Technical Report

Department of Computer Science
and Engineering
University of Minnesota
4-192 EECS Building
200 Union Street SE
Minneapolis, MN 55455-0159 USA

TR 99-020

Multilevel Refinement for Hierarchical Clustering

George Karypis, Euihong (sam) Han, and Vipin Kumar

May 17, 1999

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
17 MAY 1999 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

Multilevel Refinement for Hierarchical Clustering £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Army Resear ch Office,PO Box 12211,Research Triangle REPORT NUMBER
Park,NC,27709-2211

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

The original document contains color images.

14. ABSTRACT

seereport

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 17
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

‘ Paper Number: 43’2

Multilevel Refinement for Hierarchical Clustering*

George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar

Department of Computer Science & Engineering
Army HPC Research Center
University of Minnesota, Minneapolis, MN 55455

{karypis, han, kuma@cs.umn.edu

Abstract

Hierarchical methods are well known clustering technichet tan be potentially very useful for various data
mining tasks. A hierarchical clustering scheme produce=jaence of clusterings in which each clustering is nested
into the next clustering in the sequence. Since hierarthioatering is a greedy search algorithm based on a local
search, the merging decision made early in the agglomerptiscess are not necessarily the right ones. One possible
solution to this problem is to refine a clustering producedhgyagglomerative hierarchical algorithm to potentially
correct the mistakes made early in the agglomerative psocEse problem of refining a clustering has many simi-
larities with that of refining a min-cut-way partitioning of a graph. In this paper, we explore niedgl refinement
schemes for refining and improving the clusterings prodingetierarchical agglomerative clustering. This algorithm
combines traditional hierarchical clustering with matiél refinement that has been found to be very effective for
computing min-cuk-way partitioning of graphs. We consider several clusteahjective functions for the proposed
refinement step and investigate the usefulness of thesetiwbjéunctions. Our experimental results demonstrate
that this algorithm produces clustering solutions thatcarsistently and significantly better than those produged b
hierarchical clustering algorithms alone. Furthermotg,algorithm has the additional advantage of being extrgmel
fast, as it operates on a sparse similarity matrix. The amofitime required by our algorithm ranged from two
second for a data set with 358 items, to 80 seconds for a danathed133 items on a Pentium Il PC.

1 Introduction

Hierarchical methods are commonly used for clustering itaDdining [9, 17, 2]. A hierarchical clustering scheme
produces a sequence of clusterings in which each clusteringsted into the next clustering in the sequence. An

*This work was supported the Army Research Office contractOB#G55-98-1-0441, the NSF CCR-9423082, and the Army Highh- Pe
formance Computing Research Center under the auspice® dddapartment of the Army, Army Research Laboratory cooperatigreement
number DAAHO04-95-2-0003/contract number DAAH04-95-(80 the content of which does not necessarily reflect thetippsor the pol-
icy of the government, and no official endorsement shouldnfierried. This work was also supported by IBM Partnership rlwaAccess to
computing facilities was provided by AHPCRC and the MinriasBupercomputer Institute. Related papers are availabl®WW at URL:
http://www.cs.umn.edu/ karypis

agglomerative algorithm for hierarchical clustering &avith n points, and at each step it merges the two most similar
points [9]. Different measures have been proposed for céimgpaimilarities [6, 7, 11]. In some of these schemes, a
model of the cluster connectivity is used to compute sirtiés [9, 3, 7, 11].

Hierarchical clustering is a greedy search algorithm based local search. Hence the merging decision made
early in the agglomerative process are not necessarilyigheanes. For example, for the data set in Figure 1 (a), the
similarity between data point& and F is 10, which is larger than the similarity among all otherrpahown in the
figure. Hence, hierarchical scheme will meyandF first in the agglomerative process (Figure 1 (b)). Evenyuall
both A andF will become part of one of the two clusters, even though tleeyly belong to different clusters.

[B] 6] [B] [G]
C H . ’
[D] [E] [3 0]
(b) (c)

Figure 1: An example of data set in which the greedy merging decision leads to a wrong clustering solution.

One possible solution to this problem is to refine a clustgpimoduced by the agglomerative hierarchical algorithm
to potentially correct the mistakes made early in the agglarive process. For example, given the clusters in Figure 1
(c), the refinement could break ¢p, F} and moveF to the cluster containingG, H, I, J}, thus correct the mistake
made in the step of Figure 1 (b). In general, individual daims or collections of them could be moved from
one cluster to another to optimize some cluster quality aibje. Many such cluster quality objectives have been
investigated [9, 7], and can potentially be used for sucheefient.

The problem of refining a clustering has many similaritiethvthat of refining a min-cuk-way partitioning of a
graph. Given a graph that has been partitioned knparts, the refinement of thisway partitioning moves nodes
across partitions to minimize the weighted sum of the edgesidling the partition boundaries [15]. The problem
of refinement ok-way partitioning of a graph has been studied extensivethéncontext of graph partitioning, and
efficient multi-level algorithms are available to solvestbroblem [15]. In multilevel graph partitioning algoritisira
sequence of coarser graphs is constructed aaday partitioning of the coarsest graph is computed. In essuing
uncoarsening step, tHeway partitioning is successively refined using variatiofithe Kernighan-Lin (KL) [18]
refinement heuristic. Since this refinement is performedatymrevels, even simple variations of KL become very
powerful [12].

Similar multi-level refinement schemes can be used to refidestering and potentially correct mistakes made
early. In fact, the agglomerative hierarchical clustersighemes have a great deal of similarity with the coarsening
phase of multilevel algorithms for finding a min-cut paditing of graphs [8, 13]. Both schemes obtain successively
coarser representations of their original data sets artddutemes use a locally greedy approach to construct these
representations. However, conventional hierarchicatehing algorithms lack the refinement phase of the pantitip
algorithm. As the extensive experience with multilevelgrpartitioning has shown, the refinement phase (especially
when applied in a multilevel fashion) is capable of signifityaimproving the overall quality of the solution [12]. A
similar multi-level refinement algorithm holds the potahto improve upon the locally greedy decisions used in the
agglomerative hierarchical scheme.

In this paper, we explore multilevel refinement schemes éfining and improving the clustering produced by
hierarchical agglomerative methods. We consider sevérailaring objective functions for the proposed refinement
step, and investiage the usefulness of these functiongiodhtext of variety of data sets.

The rest of this paper is organized as follows. We first dis@agglomerative hierarchical clustering in Section 2.
In Section 3, we present our clustering refinement algorit&®@ction 4 provides an experimental evaluation of our
clustering algorithm and compares it with other hierarah&dgorithms. Finally, we provide summary in Section 5.

2 Review of Agglomerative Hierarchical Clustering Algorit hms

There are many different variations of agglomerative hi@r@al algorithms [9]. These algorithms primarily diffier

how they update the similarity between existing clustexsthe merged clusters. In some methods [9], each cluster
is represented by a centroid of the points contained in th&tet, and the similarity between two clusters is measured

by the similarity between the centroids of the clusters. sehmethods tend to fail on clusters of arbitrary shapes

and different sizes. Recently proposed algorithm CURE ¢6}edies some of these drawbacks by representing each
cluster with a collection of representative centroids.

In many cases, pair-wise similarity is the only informataailable, making the use of centroid based hierarchical
scheme difficult or impossible. Many agglomerative scheazswork for data for which only pair-wise similarity
is available. In the single link method [9], each clusterepresented by all the data points in the cluster. The
similarity between two clusters is measured by the sintifasf the closest pair of data points belonging to different
clusters. Unlike the centroid/medoid based methods, tiethad can find clusters of arbitrary shape and different
sizes. However, this method is highly susceptible to naigdiers, and artifacts.

In some agglomerative hierarchical algorithms, the sirityldbetween two clusters is captured by the aggregate
of the similarities (i.e., interconnectivity) among paifsitems belonging to different clusters. The rationaletfos
approach is that subclusters belonging to the same cludtdemd to have high interconnectivity. But the aggregate
inter-connectivity between two clusters is a function @ #fize of the clusters involved, and in general, pairs ofarg
clusters will have higher inter-connectivity. Hence, mangh schemes normalize the aggregate similarity between a
pair of clusters with respect to the expected inter-convigcbdf the clusters involved.

One often used method assumes that a cluster ohsipatains’ edges, wheré is between 1 and 2. Lek andB
be two clusters of size andm, respectively. IfA andB belong to the same natural cluster, then there will be a tdtal
(n+m)? edges in the cluster. Of thes#, andm’ edges will be internal to cluste’ssandB, and(n +m)? —n? —m?
edges will be across clustefsand B. Hence the similarity betweeft andB is computed as the ratio

Aggregate similarity between items A and B
(n+my¥f —nf —m?

This is essentially the model described in [7]. Boe 2, this also becomes essentially equal to the group average
model [9]. We will refer to this as the generalized group agermodel.

Graph Sparsification Most of the algorithms discussed above work implicitly opkoitly with the n x n sim-
ilarity matrix such thati, j) element of the matrix represents the similarity betwg&rand jt" data items. Some
algorithms derive a new similarity matrix using the oridimetrix [10, 5, 9, 7], and then apply one of the existing tech-
nigues on this derived similarity matrix. In many cases,nbe derived similarity matrix is just a sparsified version
of this original similarity matrix from which certain enés (e.g., those whose value is below a threshold) have been
deleted. In other cases, the derived similarity matrix hagealy different values [10, 5, 7]. The sparsified/derived
matrix can help eliminate/reduce noise from the data, abdtantially reduce the execution time of many algorithms.
In some cases, it can also provide a better model of simdarior the problem domain. For example, mutual shared
method presented in [10] helps remove noise and outlierssatobwn to provide a better model to capture similarities
among transactions in [7]. Two most common techniques farsifying dense graphs akenearest graph [10, 5, 9],

shared nearest neighbor [10, 7], and their variations [9n7/§ome cases, these sparsification techniques are se effec
tive that the fragment the graph according to cluster borieslaBut in presence of outliers and noise, finding good
clusters of the resulting sparse graph is still quite cinglileg for most problems..

3 Cluster Refinement Algorithm

In order to refine a clustering solution, we must develop tvegamcomponents. First, we need to develop schemes that
can capture the overall goodness of a clustering in the fdarctusteringobjective functiosuch that the optimization
of this function translates to an improvement of the ovegiaistering solution. Second, we need to develop effective
algorithms to find groups of items whose movement to diffecarsters will optimize the objective function.

In the remaining of this section we present two different svay defining the clustering objective function and
present a cluster refinement algorithm that is based on thideweal refinement paradigm.

3.1 Refinement Objective Functions

There is no single canonical method to capture/describeltistering objective. Recently, Guha, Restogi, and Shim
[7] have proposed a function for measuring the goodness hfséecing solution. Given a similarity matri® and a
p-way clustering, they define the goodness of the clusteisng a

P vue-S[’u]
Zniz’c'—ev, (1)

n;

Ep=
i=1

whereC; denotes théth cluster of sizen;. The rational of the above goodness function is as followys For a
particular cluste€;, the quantityzv’ueci S[v, u] measures the degree of connectivity of the nodes in theetlSince
a good clustering should maximize the degree of connegfiwiteach cluster, a metric IikEip:1 Zv,ueci Slv, u] that
simply sums up the amount of similarity between nodes in #mesclusters should have been sufficient. However,
such a metric gives the highest goodness to a clusteringthatall the data items into a single cluster. To address
this problem, Equation 1 divides the degree of connectasitypng the nodes of each cluster with the quamﬁtythat
represents the expected degree of connectivity amongehes ibf clustelC;. The value of parametér depends on
the data set as well as the kind of the clusters we are inggt@st Finally, the goodness measure for each cluster is
weighted by the size of the cluster, so that large clustengritwte more to the overall goodness function.

To see the utility of the cluster objective function, comsithe simple hierarchical clustering instance shown in
Figure 2 that shows a data set with six items. As easily ségmekample has two natural clusters, one containing
the set of itemgA, B, C} and the other containing the dd, E, F}. However, the hierarchical algorithm, starts by
combining itemsC and D together. Even though this is the best available choiceerbitginning, it does not lead
to the optimal solution. Since the algorithm does not rétisse choices later, it can never correct its mistake. This
mistake can potentially be corrected if the final clustefhdrigure 2 (e) is refined in the context of some objective
function.

If the objective function of Equation 1 is used to evaluatetio clusters found by the hierarchical algorithm on
the example of Figure 2, then the cluster consistingAfB, C, D} has a goodness of 78% = 4.375, whereas the
cluster{E, F} has a goodness of 18° = 4.5, leading to an overall goodness value of f4375+ 2 x 4.5 = 26.5.

If D is moved to the cluster containirig, F}, then the resulting clustef#\, B, C} and{D, E, F} have an overall
goodness value of 8(50/3%) + 3 (50/3%) = 33.3, which as expected, is better than that of the previousering).

There are number of potential problems with the above oegfitinction. First, this function can lead to incorrect
information if the internal connectivity of clusters is Saiently different than the one assumed. Given that cluster

[A] [E] [A]

[e] @ G| [E] ®) G|

[AB] [C.D] [E,F] [A,B,C,D] 2 [E,F]

@ (e)

Figure 2: An example of the hierarchical clustering algorithm. Note that the locally greedy decisions performed by the algorithm
can lead to sub-optimal clustering solutions.

connectivity is often unknown, a wrong choiceétan lead to incorrect clustering even if the objective fiorcts
maximized. Note that this becomes a serious problem wheddteeset contains clusters that have different levels
of interconnectivity, as no single level 6fis valid for all clusters. Another problem with this scheraghat many
agglomerative hierarchical schemes work with sparsifieglyr In fact, the multi-level refinement scheme presented
in this paper assumes the similarity graph to be sparse.uébrsparse graphs, the valuesdbecomes quite sensitive
to cluster sizes.

Another possible objective is to minimize the external aastivity of the clusters. The external connectivity is
essentially minimized by min-cltway partitioning of the similarity graph. A key problem Wwithe min-cut objective
is that it often gets optimized when there &re 1 clusters containing just one data point each, and one thngéer
containing the remaining points. For example, for the dataskown in Figure 3 (a), the min-cut objective for three
cluster is optimized when one cluster contafsthe second cluster contaiils and the third cluster contains the
remaining data points (as shown in Figure 3 (b)).

A B
o O

(@) (b)

Figure 3: An example of clusters in which min-cut objective leads to a wrong clustering solution.

This problem can be corrected if the edge weights are scaleatding to the ratio-cut heuristic. That is, weight
w of an edge between two clusters is scaled by a fact%éfg‘ (and is thus replaced %), and the objective
becomes one of minimizing this scaled weighted sum. For el@rrigure 4 shows the new scaled edge weight when
the ratio-cut heuristic is used. The new scaled weights ®ftiiges connecting the clusters in Figure 4 (a) is larger
than those of the edges connecting the clusters in Figurg #@mce, the clustering solution shown in Figure 4 (b) is
preferred over the clustering solution shown in Figure 4 (a)

This objective is very similar to the objective that drivee igglomeration step in the group averaging scheme, as
it effectively assumes full inter-connectivity betweehgalirs of data points across two clusters, and uses the ®gec
connectivity (A| x |BJ) to scale down the edge weight. A more general formulatidhseale each edge betweén
andB by (JA| + |B)])? — |Al? — |B|?. This is similar to the agglomeration method used in ROCkthis case, the
expected inter-connectivity is controlled by paraméter

PSrE EULFSS

(@) (b)
Figure 4: An example of clusters in which ratio-cut heuristic is useful.

This objective function is able to correctly refine the otuistg of Figure 2. But this clustering objective function
can also be misleading in certain situations. Specificdlihe data contains clusters of widely different sizess thi
objective will tend to break larger clusters. For exampt@msider the clusters shown in Figure 5. With= 2, the
scaling factor in the objective function isx2|A| x |B| for two clustersA andB. Hence, the ratio cut of the cX in
Figure 5 isy—255 = 0.013, whereas the ratio cut of the odis »—22 5 = 0.008. Hence the cut is chosen and the
wrong clustering based on this cut is produced.

\
N A
OSSO

Cut X CutyY

N

O,

Figure 5: An example of clusters in which ratio-cut objective leads to a wrong clustering solution. Note that numbers inside circle
represents number of data points in the subcluster and the numbers on the edge indicate the total number of edges between two
subclusters.

3.2 Refinement Algorithm

As discussed earlier, the goal of the cluster refinementrigihgo is to find groups of items, such that by moving
them to different clusters it optimizes a certain objecfivection. One way of finding the desired groups, is to find
them a single item at a time, using a greedy scheme. That isaweepeatedly move the item that will lead to the
greatest improvement of the objective function. Unforteha a scheme like that can easily be trapped into local
minima. This is because quite often, in order to substdptimprove the objective function, we may have to move
entire sets of items between clusters. However, if we stasting thesedesiredsets of items single item at a time,
the objective function may initially become worse beforgéts better. One way of addressing this problem is to
use much more sophisticated refinement algorithms thatsgra&bte of climbing out of local minimae(g, simulated
annealing). However these type of algorithms can signifigancrease the amount of time required to perform the
cluster refinement.

Recently, a new class of refinement algorithms have beeramain the context of graph partitioning, that have
small computational requirements and they are very effedti climbing out of local minima [16]. Thesaultilevel
refinement algorithmswork as follows. Given a grap® = (V, E), and a partitioning vectoP, they first obtain a
sequence of successivalgarsergraphsGi, Go, ..., Gk. GraphG1 is obtained from the original grapgh, by finding

a maximal matching of the vertices & subject to the constraint that each pair of matched verbedsngs to the
same partition, and collapsing the matched vertices tegéthform the vertices o1. Each successive grajih 1

is obtained from the previous coarse gr&phin a similar fashion. Note that since each successive caoaegdh does

not combine vertices that belong to different partitiohg, original partitioning is preserved in the entire seqeearfc
graphs. Once this sequence of graphs has been constrieted, ¢reedy refinement algorithm is obtained to improve
the quality of the partitioning at the coarsest gr&ph The new partitioning is then projected to the next levelrfine
graphGg-1, and it is further refined using a greedy algorithm. This pesoof projecting and refining the partitioning
at each successive finer graph is performed until the ofigiag@h has been reached. Multilevel refinement algorithms
are very effective in climbing out of local minima, becaukeyt operate at different representation scales; thus, they
can easily identify groups of items to be moved together.

Our cluster refinement algorithm is based on this multileeéihement paradigm. The input to our multilevel
cluster refinement algorithm is the sparse similarity gr&k (V, E) used by the clustering algorithm to represent
the similarity relations among the data items, anghaay clustering vectoP produced by the clustering algorithm,
such thatP[i] is the cluster that thigh item is assigned to. Starting from the original graph,agorithm constructs
a sequence of successively coarser graphs .., Gk, until we obtain a graph that has exacpyertices (one for
each cluster), and then applies a simple randomized gredidgment algorithm at each successive finer graph. This
randomized greedy refinement algorithm consists of a nuoflpasses. During each pass of the algorithm, the various
vertices in the graph.g., sub-clusters) are visited in a random order. For eaclexertit computes the improvement
of the value of the objective function obtainedvifvas to move from the cluster that it currently belongs to,ne o
of the other clusters thatis connected to. If some of these moves improve the objefitivetion, then the one that
leads to the highest improvement is selected afisl assigned to this cluster. If all the moves worsen the vafue
the objective function, then is not moved. The refinement algorithm stops either wherr afteentire pass not a
single vertex was moved to another cluster, or when a predeted number of passes has been performed. In our
experiments, we allowed the refinement algorithm to perfammaximum of five passes. In our extensive experience
with multi-level partitioning of very large graphs (over ilion nodes), we have found this limit to be quite sufficient
as much of the improvement occurs in just a few iterations.

¢ From the above description of the multilevel refinementréigm and the clustering objectives discussed in Sec-
tion 3.1 we can define three distinct clustering refinemeguarithms. The first algorithm tries to increase the internal
inter-connectivity of the items in the clusters by maxim@iEquation 1. The second algorithm tries to reduce the
inter-connectivity between clusters by minimizing theigatut of the resultingp-way clustering. Finally, the third
algorithm tries to achieve both by selecting to move itenssith moves improve both Equation 1 as well as the ratio
cut; that is, a move is performed if the resulting clustetiiag a higher quality as measured by Equation 1 and at the
same time it has a smaller ratio cut.

The multilevel cluster refinement algorithm can be used inyrdifferent ways. One possible approach is to use it
to refine the final clustering solution produced by the highenal clustering algorithm, as itis done in our experinsent
However, an alternate approach is to use it to periodicafipe the current clustering solution as it is being computed

3.3 Computational Complexity

The overall complexity of the multilevel clustering refinent algorithm depends on the rate in which the size of
successively coarser graphs is decreasing. In partidfilire size of successively coarse graphs decreases by a
constant factor, then the complexity of the algorithm igéinon the number of items and the number of edges in the
sparse similarity graph [14, 16]. Since successive coaegehg are constructed by computing a maximal matching of
the vertices and collapsing together the vertices that watehed, the number of vertices of successive coarse graphs

tends to decrease by a factor of two. In this case, if the ssansilarity graph was obtained usinganearest neighbor
approach [9], then the overall complexity is linear on thenber of items (as the total number of edges is linear on
the number of nodes). In the worst case, when the size of ssivety coarse graphs decreases by just a few vertices
at a time, then the complexity of the refinement algorithn kel quadratic on the number of items.

In general, the overall complexity of a clustering algaritthat uses the multilevel refinement algorithm depends on
the amount of time required to compute the initial similaritatrix and the amount of time required by the clustering
algorithm. For most problems, the dense similarity matei be computed in time that is quadratic on the number of
items, and the initial clustering solution can be obtainmed similar amount of time.

4 Experimental Results

To evaluate the ability of our multilevel refinement algbnits to further improve the quality of a clustering, we used
them to refine the solutions produced by the hierarchicattehing algorithm described in Section 2 that is based on
the generalized group average model. We used five data sp&sftorm these comparisons. Two of these data sets
consist of points in two dimensions and were syntheticatlgarated, one was obtained from Reuters newswire and
the other two were obtained from the TREC collection of doents [22].

For each one of the data sets we constructed am similarity matrix, using techniques that are appropriate f
the nature of each particular data set. Details on how théasity matrices were constructed are presented along
with the experimental results in the following sectionsoriireach one of these five similarity matrices, a sparse graph
representation was obtained by usingkhearest neighbor graph approach [10, 5]. In all the expentapresented in
Section 4.2 we selectédto be equal to 10, and we studied the effectiveness of oueratmt algorithms for different
values ofk in Section 4.3.

Recall from Sections 2 and 3, that both the hierarchicatefusy algorithm that was used to obtained the clustering
solutions as well as the clustering objective functiong #ra used by our refinement algorithms, require that we
specify the value of the parametethat models the degree of inter-connectivity between #mastin a cluster. In all
the experiments presented in Section 4.2 we KRetptbe equal to B for both the clustering as well as the clustering
refinement algorithms. The sensitivity of our refinemenbealthms to different values df is studied in Section 4.3 in
which we present an extensive experimental evaluation oéalyorithms for different values af.

In addition to the hierarchical clustering algorithm praeel in Section 2 that operates on the spirsearest
neighbor graph, we also compare the quality of the cluggerproduced by our algorithms against two other algo-
rithms. In the case of point data sets, we compare our resgdiist CURE [6], and in the case of the document data
sets, we compare our results against the standard hiecatethjorithm based on the group average method [9] that
operates on the dense similarity matrix.

For the rest of this section, we will u to denote the traditional hierarchical clustering aldoritthat operates on
the dense similarity matriX§H to denote the hierarchical clustering algorithm describe8lection 2 that operates on
thek-nearest neighbor grapt§H-RC to denote our multilevel refinement algorithm that uses #tie+cut objective,
rSH-IRC to denote our multilevel refinement algorithm that optinsib®th the internal connectivity as well as the
ratio cut, and'SH-I to denote our multilevel refinement algorithm that optirsidige internal connectivity. Finally, all
the experiments were performed on a 300Mhz Pentium Il watist.

4.1 Cluster Evaluation

One of the hardest problems in comparing different clusteaigorithms is finding an algorithm-independent measure
to evaluate the quality of the clusters. This is especiallg for data sets with many different categories. In general

if a cluster contains items that belong to only a single aatgdhen it is a good cluster. However, evaluating clusters
that contain items from different categories is less clear.

We use entropy as a measure of quality of the clusters (witlcalveat that the best entropy is obtained when each
cluster contains exactly one data point). % be a clustering solution with clusters. For each cluster, the class
distribution of data is calculated first. Then using thisssldistribution, the entropy of each clusieis calculated
using the formuleEj = — Zci pc; log pc; , wherepg; is the fraction of data within the cluster with the class labg
and the sum is taken over all class€s, Cy, ..., Cx. When a cluster contains data from one class only, the entrop
value is 0.0 for the cluster and when a cluster contains data fnany different categories, then entropy of the cluster
is higher. The total entropy is calculated as the sum of eresoof the clusters weighted by the size of each cluster:
Ecs= Zj % wherenj is the size of clustej andn is the total number of data points. We compareHass to that
of a random clustering solution with the same number of elgstWe use the entropy gain of the clustering solution
over the random clustering as the final goodness measuréhénwords, the goodness of a clustering solutidsis
defined asErs — Ecs, whereRSis a random clustering solution with clusters. Hence, the goodness measure is

high for a good clustering solution and low for a bad clustgolution.

4.2 Qualitative Comparisons

Two-Dimensional Data Sets Our first data set consists of two two-dimensional point &tz DS1 and DS2
shown in Figures 6(a) and (d), respectively. DS1 containe wgircular clusters arranged in ax33 grid, and DS2
contains 10 ring-shaped clusters, pairs of which are cdricemwith a line of outlier points cutting through all the
10 clusters and with some random outlier points. The DS1 skttaontains 6,000 points, whereas the DS2 data set
contains 8,000 points. The similarity between two points eamputed as the inverse of their Euclidean distance.

Figure 6(b) shows the nine clusters obtained byShkalgorithm withd = 1.8 for DS1. The points in the different
clusters are represented using a combination of differ@ots and different glyphs. (Furthermore, we have drawn an
outline around each cluster to make it easier for peopledbatot have access to a color printout). As we can see
from the figure, even thougBH is able to correctly cluster most of the data points, it doakera number of mistakes.
In particular, the middle cluster of the second row, corggiaints from both the left and the right clusters. Similarly
the cluster middle cluster of the top row contains a goodivamf the points of the left top-row cluster, whereas the
right cluster at the top row contains some nodes from itstetus the left and its cluster to the bottom. Figure 6(c)
shows the nine clusters obtained by applying our multileiedtering refinement algorithn®H-RC, on the output of
the SH algorithm with the same value éf(similar results were also obtained ii8H-IRC). As we can see from the
resulting clustering, our clustering refinement algoritivas capable to correct most of the mistakes mad8hyin
fact, six clusters are perfect, whereas the remaining ttitesters contain a small number of errors.

Figure 6(e) shows the 10 clusters obtained byShkkalgorithm withé = 1.8 for DS2. TheSH algorithm was able
to find most of the clusters, but it made three mistakes. Aar€ig(e) illustrates, it merged the inner-ring with portion
of the outer-ring of the second and last pair of clustersnffteft to right), and it merged portions of the outer rings
of the last two pairs of clusters. Figure 6(f) shows the 1&tes obtained by applyinggH-IRC on the clustering
solution obtained bysH with the same value of ((similar results were also obtained i8H-RC). As we can see
from this figurerSH-IRC was able to correct the three mistakes mad&Hyand obtain a perfect clustering solution.
Finally, Figure 6(f) shows the 10 clusters obtained by aewottierarchical clustering algorithm, CURE [6], that is
especially suited for this type of data sets. As we can sam fhis figure, CURE was not able to find any of the 10
clusters.

V$91999

SRNESS

(a) DS1 (b) Clusters found by SH (c) Clusters found by rSH-RC

(d) DS2

ﬂ) (e) Clusters found by SH

(f) Clusters found by rSH-IRC

At (g) Clusters found by CURE

Figure 6: The two point data sets and the clusters produced by SH, rSH-RC, rSH-IRC, and CURE algorithms.

Los Angeles Times Data Sets The collection of the Los Angeles Times articles are parhefTREC 5 data

set [22]. The Los Angeles Times data set consists of two detto@iments LA1, and LA2 that were created by
selecting the articles published over two separate mod#rsi@ry and February of 1989) under certain sections of the
newspaper. We used the section name of the article as thrgocafter this data set. The category distribution is shown
in Table 1.

We filtered the words using stop words and Porter’s suffiypging algorithm [20]. Even after this prunning, the
number of words in these documents was more than 31,000Idulating similarity of two documents, we used the
cosine similarity measure after scaling the documents WRHDF [21]. The cosine similarity between two document
X andY is defined as

ZweW Xuw X Yu

\/ZweW X5 x \/ZweW Ya

whereW is the collection of words appearing in the whole documenasdx,, is the TFIDF weighted value of word

cosX,Y) =

10

Category No. of items — LA1| No. of items — LA2
Financial 555 487
Foreign 341 301
National 273 248
Metro 943 905
Sports 738 759
Entertainment] 354 375
Total 3204 3075

Table 1: The various categories of the LA1 and LA2 data set and the distribution of records to each category.

w in documentX. Note that this cosine measure gives value between 0.0 8ndrid 0.0 means that two documents
do not match any word and 1.0 means that these two documetth perfectly.

Table 2 shows the quality of the clusters (as measured byninepy of the clustering solution) produced By,
SH, rSH-RC, andrSH-IRC for a 10-, 20-, 40-, and 80-way clustering. Comparing theousr algorithms, we see
that both theeSH-RC andrSH-IRC algorithms were able to improve the clustering solutioredpced by thesH
algorithm, and achieve the overall best results. The alsgtoduced by the hierarchical scheme on the dense graph
are the worst for all cases. For the 10-way clusterisd-RC andrSH-IRC perform about 36% better th&8H for
both LA1 and LA2, for the 20-way clusteringH-RC andrSH-IRC perform 20% and 19% better th& for LA1
and LA2, respectively, for the 40-way clusteringH-RC andrSH-IRC perform 17% better thaBH for both LA1
and LA2, and for the 80-way clusteringsH-RC andrSH-IRC perform 14% and 11% better th&H for LA1 and

LA2, respectively. Also note that there is little variatibatween the two different refinement objectives used in the
rSH-RC andrSH-IRC algorithms.

LA1 LA2
No. Clusters| 10 | 20 | 40 | 80 [10 | 20 | 40 | 80
Algorithm
DH .01]|.25|.30|.38].01| .20| .36 .41
SH 33| .39 | .43 | 46| .37 | .42 | .45 .49
rSH-RC 45| 46| 51| 53| .51 | .50| .53 | .54
rSH-IRC 45| .48 | 50| .52 .50| .50 | .52 | .55

Table 2: The quality of the clustering solution produced by DH, SH, rSH-RC, and rSH-IRC algorithms, for clustering the LA1 and
LA2 data sets for 10, 20, 40, and 80 clusters.

An interesting trend that can be observed from Table 2 (asd hblds for other data sets) is that the relative
improvement achieved by our multilevel cluster refinemdgdthms over SH as well as DH increases as the number
of clusters decreases. In other words, as the clusteringgorequires the algorithm to correctly cluster the data se
using fewer clusters (and thus becomes harder), the nugltilefinement results in a greater degree of improvementin
the overall clustering solution. On the other hand, as thebar of desired clusters increases, the clustering problem
becomes somewhat easier, which limits ability of our refiaehalgorithms to significantly improve upon an already
good solution. For example, for the 10-way clusterir®fl-IRC obtain a clustering solution that is 36% better than
SH, whereas for the 80-way clusterim@H-IRC produces a clustering solution that is only 11% better.

Reuters Data Set The Reuters data set is from Reuters-21578 text categoriztgst collection Distribution
1.0 [19]. This data set contains 21,578 documents and eanintmt is labeled with none, one, or many categories.

11

From these 21,578 documents we selected only the ones tlogiiglee to a single category. This resulted in 9133
documents, whose category distribution is shown in Tabl&Be similarity between the various documents were

computed using the cosine measure after applying the saemequessing steps as those used in the Los Angeles
Times data sets.

Category No. of items| Category| No. ofitems| Category | No. of items
earn 3923 | acq 2292 | commodity 535
economic index 892 | energy 473 | interest 271
metal 296 | money 307 | ship 144

Table 3: The various categories of the Reuter data set and the distribution of records to each category.

Table 4 shows the quality of the clusters produced by the étustering algorithms for a 10-, 20-, and 40-way
clustering. As with other data sets, we see that the algostiat use multilevel refinement produce the best clugterin
solutions, whereaBH performs the worse. Compared$b1, we can see thaSH-RC andrSH-IRC perform 14%,
13%, and 11% better for the 10-, 20-, and 40-way clusterirggpectively.

No. Clusters| 10 | 20 | 40
Algorithm

DH .03 | .27 | .43
SH .50 | .59 | .65
rSH-RC .56 | .68 | .71
rSH-IRC .58 | .67 | .73

Table 4: The quality of the clustering solution produced by the DH, SH, and mISH algorithms, for clustering the Reuter data sets

for 60 and 120 clusters.

4.3 Parameter Study

To study the sensitivity of our multilevel clustering refinent algorithms for different values 6f we performed a
sequence of experiments in which we varieflom 1.1 up to 20 in increments ofl. Figure 7(a)—(f) shows the quality
of the produced clusterings for the LA2 and Reuters datafsetiifferent number of clusterings and different values
of 6. Each plot of Figure 7 shows the quality of the clusteringsipiced by four schemes for different valueg® oThe
schemes shown are the following: (i) tBél algorithm which performs no refinement, (ii) th@H-RC algorithm that
refines the solution oH using the ratio-cut objective function, (iii) thi&H-IRC algorithm that refines the solution
of SH using the combination of the inward looking objective argrhtio-cut, and (iv) theSH-I algorithm that refines

the solution ofSH using only the inward looking objective function.

A number of interesting observations can be made by looKittgeavarious plots of Figure 7(a)—(f). First, irrespec-
tive of the value o® and the number of clusters, th§H-RC andrSH-IRC algorithms are able to further improve
the quality of the clustering produced BH. Moreover, compared t8H, the quality of the clustering solution pro-
duced by theSH-RC andrSH-IRC algorithms are less sensitive to the valué d¢their quality lines are flatter). For
example, looking at Figure 7(c), we can see thavfer 1.3, SH produces clustering solutions that have poor quality.
However, therSH-RC andrSH-IRC algorithms are able to substantially improve these clugjesolutions. Also,
similarly to the results presented in Section 4.2,t8H-RC andrSH-IRC schemes perform very similarly (at least

for these data sets).

12

1 1
SH ——
09 09 F (b) LA2: 20 Clusters ISH| o 9
0.8 08 ISH-RC x|
- - ISH-IRC -8
07 |
> 06 >
2 2
S o5t g
= 2
g oal & S
03T
025"
01F
0 o
6=1.1 6=12 6=13 6=1.4 6=15 6=16 6=17 6=18 6=19 6=2.0 6=11 6=12 6=13 6=14 6=15 6=1.6 6=1.7 6=1.8 6=1.9 6=2.0
SH —— SH ——
0.9 I (c) LA2: 40 Clusters ISH-| e 0.9 | (d) LA2: 80 Clusters ISH-| - 1
08 | ISH-RC x| ISH-RC x|
- rSH-IRC o
07 |
> 06 [>
2 2
g 05+t - 2
2 R 2
W04 g =
03}
02
0.1 ¥ 01t
0 o
6=1.1 6=12 6=13 6=1.4 6=15 6=16 6=17 6=18 6=19 6=2.0 6=11 6=12 6=13 6=14 6=15 6=1.6 6=1.7 6=1.8 6=1.9 6=2.0
1 1
0.9 0.9 |- (f) Reuter: 40 Clusters
08 | 0.8 |
0.7 | 0.7
> 061 =R > 06 §
2 2
S o05F - 2 o5t e A
= 2
W04t N W04t
03+ g 03+
02 — 02
01 — 01t
0 o
6=1.1 6=12 6=13 6=1.4 6=15 6=16 6=17 6=18 6=19 6=2.0 6=1.1 6=12 6=13 6=14 6=15 6=1.6 6=1.7 6=1.8 6=1.9 6=2.0
1 1 . .
SH —— SH ——
09 | ISH-| - 09 SH-| - 4
ISH-RC ISH-RC
08 ISH-IRC o] 08 1 rSH-IRC &
07 | — 0.7
> 06 > 06 [
2 2
£ 05¢ g o5
= 2
Y04 W04 f
0.3 03F
02 — 02
01 i 01l
0 o
6=1.1 6=12 6=13 6=1.4 6=15 6=16 6=17 6=18 6=19 6=2.0 6=11 6=12 6=13 6=14 6=15 6=1.6 6=1.7 6=1.8 6=1.9 6=2.0
(g) LA2: 20 Clusters (20 neighbors) (h) LA2: 40 Clusters (20 neighbors)

Figure 7: The quality of the clusters for different values of 6 and different sparse graphs.

Figure 7 also compares the sensitivity of our multilevelktduing refinement algorithm on the degree of sparsi-
fication. In particular, Figures 7(b)—(c) and 7(g)—(h) skawe quality of a 20- and 40-way clusterings of LA2 for
two different sparse graphs. The first set of results werainbt using the 10-nearest-neighbor graph (that was used
throughout our experimental evaluation) whereas the sksetof results were obtained using the 20-nearest-neighbo
graph. Comparing these two sets of results, we can see thatfinement algorithms are equally effective in further
refining the quality of the clusterings produced®iyl.

Figure 7 also shows the sensitivity of trigH-1 refinement algorithm on the value ®fliscussed in Section 3.1. As
we can see from the various experimen8-1 performs equally well to bottSH-RC andrSH-IRC for small values
of 6; however, a® increases to a range above that of the underlying connatifiihe data set, the objective function
used byrSH-I becomes unstable and leads to poor clusters. Also noteghtheagraph becomes somewhat denser
(which is the case with the 20-nearest neighbor graphs sioiigures 7(g) and (h)SH-1 performs reasonably well
for larger values ob.

13

5 Conclusions and Directions of Future Research

In this paper we presented a new multilevel hierarchicasteling algorithm that builds upon recent advances in
clustering and graph partitioning. As our experimentaliitsshave demonstrated, our algorithm combines traditiona
hierarchical clustering with multilevel refinement to puoe clustering solutions that are consistently and signifly
better than those produced by hierarchical clusteringriifgos alone. Furthermore, our algorithm has the additiona
advantage of being extremely fast, as it operates on a sp@ndarity matrix. The amount of time required by our
algorithm ranged from two second for a data set with 358 itdm80 seconds for a data set with 9133 items on a
Pentium Il PC.

Our work has demonstrated the value of refining the clugesiution in the multilevel context. Our current
algorithm uses a variation of the standard hierarchicalteling algorithm to obtain an initial clustering. Howenmée
multilevel refinement paradigm is independent of the paldicchoice of hierarchical algorithm, and other hieracahi
clustering algorithmseg.g, ROCK [7], CURE [6]) can also be used to obtain the initiaistering solution.

We believe that this paper represents the first attempt teldga robust framework for refining clustering solutions
in a multilevel setting. However, a number of key questiamain to be addressed. In particular, the choice of proper
objective function is essential for the overall succeshefrultilevel refinement framework [6]. As our experiments
seem to indicate, the objective function based upon the att is quite robust for a wide range of valueséof
Nevertheless, it is important to determine the domains iitkvh has limited applicability or fails out-right.

Finally, our experimental results (as well as those of otesearchers [10, 5, 9]) have indicated that the sparsifi-
cation of the similarity matrix often leads to better clustg performance. In the context of multilevel refinement,
sparsification of the similarity matrix is even more impaittas the complexity of each refinement step is proportional
to the number of non-zeros in the similarity matrix.

In this paper, we ignored the issue of scaling to large dadsatlsat cannot fit in the main memory. These issues are
orthogonal to the ones discussed here and are covered i, [@34].

References

[1] P.S.Bradley, U. Fayyad, and C. Reina. Scaling clustesigorithms to large databases Aroc. of the Fourth Int'l Conference
on Knowledge Discovery and Data Minint998.

[2] M.S. Chen, J. Han, and P.S. Yu. Data mining: An overviesnfrdatabase perspectM&EEE Transactions on Knowledge and
Data Eng, 8(6):866—883, December 1996.

[3] R. Dubes and A.K. JainAlgorithms for Clustering DataPrentice Hall, 1988.

[4] V. Ganti, R. Ramakrishnan, J. Gehrke, A. Powell, and @nEh. Clustering large datasets in arbitrary metric spaod3roc.
of the 15th Int'l Conf. on Data Eng1999.

[5] K.C. Gowda and G. Krishna. Agglomerative clusteringngsihe concept of mutual nearest neighborhdealitern Recogni-
tion, 10:105-112, 1978.

[6] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CUREeffinient clustering algorithm for large databasesPc. of
1998 ACM-SIGMOD Int. Conf. on Management of Dat898.

[7] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCKbast clustering algorithm for categorical attributesPhac.
of the 15th Int'l Conf. on Data Eng1999.

[8] Bruce Hendrickson and Robert Leland. A multilevel aigon for partitioning graphs. Technical Report SAND93-130
Sandia National Laboratories, 1993.

[9] A.K.Jain and R. C. DubesAlgorithms for Clustering DataPrentice Hall, 1988.

[10] R.A.Jarvis and E.A. Patrick. Clustering using a simiflameasure based on shared nearest neightlBEE Transactions on
ComputersC-22(11), November 1973.

[11] G. Karypis, E.H. Han, and V. Kumar. Chameleon: A hiehéeal clustering algorithm using dynamic modeling. Teckhi
Report TR-99-???, Department of Computer Science, UriiyesMinnesota, Minneapolis, 1999.

[12] G. Karypis and V. Kumar. Multilevel k-way partitioningcheme for irregular graphslournal of Parallel and Distributed
Computing 48(1):96-129, 1998. Also available on WWW at URL http:/Anes.umn.edu/ karypis.

14

[13]

[14]

[15]
[16]

[17]
[18]

[19]
[20]
[21]

[22]
(23]

G. Karypis and V. Kumar. A fast and highly quality muéilel scheme for partitioning irregular graphSIAM Journal on
Scientific Computingl998 (to appear). Also available on WWW at URL http://wwswaonn.edu/ karypis. A short version
appears in Intl. Conf. on Parallel Processing 1995.

G. Karypis and V. Kumar. A fast and highly quality muélel scheme for partitioning irregular graphSIAM Journal on
Scientific Computing?0(1), 1999. Also available on WWW at URL http://www.cs muedu/ karypis. A short version appears
in Intl. Conf. on Parallel Processing 1995.

G. Karypis and V. Kumar. Multilevel k-way partitioningcheme for irregular graphslournal of Parallel and Distributed
Computing Accepted for publication, 1997. Also available on WWW atlURtp://www.cs.umn.edu/ karypis.

George Karypis, Rajat Aggarwal, Vipin Kumar, and Sh&ekhar. Multilevel hypergraph partitioning: Applicati in visi
domain. 1998 (to appear). A short version appears in theepaings of DAC 1997.

L. Kaufman and P.J. Rousseeurinding Groups in Data: an Introduction to Cluster Analysilohn Wiley & Sons, 1990.

B. W. Kernighan and S. Lin. An efficient heuristic proced for partitioning graphsThe Bell System Technical Journal
49(2):291-307, 1970.

D. D. Lewis. Reuters-21578 text categorization testection distribution 1.0 http://www.research.att.com/ lewit999.
M. F. Porter. An algorithm for suffix stripping?rogram 14(3):130-137, 1980.

G. Salton. Automatic Text Processing: The Transformation, Analysis, Retrieval of Information by ComputeAddison-
Wesley, 1989.

TREC. Text REtrieval conferencéttp://trec.nist.goy1999.

T. Zhang, R. Ramakrishnan, and M. Linvy. Birch: an effiti data clustering method for large databasesrtrc. of 1996
ACM-SIGMOD Int. Conf. on Management of Dakdontreal, Quebec, 1996.

15

