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ABSTRACT

Title of Dissertation: Approximate Nonlinear Filtering with Applications

to Navigation

Babak Azimi-Sadjadi, Doctor of Philosophy, 2001

Dissertation directed by: Professor P. S. Krishnaprasad
Department of Electrical and Computer Engineering

In this dissertation we address nonlinear techniques in filtering, estimation,

and detection that arise in satellite based navigation. Here, we emphasize the

theoretical aspect of these techniques, and we also address their applications.

We first introduce particle filtering for an exponential family of densities. We

prove that under certain conditions the approximated conditional density con-

verges to the true conditional density. For the case where the conditional density

does not lie in an exponential family but stays close to it, we show that under

certain assumptions the error of the estimate given by this approximate nonlin-

ear filtering, projection particle filtering, is bounded. We give similar results for a

family of mixture densities. We use projection particle filtering for an exponential

family of densities to estimate the position of a mobile platform that has a com-

bination of inertial navigation system (INS) and global positioning system (GPS),



referred to as an integrated INS/GPS. We show via numerical experiments that

projection particle filtering exceeds regular particle filtering methods in navigation

performance.

Using carrier phase measurements enables the differential GPS to reach cen-

timeter level accuracy. The phase lock loop of a GPS receiver cannot measure the

full cycle part of the carrier phase. This unmeasured part is called integer ambigu-

ity, and it should be resolved through other means. Here, we present a new integer

ambiguity resolution method. In this method we treat the integer ambiguity as

a random digital vector. Using particle filtering, we approximate the conditional

probability mass function of the integer ambiguity given the observation. The

resolved integer is the MAP estimate of the integer given the observation.

Reliability of a positioning system is of great importance for navigation pur-

poses. Therefore, an integrity monitoring system is an inseparable part of any

navigation system. Failures or changes due to malfunctions in sensors and actu-

ators should be detected and repaired to keep the integrity of the system intact.

Since in most practical applications, sensors and actuators have nonlinear dynam-

ics, this nonlinearity should be reflected in the corresponding change detection

methods. In this dissertation we present a change detection method for nonlin-

ear stochastic systems based on projection particle filtering. The statistic for this

method is chosen in such a way that it can be calculated recursively, while the com-

putational complexity of the method remains constant with respect to time. We

present some simulation results that show the advantages of this method compared

to linearization techniques.
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Chapter 1

Introduction

Position estimation is one of the key issues in the automated control of a vehicle.

Positioning methods can be classified into three different groups. Dead reckoning is

based on piece-wise integration of the speed and heading of the vehicle to calculate

the position with respect to a known starting point. Clearly, the estimate of the

position gets worse as time goes on, i.e. the error in the estimation accumulates.

The Inertial Navigation System (INS) type of positioning is based on Newton’s

second law. In the INS, the system uses the acceleration and its direction to find

(again using integration) the current location. This method is more accurate than

the dead-reckoning method, and it can be used in almost all applications. Since the

calculation of the current position is based on the integration of the instantaneous

acceleration, this method suffers from the same deficiencies as the dead-reckoning

method does. The third type of positioning is based on measuring the distance of

the unknown location from several known positions. The accuracy of this method

depends on the accuracy of the measurement and the accuracy of our knowledge of

the location of the known points. Unlike the INS and the dead-reckoning methods,

this method does not suffer from the accumulation of error over the duration of
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the measurement. In fact, the longer the measurement takes the more accurate

the estimate becomes. The Global Positioning System (GPS) measurement is one

of the third positioning types.

GPS was conceived as a ranging system from known positions of satellites in

space to unknown positions on land, in sea, in air and in space. Effectively, the

satellite signal is continuously marked with its own transmission time so that, when

received, the signal travel time can be measured by a synchronized receiver. Apart

from point positioning, the determination of a vehicle’s instantaneous position and

velocity, and precise coordination of time were original objectives of GPS [28].

GPS uses “pseudoranges” derived from the broadcast satellite signal. The pseu-

dorange is derived either from measuring the travel time of the coded signal and

multiplying it by its velocity or by measuring the phase of the signal. In both

cases, the clocks of the receiver and the satellite are employed. Since these clocks

are never perfectly synchronized, instead of true ranges pseudoranges are obtained

where the synchronization error (denoted as clock error) is taken into account.

Consequently, each equation of this type comprises four unknowns: the desired

three point coordinates contained in true range, and the clock error. Thus, infor-

mation from (at least) four satellites is necessary to solve for the four unknowns.

Differential GPS allows the user to obtain a more accurate measurement. It,

in fact, allows the removal of a good portion of the positioning error from the

estimation. This, along with other new technology, allows the users to use the

carrier phase as part of the positioning information. This can increase the accuracy

of the estimation to centimeter, or in the static case, to millimeter levels.

Unlike the applications in communication, in positioning one needs to know

the exact phase difference between the received signal and the transmitted signal,
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i.e. the exact number of full cycles and the portion of the phase that is less

than a full cycle is needed for position estimation. A Phase Lock Loop (PLL)

can provide a very accurate estimate of the portion of the phase that is less than

a full cycle. Also, it can count the number of full cycles added to the phase

once it starts tracking the signal continuously. The initial value of the full cycles,

though is not known, therefore, the phase lock loop cannot provide that part of the

phase information. This part, which is a constant integer number of full cycles,

is called integer ambiguity and should be resolved through numerical methods

[26, 28, 51, 52].

Although carrier phase differential GPS allows for very accurate positioning,

it is very sensitive to obstacles that can block satellite signals. The loss in signal

could be for a few moments or for a longer period of time. If the loss in signal

is sufficiently short, the phase lock loop is unable to detect the loss in signal,

therefore it is not able to record the added full cycles to the measured phase. This

results in a jump in the measured phase. This phenomena is known as cycle slip.

Any navigation method that uses carrier phase differential GPS should be able to

detect and isolate the cycle slips whenever they occur.

If the loss in signal is for a sufficiently long period of time, so that position

information is needed while the GPS receiver has signals only from three or fewer

satellites, the positioning techniques that are solely based on satellite navigation

fail to function. In such cases the user should use other methods to be able to

receive continuous position information [1, 16, 19, 20, 42, 56].

Integration of INS with GPS has proven to be robust and accurate. In an

integrated INS/GPS, INS provides positioning information that is calibrated by

GPS.
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In most applications, such as integrated INS/GPS, or dead-reckoning/GPS, or

vehicle dynamic/GPS, linearization of the dynamic and the GPS observation is

the main tool for estimation [20, 21, 42, 44, 45]. It can be shown [16] that when

the number of satellites is below a certain number or the geometry of the satellite

constellation is near singular, the Extended Kalman Filter (EKF) diverges and

fails to provide accurate estimation of the position. In this case, it is important to

use nonlinear filtering for the estimation problem.

The results in [16] were a motivation for us to study nonlinear filtering, estima-

tion, and detection methods and their applications to satellite based navigation.

In this dissertation we are interested both in the theory and the application of

such methods. For this reason our intention is to discover new tractable finite ap-

proximation methods for nonlinear filtering problems. We are specially interested

in the approximation methods that are suited for satellite based navigation.

Our contribution in this dissertation can be categorized into three major areas.

In all of these three areas we have developed the theory of the proposed approx-

imation methods as well as the relevant application to navigation. In the rest of

this chapter we introduce these three areas.

1.1 Approximate Nonlinear Filtering

Unlike the linear Gaussian case, no finite dimensional filtering method for gen-

eral nonlinear systems exists. The most well known approximation method for

nonlinear filters, Extended Kalman Filtering (EKF), is merely an ad hoc method

[46]. The performance of EKF depends on the specific application and it is not

guaranteed.
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Projection filtering is another approximation method for nonlinear filtering

[9, 11, 12]. The main assumption in projection filtering is that the conditional

density of the state given the observations can be projected onto a family of den-

sities without significant error. In [11] the conditional density is projected onto an

exponential family of densities. Since the exponential family has a finite dimen-

sional parametric representation, the projected nonlinear filter also has a finite

dimensional form.

In a different approach [9], the conditional density of the system given the

observations is approximated by a summation of basis functions. Then, a Galerkin

approximation method is used to propagate the coefficients of the approximated

density.

Although both methods in [9] and [11] provide better approximation methods

than EKF, the convergence of the approximated conditional density to the actual

conditional density is not studied 1.

An entirely different approach for approximating the conditional density is

simulation based filtering. Grid-less simulation based filtering, now known by many

different names such as particle filtering [34, 40], the Condensation Algorithm [29],

the Sequential Monte Carlo (SMC) Method [22], and Bayesian Bootstrap Filtering

[24], was first introduced in [24] and then it was rediscovered independently in [29]

and [32]. Henceforth we refer to this filtering method as particle filtering. The

results in [24] are the extension of the results in [48] and [2] to the dynamic case

and is based on a method called Sampling/Importance Resampling (SIR). SIR is

key element of the grid-less simulation based filtering methods. SIR allows these

1In [9] a convergence proof is reported but in a remark the authors note that: “The requirement

in the hypothesis of Theorem 1 is somewhat unsatisfactory because it is not clear at this stage

how to guarantee that this is true a priori”.
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methods to have automatically high resolution grids in areas where the conditional

density is significant and low resolution in the areas where the conditional density

is small.

Particle filtering is a Monte Carlo based method for nonlinear filtering. The

particles in this method refer to independent samples generated with the Monte

Carlo method. In [40] it was shown that the optimal nonlinear filter can be approx-

imated with an arbitrarily small error by a finite dimensional filter. The problem

of this method is that for high dimensional systems, and for small errors, com-

putational complexity grows, and the method is not always implementable in real

time applications. The other shortcoming of particle filtering is its vulnerability to

sample impoverishment [15], so that the particle distribution gives a poor approx-

imation of the required conditional density. In extreme cases, after a sequence of

updates the particle system can collapse to a single point. In less extreme cases,

although several particles may survive, there is so much internal correlation that

summary statistics behave as if they are derived from a substantially smaller sam-

ple. To compensate, large numbers of particles are required in realistic problems

[15].

In the cases where we have some prior information about the distribution,

we should expect to achieve higher performance if we take this information into

account. By higher performance, we mean a reduction in the computational cost

and an increase in the convergence rate. Here we assume that the conditional

distribution has a density in an exponential family of densities, or at least stays

close to it in a sense that we will define. Using this assumption, we replace the

empirical distribution in [40] with the Maximum Likelihood Estimate (MLE) of the

parameters of an exponential density. We call this new method projection particle
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filtering. In Theorem 4.1.6 we show that if the conditional density of the state

given the observations lies in an exponential family of densities then the estimated

conditional density converges to the true conditional density in a sense that will

be defined. In Theorem 4.2.7 for the case where the true conditional density stays

close to an exponential family of densities we show that the error of the estimate

given by projection particle filtering is bounded.

As stated in [11], finding the proper exponential family of densities for a dy-

namical system is quite challenging. To overcome this problem and motivated by

the results in Theorems 4.1.6 and 4.2.7, we studied projection filtering for a family

of mixture densities. In this case, we also show that if the family of mixture den-

sities is close (in a sense that will be defined later) to the true conditional density,

the error of estimate given by approximate filtering is bounded.

One of the applications of projection particle filtering is position estimation for

an integrated INS/GPS. We are particularly interested in the cases where lineariza-

tion methods fail. One such case is when the number of GPS satellites in view

is below a critical number (for three dimensional positioning, this critical number

is four). We demonstrate numerically that in this situation the position estima-

tion given by the EKF diverges, while the approximate nonlinear filtering methods

provide a reasonable estimate of the position. We also show via numerical results

that the performance of the projection particle filter exceeds the performance of

the particle filter for the same number of particles.

1.2 Integer Ambiguity Resolution

Integer ambiguity resolution methods are an inseparable part of positioning tech-

niques that use carrier phase differential GPS as part of their measurement.
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The available integer ambiguity resolution methods are mostly based on a rough

estimate of the integer ambiguity and a search method to find the correct integer

value [3]. In the case of the Ambiguity Function Method (AFM), since the integer

ambiguity cancels out as a result of the cosine function in the ambiguity function,

the search is done over the position grid [38, 47]. In the least square ambiguity

search technique, first the float solution for integer ambiguity is found by mini-

mizing the square of the error associated to the position and the integer estimate.

If the covariance matrix of the error for these estimates of the integer ambiguity

is diagonal, the best integer vector that minimizes the error is the nearest integer

vector, but usually this is not the case. Therefore, the correct solution is found

by searching the area near the float solution [27]. The size of this area depends

on the covariance matrix and the size of the integer vector, i.e. the number of

satellites. In the Least-squares AMBiguity Decorrelation Approach (LAMBDA), a

linear transformation of the GPS observables that maps integer vectors to integer

vectors, is chosen in such a way that the transformed covariance matrix is dom-

inantly diagonal [52]. This transformation helps to reduce the size of the search

space. Variations of these methods have been used. For example, in [26] a Kalman

filter is used to estimate the float least square estimation of the integer ambiguity

and the same type of decorrelation is applied to the observable to reduce the size

of the search space.

In most of these methods the integer ambiguity is treated as an unknown in-

teger vector. In this dissertation we present a new method that treats the integer

ambiguity as a random integer vector. Inspired by our results in Theorems 4.1.6

and 4.2.7, we present a method for approximating the conditional probability mass

function (pmf) of this integer vector given the observations. The estimate of the
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integer value then is simply the point that maximizes the pmf. In this method,

similar to the projection particle filtering method, we find a family of exponential

distributions that is close to the true pmf. The integer ambiguity is then resolved

through the estimation of the parameter of the family.

1.3 Detection of Abrupt Changes in Nonlinear

Dynamical Systems

In [43] the change detection problem is stated as follows:

“Whenever observations are taken in order it can happen that the whole set of

observations can be divided into subsets, each of which can be regarded as a random

sample from a common distribution, each subset corresponding to a different pa-

rameter value of the distribution. The problems to be considered in this paper are

concerned with the identification of the subsamples and the detection of changes in

the parameter value”.

We refer to a change or an abrupt change as any change in the parameters of

the system that happens either instantaneously, or much faster than any change

that the nominal bandwidth of the system allows.

The key difficulty of all change detection methods is that of detecting intrinsic

changes that are not necessarily directly observed but are measured together with

other types of perturbations [8].

The change detection could be off-line or on-line. In on-line change detection,

we are only interested in detecting the fact that a change happened. In this case,

we are only interested in detecting the change as quickly as possible (for example,

to minimize the detection delay with fixed mean time between false alarms), and
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the estimate of the time when the change occurs is not of importance. In off-line

change detection, we assume that the whole observation sequence is available at

once. In this case, the estimate of the time of change could be one of the goals of

the detection method. In this dissertation we limit our concern to on-line detection

of abrupt changes.

The change detection methods that are studied in this dissertation can be clas-

sified under the general name of Likelihood Ratio methods. CUmulative SUM

(CUSUM) and Generalized Likelihood Ratio (GLR) tests are among these meth-

ods. CUSUM was first proposed in [43]. The most basic CUSUM algorithm as-

sumes that the observation signal is a sequence of stochastic variables which are

independent and identically distributed with known common probability density

function before the change time, and independent and identically distributed with

another known probability density after the change time. In the CUSUM algorithm

the log-likelihood ratio for the observation from time i to time k is calculated and

its difference with its current minimum is compared with a certain threshold. If

this difference exceeds the threshold an alarm is issued.

Properties of the CUSUM algorithm have been studied extensively. The most

important property of the CUSUM algorithm is its asymptotic optimality, which

was first proven in [37]. More precisely, CUSUM is optimal, with respect to the

worst mean delay, when the mean time between false alarms goes to infinity. This

asymptotic point of view is convenient in practice, because a low rate of false

alarms is always desirable.

In the case of unknown system parameters after change, the GLR algorithm

can be used as a generalization of the CUSUM algorithm. Since in this algorithm

the exact information of the change pattern is not known, the likelihood ratio is
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maximized over all possible change patterns 2.

For stochastic systems with linear dynamics and linear observations, the ob-

servation sequence is not independent and identically distributed. Therefore, the

regular CUSUM algorithm cannot be applied for detection of changes in such

systems. However, if such systems are driven by Gaussian noise, the innovation

process associated with the system can be generated. This process is known to be

a sequence of independent random variables. The regular CUSUM algorithm or its

more general counterpart, GLR, can be applied to this innovation process [8, 55].

In this dissertation we are interested in the change detection problem for

stochastic systems with nonlinear dynamics and observations. We show that for

such systems, the complexity of the CUSUM algorithm grows with respect to time.

This growth in complexity cannot be tolerated in practical problems. Therefore,

instead of the statistic used in the CUSUM algorithm we introduce an alternative

statistic. We show that with this statistic, the calculation of the likelihood ra-

tio can be done recursively and the computational complexity of the method stays

constant with respect to time. This new method is used for the cycle slip detection

for an integrated INS/GPS.

1.4 Dissertation Outline

In Chapter 2 we briefly review the GPS signal structure and explain different

GPS observables. Chapter 3 is devoted to the review of different approximate

nonlinear filtering methods as well as a statement of the general nonlinear filtering

framework. In Chapter 4 we present our main results on projection particle filtering

for an exponential family of densities. Chapter 5 addresses the applications of

2If the maximum does not exist, the supremum of the likelihood ratio should be calculated.
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the results in Chapter 4 to position estimation for an integrated INS/GPS under

critical conditions. In Chapter 6 we present our results on projection particle

filtering on a family of mixture densities. We introduce our new integer ambiguity

resolution method based on projection particle filtering in Chapter 7. In Chapter 8

we present our results in change detection for nonlinear systems and its application

to cycle slip detection for an integrated INS/GPS. Finally, in Chapter 9 we state

conclusions and an outline of future work.
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Chapter 2

A Short Review of GPS

The NAVSTAR (Navigation Satellite Timing and Ranging) GPS is a satellite

based, worldwide, all weather navigation system. This system provides accurate

positioning for a receiver that is capable of receiving signals from at least four

satellites [28].

The main part of the GPS signal is a coded message that is simply a clock

signal. This coded message and the time that this message was sent is completely

known by the receiver. The receiver measures the time when this signal is received

and from that measures the travel time and, consequently, the distance between

the receiver and the corresponding satellite. Since the clocks in the satellites and

in the receiver are never synchronized the measured distance is not the true range.

In GPS literature this distance is called pseudorange.

All generated signals including the carrier in GPS are synchronized with the

main atomic clock, therefore the carrier phase (if known completely) can also be

used as a ranging signal.

The accuracy of the positioning depends on many factors including the type

of user, the quality of the receiver, and the positioning technique. The U.S. De-
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partment of Defense deliberately adds uncertainty to the positioning signal; for

civilians this is one of the major sources of error. There are other sources of er-

ror that degrade the position accuracy. These sources include, ionospheric and

tropospheric delay, satellite position uncertainty, satellite and receiver clock bias,

multipath, and the usual channel noise [44]. In a relatively small area, for exam-

ple distances of less that 100 Km, some of these errors are highly correlated [45].

The uncertainty added by the military, satellite clock bias 1, and satellite position

uncertainty are clearly the same for all users that are using the same satellite.

The tropospheric and the ionospheric delays are also highly correlated in short

distances. By locating a receiver in a known position one can estimate the com-

mon errors and send the correction signal to the other users. This idea caused a

revolution in satellite aided radio positioning. This technique is called differential

GPS, and is widely used for surveying as well as real time navigation [45].

Today’s technology allows the use of the carrier as part of the navigation in-

formation. Due to the periodic nature of the carrier, one can only measure the

phase of the carrier, modulo 2π, i.e. the PLL can never measure the exact phase.

The unknown part of the phase is known to be an integer number times 2π. Since

the measurement noise for the carrier is much smaller than the measurement noise

for the clock signal, it is essential that we should estimate the exact phase of the

signal. It is shown that in the case of differential GPS, the receiver can estimate

the ambiguity in the integer number of unmeasurable cycles. This method is called

carrier phased differential GPS.

1After May 2000 the US department of defense eliminated this uncertainty for all users. The

satellite position accuracy though, is higher for military users.
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2.1 GPS Signal Structure

The GPS signal consists of a clock signal and a navigation message that are ampli-

tude modulated. Using the clock signal and navigation message, one can estimate

its position, if at least four satellites are in view.

Each satellite sends the clock signal in two different bands, L1 and L2. These

signals are as follows [50]:

Li
1(t) = a1P

i(t)Di(t)cos(2πf1t) + b1C/Ai(t)D(t)sin(f1t)

Li
2(t) = a2P

i(t)Di(t)cos(2πf2t)

Where:

• i: Number of the satellite.

• P i(t): Precise clock signal generated with a random number generator with

frequency 10.23 MHz and a period of 38 weeks. Each satellite has its unique

code.

• C/Ai: Course acquisition code, the clock for non-military positioning gener-

ated with frequency 1.023 MHz and a period of 1 ms.

• Di(t): Navigation data with a bit rate of 50 bit/sec.

• f1: Carrier of L1, f1 = 154 ∗ 10.23 MHz synchronized with the central clock.

• f2: Carrier of L2, f2 = 120 ∗ 10.23 MHz synchronized with the central clock.

• a1,b1,a2: Amplitudes of the carriers.
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The GPS receiver, receives the signal corrupted by noise and other sources of

error. The raw measurements of the code and the carrier phase can be presented

as follows [30]:

P i(tk) = ρi(tk) + c[dT (tk)− dti(tk)] + T i(tk) + I i(tk) + Ei(tk) + εi(tk)

λΦi(tk) = ρi(tk) + c[dT (tk)− dti(tk)] + T i(tk)− I i(tk) + Ei(tk)− λN i + ηi(tk)

where

• tk : GPS time at epoch k.

• P : code observation (m).

• i : satellite number.

• ρ : distance between the moving object and the satellite position (m).

• c : speed of light (m/s).

• dT : receiver clock bias (s).

• dt : satellite clock bias including Selective Availability (SA) clock error (s).

• E : effect of ephemeris error including SA orbit error (m).

• I : ionospheric delay (m).

• T : tropospheric delay (m).

• ε: code observation noise (m).

• λ : carrier wavelength (m).

• Φ: carrier phase observation (cycles).
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• N : integer ambiguity (cycles).

• η : carrier observation noise (m).

Access to the above observations depends on the type of user and the quality

of the receiver.

2.2 Single and Double Differencing in GPS

State of the art receivers can have access to code and carrier phase measurement

of 12 satellites in 2 frequencies. In this kind of receivers a big portion of the

ionospheric delay can be corrected and removed [28, 33]. Since the receiver clock

bias is the same for the observation from all satellites, the error due to the receiver

clock bias can be completely removed by single differencing. In single differencing,

the receiver subtracts code and/or phase measurement of one satellite from the

others [53]. Single differencing eliminates a major source of error. If it is possible

to mount a GPS receiver in a known location (i.e. base), one can use the double

differencing method to eliminate other sources of error. Within short distances,

ionospheric and tropospheric errors are highly correlated, and can be eliminated

by making a difference between the code and the carrier phase measurement of

the base and the moving receiver. The appropriate length scale for this is not

very clear and it depends on sunspot activity [33]. When the activity is low, the

short distance could cover larger areas and conversely. It can be shown that double

differencing reduces ephemeris error by a factor of d/r [53], where d and r are the

distances from the moving object to the base and to the satellite, respectively.

Using the operator (·)k,l
i,j = [(·)k

i − (·)k
j ]− [(·)l

i − (·)l
j], where i and j are indices for

the receivers and l and k are indices for satellites. Then double differencing can
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be written as follows:

P k,l
i,j = ρk,l

i,j + εk,l
i,j , (2.1)

and,

λΦk,l
i,j = ρk,l

i,j + λNk,l
i,j + ηk,l

i,j . (2.2)

In the above formula the time index is not shown for simplicity. If the short

baseline assumption is not applied, the canceled term will show up in the double

difference observer and should be estimated [53]. Sometimes there are not enough

observations to estimate all of these terms. In this case,we are forced to consider

these terms as noise terms. Multi-path is another source of error that cannot be

removed from the observation (2.1) and (2.2) [7].

Unlike other terms, if no cycle slip occurs, the integer ambiguity is constant

with respect to time. The fact that the integer ambiguity is constant in time

is very important, in fact, all integer ambiguity resolution methods rely on this

property. Once this integer number is known, the phase measurement can be used

for positioning. We should remember that although equation (2.1) does not have

integer ambiguity in it, still the energy of the noise, εk,l
i,j , is an order of magnitude

higher than the energy of the noise in (2.2) [44]. Therefore, the integer ambiguity

problem remains intact.

Although double differencing eliminates many sources of error, it is not nec-

essarily the best way of handling the measurement. Double differencing reduces

the number of observation equations which may not be the optimum choice for

certain applications. Therefore, if a good model for a specific error exists, we can

use this model to estimate the error instead of eliminating it through the double

differencing operation. As we mentioned earlier single differencing eliminates the
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error due to receiver clock bias by subtracting the phase/code measurement of

one satellite from the others, but this reduces the number of measurement equa-

tions. We can remove this part from the double differencing operation, i.e. we can

only subtract the measurements of one receiver from the base (the receiver in a

known location). In this case, we can eliminate a good portion of the error due to

ionospheric, tropospheric, ephemeris, and satellite clock bias. The receiver clock

bias, dT , can be modeled by a second order system driven by a Brownian motion

process. In Chapter 5 we use this model for estimating the position of the receiver

as well as the clock bias for an integrated INS/GPS.

2.3 Cycle Slip in Carrier Phase Measurement

Carrier phase measurement enables a GPS receiver to reach centimeter level ac-

curacy. This is true only if the exact phase is measured. In addition to this, the

receiver should track the phase at all times to be able to measure the exact phase.

This task is done by the PLL built in the receiver.

When the receiver is turned on, the fraction of the phase (i.e. the difference

between the satellite transmitted carrier and a receiver generated replica signal)

is observed and an integer counter initialized. During tracking, the counter is

incremented by one whenever the fractional phase changes from 2π to 0. Thus, at

a given time the observed accumulated phase is 2π times the sum of the fractional

phase and the integer count. The initial integer number of full cycles between

the satellite and the receiver is unknown. This phase ambiguity remains constant

as long as no loss of signal lock occurs. If a loss occurs, the integer counter is

reinitialized which causes a jump in the instantaneous accumulated phase by an

integer number of cycles. This jump is called a cycle slip which, of course, is
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restricted to phase measurements [28].

Three sources of cycle slips can be distinguished. First, cycle slips are caused

by obstruction of the satellite signal due to trees, buildings, bridges, etc. This is

the most frequent source of cycle slip. The second source for cycle slips is a low

signal to noise ratio due to bad ionospheric conditions, multipath, high receiver

dynamics, or low satellite elevation. A third source is a failure in the receiver

software which leads to incorrect signal processing. Cycle slips could also be caused

by malfunctioning satellite oscillators, but these are rare [28].

Cycle slip detection is a very important part of a navigation system that is

based on carrier phase GPS. If a cycle slip is not detected correctly the position

given by the navigation system is not reliable. In Chapter 8 we propose a new

method that has the potential ability of cycle slip detection even under conditions

when the number of satellites is below a critical number.
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Chapter 3

Nonlinear Filtering: An

Introduction

Filtering problems consist of “estimating” a process {xt} (or a function of it)

given the related process, {yt}, which can be observed [18]. The observation is

available in an interval, i.e., {ys, 0 ≤ s < t} and the function of the state is

estimated at time t. Except for the linear Guassian system and very special cases in

nonlinear settings, estimating the state given the observations results in an infinite

dimensional filter [46]. Therefore, approximation methods of finite dimension are

very appealing.

The most widely used approximate filtering method is the extended Kalman

filter, which is a heuristic approach based on linearization of the state dynamics

and the observation near the nominal path [46]. EKF is computationally simple

but, the convergence of the estimated conditional density to the actual conditional

density is not guaranteed.

Projection filtering is another approximation method [9, 11, 12, 13]. In projec-

tion filtering it is assumed that the conditional density of the state of the system
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can be approximated by a member of a parametric family of densities. In this

case, estimating the conditional density is equivalent to estimating the parameter

of the family. In [11] the exponential family of densities is chosen as the parametric

family. In contrast, the approach in [9] employs a Galerkin approximation to solve

the Fokker-Planck equation [46], between measurement epochs.

Particle filtering is an approximation method for nonlinear filtering and it is

based on the Monte Carlo method; in this method, the particles at time ti are

i.i.d. random vectors that are distributed according to the empirical conditional

distribution of the state, given the observations up to time ti. These particle/state

vectors are used in the state equation to find the values of particles at time ti+1.

Then at time ti+1, the empirical distribution is evaluated according to the values

of the particles. The new observation at time ti+1 is taken into account through

Bayes’ Rule to calculate the conditional empirical distribution, this process is then

repeated. In [40] it is proved that by tracking a large enough number of particles,

one can get an approximate conditional distribution that is arbitrarily close to the

true conditional distribution.

3.1 Problem Setup

We assume that all stochastic processes are defined on a fixed probability space

(Ω, F, P ), and a finite time interval, [0, T ], on which there is defined an increasing

family of σ-fields, {Ft, 0 ≤ t ≤ T}. It is assumed that each process, {xt}, is

adapted to Ft, i.e., {xt} is Ft-measurable for all t. We assume that {xt} is a

vector diffusion process of the form

xt = x0 +
∫ t

0
fs(xs)ds +

∫ t

0
Gs(xs)dws, (3.1)
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where xt ∈ Rn, and wt ∈ Rq is a vector from an independent Brownian motion

process; the second integral is in the Ito sense [49], and the function ft(·) and the

matrix Gt(·) have the proper dimensions. The observation, yt, is a discrete time

process given as follows:

ynτ = hn(xnτ ) + vn, (3.2)

where ynτ ∈ Rd, and vn ∈ Rd is a discrete time white Gaussian noise process with

zero mean and known covariance matrix. The state dynamics and observation

equations can be rewritten formally as follows:

dxt = ft(xt)dt + Gt(xt)dwt, given the distribution of x0

ynτ = hn(xnτ ) + vn

(3.3)

The noise processes {wt, t ≥ 0}, and {vn, n = 0, 1, · · ·} , and the initial condition

x0 are assumed to be independent. We use Qt and Rn for the covariance matrices

of the processes wt and vn, respectively. We assume that Rn is invertible for all

n’s. We have the following additional assumptions [25]:

A 3.1.1 [local Lipschitz continuity] ∀ x, x′ ∈ Br and t ∈ [0, T ], where Br is a ball

of radius r, we have

‖ft(x)− ft(x
′)‖ ≤ kr‖x− x′‖, and

‖Gt(x)QtG
T
t (x)−Gt(x

′)QtG
T
t (x′)‖ ≤ kr‖x− x′‖.

(3.4)

A 3.1.2 [Non-Explosion] There exists k > 0 such that

xT ft(x) ≤ k(1 + ‖x‖2), and

trace(Gt(x)QtG
T
t (x)) ≤ k(1 + ‖x‖2).

(3.5)

∀ t ∈ [0, T ] and ∀ x ∈ Rn.
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Under Assumptions (A3.1.1) and (A3.1.2), there exists a unique solution {xt,

t ∈ [0, T ]} to the state equation, and xt has finite moment of any order [25].

In addition to these, we assume that the probability distribution of the state xt,

given the observation up to time t, πt(dx) = P (xt ∈ dx|yt), where yt = {yn, i =

1, · · · , n, nτ < t}, has a density pt with respect to the Lebesgue measure on Rn.

Then {pt, t > 0} satisfies the following partial differential equation and updating

equations [11]:

∂
∂t

pt = L∗tpt nτ ≤ t < (n + 1)τ, and

pnτ = cnΨnpnτ−

(3.6)

where

L∗t (Φ) = −∑n
i=1

∂
∂xi

[f i
tΦ] + 1

2

∑n
i,j=1

∂2

∂xi∂xj
[aij

t Φ],

[aij
t ] = GtQtG

T
t ,

Ψn(x)
4
= exp

(
−1

2
(ynτ − hn(x))T R−1

n (ynτ − hn(x))
)
,

and cn is a normalizing factor.

Except for the linear Gaussian case, and some very special nonlinear cases,

solving System (3.6) constitutes an infinite dimensional filter [46]. Therefore, for

practical problems it is necessary to approximate the conditional density in (3.6).

In the next section, we discuss one of these approximation methods.

3.2 Projection Filtering on Exponential Families

of Densities

This section is mainly a review of the results we use from [11]. We start this section

with the definition of the exponential family of densities.
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Definition 3.2.1 Let {c1, · · · , cp} be affinely independent 1 scalar functions de-

fined on Rn, and assume that the convex set

Θ0 =
{
θ ∈ Rp : Υ(θ) = log

∫
exp

(
θT c(x)

)
dx <∞

}
,

has nonempty interior. Then,

S = {p(·, θ), θ ∈ Θ}
p(x, θ): = exp

[
θTc(x)−Υ(θ)

]
,

where Θ ⊆ Θ0 is open, is called an exponential family of probability densities.

We denote by S 1
2 the space of square roots of the densities in S , i.e., S 1

2 =

{
√

p(·, θ); θ ∈ Θ}. If p(·, θ) ∈ S, then
√

p(·, θ) ∈ L2. The functions 1

2
√

p(·,θ)

∂p(·,θ)
∂θi

, i =

1, · · · , p form a basis for the tangent vector space at
√

p(·, θ) to the space S 1
2 , i.e.,

the tangent space at
√

p(·, θ) is given by [4]:

L√
p(·,θ)
S 1

2 = span

 1

2
√

p(·, θ)
∂p(·, θ)

∂θ1

, · · · , 1

2
√

p(·, θ)
∂p(·, θ)

∂θp

 . (3.7)

The inner product of any two basis elements is defined as follows〈
1

2
√

p(·,θ)

∂p(·,θ)
∂θi

, 1

2
√

p(·,θ)

∂p(·,θ)
∂θj

〉
= 1

4

∫ 1
p(x,θ)

∂p(x,θ)
∂θi

∂p(x,θ)
∂θj

dx

= 1
4
gij(θ)

(3.8)

It can be easily seen that g(θ) = (gij(θ)) = (E[cicj] − E[ci]E[cj ]) is the Fisher

information matrix of p(·, θ).
Any member of L2 can be projected to the tangent space L√

p(·,θ)
S 1

2 according

to the following projection formula

Πθ : L2 ⊇ V → L√
p(·,θ)
S 1

2

v →
p∑

i=1

p∑
j=1

4gij(θ)
〈
v, 1

2
√

p(·,θ)

∂p(·,θ)
∂θj

〉
1

2
√

p(·,θ)

∂p(·,θ)
∂θi

.
(3.9)

1{c1, · · · , cp} are affinely independent if for distinct points x1,x2, · · · ,xp+1,
∑p+1

i=1 λic(xi) = 0

and
∑p+1

i=1 λi = 0 implies λ1 = λ2 = · · · = λp+1 = 0 [17].
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Projection filtering seeks a solution pt for (3.6) that lies in S. Of course, this

solution is only an exponential density, but we hope, by choosing the proper family,

to keep the approximation error small (in the L2 sense).

If we consider the square root of the density in (3.6), we get

∂
√

pt

∂t
=

1

2
√

pt

∂pt

∂t
=

1

2
√

pt
L∗tpt. (3.10)

Define αt,θ =
L∗t pt(·,θ)

pt(·,θ)
. We assume that for all θ ∈ Θ and all t ≥ 0, Ep(·,θ){|αt,θ|2} <

∞, which implies that
L∗t pt(·,θ)√

pt(·,θ)
is a vector in L2 for all θ ∈ Θ and all t ≥ 0 [11].

Now assume that in equation (3.10), for {√pt, t ≥ t0}, starting at time nτ

from the initial condition,
√

pnτ =
√

p(·, θnτ ) ∈ S 1
2 for some θnτ ∈ Θ. Under these

assumptions, the right hand side of (3.10) is in L2, which can be projected into

the finite dimensional tangent vector space L√
p(·,θnτ )

S 1
2 . The propagation part of

the projection filter for the exponential family, S, in the interval [nτ, (n + 1)τ), is

defined as the solution to the following differential equation in the same interval:

∂
√

pt(·, θt)

∂t
= Πθt

L∗t pt(·, θt)

2
√

pt(·, θt)
. (3.11)

We also assume that hn(x) in equation (3.2) is time invariant, i.e., hn(x) =

h(x), and the components of h(x), hi(x), and ‖h(x)‖2R−1 are linear combinations

of ci(x), i = 1, · · · , p:

1

2
‖h(x)‖2R−1 =

p∑
i=1

λ0
i ci(x) and hk(x) =

p∑
i=1

λk
i ci(x), k = 1, · · · , d (3.12)

where ‖x‖A =
√

xT Ax. Then, if vn is stationary with the covariance matrix

Rn = R, the likelihood function Ψn(n) can be written as follows:

Ψn(x) = exp(−1
2
(yT

nτR
−1ynτ )) exp(−1

2
(hT (x)R−1h(x)) + (yT

nτR
−1h(x)))

= An exp

(
− d∑

i=1
λ0

i ci(x) +
p∑

k=1
(

p∑
i=1

λk
i z

k
nτ )ci(x)

)
,

(3.13)
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where znτ = yT
nτR

−1, and An is a constant depending on ynτ . Therefore, the

coefficient Ψn(x) is a member of exponential family of densities. This family is

closed under multiplication. Using all of these facts, we can present the following

theorem [11]:

Theorem 3.2.2 [Brigo 1996] For system (3.3), where wt is a Brownian motion

process with covariance Qt and vi is a white Gaussian noise with covariance R,

we assume (A3.1.1) and (A3.1.2) to be true. We also assume that 1
2
‖h(x)‖2R−1 =

p∑
i=1

λ0
i ci(x), hk(x) =

p∑
i=1

λk
i ci(x), for k = 1, · · · , d, and Ep(·,θ)‖L

∗
t p(·,θ)

p(·,θ)
‖2 < ∞, ∀θ ∈

Θ, ∀t ≥ 0. Then for all θ ∈ Θ, and all t ≥ 0, Πθ
L∗t p(·,θ)√

p(·,θ)
is a vector on the

exponential manifold S 1
2 . The projection filter density, pΠ

t = pt(·, θt) is described

by
∂
√

pt(·,θt)

∂t
= Πθt

L∗t pt(·,θt)

2
√

p(·,θt)
, nτ ≤ t < (n + 1)τ

pnτ (·, θnτ ) = cnΨn(ynτ )pnτ−(·, θnτ−) ,

and the projection filter parameter satisfies the following combined differential and

stochastic difference equations:

g(θt)dθt = Eθt{Ltc}dt, nτ ≤ t < (n + 1)τ,

θnτ = θnτ− − λ0
0 +

∑d
k=1 λk

0z
k
n,

where

Lt =
n∑

i=1

f i
t

∂

∂xi
+

1

2

n∑
i,j=1

aij
t

∂2

∂xi∂xj
,

and λi
0 = [λi

1, · · · , λi
p]

T , i = 0, · · · , d, and zk
n is the kth component of zT

nτ = R−1ynτ .

Henceforth, we shall use Eθ and Ep(·,θ), θnτ and θn, and pnτ and pn, interchangeably,

respectively.
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Remark: The differential equation for θt is an ordinary differential equation

with the vector field g(θt)
−1Eθt{Ltc}. This vector field should be computed ana-

lytically. If the analytical computation of this vector field is not possible an off-line

numerical computation should be carried.

As can be seen from the statement of the theorem, the calculation of the con-

ditional probability density is reduced to the calculation of the parameter of an

exponential family. But, solving the differential equation in the theorem is not

an easy task. At each moment g(θt) and Eθt{Ltc} need to be calculated. This

imposes a heavy computational load. In this dissertation, we introduce a Monte

Carlo method to calculate the parameter of the exponential family with a more

affordable computational load.

Although projection filtering gives a better solution than EKF, there is no

known error bound with which we can compare the distance between the real

density and the density given by the projection filter. In the next section we

review particle filtering as an alternative to optimal nonlinear filtering.

Remark : The assumption on hn(·) and Rn in this are made only to ensure

that Ψn(·) is in the family of exponential densities. These assumptions can be

relaxed if Ψn(·) is guaranteed to stay in the family.

3.3 Particle Filtering

Consider either the continuous dynamics and discrete observation in (3.3) or the

discrete case,

xn+1 = fn(xn) + Gn(xn)wn, given the distribution of x0

yn = hn(xn) + vn.
(3.14)

We assume that in both cases, the initial distribution for x0 is given. The
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propagation of the conditional density, at least conceptually, can be calculated as

follows [46]:

• Step 1 . Initialization:

p0(x0|y0) = p(x0).

• Step 2 . Diffusion:

p
(n+1)− (xn+1|Yn) =

∫
p(xn+1|xn)pn(xn|Yn)dxn,

where Yn = {y1,y2, · · · ,yn}.

• Step 3 . Bayes’ rule update:

p
(n+1)

(xn+1|Yn+1) =
p(yn+1|xn+1)p

(n+1)− (xn+1|Yn)∫
p(yn+1|xn+1)p

(n+1)− (xn+1|Yn)dxn+1
,

• Step 4 . n← n + 1; go to Step (2).

The conditional density given by the above steps is exact, but in general it

can be viewed as an infinite dimensional filter, thus, not implementable. Particle

filtering, in brief, is an approximation method that mimics the above calculations

with a finite number of operations using the Monte Carlo method. The procedure

for particle filtering is as follows [24, 40]:

Algorithm 3.3.1 Particle Filtering

• Step 1 . Initialization

� Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the initial distribution

P0(x).

• Step 2 . Diffusion
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� Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic

rules:

dxt = ft(xt)dt + Gt(xt)dwt, nτ ≤ t < (n + 1)τ

or

xn+1 = fn(xn) + Gn(xn)vn.

• Step 3 . Find the empirical distribution

P N
(n+1)−(x) =

1

N

N∑
j=1

δx̂j
n+1

(x)

• Step 4 . Use Bayes’ Rule

P N
(n+1)(x) =

1
N

N∑
j=1

δx̂j
n+1

(x) ·Ψn+1(x)

1
N

N∑
j=1

δx̂j
n+1

(x̂j
n+1) ·Ψn+1(x̂

j
n+1)

• Step 5 . Resample

� Sample x1
n+1, · · · , xN

n+1 according to P N
n+1|n+1(x)

• Step 6 . n← n + 1; go to Step (2).

where δv(w) = 1 if w = v and 0 otherwise, and Ψn(x) is the conditional density

of the observation yn given the state x.

It is customary to call x1
n, · · · , xN

n particles. In the next few lines, we try to

explain in words the evolution of these particles using the above algorithm.

Let x̂1
n, · · · , x̂N

n be the distinct particles at time n before incorporating the

observation at time n. The probability of each particle is 1
N

, that is, is uniformly

distributed. After using the observations, the conditional probability of each par-

ticle changes. Some will have small, and some large probabilities. Therefore, in
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the process of resampling, it is very likely that some particles will never be used

and instead some other particles (with high probabilities) will be sampled more

than once. Therefore, after resampling, some particles have repeated versions,

but in the diffusion phase they go through different paths and at the end of the

diffusion phase, it is very likely, we would have N distinct particles. This auto-

matically makes the approximation one of better resolution in the areas where the

probability is higher.

In [40] it is proved under some conditions that

lim
N→∞

E

( ∣∣∣∣∣ 1

N

N∑
i=1

f(x̂i
n)−EPn(f(x))

∣∣∣∣∣
)

= 0 (3.15)

for every bounded Borel test function, f(·).
One problem in using the particle filtering method is the computational cost.

In particular, for a high dimensional system, getting reasonable accuracy means

using a large N , which results in a heavy computational cost. In the next chapter,

we propose a method that can reduce the number of particles for a certain class of

problems.
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Chapter 4

Projection Particle Filtering

In the previous chapter, we saw two approximation methods for nonlinear filter-

ing. In the particle filtering method, we saw that the conditional distribution is

approximated by the empirical distribution. Unlike the empirical distribution, in

most cases, the actual conditional distribution is smooth. Intuition suggests that

if we have prior knowledge of some properties of the distribution, we can improve

on the quality of the estimates over just using the empirical distribution. In this

chapter first, we assume that the conditional density lies in an exponential family

of densities. We will see that with this assumption, we can show the convergence of

the approximated density to the actual one. Later, we relax this assumption and

we only require that the conditional density stay close to the exponential family of

densities. We prove that the error of the estimate for the latter case is bounded.
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4.1 Particle Filtering for Exponential Families of

Densities

For System (3.3), we assume that the probability density of xt, given the observa-

tion, is in a family of exponential densities S 1.

With this assumption, the proposed algorithm is as follows:

Algorithm 4.1.1 Particle Filtering for an Exponential Family of Densities.

• Step 1 . Initialization

� Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the density, p0(x).

• Step 2 . Diffusion

� Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic

rule:

dxt = ft(xt)dt + Gt(xt)dwt, iτ ≤ t < (i + 1)τ

• Step 3 . Find the MLE of θ̂(n+1)− given x̂1
n+1, · · · , x̂N

n+1 [36]

θ̂(n+1)− = arg max
θ

N∏
i=1

exp(θTc(x̂i
n+1)−Υ(θ))

• Step 4 . Use Bayes’ Rule

p(x, θ̂(n+1)) =
exp

(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)∫

exp
(
θ̂T
(n+1)−c(x)−Υ(θ̂(n+1)−)

)
Ψn+1(x)dx

1This assumption is rather strong. We will drop this assumption later, and we will only

assume that there exists a known family of densities that approximates the real density well, i.e.,

with acceptable accuracy.
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• Step 5 . Resample

� Sample x1
n+1, · · · , xN

n+1 according to p(x, θ̂n+1).

• Step 6 . n← n + 1; go to Step (2).

To generate x1
n+1, · · · , xN

n+1, a Gibbs sampler can be used [23]. This brings an extra

computational cost, which should be taken into account when choosing Algorithm

4.1.1 over Algorithm 3.3.1.

It is instructive to discuss the structure of the ML estimator. We are going to

use this structure for the proof of convergence.

Let x̂1
n, · · · , x̂N

n be the value of the particles right before the measurement at

time n. The MLE of θn, θ̂n, satisfies the first order necessary condition

N∑
i=1

cj(x̂
i
n)−N

∫
x cj(x) exp(θ̂T

n c(x))dx∫
x exp(θ̂T

n c(x))dx
= 0.

Therefore, we get

1

N

N∑
i=1

cj(x̂
i
n) = E

θ̂n
(cj(x)), for j = 1, · · · , p . (4.1)

Equation (4.1) says that the sample average of cj(x) and its probabilistic average,

evaluated at θ̂n, should be equal. The MLE of θ is the solution to the system of

equations in (4.1). Let Fj(θ) be as follows:

Fj(θ) =
1

N

N∑
i=1

cj(x̂
i
n)−

∫
cj(x) exp(θTc(x))dx∫

exp(θTc(x))dx
, j = 1, · · · , p.

For simplicity we drop the index n from θn. It is easy to see that

−∂Fi

∂θj
= Eθ(ci(x)cj(x))−Eθ(ci(x))Eθ(cj(x)).

This shows that (−∂Fi

∂θj
)i,j = g(θ), where g(θ) is the Fisher information matrix of

the exponential density at θ. Since ci(x), i = 1, · · · , p are affinely independent
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g(θ) > 0, ∀θ ∈ Θ. Therefore, (4.1) is the necessary and sufficient condition for

optimality.

In the next few pages, we prove the convergence of the MLE of θn, θ̂n, to θn in

the mean square sense.

In each iteration the proposed algorithm starts from the density p
θ̂t

(xt|yt),

t = τn, where θ̂t is the best estimate θt according to the algorithm. After a full

iteration, the algorithm yields θ̂t+1 which is the best estimate of θt+1. The error

in θ̂t+1 is a combination of the series of possible errors for which we want to find

an upper bound. The first source of error is the error in θ̂t, which will propagate

even if no other error is considered. The other source comes from the fact that in

each iteration new particles are resampled based on the estimated density which

is different from the actual density. Finally, the last source of error comes from

the discretization of the stochastic dynamics of the system. We want to emphasize

that here we assume Ψn(x) = exp(−1
2
(ynτ −hn(xnτ ))

T R−1
n (ynτ − hn(xnτ ))) lies in

the chosen family of densities. Therefore, no other error is added to the estimate

because of the Bayes’ correction.

We recall the following fact [36]:

Fact 4.1.2 For the family of densities S with probability density

p(x, θ) = exp(θTc(x)−Υ(θ)),

the Fisher information matrix g(θ) = (E(ci(x)cj(x))−E(ci(x))E(cj(x)))i,j is pos-

itive definite. Also the log likelihood function

l(θ) = θTC(x)−Υ(θ),

is strictly concave. Therefore, for

cj(x) = Eθ[cj(x)], j = 1, · · · , p,
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if a solution exists2, it is unique. In addition if x1, · · · , xN are N i.i.d. random

variables distributed according to p(x, θ), then the MLE of θ, θ̂N , is asymptotically

normal, i.e.

θ̂N = arg max
θ

N∏
i=1

p(xi, θ) ,

√
N(θ̂N − θ) ∼ N (0, g−1(θ)).

Using this fact, it is easy to see that

E
(∥∥∥θ̂N − θ

∥∥∥2
)

=
1

N
trace(g−1(θ)),

therefore, when N −→ ∞, θ̂N −→ θ in the m.s. sense. On the other hand, θ̂N is

the solution to (4.1). Using the strong law of large numbers [10], when N → ∞
the LHS in (4.1) goes to Eθ(cj(x)), j = 1, · · · , p, with probability one. In other

words, the solution to (4.1) when the LHS is the exact Eθ(cj(x)), j = 1, · · · , p,
gives the exact solution for θ. Using this argument, one can expect that by finding

a good estimate of the left hand side of (4.1), a good estimate of θ is accessible. In

each iteration of the algorithm presented in this section the estimate of the LHS

of (4.1) is found by using the Monte Carlo method and the approximate solution

for the stochastic differential equation (3.3).

To approximate the solution to the stochastic differential equation (3.3), we

employ the method used in [39]. In the following, we review this method briefly.

The stochastic differential equation in (3.3) can be rewritten as follows:

dxt = ft (xt) dt +
q∑

r=1

gr
t (xt) dwr

t , (4.2)

where gr
t (·) is the rth column of the matrix Gt(·), and wr

t is the rth component of

wt. We introduce the operators

2In [17] it is shown that if N > p, the solution exists almost surely.
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Λru =

(
gr ,

∂

∂x

)
u,

Lu =

 ∂

∂t
+

(
f ,

∂

∂x

)
+

1

2

q∑
r=1

n∑
i=1

n∑
j=1

gr
i g

r
j

∂2

∂xi∂xj

u,

where
(
a , ∂

∂x

)
=

n∑
i=1

ai
∂

∂xi
. Then, the approximate solution for the stochastic

differential equation can be written as follows:

xk+1 = xk +
q∑

r=1
gr

tk
ξr
kh

1
2 + ftkh +

q∑
r=1

q∑
i=1

(Λrg
r)tk

ξir
k h+

1
2

q∑
r=1

(Lgr + Λrf)tk
ξr
kh

3
2 + (Lf)tk

h2

2
,

(4.3)

where h is the step size and the coefficients gr
tk

, ftk , (Λig
r)tk

, etc., are computed

at the point (tk,xk). Also, the sets of random variables ξr
k, ξir

k are independent for

distinct k and can, for each k, be modeled as follows:

ξij =
1

2
ξiξj − 1

2
γijζ

iζj, γij =

−1 , i < j

1 , i ≥ j .

and ξi and ζj are independent random variables satisfying

Eξi = Eξ3
i = Eξ5

i = 0, Eξ2
i = 1, Eξ4

i = 3,

Eζj = Eζ3
j = 0, Eζ2

j = ζ4
j = 1.

In particular, ξi can be modeled by the law P (ξ = 0) = 2
3
, P

(
ξ =
√

3
)

= 1
6
, and

P
(
ξ = −√3

)
= 1

6
, and ζj can be modeled by P (ζ = −1) = P (ζ = 1) = 1

2
.

Definition 4.1.3 We say that a function u(·) belongs to the class F , written as

u ∈ F , if we can find constants, k > 0, and κ > 0, such that for all x ∈ Rn, the

following inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .
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Before we present our results we need to specify the probability space in which

the random variables are defined. As we mentioned before, the stochastic pro-

cess associated to the dynamics and the observation equation are defined on a

fixed probability space (Ω, F, P ), the expectation associated to this probability

space is denoted by E. In Algorithm 4.1.1 the generated particles form a Markov

process. Similar to section 2.2 of [40] we denote the probability space associated

to this process by (Ω′, F ′, P ′
[y]). The subindex y is used to emphasize that the

probability measure is conditioned on the observation y. Another set of random

variables, ξi, ζ i, are defined for the approximation of the stochastic differential

equation (4.2). We denote the probability space associated to these random vari-

ables by (Ω′′, F ′′, P ′′). The expectation associated to this process is denoted by

E ′′. Finally we define (Ω̃, F̃ , P̃ ), where Ω̃ = Ω×Ω′×Ω′′ and F̃ = F ×F ′×F ′′. For

every ω̃ ∈ Ω̃ we define ω̃ = (ω, ω′, ω′′), then for every A ∈ F , B ∈ F ′, and C ∈ F ′′

we define the probability measure P̃ (A×B×C) =
∫
A

(∫
C P

′
[Y ](B)dP ′′(ω′′)

)
dP (ω).

The expectation with respect the probability measure P̃ is denoted by Ẽ.

The following theorem summarizes the weak approximation results for (4.3).

Theorem 4.1.4 [ Milstein [39]] Suppose (A3.1.1) from Section (3.1), and sup-

pose that the functions f(·), gr(·), r = 1, · · · , q together with the partial deriva-

tives of sufficiently high order, belong to class F . Also, suppose that the functions

Λig
r, Lgr, Λrf , and Lf grow at most as a linear function in ‖x‖. Then, if the

function u(·) and all its derivatives up to order 6 belong to class F , the approx-

imation (4.3) has the order of accuracy 2, in the sense of weak approximation,

i.e.,

‖Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk)) ‖ ≤ Kh2, tk ∈ [0, T ],

where K is a constant and x0,x0(·) and x̂0,x0(·) are the exact and approximate
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solutions for the stochastic differential equation, respectively.

The Monte Carlo approximation of Ẽu (x0,x0 (tk)) brings another error term. The

combination of these errors can be expressed as follows:∥∥∥∥∥Ẽu (x0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤
∥∥∥Ẽu (x0,x0 (tk))− Ẽu (x̂0,x0 (tk))

∥∥∥+

∥∥∥∥∥Ẽu (x̂0,x0 (tk))− 1
N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ .

If the variance of u (x̂0,x0 (tk)) is bounded, we have

Ẽ

∥∥∥∥∥Ẽu (x0,x0 (tk))− 1

N

N∑
i=1

u
(
x̂0,xi

0
(tk)

)∥∥∥∥∥ ≤ Kh2 +
k
′

N1/2
, (4.4)

where K and k
′
are constants, and h is the step size for the approximation of the

solution of the stochastic differential equation.

The next lemma relates the approximate solution to the stochastic differential

equation and the estimate of the parameter θ. This lemma is the main building

block for our result in this section.

Lemma 4.1.5 For the stochastic differential equation

dxt = ft (xt) dt + Gt (xt) dwt, x0, t ∈ [0, tf ],

assume that ft(·), Gt(·) are such that for the Brownian motion, wt, the probability

density of the state xt lies in the family S for Θ bounded, with g(θ) ≥ ϑI for some

ϑ > 0. We also assume the conditions in Fact 4.1.2 and in Theorem 4.1.4 with

c(x) replacing u(x). Then, there exist k1 and k2 such that

Ẽ[‖θt − θ̂t‖] ≤ k1h
2 +

k2

N1/2
, t ∈ [0, tf ] (4.5)

where θ̂t is the estimate of θt, and N and h are the number of particles and the

time step, respectively.
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Proof: Let θ0 be the initial condition for θ. At t = 0, N independent initial

conditions are generated based on the density p (x, θ0), and the approximation

method (4.3) is applied. From (4.4) we know that:

Ẽ‖Eθtc (xt)− 1

N

N∑
i=1

c
(
x̂i

t

)
‖ ≤ Kh2 +

k
′

N1/2
.

On the other hand, from (4.1), we know that θ̂ is a solution to the system of

equations

1

N

N∑
i=1

cj(x̂
i
t) = E

θ̂t
(cj(xt)), for j = 1, · · · , p.

From Fact 4.1.2, the solution is exact if we replace 1
N

N∑
i=1

cj(x̂
i
t) by Eθt(cj(xt)).

Subtracting the term Eθt(cj(x)) from both sides of the above equations and using

the vector form for it, we get

1

N

N∑
i=1

c(x̂i
t)− Eθt(c(xt)) = E

θ̂t
(c(xt))− Eθt(c(xt)).

On the other hand, we know that Eθ(c(x)) is a differentiable and one to one

function of θ ( see Fact 4.1.2). The derivative of this function, g(θ), is positive

definite and by assumption g(θ) ≥ ϑI. Therefore, ∃α > 0 such that

‖θt − θ̂t‖ ≤ α‖Eθt(c(xt))− E
θ̂t

(c(xt))‖

= α‖Eθt(c(xt))− 1
N

N∑
i=1

c(x̂i
t)‖.

Taking the expectation on both sides of the inequality we have

Ẽ‖θt − θ̂t‖ ≤ α Ẽ‖ 1
N

N∑
i=1

c(x̂i
t)− Eθt(c(xt))‖

≤ α
(
Kh2 + k

′

N1/2

)
= k1h

2 + k2

N1/2

�

Now we are ready to present the main result of this section.
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Theorem 4.1.6 For System (3.3) assume that ft(·), Gt(·), and h(·) are such that

for the Brownian motion wt, and the Gaussian noise vn, the conditional proba-

bility density of the state xt, conditioned on the observations, lies in the family

S for Θ bounded and for t ∈ [0, T ]. Also assume the conditions in Fact 4.1.2

and in Theorem 4.1.4 with c(x) replacing u(x). Then, if g−1 (θt) Eθt (Ltc (x)) is

Lipschitz with Lipschitz constant L and g(θ) ≥ ϑI, there exist l1 and l2 such that

Ẽ‖θn − θ̂n‖ ≤
n−1∑
i=0

exp(Liτ)

(
l1h

2 +
l2

N1/2

)
, nτ ∈ [0, T ],

where θ̂n is the estimate of θn, and N and h are the number of particles and the

time step, respectively. This inequality implies convergence of the estimated pa-

rameter, θ̂n, to the true parameter, θn, as h −→ 0 and N −→∞.

Proof: Let θt and θ̂t be the actual and the estimated values of the parameter of

the density at time t = nτ , respectively. At time t
′
= (n + 1)τ the error in the

estimate of θt′ is a combination of the error in the estimate in θ̂t and the error

added in the time interval [t, t
′
].

If the conditional density stays in the exponential family of densities, θt has to

satisfy the following differential equation:

θ̇ = g−1 (θ) Eθt (Ltc (x)) dt, nτ ≤ t < (n + 1) τ.

Let θ̃t′ be the estimate of θt′ , if the error due to resampling and the approxima-

tion of the stochastic differential equation solution is not taken into account in the

interval [t, t
′
] (i.e. θ̃t′ is computed from the above ordinary differential equation

starting at θ̂t), then

‖θt
′ − θ̂t

′‖ ≤ ‖θt
′ − θ̃t

′‖+ ‖θ̃t
′ − θ̂t

′‖.
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By the assumption of the theorem, g−1 (θ) Eθt (Ltc (x)) is Lipschitz with Lip-

schitz constant L, then by continuity of the solution of the differential equation

with respect to the initial condition [31], we know that

∥∥∥θt′ − θ̃t′
∥∥∥ ≤ ∥∥∥θt − θ̂t

∥∥∥ eL(t′−t),

therefore,

Ẽ
∥∥∥θt′ − θ̃t′

∥∥∥ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t).

Also from the Lemma 4.1.5, ∃k1(t
′
) and k2(t

′
) such that

Ẽ[‖θ̃t′ − θ̂t′‖] ≤ k1(t
′
)h2 +

k2(t
′
)

N1/2
,

therefore,

Ẽ‖θt′ − θ̂t′‖ ≤ Ẽ
∥∥∥θt − θ̂t

∥∥∥ eL(t′−t) + k1(t
′
)h2 +

k2(t
′
)

N1/2
.

The observation noise vn and the function h(·) are such that Bayes’ Rule does

not introduce any further error in the estimate of θ̂t′ . More precisely, Ψn(x) is

assumed to be a member of S. This implies that after applying Bayes’ Rule to

p(x, θt′) and p(x, θ̂t′) parameters θt′ and θ̂t′ are shifted with the same vector and

therefore, ‖θt+′ − θ̂t+′‖ = ‖θt′ − θ̂t′‖. Here t+
′
represents the time right after Bayes’

correction. Therefore, starting from the initial condition θ0 we get

Ẽ‖θn − θ̂n‖ ≤
n−1∑
i=0

exp(Liτ)

(
l1h

2 +
l2

N1/2

)
, nτ ∈ [0, T ]

where

li = max
n

ki(nτ), nτ ∈ [0, T ], i = 1, 2.

�
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Here, we would like to make a few remarks:

• The result of Theorem 4.1.6 can be easily extended to convergence in the

mean square sense.

• The assumption that the probability density stays in the family of densities,

S, does not seem very realistic. But with our approach, we should be able to

get the result in [11]. In fact, in [11] the evolution of the density is forced to

stay in the family at every single moment. In our method, we only force the

density to be in the family at the end of each full iteration, i.e. observation

epoch. This allows the estimated density to be closer to the actual density.

• In [11] the observation equation is considered to be time invariant. Here,

the time-varying nature of hn (x) does not complicate the algorithm. It

surely affects the assumption that the density stays in the family, but as we

explained earlier, this assumption is not realistic to begin with, and it will

be dropped.

• If u(·) is in F , then

lim
N−→∞
h−→0

Ẽ ‖Eθu(x)−Eθ∗u(x)‖ = 0.

This is a criterion similar to the one used in [40].
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4.2 Projection Particle Filtering for Exponential

Families of Densities

In this section, we drop the assumption that the conditional density of the state

given the observation (3.6) lies in the exponential family of densities, S. Also, we

do not require that Ψn(x) is a member of S. Instead we make other assumptions.

First we need the following definition:

Definition 4.2.1 We say that a function u(·) belongs to the class Fkκ, written

as u ∈ Fkκ, for fixed k > 0 and κ > 0, such that for all x ∈ Rn, the following

inequality holds:

‖u(x)‖ ≤ k (1 + ‖x‖κ) .

The next two assumptions are to guarantee the existence of an exponential

density close to the true conditional density.

A 4.2.2 For the density in (3.6) there exists an exponential family of densities S
such that ∀t ∈ [0, T ], ∀u ∈ Fkκ ∃θ∗t ∈ Θ∗ and ε > 0 such that

Ẽ‖Ept
(u(x))−Eθ∗t (u(x))‖ ≤ ε , (4.6)

where Θ∗ is convex 3 and compact.

3It is easy to see that the assumption of convexity is very natural. Assume θ1, θ2 ∈ Θ∗ then∫
exp(θT

i c(x))dx ≤ ∞ for i = 1, 2. Therefore, using the Holder inequality we have∫
exp((αθT

1 + (1 − α)θT
2 )c(x))dx =

∫
(exp(θT

1 c(x)))α(exp(θT
2 c(x)))(1−α)dx

≤
(∫ ((

exp(θT
1 c(x))

)α)1/α
dx

)α
(∫ ((

exp(θT
2 c(x))

)1−α
)1/1−α

dx

)1−α

=
(∫

exp(θT
1 c(x))dx

)α (∫
exp(θT

2 c(x))dx
)1−α

≤ ∞

where 0 < α < 1.
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A 4.2.3 For θ∗n− in (A4.2.2) and Ψn(x), ∃Ψ∗
n(x) such that

p(x, θ) =
p(x, θ∗n−)Ψ∗

n(x)∫
p(x, θ∗n−)Ψ∗

n(x)dx

is in the family S for some θ ∈ Θ∗ and we have:

• ∀θ ∈ Θ∗ and ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖EθΨn(x)u(x)

EθΨn(x)
− EθΨ

∗
n(x)u(x)

EθΨ∗
n(x)

‖ ≤ ε.

• ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖
Eθ∗

n−
Ψ∗

n(x)u(x)

Eθ∗
n−

Ψ∗
n(x)

−
Ep

n−
Ψn(x)u(x)

Ep
n−

Ψn(x)
‖ ≤ ε.

From Assumption (A4.2.3) it is clear that if Ψ∗
n(·) satisfies the requirements of

the assumption then cΨ∗
n(·) satisfies the same requirements, where c is a positive

constant. Therefore, without loss of generality we assume that Ψ∗
n(·) = exp(αTc(·))

for some α ∈ Rp. Using Assumption (A4.2.2), we can state the following fact.

Fact 4.2.4 ∀θ1, θ2 ∈ Θ∗ and ∀u ∈ Fkκ, ∃K1, K2 positive such that

‖Eθ1u(x)−Eθ2u(x)‖ ≤ K1‖θ1 − θ2‖ (4.7)

‖θ1 − θ2‖ ≤ K2‖Eθ1c(x)−Eθ2c(x)‖ . (4.8)

Proof: To prove (4.7), define fu(θ) = Eθu(x) for u(·) ∈ Fkκ. Then

d

dθi
fu(θ) = Eθci(x)u(x)− Eθci(x)Eθu(x).

Since ‖u(x)‖ ≤ k(1 + ‖x‖κ) and θ ∈ Θ∗, where Θ∗ is compact, then there exists a

constant A such that

‖dfu(θ)

dθ
‖ ≤ A ∀u(·) ∈ Fkκ and ∀θ ∈ Θ∗.
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Since Θ∗ is convex and compact, it is clear that ∃K1 independent of u(·) such that

fu(x) is Lipschitz over Θ∗ with the Lipschitz constant K1 [31].

Inequality (4.8) follows from the fact that Θ∗ is compact and the Fisher infor-

mation matrix g(θ) > ϑI over Θ∗.

�

Denote the interior of the set Θ∗ by Θ∗
int. For Θ∗

int we can state the following fact.

Fact 4.2.5 The set

A =
{
α :

∫
exp(αTc(x)) exp(θTc(x))dx <∞, ∀θ ∈ Θ∗

int and α ∈ Rp
}

is closed.

Proof: Assume A is not closed. Therefore, there exists a converging sequence

{αi} ⊂ A with converging point α /∈ A, then ∃θ ∈ Θ∗
int such that

∫
exp(αTc(x)) exp(θ

T
c(x))dx > M, ∀M ∈ R.

Since Θ∗
int is an open set, ∃ε > 0 such that Nε(θ) ∈ Θ∗

int. Also, since {αi} is a

converging sequence, ∃k > 0 such that αk ∈ Nε(α). This implies that θ1 ∈ Θ∗
int

where θ1 = θ + α− αk. Therefore,

∫
exp(αT

k c(x)) exp(θT
1 c(x))dx <∞.

On the other hand, we know that

exp(αT
k c(x)) exp(θT

1 c(x)) = exp(αTc(x)) exp(θ
T
c(x)) .

This is a contradiction, therefore, A is closed.

�

46



The following lemma is one of the building blocks of the results of this section.

Lemma 4.2.6 For θ∗n− and Ψ∗
n(x) defined in (A4.2.3), and ∀u(·) ∈ Fkκ, ∃ positive

numbers k1, k2, k3, k4 independent of θ∗n− and Ψ∗
n(x), such that ∀θ1, θ2 ∈ Θ∗ the

following are true.

(a) k1 ≤ ‖EθΨ
∗
n(x)‖ ≤ k2 ∀θ ∈ Θ∗.

(b) ‖EθΨ
∗
n(x)u(x)‖ ≤ k3 ∀θ ∈ Θ∗.

(c) ‖Eθ1Ψ
∗
n(x)u(x)− Eθ2Ψ

∗
n(x)u(x)‖ ≤ k4‖θ1 − θ2‖.

Proof: Let M be a set defined as follows

M = {m : m = θ1 − θ2, ∀θ1, θ2 ∈ Θ∗}.

We claim thatM is compact. To prove this claim, assume {mi} to be a sequence

inM, i.e mi ∈ M. Also we assume that lim
i−→∞mi = m. We know that there exist

sequences {θ1,i} and {θ2,i} such that mi = θ1,i− θ2,i and θ1,i, θ2,i ∈ Θ∗. Since Θ∗ is

compact there exist converging subsequences {θ1,i} and {θ2,i} in Θ∗. This implies

that m = θ1 − θ2, where θ1 and θ2 are the limits of the subsequences {θ1,i} and

{θ2,i}. Since θ1 and θ2 ∈ Θ∗, then m ∈ M, therefore M is closed. Since Θ∗ is

bounded,M is bounded and therefore, it is compact.

We define set A1 as follows:

A1 =
{
α :

∫
exp(αTc(x)) exp(θTc(x))dx <∞, ∀θ ∈ Θ∗ and α ∈ Rp

}
.

It is clear that A1 ⊂ A. As we mentioned before, without loss of generality we

can assume Ψ∗
n(x) = exp(αTc(x)) and from Assumption (A4.2.3) it is clear that

α ∈ A⋂M. Since A⋂M and Θ∗ are compact we have

min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ

∗
n(x)‖ ≤ ‖EθΨ

∗
n(x)‖ ≤ max

θ∈Θ∗
max

α∈A
⋂
M
‖EθΨ

∗
n(x)‖.
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In other words (a) is true with k1 = min
θ∈Θ∗

min
α∈A

⋂
M
‖EθΨ

∗
n(x)‖ and

k2 = max
θ∈Θ∗

max
α∈A

⋂
M
‖EθΨ

∗
n(x)‖. Similarly, since u(·) ∈ Fkκ, (b) is true.

Using the above argument and the argument in Fact 4.2.4, we can show that

‖ d
dθ

EθΨ
∗
n(x)u(x)‖ is uniformly bounded and since Θ∗ is convex and compact, then

(c) is true [31].

�

In the following we go through the proof of the theorem that we state later

precisely. Assume θ̂n is calculated according to Algorithm 4.1.1 and assume p(x, θ̂n)

is such that ∀u ∈ Fkκ

Ẽ‖E
θ̂n

u(x)− Eθ∗nu(x)‖ ≤ δ , (4.9)

where θ∗n (see Assumption (A4.2.2)) satisfies

Ẽ‖Epnu(x)−Eθ∗nu(x)‖ ≤ ε. (4.10)

Using the density p(x, θ̂n), new particles x1
n, · · · ,xN

n are generated. The approxi-

mate solution for the stochastic differential equation at time (n + 1)τ maps these

particles to x̂1
n+1, · · · , x̂N

n+1. From these new particles θ̂n+1 is calculated. From

(4.9) and (4.10) we have

Ẽ‖Epnu(x)− E
θ̂n

u(x)‖ ≤ δ + ε. (4.11)

We define the function r(x) as follows:

r(x) = E ′′c(x̂n,x((n + 1)))

where x̂n,x((n+1)τ) is the approximate solution of stochastic differential equation

(4.2) at time (n + 1)τ with the given initial condition x at time nτ using the

48



method in (4.3). Since according to our assumption c ∈ Fkκ, then by using lemma

9.1 in [39], we have

‖r(x)‖ ≤ K3(1 + ‖x‖µ),

where K3 and µ only depend on the function c(·) and the dimension of x. We

assume that r ∈ Fkκ. If the argument of r(·) is a random variable, then using

(4.11) we have

Ẽ‖Epnr(x)− E
θ̂n

r(x)‖ ≤ δ + ε. (4.12)

More explicitly,

Ẽ‖EpnE ′′[c(x̂n,x((n + 1)τ))]− E
θ̂n

E ′′[c(x̂n,x((n + 1)τ)]‖ ≤ δ + ε. (4.13)

From Theorem 4.1.4 we have

Ẽ‖Epnc(xn,x((n + 1)τ))−EpnE ′′c(x̂n,x((n + 1)τ))‖ ≤ K4h
2, (4.14)

for some K4 > 0.

Using the Monte Carlo method to calculate the Epnc(x̂n,x((n + 1)τ)) brings

another error term that is due to the finite number of particles as the initial

conditions for method (4.3). The expectation of this error is bounded, i.e. ∃K5 > 0

s.t.

Ẽ‖E
θ̂n

E ′′c(x̂n,x((n + 1)τ))− 1

N

N∑
i=1

c(x̂n,x̂i
i
((n + 1)τ))‖ ≤ K5

N
1
2

, (4.15)

where x̂i are distributed according to p(x, θ̂n). Combining (4.13), (4.14), and (4.15)

we get

Ẽ‖Epnc(xn,x((n + 1)τ))− 1
N

∑N
i=1 c(x̂n,x̂i((n + 1)τ))‖ ≤

δ + ε + K4h
2 + K5

N
1
2
.

(4.16)
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Based on (A4.2.2), we know that ∃θ∗(n+1)− such that

Ẽ‖Ep
(n+1)−c(x)− Eθ∗

(n+1)−
c(x)‖ ≤ ε. (4.17)

We know that, if x (initial condition at time nτ) is distributed according to pn(x),

then Ep
(n+1)−c(x) = Epnc(xn,x((n + 1)τ)), therefore, from (4.16) and (4.17) we get

Ẽ‖Eθ∗
(n+1)−

c(x)− 1

N

N∑
i=1

c(x̂n,x̂i((n + 1)τ))‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (4.18)

Then θ̂(n+1)− given by Algorithm 4.1.1 satisfies the following inequality

Ẽ‖Eθ∗
(n+1)−

c(x)− E
θ̂
(n+1)−

c(x)‖ ≤ δ + 2ε + K4h
2 +

K5

N
1
2

. (4.19)

From (A4.2.3) we know that ∃θ ∈ Θ∗ such that

Ẽ

∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x)
−

Ep
(n+1)−

Ψn+1(x)u(x)

Ep
(n+1)−

Ψn+1(x)

∥∥∥∥∥ = Ẽ
∥∥∥Eθu(x)−Ep

(n+1)
u(x)

∥∥∥
≤ ε.

Since θ satisfies the inequality in (A4.2.2), we can choose θ∗(n+1) to be θ, i.e.

θ∗(n+1) = θ.

On the other hand we have∥∥∥∥Eθ∗
(n+1)

u(x)−E
θ̂(n+1)

u(x)

∥∥∥∥ =

∥∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x)
−

E
θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

Eθ∗
(n+1)−

Ψ∗n+1(x)u(x)

Eθ∗
(n+1)−

Ψ∗n+1(x)
−

Eθ∗
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥∥+

∥∥∥∥∥∥
Eθ∗

(n+1)−
Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)
−

E
θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)

∥∥∥∥∥∥+

∥∥∥∥∥∥
E

θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)
−

E
θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥∥ ,
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therefore,∥∥∥∥Eθ∗
(n+1)

u(x)−E
θ̂(n+1)

u(x)
∥∥∥∥ ≤

‖Eθ∗
(n+1)−

Ψ∗n+1(x)u(x)‖
‖Eθ∗

(n+1)−
Ψ∗n+1(x)‖‖E

θ̂
(n+1)−

Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)−E

θ̂
(n+1)−

Ψ∗
n+1(x)

∥∥∥∥+

1
‖E

θ̂
(n+1)−

Ψ∗n+1(x)‖

∥∥∥∥Eθ∗
(n+1)−

Ψ∗
n+1(x)u(x)−E

θ̂
(n+1)−

Ψ∗
n+1(x)u(x)

∥∥∥∥+

∥∥∥∥∥∥
E

θ̂
(n+1)−

Ψ∗n+1(x)u(x)

E
θ̂
(n+1)−

Ψ∗n+1(x)
−

E
θ̂
(n+1)−

Ψn+1(x)u(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥∥ .

Using Lemma 4.2.6 and (A4.2.3) we get

Ẽ‖Eθ∗
(n+1)

u(x)−E
θ̂(n+1)

u(x)‖ ≤ k3k4 + k1k4

k2
1

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖+ ε.

Therefore, from (4.19) and Fact 4.2.4 we get

Ẽ‖θ∗(n+1)− − θ̂(n+1)−‖ ≤ K2

(
δ + 2ε + K4h

2 +
K5

N
1
2

)
.

This implies that, ∃ι1, ι2, ι3, ι4 > 0 such that

Ẽ‖Eθ∗
(n+1)

u(x)− E
θ̂(n+1)

u(x)‖ ≤ ι1δ + ι2ε + ι3h
2 + ι4N

− 1
2 .

The next theorem summarizes our result in this section.

Theorem 4.2.7 For the system (3.3) assume (A3.1.1), (A3.1.2), (A4.2.2), and

(A4.2.3). We also assume the conditions in Fact 4.1.2 and in Theorem 4.1.4

with c(x) replacing u(x), and we assume r ∈ Fkκ. Then in Algorithm 4.1.1 with

approximation (4.3), if ∀u(·) ∈ Fkκ

Ẽ‖E
θ̂n

u(x)− Eθ∗nu(x)‖ ≤ δ
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then

Ẽ‖Eθ∗
(n+1)

u(x)− E
θ̂(n+1)

u(x)‖ ≤ ι1δ + ι2ε + ι3h
2 + ι4N

− 1
2 ,

for some ι1, ι2, ι3, ι4 > 0.

In Theorem 4.2.7 only one step of Algorithm 4.1.1 is considered; it is straight-

forward to then use Theorem 4.2.7 repeatedly for the time interval [0, T ], where

T = Mτ . In that case, ‖E
θ̂0

u(x)−Eθ∗0u(x)‖ ≤ δ0, then ∃α1, α2, α3, and α4 positive

such that

Ẽ‖Eθ∗nu(x((n)τ))−E
θ̂n

u(x((n)τ))‖ ≤ α1δ0 + α2ε + α3h
2 + α4N

−1/2,

for 0 ≤ n ≤M .
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Chapter 5

Application of Projection Particle

Filtering in Navigation

In this chapter we use the approximation methods for nonlinear filters introduced

in the previous chapters in position estimation for systems with nonlinear dynamics

and observation. We are particularly interested in the situations where methods

based on linearization such as EKF fail to provide reasonable estimates.

In the first part of this chapter we address the problem of positioning in the

presence of integer uncertainty. Such uncertainties arise in navigation problems

where carrier phase differential GPS is part of the observations. In these cases

resolving the integer ambiguity is essential for the navigation system.

In the second part of this chapter we apply projection particle filtering to an

Integrated INS/GPS. We show that when the number of visible satellites is below a

critical number nonlinear filtering can provide an accurate estimate of the position

while EKF fails to converge.
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5.1 Particle Filtering for Nonlinear Systems

with Constant Integer Uncertainty

Consider the following nonlinear dynamics and observation

dxt = ft(xt)dt + Gt(xt)dwt

ynτ = hn(x(nτ)) + Jnz + vn

where the assumptions and the dimensions for xt, ynτ , wt, and vn are the same

as in the previous sections. We assume that z is a random integer vector, i.e.

z ∈ Zm and Jn has the proper dimension. Vector z is assumed to be constant in

time. This problem can be set up in discrete time as well. In this case,the system

dynamics and the observation can be written as follows:

xn+1 = fn(xn) + Gn(xn)wn

yn = hn(xn) + Jnz + vn

In both setups we assume that the integer uncertainty affects only some compo-

nents of the observation, and other components are unaffected by z. The affected

components have associated noise components in vn that have considerably lower

energy. In other words, the uncertain components of ynτ (or equivalently yn)

would be considerably more accurate than the other components, if the integer

ambiguities were known. This suggests that an accurate estimation of z can in-

crease the accuracy of the estimate of the state of the system significantly. With

this explanation, our treatment of z is clear. From the state dynamics and the

observation equation we first estimate z and then, with fixed z, we use regular

nonlinear filtering methods to estimate the state of the system xt.

We augment the state xt with the integer ambiguity z. Having done that, the

state dynamics and the observation have the following form:
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d

 xt

zt

 =

 ft(xt)

0

 dt +

 Gt(xt)

0

 dwt

ynτ = hn(x(nτ) + Jnz(nτ)) + vn.

(5.1)

We assume that the initial distribution of (xT
0 , zT

0 )T is known. Now the state

dynamics and the observation have the same form as was studied in Section (3.3).

Therefore, we can apply particle filtering to find the conditional probability distri-

bution of the augmented state. This setup is a special case of the setup in Section

(3.3). In (5.1) there is no state transition for zt, therefore, using particle filtering

in its original form may not be the best option. Recall that in particle filtering

we start with N i.i.d. particles distributed according to the initial distribution.

In the resampling part the low probability particles die and the high probability

particles produce many particles identical to themselves. Since zt does not change,

the part of the particles associated to zt tends to cover smaller and smaller por-

tions of the state space. In fact, the state space of the integer vectors is defined

by the particles at the initial time. This problem can be overcome by modifying

the algorithm mentioned in Section (3.3). In the new algorithm, Step 5 is changed

in such a way that the particles are the addition of the original particles found

by Algorithm 3.3.1, with a random vector. The modification is very important

for the integer values, since the integers do not have a dynamics that is driven

by a random input. In [34], a similar modification has been used for the regular

nonlinear filtering setup. It seems that the convergence results given in [34] can

be applied to the current case as well.

Based on the modified algorithm, we simulated a nonlinear filtering problem

similar to the problem involved in the GPS system.

In a two dimensional space, three transmitters (imagine three pseudo satel-
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lites) are mounted on three known points (2000, 100000), (0, 100000), and (-2000,

100000). The moving object can measure its distance from these transmitters.

For each pseudo satellite, two types of measurement are possible: One with high

measurement noise and the other with low measurement noise. For the low mea-

surement noise, though, there is an integer ambiguity. The dynamics of the moving

object for this example is considered to be in discrete time and linear time invari-

ant. The dynamics and observation equation is given as follows:

x1

v1

x2

v2


n+1

=



1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1





x1

v1

x2

v2


n

+



w1

w2

w3

w4


n

,

ya
n = ‖x− si‖+ va

n , i = 1, 2, 3

yb
n = ‖x− si‖+ ni + vb

n , i = 1, 2, 3,

where x = (x1, x2)
T , si is the position of pseudo satellite i in two dimensional

space, ∆t = 0.1 unit of time, ni is the integer ambiguity of the pseudo satellite

i, and w = (w1, w2, w3, w4)
T and v =

(
va
1 , v

b
1, v

a
2 , v

b
2, v

a
3 , v

b
3

)T
are zero mean white

Gaussian noise process with covariance matrices Σw = diag (1, 0.5, 1, 0.5) and

Σv = diag (5, 0.2, 5, 0.2, 5, 0.2), respectively. In the simulation, it is assumed that

the initial condition for the position is distributed in a square of size 200 × 200

units squared, symmetric with respect to the origin.

In brief, the simulation can be separated into two parts, initialization and

the full non-linear filtering. In the initialization part, we start with the initial

probability distribution for (x1, x2) and from a series of observations, we find an

estimate for the probability distribution of (v1, v2). In this part, we do not use the

dynamics of the moving object. Using our estimate for the probability distribution
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of (x1, v1, x2, v2) we find the distribution for the integer ambiguity. After this,

the initialization is over, and the full non-linear filter is used. There are some

minor numerical considerations that we would like to point out. In the Bayes

step of the algorithm, the numbers are usually very small, and without proper

scaling the original algorithm would not work. In the resampling part, one can

use the law of large numbers and regenerate the particles based on their weight

without generating random numbers that are time consuming. The result of the

simulations are shown in Figures 5.1, 5.2, 5.3, 5.4, 5.5, and 5.6. To display the

estimated integers, we simply used the mean value, which is not necessarily the best

choice. Of course, since we have the distribution, we can use the MAP estimate

of the integers. In this simulation we forced one of the integers to have a jump.

Although our algorithm is not designed for these kinds of changes, we see that

it can estimate the new integer values. In future, we use special treatment for

the times when these kinds of jumps happen. As we can see, the estimates for

the integers are reasonably good. The reliability of the estimate for the integers

depends on the energy of the noise.
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Figure 5.1: Estimated integer ambiguity versus the actual integer ambiguity of

pseudo satellite (1). At time 100 there is a cycle slip of strength -20 for the

measured phase of the carrier from pseudo satellite (1).
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Figure 5.2: Estimated integer ambiguity versus the actual integer ambiguity of

pseudo satellite (2). At time 100 there is a cycle slip of strength -20 for the

measured phase of the carrier from pseudo satellite (1).
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Figure 5.3: Estimated integer ambiguity versus the actual integer ambiguity of

pseudo satellite (3). At time 100 there is a cycle slip of strength -20 for the

measured phase of the carrier from pseudo satellite (1).
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Figure 5.4: Estimated x1 component versus the actual x1 component of the

position of the car. At time 100 there is a cycle slip of strength -20 for the measured

phase of the carrier from pseudo satellite (1).
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Figure 5.5: Estimated x2 component versus the actual x2 component of the

position of the car. At time 100 there is a cycle slip of strength -20 for the measured

phase of the carrier from pseudo satellite (1).

0 100 200 300 400 500 600
−340

−320

−300

−280

−260

−240

−220

−200

−180

−160

−140
The actual trajectory versus the estimated trajectory

Figure 5.6: Estimated trajectory versus the actual trajectory of the car. At time

100 there is a cycle slip of strength -20 for the measured phase of the carrier from

pseudo satellite (1).
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5.2 Applications of Projection Particle Filtering

for an Integrated INS/GPS

For the rest of this chapter we assume that the integer ambiguity resolution prob-

lem is resolved (see Chapter 7). Therefore, we consider the observation equation

provided by the ith GPS satellite to have the following form:

yi = ρi(rx, ry, rz)− ρi(bx, by, bz) + cδ + vi , (5.2)

where [bx, by, bz]
T is the known base coordinate, δ is the combination of the receiver

clock bias in the base and the rover, and vi is the measurement noise for the ith

satellite signal.

Here we would like to mention that the nonlinearity in measurement is not

only due to the function ρ. As we explain later the integrated INS/GPS requires

coordinate transformations between the INS parameters and the GPS parameters,

which contributes to the nonlinearity of the measurement.

5.2.1 Coordinate Systems

Parameters of an integrated INS/GPS are expressed in different coordinate sys-

tems. In this subsection we intend to introduce these different coordinate systems

and the transformation from one to another [21].

ECEF frame

The GPS measurements are given in an Earth Centered Earth Fixed (ECEF)

frame. Two different coordinate systems are common for describing the location

of a point in the ECEF frame.
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parameter value Description

a 6378137.0 m semi major axis

b 6356752.3142 m semi minor axis

ωie 7.292115× 10−5 angular velocity of the Earth

f f = a−b
a

flatness of the ellipsoid

e
√

f(1− f) eccentricity of the ellipsoid

Table 5.1: Definition of the parameters for WGS84 reference frame

The usual rectangular coordinate system [px, py, pz]
T for the point p, herein

referred to as the ECEF coordinate system, has its x axis extended through the

intersection of the prime meridian (0◦ longitude) and the equator (0◦ latitude).

The z axis extends through the true north pole (i.e. parallel to the Earth’s spin

axis). The y axis completes the right-handed coordinate system.

The geodetic coordinate system is defined according to the familiar latitude,

longitude, and hight coordinate system and is shown by [p
λ
, p

φ
, p

h
]T . For this

system of coordinates, the Earth’s geoid is approximated by an ellipsoid. The

defining parameters for the geoid according to the WGS84 reference frame are

given in Table 5.1.

The transformation from the ECEF geodetic to the ECEF rectangular coordi-

nate systems is given as follows

px = (N + p
h
)cos(p

λ
)cos(p

φ
)

py = (N + p
h
)cos(p

λ
)sin(p

φ
)

pz = (N(1− e2) + p
h
)sin(p

λ
),

(5.3)

where N = a√
1−e2sin2(p

λ
)
. The inverse transformation can be derived from (5.3).
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Local Geographical frame

It is convenient to express the navigation-frame velocity in the local coordinate

system. This coordinate system is rectangular, and it has the x axis, y axis, and the

z axis extended through the north, the east, and the down direction, respectively.

With this definition for the local geographic coordinate system, the navigation-

frame velocity, [vN , vE, vD]T , is related to the geodetic rate vector according to
vN

vE

vD

 =


Rλ + p

h
0 0

0 (Rφ + p
h
) cos(p

λ
) 0

0 0 −1




ṗ

λ

ṗ
φ

ṗ
h

 , (5.4)

where Rλ = a(1−e2)

(1−e2 sin2(p
λ
))

3
2
, and Rφ = a

(1−e2 sin2(p
λ
))

1
2
.

Platform and Body frames

The measurements by accelerometers and gyros are expressed in the platform

frame. For simplicity we assume that the axis of the gyros and the axis of the

accelerometers are aligned with the axis of the platform frame. Also, we assume

that the body frame and the platform frame are aligned, and the center of the

coordinate system is the same for both frames. The transformation from body

frame to local geographical frame is calculated at every moment, and it depends

on the angular rate change measured by the gyros, the rotation of the Earth, and

the rotation of the local frame with respect to an inertial frame, all expressed in

the body frame. The transform matrix from the platform frame to the local frame

is expressed as follows

d

dt
Rb2g = Rb2gΩ

b
gb, (5.5)
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where

Ωb
gb =


0 −r q

r 0 −p

−q p 0

 , (5.6)

and ωb
gb = [p, q, r]T is the inertial angular rate expressed in the body frame. ωb

gb

can be expressed as follows
p

q

r

 =


p̃

q̃

r̃

+


bp

bq

br



−Rg2b

wie


cos(p

λ
)

0

− sin(p
λ
)

+


vE/(Rφ + p

h
)

−vN/(Rλ + p
h
)

vE tan(p
λ
)/(Rφ + p

h
)



 ,

(5.7)

where [p̃, q̃, r̃]T is the measured angular rate, and [bp, bq, br]
T is the bias in the

angular rate measurement.

If we assume that in the time interval [t, t + δt], Ωb
gb is a constant matrix then

we have

Rg2b(t + δt) = exp(−Ωb
gb(t)δt)Rg2b(t).

Since Ωb
gb is a skew symmetric matrix, then exp(−Ωb

gb(t)δt) has a simple form:

exp(−Ωb
gbδt) = [I +

sin(‖ωb
gb(t)δt‖)

‖ωb
gb(t)‖

Ωb
gb +

1− cos(‖ωb
gb(t)δt‖)

‖ωb
gb(t)‖2

(Ωb
gb)

2].

The transformation from the body frame to the local frame, Rb2g, is simply the

transpose of Rg2b, i.e. Rb2g = RT
g2b.

5.2.2 GPS Clock Drift and INS Dynamics

The GPS clock drift and the INS equations are the sources that contribute to the

dynamic equation for the integrated INS/GPS.
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The INS dynamic equation can be expressed as follows.

d


p

λ

p
φ

p
h

 =


1

Rλ+p
h

0 0

0 1
(Rφ+p

h
) cos(p

λ
) 0

0 0 −1




vN

vE

vD

 dt

d


vN

vE

vD

 =




− v2

E
Rφ+p

h
tan(p

λ
)− 2ωie sin(p

λ
)vE + vN vD

Rλ+p
h

vEvN
Rλ+p

h
tan(λ) + ωie sin(p

λ
)vN + vEvD

Rφ+p
h

+ 2ωie cos(p
λ
)vD

− v2
N

Rλ+p
h
− v2

E
Rφ+p

h
− 2ωie cos(p

λ
)vE



+Rb2g




ãu

ãv

ãw

+


bu

bv

bw



+


0

0

g



 dt + dwv
t ,

(5.8)

where g = 9.780327m/s2 is the gravitational acceleration, [ãu, ãv, ãw]T is the

accelerometer measurement expressed in the body frame, [bu, bv, bw]T is the ac-

celerometer measurement bias again expressed in the body frame, and wv is a

vector valued Brownian motion process with zero mean and known covariance

matrix. The measurement bias is assumed to have the following dynamics

d


bu

bv

bw

 = −ab


bu

bv

bw

 dt + dwb
t , (5.9)

where wb
t is a vector valued Brownian motion with zero mean and known covariance

matrix, and ab is a small positive constant.

The receiver clock drift, δt, is represented by the integration of an exponentially

correlated random process %t [16]

d%t = −a%%tdt + dw%
t

dδt = %tdt,
(5.10)
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Figure 5.7: Comparison of the estimated and actual x component for three differ-

ent methods, EKF, particle filtering, and projection particle filtering. For t < 100,

the number of satellites is 6, for 100 ≤ t ≤ 400, the number of satellites is 3, and

for t > 400, the number of satellites is 4.

with a% = 1/500 and w%
t is a process of Brownian motion with zero mean and

variance σ2
% = 10−24. This dynamic model is typical for a quartz TCXO with

frequency drift rate of 10−9s/s [16].

5.2.3 Simulation and Results

In this section we present the simulation results for an integrated INS/GPS. Here

we apply three different filtering methods, EKF, particle filtering, and projection

particle filtering for a specified exponential density. We assumed that Rg2b is

perfectly known, i.e. the estimation problem regarding the gyro measurements is

solved. Therefore, the dimension of the dynamical system in this simulation is
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Figure 5.8: Comparison of the estimated and actual y component for three differ-

ent methods, EKF, particle filtering, and projection particle filtering. For t < 100,

the number of satellites is 6, for 100 ≤ t ≤ 400, the number of satellites is 3, and

for t > 400, the number of satellites is 4.

eleven. The state of the dynamical system, x, is given as follows

x = [p
λ
, p

φ
, p

h
, vN , vE, vD, bu, bv, bw, %, δ]T .

The differential equation describing the dynamics of the system is the combination

of the differential equation in (5.8), (5.9), and (5.10). Here, we assume that ab =

0.001, and that the covariance matrices for the Brownian motions in the INS

dynamic equations, Σb and Σv, are diagonal. To be more specific, Σb = 10−6I and

Σv = 10−4I, where I is the identity matrix of the right size. The time step we

chose for the approximation of the stochastic differential equation is h = 50 ms

and the Gaussian random vector generated in each step has the covariance matrix

Σh = hΣ, where Σ is the covariance matrix of the combination of all Brownian

motions in the dynamics. The observation equation is given in (5.2), where yi is

one component of the observation vector. The dimension of the observation vector
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Figure 5.9: Comparison of the estimated and actual z component for three differ-

ent methods, EKF, particle filtering, and projection particle filtering. For t < 100,

the number of satellites is 6, for 100 ≤ t ≤ 400, the number of satellites is 3, and

for t > 400, the number of satellites is 4.

is the same as the number of available satellites. In (5.2) the observation is given as

a function of the position in the ECEF rectangular coordinate system. Therefore,

to be able to write down the observation equation as a function of the state of the

system, one needs to use the transform in (5.3).

For this simulation we simply chose an 11 dimensional Gaussian density for

the projection particle filtering. This choice of density makes the random vector

generation easy and computationally affordable. To be able to use the projection

particle filtering, we used maximum likelihood estimation of the parameters of the

Guassian density before and after Bayes’ correction.

In this simulation, we used two NovAtel RT-21 GPS receivers to collect the nav-

igation data on April 2, 2000. From the collected data, we extracted the position

1RT-2 is the trademark of NovAtel Incorporated.
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methods, EKF, particle filtering, and projection particle filtering. For t < 100, the
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Figure 5.11: Detail of Figure 5.10, where the difference between the projection

particle filtering method and the particle filtering method is clear.
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information of the satellites, the pseudo range, and the carrier phase measurement

noise powers for the L1 frequency. Using the collected information we generated

the pseudo range and the carrier phase data for one static and one moving receiver

(base and rover, respectively). Here we assume for the carrier phase measurement

the integer ambiguity problem is already solved. The movement of the INS/GPS

platform was simulation based and the measurement data measured by the ac-

celerometers, the gyros, the GPS pseudo range, and the GPS carrier phase data

were generated according to that movement.

In the simulation the GPS receiver starts with 6 satellites. At time t = 100,

the receiver looses 3 satellites, and it gains one satellite at t = 400. We want to

emphasize that for instantaneous stand alone positioning GPS requires at least 4

satellites. Figures 5.7-5.9 show the actual and estimated x, y, and z components of

the position of the platform in ECEF rectangular system of coordinate. The esti-

mates are given by three methods, EKF, particle filtering, and projection particle

filtering. The error of these three methods are plotted in Figure 5.10. From this

figure, it can easily be seen that EKF fails to give an acceptable estimate of the

position when the number of satellites in view is below four. Unlike EKF, particle

filtering and projection particle filtering are successful in providing a reasonable

estimate of position. Figure 5.11 is the repeated version of Figure 5.10 with an

emphasis on the comparison of the errors between particle filtering and projection

particle filtering. For the same number of particles, here 500, the error of the esti-

mate given by the projection particle filtering is smaller than the error for particle

filtering. Finally we should mention that whenever the number of visible satellites

is more than four, EKF can provide a very good estimate of the position.
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Chapter 6

Particle Filtering for a Family of

Mixture Densities

In Chapter 4 we introduced a new projection particle filtering method for an ex-

ponential family of densities. We proved that if a family of densities exists that

is close to the true conditional density, then the error of the estimate given by

projection particle filtering can be bounded and this bound depends on the choice

of the specific exponential family. Finding such a family is not an easy task. This

fact was a motivation for us to study particle filters for a family of mixture densi-

ties. Here we assume that the true conditional density is approximated by a linear

combination of a finite number of density functions. We can extend the result of

this chapter to the approximation of the true conditional density by a set of basis

functions. Using this assumption, we replace the empirical distribution in [40] with

an estimate that lies in the family. In Theorem 6.1.8 we show results similar to

the ones presented in Chapter 4.
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6.1 Projection Particle Filtering for a Family of

Mixture Densities

We start this section with the definition of a family of mixture densities.

Definition 6.1.1 Let {c1, · · · , cp} be a set of densities defined on Rn, and θ ∈ Rp.

Then

Sl = {p(·, θ) = θT c(·), s.t.
p∑

i=1

θi = 1, θi ≥ 0, i = 1, · · · , p}

is called a family of mixture densities, where θ = (θ1, · · · , θp)
T and c = (c1, · · · , cp)

T .

For family Sl, function u(·), and random vector x distributed according to
p∑

i=1
θici(x) we have

Eu(x) =
p∑

i=1

θiEiu(x),

where Ei(·) is the expectation with respect to the density ci. In particular if

u(·) = c(·), we have

Ec(x) = βθ,

where β is a p × p matrix, and its ij element, βij =
∫

ci(x)cj(x)dx. Here, we

assume that β−1 exists. Therefore, β is positive definite.

If x1, · · · ,xN , are i.i.d. random vectors distributed according to p(·, θ), then we

define the estimate of θ, θ̂, as follows:

θ̂ = β−1(
1

N

N∑
i=1

c(xi)).

We know that

θ = β−1Ec(x),

therefore, θ̂ is an unbiased estimate of θ. From the strong law of large numbers it

is clear that θ̂ −→ θ as N −→∞ with probability one.
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We have

θ − θ̂ = β−1

(
Ec(x)− 1

N

N∑
i=1

c(xi)

)
,

therefore, the error estimate for the parameter θ can be bounded as follows:

1

λmax

E‖Ec(x)− 1

N

N∑
i=1

c(xi)‖ ≤ E‖θ − θ̂‖ ≤ 1

λmin

E‖Ec(x)− 1

N

N∑
i=1

c(xi)‖,

where λmax and λmin are the maximum and minimum eigenvalues of the matrix β,

respectively. It is very reasonable to assume that the variance of c(x) under p(·, θ)
is finite, then ∃A > 0 s.t. E‖c(x)− 1

N

∑N
i=1 c(xi)‖ ≤ A√

N
.

If θ1 and θ2 are two different parameters satisfying the condition in Definition

6.1.1, we have

Eθ1c(x)− Eθ2c(x) =
∫ (

θT
1 c(x)

)
c(x)dx− ∫ (θT

2 c(x)
)
c(x)dx

= β(θ1 − θ2) ,

therefore,

λmin‖θ1 − θ2‖ ≤ ‖Eθ1c(x)−Eθ2c(x)‖ ≤ λmax‖θ1 − θ2‖, (6.1)

where Eθu(x) =
∫

u(x)θTc(x)dx. With this introductory explanation, we are ready

to introduce particle filtering for a family of mixture densities.

Algorithm 6.1.2 Particle Filtering for a Family of Mixture Densities.

• Step 1 . Initialization

� Sample x1
0, · · · , xN

0 , N i.i.d. random vectors with the density, p0(x).

• Step 2 . Diffusion
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� Find x̂1
n+1, · · · , x̂N

n+1 from the given x1
n, · · · , xN

n , using the dynamic

rule:

dxt = ft(xt)dt + Gt(xt)dwt, iτ ≤ t < (i + 1)τ

• Step 3 . Projection

θ̂(n+1)− = G(β−1(
1

N

N∑
i=1

c(x̂i
n+1)))

where G is to make sure that θ̂ satisfies the conditions in Definition 6.1.1, in

particular this function can be chosen as follows:

G(x) =


(x)+

‖(x)+‖1 if ‖(x)+‖ 6= 0

0 otherwise
(6.2)

where ‖ · ‖1 is the regular norm one, and (·)+ = max(·, 0).

• Step 4 . Use Bayes’ Rule

θ̂n+1 = G
∫ θ̂T

(n+1)−c(x)Ψn+1(x)∫
θ̂T
(n+1)−c(x)Ψn+1(x)dx

c(x)dx


• Step 5 . Resample

� Sample x1
n+1, · · · , xN

n+1 according to p(x, θ̂n+1).

• Step 6 . n← n + 1; go to Step (2).

In the rest of this section we will prove that under certain conditions, stated

later, the error of the estimate associated to the conditional density given by

Algorithm 6.1.2 can be bounded. In this chapter we use the same notion for the

probability spaces that where used in Chapter 4.

To show our main results in this chapter we need the following assumptions.
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A 6.1.3 For the density in (3.6) there exists a family of densities Sl such that

∀t ∈ [0, T ], ∀u ∈ Fkκ ∃θ∗t where ‖θ∗t ‖1 = 1 and ε > 0 such that

Ẽ‖Ept
(u(x))−Eθ∗t (u(x))‖ ≤ ε . (6.3)

A 6.1.4 For θ∗n− in (A6.1.3) and Ψn(x), ∃Ψ∗
n(x) = αTc(x) and ‖α‖1 = 1 such

that

• ∀θ where ‖θ‖1 = 1 and ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖EθΨn(x)u(x)

EθΨn(x)
− EθΨ

∗
n(x)u(x)

EθΨ∗
n(x)

‖ ≤ ε.

• ∀u(·) ∈ Fkκ, ∃ε > 0 such that

Ẽ‖
Eθ∗

n−
Ψ∗

n(x)u(x)

Eθ∗
n−

Ψ∗
n(x)

−
Ep

n−
Ψn(x)u(x)

Ep
n−

Ψn(x)
‖ ≤ ε.

Fact 6.1.5 ∀θ1, θ2 where ‖θ1‖1 = 1 and ‖θ2‖1 = 1 we have∥∥∥∥∥Eθ1Ψ
∗
n(x)c(x)

Eθ1Ψ
∗
n(x)

− Eθ2Ψ
∗
n(x)c(x)

Eθ2Ψ
∗
n(x)

∥∥∥∥∥ ≤M‖θ1 − θ2‖

for some M > 0.

Proof: Let matrix Aα and vector bα be such that

EθΨ
∗
n(x)c(x) =

∫
αTc(x)θTc(x)c(x)dx = Aαθ, and similarly Eθ1Ψ

∗
n(x) = bαθ.

Then, ∥∥∥∥Eθ1
Ψ∗n(x)c(x)

Eθ1
Ψ∗n(x)

− Eθ2
Ψ∗n(x)c(x)

Eθ2
Ψ∗n(x)

∥∥∥∥ =
∥∥∥Aαθ1

bαθ1
− Aαθ2

bαθ2

∥∥∥

≤
∥∥∥Aαθ1

bαθ1
− Aαθ2

bαθ1

∥∥∥+
∥∥∥Aαθ2

bαθ1
− Aαθ2

bαθ2

∥∥∥

≤ ‖Aα‖
bαθ1
‖θ1 − θ2‖+ ‖Aαθ2‖‖bα‖

bαθ1bαθ2
‖θ1 − θ2‖

≤ M‖θ1 − θ2‖ ,
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where M = max
α,θ1,θ2

‖Aα‖
bαθ1

+ ‖Aαθ2‖‖bα‖
bαθ1bαθ2

is a finite constant.

�

Assume that x1
n, · · · ,xN

n in Step 2 of Algorithm 6.1.2 are distributed according

to p(·, θ̂n). We also assume that

Ẽ‖E
θ̂n

c(x)− Eθ∗nc(x)‖ ≤ δ . (6.4)

At the end of the time interval [nτ, (n + 1)τ ] we have

Ẽ‖EE
θ̂n

c(xnτ,s((n + 1)τ))− EEθ∗nc(xnτ,s((n + 1)τ ))‖
= Ẽ‖ ∫ c(x)p(x, (n + 1)τ, s, nτ)(p(s, θ̂n)− p(s, θ∗n))dxds‖
= Ẽ‖ ∫ c(x)p(x, (n + 1)τ, s, nτ)cT (s)(θ̂n − θ∗n)dxds‖
≤ Ẽ‖θ̂n − θ∗n‖

∫ ‖c(x)p(x, (n + 1)τ, s, nτ)cT (s)‖dxds

≤ L1Ẽ‖θ̂n − θ∗n‖ ,

where p(x, (n+1)τ, s, nτ) is the transition probability from state s to state x in the

time interval [nτ, (n + 1)τ ], and L1 =
∫ ∫ ‖c(x)p(x, (n + 1)τ, s, nτ)cT (s)‖dxds > 0

is a constant, possibly depending on n. Therefore, using (6.1) ∃K1 > 0 s.t.

Ẽ‖EE
θ̂n

c(xnτ,s((n + 1)τ))− EEθ∗nc(xnτ,s((n + 1)τ))‖ ≤ K1δ. (6.5)

On the other hand, from (4.4) we have

Ẽ‖EE
θ̂n

c(xnτ,s((n + 1)τ ))− 1

N

N∑
i=1

c(x̂nτ,si((n + 1)τ))‖ ≤ Kh2 +
k
′

N1/2
, (6.6)

where si = xi
n.

From Assumption (A6.1.3) we have

Ẽ‖EEθ∗nc(xnτ,s((n + 1)τ ))− Epn
c(xnτ,s((n + 1)τ))‖

= E‖ ∫ q(s)(p(s, θ∗n)− pn(s))ds‖
≤ ε ,

(6.7)
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where q(s) =
∫
c(x)p(x, (n + 1)τ, s, nτ)dx is assumed to be in Fkκ

1 .

We have

EEpnc(xnτ,s((n + 1)τ)) = Ep
(n+1)−

c(x).

Also from Assumption (A6.1.3) we know that ∃θ∗(n+1)− s.t

Ẽ‖Eθ∗
(n+1)−

c(x)− Ep
(n+1)−

c(x)‖ ≤ ε. (6.8)

Therefore, from (6.5), (6.6), (6.7), and (6.8) we get

Ẽ‖Eθ∗
(n+1)−

c(x)− 1

N

N∑
i=1

c(x̂nτ,si((n + 1)τ))‖ ≤ K1δ + 2ε + Kh2 +
k′

N1/2
. (6.9)

This implies that

Ẽ‖θ∗(n+1)− − β−1( 1
N

N∑
i=1

c(x̂nτ,si((n + 1)τ)))‖

≤ 1/λmin(K1δ + 2ε + Kh2 + k′
N1/2 ).

(6.10)

The following fact is needed for proof of the theorem that will be presented

later.

Fact 6.1.6 For positive random vector α ∈ Rp, assume ‖α‖1 = 1. Also assume

that β ∈ Rp is a random vector such that (β)+ 6= 0. Then, if

E‖α− β‖ ≤ ε,

then

E‖α− G(β)‖ ≤ kε,

where k > 0 possibly depending on p.

Proof: α is a positive vector, therefore, E‖α − β‖ ≤ ε implies E‖α− (β)+‖ ≤ ε.

Since all norms are equivalent in finite spaces, ∃L > 0 such that

E‖α− (β)+‖1 ≤ Lε.

1This is a very mild condition.
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Therefore,

E| ‖(β)+‖1 − 1| ≤ Lε.

On the other hand, we have

‖α− (β)+

‖(β)+‖1‖ ≤ ‖α− (β)+‖+ ‖(β)+ − (β)+

‖(β)+‖1‖
≤ ‖α− (β)+‖+ ‖(β)+‖

‖(β)+‖1 | ‖(β)+‖1 − 1 |.

Therefore,

E‖α− (β)+

‖(β)+‖1‖ ≤ kε,

where k = L + 1.

�

In Algorithm 6.1.2 we know θ̂(n+1)− = G(β−1( 1
N

N∑
i=1

c(x̂nτ,si((n + 1)τ)))), there-

fore, by using Fact 6.1.6 and (6.10), we can conclude that ∃L2 > 0 such that

E‖θ∗(n+1)− − θ̂(n+1)−‖ ≤ L2(K1δ + 2ε + Kh2 +
k′

N1/2
). (6.11)

We assume that c(·) ∈ Fkκ, therefore, from Assumption (A6.1.4), Fact 6.1.5, and

(6.11) we have

Ẽ

∥∥∥∥∥Eθ∗
(n+1)−

Ψn+1(x)c(x)

Eθ∗
(n+1)−

Ψn+1(x)
−

E
θ̂
(n+1)−

Ψn+1(x)c(x)

E
θ̂
(n+1)−

Ψn+1(x)

∥∥∥∥∥
≤ ζ1δ + ζ2ε + ζ3h

2 + ζ4N
−1/2

(6.12)

for some ζ1, ζ2, ζ3, ζ4 > 0.

On the other hand, from Assumption (A6.1.4) we have

Ẽ

∥∥∥∥∥
Eθ∗

(n+1)−
Ψn+1(x)c(x)

Eθ∗
(n+1)−

Ψn+1(x)
−

Ep
(n+1)−

Ψn+1(x)c(x)

Ep
(n+1)−

Ψn+1(x)

∥∥∥∥∥

= Ẽ

∥∥∥∥∥Eθ∗
(n+1)−

Ψn+1(x)u(x)

Eθ∗
(n+1)−

Ψn+1(x)
−Ep(n+1)

c(x)

∥∥∥∥∥
≤ 2ε.

(6.13)
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In Step 4 of Algorithm 6.1.2 we have

θ̂n+1 = G
E

θ̂(n+1)−
c(x)Ψn+1(x)

E
θ̂(n+1)−

Ψn+1(x)

 ,

therefore, using (6.12), (6.13), and Fact 6.1.6 we can conclude that

E‖E
θ̂(n+1)

c(x)−Eθ∗
(n+1)

c(x)‖ < ρ1δ + ρ2ε + ρ3h
2 + ρ4N

−1/2,

for some positive ρ1, ρ2, ρ3, ρ4.

We summarize the results of this section in the following theorem.

Lemma 6.1.7 For System (3.3) assume (A3.1.1), (A3.1.2), (A6.1.3), and

(A6.1.4). We also assume c(·) ∈ Fkκ and the conditions in Theorem 4.1.4 with

c(x) replacing u(x). Then in Algorithm 6.1.2 with approximation (4.3), if

E‖E
θ̂n

c(x)− Eθ∗nc(x)‖ ≤ δ

then ∃%n
1 , %

n
2 , %

n
3 , %

n
4 positive such that

E‖E
θ̂(n+1)

c(x)−Eθ∗
(n+1)

c(x)‖ < %n
1δ + %n

2 ε + %n
3h

2 + %n
4N

−1/2.

Lemma 6.1.7 is the building block for our main result in the next theorem.

Theorem 6.1.8 For System (3.3) assume (A3.1.1), (A3.1.2), (A6.1.3), and

(A6.1.4). We also assume c(·) ∈ Fkκ and the conditions in Theorem 4.1.4 with

c(x) replacing u(x). Then in Algorithm 6.1.2 with approximation (4.3), if

E‖E
θ̂0
c(x)−Eθ∗0c(x)‖ ≤ δ

then for all t ∈ [0, T ], ∃%1, %2, %3, %4 positive such that

E‖E
θ̂t
c(x)−Eθ∗t c(x)‖ < %1δ + %2ε + %3h

2 + %4N
−1/2.
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Here we would like to make some remarks.

• In Theorem 6.1.8 four different factors can increase the accuracy of the esti-

mation method:

– N : the number of particles. When N −→ ∞ the error due to the

limited number of particles disappears.

– h: the step size in the solution of the stochastic differential equation.

If instead of a differential equation the system dynamics is given by a

difference equation this error disappears. Also, when h −→ 0 the error

due to the approximate solution for the stochastic differential equation

goes to zero.

– ε: the closeness of the true conditional density to the family. A smaller

ε means a more accurate family of densities.

– δ: the initial estimate. It is clear that a better initial estimate of the

density enhances the estimate of the density for the time t ∈ [0, T ]

• An immediate result of Theorem 6.1.8 can be summarized as follows:

Corollary 6.1.9 For System (3.3) assume (A3.1.1), (A3.1.2), (A6.1.3),

and (A6.1.4). We also assume the conditions in Theorem 4.1.4 with c(x)

replacing u(x). Then in Algorithm 6.1.2 with approximation (4.3), if

E‖θ̂0 − θ∗0‖ ≤ δ

then ∃ι1, ι2, ι3, ι4 positive such that

E‖θ̂t − θ∗t ‖ < ι1δ + ι2ε + ι3h
2 + ι4N

−1/2,

for all t ∈ [0, T ].
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6.2 Discussion

In Chapter 4 we used an exponential family of densities for approximating the

conditional density. We have used this family (in the context of projection particle

filtering) for position estimation in an integrated INS/GPS (Chapter 5), and also

for integer ambiguity resolution for a carrier phase differential GPS (Chapter 7).

Although in both cases we have been able to achieve very good results, applying

projection particle filtering for an exponential family of densities does not seem to

be a trivial task for general cases, where we don’t have any idea about suitable

exponential family. In fact, finding the proper exponential family for a specific

problem is quite challenging [11].

In this Chapter, we have chosen a mixture of densities to approximate the

conditional density. The components of this mixture may be viewed as a type of

basis functions. In [15] an approach different but close to our approach was used

for a tracking problem. In that approach, the components of the family of mixture

densities are allowed to change. The new components are calculated according to

the discrete time dynamics. Using the same method for nonlinear continuous time

dynamics is not efficient, because the conditional density of the state given the

initial condition should be calculated in order to find the new components of the

family of mixture densities. This is equivalent to solving the forward Kolmogorov

equation.

In our future work we intend to use the method introduced in this chapter

for position estimation in an integrated INS/GPS. We expect that a performance

similar to the one in Chapter 5 can be achieved, with lower computational burden.
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Chapter 7

Integer Ambiguity Resolution

Using Particle Filtering

Wherever possible, using differential GPS allows users to have a more accurate

measurement. In fact, a good portion of the positioning error can be removed

from the estimation using this method [53]. This is due to the fact that the

error in GPS navigation data has a strong spatial correlation, and this error can

be removed by comparison of measurements from two receivers that are relatively

close to each other. A significant improvement in positioning accuracy is possible if

one can measure the carrier phase of the GPS signal. With today’s technology it is

possible to measure the phase of the carrier within 10−3 modulo an integer number

of full cycles [3]. Unfortunately, for positioning purposes this is not enough and one

needs the exact phase difference between the transmitted and received signal to

estimate the position. As mentioned in previous chapters, the difference between

the measured and the actual phase, an unknown integer times 2π, is called integer

ambiguity [28]. Resolving this ambiguity has been shown to be quite challenging.

The available integer ambiguity resolution methods are mostly based on a rough
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estimation of the integer ambiguity and a search method to find the correct integer

value [3]. In the LAMBDA method [52], using a least square estimation technique,

first a float solution for the integer ambiguity is found. Then through a search

method the integer vector that minimizes the variance of the error is estimated.

If the covariance matrix associated to the integer solution is diagonal, the integer

vector that minimizes the variance of the error is an integer vector whose elements

are closest to the elements of the float solution vector. In practical problems that is

not the case, therefore, a search for the integer solution is unavoidable. In Figure

7.1 a two dimensional integer least square problem is shown. In this figure the

float solution is shown by × and the surfaces with the same error are shown by

solid lines. It can be seen that the nearest integer vector is not the integer vector

that minimizes the error. In a high dimensional problem finding the solution for

the integer least square problem is quite challenging and the search space for the

solution could be quite large.

The idea in the LAMBDA method is to find a transformation that maps integer

vectors to integer vectors and at the same time maps the covariance matrix to a

matrix that is diagonal or dominantly diagonal. Although finding this transfor-

mation has been shown to be NP complete, a suboptimal implementation of this

method is proven to reduce the size of the search space effectively [52].

In our method, we first approximate the conditional probability density of the

position of the rover (mobile GPS receiver) given the double difference measure-

ment for the pseudo range observable. This density is used for the initialization

that leads to the conditional pmf of the integer ambiguity given the double differ-

ence carrier phase measurements.

In the initialization part we use particle filtering as the tool for the approxima-
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Figure 7.1: Example where the nearest integer vector and the integer vector that

minimizes the error are far apart.

tion of the conditional distribution. To find the approximate conditional pmf of

the integer ambiguities, given the double difference carrier phase measurements,

we use a modified version of particle filtering. Since the set of the integer ambigu-

ities is a discrete set and the size of this set/space is large, using regular particle

filtering might not give the proper result. To overcome this problem, instead of

the empirical pmf for the particles, we approximate the conditional pmf with an

exponential form, in particular with a Gaussian shape. The filtering method here

is very similar to the regular particle filtering method explained above. The only

difference is that after applying Bayes’ Rule, we use MLE to find the parameters

of the exponential probability mass function. This pmf is used for generating new

particles. This is analogous to the method presented in Chapter 4.

Since the noise power in the carrier phase measurement is very small compared
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to the pseudo range measurements [53], and for practical purposes the number of

particles is small compared to the size of the integer set, it is very likely that one

integer vector attracts all the particles and ends up with probability equal to one.

To avoid this problem we start the algorithm assuming high power noise for the

carrier phase measurement, and as time increases we reduce the noise power. This

technique is similar to simulated annealing [54] which is widely used in stochastic

optimization techniques. Reducing the noise power is like the cooling process in

the simulated annealing method.

In Chapter 5 we studied the problem of position estimation in the presence of an

integer uncertainty by augmenting the state to include the unknown integer vector.

We used the following system of equations for a moving object with nonlinear

dynamics and observations similar to carrier phase differential GPS.

xn+1 = fn(xn) + Gn(xn)wn

yn = hn(xn) + Jnz + vn,

where z, the integer ambiguity, is a random integer vector, i.e. z ∈ Zm and Jn

has the proper dimension. Vector z is assumed to be constant in time. One way

of treating the integer ambiguity is augmenting the state x with the integer z. In

this case,we have  xn+1

zn+1

 =

 fn(xn)

zn

+

 Gn(xn)

0

wn

yn = hn(xn) + Jnzn + vn .

(7.1)

We used particle filtering to estimate the integer ambiguity as well as the po-

sition of a moving object in a two dimensional space. Although the results there

were reasonably good, we had to use a very large number of particles for better

estimation results. In this Chapter we use another approach. We use the results
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of Theorems 4.1.6 and 4.2.7 and we apply a method similar to Algorithm 4.1.1.

In this approach, first we estimate the integer uncertainty and then we use the

estimated integer for accurate positioning. The details of this approach are given

in the following sections.

7.1 Rationale

In Algorithm 4.1.1 we proposed a particle filtering method for exponential families

of densities. Here we show that, that algorithm is applicable to integer ambiguity

estimation. To support our claim we will give some simulation results with GPS

data in the following sections, but we also want to justify why our claim is reason-

able. For the sake of argument, we assume that the ambiguity is real, i.e. n ∈ Rm,

so we can assign a probability density function to it. In the rest of this section

we go through an approximate calculation of the probability density function of

the real valued ambiguity given the observation and we show that the Gaussian

density is a good candidate for the exponential family of densities.

Consider the measurement model in (2.1) and (2.2). The observation is the

result of a double differencing from a possibly moving rover and a static base. We

assume that during the observation no cycle slip happens. We seek to estimate the

conditional probability density of the real valued ambiguity given the observations

up to time n + 1, i.e.

p(n|Φn+1
1 , P n+1

1 ) =
p(φn+1, pn+1|n, Φn

1 , P
n
1 )p(n|Φn

1 , P n
1 )∫

n p(φn+1, pn+1|n, Φn
1 , P

n
1 )p(n|Φn

1 , P n
1 )dn

, (7.2)

where Φn
1 = {φ1, φ2, · · · , φn} and P n

1 = {p1, p2, · · · , pn} are the observation sets up

to and including time n. We want to show that if p(n|Φn
1 , P

n
1 ) is Gaussian, then

p(n|Φn+1
1 , P n+1

1 ) is approximately Gaussian. To show this, we only need to show
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that p(φn+1, pn+1|n, Φn
1 , P

n
1 ) has the following form:

p(φn+1, pn+1|n, Φn
1 , P

n
1 ) = α exp(−1

2
(n− β)T Γ−1(n− β)),

for some α, β, and Γ that do not depend on n.

For our integer ambiguity resolution method, we assume that no information

about the dynamics of the receiver is available. Therefore,

p(φn+1, pn+1|n, Φn
1 , P

n
1 ) = p(φn+1|pn+1,n, Φn

1 , P
n
1 )p(pn+1|n, Φn

1 , P
n
1 )

= p(φn+1|pn+1,n, Φn
1 , P

n
1 )p(pn+1).

For p(φn+1|pn+1,n, Φn
1 , P

n
1 ), we have

p(φn+1|pn+1,n, Φn
1 , P n

1 ) =
∫

p(φn+1|pn+1,n, Φn
1 , P

n
1 ,xn+1)

p(xn+1|pn+1,n, Φn
1 , P n

1 )dxn+1

=
∫

p(φn+1|n,xn+1)p(xn+1|pn+1)dxn+1.

(7.3)

From (2.2), we get

p(φn+1|n,xn+1) = κ1 exp
(
−1

2
(φn+1 − ρ(xn+1)− n)T

Σ−1
φ (φn+1 − ρ(xn+1)− n)

)
,

(7.4)

where Σφ is the covariance matrix of the double difference carrier phase observation

noise, ρ(xn+1) is the vector of double difference true range, and κ1 is a normalizing

factor. Here we emphasize that the norm of Σφ is very small, therefore, in (7.3)

the contribution of the region that is outside a small neighborhood of x∗, the point

that maximizes the argument of the exponent in (7.4), is negligible. This justifies

the approximation of p(φn+1|n,xn+1) by linearization, i.e. we get

p(φn+1|n,xn+1) ≈ κ1 exp
(
−1

2
(φn+1 − ρ(x∗)− n−A∆xn+1)

T

Σ−1
φ (φn+1 − ρ(x∗)− n− A∆xn+1)

)
,

(7.5)

where xn+1 = x∗ + ∆xn+1, and A = dρ(x)
dx
|x=x∗ .
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On the other hand, from (2.1), we have

pn+1 = ρ(xn+1) + εn+1.

Therefore, after linearizing ρ(xn+1), and using the generalized inverse of A, we get

∆xn+1 ≈ (AT A)−1AT (pn+1 − ρ(x∗))− (AT A)−1AT εn+1.

Here we assume that A is full rank, i.e. a sufficient number of satellites with

acceptable geometry is available. Therefore,

p(∆xn+1|pn+1) ≈ κ2 exp(−1

2
(D −∆xn+1)

T Υ−1(D −∆xn+1)), (7.6)

where D = (AT A)−1AT (pn+1 − ρ(x∗)), Υ = (AT A)−1AT ΣpA(AT A)−1, Σp is the

covariance matrix of the double difference code measurement noise, and κ2 is a

normalizing factor.

From (7.3),(7.5) and (7.6), we get

p(φn+1|pn+1,n, Φn
1 , P

n
1 ) =

∫
p(φn+1|n, ∆xn+1)p(∆xn+1|pn+1)d∆xn+1

≈ α exp(−1
2
(n− β)T Γ−1(n− β)),

where α, β, and Γ only depend on the matrices Σφ, Σp, and A, and the vectors

pn+1, ρ(x∗), and φn+1. Since p(pn+1|n, Φn
1 , P

n
1 ) = p(pn+1) does not depend on n, we

can claim that the conditional density p(n|Φn+1
1 , P n+1

1 ) is approximately Gaussian.

In the above, we did not use the fact that n is a real valued vector. Therefore,

by using a similar argument, we can claim that, if for an integer vector, n, the

pmf, P (n|Φn
1 , P

n
1 ), has a Gaussian shape, then the pmf, P (n|Φn+1

1 , P n+1
1 ), also has

a Gaussian shape.
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7.2 Particle Filtering for Gaussian Shaped Dis-

tributions

Using the justification in Section 7.1, we can replace the empirical distribution of

the particle filtering by an exponential family with a Gaussian shape. Algorithm

7.2.1 takes this modification into account.

Algorithm 7.2.1 Particle Filtering for a Gaussian Shaped Distribution.

• Step 1 . Initialization

� Sample n1
0, · · · , nN

0 , N i.i.d. random variable with the distribution,

P0(n).

• Step 2 . New measurement and Bayes’ Rule

P N(n|Φn+1
1 , P n+1

1 ) =

1
N

N∑
j=1

δnj
n
(n) · p(φn+1, pn+1|nj

n)

1
N

N∑
j=1

δnj
n
(nj

n) · p(φn+1, pn+1|nj
n)

• Step 3 . Find the mean and the covariance estimates for P N(n|Φn+1
1 , P n+1

1 ).

n̄n+1 =
N∑

i=1
P N(ni

n|Φn+1
1 , P n+1

1 )ni
n

Σnn+1 =
N∑

i=1
P N(ni

n|Φn+1
1 , P n+1

1 )(ni
n − n̄n)(ni

n − n̄n)T

• Step 4 . Resample

� Sample real valued n̂1
n+1, · · · , n̂N

n+1 according to p(n|Φn+1
1 , P n+1

1 ).

where

p(n|Φn+1
1 , P n+1

1 ) =
exp

(−1
2

(n− n̄n+1)
T Σ−1

nn+1
(n− n̄n+1)

)
√

(2π)m det(Σnn+1)
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• Step 5 . ni
n+1 = g(n̂i

n+1), for i = 1, · · · , N . g(·) is a rounding function.

• Step 6 . n← n + 1; go to Step (2).

where δv(w) = 1 if w = v, and 0 otherwise.

In Algorithm 7.2.1, if the number of particles is small, a bad initialization

causes significant estimation error. To overcome this problem one can increase the

number of particles and/or choose the initialization carefully. Increasing the num-

ber of particles increases the computational cost which is not desirable. Therefore,

choosing a proper initialization is of great importance.

In the integer ambiguity resolution problem, we first initialize the conditional

pmf of the integer ambiguity using the pseudo range measurement. Since the noise

power of the pseudo range measurement is significantly larger than the noise power

of the carrier phase measurement, it is very likely that one of the integer vectors,

that has probability greater than the others, ends up with probability one and the

rest of integer vectors end up with zero probability. To avoid this, we alter the

covariance matrix for the carrier phase measurement and the covariance matrix for

p(n|Φn
1 )as follows:

Σ̂n = Σn + n−2I

Σ̂nn = (1 + α
n
)Σnn ,

(7.7)

where α is a constant coefficient. The idea of changing the covariance matrices

is borrowed from the simulated annealing technique. Similar to the temperature

decrease in that technique, here we decrease the additional uncertainty added to

the data as time grows. The change of the covariance matrix in (7.7) is not unique,

but the general form of (7.7) should be kept.

Once we have the conditional pmf of the integer ambiguity given the obser-

vations, the estimate for integer ambiguity can be obtained by finding the point
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where the conditional pmf is maximum. This is equivalent to finding the MAP

estimate of the integer ambiguity.

7.3 Simulations and Results

Using the data described in Section 5.2.3, we generated the pseudo range and

carrier phase data for one static and one moving receiver in the same way as was

performed in Section 5.2.3. To be able to check our method we added an artificial

integer ambiguity to the simulated data. We chose a three dimensional random

walk dynamics with nonzero mean speed, (x, y, z)T
n+1 = (x, y, z)T

n + (2, 1, 1) + 2εn,

where εn is a three dimensional zero mean Gaussian random vector with unit power.

The spatial and temporal units are assumed to be meter and second, respectively.

We applied the method discussed in Section 7.2, for different numbers of mea-

sured epochs. For each of these cases we simulated 1000 different trials and we

counted the number of times that the algorithm doesn’t find the correct integer

vector. We call these incorrect outcomes error of the estimate. The results of these

experiments are summarized in Table 7.1. For the case where 20 epochs are used,

the error is equal to %2.9.

Given the double difference pseudo range and double difference carrier phase

measurements, the integer ambiguity estimate given by Algorithm 7.2.1 is a random

variable. Therefore one can run the algorithm several times for the same data

to confirm the estimate. Using this idea, in a separate experiment we ran the

algorithm for each set of observations three times. If at least two out of three of

the estimated integer ambiguities were the same, we would accept the repeated

estimate as the integer ambiguity estimate. If none of the estimates were the same

we would reject all answers. The results of this experiment are summarized in
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No. of Epochs No. of Particles No. of trials Error %

2 5000 1000 % 40

3 5000 1000 % 28

5 5000 1000 %15.8

10 5000 1000 %5.8

20 5000 1000 %2.9

Table 7.1: The percentage of error for integer ambiguity estimation

No. of Epochs No. of Particles No. of trials Rejection % Error %

5 5000 3× 1000 %2.1 %13.7

10 5000 3× 1000 %0.7 %1.2

20 5000 3× 1000 %0.6 %0.0

Table 7.2: The percentage of error for integer ambiguity estimation

Table 7.2. It can be seen that when a sufficient number of measured epochs is

available, the error percentage can be reduced significantly. It is also seen that for

the case with a small number of epochs, the repeated trials don’t help. This is

because the small number of epochs makes the algorithm adapt itself to the data.

There are a few points about our method that we emphasize on:

• This method can be applied to kinematic positioning as well as static posi-

tioning.

• In this method we do not linearize the observation equations, therefore the

correlation between the noise of the different measurements is only due to

the double differencing.
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• The use of a conditional pmf reduces the need to make complicated searches

to resolve integer ambiguities, e.g. integer least squares.
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Chapter 8

Detection of Abrupt Changes in a

Nonlinear Stochastic System

In many practical problems arising in quality control, fault detection, and integrity

monitoring, the underlying system can be represented by a parametric model. The

parameters of such models usually can be categorized into two different sets. The

first set contains the parameters that change slowly with respect to time, for ex-

ample the parameters that describe the conditional density of position-velocity-

orientation in a navigation system are of this type. The second set contains the

parameters that are subject to sudden changes. These sudden changes are the

results of a failure in the system dynamic, malfunctioning of measuring instru-

ments, or perhaps the result of a change in the state of the system. We refer to

these changes as sudden or abrupt because the time frame in which these changes

happen is much smaller than the response time of the system which is limited by

the nominal bandwidth of the system.

The abrupt changes in the system do not need to be catastrophic. In fact,

in this dissertation we are interested in studying the changes that degrade the

94



performance/accuracy/efficiency of the system, but do not stop the system from

functioning. A monitoring system is responsible for detecting and isolating these

changes.

Online detection of abrupt changes for linear dynamical systems have been

studied extensively (qv. [8] and the references therein). Unlike the linear case,

change detection for nonlinear dynamical stochastic systems has not been investi-

gated in any depth. In the cases where a nonlinear system experiences a sudden

change, linearization and change detection methods for linear systems are the main

tools for solving the change detection problem (see [41] for example). The reason

for this lack of interest is clear; even when there is no change, the estimation of

the state of the system given the observations results in an infinite dimensional

nonlinear filter; the change in the system can only make the estimation problem

harder.

As we discussed in the previous chapters, the theoretical results regarding the

convergence of the approximate conditional density given by particle filtering to

the true conditional density, suggests that this method is a useful approximation

to exact nonlinear filtering. We believe that particle filtering and its modifications

are a starting point to study change detection for nonlinear stochastic systems.

Here we use the results in Chapter 4 and we develop a new change detection

method for nonlinear stochastic systems. We show that for nonlinear systems the

computational complexity of the CUSUM algorithm grows with respect to time,

therefore, it is inapplicable in many practical applications. We introduce a change

detection method based on a likelihood ratio test and a new statistic. We show that

this statistic can be calculated recursively with constant computational complexity.

In Chapter 5 we showed that when the number of satellites is below a critical
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number, linearization methods such as EKF result in an unacceptable position

error for an integrated INS/GPS. We also showed that the approximate nonlinear

filtering methods, projection particle filter in particular, are capable of providing

an acceptable estimate of the position in the same situation.

In an integrated INS/GPS, if the carrier phase of the GPS signal is used for

positioning, sudden changes of the phase measurement due to the cycle slip should

be detected to be able to keep the integrity of positioning method intact. A cycle

slip happens when the phase of the received signal estimated by the phase lock loop

in the receiver has a sudden jump. If the cycle slip is not detected and repaired the

position given by an integrated INS/GPS with a carrier phase receiver is no longer

reliable. Therefore, one important aspect of an integrated INS/GPS is to detect

such sudden changes. Since, in critical conditions, linearization methods are not

capable of providing the estimate of the position, in the same setup, corresponding

change detection methods are not useful either. We used an integrated INS/GPS

under critical conditions as an application of our method. Since the proposed

change detection method assumes known parameters after change, this application

should not be considered a cycle slip detection method.

In this chapter, first we briefly define the change detection problem and we

review the CUSUM algorithm for linear systems with additive changes. Then we

present a new change detection method for nonlinear stochastic systems. Finally,

we present some simulation results and we summarize the results and future work.

8.1 Change Detection: Problem Definition

On-line detection of a change can be formulated as follows [8]. Let Yn
1 = {y1,y2,

· · · ,yn} be a sequence of observed random variables with conditional density
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pθ(yk|yk−1, · · · ,y1). Before the unknown change time, t0, the parameter of the

conditional density, θ, is constant and equal to θ0. After the change, this param-

eter is equal to θ1. In online change detection, one is interested in detecting the

occurrence of such a change. The exact time and the estimation of the parameters

before and after the change is not required. In case of multiple changes, we assume

that the changes are detected fast enough so that in each time instance only one

change has to be considered. Online change detection is performed by a stopping

rule [8]

ta = inf{n : gn(Yn
1 ) ≥ λ}

where λ is a threshold, (gn)n≥1 is a family of functions, and ta is the alarm time,

i.e. the time when change is detected.

If ta < t0 then a false alarm has occurred. The criteria for choosing the param-

eter λ and the family of functions (gn)n≥1 is to minimize the detection delay for

the fixed mean time between false alarms.

8.2 Additive Changes in Linear Dynamical Sys-

tems

Consider the following system:

xk+1 = Fkxk + Gkwk + ΓkΥx(k, t0)

yk = Hkxk + vk + ΞkΥy(k, t0) ,
(8.1)

where Fk, Gk, HK , Γk, and Ξk are matrices of proper dimension, and Υx(k, t0)

and Υy(k, t0) are the dynamic profiles of the assumed changes, of dimension ñ ≤ n

and d̃ ≤ d, respectively. wk and vk are white Gaussian noise, independent of the
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initial condition x0. It is assumed thatΥx(k, t0) = 0 and Υy(k, t0) = 0 for k < t0,

but we do not necessarily have the exact knowledge of the dynamic profile and the

gain matrices, Γk and Ξk. The dynamic profile of change may be assumed known

or unknown.

For the case of known parameters before and after change, the CUSUM [8]

algorithm can be used, and it is well known that the change detection method has

the following form

ta = min{k ≥ 1|gk ≥ λ}
gk = max

1≤j≤k
Sk

j

Sk
j = ln

∏k

i=j
pρ(i,j)(εi)∏k

i=j
p0(εi)

,

(8.2)

where εi is the innovation process calculated using Kalman filtering, assuming

that no change occurred, and ρ(i, j) is the mean of the innovation process at

time j conditioned on the change occurred at time i. p0 and pρ(·,·) are Gaussian

densities with means 0, and ρ(·, ·), respectively. The covariance matrix for these

two densities is the same and is calculated using Kalman filtering.

When the parameter after change is not known, the algorithm that is used for

the change detection is the GLR test [55]. In this case, gk is calculated as follows

gk = max
1≤j≤k

sup
Υx,Υy

Sk
j . (8.3)

The solution for (8.3) is well known and can be found in many references [8].

Similar to nonlinear filtering, change detection for nonlinear stochastic sys-

tems results in an algorithm that is infinite dimensional. Linearization techniques,

whenever applicable, are the main approximation tool for studying the change de-

tection problem for nonlinear systems. In this setup, a nonlinear filtering problem

is transformed to it linearized form through EKF and then the same algorithms

98



that are used for the linear Gaussian case are used for the change detection prob-

lem. Although linearization techniques are computationally efficient, they are not

always applicable. In the sections to come, we propose a new method based on

nonlinear particle filtering that can be used for change detection for nonlinear

stochastic systems.

8.3 Nonlinear Change Detection:

Problem Setup

Consider the following nonlinear system

xk+1 = f ik
k (xk) + Gik

k (xk)wk

yk = hik
k (xk) + vk ,

(8.4)

where xk ∈ Rn, ynτ ∈ Rd, wk ∈ Rq and vk ∈ Rd are white noise processes with

known statistics, and the functions f ik
k (·) and hik

k (·) and the matrix Gik
k (·) have

the proper dimensions. The noise processes wk , vk, k = 0, 1, · · ·, and the initial

condition x0 are assumed independent. We assume that

ik =


0 k < t0

i k ≥ t0, i ∈ I
, (8.5)

where I is a countable index set. The index 0 is used for the nominal system and

the system after change belongs to a countable set of systems. Here, we assume

that the set I has only one member, i.e. we assume that the parameters after the

change are known.

In this setup Sk
j can be written as follows

Sk
j = ln

p(Yk
j |Yj−1

1 , t0 = j)

p(Yk
j |Yj−1

1 , t0 > k)
. (8.6)
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Figure 8.1: Combination of nonlinear filters used in the CUSUM change detection

algorithm.

Writing (8.6) in a recursive form we get

p(Yk
j |Yj−1

1 , t0 = j) =
k∏

i=j
p(yi|Y i−1

1 , t0 = j) , (8.7)

where p(yi|Y i−1
1 , t0 = j) can be written as follows

p(yi|Y i−1
1 , t0 = j) =

∫
xi

p(yi|xi)p(xi|Y i−1
1 , t0 = j)dxi. (8.8)

To find p(xi|Y i−1
1 , t0 = j) in (8.8), one needs to find an approximation for the

corresponding nonlinear filter. We assume that this approximation is done using

either particle filtering or projection particle filtering (see Chapters 3 and 4).

To calculate the likelihood ratio in (8.6), we must calculate the conditional

densities of the state given the observation for two hypothesis (changed occurred
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at j and change occurred after k). This means that two nonlinear filters should

be implemented just to compare these two hypothesis. Therefore, it is clear that

to use an algorithm similar to (8.2), k parallel nonlinear filters should be imple-

mented. In Figure 8.1, we see that the computational complexity of the CUSUM

algorithm grows linearly with respect to time. In most applications this growth

is not desirable. One possible way to approximate the CUSUM algorithm is to

truncate the branches that are forked from the main branch in Figure 8.1. We

will explain this truncation procedure and its technical difficulties in the next few

lines.

Recall that the main branch (horizontal) and the branches forked from it in

Figure 8.1 represent a series of nonlinear filters with specific assumptions on the

change time. The dynamics and the observation equation for all forked branches

are the same and the only difference is the initial density. If the conditional density

of the state, given the observation, for a nonlinear system with the wrong initial

density converges (in some meaningful way) to the true conditional density (ini-

tialized by the true initial density), we say that the corresponding nonlinear filter

is asymptotically stable [14].

For asymptotically stable nonlinear filters, the forked branches in Figure 8.1

converge to a single branch, therefore there is no need to implement several parallel

nonlinear filters. In other words, after each branching the independent nonlinear

filter is used for a period of time and then this branch converges to the branches

that have forked earlier, i.e. joins them. The time needed for the branch of

the independent nonlinear filter to join the other forked branches depends on the

convergence rate and the target accuracy of the approximation.

Although the procedure mentioned above can be used for asymptotically stable
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nonlinear filters, there are several problems associated to this method. The known

theoretical results for identifying asymptotically stable filters is limited to either

requiring ergodicity and the compactness of the state space [5, 6, 35] or very special

cases of the observation equation [14]. The rate of convergence of the filters in

different branches is another potential shortcoming of the mentioned procedure.

If the convergence rate is low in comparison with the rate of parameter change in

the system, then the algorithm cannot take advantage of this convergence.

8.4 Nonlinear Change Detection: Non Growing

Computational Complexity

In this section we introduce a new statistic to overcome the problem of growing

computational complexity for the change detection method. We show that this

statistic can be calculated recursively.

Consider the following statistic

T k
j = ln

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k})
p(Yk

j |Yj−1
1 , t0 > k)

. (8.9)

For the rest of this chapter we assume that, conditioned on change, the change

time, t0, is distributed uniformly, i.e.

P (t0 = i|t0 ∈ {j, · · · , k}) =


1

k−j+1
i ∈ {j, · · · , k}

0 otherwise
. (8.10)
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With this assumption we have

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k}) = p(Yk
j , t0 ∈ {j, · · · , k}|Yj−1

1 , t0 ∈ {j, · · · , k})
= p(Yk

j , t0 = j |Yj−1
1 , t0 ∈ {j, · · · , k})+

p(Yk
j , t0 = j + 1|Yj−1

1 , t0 ∈ {j, · · · , k})+
...

p(Yk
j , t0 = k |Yj−1

1 , t0 ∈ {j, · · · , k})
= 1

k−j+1

(
p(Yk

j |Yj−1
1 , t0 = j)+

p(Yk
j |Yj−1

1 , t0 = j + 1)+

· · ·+ p(Yk
j |Yj−1

1 , t0 = k)
)
,

therefore,

T k
j = ln

p(Yk
j |Yj−1

1 ,t0∈{j,···,k})
p(Yk

j |Yj−1
1 ,t0>k)

= ln

(
1

k−j+1

k∑
i=j

p(Yk
j |Yj−1

1 ,t0=i)

p(Yk
j |Yj−1

1 ,t0>k)

)
.

In other words, T k
j can be written as follows

T k
j = ln

 1

k − j + 1

k∑
i=j

exp(Sk
i )

 . (8.11)

The change detection algorithm based on statistic T k
j can be presented as fol-

lows

ta = min{k ≥ j | T k
j ≥ λ or T k

j ≤ −α}, (8.12)

where j is the last time that gk ≥ λ or gk ≤ −α, and λ > 0 and α > 0 are

chosen such that the detection delay is minimum for a fixed mean time between

two false alarms. Using (8.2) and (8.11), we try to find a relation between the

detection method (8.12) and the CUSUM algorithm. Assume two possible extreme

cases. The first one is the case where Sk
i = c, ∀i ∈ {j, · · · , k}. In this case it is
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clear that T k
j = Sk

i ∀i ∈ {j, · · · , k}, and therefore, the performance of the two

methods with the same thresholds is the same. In the second case we assume

that ∃i, l ∈ {j, · · · , k} such that Sk
i � Sk

l , l 6= i. Therefore, it can be seen that

T k
j ≈ Sk

l − ln(k − j + 1), i.e. T k
j is degraded by − ln(k − j + 1). With this simple

analysis we can conclude that

max
i∈{j,···,k}

Sk
i − ln(k − j + 1) ≤ T k

j ≤ max
i∈{j,···,k}

Sk
i . (8.13)

Therefore, with the same thresholds for both detection methods, (8.13) can be

used to find the bounds for the performance of the detection algorithm in (8.12)

with respect to the CUSUM algorithm. We want to emphasize that the thresholds

used for detection method (8.12) need not be the same as the thresholds in the

CUSUM algorithm, in fact, they should be optimum according to the criteria for

the mean detection delay for the detection method in (8.12).

The main advantage of using the statistic T k
j over Sk

j is the fact that T k
j can

be calculated recursively without growth in the computational complexity of the

method with respect to time. We can rewrite p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k}) as follows

p(Yk
j |Yj−1

1 , t0 ∈ {j, · · · , k}) =
k∏

i=j

p(yi|Y i−1
1 , t0 ∈ {j, · · · , k}).

Using (8.10) we have

p(yi|Y i−1
1 , t0 ∈ {j, · · · , k}) = p(yi, t0 ∈ {j, · · · , k}|Y i−1

1 , t0 ∈ {j, · · · , k})

= p(yi, t0 ∈ {j, · · · , i}|Y i−1
1 , t0 ∈ {j, · · · , k}) +

p(yi, t0 > i|Y i−1
1 , t0 ∈ {j, · · · , k})

= i−j+1
k−j+1

p(yi|Y i−1
1 , t0 ∈ {j, · · · , i}) +

k−i
k−j+1

p(yi|Y i−1
1 , t0 > i) .

(8.14)
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From (8.14) it is clear that we need only calculate two types of functions. These

two functions are p(yi|Y i−1
1 , t0 ∈ {j, · · · , i}) and p(yi|Y i−1

1 , t0 > i). To calculate

these two functions we can use the following

p(yi|Y i−1
1 , t0 ∈ {j, · · · , i})

=
∫

p(yi|xi, t0 ∈ {j, · · · , i})p(xi|Y i−1
1 , t0 ∈ {j, · · · , i})dxi

= 1
i−j+1

∫
p1(yi|xi)p(xi|Y i−1

1 , t0 = i)dxi +

i−j
i−j+1

∫
p1(yi|xi)p(xi|Y i−1

1 , t0 ∈ {j, · · · , i− 1})dxi

= 1
i−j+1

∫
p1(yi|xi)p(xi|Y i−1

1 , t0 > i− 1)dxi +

i−j
i−j+1

∫
p1(yi|xi)p(xi|Y i−1

1 , t0 ∈ {j, · · · , i− 1})dxi

(8.15)

and

p(yi|Y i−1
1 , t0 > i) =

∫
p(yi|xi, t0 > i)p(xi|Y i−1

1 , t0 > i)dxi

=
∫

p0(yi|xi)p(xi|Y i−1
1 , t0 > i− 1)dxi ,

(8.16)

where p0(yi|xi) and p1(yi|xi) are the conditional densities of the observation given

the state of the system before and after the change, respectively. To calculate these

two functions, two conditional densities, p(xi|Y i−1
1 , t0 > i − 1) and p(xi|Y i−1

1 , t0 ∈
{j, · · · , i− 1}) should be found. These two conditional densities can be calculated

recursively as follows

p(xi|Y i−1
1 , t0 > i− 1)

=
∫

p(xi|xi−1, t0 > i− 1)p(xi−1|Y i−1
1 , t0 > i− 1)dxi−1

=
∫

p0(xi|xi−1)p(xi−1|Y i−1
1 , t0 > i− 1)dxi−1 ,

(8.17)

where p0(xi|xi−1) is the conditional density of the state at time i given the state

at time i − 1 assuming that no change has happened up until time i − 1. The
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recursion is complete with

p(xi−1|Y i−1
1 , t0 > i− 1) =

p(xi−1|Yi−2
1 , t0>i−1)p(yi−1|xi−1, t0>i−1)∫

p(xi−1|Yi−2
1 , t0>i−1)p(yi−1|xi−1, t0>i−1)dxi−1

=
p(xi−1|Yi−2

1 , t0>i−2)p0(yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0>i−2)p0 (yi−1|xi−1)dxi−1
,

(8.18)

and it is assumed that the initial density of the state is known. (8.17) and (8.18)

are, in fact, the equations for the nonlinear filter assuming that no change has

happened. For the other conditional density we have

p(xi|Y i−1
1 , t0 ∈ {j, · · · , i− 1})

=
∫

p(xi|xi−1, t0 ∈ {j, · · · , i− 1})p(xi−1|Y i−1
1 , t0 ∈ {j, · · · , i− 1})dxi−1

= 1
j−i

∫
p1(xi|xi−1)p(xi−1|Y i−1

1 , t0 = i− 1)dxi−1 +

j−i−1
j−i

∫
p1(xi|xi−1)p(xi−1|Y i−1

1 , t0 ∈ {j, · · · , i− 2})dxi−1,

(8.19)

where p1(xi|xi−1) is the conditional density of the state at time i given the state

at time i − 1 assuming that a change has occurred. To complete the recursion

formula we have

p(xi−1|Y i−1
1 , t0 = i− 1) =

p(xi−1|Yi−2
1 , t0=i−1)p(yi−1|xi−1, t0=i−1)∫

p(xi−1|Yi−2
1 , t0=i−1)p(yi−1|xi−1, t0=i−1)dxi−1

=
p(xi−1|Yi−2

1 , t0>i−2)p1(yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0>i−2)p1 (yi−1|xi−1)dxi−1
,

(8.20)

and

p(xi−1|Y i−1
1 , t0 ∈ {j, · · · , i− 2})

=
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p(yi−1|xi−1, t0∈{j,···,i−2})∫
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p(yi−1|xi−1, t0∈{j,···,i−2})dxi−1

=
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p1 (yi−1|xi−1)∫
p(xi−1|Yi−2

1 , t0∈{j,···,i−2})p1 (yi−1|xi−1)dxi−1
.

(8.21)
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P(x   |Y  , t  ∈{j, ...,i-1})i-1
i 0 0P(x   |Y  , t  ∈{j, ...,i-1})i-1

i-1 0 0P(x   |Y  , t  ∈{j, ...,i-2})i-1
i-1 0 0P(x   |Y  , t  ∈{j, ...,i-2})i-2

i-1 0 0

P(x   |Y  , t  =i-1)i-1
i-1 0 0

P(x   |Y  , t  > i-2)i-2
i-1 0 0 P(x   |Y  , t  > i-1)i-1

i-1 0 0 P(x   |Y  , t  > i-1)i-1
i 0 0P(x   |Y  , t  > i-1)i-1
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Figure 8.2: Implementation of the nonlinear filters used in the change detection

algorithm in (8.12).

Figure 8.2 shows the implementation of equations (8.17) through (8.21); it can

be seen that the complexity of the implemented nonlinear filter does not grow with

time. Using Figure 8.2 and the definition of T k
j we have

T k
j =

k∑
i=j

ln

(
1

k − j + 1

(
(k − i) +

ς2
i

ς1
i

+ (i− j)
ς3
i

ς1
i

))
, (8.22)

where

ς1
i = p(yi|Y i−1

1 , t0 > i)

ς2
i = p(yi|Y i−1

1 , t0 = i)

ς3
i = p(yi|Y i−1

1 , t0 ∈ {j, · · · , i− 1)}.
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8.5 Simulations and Results

In Chapter 5 we showed that for an integrated INS/GPS when the number of

satellites is less than a critical number, projection particle filtering provides a

very accurate estimate of the position while the position solution given by EKF

is unacceptable. In this section we use the same example to apply the change

detection method in (8.12). Similarly to Chapter 5, for a critical situation (low

number of observable satellites) the linearization methods do not work, particularly

we cannot use EKF. On the other hand, the CUSUM algorithm leads to a growth in

computational complexity with respect to time, therefore, at this point a natural

selection for a change detection algorithm is the method in (8.12). We wish to

emphasize that in the example given in this section we assume that the parameter

of change, before and after change, is known and the only unknown parameter is

the change time. In future, we will address the more general problem of unknown

change parameters.

The dynamics of an integrated INS/GPS and the observation equation for

differential GPS are given in Chapter 5. The only difference is that we assume

that the signal associated to one of the satellites experiences an abrupt change, i.e.

we assume a known cycle slip in one of the channels.

For this simulation we simply chose an 11 dimensional Gaussian density for

the projection particle filtering. This choice of density makes the random vector

generation easy and computationally affordable. To be able to use the projection

particle filtering, we used maximum likelihood to estimate the parameters of the

Guassian density before and after Bayes’ correction.

Using the data described in Section 5.2.3, we generated the pseudo range and

carrier phase data for one static and one moving receiver in the same way as was
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Figure 8.3: This figure shows the plot of T k
j with respect to time. At time t = 15,

the receiver loses 3 satellites. We assume that the cycle slip in channel one occurred

at time t = 20.

performed in Section 5.2.3. Here we assume that for the carrier phase measurement

the integer ambiguity problem is already solved. We also assumed that the phase

lock loop associated to satellite 1 experiences a cycle slip and the phase suddenly

changes. The size of the change is assumed to be one cycle. The movement of the

INS/GPS platform was simulation based and the measurement data measured by

the accelerometers, the gyros, the GPS pseudo range, and the GPS carrier phase

data were generated according to that movement.

In the simulation we assumed that the GPS receiver starts with 6 satellites.

At time t = 15, the receiver loses 3 satellites. We assume that the cycle slip in

channel one occurred at time t = 20. In Figure 8.3 we have plotted T k
j with respect

to time. In the figure this sudden change is indicated by a sudden change in the

value of TK
j .
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Chapter 9

Conclusions and Future Work

In this thesis we studied filtering, estimation, and detection for stochastic systems

with nonlinear dynamics and nonlinear observations.

We presented a new approximate nonlinear filtering method for a class of sys-

tems whose conditional density lies in a certain family of exponential densities. We

showed that under the conditions stated in Chapter 4 the approximate conditional

density can be made arbitrarily close to the true conditional density in the sense

described in the same Chapter. We also proved that when the true conditional

density does not lie in an exponential family but it is close to it, the error of the

estimate given by projection particle filtering is bounded. Using the results in

Chapter 4, we presented a similar method for a family of mixture densities.

We showed that for an integrated INS/GPS when the number of visible satel-

lites is below a critical number the extended Kalman filter fails to provide an

acceptable estimate of the position. We showed that under the same conditions

nonlinear filtering methods are capable of providing an accurate estimate of the

position. Via numerical results, we also showed that the performance of the pro-

jection particle filter exceeds the regular particle filter.
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We applied a method similar but different from projection particle filtering to

the integer ambiguity resolution for carrier phase differential GPS. In this method,

we assumed that the integer uncertainty in the carrier phase measurement is an in-

teger random vector. We presented an algorithm that approximates the conditional

density of the integer uncertainty given the observation. The numerical results re-

ported in Chapter 7 indicate a very low percentage of error for this method.

Another problem that we addressed in this dissertation is the problem of detec-

tion of abrupt changes with known parameters after change for nonlinear stochastic

systems. We showed that applying the CUSUM algorithm for such systems results

in a growth in computational complexity with respect to time. To avoid this prob-

lem, we introduced a new statistic that can be used for change detection methods

based on a likelihood ratio test. We showed that the calculation of this statistic

can be done recursively with fixed computational complexity with respect to time.

The work we presented in this thesis may be extended towards several direc-

tions. In the following, we try to give a brief description of these directions.

Numerical results in Chapter 7 suggest that Algorithm 7.2.1 is a good candidate

for an integer ambiguity resolution method. Although in that chapter we presented

an argument to justify this fact, we were not able to prove that Algorithm 7.2.1

indeed provides an approximate solution for the conditional density of the integer

uncertainty given the carrier phase observations. One direction for the extension

of results of this dissertation would be the investigation of this matter.

From a practical point of view, we think that a very natural extension of this

research would be to implement the projection particle filter for an integrated

INS/GPS in real time. For this purpose one can use an affordable inertial naviga-

tion system and a hand held GPS receiver that can be connected to a computer.
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We believe the next generations of cellular phones will have an inexpensive built-

in integrated INS/GPS. One of the challenges in the next few years would be to

design such systems with acceptable reliability and accuracy.

The abrupt change detection method that we studied in Chapter 8 is limited

to change detection where the parameters after change are assumed to be known.

In future, we intend to extend our results to the case where the parameters after

change are unknown. The major obstacle in this extension is the complexity of the

change detection method. Another subject that requires further investigations is

the comparison of the presented method with other existing methods.
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