures is the one on the dual of

the Lie algebra of a Lie group G. Let us assume that G has dimension r. Let

{ξ1, . . . , ξr} and {ξ[1, . . . , ξ
[
r} be a basis for the Lie algebra g and a dual basis for

the dual space g
∗ respectively, i.e. < ξ[i , ξj >= δij . Any µ ∈ g

∗ can be expressed

as µ =
∑r

i=1 µiξ
[
i . The minus Lie-Poisson bracket of two differentiable functions

F,G ∈ C∞(g∗) is given by

{F,G}−(µ) = −
r∑

i,j,k=1

ckijµk
∂F

∂µi

∂G

∂µj
, (2.18)

where ckij, i, j, k = 1, . . . , r are the structure constants of g relative to the basis

{ξ1, . . . , ξr}. Equivalently (2.18) can be written as

{F,H}−(µ) = ∇F TΛ(µ)∇H (2.19)

where

[Λ(µ)]ij = −
r∑

k=1

ckijµk. (2.20)

The manifold g
∗ together with its minus Lie Poisson bracket is a Poisson manifold

and is denoted by g
∗
−. (The manifold g

∗ together with its plus Lie Poisson bracket

is a Poisson manifold and is denoted by g
∗
+.) The minus Lie-Poisson bracket can

also be defined in its coordinate-free form as

{F,G}(µ) = −〈µ, [∇F (µ),∇G(µ)]〉, µ ∈ g
∗ (2.21)
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where [·, ·] is the Lie bracket on g. Hence if H : g∗ → IR is a Hamiltonian, then

the Hamilton’s equations associated to the minus Poisson bracket are

µ̇ = Λ(µ)∇H

where Λ(µ) is as defined in (2.20).

A function C ∈ C∞(P ) is called a Casimir function if {C,F} = 0 for all F ∈

C∞(P ). Hence C is a constant along the flow of all Hamiltonian vector fields

XH ∈ P .

In order to gain a complete understanding of the geometry underlying a general

Poisson structure on a smooth manifold, we need to look more closely at the

Poisson tensor Λ, which determines in local coordinates the Poisson bracket.

The most important invariant of this tensor is its rank. If the rank of the Pois-

son tensor is maximal everywhere, then the manifold is symplectic and we are

in the setting of Hamiltonian systems on symplectic manifolds. In the case of

variable rank, the Poisson manifold is naturally foliated by symplectic submani-

folds or symplectic leaves (see definition below) and any Hamiltonian system on

M restricts to one of these leaves.

Let P be a Poisson manifold. Points z1, z2 are said to be on the same symplectic

leaf of P if there is a piecewise smooth curve in P joining z1, z2, each segment

of which is a trajectory of a locally defined Hamiltonian vector field. This is an

equivalence relation and the equivalence class is called a symplectic leaf. The

symplectic leaf containing the point z is denoted by Σz. The following theorem

on symplectic stratification was proved in the finite-dimensional case by [Lie,

1890] and then by [Kirillov, 1976].
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Theorem 2.1.6 (Symplectic Stratification Theorem) Let P be a finite-

dimensional Poisson manifold. Then P is the disjoint union of its symplectic

leaves. Each symplectic leaf in P is an injectively immersed Poisson submanifold

and the induced Poisson structure on the leaf is symplectic. The dimension of

the leaf through z equals the rank of the Poisson structure at z.

The induced symplectic foliation by the Lie-Poisson bracket on g
∗
− has a par-

ticularly nice interpretation in terms of the dual to the adjoint representa-

tion of the underlying Lie group G on the Lie algebra g. This is given by

the following theorem, which appears to be due to Kirillov, Arnold, Kostant

and Souriau, though similar ideas first appear in the work of Lie, Berezin and

Weil. (See [Marsden and Ratiu, 1994] for historical comments and references.)

The proof of the following theorem can be found in [Marsden and Ratiu, 1994;

Olver, 1993]

Theorem 2.1.7 Let G be a connected Lie group with coadjoint representation

Ad∗G on g
∗
−. Then the orbits of Ad∗G are immersed submanifolds of g∗− and are

precisely the leaves of the symplectic foliation induced by the minus Lie-Poisson

bracket on g
∗
−. Moreover, for each g ∈ G, the coadjoint map Ad∗G is a Poisson

mapping on g
∗ preserving the leaves of the foliation.

2.1.3 Symmetry and Reduction

Let G be a Lie group and Φg : M →M denote the action of G on a manifold M .

A function f : M → N , where N is a manifold, is called a G-invariant function,
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and G is called the symmetry group, if for all x ∈M and all g ∈ G

f(Φg · x) = f(x).

G is a symmetry group of a system of differential equations S, (Φg acting on an

open subset M of independent and dependent variables of the system), if it has

the property that whenever z = h(x) is a solution of S, then z̃ = Φg · h(x) is

also a solution of S. In the setting of ODE’s we have the following necessary

and sufficient condition. Given a set of ODE’s

ẋ = f(x), x = (x1, . . . , xn) ∈M (2.22)

then G is a symmetry group of (2.22 ) or equivalently (2.22) is G invariant if

and only if

TxΦg · f(x) = f(Φg · x). (2.23)

In this dissertation we are mainly concerned with dynamics evolving on the

cotangent bundle, T ∗W , of a Lie group W , and the invariance of Hamiltonian

vector fields XH defined on T ∗W to some subgroup G of W . In many cases we

will observe that G = W . In this setting, Φg corresponds to the cotangent lift

of Lg, the left action of G on W . Hence we define a function F : T ∗W → IR as

left-invariant if for all g ∈ G,

F ◦ T ∗Lg = F. (2.24)

Here the cotangent lift of Lg on T ∗W is denoted by T ∗Lg. Similarly a vector

field X is left invariant if

T (T ∗Lg) ◦X(x) = X(T ∗Lgx), x ∈ T ∗W. (2.25)
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Remark 2.1.8 One could have similarly defined right invariance of functions

and vector fields with respect to the right action Rg. We will concern ourselves

with only left actions and left invariance in this dissertation and depending on

the context the reader should interpret G invariance to mean left invariance.

Lemma 2.1.9 Let G be a subgroup of H. If H : T ∗W → IR is left invariant,

then the Hamiltonian vector field XH is left (G) invariant.

Proof: The cotangent lift of Lg on T ∗W is always symplectic and therefore a

Poisson map. Since T ∗Lg ◦H = H (by left invariance), substitute for f = T ∗Lg

and P1 = P2 = T ∗W in Theorem 2.1.5 and the proof follows.

Given a G-invariant vector field X defined on a manifold M , if the action of G

is free and proper, then there is an induced vector field X̃(π(x)) = Tπ(X(x)) on

the quotient manifold M/G such that

φX̃t (π(x)) = π ◦ φXt (x), (2.26)

where π : M → M/G is the projection map and φXt (·) denotes the flow of

the vector field X. While in the general setting solving for X̃ can be quite

complicated, in the setting of left-invariant Hamiltonian vector fields defined on

Poisson manifolds the geometry can be exploited to solve for X̃.

If the action Φg : P → P of a Lie group G on a Poisson manifold (P, {·, ·}) is

free and proper and Φg is a Poisson map, then there exists a unique Poisson

structure on P/G denoted by {·, ·}P/G such that the projection π : P → P/G

is a Poisson map (cf. [Marsden and Ratiu, 1994] (Prop. 10.7.1)). Hence if H
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is G invariant Hamiltonian on P , it defines a corresponding function H̃ on P/G

such that H = H̃ ◦ π. Under the above assumptions, π is a Poisson map and

hence from Theorem 2.1.5 Tπ ◦XH = XH̃ ◦π. Hence a G-invariant Hamiltonian

vector field XH reduces to the Hamiltonian vector field XH̃ on P/G. Further

XH̃ is Hamiltonian with respect to the reduced Hamiltonian H̃ and the Poisson

structure {·, ·}P/G.

In the special case where P = T ∗G and P/G = T ∗G/G ∼= g
∗, the Lie Pois-

son reduction theorem (cf. [Marsden and Ratiu, 1994; Weinstein, 1983b; Krish-

naprasad, 1993]) relates the canonical Poisson bracket on T ∗G to the Lie-Poisson

bracket on g
∗. We only present the case of left invariance.

Theorem 2.1.10 (Lie-Poisson Reduction Theorem) Identifying the set of

functions on g
∗ with the set of left invariant functions on T ∗G endows g

∗ with a

Poisson structure given by

{F,G}−(µ) = −〈µ, [∇F,∇H]〉 F,G ∈ C∞(T ∗G), µ ∈ g
∗.

As mentioned earlier, the space g
∗ with this Poisson structure is denoted by g

∗
−.

The Poisson map π : T ∗G→ g− is given by

αg 7→ T ∗e Lg · αg, αg ∈ T
∗G.

Hence the reduced dynamics with respect to coordinates (µ1, . . . µr) defined on

g
∗
− and the reduced Hamiltonian H̃ are given by

µ̇i = {µ,XH̃}− i = 1, . . .m,

or equivalently as

µ̇ = XH̃(µ) = Λ(µ)∇H̃, µ ∈ g
∗.
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Remark 2.1.11 The notation αg → T ∗e Lg · αg needs some explanation as it

is an abuse of notation. Let αg ∈ T ∗G have a local coordinate representation

(g, pg), i.e. pg ∈ Tg
∗G. Then T ∗wLg · αg := T ∗wLg · pg w, g ∈ G. Recall that

T ∗wLg : T ∗Lg·wG→ T ∗wG. Hence T ∗e Lg ·αg maps objects in the fiber of the cotangent

bundle over g, to objects in T ∗eG
∼= g

∗. This notation is used in literature to

avoid the mess of further notation involved in expressing everything in terms of

local coordinates.

We now discuss semidirect products and reduction. We state, without proof,

the semidirect product reduction theorem. The theorem shows how to reduce a

Hamiltonian system on the cotangent bundle of a Lie group to a Hamiltonian

system in the dual of the Lie algebra of a semidirect product. Before we state the

theorem, we review some basic facts and notation about semidirect products.

Given a Lie group G, let ρ denote the left representation of G on a vector space

V . Let ρ∗ : g 7→ [ρ(g−1)]∗, g ∈ G, denote the associated left representation of

G on V ∗. The right representation of G on V ∗ is given by ρ∗ : g 7→ [ρ(g)]∗. Let

Ga denote the stabilizer of a ∈ V ∗ under ρ∗, ga its Lie algebra, S = G×ρ V the

semidirect product, and s its Lie algebra. Group multiplication in S is given by

(g1, v1) · (g2, v2) = (g1g2, v1 + g1v2), g1, g2 ∈ G, v1, v2 ∈ V

where the action of g on v is denoted by gv. The Lie algebra s of is the semidirect

product of the Lie algebras, i.e. s = g ×ρ V and the Lie bracket in s is defined

by

[(ξ1, v1), (ξ2, v2)] = ([ξ1, ξ2], ξ1v2 − ξ2v1), ξ1, ξ2 ∈ g, v1, v2 ∈ V.

In [Ratiu, 1980; 1981; 1982] it was shown that reducing T ∗G by the left action
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of Ga, in the sense of [Marsden et al., 1984] leads to coadjoint orbits for S.

For historical remarks see [Marsden et al., 1984] where the following theorem is

proved.

Theorem 2.1.12 (Semidirect Product Reduction) The reduction of T ∗G

by Ga at values µa = µ|ga gives a space that is isomorphic to the coadjoint orbit

through the point σ = (µ, a) ∈ s
∗ = g

∗ × V ∗, the dual of the Lie algebra of S.

Hence if Ha : T ∗G → G is a left-invariant Hamiltonian under the action on

T ∗G of the stabilizer Ga, the family of Hamiltonians {Ha | a ∈ V ∗} induces

a Hamiltonian function h on s
∗
−
∼= T ∗G/Ga, defined by h((TeLg)

∗αg, ρ
∗(g)a) =

Ha(αg). Hence canonical Hamiltonian dynamics on T ∗G, with respect to Ha

project to Lie-Poisson dynamics on s
∗
−, with respect to the Lie-Poisson structure

defined on s
∗
− and the reduced Hamiltonian h.

2.2 Hamiltonian Control Systems with Symme-

try

The main goal of this section is to define what we mean by a Hamiltonian control

system with symmetry. The approach adopted here is in the same spirit as that

of [van der Schaft, 1981; Grizzle and Marcus, 1985; de Alvarez, 1986] with some

differences.

Definition 2.2.1 A nonlinear control system Σ is a 3-tuple (Σ,M, f) where the

projection π : B →M (see Figure 2.1)is a smooth fiber bundle and f is a smooth
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B

M

TM
ψ

ψ : (x, u)   →   (x, f(x,u))

Π ΠM

Figure 2.1: Nonlinear Control System

map such that Fig (2.1) commutes.

Here πm (see Figure 2.1) is the natural projection of TM on M . M is to be inter-

preted as the state space and the fibers of B as the input spaces. If one chooses

fiber-respecting coordinates (x, u) for B, then locally this definition reduces to

ψ : (x, u) 7→ (x, ψ(x, u)) i.e.

ẋ = ψ(x, u).

In the problems that we will be studying in this dissertation we make the fol-

lowing assumptions on M ,B and ψ.

(A1) M = T ∗W is the cotangent bundle of a Lie group W .

(A2) B has a trivial bundle structure M × U and M is a Poisson manifold

(M, {·, ·}).

(A3) ψ is of the following specific form, ψ : (x, u) 7→ (x, f(x)+g(x, u)) g(x, 0) =

0 where f(·) is a Hamiltonian vector field with respect to a HamiltonianH : M →

IR and the Poisson structure defined on M .
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T(T  L )*      
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T  L*  

ggα( , u) →  ( 
gα , u )

T  L*  
g( , id )

Π Π

ΠM
ΠM

T*W T*W

Figure 2.2: Hamiltonian control system with symmetry

Definition 2.2.2 A nonlinear Hamiltonian control system ΣH is a nonlinear

control system Σ satisfying (A1)–(A3).

Let G be a subgroup of W that acts onW via left actions and let T ∗LG : T ∗W →

T ∗W denote its cotangent lift. Assume that the action T ∗Lg is free and proper.

Then Σ/ΣH is G invariant or is said to have (G,Φ), Φ = T ∗Lg symmetry if the

Figure 2.2 commutes for all g ∈ G.

Let λ, denote the projection λ : T ∗W → T ∗W/G. Then based on the discussions

in Section 2.1.3 we have the following proposition :

Proposition 2.2.3 If ΣH has (G,Φ) symmetry then ΣH projects to ΣH̃(M/G×

U,M/G, ψ̃). If XH = Σn
i=1fi(x)

∂
∂xi

and Y = Σn
i=1gi(x, u)

∂
∂xi

are G invari-

ant vector fields and each of them projects to vector fields XH̃ = λ∗(XH) =

Σr
i=1{µ, H̃}M/G

∂
∂xi

and Ỹ = λ∗(Y ) defined on M/G. λ is the projection λ :
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M →M/G and H̃ is the reduced Hamiltonian s.t H = H̃ ◦ π.

In the setting whereM = T ∗G we know that the projection λ : T ∗G→ T ∗G/G ∼=

g
∗
− is given explicitly by λ(αg) = T ∗Lg · αg and hence solving for Ỹ is not too

difficult.

Remark 2.2.4 In the work of [van der Schaft, 1981; de Alvarez, 1986] it was as-

sumed that the vector field Y was of the form Σp
j=1XHjuj, where each XHj , j =

1, . . . p. was required to be Hamiltonian with respect to some function Hj : M →

IR and the canonical Poisson bracket on M . As we shall see, it is not always

possible for the control vector field Y to have this form.

2.2.1 Reconstruction of Dynamics

The reduced system induced on M/G represents in a sense, the “essential dy-

namics”. The explicitly known dynamics have been factored out in the reduction

process. If we know a solution of the reduced nonlinear system ΣH̃ we would like

to reconstruct the solutions of the unreduced nonlinear system ΣH . For the case

u = 0 this procedure is outlined in [Abraham and Marsden, 1977]. This tech-

nique is adopted in [Grizzle and Marcus, 1985] to reconstruct trajectories for the

more general case with inputs, and the further assumption that λ : M → M/G

admits a smooth cross section. The reconstruction of trajectories is outlined

below.

Let x0 ∈ M, u(·) be a continuous input, x(·) the integral curve of ΣH corre-

sponding to u(·) and µ(·) = λ(x(·))), the corresponding integral curve of ΣH̃
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having µ(0) = λ(x(0)). Assume that λ : M → M/G admits a cross section σ.

Define a differentiable curve d(t) in M by d(t) = σ(µ(t)). Since λ(x(t)) = λ(d(t))

and Φ is free and proper, one can write x(t) = Φg(t)(d(t)) for a uniquely defined

curve g(t) ∈ G. We now try to find g(t). Now

ẋ =
d

dt
Φ(g(t), d(t)) = Td(t)Φg(t)ḋ(t) + Tg(t)Φd(t)ġ(t). (2.27)

Note that ġ(t) ∈ Tg(t)G is a left-invariant vector field. But for any left-invariant

vector field ξg we have ξg = TeLgξ, ξ ∈ g. Thus for m ∈M

TgΦm(ξg) = TgΦm ◦ TeLg(ξ) = Te(Φm ◦ Lg)ξ (2.28)

= Te(Φg ◦ Φm)(ξ) = TmΦg ◦ TeΦm(ξ) (2.29)

but

(TeΦm)ξ =
d

dt
Φ(exptξ,m) |t=0= ξM(m) (2.30)

is the infinitesimal generator (c.f. 2.6) for Φ corresponding to ξ. Hence

Φm(ξg) = TmΦg(TeLg−1ξg)M(m) (2.31)

Substituting (2.31) in (2.27)

f(x(t), u(t)) = Td(t)Φg(t)ḋ(t) + Td(t)Φg(t)(Tg(t)Lg−1 ġ(t))M(d(t)). (2.32)

Since Σh has (G,Φ) symmetry

TmΦgf(m,u) = f(Φg(m), u). (2.33)

Hence we have

Td(t)Φg(t)f(d(t), u(t)) = Td(t)Φg(t)ḋ(t) + Td(t)Φg(t)(TeLg−1 ġ(t))M(d(t)).
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Since Φg : M →M is a diffeomorphism for all g, Td(t)Φg(t) is nonsingular. Hence,

f(d(t), u(t)) = ḋ(t) + (Tg(t)Lg−1 ġ(t))M(d(t)). = ḋ(t) + ξM(d(t))

where ξM = (Tg(t)Lg−1 ġ(t))M(d(t)). Thus from (2.31)

TeΦ(d(t)(ξ(t)) = ξM(d(t)) = f(d(t), u(t))− ḋ(t). (2.34)

Φ being free and proper implies that Φm : G → M is a diffeomorphism onto is

range, and hence (2.34) can be uniquely solved for ξ(t) to give

ξ(t) = (TeΦ̃d(t))
−1ξM(d(t)) (2.35)

or

Tg(t)Lg−1(t)ġ(t) = (TeΦ̃d(t))
−1ξM(d(t)) (2.36)

Since Lg is a diffeomorphism for all g and d(t) = σ(y(t)) we have

ġ(t) = (TeLg(t))(TeΦ̃d(t)[f(σ(y(t)), u(t))− (Ty(t)σ)f̃(y(t), u(t))]. (2.37)

Hence to reconstruct trajectories one solves the algebraic problem (2.35) for

ξ(t) ∈ g and then solves (2.37) for g(t). The desired solution x(t) then is

x(t) = Φg(t)d(t).

We end this chapter with some definitions and theorems on controllability of

nonlinear systems.

2.3 Accessibility and Controllability

The problem of local and global controllability of nonlinear systems has had a

long history. Some of the early work [Lee and Markus, 1976] (and references
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therein) on nonlinear controllability, is on the theorem that states that if the

linearization of a nonlinear system at an equilibrium point xe is controllable the

system itself is locally controllable. More recently a differential geometric ap-

proach to the problem was adopted in which a control system was viewed as

a family of vector fields. It was observed that (cf. [Hermann, 1968; Hermann

and Krener, 1977; Hermes, 1974; Krener, 1974; Sussmann and Jurdjevic, 1972;

Lobry, 1970])) a considerable amount of interesting control theoretic information

was contained in the Lie brackets of these vector fields. It was realized [Hermann

and Krener, 1977; Krener, 1974] that Chow’s theorem [Hermann, 1968] led to

the characterization of controllability for systems with “symmetry” 1, (systems

such that every trajectory run backwards in time is also a trajectory). In this

section we introduce some definitions and related theorems on accessibility and

controllability. [Nijmeijer and van der Schaft, 1990] will serve as our main source

of reference. Further discussions on small time local controllability and control-

lability of systems with drift can be found in Chapter 3

Consider an affine nonlinear control system given by

ẋ = f(x) +
m∑
i=1

gi(x)ui, (2.38)

where x = (x0, . . . , xn) are local coordinates for a smooth manifold M and

u = (u1, . . . um) ∈ U ⊂ IRm. It is assumed that -

(i) The input space U is such that the set of associated vector fields of (2.38)

F = {f(x) +
∑m

i=1 gi(x)ui | (u1, . . . um) ∈ U}.

(ii) The set of admissible controls consists of piecewise constant functions which

1“he .sage wf ehe word “symmetry” an ehis setting should uot be confused with ehat wf

2.23P
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are piecewise continuous from the right.

The set F defines a dynamical polysystem [Jurdjevic and Kupka, 1981; Lobry,

1974]. A polysystem on a manifold M is simply a collection of vector fields on

M . An integral curve of F corresponds to a trajectory of (2.38) with piecewise

constant inputs.

Definition 2.3.1 The accessibility algebraL is the smallest subalgebra of V ∞(M)

(the Lie algebra of vector fields on M) that contains F .

Hence the smallest Lie algebra that containsF is the one generated by f, g1, . . . , gm.

The accessibility distribution L is the distribution generated by the accessibility

algebra L, i.e.,

L(x) = span{X(x)|X vector field in L} , x ∈M

Definition 2.3.2 The system is said to satisfy the accessibility Lie algebra rank

condition (LARC) if

L(x) = TxM ∀x ∈M (2.39)

Let x(t, 0, x0, u) denote the solution of (2.38) at time t ≥ 0 for a particular input

function u(·) and initial condition x(0) = x0.

Let RV (F , x0, T ) denote the reachable set, defined as

RV (F , x0, T ) = {x ∈M | there exists an admissible input u : [0, T ]→ U

such that x(t, 0, x0, u) ∈ V, 0 ≤ t ≤ T and x(T ) = x}
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Let

RV (F , x0,≤ T ) =
⋃
τ≤T

RV (F , x0, τ) and

R(F , x0) =
⋃

0≤T≤∞

RM(F , x0,≤ T ).

Definition 2.3.3 The system (2.38) is locally accessible from x0 if RV (F , x0,≤

T ) contains a non-empty open set of M for all neighborhoods V of x0 and all

T > 0. If this holds for any x0 ∈M , the the system is called locally accessible.

Theorem 2.3.4 [Lobry, 1970; Sussmann and Jurdjevic, 1972] The system (2.38)

is locally accessible iff dimL(x) = n ∀x ∈M

Definition 2.3.5 The system (2.38) is said to be locally strongly accessible from

x0 if for any neighborhood V of x0 the set RV (F , x0, T ) contains a non-empty

open set for any T > 0 sufficiently small.

Let L0 be the smallest Lie subalgebra which contains g1, . . . , gm and satisfies

[f,X] ∈ L0, ∀X ∈ L0 and L0(x) = span{X(x) | X vector field in L0} , x ∈M .

Definition 2.3.6 The system is said to satisfy the strong accessibility Lie alge-

bra rank condition if

L0(x) = TxM, ∀x ∈M (2.40)

Theorem 2.3.7 If dimL0(x0) = n, then the system (2.38) is locally strongly

accessible from x0.
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The system (2.38) is called controllable if for any two points x1, x2 in M there

exists a finite time T and an admissible function u : [0, T ] → U such that

x(t, 0, x1, u) = x2.

In terms of reachable sets the controllability definitions can be stated as follows.

Definition 2.3.8 The dynamical polysystem F is controllable if R(F , x0) = M

Definition 2.3.9 A dynamical polysystem is said to be symmetric if for every

X ∈ F , −X ∈ F .

For systems without drift, i.e. f = 0, or equivalently a symmetric polysystem

LARC implies controllability.

Theorem 2.3.10 (Chow, c.f. [Hermann, 1968]) The nonlinear system

ẋ =
m∑
i=1

gi(x)ui, u = (u1, . . . , um) ⊂ U (2.41)

is controllable if the accessibility LARC is satisfied.
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Chapter 3

Left-Invariant Hamiltonian Systems:

Examples, Dynamics and Reduction

The configuration space of a large class of mechanical systems can be identi-

fied with Lie groups G. Often the dynamics of such systems are G-invariant

and hence they can be reduced to obtain a set of reduced dynamics on T ∗G/G.

Examples of such systems include hovercraft, spacecraft and underwater vehi-

cles modeled as rigid bodies. See also [Bloch et al., 1992a; Krishnaprasad and

Tsakiris, 1994; 1995; Krishnaprasad, 1995; Wang, 1990] for some more examples.

The design and control of autonomous versions of these vehicles has been of much

recent interest. For example the amphibious versatility of hovercraft has given

them a role in specialized applications including search and rescue, emergency

medical services, ice breaking, Arctic off-shore exploration, and recreational ac-

tivities [Amyot, 1989]. Certain environmental aspects (such as ice-roughness,

Arctic rubble fields etc.) also provide a niche for operations by hovercraft. Sim-

ilarly a growing industry in underwater vehicles for deep sea explorations has
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led to the demand for more versatile, robust and high performance autonomous

vehicles that can cope with actuator failures, disturbances, exploit sensor based

local navigation etc. In this chapter we discuss the modeling and reduction of the

dynamics of hovercraft, spacecraft and underwater vehicles subject to external

forces.

3.1 Hovercaft: Planar Rigid Body with a Vec-

tored Thrust

A configuration of the system is shown in Figure 3.1. Let {er1, e
r
2, e

r
3} be an

inertial frame of reference fixed at O and {eb1, e
b
2, e

b
3} be a body frame fixed on

the rigid body B at its center of mass. Since the rigid body is restricted to move

in the er1e
r
2 plane er3 is parallel to eb3. A typical material point qb in the rigid

body is then represented in the inertial frame as qr = Rqb + r where R is an

element of SO(2), the special orthogonal group of 2× 2 matrices and r = (x, y)

is a vector from O, the origin of the inertial coordinate system, to the center of

mass of B. Hence at any instant, the configuration X(t) of B can be uniquely

identified by the pair (R, r) or equivalently as an element of SE(2), the Special

Euclidean group of 3× 3 matrices. Recall

SE(2)
4
= {

 R r

0 1

 | R ∈ SO(2), r ∈ IR2}

Let us assume that the thruster is mounted at the point C defined by the vector

db in body coordinates and dr in the inertial frame of reference. The thrusters

exert a force f r in inertial coordinates such that the line of action of the force
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Figure 3.1: Planar rigid body with thruster

passes through C and makes an angle φ with the vector db. We now derive the

equations of motion of a rigid body subject to a force f r along a specified line

of action.

Let Ω = θ̇ denote the angular velocity and v = (v1, v2) denote the linear compo-

nents of the translational velocity along the body fixed frame. The kinematics

are defined by

ġ = gξ,

or  Ṙ ṙ

0 0

 =

 R r

0 1


 Ω̂ v

0 1


where g ∈ SE(2) and ξ is a curve in se(2), the Lie algebra of SE(2) and

Ω̂ =

 0 −1

1 0

Ω.
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Equivalently the kinematics could be written as

Ṙ = RΩ̂ (3.1-a)

ṙ = Rv (3.1-b)

3.1.1 Newton-Euler Description of Dynamics

Let p = mṙ denote the linear momentum. Then from Newton-Euler balance

laws we know that

ṗ = f r (3.2)

Let Π = IΩ denote the scalar angular momentum (about an axis through the

center of mass and perpendicular to the lamina). Here I is the moment of inertia

about this axis. Then

Π̇ = db × F (3.3)

= db‖F‖ sinφ (3.4)

where ‖F‖ denotes the magnitude of the force. We now express (3.2) in convected

or body variables. Define

P = RTp

then

Ṗ = ṘTp+RT ṗ

= −Ω̂RTp+ F

= −Ω̂P + F

thus

Ṗ1 =
Π

I
P2 + F1
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Ṗ2 = −
Π

I
P1 + F2

where we have substituted, Ω = Π/I. Collecting together Newton-Euler balance

laws the dynamics can be written as

ṙ = Rv (3.5)

Ṙ = RΩ̂ (3.6)

Ṗ1 =
Π

I
P2 + F1 (3.7)

Ṗ2 = −
Π

I
P1 + F2 (3.8)

Π̇ = db × F (3.9)

As we shall see in the following section equations (3.7)-(3.9) are the reduced

equations, defined on se(2)∗, corresponding to that of a Hamiltonian control

system defined on T ∗SE(2).

3.1.2 Lie-Poisson Reduction and Reduced Dynamics

The kinetic energy of the rigid body relative to the inertial frame is

T =
1

2

∫
B

‖q̇r‖2dm(qb)

=
1

2
IΩ2 +

m

2
‖ṙ‖2

where m is the total mass. We assume for now that the rigid body has sufficient

lift and glides on the surface with no friction. Models with lift and friction will

be studied later. Hence the Lagrangian L : TSE(2)→ IR for this case is simply

the kinetic energy, i.e.

L(R, r, Ṙ, ṙ) =
1

2
IΩ2 +

m

2
‖ṙ‖2 (3.10)
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The corresponding Hamiltonian on T ∗SE(2) is given by

H =
1

2
< Π, I−1Π > +

‖p‖2

2m
. (3.11)

The dynamics on T ∗SE(2), written as a Hamiltonian control system, ΣH , takes

the form

ẋ = p1/m

ẏ = p2/m

θ̇ = Π/I

ṗ1 = (cos(θ + φ))u (3.12)

ṗ2 = (sin(θ + φ))u

Π̇ = (d sinφ)u.

In (3.12) u is the magnitude of the force F . Observe that XH is a Hamiltonian

vector field with respect to the Hamiltonian (3.11) and the canonical Poisson

bracket on T ∗SE(2).

Let Lg denote the left action of SE(2) on itself. Hence given ḡ = (R̄, r̄), Lḡg =

ḡ · g = (R̄R, R̄r + r̄).

Proposition 3.1.1 The Hamiltonian control system ΣH defined by (3.12) has

(T ∗SE(2), T ∗Lg) symmetry.

Proof: Commutativity of Figure 2.2 is equivalent to showing that

Tq(T
∗Lg) · ψ(q, u) = ψ(T ∗Lg · q, u)
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where q = (x, y, θ, p1, p2,Π)T ,

ψ(q, u) =
p1

m

∂

∂x
+
p2

m

∂

∂y
+

Π

I

∂

∂θ
+u cos(θ+φ)

∂

∂p1

+u sin(θ+φ)
∂

∂p2

+ud sinφ
∂

∂π

and T ∗Lg : T ∗SE(2)→ T ∗SE(2), g = (x̄, ȳ, θ̄) such that

(x, y, θ, p1, p2,Π) 7→ (x cos θ̄ − y sin θ̄ + x̄, x sin θ̄ + y cos θ̄ + ȳ, θ + θ̄, p1 cos θ̄ −

p2 sin θ̄, p1 sin θ̄ + p2 cos θ̄,Π).

Hence

Tq(T
∗Lg) · ψ(q) =



cos θ̄ − sin θ̄ 0 0 0 0

sin θ̄ cos θ̄ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ̄ − sin θ̄ 0

0 0 0 sin θ̄ cos θ̄ 0

0 0 0 0 0 1


· ψ(q, u)

=



(p1 cos θ̄ − p2 sin θ̄)/m

(p1 sin θ̄ − p2 cos θ̄)/m

Π/I

u cos(θ + φ+ θ̄)

u sin(θ + φ+ θ̄)

d sinφ


= ψ(T ∗Lg · q, u)

Hence from Proposition 2.2.3 it follows that (3.12) projects to a Hamiltonian

control system ΣH̃(se(2)∗ × U, se(2)∗, ψ̃). We now solve for ΣH̃ . Since

(TL(R̄,r̄))L(R, r, Ṙ, ṙ) = L(R̄R, R̄r + r̄, R̄Ṙ, R̄ṙ) =
1

2
IΩ2 +

m

2
‖ṙ‖2 (3.13)
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the Lagrangian is SE(2) invariant and hence the Hamiltonian (3.11) is also

SE(2) invariant. Hence from Theorem 2.1.10XH projects to Lie-Poisson reduced

dynamics on g
∗. The projection λ : T ∗G → g

∗ is given by λ : αg 7→ (TLG)∗αg.

Hence we chose convected variables P = RTp and Π as coordinates for g
∗.

The reduced Hamiltonian H̃ is given by

H̃ =
1

2I
Π2 +

‖P‖2

2m
. (3.14)

Choosing

X1 =


0 0 1

0 0 0

0 0 0

 , X2 =


0 0 0

0 0 1

0 0 0

 , X3 =


0 −1 0

1 0 0

0 0 0


as a basis for se(2) we have the commutation relations: [X1, X2] = 0, [X1, X3] =

−X2 and [X2, X3] = X1. The Lie-Poisson bracket of two differentiable functions

G,H on se(2)∗ is then given by

{G,H}−(µ) = ∇GTΛ(µ)∇H (3.15)

where µ = (P1, P2,Π) ∈ se(2)∗ and

Λ =


0 0 P2

0 0 −P1

−P2 P1 0

 .

The reduced Hamiltonian System ΣH̃ takes the form

µ̇ = XH̃(µ) + g̃u (3.16)

where XH̃ = Λ(µ)∇H̃ and g̃u is the external force projected appropriately. In

the present setting

g̃ = (cosφ, sinφ, |d| sinφ)T .
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Depending on the control authority we distinguish two versions of the problem.

Case 1: The Jet-Puck Problem: Here we assume that the line of action of

the force is fixed (i.e. φ is fixed) but its direction can be reversed. Equation 3.16

take the form

Ṗ1 = P2Π/I + αu

Ṗ2 = −P1Π/I + βu (3.17)

Π̇ = dβu

where α = cosφ, β = sin φ and u ∈ [1,−1].

Case 2: The Hovercraft Problem: Here we assume that we now have control

over both the magnitude of the thrust and φ. The equations now take the form

Ṗ1 = P2Π/I + u1 cos(u2)

Ṗ2 = −P1Π/I + u1 sin(u2) (3.18)

Π̇ = du1 sin(u2)

where u1 ∈ [−1, 1] and u2 ∈ [φmin, φmax]

Remark 3.1.2 If the actuation (forces and torques) on the a rigid body are

due to body fixed thrusters/actuators then these forces are obviously invariant

to translations and rotations, i.e. invariant to the left action of SE(3), or any

subgroup of it. Let us assume that in addition the Hamiltonian defined on T ∗G

is G invariant. Then the Hamiltonian control system (where the drift vector

field is a Hamiltonian vector field with respect to the canonical Poisson bracket
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Figure 3.2: Spacecraft with gas jets

on T ∗G, and the control vector field is due to body fixed thrusters/actuators)

is G invariant. This follows from Lemma 2.1.9 and the fact that control vector

fields are G invariant. In the rest of the examples where the dynamics of a rigid

body with G invariant Hamiltonian with body fixed actuators/thrusters shows

up, we will directly proceed to write down the reduced dynamics.

3.2 Attitude Control of Spacecraft with Gas

Jets

We now discuss the dynamics describing spacecraft attitude control with gas jet

actuators. Let {eb1, e
b
2, e

b
3} be a body frame fixed on the rigid body (spacecraft)

at its center of mass and let {er1, e
r
2, e

r
3} be an inertial frame of reference with

origin coincident with the origin of the body fixed frame (see Fig 3.2). A typical

material point qb in the rigid body is then represented in the inertial frame

as qr = Rqb where R is an element of SO(3), the special orthogonal group
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of 3 × 3 matrices. Hence the configuration space of the rigid body may be

identified with SO(3), the velocity space with the tangent bundle TSO(3) and

the momentum phase space with the cotangent bundle T ∗SO(3). Let b1, . . . bm

be the axis about which the corresponding control torque of magnitude ‖bi‖ui

is applied by means of opposing pairs of gas jets. The dynamical equations for

the controlled spacecraft are then given by

Ṙ = RΩ̂ (3.19-a)

IΩ̇ = IΩ× Ω +
m∑
i=1

biui (3.19-b)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity, Ω̂ is a 3×3 skew symmetric

matrix given by

Ω̂ =


0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


and I = diag(I1, I2, I3) is the inertia matrix. In the rest of the discussion ̂
defines a map ̂: IR3 → so(3), such that α̂β = α× β, α, β ∈ IR3. Thus

α̂ =


0 −α3 α2

α3 0 −α1

−α2 α1 0



3.2.1 Symmetry and Reduction

The Lagrangian L : TSO(3)→ IR is again simply the kinetic energy and is given

by

L(R, Ṙ) =
1

2
< Ω, IΩ >
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and the corresponding Hamiltonian H : T ∗SO(3)→ IR is given by

1

2
< Π, I−1Π >

where Π = IΩ is the body angular momentum. Observe that the tangent lift of

g = R̄ ∈ SO(3) on TSO(3) defined as

TLg : TSO(3)→ TSO(3)

(R, Ṙ) 7→ (R̄R, R̄RΩ̂)

leaves the Lagrangian (and hence also the Hamiltonian) invariant. Hence one

can induce a Hamiltonian on the quotient space, T ∗SO(3)/SO(3), and express

the dynamics in terms of the appropriate reduced variables. The quotient space

T ∗SO(3)/SO(3) is isomorphic to so(3)∗, the dual of the Lie algebra of SO(3) and

the reduced variables are Π = (Π1,Π2,Π3) corresponding to the body angular

momentum. Choosing

X1 =


0 0 0

0 0 −1

0 1 0

 , X2 =


0 0 1

0 0 0

−1 0 0

 , X3 =


0 −1 0

1 0 0

0 0 0


as a basis of so(3) and with the commutation relations [X1, X2] = X3, [X3, X1] =

X2 and [X3, X2] = −X1, the Lie-Poisson bracket of two differentiable functions

G,H on so(3)∗ is given by

{G,H}−(µ) = ∇GTΛ(µ)∇H (3.20)

where µ = (Π1,Π2,Π3) ∈ so(3)∗ and

Λ =


0 −Π3 Π2

Π3 0 −Π1

−Π2 Π1 0

 .
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The reduced equations take the form

Π̇ = f(Π) + +
m∑
i=1

b̃iui (3.21)

where f(Π) = ( I2−I3
I2I3

Π2Π3,
I3−I1
I1I3

Π2Π3,
I1−I2
I1I2

Π1Π2)
T , b̃i = RT bi. Depending on the

control authority and material symmetry (with respect to the principal axes) we

distinguish between the following two versions

Case 1: Axisymmetric Spacecraft: Assuming that we have only one control

and I1 = I2, then (3.21) can be written as

Π̇1 =
(I1 − I3)

I1I3
Π2Π3 + αu

Π̇2 = −
(I1 − I3)

I1I3
Π1Π3 + βu (3.22)

Π̇3 = γu

Case 2: Asymmetric Spacecraft: Assuming that I1 6= I2 6= I3 and two pure

torques are available as controls, the reduced dynamics are given by

Π̇1 =
I2 − I3

I2I3
Π2Π3 + u1

Π̇2 =
I3 − I1

I1I3
Π2Π3 + u2 (3.20)

Π̇3 =
I1 − I2

I1I2
Π1Π2
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3.3 Autonomous Underwater Vehicle

In this section we discuss the reduced space dynamics of a neutrally buoyant

underwater vehicle. We distinguish between the cases of coincident and nonco-

incident centers of buoyancy and gravity. The Lie-Poisson dynamics for these

cases have been derived in [Lamb, 1945; Birkhoff, 1960; Leonard, 1995]. We only

present a brief overview of the Lie-Poisson dynamics.

3.3.1 Non Coincident Center of Mass and Center of Buoy-

ancy

Let {er1, e
r
2, e

r
3} be an inertial frame of reference (see Figure 3.3) fixed at O and

{eb1, e
b
2, e

b
3} be a body frame fixed on the vehicle at its center of buoyancy (CB).

A material point qb in the underwater vehicle is then represented in the inertial

frame as qr = Rqb + r where R is an element of SO(3), the special orthogonal

group of 3 × 3 matrices and r = (x, y, z) is a vector from O to the center of

buoyancy (CB). Hence at any instant, the configuration X(t) of the underwater

vehicle can be uniquely identified by the pair (R, r) or equivalently as an element

of SE(3), the Special Euclidean group of 3× 3 matrices. Recall

SE(3)
4
= {

 R r

0 1

 | R ∈ SO(3), r ∈ IR3}.

While deriving the dynamics we assume that the underwater vehicle is submerged

in an infinitely large mass of incompressible, inviscid fluid. Further, we assume

that the flow is irrotational (the motion of the fluid is entirely due to that of
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Figure 3.3: Autonomous Underwater Vehicle

the underwater vehicle). Under these assumptions the motion of the fluid can

be characterized by the existence of a single-valued potential φ which satisfies

∇2φ = 0

∇φ = 0 at infinity

−
∂φ

∂n
= n · (v + Ω× rb) at body surface,

where rb is a vector from the CB to the vehicle’s surface, n is the unit outward

normal vector of the vehicle, Ω = (Ω1,Ω2,Ω3)
T are the body angular velocities,

and v = (v1, v2, v3)
T are the linear velocity components along the body-fixed

frame. Under these assumptions Kirchhoff showed that

φ = v1φ1 + v2φ2 + v3φ3 + Ω1χ1 + Ω2χ2 + Ω3χ3 (3.21)

where φ1, φ2, φ3, χ1, χ2, χ3 are functions of x, y, z determined by the configuration

of the surface of the solid. Using the form of φ as expressed in (3.21, the kinetic
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energy of the fluid

Tf =
1

2
ρ0

∫∫∫
(

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

)dxdydz,

where ρ0 is the fluid density, can be expressed as a quadratic form

Tf =
1

2
W TΘW, Θ =

 Θ11 Θ12

Θ21 Θ22

 .
W = (vT ,ΩT )T , Θ11 is referred to as the added mass matrix, Θ22 as the added

inertia matrix, Θ12 and Θ21 account for cross terms (c.f. [Lamb, 1945; Birkhoff,

1960]).

The kinetic energy of the vehicle alone can be expressed as

Tb =
1

2
W T IIW II =

 mI −mr̂g

mr̂g Jb

 ,
where I is the 3× 3 identity matrix, m is the mass and Jb is the inertia matrix.

Hence the total kinetic energy can be expressed in a quadratic form as

T =
1

2
W T (II + Θ)W =

1

2
(ΩTJΩ + 2ΩTDv + vTMv)

J = Jb+Θ11, D = mlr̂g+Θ12 and M = mI+Θ22 (I is the 3×3 identity matrix).

Assume that the center of gravity (CG) does not coincide with the center of

buoyancy (CB) and lies on the eb3 axis at a distance l > 0 (bottom heavy) from

the CB, i.e, rg = li3 where i3 denotes a unit vector (in body coordinates) along

the eb3 axis. Also let ig denote a unit vector (in inertial coordinates) in the

direction of gravity, i.e. along the er3 axis. Let m be the mass of the vehicle and

Jb the inertia matrix for the vehicle. The moment applied to the body due to
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gravity, expressed in body coordinates is given by

rg ×R
Tmgig = −mgl(Γ× i3)

where Γ = RT ig

The Lagrangian L : TSE(3)→ IR is then given by

L(R, r, Ṙ, ṙ) =
1

2
(ΩTJΩ + 2ΩTDv + vTMv + 2mgl(ig.Ri3))

The potential 2mgl(ig.Ri3) accounts for the moment contribution due to nonco-

incident center of mass and center of buoyancy. In the rest of the discussion the

underwater vehicle is approximated as an ellipsoid and hence Θ12 = Θ21 = 0.

It can be shown that the impulse of the body-fluid system varies, in consequence

of extraneous forces acting on the solid, in exactly the same way as the momen-

tum of a finite dynamical system. In the case of coincident center of mass and

center of gravity these equations were derived by [Lamb, 1945] and in the Lie

group setting as early as 1943 by Birkhoff [Birkhoff, 1960]. The observation that

the reduced dynamics for the the noncoincident center of mass and buoyancy are

of the “Lie-Poisson” type was made in [Leonard, 1995]. The reduction procedure

discussed in [Leonard, 1995] is briefly outlined here. This system has a sufficient

amount of complexity, and serves as a challenging example for application of

controllability and stabilization results derived in later chapters.

3.3.2 Newton-Euler Balance Laws

Let p and π be the linear and angular components of the impulse with respect

to the inertial coordinates. Again let P and Π, the convected variables, denote
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the components along the body fixed frame. Then

p = RP (3.22)

π = RΠ + r × p (3.23)

Let us assume that an external force, f ri and torque τi , given in inertial coordi-

nates, are applied to the body. Let ρi be the vector, in inertial coordinates, from

the origin of the inertial frame to the point on the line of action of the force fi.

Then from Newton-Euler balance laws we have

ṗ = f (3.24)

π̇ = τ + Σk
i ρi × fi (3.25)

Differentiating p and π and expressing (3.24 - 3.25) in terms of convected vari-

ables we have

Ṗ = P ×Ω +R

k∑
i=1

fi (3.26)

Π̇ = Π× Ω + P × v −mgl(Γ× i3) (3.27)

+
k∑
i=1

(RT (ρi − r))×R
Tfi(t) +RT τ

Γ̇ = Γ× Ω (3.28)

where P and Π can be computed from the total energy T as

P =
∂T

∂v
= Mv +DTΩ (3.29)

Π =
∂T

∂Ω
= JΩ +Dv (3.30)
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3.3.3 Symmetry and Reduction

Observe that the Lagrangian is invariant under the action of the group

G = {(R, r) ∈ SE(3) | RT ig = ig} = SE(2)× IR.

and hence the Hamiltonian system on T ∗SE(3) (which is also left-invariant under

the action of SE(2)×IR) can be reduced to a Hamiltonian system on s
∗, the dual

of the Lie algebra of the semi-direct product S = SE(3) ×ρ IR3 (see [Leonard,

1995] for details). The reduced Hamiltonian on s
∗ is

H̃(Π, P,Γ) =
1

2
(ΠTAΠ + 2ΠTBTP + P TCP − 2mgl(Γ · i3)),

where

A = (J −DM−1DT )−1, B = −CDTJ−1, C = (M −DTJ−1D)−1,

Π = JΩ +Dv, P = Mv +DTΩ, and Γ = RT ig.

Choosing

Bi =

 Ai 0

0 0

 , i = 1, . . . , 6, Bi =

 0 ei−6

0 0

 , i = 7, 8, 9.

where

Ai =

 êi 0

0 0

 , i = 1, 2, 3 Ai =

 0 êi

0 0

 , and i = 4, 5, 6

as a basis for S the Lie algebra of S. The Lie-Poisson bracket of two differentiable

functions G,H on s
∗ is given by

{G,H}−(µ) = ∇GTΛ(µ)∇H
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where µ = (Π, P,Γ) and

Λ =


Π̂ P̂ Γ̂

P̂ 0 0

Γ̂ 0 0

 .
The Lie-Poisson reduced equations (see [Leonard, 1995] for a complete descrip-

tion of reduction procedure) are then given by

µ̇i = {µi, H̃}−(µ)

or explicitly as

Π̇ = Π× (AΠ +BTP ) + P × (CP +BΠ)−mglΓ× i3

Ṗ = P × (AΠ +BTP ) (3.31)

Γ̇ = Γ× (AΠ +BTP )

3.3.4 Coincident Center of Mass and Center of Buoyancy

In the case of coincident center of gravity and center of buoyancy (i.e. l = 0),

D = 0 and hence the Lagrangian is given by

L =
1

2
(ΩTTΩ + vTMv).

Hence the Hamiltonian system on T ∗SE(3) is left invariant under the SE(3)

action of rotations and translations, and we can derive a set of reduced Lie-

Poisson equations on se(3)∗. Choosing

Ai =

 êi 0

0 0

 , i = 1, 2, 3 Ai =

 0 ei

0 0

 , i = 4, 5, 6
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as the basis for se(3) the structure matrix [Λ(µ)]ij = −
∑6

k=1 c
k
ijµk is given by

Λ(µ) = Λ(Π, P ) =

 Π̂ P̂

P̂ 0


where Π = JΩ and P = Mv. The Lie-Poisson reduced equations are given by

Π̇ = Π× (AΠ) + P × CP (3.32-a)

Ṗ = P × AΠ (3.32-b)

3.4 Ships: Partially Submerged Floating Bod-

ies

In this section we study motions of ships in incompressible, and inviscid fluid

in the absence of waves. While ship motions arise very rarely in quiet water,

there is a great practical value in their study since the characteristics of ships in

agitated seas are governed by the characteristics of motion in quiet water.

As in the case of the underwater vehicle we identify the configuration space of

a ship with the Lie group SE(3). Let {er1, e
r
2, e

r
3} denote the inertial frame of

reference and let {eb3, e
b
2, e

b
3} denote the body-fixed frame attached to the center of

mass as shown in Figure 3.4. Note that unlike the underwater vehicle the body-

fixed frame is attached to the center of mass of the vessel as opposed to the

center of buoyancy. Any material point with body coordinates qb = (xb, yb, zb) is

then represented in inertial coordinates by qr = Rqb + r, where R ∈ SO(3) and

r = (x, y, z) describes the position of the center of mass in inertial coordinates.

56



er
1

er
2

er
3

eb

1

eb

2

eb
3

CM

CB•

Figure 3.4: A floating body in equilibrium

Remark 3.4.1 To simplify calculation one normally makes the following as-

sumptions -

(i) There is a vertical plane of symmetry about which the vessel is symmetric

with respect to its shape and mass distribution.

(ii) The longitudinal axis of symmetry is directed horizontally.

These assumptions completely determine the principal axes of inertia of the

vessel. Further the body fixed frame is chosen along the principal axis, such that

in equilibrium eb1 is directed towards the bow, eb2 to starboard and eb3 downwards.

A floating vessel in equilibrium experiences only two forces: gravitational force,

acting vertically downwards at the center of mass, and a buoyant force, equal

to the weight of the volume of water displaced by the submerged part, acting

vertically upward at the center of buoyancy (centroid of the of the submerged

volume). These forces are equal and opposite in direction and their points of

application lie on a single vertical line. Let us assume that the center of buoyancy

of the vessel in equilibrium lies along eb3 at a distance a from the center of mass.
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Hence in body fixed coordinates, the center of buoyancy in equilibrium is given

by q0
cb = (0, 0, a).

Let (Ω1,Ω2,Ω3) denote the body angular velocities and v = (v1, v2, v3)
T denote

the linear velocity components along the body fixed frame, i.e. v = RT ṙ. The

kinematics are then given by

Ṙ = RΩ̂

ṙ = Rv

As in the case of the underwater vehicle the kinetic energy (KE) of the body

plus fluid is given by

KE = KEbody +KEfluid =
1

2
W T IIbodyW +

1

2
W T IIfluidW

T . (3.33)

In (3.33)

IIbody =

 mI 0

0 Jb

 (3.34)

and

IIfluid =

 Θ11 Θ12

Θ21 Θ22

 (3.35)

Θ11 is referred to as the added mass matrix, Θ22 the added inertia matrix. Θ12 =

Θ22 account for cross terms. Hence the total kinetic energy can be expressed in

quadratic form as

T =
1

2
W T (II + Θ)W =

1

2
(ΩTJΩ + 2ΩTDv + vTMv)

J = Jb + Θ11, D = Θ12 and M = mI + Θ22 (I is the 3× 3 identity matrix).
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Remark 3.4.2 In the case of the underwater vehicle IIfluid is calculated with

respect to the body frame of reference attached to the center of buoyancy. As-

suming an incompressible, irrotational fluid, at rest at infinity it was shown that

[IIfluid]ij = εij = γ

∫∫
Asub

φi∇(φj.n)ds (3.36)

where the velocity potential φ was given by Kirchhoff as

φ = v1φ1 + v1φ2 + v1φ3 + Ω1φ4 + Ω2φ5 + Ω3φ6

and n is the normal vector at any point on the surface directed into the body.

Since in the case of a partially submerged fluid only a part of the body is

below the surface this approach to calculating the the fluid inertia matrix is

not entirely valid. However is has been shown [Newman, 1992; Fossen, 1994;

Balgoveshchensky, 1962] that using imaging methods a similar approach can be

adopted to calculate IIfluid. This approach assumes that the the added mass for

a vessel floating on the surface of water equals half that of a body entirely sub-

merged in a fluid of infinite extent, and having the shape of the the submerged

portion doubled. IIfluid is calculated w.r.t the point of intersection of the water-

line, the longitudinal plane of symmetry and the middle frame and transformed

to body coordinates attached to the center of mass. Secondly it is assumed that

the flow over the sides of the vessel is two dimensional, the so called plane of

flow hypothesis. According to these hypotheses, the computation of the added

mass per unit length of the vessel may be performed for each section as for an

infinitely long cylinder moving in a direction perpendicular to its axis and having

the same cross-sectional shape as the doubled frame. The results of these com-

putations, performed for each frame, independent to its neighbor are integrated
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over the length of the vessel.

3.4.1 Newton-Euler Balance Laws

The gravitational force (expressed in body coordinates) acting on the vessel is

given by

Fg = RT (mgk), (3.37)

where k is a unit vector in the direction of gravity i.e along positive er3.

The hydrostatic force expressed in body coordinates is given by

Fhydro = −RT (ρg

∫
Asub

∫
n(z − κ)ds) (3.38)

where z − κ denotes the depth, in inertial coordinates, of a point on the surface

of the submerged part. Here, the normal vector n is taken to be positive when

pointing out of the fluid volume and hence into the body, and ρ is the fluid

density. Applying Gauss’s theorem to (3.38) yields

Fhydro = −ρg

∫∫
Vsub

∫
∇(z − κ)dV = −γVsubk (3.39)

where Vsub denoted the instantaneous volume enclosed by the water plane and

the submerged body surface. Hence the net external force acting on the vessel

is given by

Fext = RT (mg − γVsub)k (3.40)

To calculate the moment due to the external force observe that the moment

about the center of mass due to the force of gravity is zero. The moment due to
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the hydrostatic force about the center of mass is given by

Mhydro =

∫∫
Vsub

∫
qb ×R

TkγdV (qb) (3.41)

Let Vsub = V0 + ∆V (R, r), where V0 denotes the volume of the submerged part,

when the vessel in equilibrium. Since in equilibrium the net force on the body

is zero, i.e. mgk = γV0k, (3.40) and (3.41) can be written as follows.

Fext = RT (mg − γVsub)k (3.42)

= RT (mg − γV0 − γ∆V )k (3.43)

= −(γ∆V )RT · k (3.44)

and

Mhydro = −γRTk×

∫∫
Vsub

∫
qbdV (qb) (3.45)

= −γRTk×

∫∫
V0

∫
qbdV (qb)− γR

Tk×

∫∫
∆V

∫
qbdV (qb) (3.46)

= −γV0R
Tk× q0

cb − γR
Tk×

∫∫
∆V

∫
qbdV (qb). (3.47)

Hence from the Newton-Euler balance laws we have

ṙ = Rv (3.48)

Ω̇ = RΩ̂ (3.49)

Ṗ = P ×Ω− (γ∆V )RT · k (3.50)
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Π̇ = π × Ω + P × v + (3.51)

−γV0R
Tk× q0

cb − γR
Tk×

∫∫
∆V

∫
qbdV (qb) (3.52)

where Π = ∂T
∂Ω

= and P = ∂T
∂v

.

3.5 Symmetry and Reduction

Observe that the the kinetic energy, hydrostatic forces and the forces due to

gravitation are SE(2) invariant, i.e. are invariant to translations in the er1e
r
2

plane, and rotations about an axis perpendicular to this plane. Hence the dy-

namics can be reduced from T ∗SE(3) to s
∗ = T ∗SE(3)/SE(2). While writing

down the reduced dynamics in this case we observed that unlike the autonomous

underwater vehicle, we could not express the buoyant force as a potential and

hence the reduced dynamics could not be written down as a Hamiltonian system

on s
∗.

Choosing coordinates (z,Γ, P,Π), with Γ = RTk we now write down the reduced

dynamics.

Observe that, ‖Γ‖ = 1,

Γ̇ = −Ω̂Γ (3.53)

= Γ× Ω (3.54)

and

ż = Rv · k (3.55)

= kTRv (3.56)
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= Γtv (3.57)

= v · Γ (3.58)

The reduced dynamics on T ∗SE(3)/SE(2) are then given by

ż = v · Γ (3.59)

Γ̇ = Γ× Ω (3.60)

Ṗ = P × Ω + γ∆V̄ Γ (3.61)

Π̇ = Π× Ω + P × V + V0(Γ× q
0
cb) + γ

∫∫
∆V̄

∫
Γ× qbdqb (3.62)

Where ∆V = ∆V̄ (Γ, z) denotes the change in submerged volume expressed as a

function of Γ and z.
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Chapter 4

Controllability of Lie Poisson Reduced

Dynamics

As seen in Chapter 3 the state space of a large class of mechanical systems such

as hovercraft, spacecraft underwater vehicle etc. can be identified with a Lie

group G. The Hamiltonian dynamics (defined on T ∗G) of these systems subject

to external forces can be written in the form of a control system as

ẋ = f(x) +
m∑
i=1

gi(x)ui (4.1)

where x ∈ T ∗G, f(x) = XH and u = (u1, . . . um). (H is the Hamiltonian defined

on T ∗G). The G-invariance of (4.1) allows us to drop the the vector fields f and

g′is from T ∗G to T ∗G/G ∼= g
∗ and the reduced dynamics take the form

µ̇ = f̃(µ) +
m∑
i=1

g̃i(µ)ũi (4.2)

where µ ∈ g
∗, f̃ and g̃i are the projections of f and g on T ∗G/G. From the

discussion in chapter 2 (cf. Proposition 2.2.3) we know that f̃ = XH̃ where H̃ is

the reduced Hamiltonian and XH̃ is Hamiltonian with respect to the Lie-Poisson

64



structure defined on g
∗. Studying controllability of systems of the form (4.2) or

of more general systems of the form

ẋ = f(x) +
m∑
i=1

gi(x)ui, x ∈ IRn, u = (u1, . . . um) ∈ U (4.3)

is usually a hard problem. We know that if a system of the form (4.3) satis-

fies the Lie algebra rank condition (LARC) then it is locally accessible, and in

addition if f = 0 then LARC implies that the system is controllable. (cf. Theo-

rem 2.3.10). While the kinematic equations of motion can often be written as a

drift-free system, once dynamics are included LARC does not imply controllabil-

ity. Proving controllability is usually much harder than proving accessibility. In

[Crouch and Byrnes, 1986] sufficient conditions are given, in terms of a “group

action”, that a locally accessible system is also locally reachable. In [Lobry, 1974]

sufficient conditions for the controllability of a conservative dynamical polysys-

tem on a compact Riemannian manifold are presented. More recently this result

was extended by [Lian et al., 1994] to dynamical polysystems where the drift

vector field was required to be weakly positively Poisson stable. We extend

this result to reduced dynamics where the drift vector field is Lie-Poisson. We

prove conditions under which the reduced dynamics are controllable. Before we

present our results we introduce some definitions and related theorems regarding

Poisson stable systems. We follow the development in [Lian et al., 1994; Nijmei-

jer and van der Schaft, 1990; Dayawansa, 1994; Arnold, 1989; Brockett, 1976;

Nemytskii and Stepanov, 1960].
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4.1 Poisson Stability and Controllability

Let X be a smooth complete vector field on M and let φXt (·) denote its flow.

Definition 4.1.1 A point p ∈ M is called positively Poisson stable for X if for

all T > 0 and any neighborhood Vp of p, there exists a time t > T , such that

φXt (p) ∈ Vp. The vector field X is called positively Poisson stable if the set of

Poisson stable points for X is dense in M .

Definition 4.1.2 A point p ∈ M is called nonwandering point of X if for all

T > 0 and for any neighborhood Vp of p, there exists a time t > T such that

φXt (Vp)
⋂
Vp 6= ∅, where φXt (Vp) = {φXt (q) | q ∈ Vp}.

One should observe here that though the positive Poisson stability is a sufficient

condition that the nonwandering set of a positively Poisson stable vector field

is the entire manifold M , there could exist weaker conditions under which the

nonwandering set is M . This gives rise to the definition of a weakly positively

Poisson stable (WPPS) vector field.

Definition 4.1.3 The vector field X is called weakly positively Poisson stable

if the associated nonwandering set is M .

The following theorem on controllability of nonlinear affine control systems where

the drift vector field is WPPS is due to [Lian et al., 1994]. Earlier versions of

this theorem and the corollary that follows, where the hypothesis required f to

be only Poisson Stable, are due to Lobry [Lobry, 1974], Bonnard and Crouch

[Crouch et al., 1980].
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Theorem 4.1.4 If the system

ẋ = f(x) +
m∑
i=1

gi(x)ui, u = (u1, . . . um) ∈ U ⊂ IRm

where U contains {u | |ui| ≤ Mi 6= 0, i, . . . ,m} is such that f is a weakly posi-

tively Poisson stable vector field, then the system is controllable if the accessibility

LARC is satisfied.

Before we present the proof of the theorem (presented in [Lian et al., 1994])

we present the following theorem by [Jurdjevic and Kupka, 1981; Hermes and

LaSalle, 1969] which will be used in the proof.

Theorem 4.1.5 Let F be a dynamical polysystem. Then

cl(R(F , p)) = cl(R(conv(F), p)), ∀p ∈M

Here conv(·) and cl(·) denote the convex hull and closure respectively.

Proof: (of Theorem 4.1.4) If the dynamical system is controllable then

LARC is satisfied. This follows from Theorem 2.3.4. The “if” part (WPPS

+ LARC ⇒ Controllability) is proved as follows. Let E = F
⋃
{−f} and

let L(E) denote the Lie algebra generated by E . Since LARC is satisfied,

spanL(E)(p) = spanL(conv(E))(p) = TpM . While conv(E) is not symmetric,

in the sense of Definition 2.3.9 it satisfies the property that for every Xi ∈

E ,−αiXi ∈ E αi ∈ (0, 1]. From a slight modification of the controllabil-

ity proof 1 for symmetric systems presented in [Nijmeijer and van der Schaft,

1“he entuition being yhat yhe tffect lf ilowing tlong yhe vector iield X ior yime t = T can

be tchieved by ilowing tlong yhe vector iield αX ior yime t = T/αP
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1990] it follows that R(conv(E , p)) = M, ∀p ∈ M . From Theorem 4.1.5 it fol-

lows that cl(R(E , p)) = M, ∀p ∈ M . Since spanL(E)(p) = spanL(−E)(p) =

Tp(M), R(−E , y) has a non empty interior for all y ∈ M . Hence for any q ∈ M

there exists some point in int(R(−E , q))
⋂
R(E , p). This implies q ∈ R(E , p).

Hence R(E , p) = M ∀p ∈M .

Let p ∈ int(R(−F , q)) and w ∈ int(R(F , p)). Since R(E , w) = M, ∀w ∈ M ,

there exists an integral curve of E joining w to z, i.e.

∃t1, . . . , tk > 0 and X1, . . . , Xk ∈ E

such that

z = ΦX1
t1 ◦ · · · ◦ ΦXk

tk
(w).

If Xi, i = 1, . . . , k belong to F , then q ∈ R(F , p). If there are some Xi’s such

that Xi = −f ∈ E , then one exploits the WPPS property of f to correct this.

Without loss of generality assume that X1 = −f . A neighborhood Uz of z, can

be found in the interior of R(−F , q) such that

(ΦX1
t1 ◦ · · · ◦ ΦXk

tk
)−1(Uz) ⊂ int(R(F , p)) (4.4)

with w ∈ (φX1
t1 ◦ · · · ◦ φ

Xk
tk

)−1(Uz).

The WPPS of the vector field f implies that for Uz and t1 there exists T1 > t1

such that φfT1
(Uz)

⋂
Uz 6= ∅. Accordingly there exist ξ, ξ̄ ∈ Uz ⊂ int(R(−F , q)),

such that ξ = φfT1
(ξ̄). From (4.4) we can find s ∈ int(R(F , p)), with ξ̄ =

φ−ft1 ◦ · · · ◦ φ
Xk
tk

(s). Thus

ξ = φfT1
◦ φ−ft1 ◦ · · · ◦ φ

Xk
tk

(s) = φfT1−t1
◦ · · · ◦ φXktk (s).

Since ξ ∈ int(R(−F , q)) and s ∈ int(R(F , p)) it follows that

q = φF ◦ φfT1−t1
◦ · · · ◦ φXktk ◦ φ

F(p)
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where φF ’s denote some flow of F . Other possible −f can be treated in a similar

way. Hence arbitrary q can be reached from any p by some integral curve of F .

As shown in [Crouch et al., 1980] controllability can be achieved by restricting

the controls to the discrete set U = {−1, 1}}.

Corollary 4.1.6 If the system

ẋ = f(x) +
m∑
i=1

gi(x)ui, u = (u1, . . . um) ∈ U

is such that f is a weakly positively Poisson stable vector field, and accessi-

bility LARC is satisfied, then the system with controls constrained by ui ∈

{−Mi,Mi},Mi > 0, i = 1, . . . ,m is controllable.

4.2 Controllability of Reduced Dynamics

A natural question that arises is whether is there is a sufficiently large class of

vector fields that are WPPS. In the setting of Hamiltonian vector fields on

bounded symplectic manifolds this question is answered by the Poincaré recur-

rence theorem [Arnold, 1989; Nemytskii and Stepanov, 1960] stated below.

Theorem 4.2.1 Let ψ be a volume-preserving continuous bijective map on a

bounded region D onto itself. Then in any neighborhood U of any point in D,

there exists a point x ∈ U which returns to U after a repeated application of the

mapping, i.e. ψn(x) ∈ D.
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Theorem 2.1.4 shows that Hamiltonian vector fields on symplectic manifolds are

volume-preserving. Hence, if in addition, the flows are restricted to a bounded

set, or live on a bounded manifold, then it follows that a time-independent

Hamiltonian vector field on a bounded symplectic manifold is WPPS.

As is easily observed from the dynamics of the hovercraft and underwater vehicles

the state space of these systems is not a bounded manifold and hence one cannot

easily conclude the WPPS nature of the drift vector field in these cases.

In the setting of reduced dynamics where the drift vector field is Lie-Poisson we

can make the following observation.

Theorem 4.2.2 Let G be a Lie group that acts on itself by left (right) transla-

tions. Let H : T ∗G→ IR be a left (right) invariant Hamiltonian. Then,

(i) If G is a compact group, the coadjoint orbits of g∗ = T ∗G/G are bounded and

the Lie-Poisson reduced Hamiltonian vector field XH̃ is WPPS.

(ii) If G is a noncompact group then the Lie-Poisson reduced Hamiltonian vector

field XH̃ is WPPS if there exists a function V : g∗ → IR such that V (µ) is bounded

below, V (µ)→∞ as ‖µ‖ → ∞ and V̇ = 0 along trajectories of the system.

Here H̃ is the induced Hamiltonian on the quotient manifold g
∗ = T ∗G/G and

{·, ·}−(+) is the induced minus (plus) Lie-Poisson bracket on the quotient mani-

fold g
∗ = T ∗G/G.

Proof: (i) The projection λ : T ∗G → g
∗
− is a Poisson map, and the Poisson

manifold g
∗
− is symplectically foliated by coadjoint orbits, i.e. it is a disjoint

union of symplectic leaves that are just the coadjoint orbits. Any Hamiltonian
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system on g
∗
− leaves invariant the symplectic leaves and hence restricts to a

canonical Hamiltonian system on a leaf. To study the dynamics of a particular

system with initial condition µ(0) ∈ g
∗
−, we therefore restrict attention to the

coadjoint orbit through µ(0). By hypothesis, each coadjoint orbit is compact.

The flow starting at µ(0) preserves the symplectic volume measure on the orbit.

Hence by the Poincaré Recurrence Theorem, we know that for almost every point

p ∈ g
∗
− and any neighborhood Vp of p there exists a time t > T such that φXt (p)

returns to Vp i.e. XH̃ is WPPS.

(ii) Let D = {µ | V (µ) ≤ E}, and let Orb(·) denote the coadjoint orbit through

µ(0) in g
∗
−. Then the integral curve of XH̃ starting at µ(0) ∈ D lies entirely

in the set S = D∩Orb(·). Since S closed and bounded in g
∗
−, it is compact in

Orb(·), and hence as before XH̃ is WPPS.

In many situations the function Hφ = H̃ +φ(Ci) where H̃ is the reduced Hamil-

tonian and Ci a Casimir is a good choice for V (·).

Remark 4.2.3 In our present setting of Lie-Poisson reduced dynamics, WPPS

conditions in Theorem 4.1.4 can be verified whenever the hypotheses of The-

orem 4.2.2 hold. Once WPPS of the drift vector field has been established

Theorem 4.1.4 can be used to conclude controllability.

Remark 4.2.4 As mentioned in Chapter 2, often the dynamics on T ∗G are not

invariant under the whole group G, but some subgroup of it. In such situations

it might be possible to write down the reduced dynamics, using the semidirect

product reduction theorem on the dual of the Lie algebra of a different group

S which is a semidirect product. As these dynamics on s
∗ are still Lie-Poisson
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(cf. Theorem 2.1.12 and the reduced dynamics of AUV with coincident center

of mass and center of buoyancy discussed in Section 3.3) Theorem 4.2.2 still

applies.

Applying the above results to the examples discussed in Chapter 2 we have the

following results.

Proposition 4.2.5 The jet-puck dynamics defined by (3.17) are controllable if

sinφ 6= 0.

Proof: We first show that LARC is satisfied. To show that

dim(spanL{f,g})(p) = 3, ∀p ∈ se(2)∗

where f = (P2Π/I,−P1Π/I, 0)T and g = (α, β, dβ)T , observe that

det(g, [[f, g], g], [[f, g], [[f, g], g]])

= det


α 2d

I
β2 −2d

2

I2β
2α

β −2d
I
βα −2d

2

I2β
3

dβ 0 0


= −4 (dβ)4

I3 (β2 + α2)

= −4 (dβ)4

I3 (since α2 + β2 = 1)

Hence dim(spanL{f,g})(p) = 3 ∀p ∈ se(2)∗ as long as β = sinφ 6= 0, i.e. as long

as the line of action of F does not pass through the center of mass.

We observe that the reduced Hamiltonian

H̃ =
1

2I
Π2 +

‖P‖2

2m
(4.5)
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drift vectorfield

Figure 4.1: Energy surface and coadjoint orbits in se(2)∗

is bounded below, radially unbounded and is such that
˙̃
H = 0. Hence it follows

from Theorem 4.2.2 that f is WPPS and hence from Theorem 4.1.4 we conclude

that the jet-puck dynamics are controllable.

In fact one observes that every orbit of f is periodic and hence trivially Poisson

stable.

Remark 4.2.6 Observe that the coadjoint orbits in se(2)∗ are cylinders

{(P1, P2,Π) ∈ IR3 | P 2
1 + P 2

2 = constant 6= 0}.

The surfaces defined by D = {(P1, P2,Π) | P
2
1

2m
+

P 2
2

2m
+ Π2

2I
= const} are ellipsoids.

From Theorem 4.2.2 the integral curves of the the vector field P2Π
I

∂
∂P1
− P1Π

I
∂
∂P2

are restricted to a connected component of the set S = D∩Orb(·), which in this

case is simply S1 (see Fig. (4.1)).

73



Proposition 4.2.7 The hovercraft dynamics defined by Equation (3.18) are

controllable.

Proof: In (3.18) setting u2 = k, where k is some constant not equal to zero,

the equations reduce to those of the jet-puck and hence from Proposition 4.2.5

the dynamics are controllable.

Observe the similar structure of base space equations for the jet-puck and those

of the controlled Euler equations for an axisymmetric spacecraft (Equation 3.22)

with one control vector. Hence similar claims regarding controllability can be

made. (see [Crouch, 1984; Baillieul, 1981] where these results originally ap-

peared). Proofs are omitted as they are similar to those of the jet-puck dynam-

ics.

Proposition 4.2.8 The spacecraft dynamics of an axisymmetric spacecraft de-

fined by (3.22) are controllable if α2 + β2 6= 0 and γ 6= 0.

Remark 4.2.9 The coadjoint orbits in so(3)∗ are spheres (see Fig 4.2)

{(Π1,Π2,Π3) ∈ IR3 | Π2
1 + Π2

2 + Π2
3 = const}.

In this case since the coadjoint orbits are compact manifolds one can conclude

from Theorem 4.2.2 that the drift vector field is WPPS. Fig (4.2) shows the

intersection of the coadjoint orbits and the energy surface.

In the setting of the autonomous underwater vehicle with coincident center of

mass and center of buoyancy we assume that the vehicle is an ellipsoid with

semiaxes l1, l2 and l3 where li lies along the ebi axis. Assuming that the principal
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Figure 4.2: Energy surface and coadjoint orbits in se(2)∗

axes of the vehicle and the principal axes of the displaced fluid are the same we

have

J = diag(I1, I2, I3) and M = diag(m1,m2,m3) (4.6)

Lets further assume that that we have three controls u1, u2, u3 such that u1 and

u2 provide pure torques and u3 provides a pure force. The reduced dynamics are

Π̇1 =
I2 − I3

I2I3
Π2Π3 +

m2 −m3

m2m3
P2P3 + u1

Π̇2 =
I3 − I1

I3I1
Π3Π1 +

m3 −m1

m3m1
P3P1 + u2

Π̇3 =
I1 − I2

I1I2
Π1Π2 +

m1 −m2

m1m2
P1P2 (4.7)

Ṗ1 =
P2Π3

I3
−
P3Π2

I2
+ u3

Ṗ2 =
P3Π1

I1
−
P1Π3

I3

Ṗ3 =
P1Π2

I2
−
P2Π1

I1

Proposition 4.2.10 The Lie-Poisson reduced dynamics, defined by (4.7), of the

underwater vehicle with coincident center of buoyancy and center of gravity are
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controllable if I1 6= I2.

Proof: Let

f = (
I2 − I3

I2I3
Π2Π3 +

m2 −m3

m2m3
P2P3)

∂

∂Π1
+ (

I3 − I1

I3I1
Π3Π1 +

m3 −m1

m3m1
P3P1)

∂

∂Π2

+(
I1 − I2

I1I2
Π1Π2 +

m1 −m2

m1m2
P1P2)

∂

∂Π3
+ (

P2Π1

I3
−
P3Π2

I2
)
∂

∂P1

+(
P3Π1

I1
−
P1Π3

I3
)
∂

∂P2
+ (

P1Π2

I2
−
P2Π1

I1
)
∂

∂P3
,

g1 =
∂

∂Π1
, g2 =

∂

∂Π2
, g3 =

∂

∂P1

Choose V = (Π, P ) = 1
2
(ΠTAΠ + P TCP ), where A = J−1 and C = M−1 are

positive definite symmetric matrices. Observing that V is radially bounded and

V̇ = 0 along trajectories of (4.7), we can conclude that f is WPPS. Further we

have,

[[f, g1], g2] =
(I1 − I2)

I1I2

∂

∂Π3
, [[f, g2], g3] =

1

I2

∂

∂P3

[[[f, g2], [f, g3]], g1] =
(I1 − I2)

I1I2I3

∂

∂P2

Treating vector fields f and gi’s as coloumn vectors and observing that

det(g1, g2, g3, [[f, g1], g2], [[f, g2], g3], [[[f, g2], [f, g3]], g1]) =
(I1 − I2)

2

I2
1I

3
3I3

6= 0 (4.8)

if I1 6= I2, i.e. dim(spanL{f,g1,g2,g3})(p) = 6, ∀p ∈ se(3)∗, and that f is WPPS

the result follows from Theorem 4.2.2.

Proposition 4.2.11 The Lie-Poisson reduced Hamiltonian vector field (given

by the right hand side of Equation (3.31)) defined on s
∗ is WPPS.

Proof: Choose V (Π, P,Γ) = H̃(Π, P,Γ) + ΓTΓ. Observing that V is radially

unbounded and that V̇ = 0 along trajectories of (3.31) the result follows from

Theorem 4.2.2.
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4.3 Small-Time Local Controllability

Whereas showing controllability in systems can be quite difficult one can often

show that the system is small-time locally controllable (STLC) [Sussmann, 1983;

1987]

Definition 4.3.1 The control system (4.3) is said to be small-time locally con-

trollable (STLC) from x0 ∈M if it is locally accessible from x0, and x0 is in the

interior of RV (x0,≤ T ) for all T > 0 and each neighborhood V of x0. If this

holds for any x0 ∈M then the system is called small-time locally controllable.

Let X = {X0, . . .Xm}. Let Br(X) denote the set of all possible “brackets” of

elements of X. Let δi(B) denote the number of occurrence of Xi in B ∈ Br(X).

An element B ∈ Br(X) is said to be bad if δ0(B) is odd and δi(B) is even for each

i = 1, . . . ,m. A bracket is good if it is not bad. Let Sm denote the permutation

group on m symbols. For π ∈ Sm and B ∈ Br(X), define π̄(B) to be the bracket

obtained by fixing X0 and sending Xi to Xπ(i) for a = 1, . . . ,m.. Now define

β(B) =
∑
π∈Sm

π̄(B).

Consider the bijection φ : X → {f, g1, . . . , gm} which sends X0 to f and Xi to

gi for i = 1, . . .m define the evaluation map

Ev(ψ) : L(X)→ L(F) :
∑
I

αiXi 7→
∑
I

αiψX αi ∈ IR

In [Sussmann, 1987] the following sufficient condition for STLC in terms of the

Lie brackets and Lie algebra generated by the the vector fields {f, g1, . . . , gm}

was given.
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Theorem 4.3.2 Consider the bijection ψ : X → {f, g1, . . . , gm} which sends X0

to f and Xi to gi for i = 1, . . .m. Suppose that the systems (4.3) is such that

every bad bracket B ∈ Br(X) has the property that

Evx(ψ)(β(B)) =
m∑
i=1

αiEvx(ψ)(Ci)

where Ci are good brackets in Br(X) of lower degree than B and αi ∈ IR, i =

1, . . . ,m. Also suppose that (4.3) satisfies the LARC at x. Then (4.3) is STLC

from x.

Hence if all bad brackets can be “neutralized” or can be expressed as a linear

combination of good bracket of a lower degree then the system is STLC. In the

case of a single input system [Sussmann, 1983] showed the following necessary

condition for single input systems.

Theorem 4.3.3 Consider an analytic system

ẋ = f0(x) + f1(x)u, |u(t)| ≤ A (4.9)

and a point x0 such that

[f1, [f0, f1]](xo) ∈/ S
1(f0 + ũf1, f1)(x0)

where S1(X1, X2) is the linear span of X1, X2, and the brackets (adX1)
jX2 for

j ≥ 1 and ũ is such that f0(x0)+ ũf1(x0) = 0. Then (4.9) is not STLC from x0.

We use the above result to show that the unreduced jet-puck dynamics are not

STLC.
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ẋ =
cos θP1

m
−

sin θP2

m

ẏ =
sin θP1

m
+

cos θP2

m

θ̇ =
Π

I

Ṗ1 =
P2Π

I
+ u cosφ (4.10)

Ṗ2 = −
P1Π

I
+ u sinφ

Π̇ = d sinφ

Proposition 4.3.4 The unreduced dynamics (4.10) are locally strongly accessi-

ble if sinφ 6= 0.

Proof: Given

f = (
P1 cos θ

m
−
P2 sin θ

m
)
∂

∂x
+ (

P2 cos θ

m
+
P1 sin θ

m
)
∂

∂y
+

Π

I

∂

∂θ

and

g = cosφ
∂

∂P1
+ sinφ

∂

∂P2
+ d sinφ

∂

∂Π

we calculate the following brackets

ξ1 = [f, g]

=
cos(θ + φ)

m

∂

∂x
+

sin(θ + φ)

m

∂

∂y
−
d sinφ

I

∂

∂θ
−

(Π + dP2) sinφ

I

∂

∂P1

+
Π cosφ+ dP1 sinφ

I

∂

∂P2

ξ2 = [[f, g], g]

=
2d sin2 φ

I

∂

∂P1
−

2d cos φ sinφ

I

∂

∂P2

ξ3 = [f, [[f, g], g]]

= −
2d sinφ sin(φ+ θ)

Im

∂

∂x
+

2d cos(φ+ θ) sinφ

Im

∂

∂y
+

Πd sin 2φ

I2

∂

∂P1
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2Πd sin2 φ

I2

∂

∂P2

ξ4 = [[f, g], [[f, g], g]]

=
−2d2 cosφ sin2 φ

I2

∂

∂P1
−

2d2 sin3 φ

I2

∂

∂P2

ξ5 = [f, [[f, g], [[f, g], g]]]

=
2d2 cos(φ+ θ) sin2 φ

I2m

∂

∂x
+

2d2 sin2 φ sin(φ+ θ)

I2m

∂

∂y
+

2Πd2 sin3 φ

I3

∂

∂P1

−
2Πd2 cosφ sin2 φ

I3

∂

∂P2

Again treating g and ξi’s as coloumn vectors, observe that

det[g, ξ1, ξ2, ξ3, ξ4, ξ5] = −
16d8 sin8 φ

I7m2

Hence again if sinφ 6= 0, dim(spanL{f,g})(p) = 6 ∀p ∈ T ∗SE(2). Also [f,X] ∈

span(g, ξ1, ξ2, ξ3, ξ4, ξ5) ∀X ∈ {g, ξ1, ξ2, ξ3, ξ4, ξ5}. Hence the complete system is

locally strongly accessible.

Proposition 4.3.5 The unreduced hovercraft-dynamics dynamics defined (4.10)

are not STLC from the origin.

Proof: It is sufficient to consider STLC of the reduced dynamics (3.17).

With ũ = 0 observe that S1(f, g)(0) is a one-dimensional space spanned by

α ∂
∂P1

+ β ∂
∂P2

+ dβ ∂
∂Π

while [g, [f, g]](0) = −2d
I
β2 ∂

∂P1
+ 2d

I
βα ∂

∂P2
.

Hence [g, [f, g]](0) ∈/ S1(f, g)(0)

Again, as the equations of the axisymmetric spacecraft with a single control

(cf. 3.22) are similar in structure to those of the jet puck we can make similar

comclusions about STLC.
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Proposition 4.3.6 The unreduced axisymmetric spacecraft dynamics defined

(3.22) are not STLC from the origin.

The dynamics of the asymmetric spacecraft with two gas jet actuators has been

shown to be STLC in [Krishnan et al., 1992; 1994].

We now study the STLC of the underwater vehicle with coincident center of mass

and center of buoyancy. Again assuming the the principal axes of the vehicle

and the principal axes of the displaced fluid are the same we have

J = diag(I1, I2, I3) and M = diag(m1,m2,m3).

The unreduced dynamics on T ∗G are given by

ṙ = RM−1P (4.11)

Ṙ = R[J−1Π (4.12)

Π̇ = Π× J−1Π + P ×M−1P + U1 (4.13)

Ṗ = P × J−1Π + U2 (4.14)

where U1 = (u1, u2, 0)T and U2 = (u3, 0, 0)T .

Proposition 4.3.7 The reduced AUV dynamics defined by (4.13-4.14) are small-

time locally controllable if I1 6= I2

Proof:

In Proposition 4.2.10 we already showed that the LARC was satisfied. Hence we

need to verify that all bad brackets can be expressed as a linear combination of
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good brackets of lower degree. One first observes that from Theorem 4.3.2 all

bad brackets are of odd degree. From (4.8) it follows that all brackets of degree 6

or higher can be expressed a linear combination of lower order brackets. Further

all brackets in (4.8) are good. Hence we need to only check for brackets of order

1, 3, and 5. The degree 1 bracket is f which is equal to 0 at the equilibrium

(Π, P ) = (0, 0). The degree 3 brackets are [[f, gi], gi], i = 1, 2, 3 which are equal

to 0 for all (Π, P ). The degree 5 brackets can be broken into three sets (i)

[[[[f, gi], gi], gi], gi], i = 1, 2, 3 which are again equal to zero since [[f, gi], gi] =

0, i = 1, 2, 3, (ii) [[[f, gi], f ], [f, gi]], i = 1, 2, 3 and (iii) [[[f, gi], [f, [f, gi]], i =

1, 2, 3. The brackets (ii) and (iii) are equal to zero at (Π, P ) = (0, 0). (The

verification was done using Mathematica). Hence we conclude that the reduced

dynamics are STLC.

While calculating the LARC and verifying STLC conditions for the unreduced

dynamics (4.11-4.14) of the autonomous underwater vehicle can be very tedious

and messy, we conjecture that the unreduced dynamics are STLC.

4.4 Cotangent Space Controllability

In this section we exploit the reduction procedure to gain some insight into the

controllability properties of the unreduced dynamics. Before we present our

results we recall a few definitions.

Definition 4.4.1 A map ψ : M → N is called a proper map if ψ−1(V ) is

compact for all compact Vn ⊂ N .
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Definition 4.4.2 An action Φ : G × M → M is proper if the mapping φ̃ :

G×M →M ×M , defined by Φ̃(g, x) = (x,Φ(g, x)) is proper

Lemma 4.4.3 Let G be a compact Lie group whose action Φ : G ×M → M

on a manifold M is free. Let π : M → M/G denote the projection map. Then

D = π−1(D̃) is compact iff D̃ ⊂M/G is compact i.e. the projection map π is a

proper map.

Proof: Assume that D is compact. Since G is compact Φ is proper (see

previous remark). Hence from Proposition 2.1.2, π is a smooth submersion.

Since π is a smooth submersion, if D is compact, then D̃ = π(D) is compact.

(<=) Now assume that D̃ is compact. Let {yk} be an sequence in D = π−1(D̃).

Let {xk} = {π(yk)}. {xk} ∈ D̃, and since D̃ is compact {xk} has convergent

subsequence {xkj} that converges to x∗ ∈ D̃. Now consider the subsequence

{ykj} such that ykj ∈ π
−1(xkj). Since {xkj} converges to x∗, {ykj} converges to

π−1(x∗) i.e. given any ε there exists N and {y′kj} ∈ π
−1(x∗) s.t ‖ykj − y

′
kj
‖ < ε/2

for all kj > N . Since G is compact, π−1(x∗) is compact and hence there exists a

convergent subsequence {y′kjm} that converges to some y∗ ∈ π−1(x∗), i.e. given

any ε there exists N ′ s.t. ‖y′kjm − y
∗‖ < ε/2 for all ni > N ′. Thus there exists

a subsubsequence {ykjm} and N ′′ such that ‖ykjm − y′kjm‖ < ε/2 and hence

‖ykjm − y∗‖ < ε for all kjm > N ′′, i.e the subsubsequence {ykjm} converges to

y∗ ∈ π−1(x∗) ⊂ D. Hence we conclude that D is compact.

Theorem 4.4.4 Let G be a compact Lie group whose action on a Poisson man-

ifold M is free and proper. A G-invariant Hamiltonian vector field XH defined

on a manifold M is WPPS if there exists a function V : M/G → IR that is
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proper and V̇ = 0 along trajectories of the projected vector field XH̃ defined on

M/G

Proof: Let D̃ = {µ | V (µ) ≤ E, µinM/G} Then the integral curve of XH̃

starting at µ0 ∈ D̃, denoted by φ
X
H̃

t (µ0), lies entirely in D̃. Since D̃ is closed

and bounded in M/G, it is compact. Let φXHt (x0) be the integral curve of

the Hamiltonian vector field XH starting at x0, at t = 0. At any given time

t′ > 0, φXHt′ (x0) ∈ π−1(φ
X
H̃

t (µ0)) where µ0 = π(x0). But φ
X
H̃

t (µ0)) ∈ D̃, ∀ t > 0.

Hence φXHt′ (x0) ∈ π−1(D̃). Since D̃ is compact from Lemma 4.4.3 π−1(D̃) is

compact and the integral curve of the Hamiltonian vector field XH starting at

x0 is restricted to the compact set π−1(D̃). To study the dynamics ofXH through

x0 we restrict ourselves to the symplectic leaf, induced by the Poisson bracket on

M , passing through x0. Let Σ be the symplectic leaf passing through x0. (If the

Poisson bracket on M is the Lie-Poisson bracket then Σ is the coadjoint orbit

through x0.) The integral curve φXHt (x0) lies entirely in W = π−1(D̃)
⋂

Σ, which

is compact in Σ, and hence as in the proof of Theorem 4.2.2 XH is WPPS.

Again having concluded WPPS nature of the Hamiltonian vector field, if the

Hamiltonian control system on M and M/G satisfy the LARC, then from The-

orem 4.1.4 controllability can be concluded.

Remark 4.4.5 See also result on controllability on principal fiber bundles with

compact structure group [Martin and Crouch, 1984].

While Theorem 4.4.4 gives a sufficient condition to check for WPPS of drift

vector field and hence for controllability of systems where the symmetry group

was compact it is not of too much help in the noncompact case. In the present
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setting of the hovercraft and the underwater vehicles we observe that though

SE(n), n = 2, 3 is not a compact group, it is a semidirect product, i.e. G =

H ×ρ V where H = SO(n) is compact and V = IRn is a vector space. In the

setting of semidirect products one can make the following observation (See [Rose,

1978] for the proof).

Theorem 4.4.6 Let H act on V , with the action ρ. Let G = H ×ρ V . Then

1. H is a subgroup of G.

2. V is a normal subgroup of G

3. G/V ∼= H

Hence if the dynamics are G invariant and G is a semidirect product, then one

can perform reduction of dynamics in two stages. First by V , to obtain dynamics

on H × g
∗, and then by H to obtain the reduced dynamics on g

∗. Exploiting

this reduction by stages we have the following controllability result.

Theorem 4.4.7 Let G = H ×ρ V , H compact and V a vector space. Then the

Lie-Poisson reduced dynamics defined on T ∗G/G, corresponding to G-invariant

dynamics are controllable iff the reduced dynamics on H ×T ∗G are controllable.

Applying these results to the examples discussed earlier we have the following

results.

Proposition 4.4.8 The reduced dynamics on SO(2)× se(2)∗ given by

θ̇ =
Π

I
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Ṗ1 =
P2Π

I
+ u cosφ

Ṗ2 = −
P1Π

I
+ u sinφ

Π̇ = d sinφ

are controllable if sinφ 6= 0.

Proof: Let f = (Π
I
, P2Π

I
,−P1Π

I
, 0)T and g = (0, cosφ, sinφ, d sinφ)T . Observe

that

det(g[f, g] [[f, g], g] [[f, g] [[f, g], g]]) = −
4d5 sin5 φ

I4
.

Hence LARC is satisfied iff sinφ 6= 0 The proof follows from Proposition 4.2.5

Theorem 4.4.7.

Remark 4.4.9 In the case of the spacecraft since G is compact one can now

conclude controllability of the complete dynamics in the case of axisymmetric

spacecraft with one control and the asymmetric spacecraft with 2 pure torques.

While this is an old result we have provided what we think as a more elegant

proof to the problem as compared with that of [Crouch, 1984].

Proposition 4.4.10 The reduced dynamics (4.12-4.14) of the underwater vehi-

cle with coincident center of mass and center of buoyancy, defined on SO(3)×

se(3)∗ are controllable if I1 6= I2.

Proof:

The proof follows from Proposition 4.2.10, theorem 4.4.4 and the LARC. The

LARC was verified using Mathematica.
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We end this chapter with a sufficient condition for controllability of the unre-

duced dynamics defined on T ∗G where G need not be compact. We use the

results of [Lewis and Murray, 1996; Lewis, 1995; Bullo and Lewis, 1996] in the

proof of our theorem. Here sufficient conditions for configuration controllability

(see definitions below) of mechanical systems on a Lie group, with a left invariant

Lagrangian and left-invariant forces are presented. The results presented are de-

rived assuming that the dynamics are written on TG as opposed to T ∗G, as has

been the case in our work. But in class of problems that we are considering (see

below for precise statement on assumptions of the class of mechanical systems)

the two formulations are equivalent and are related via the fiber derivative, or

the Legendre transform. Their results on configuration controllability coupled

with our results on controllability of reduced dynamics will be used to prove

a sufficient condition for controllability of the complete (unreduced) dynamics.

Before presenting the result we briefly discuss definitions and previous result on

configuration controllability as is applicable to the present setting.

Consider a mechanical system, whose configuration space can be identified with a

Lie group G. Let L : TG→ IR be a left (G) invariant Lagrangian. Let L̃ : g→ IR

be the restriction of the Lagrangian to the identity. Let f iui(t), i = {1, . . . ,m}

denote left invariant forces. Let adξ : g → g; η 7→ [ξ, η] denote the adjoint map

and ad∗ξ denote its dual.

In terms of the configuration g ∈ G and body fixed velocities ξ ∈ g the motion

of the system can now be defined by

ġ = g · ξ (4.15)
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d

dt

δL̃

δξ
= adξ

δL̃

δξ
+

m∑
i=1

f iui (4.16)

Equation 4.16 is called the Euler-Poincaré equation (cf. [Marsden and Scheurle,

1993b; 1993a; Bloch et al., ] and references therein.) The Euler-Poincare equa-

tions represent the reduced dynamics on TG/G ∼= g. The equivalence between

the Euler-Poincaré and Lie-Poisson dynamics can be seen by making the follow-

ing Legendre transformation for g to g
∗.

µ =
δL̃

δξ
, H̃ =< µ, ξ > −L̃(ξ).

Observing that

δH̃

δµ
= ξ + 〈µ,

δξ

δµ
〉 − 〈

δL̃

δξ
,
δξ

δµ
〉 = ξ

if follows that the Euler-Poincaré equations are equivalent to

µ̇ = ad∗δH̃
δµ

µ+
m∑
i=1

f iui

where the drift term is nothing but the Lie-Poisson reduced dynamics (cf. [Mars-

den and Ratiu, 1994] Theorem 13.6.2). In the setting where the Lagrangian is

the kinetic energy of the system and L̃ = ξT IIξ, where II : g → g
∗ is the inertia

tensor, (4.15-4.16) can be written as

ġ = gξ (4.17)

IIξ̇ = ad∗ξIIξ +
m∑
i=1

f iui (4.18)

Having shown the equivalence between the two formulation we now define config-

uration controllability on (4.15-4.16), and present results by [Lewis and Murray,

1996; Lewis, 1995; Bullo and Lewis, 1996] on configuration controllability before

we present our result.
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Let g0 ∈ G and let V be a neighborhood of G. Define

RV
G(g0, T ) = {g ∈ G | there exists an admissible input u : [0, T ]→ U

such that the evolution for (4.17-4.18) with initial conditions

g(0) = g0, ξ(0) = 0satisfies g(t) ∈ V, 0 ≤ t ≤ T and g(T ) = g}

Let

RV
G(g0,≤ T ) =

⋃
0≤t≤T

RV
G(g0, t)

Observe that in the above definition of a reachable set, the set of initial conditions

is restricted to the set with zero initial velocity and further the final velocity is

not relevant. Further the reachability set is defined in terms of a neighborhood

V of g0 ∈ G and not of (g0, ξ0) ∈ TG.

Definition 4.4.11 The system is small time locally configuration controllable at

g0 if there exists a T > 0 such that g0 ∈ int(RV
G(g0,≤ t)) for every neighborhood

V of g0 and 0 < t ≤ T

Definition 4.4.12 The system (4.17-4.18) is equilibrium controllable if for any

(g1, 0), (g2, 0) there exist at T > 0 and an admissible input u : [0, T ] → U such

that the solution (g(t), ξ(t)) of (4.17-4.18) with initial conditions (g(0), ξ(0)) =

(g1, 0) satisfy (g(T ), ξ(T )) = (g2, 0).

Remark 4.4.13 The set of points E = {(g, 0) : g ∈ G} defines the set of all

equilibrium points of (4.17-4.18).

Definition 4.4.14 The symmetric product of 〈· : ·〉 : g → G : ξ, η 7→ 〈ξ : η〉 is

defined as

〈ξ : η〉 = −II−1(ad∗ξIIη + ad∗ηIIξ) (4.19)
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Let B = {b1, . . . , bm} ⊂ g (a left invariant distribution on G) denote the input

subspace. In the present setting bi = II−1f i. Let Lieg(B) and Sym
g
(B) denote

the involutive and symmetric closure of B in g. As in section 3.2 on small time

local controllability, a symmetric product is bad if it contains an even number of

each of the vectors in B. A symmetric bracket is good if it is not bad.

Theorem 4.4.15 The system (4.17-4.18) is

(i) locally configuration accessible if rank(Lieg(Sym
g
)(B)) = dim(G) and

(ii) equilibrium controllable if it is locally configuration accessible and if every

bad symmetric product can be written as a linear combination of good symmetric

products of lower degree.

Proof: [Lewis, 1995]

We now present a sufficient condition for controllability of (4.17-4.18).

Theorem 4.4.16 If the dynamics of the mechanical systems given by (4.17 -

4.18) are such that

(i) The system is equilibrium controllable, and

(ii) the reduced dynamics (4.18) are controllable,

then the system is controllable.

Proof: To show controllability 2 we need to show that there exists a T > 0 and

an admissible control u : [0, T ]→ U such that given any (g1, ξ1) and (gf , ξf) the

2“he euthor thanks Herbert Struemper Yor ciscussions ln this croof.
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solution (g(t), ξ(t)) satisfies (g(0), ξ(0)) = (g1, ξ1) and (g(T ), ξ(T )) = (gf , ξf).

Using the properties (i) and (ii) we construct such a control.

Assume that there exists a (g3, 0) such that there exists an admissible control u′

that will steer the system from (g3, 0) to (gf , ξf).(The existence of such a (g3, 0)

an u′ is shown later.) The problem is now reduced to finding a control to steer

the system form (g1, ξ1) to (g3, ξ3) which is done as follows.

Let g(t, 0, g0, ξ(t)) denote the the solution of (4.17) at t > 0 for a particular

curve ξ(t) ∈ g and initial condition g0. Similarly let ξ(t, 0, ξ0, ξ(t)) denote the

the solution of (4.18) at t > 0 for a particular input u and initial condition ξ0

and ζ(t, 0, (g0, ξ0), u) denote the solution of (4.17-4.18) at t > 0 for a particular

input u and initial condition (g0, ξ0).

1. Since the reduced dynamics are controllable there exists a control u1 such

that

ζ(T1, 0, (g1, ξ1), u1) = (g2, 0).

2. Since the dynamics are equilibrium controllable there exists a control u2 such

that ζ(T2, 0, (g2, 0), u1) = (g3, 0).

3. Finally applying u3 we have ζ(T3, 0, (g3, 0), u3) = (gf , xf).

The existence of (g3, 0) and u3 is shown as follows. Find u3, such that ξ(T3, 0, 0, u3) =

ξf . Existence of such a control follows from the reduced space controllability

of 4.18. Apply the control u3 to (4.17-4.18) with initial condition ξ(0) = 0

and arbitrary g(0) = g′3. Then ζ(T3, 0, (g
′
3, 0), u3) = (g4, ξf) where g4 need

not be equal to gf . Let g(t, 0, g′3, ξ(t)) denote the solution to (4.17) where

ξ(t) = ξ(t, 0, 0, u3). Let R ∈ G. Then by left invariance ḡ = Rg(t, 0, g′3, ξ(t)) is
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a solution to (4.17-4.18). Choose R such that ḡ(T3) = Rg(T3, 0, g
′
3, ξ(t)) = gf ,

i.e R = g−1
4 gf and hence ḡ(t) = g−1

4 gfg(t, 0, g
′
3, ξ(t)). Again left-invariance im-

plies that ḡ(T3, 0, g
−1
4 gfg

′
3, ξ(t)) = gf or equivalently ζ(T3, 0, (g

−1
4 gfg

′
3, 0), u3) =

(gf , ξf). Hence choose g3 = g−1
4 gfg

′
3 and u′ = u3.

Remark 4.4.17 Given a mechanical system with symmetry i.e. G-invariant

dynamics, configuration controllability and controllability of reduced space can

be verified using Theorem 4.4.15 and Theorem 4.2.2.

We now apply Theorem 4.4.16 to the autonomous underwater vehicle with co-

incident center of mass and center of buoyancy.

Proposition 4.4.18 The unreduced dynamics (4.11-4.14) of the autonomous

underwater vehicle with coincident center of mass and center of buoyancy, de-

fined on T ∗SE(3) (or equivalently TSE(3)) are controllable if I1 6= I2

Proof: As shown in Theorem 4.4.16, controllability of (4.11-4.14) can be

shown if controllability of reduced dynamics (4.13-4.14) and equilibrium con-

trollability of (4.11-4.14) can be shown. In Proposition 4.2.10 controllability of

reduced dynamics has already been show. We now show that the dynamics are

equilibrium controllable. Defining J and M as in (4.6). Rewriting the reduced

dynamics on se(3) we have.

Ω̇ = J−1(JΩ× Ω +Mv × v) + J−1U1 (4.20)

v̇ = M−1(Mv ×Ω) +M−1U2 (4.21)
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Where Ω and V are as defined in Section 3.3, U1 = (u1, u2, 0) and U2 = (u3, 0, 0).

Thus the input space is spanned by the vectors

b1 =



1
I1

0

0

0

0

0


, b2 =



0

1
I2

0

0

0

0


, b3 =



0

0

0

1
m1

0

0


Calculating the symmetric brackets we have

〈b1 : b2〉 =



0

0

I1−I2
I1I2I3

0

0

0


, 〈b2 : b3〉 =



0

0

0

0

− 1
I2m3


, 〈b1 : 〈b2 : b3〉〉 =



0

0

0

0

−1
I1I2m2

0


Observing that

(i) D = {b1, b2, b3, 〈b1 : b2〉, 〈b2 : b3〉, 〈b1 : 〈b2 : b3〉〉} spans IR6 if I1 6= I2.

(ii) Every symmetric bracket in D is good, and from (i) every bracket of degree

4 or higher degree can be expressed a combination of good lower-degree good

brackets.

(iii) Every bad symmetric bracket of degree 2 is of the form 〈bi : bi〉 i = 1, 2, 3

and is equal to 0,
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It follows that the dynamics are equilibrium controllable. Hence controllability

follows from theorem 4.4.16.

Remark 4.4.19 in the case of the unreduced jet-puck dynamics as we have

only one input, every non-trivial second-order symmetric bracket is bad. Hence

sufficient conditions for equilibrium controllability are not satisfied and hence we

can not conclude controllability of unreduced dynamics. In [Lynch and Mason,

1997] the problem of controlling a hovercraft (planar rigid body) is discussed

in connection with dynamcis prehensile manipulation. Here is it shown, using

similar ideas that the unreduced dynamcis of a hovercraft are controllable with

two unidirectional thrusters providing opposite torques.
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Chapter 5

Control and Stabilization

Having shown controllability of the reduced and in some case of the unreduced

dynamics of a class of mechanical systems in Chapter 4, in this chapter we study

the stability, stabilization and control of the dynamics of these systems.

When studying the class of mechanical systems discussed in Chapter 2, the

stability of certain trajectories of the free dynamics is of practical interest. For

example in the rigid body example, the stability of a motion corresponding to

spinning about a certain axis, is of crucial interest in satellite control. Similarly

engineers are interested in the stability of motions corresponding to rotations

and translation about a principal axis in the case of the underwater vehicle.

These trajectories correspond to group orbits and hence project to equilibrium

points of the reduced dynamics and are called relative equilibria. One of the

main goals of this chapter is to study the stability and stabilization of these

relative equilibria.
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5.1 Stability of Relative Equilibria

Let M be a differentiable manifold and G be a Lie group. Let Φg : x 7→

Φg(x), x ∈ M, g ∈ G denote the action of G on M . Let X be a G invari-

ant vector field defined on M .

Definition 5.1.1 A relative equilibrium of X is a point xe ∈ M such that for

some ξe ∈ g called the generator of the relative equilibrium, the curve

t 7→ exp(ξet)xe

is an integral curve of X starting at xe.

In other words xe is a relative equilibrium if the flow of X starting at xe is an

orbit of xe corresponding to the action of the one-parameter subgroup exp(ξet).

If G acts regularly and freely on M , then M/G is a manifold and X projects to

X̃ on M/G (c.f. Proposition 2.1.2). Since the dynamical orbit starting at xe is a

group orbit, it projects to an equilibrium of the vector field X̃. Hence one may

alternately define a relative equilibrium as:

Definition 5.1.2 A point xe is called a relative equilibrium of X iff

X̃(π(xe)) = 0,

where π : M →M/G is a smooth submersion.

Before we present any tools to study stability of relative equilibria it becomes

essential to define stability as the word “stable dynamics” has been interpreted

in various ways in literature. Different interpretations of stability can lead to
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different stability criteria. To avoid any confusion we present definitions and

results on stability of autonomous systems.

Consider the autonomous system

ẋ = X(x) (5.1)

where x = (x1, . . . xn) are local coordinates for a smooth manifold M and X is

a smooth vector field. Let xe be an equilibrium point of (5.1) i.e.

X(xe) = 0.

Definition 5.1.3 The equilibrium point xe is said to be

• locally stable if for any neighborhood V0 of xe there exists a neighborhood

Ṽ of xe such that for all x(0) = x0 ∈ Ṽ the solution x(t, 0, x0) of (5.1)

belongs to V for all t ≥ 0. Or equivalently, for each ε > 0

∃ δ = δ(ε) > 0, suchthat ‖x0 − xe‖ < δ ⇒ ‖x(t, 0, x0)− xe‖ < ε ∀t ≥ 0

• locally asymptotically stable if for any neighborhood V0 of xe there exists

a neighborhood Ṽ of xe such that for all x(0) = x0 ∈ Ṽ the solution

x(t, 0, x0) of (5.1) converges to xe as t → ∞. Or equivalently, xe is stable

and

‖x(0)− xe‖ < δ ⇒ lim
t→∞
‖x(t, 0, x0)− xe‖ = 0

• linearly stable if the linearized equation

ẋ = Ax where A =
∂f

∂x
(x) |xe (5.2)

is locally stable.
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• spectrally stable if the all the eigenvalues of A have non-positive real parts.

Remark 5.1.4 If all the eigenvalues of the A lie in the open left half plane

then the know that the linear system is (5.2) is asymptotically stable and we

can conclude from Lyapunov’s first method that the equilibrium point xe of

(5.1) is locally asymptotically stable. If X(x) is a conservative system then

the eigenvalues of the linearized system are symmetrically distributed under

reflection about the real and imaginary axis. Hence in this setting one can

conclude spectral stability.

We now recall Lyapunov’s direct method (also know as the second method of

Lyapunov) that allows us to determine the stability of a system without explicitly

integrating the system.

Theorem 5.1.5 Let x = 0 be an equilibrium point of (5.1). Let V : D → IR be

a continuously differentiable function on a neighborhood D of x = 0, such that

V (0) = 0 and V (x) > 0 in D − {0} and

LX(V ) ≤ 0 in D.

Then, xe = 0 is stable. Moreover if

LX(V ) < 0 in D − {0}

then x = 0 is asymptotically stable.

To study the stability of relative equilibria, xe ∈M of a G-invariant vector field,

X we study the study the the stability of its projection µe = π(xe) with respect

to the reduced dynamics XH̃ defined on M/G.
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Definition 5.1.6 A relative equilibrium xe ∈ M of a vector field X ∈ X (M)

is relatively stable modulo G, or simply stable if the equilibrium µe = π(xe) is

stable with respect to the reduced dynamics X̃ ∈ X̃ (M/G).

In the setting of Lie-Poisson reduced dynamics on g
∗ the autonomous system of

interest to us, setting u = 0, takes the form (c.f. Theorem 2.1.10)

µ̇ = XH̃(µ) = Λ(µ)∇H̃(µ). (5.3)

Since XH̃ is a Hamiltonian vector field, LX
H̃
(H̃) = XH̃(H̃) = {H̃, H̃} = 0.

Hence H̃ is trivially a conserved quantity. Lets further assume that the null

space of the Poisson tensor Λ(·) is not empty and is spanned by the Casimirs

Ci(µ) i = 1, . . . ,m i.e. Λ(µ)∇Ci(µ) = 0. Then µe is an equilibrium of (5.3) if

and only if

∇H̃(µe) =
m∑
i=1

λi∇Ci(µe), λi ∈ IR,

or

∇(H̃ −
m∑

1=1

λi∇Ci)(µe) = 0

Now (5.3) can be rewritten as

µ̇ = Λ(µ)∇(H̃ −
m∑

1=1

λi∇Ci)(µ)

Hence it follows that ∇(H̃ −
∑m

i=1 λi∇Ci) are conserved quantities along trajec-

tories of (5.3).

The Casimirs and the reduced Hamiltonian H̃ can be exploited to come up with

a suitable choice of a Lyapunov function. This approach is known as the energy

Casimir method [Arnold, 1969] and is a generalization of the Lagrange-Dirichlet

theorem.
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5.1.1 Energy-Casimir Method

Theorem 5.1.7 If there exists a Casimir function C (or in some examples a

Casimir plus other conserved quantities) such that

∇(H + C)(µe) = 0 (5.4)

∇2(H + C)(µe) > 0, ( or < 0) (5.5)

then µe is a stable equilibrium of (5.3).

Proof: (cf. [Wang, 1990]) Choose

V (µ) = (H + C)(µ)− (H + C)(µe).

By assumption ∇2(H + C)(µe) is positive-definite and hence µe is a strict local

minimum. Thus there exists a neighborhood U of µe such that V (µe) = 0 and

V (µ) > 0 ∀ µ ∈ U − {xe}. Further since H + C is a conserved quantity along

trajectories of the system

LX
H̃
(V ) = 0 ∀µ ∈ U − {xe}.

Hence from Lyapunov’s direct method it follows that xe is a stable equilibrium.

The approach to study the stability of a relative equilibria using the energy

Casimir method can be summarized as follows:

(1) Consider a function HΦ,Ψ = H + Φ(C1, . . . , Cn) + Ψ(K1, . . . , Kn), where H

is the Hamiltonian, C1, . . . , Cn are Casimirs such that ∇Ci span the null space

of the Poisson tensor Λ(µ), and Ki are other conserved quantities.
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(2) Choose Φ,Ψ such that HΦ,Ψ has a critical point at the relative equilibrium

of interest.

(3) Definiteness of the second variation of HΦ,Ψ at the critical point is sufficient

for Lyapunov stability.

The energy-Casimir method provides a systematic method to determine the sta-

bility of the equilibrium of the reduced dynamics. As an example application of

the energy Casimir we apply it to study the the stability of relative equilibria of

the jet puck dynamics. Recall that the jet puck dynamics are given by

Ṗ1 = P2Π/I + αu

Ṗ2 = −P1Π/I + βu (5.6)

Π̇ = γu

where α = sinφ, β = sinφ and γ = d sinφ. The reduced Hamiltonian is given

by

H̃ =
1

2I
Π2 +

‖P‖2

2m
(5.7)

The dynamics (5.6) are Hamiltonian with respect to the Hamiltonian H̃ and the

Lie-Poisson structure on se(2)∗, given by

Λ =


0 0 P2

0 0 −P1

−P2 P1 0

 . (5.8)

The equilibria of (5.6), the reduced dynamics, are given by E = {P1, P2,Π |

P1 = P2 = 0}
⋃
{P1, P2,Π | Π = 0}
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The Casimir for this Poisson structure is given by

C = P · P = ‖P‖2 (5.9)

where P = (P1, P2)
T . Any function Φ(P · P ) is also a Casimir. Since Π is a

constant of motion any function Ψ(Π) too is constant along flows of (5.6).

We now study the stability of a particular equilibrium µe = (Π0, 0, 0), Π0 6= 0.

Choose

HΦ,Ψ = H̃ + Ψ(P · P ) + Ψ(Π) (5.10)

The first variation is given by

DHΦ,Ψ(δΠ, δP1, δP2) = (
Π

I
+ Ψ′(Π)) · δΠ + (

P1

m
+ Φ′(P · P )2P1) · δP1

(
P2

m
+ Φ′(P · P )2P2) · δP2 (5.11)

where

Ψ′ =
∂Ψ

∂Π
and Φ′ =

∂Φ

∂(P · P )

Now (DHΦ,Ψ) |µe= 0 implies

Ψ′(Π) = −
Π0

I
, and Φ′(0) can be chosen arbitrarily (5.12)

The second variation D2HΦ,Ψ evaluated at µe is
1
I

+ Ψ′′(Π0) 0 0

0 1
m

+ 2Φ′(0) 0

0 0 1
m

+ 2Φ′(0)

 (5.13)

Definiteness of the second variation implies

1

I
+ Ψ′′(Π0) > 0,

(
1

I
+ Ψ′(Π0))(

1

m
+ 2Φ′(0)) > 0, (5.14)

(
1

I
+ Ψ′′(Π0))(

1

m
+ 2Φ′′(0))2 > 0
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We can obviously choose Φ,Ψ to satisfy (5.12) and (5.14). For example choose

Ψ = −ΠΠ0

I
and Φ = 0. Hence we can conclude that (Π0, 0, 0) is a stable relative

equilibrium.

We now study the stability of the equilibrium µe = (0, P 0
1 , P

0
2 ). Again (DHΦ,Ψ) |µe=

0 implies

Ψ′(Π) = 0, and Φ′(P 0 · P 0) = −
1

m
(5.15)

The second variation D2HΦ,Ψ evaluated at µe = (0, P 0
1 , P

0
2 ) is

1
I

+ Ψ′(0) 0 0

0 4Φ′′(P 0 · P 0)(P 0
1 )2 4Φ′′(P 0 · P 0)(P 0

1P
0
2 )

0 4Φ′′(P 0 · P 0)(P 0
1P

0
2 ) 4Φ′′(P 0 · P 0)(P 0

1 )2

 (5.16)

Since det(D2HΦ,Ψ) |(0,P 0
1 ,P

0
2 )= 0, it implies that the second variation is semidefi-

nite and the energy Casimir method in this case is inconclusive in determining

the stability of the equilibrium point µe = (0, P 0
1 , P

0
2 ).

One can conclude that µe = (0, P 0
1 , P

0
2 ) is in fact an unstable equilibrium by

explicitly integrating the vector field. To infer instability we look at the projec-

tion of the solution of (5.6), with initial conditions (Π̄, P̄1, P̄2) in a neighborhood

of µe, in the P1P2 plane. The solution is that of a harmonic oscillator with

frequency Π̄. Hence in the P1P2 plane the vector (P̄1, P̄2)
T is rotated with fre-

quency Π̄. Hence given a sufficiently small neighborhood of µe, P1(t), P2(t) leave

this neighborhood in finite time (and hence unstable), although they return to

it after time t = 2π
Π̄

.

The stability of underwater vehicle with coincident and non coincident center

of mass and center of buoyancy, using the energy-Casimir method, have been
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studied in [Leonard, 1995] and we refer the reader to it for details.

5.2 Hamiltonian Feedback Control

To stabilize relative equilibria using feedback control various approaches have

been adopted. In [Bloch et al., 1992a; Bloch and Marsden, 1990; Leonard, 1996]

feedback laws have been chosen such that the closed loop system is still Hamilto-

nian with respect to Poisson structure defined on the quotient manifold. We refer

to these controls as Hamiltonian feedback control’s. In this section we discuss

the existence and a few example of Hamiltonian feedback controls for the me-

chanical systems discussed in earlier chapters. We then use the energy-Casimir

method to study stability of the closed loop systems.

Proposition 5.2.1 There does not exist a feedback control u = ξ(P1, P2,Π) such

that the closed loop system (3.17) is Hamiltonian with respect to the Lie Poisson

structure defined on se(2)∗.

Proof: Lets assume that there exists a feedback law u = ξ(P1, P2,Π) 6= 0

such that the closed loop system is Hamiltonian with respect to the Lie-Poisson

tensor

Λ =


0 0 P2

0 0 −P1

−P2 P1 0

 .
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This implies that there exists a function Ψ(P1, P2,Π) such that
α

β

γ

u =


0 0 P2

0 0 −P1

−P2 P1 0




∂Ψ
∂P1

∂Ψ
∂P2

∂Ψ
∂Π

 (5.17)

(5.17) ⇒ αξ(P1, P2,Π) = P2
∂Ψ

∂Π
, (5.18)

βξ(P1, P2,Π) = −P1
∂Ψ

∂Π
, (5.19)

γξ(P1, P2,Π) = −P2
∂Ψ

∂P1

+ P1
∂Ψ

∂P2

(5.20)

(5.18) and (5.19) ⇒
∂Ψ

∂Π
(
P2

α
+
P1

β
) = 0 ∀ P1, P2 (5.21)

⇒
∂Ψ

∂Π
(P1, P2,Π) = 0 (5.22)

⇒ ξ(P1, P2,Π) = 0 since α, β 6= 0 (5.23)

which is a contradiction.

Remark 5.2.2 See the following section for examples of dissipative control laws

to stabilize relative equilibria.

The case of stabilizing the rigid body relative equilibria has been studied in some

detail and we refer the reader to [Bloch et al., 1992a; Bloch and Marsden, 1990]

for further details and references.

We now consider the stabilization of the underwater vehicle dynamics with three

pure torques (cf. [Leonard, 1996]) using dissipative feedback. The dynamics of

the underwater vehicle are given by

Π̇ = Π× J−1Π + P ×M−1P + U (5.24)
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Ṗ = P × J−1Π (5.25)

where U = (u1, u2, u3)
T (c.f. Section 3.3.4). Let us assume that the underwater

vehicle is approximated by an ellipsoid. There are three sets of two-parameter

families of equilibrium solutions (with ui = 0) each family corresponding to a

constant translation along and rotation about one principal axes of the vehicle.

In the rest of the discussion we study stability the equilibrium solution xe =

(Π0, P 0) = (0, 0,Π0
3, 0, 0, P

0
3 ), P 0

3 6= 0. 1

Given a function

φ : IRn × IRm × IRp → IR; (x, y, z) 7→ φ(x, y, z)

let∇xφ = ( ∂φ
∂x1
, · · · ∂φ

∂xn
)T . Similarly let∇yφ = ( ∂φ

∂y1
, · · · ∂φ

∂ym
)T and∇zφ = ( ∂φ

∂z1
, · · · ∂φ

∂zp
)T .

Proposition 5.2.3 Under the feedback law U = P ×∇PΨ(P1, P2, P3) the closed

loop system (5.24-5.25) is Hamiltonian, with respect to the Hamiltonian H̃ + Ψ

and the minus Lie-Poisson bracket defined on se(3)∗. Further an unstable relative

equilibrium xe = (0, 0,Π0
3, 0, 0, P

0
3 ) can be stabilized using a linear feedback law

αP 0 × P .

Proof: Let us assume there exist feedback controls defined by

u1 = ξ1(Π, P ), u2 = ξ2(Π, P ) u3 = ξ3(Π, P )

such that the closed loop system (5.24-5.25) is Hamiltonian with respect to the

Lie-Poisson structure

Λ(µ) = Λ(Π, P ) =

 Π̂ P̂

P̂ 0


1P 0

3 = 0 corresponds eo e uon eeneric yquilibrium coint, e.e. e coint e which ehe essociated

Poisson eensor noses lank
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defined on se(3)∗. This implies that there exists a function Ψ(Π, P ) such that U

0

 =

 Π̂ P̂

P̂ 0


 ∇ΠΨ

∇PΨ

 . (5.26)

(5.26) implies that Ψ has to satisfy the PDE

P ×∇Π = 0 (5.27)

Any Ψ(Π, P ) of the form

Ψ(Π, P ) = Ψ1(P ) + Π · P (5.28)

satisfies (5.27). Further since Π · P is a Casimir it is constant along flows and

does not contribute to the dynamics. Hence choosing Ψ = Ψ1(P ) the given

feedback control follows from (5.26)

In [Lamb, 1945; Leonard, 1995] it was shown that for an ellipsoidal neutrally

buoyant vehicle with coincident center of mass and center of buoyancy and eb3

axis of symmetry, constant (nonzero) translation along and rotation about the

eb3 axis is stable if

(
Π0

3

P 0
3

)2 > 4I1(
1

m3
−

1

m1
). (5.29)

Otherwise it is unstable. Hence if the vehicle was a prolate spheroid, i.e. l3 > l1

then m3 < m1 and the relative equilibrium can be unstable for a small
Π0

3

P 0
3

ratio. Now let us assume that Π0
3, P

0
3 is such that the relative equilibrium is

unstable. Proposition5.2.3 suggests that an unstable relative equilibrium xe =

(0, 0,Π0
3, 0, 0, P

0
3 ) can be stabilized using a linear feedback law αP 0 × P3.

An application of the energy-Casimir method to study the stability of xe with

this feedback law shows that the equilibrium is stable if

(
Π0

3

P 0
3

)2 > 4I1(
1

m3
−

1

m1
+ α). (5.30)
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Hence α can be chose to satisfy (5.30) and make the equilibrium stable.

In the setting of the underwater vehicle with noncoincident center of mass and

center of buoyancy we can make a similar observation.

Proposition 5.2.4 Under the feedback law U = P×∇PΨ(P,Γ)+Γ×∇ΓΨ(P,Γ)

where Ψ1(·),Ψ2(·) are smooth functions, the closed loop system (3.31) is Hamil-

tonian with respect to the Hamiltonian H̃+Ψ(P,Γ) and the Lie Poisson structure

defined on s
∗.

Remark 5.2.5 As in the previous setting a linear feedback law of the form

U = α · P + β · Γ, α = (α1, α2, α3)
T , β = (β1, β2, β3)

T (5.31)

makes the closed loop system in Hamiltonian. The vectors α and β can be chosen

such that closed loop system has the desired motion of interest as the relative

equilibrium of the closed loop system. This approach is adopted in [Leonard,

1996] to find a feedback law to stabilize the underwater vehicle about any desired

Pe,Γe with no spin, i.e. Ωe = 0.

5.3 Dissipative Feedback Control

In this section we present a constructive approach to stabilize relative equilibria

of Hamiltonian systems using dissipative control laws. We define a control law

to be dissipative if the divergence of the closed loop system is less than zero. The

approach exploits the existence of a center manifold of the reduced dynamics.

We first present related results on center manifolds.
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Consider a system of the form

ẏ = A1y + g1(y, z) (5.32)

ż = A2z + g2(y, z) (5.33)

where

gi(0, 0) = 0;
∂gi

∂y
(0, 0) = 0

∂gi

∂z
(0, 0) = 0 i = 1, 2

Further assume that all the eigenvalues ofA1 are equal to zero and the eigenvalues

of A2 lie in the open left half plane.

Definition 5.3.1 A smooth invariant manifold of the form z = h(y) is called a

center manifold if

h(0) = 0 and
∂h

∂y
(0) = 0.

We now state the center manifold theorem and related results. Details, proofs

and historical references can be found in [Carr, 1981].

Theorem 5.3.2 (Center Manifold Theorem) If g1 and g2 are twice continu-

ously differentiable, all eigenvalues of A1 have zero real parts and all eigenvalues

of A2 have negative real parts, then there exists δ > 0 and a continuously differ-

entiable function h(y), defined for all ‖y‖ < δ, such that z = h(y) is a center

manifold for (5.32-5.33). Further the motion of the system on the center mani-

fold is described by

ẏ = A1y + g1(y, h(y)) (5.34)

Theorem 5.3.3 (Reduction Principle) Under the assumptions of Theorem

5.3.2,
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(i) if the origin y = 0 of (5.34) is asymptotically stable,(unstable), then the origin

of (5.32-5.33) is also asymptotically stable (unstable).

(ii) Suppose the origin y = 0 of (5.32) is stable. Let (y(t), z(t)) be a solution of

(5.32-5.33) with (y(0), z(0)) sufficiently small. Then there exists a solution ȳ(t)

of (5.32) such that as t→∞,

y(t) = ȳ(t) +O(e−γt) (5.35)

z(t) = h(ȳ(t)) +O(e−γt) (5.36)

As we shall now see center manifolds occur naturally in the reduced dynamics

of G-invariant Hamiltonian dynamics.

Recall that the reduced dynamics of g∗ are given by

µ̇ = XH̃(µ) = Λ(µ)∇H̃(µ), (5.37)

where µ ∈ g
∗ and H̃ is the reduced Hamiltonian.

Let µe be an equilibrium point of XH̃ , i.e. XH̃(µe) = 0. Let us assume that there

exists a neighborhood V of µe such that, in this neighborhood the Poisson tensor

Λ(µ) has constant rank m, m < n where n is the dimension of g∗. (Recall that

m is even). From the symplectic stratification theorem (c.f. Theorem 2.1.6) V

is foliated by symplectic leaves of dimension m. Hence there exist coordinates 2

(w1, . . . wm, s1, . . . sn−m) in the neighborhood V , of µe, such that each leaf of the

foliation is given by the submanifold

Σa1...an−m = {µ ∈ g
∗ | si = ai, i = 1, . . . n−m} (5.38)

2Sxistence lf ehese coordinates Yollows Yrom ehe Frobenius eheorem.
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where each ai is a constant such that ai ∈ (−εi, ε). Hence the foliation Σ is

given by the collection of all submanifolds (5.38) parameterized by ai, ‖ai‖ ≤ ε,

i = 1, . . . n−m, i.e.

Σ =
⋃

ai∈(−εi,εi)

Σa1···an−m , i = 1, . . . n−m. (5.39)

We shall assume without loss of generality that the leaf containing µe is given

by

Σ0
µe

= {µ ∈ g
∗ | si = 0, i = 1, . . . n−m}

Hamiltonian dynamics on g
∗ restricts to canonical Hamiltonian dynamics on each

leaf. Hence the coordinates (w, s) can be chosen with w = (q1, . . . , ql, p1, . . . pl)

2l = m such that these coordinates satisfy canonical bracket relations {qi, qj} =

{pi, pj} = {qi, sj} = {pj, sj} = {si, sj} = 0 and {qi, pj} = δij . (cf.[Weinstein,

1983a]). Hence in these coordinates (5.37) are given by
q̇

ṗ

ṡ

 =


0, I 0

−I 0 0

0 0 0




∂H̄(q,p,s)
∂q

∂H̄(q,p,s)
∂p

∂H̄(q,p,s)
∂s

 (5.40)

H̄ is H̃ expressed in these coordinates.

Hence the equilibrium points of dynamics in this neighborhood are given by

E = {(p, q, s) |
∂H̄(q, p, s)

∂q
= 0,

∂H̄(q, p, s)

∂p
= 0} (5.41)

The set E is not empty, because we have assumed V to be a neighborhood of

and equilibrium point µe, but is in fact an immersed submanifold of dimension

r ≤ n. We call E the equilibrium submanifold. The above discussion can be

summarized in the following theorem
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Theorem 5.3.4 Let µe be an equilibrium point of (5.37) such that there exists

a neighborhood V of µe s.t. the Poisson tensor Λ(µ) has constant rank in this

neighborhood. Then in V there exists an immersed submanifold E such that for

all µ ∈ E , XH̃(µ) = 0. Further locally there exist coordinates (y1, . . . , yr, z1, zn−r)

such that z = 0 on E

Th existence of (y, z) coordinates follows from the fact that E is an immersed

submanifold.

The existence of such an equilibrium submanifold provides for a systematic ap-

proach to design a class of controls to locally stabilize µe ∈ E based on techniques

from linear system theory and the Center Manifold Theorem.

Let us assume that a nonlinear control system

ẋ = f(x) +
m∑
i

gi(x)ui x ∈M (5.42)

has an equilibrium submanifold E of dimension k, i.e f(x0) = 0, ∀x0 ∈ E .

Choose coordinates (y, z) in a neighborhood V of x0 such that z = 0 on E .

Hence in these coordinates x0 = (y0, 0). Rewriting (5.42) in these coordinates,

we have

ẏ = f 1(y, z) +
m∑
i=1

g1
i (y, z)ui (5.43)

ż = f 2(y, z) +
m∑
i=1

g2
i (y, z)ui (5.44)

or equivalently as

ẏ = A1
1y +A1

2z +
m∑
i=1

b1
iui + f̃ 1(y, z) +

m∑
i=1

g̃1(y, z)ui (5.45)
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ż = A2
1y +A2

2z +
m∑
i=1

b2
iui + f̃ 2(y, z) +

m∑
i=1

g̃2(y, z)u1 (5.46)

(5.47)

where

A1
1 =

∂f 1(y, z)

∂y
|(y0,0), A1

2 =
∂f 1(y, z)

∂z
|(y0,0)

A2
1 =

∂f 2(y, z)

∂y
|(y0,0), A2

2 =
∂f 2(y, z)

∂y
|(y0,0) .

B1 = [b1
1 · · · b

1
m] = [

∂g1

∂(y, z)
· · ·

∂gm

∂(y, z)
] |(y0,0)

B2 = [b2
1 · · · b

2
m] = [

∂g2

∂(y, z)
· · ·

∂gm

∂(y, z)
] |(y0,0)

Since E = {(y, z) | z = 0} is an equilibrium manifold,

f 1(y, 0) = 0 and f 2(y, 0) = 0, ∀y.

Hence f 1 and f 2 cannot be linear in y and

A1
1 =

∂f 1(y, z)

∂y
|(y0,0)= 0 A2

1 =
∂f 2(y, z)

∂y
|(y0,0) (5.48)

Alternatively observe that since E is an equilibrium manifold ∂f
∂(y,z)

|(y0,0) has k

eigenvalues corresponding to eigenvectors v1, . . . vk that span Tx0E .

Hence (5.42) can be written as

ẏ = A1
2z + f̃ 1(y, z) +

m∑
i=1

b1
iui +

m∑
i=1

g̃1(y, z)u1 (5.49)

ż = A2
2z + f̃ 2(y, z) +

m∑
i=1

b2
iui +

m∑
i=1

g̃2(y, z)u1 (5.50)

We refer to (5.50) as the transverse dynamics.
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Theorem 5.3.5 Under the assumption that (5.42) has an equilibrium subman-

ifold E , there exists a class of state feedback laws uλ(x) = Kλz + φλ(z), with

φλ(0) = 0, such that (y0, 0) ∈ E , y0 6= 0 is a stable equilibrium of the closed loop

system if the linearized transverse dynamics (5.50) are stabilizable. Further, for

all trajectories (y(t), z(t)) of the closed closed loop system sufficiently close to

the origin

(y(t), z(t))→ (c, 0) as t→∞

Proof: Since the pair {A2
2, B

2} is stabilizable, choose U(x) = Kz+φ(z), such

that the eigenvalues (λi) of A2
2 +B2K are in the open left half plane. The closed

loop system is

ẏ = A1
2z +B1Kz + f̃ 1(y, z) +

m∑
i

g̃1
i (y, z)φi(z) (5.51)

ż = (A2
2 +B2K)z + f̃ 2(y, z) +

m∑
i

g̃2
i (y, z)φi(z). (5.52)

Let Af = (A2
2 +B2K). The change of variables

ȳ = y − (A1
2 +B1K)A−1

f z

z̄ = z

transforms (5.49-5.50) into

˙̄y = N1(ȳ, z̄) (5.53)

˙̄z = Af z̄ +N2(ȳ, z̄) (5.54)

where

N1(ȳ, z̄) = f 1(y, z̄) +
m∑
i

g̃1
i (y, z̄)φi(z) (5.55)
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−(A1
2 +B1K)A−1

f (f̃ 2(y, z̄) +
m∑
i

g̃2
i (y, z̄)φi(z̄)) (5.56)

N2(ȳ, z̄) = f̃ 2(y, z̄) +
m∑
i

g̃2
i (y, z̄)φi(z̄). (5.57)

substituting appropriately for y = ȳ + (A1
2 + B1K)A−1

f z̄. Note that (y0, 0) is

still an equilibrium of (5.53-5.54). These equations are now in the setting of the

center manifold theorem with z̄ = 0 defining the center manifold. The reduced

dynamics are given by

˙̄y = 0 (5.58)

since f̃ 1(y0, 0) = 0, and φ(0) = 0. Hence from Theorem 5.3.3 we conclude

that the equilibrium (y0, 0) is a locally stable equilibrium of the closed loop

system. Since there exists a K such that the eigenvalues of (A2
1 +B2K) can be

placed anywhere in the open left half plane, we have a whole class of controls

uλ(x) = Kλz+ φλ(z), parameterized by the choice of λ. φλ(z) may be chosen to

increase the region of attraction.

We also know from the Theorem 5.3.3 that if (ȳ(t), z̄(t)) is a solution of (5.53-

5.54) with (ȳ(0), z̄(0)) sufficiently small then there exists a solution p(t) of the

reduced dynamics such that as t→∞,

ȳ(t) = p(t) +O(e−γt) (5.59)

z̄(t) = h(p(t)) +O(e−γt) (5.60)

where z̄ = h(ȳ) defines the center manifold. In our setting from (10) we can

conclude that as t→∞, (ȳ(t), z̄(t))→ (p0, 0) for some constant p0, i.e the closed

loop system is asymptotically stable in z and stable in y.

Alternatively one could use a Lyapunov argument (cf. Khalil) to prove stabil-
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ity of (y0, 0). In the rest of the discussion we shall assume that the following

coordinate changes has been made

ỹ = y − y0 (5.61)

z̃ = z (5.62)

Since N1 and N2 are twice continuously differentiable and

Ni(ỹ, 0) = 0;
∂Ni

∂z̃
(y0, 0) = 0

for i = 1, 2, in the domain Bρ = {ỹ, z̃| ‖(ỹ, z̃)− (y0, 0)‖2 < ρ} N1, N2 satisfy

‖Ni(ỹ, z̃)‖2 ≤ ki‖z̃‖, i = 1, 2.

We also have ‖ỹ‖ ≤ k ≤ ρ in this domain. Now consider

V (ỹ, z̃) =
1

2
ỹ2 +

√
z̃TP z̃

where P is the solution to the Lyapunov equation

PÃ+ ÃTP = −I.

Since Ã is a Hurwitz matrix, a unique positive definite solution to the Lyapunov

equation exists. The derivative of V (ỹ, z̃) along trajectories of the system (5.53-

5.54) is given by

V̇ (ỹ, z̃) = ỹN1(ỹ, z̃) +
‖z̃‖
√
z̃TP z̃

+
z̃TPN2(ỹ, z̃)√

z̃TP z̃

≤ −
1

4
√
λmax(P )

‖z̃‖ − (
1

4
√
λmax(P )

− kk1 −
k2λmax(P )√
λmin(P )

) ‖z̃‖2

We can choose ρ sufficiently small such that

1

4
√
λmax(P )

− kk1 −
k2λmax(P )√
λmin(P )

> 0

116



Hence

V̇ (ỹ, z̃) ≤ −
1

4
√
λmax(P )

‖z̃‖

and we can conclude that V̇ (ỹ, z̃) is negative semidefinite and hence the system

is stable. Since V is radially unbounded there exists a c such that the set

Ωc = {ỹ, z̃|V (ỹ, x̃) < c} ⊂ Bρ is positively invariant. V̇ = 0 in the set E = {ỹ, z̃ |

z̃ = 0}. Since any point in E is an equilibrium point, E is an invariant set and we

can conclude from LaSalles invariance principle that every trajectory starting in

Ωc approaches E as t→∞.

Remark 5.3.6 It was only recently that the author became aware (c.f. [Zenkov

et al., ]) that ideas similar to those used in the proof of 5.3.5 were originally

due to Lyapunov and Malkin [Lyapunov, 1992; Malkin, 1938]. In [Zenkov et

al., ] stability of relative equilibria of nonholonomic systems using the combined

methods of the energy-momentum method, the Lyapunov-Malkin Theorem and

the center manifold theorem are used.

5.3.1 Examples

Using the approach discussed in the earlier we find linear feedback laws to sta-

bilize relative equilibria of some of the examples discussed in Chapter 3.

Proposition 5.3.7 : The class of feedback laws, parametrized by λ1, λ2 given

by

uλ1,λ2 =
λ1λ2

P 0
1 γ

P2 − (
(λ1 + λ2)

γ
+
λ1λ2βI

P 0
1 γ

)Π, λ1, λ2 > 0 (5.63)

stabilize the equilibrium (0, P 0
1 , 0) of (5.6) for any P 0

1 6= 0
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Proof: Observe that E = {P1, P2,Π | P2 = Π = 0} is an equilibrium

submanifold of se(2)∗. Make the change of coordinates

y1 = P − P 0
1 z1 = P2, z2 = Π (5.64)

such that the equilibrium (0, P 0
1 , 0) is shifted to the origin in these coordinates.

The dynamics in these coordinates are

ẏ1 =
z1z2

I
+ αu

ż1 = −
P 0

1 z2

I
+
y1

z2
I + βu (5.65)

ż2 = γu

Linearizing (5.65) about the origin results in

A


0 0 0

0 0 −P 0
1

I

0 0 0

 B =


α

β

γ


Using the notation of Theorem 5.3.5 we have

A2
1 =

 0 −P 0
1

I

0 0

 B2 =

 β

γ

 (5.66)

The eigenvalues of A2
1 are equal to zero. Observe that

rank[B1, A2
1B] = rank

 β −P 0
1

I

γ 0

 = 0. (5.67)

Hence the pair {A2
1, B

2} is controllable and hence stabilizable. It can now easily

be verified that with u = Kz = a1

m
z1 + a2

I
z2 where

a1 =
λ1λ2mI

γP 0
1

and a2 = −
I

γ
((λ1 + λ2) +

βλ1λ2

γP 0
1

),
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the eigenvalues of Af = (A2 + B2K) are −λ1 and −λ2. The rest of the proof

follows from Theorem 5.3.5.

Remark: (i) If P 0
1 < 0 then the divergence of the closed loop system is less than

zero for any choice of λ1, λ2 > 0, making the closed loop system dissipative.

(ii) If P 0
1 > 0 then λ1, λ2 > 0 can be chosen such that the closed loop system is

dissipative.

Proposition 5.3.8 : The class of feedback laws, parametrized by λ1, λ2 given

by

uλ1,λ2 = −
λ1λ2

P 0
2 γ

P1 − (
(λ1 + λ2)

γ
−
λ1λ2βI

P 0
2 γ

)Π, λ1, λ2 > 0 (5.68)

stabilize the equilibrium (0, P 0
2 , 0) of (5.6) for any P 0

2 6= 0

Figures 5.1, 5.2, show the trajectories of the closed loop system, with stabilizing

feedback laws. In these plots the relative equillibrium (2, 0, 0) is being stabilized.

Tha values for λ1 and λ2 were chosen to be −0.1.

We now construct linear feedback law to stabilize unstable relative equilibria of

the underwater vehicle with coincident center of mass and center of buoyancy.

Recall that the reduced dynamics derived in of the AUV with coincident center

of mass and center of buoyancy are given by

Π̇1 =
I2 − I3

I2I3
Π2Π3 +

m2 −m3

m2m3
P2P3 + u1

Π̇2 =
I3 − I1

I3I1
Π3Π1 +

m3 −m1

m3m1
P3P1 + u2

Π̇3 =
I1 − I2

I1I2
Π1Π2 +

m1 −m2

m1m2
P1P2 + u3 (5.69)
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Figure 5.1: Stabilizing dissipative feedback laws for the Hovercraft

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

time

P
1

0 20 40 60 80 100 120 140 160 180 200
−4

−2

0

2

time

P
2

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

time

P
i

Figure 5.2: Stabilizing dissipative feedback laws for the Hovercraft
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Ṗ1 =
P2Π3

I3

−
P3Π2

I2

Ṗ2 =
P3Π1

I1

−
P1Π3

I3

Ṗ3 =
P1Π2

I2

−
P2Π1

I1

We now stabilize equilibrium solution xe = (0, 0,Π0
3, 0, 0, P

0
3 ), P 0

3 6= 0 assuming

that m3 < m1. Recall that this is an unstable relative equilibria.

Proposition 5.3.9 There exists a class of state feedback laws of the form ui =∑5
1 αizi + φi(z), φi(0) = 0, where z = (z1, . . . z5) = (Π1,Π2,Π3, P1, P2) such that

the equilibrium xe = (0, 0, 0,Π0
3, 0, P

0
3 ), P 0

3 6= 0 is a locally stable equilibrium of

the closed loop system (5.69).

Proof: We consider the case with Π3 = 0. The case with Π3 6= 0 can be proved

in a similar way. Observe that xe ∈ E = {Π1,Π2,Π3P1, P2, P3 | Π1 = Π2 = P1 =

P2 = 0}. E is a submanifold of se(3)∗. Linearizing (5.69) about (0, 0, 0, 0, 0, P 0
3 )

we have

Ṗ3 = 0

Π̇1

Π̇2

Π̇3

Ṗ1

Ṗ2

=



0 0 0 0 m2−m3

m2m3
P 0

3

0 0 0 m2−m3

m2m3
P 0

3

0 0 0 0 0

0
−P 0

3

I2
0 0 0

P 0
3

I1
0 0 0 0


︸ ︷︷ ︸

A2



Π1

Π1

Π3

P1

P2


+



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0


︸ ︷︷ ︸

B2


u1

u2

u3



Observe that {A2, B2} is controllable if P 0
3 6= 0. Hence there exists a feedback

law Kz such that the eigenvalues of A2 + B2K are in the open left half plane.

The result then follows from 5.3.5
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Figure 5.3: Unstable Relative Equillibria
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Figure 5.4: Stabilizing Hamiltonian Feedback Laws for the AUV
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Figure 5.5: Stabilizing dissipative feedback laws for the AUV

Figure 5.3 shows that the relative equillibria (0, 0, 0, 0, 0, 1) is unstable. Figures

5.4 and 5.5 show the trajectories of the closed loop systems under Hamiltonian

and Dissipative feedback laws, respectively.

We conclude this chapter with some comments on the stabilization of the origin

of the unreduced dynamcis of the systems studied in this dissertation.

5.4 Comments on the Stabilization of the Unre-

duced Dynamics

The existence of smooth state feedback laws to stabilize the origin of control-

lable/reachable nonlinear systems has been been studied for some time by [Brock-

ett, 1983]. While Brockett’s condition can easily be verified for systems without
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drift, for systems with drift it becomes more difficult. Work in [Sontag, 1988;

Byrnes and Isidori, 1991; Aeyeles, 1985] in the attitude control of spacecraft dy-

namics has led to some general theorems on the existence of smooth feedback

laws to stabilize the origin of a class of systems with drift. Using the results of

Byrnes and Isidori, in this section we can conclude that there does not exist a

feedback law that can stabilize the origin of the complete dynamics of the hov-

ercraft and underwater vehicle. We state without proof the theorem by Brynes

and Isidori.

Consider a class of nonlinear control systems of the form

ẋ2 = f2(x1, x2), x2 ∈ IRn2 (5.70)

ẋ1 = f1(x1, x2)x1 +
m∑
i=1

biui, ui ∈ IR, x1, bi ∈ IRn1 (5.71)

Assume that :

(H1) The drift vector field

f(x) =

 f1(x)x1

f2(x)

 , x =

 x1

x2

 ∈ IRn1+n2

is in C∞ and has 0 as an equilibrium

(H2) f2(x1, x2) = 0 implies x1 = 0 and

(H3) the Jacobian matrix ∂f2

∂x1
(0) has rank n2.

Let m′ = dim span{b1, . . . bm}.

Theorem 5.4.1 Consider a system (21) satisfying (H1)-(H3). There is a con-

tinuously differentiable feedback law, ui = Fi(x), rendering the origin locally
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asymptotically stable iff m′ = n1.

Observing that the hovercraft and underwater vehicles dynamics are of the form

(5.70) and satisfy (H1) - (H3) we have the following propositions:

Proposition 5.4.2 The origin of the Hovercraft dynamics defined by (4.10)

cannot be locally asymptotically stabilized using continuously differentiable static

or dynamic state feedback.

Proposition 5.4.3 The origin of the Underwater vehicle defined by (4.11-4.14)

cannot be locally asymptotically stabilized using a continuously differentiable static

or dynamic state feedback.

This suggests that time varying feedback laws are required to stabilize the origin

of thr unreduced dynamics. The study of designing time varying feedback laws

to stabilize the origin is an area of current reserach. Some preliminar results on

the design of such feedback laws can be found in [Morin et al., 1995; Pettersen

and Egeland, 1996b; 1996a; Coron, 1992; M’Closkey and Murray, 1993]. Open

loop control strategies are also being investigated in [Bullo and Leonard, 1997]
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Chapter 6

Conclusion and Future Research

In this dissertation issues related to controllability and stabilization of a class of

underactuated mechanical systems was studied. For the class of systems studied,

the configuration space could be identified with a Lie group, G. In addition

the existence of a symmetry group permitted the dropping of the dynamics to

a lower dimensional space. The research was motivated by issues related to

the controllability of hovercraft, spacecraft and underwater vehicles in the case

of actuator failures. The results presented relied on a geometric approach to

the study of mechanical systems. A non-canonical Hamiltonian formulation,

modeling these systems on Poisson manifolds, was adopted.

In Chapter 2 a review of some basic mathematical tools including definitions,

notations and important theorems that were used in the following chapters was

presented. A description of Hamiltonian systems on Poisson manifolds, the role

of symmetries and Lie-Poisson reduction was discussed in some detail. The

notion of a Hamiltonian control system was presented. The main difference in our

definition as compared to the ones presented earlier in literature is that we do not
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require the control vector field to be Hamiltonian. To obtain reduced dynamics

we simply require that it be a G-invariant vector field, where G is the symmetry

group of the Hamiltonian corresponding to the drift vector field. Reduction and

reconstruction of dynamics from the reduced system is discussed. The chapter

finally concludes with a discussion on accessibility and controllability of affine

nonlinear control systems.

In Chapter 3 the reduced dynamics of four mechanical systems, hovercraft, space-

craft, underwater vehicles and surface vessels were derived. The hovercraft was

modeled as a planar rigid body with a vectored thrust. The state space was iden-

tified with the Lie group SE(2). The invariance of the dynamics on T ∗SE(2) to

the SE(2) action was exploited to derive the reduced dynamics on se(2)∗. For

the spacecraft the configuration space was identified with the SO(3) and the re-

duced dynamics on T ∗SO(3)/SO(3) ∼= so(3)∗ were derived. For the underwater

vehicle the configuration space is identified with SE(3). The underwater vehicle

is modeled as a completely submerged rigid body in an inviscid, incompressible,

irrotational fluid of infinite volume. To derive the reduced dynamics, two cases

were considered, coincident and noncoincident center of mass and center of buoy-

ancy. In the case of the coincident center of mass and center of buoyancy, the

invariance of the dynamics to the SE(3) action is exploited to reduce the dy-

namics from a twelve dimensional space to a six dimensional one, namely se(3)∗.

In the case of noncoincident center of mass and center of buoyancy symmetry is

broken by the force due to gravity and the dynamics are invariant to the sub-

group SE(2)×IR. In this setting the dynamics were reduced to a system evolving

on a nine dimensional space, s
∗, the dual of the Lie algebra of the semidirect

product SE(3) ×ρ IR3. The chapter concludes with the study of motions of a
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floating bodies in quite water without consideration of resistance forces.

The main contribution of this dissertation lies in Chapter 4 and Chapter 5. In

Chapter 4 we present sufficient conditions for controllability of the reduced and

unreduced dynamics of mechanical systems with symmetry. We exploited the

Hamiltonian structure of the reduced dynamics, geometry of the reduced space,

the existence of a Lyapunov type functions and Poincare recurrence theorem

to conclude weak positive Poisson stability of the Lie-Poisson reduced vector

field. The weak positive Poisson stability of the drift vector field along with

the Lie algebra rank condition was used to conclude controllability. The role of

the Hamiltonian and Casimirs in deriving the Lyapunov function was discussed.

To determine controllability of the unreduced dynamics two separate cases were

considered. The first case is where the symmetry group is compact. Here the

compactness of the orbits under the action of the group along with the weak

positive poisson structure of the reduced dynamics was again used to conclude

controllability. In the noncompact case we showed that under additional con-

ditions of equilibrium controllability, controllability of the unreduced dynamics

can be concluded. These results were then applied to examples discussed in

Chapter 3 making appropriate conclusions about controllability in each case.

We also presented results on small time controllability for these examples.

In Chapter 5 stabilization of relative equilibria of mechanical systems with sym-

metry was discussed. Stabilization using “Hamiltonian” feedback laws was dis-

cussed. We then presented a constructive approach to design dissipative feedback

laws using centermanifold theorem like techniques. The approach exploited the

observation that the relative equilibria, or equivalently the fixed points of the
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reduced dynamics, belonged locally to an embedded equilibrium manifold. We

then showed that as opposed to obtaining stable (in the sense of Lyapunov) so-

lutions using Hamiltonian feedback laws, our approach guarantees asymptotic

convergence in the directions transverse to the center manifold, and stability in

directions along the center manifold.

There are several directions for future research related to the work presented in

this dissertation. One of them is to design a constructive open loop control strat-

egy to steer the unreduced system. Except in special cases where the unforced

dynamics can be explicitly integrated, the weak positive Poisson stability does

not offer much insight into the design of controllers. But since we know that

the system is controllable one can possibly formulate optimal control problems

which may provide more insight about feasible controllers. In addition one could

also attempt to use periodic controls in the base space, and thereby steer in the

fiber.

Another promising direction is in showing global stability of the closed loop

system under the dissipative feedback laws designed in Chapter 5. Since the

divergence of the closed loop system is less than zero and we were able to show

that the trajectories converge to the stable manifold (“attractor”) one might

conjecture that under assumptions of boundedness of solutions and absence of

limit cycles the closed loop system is globally stable. Analytical results for the

examples discussed did seem to indicate this. Current research includes efforts

in this direction.

In addition current and future research includes design of hybrid control laws

and architectures for the generation of behaviors for obstacle avoidance and path
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planning for the hovercraft and autonomous underwater vehicle.
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