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ABSTRACT

A weather radar signal simulator that produces an output consisting of a vector of
I and Q values representing the radar return permits investigation of the performance of
different estimators for the weather signal parameters and their sensitivity when varying
radar parameters and precipitation models. Although several empirical statistical models
are available to describe precipitation behavior, the creation of a physical model enables
adaptation to actual data (e.g. rain rate, wind shears) thereby making it possible to apply
and examine different scanning schemes, especially rapid scanning schemes. A physical
model allows gradual improvements to realism to study the effects on the radar return for
different phenomena. @A Weather Radar Signal Simulator has been developed in
MATLAB. Several different functionalities have been implemented allowing for stepped
frequency, multiple PRFs, pulse compression using a chirp, and variation of both weather
and radar input parameters. Post processing capabilities include autocorrelation and FFT
(for single PRF only); estimation of weather parameters such as reflectivity factor, Z;
average doppler, radial velocity, and velocity spread; pedagogical plots including a
Phasor plot of phase change over time and a velocity histogram, instantaneous observed

reflectivity and power for each pulse over time.
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EXECUTIVE SUMMARY

Electromagnetic emission is increasing in all surroundings not only in the military
arena making it necessary to understand, interpret, and sometimes filter information
created by man or nature. In an attempt to learn more in one research area, studying
other areas might provide the insight needed to break new ground. Electromagnetic
returns from weather are in one area of radar science regarded as clutter while in another
it as a way of gaining information and making estimates and predictions. Exploring the
weather side of radar science provides an insight into weather returns as source of
information and also improves knowledge about effects that can lead to a better

understanding of how to overcome unwanted weather returns.

Creating a weather radar signal simulator that produces an output consisting of a
vector of I and Q values representing the radar return, permits investigation of the
performance of different estimators for the weather signal parameters and their sensitivity
when varying radar parameters and precipitation models. In weather radar applications
the return signal samples can be used to estimate reflectivity, velocity and velocity
spread. These are the zeroth, first and second moments of the Doppler spectrum.
Reflectivity can be used to estimate the rain rate of the specific volume return. A number
of mathematical models relating rain rate to reflectivity exist and can be used when an
estimated power return is available. There are also a number of measures and statistics
for precipitation that have resulted in functions describing rain drop size distribution for a

certain rain rate, terminal velocities of rain drops, etc.

Limiting the amount of samples required to accomplish small variance when
estimating average power calls for independent samples meaning that the return samples
are de-correlated. On the other hand, measuring Doppler calls for coherent, correlated
samples, this typically requires a higher pulse repetition frequency (PRF). The velocity
spread effects the weather signal correlation time and therefore drives sample time
required to arrive at an estimate with specific variance. Although several empirical
statistical models are available to describe precipitation behavior, the creation of a

physical model enables adaptation to actual data (e.g. rain rate, wind shears) thereby

Xvil



making it possible to apply and examine different scanning schemes, especially rapid
scanning schemes, as well as to create output graphical representations that can serve a

pedagogical purpose.

This research was undertaken to build a weather radar signal simulator delivering
I and Q values from a physical representation of rain drops, which has been
accomplished. A previously developed simulator was initially evaluated and verified
serving as the basic building block when developing the final version. The Radiation
Integrals were used to derive the electromagnetic scattering from rain drops
approximated as dielectric spheres. = Without accounting for multiple scattering,
attenuation, or coupling effects, the scattered electric field from each drop is summed for
every pulse providing the RCS of the rain in the radar resolution cell as well as a complex
voltage return representation. Using the Marshall-Palmer drop size distribution, an initial
position for every drop is determined within an extended radar resolution volume
enabling the drops to fall through the radar beam for all samples. Between pulses the
drops are moved according to their respective terminal velocities based on the Atlas-
Ulbrich approximation and wind. To allow for width in the velocity spectrum, a
Gaussian spread is applied to drop velocities that determine how the average velocity is
spread. Also a Gaussian spread, that is size dependent, is applied to the velocity and it
represents the spread of velocity due to difference in size. The simulator power return is
weighted using the Radar Range Equation for point targets, considering all drops as point
targets within the resolution cell. The zeroth moment estimate is derived by averaging N

power samples.

Several different functionalities have been implemented allowing for stepped
frequencies, multiple PRFs, pulse compression using a chirp, and varying input
parameters. Post processing capabilities include autocorrelation and FFT (only for single
PRF); evaluation of weather parameter estimators such as average reflectivity factor, Z;
average doppler, radial velocity, and velocity spread. Pedagogical plots including a
Phasor plot of phase change over time and a velocity histogram, instantaneous observed

reflectivity and power for each pulse over time, have also been implemented.

xviil



l. INTRODUCTION

A. BACKGROUND

Electromagnetic emission is increasing in all surroundings not only in the military
arena making it necessary to understand, interpret, and sometimes filter information
created by man or nature. In an attempt to learn more in one research area, studying
other areas might provide the insight needed to break new ground. Electromagnetic
returns from weather are in one area of radar science regarded as clutter while others use
it as a way of gaining information and make estimates and predictions. Exploring the
weather side of radar science will not only provide an insight into weather returns as
source of information but also improve knowledge about effects that can lead to a better

understanding of how to overcome unwanted weather returns.

Creating a weather radar signal simulator that produces an output consisting of a
vector of I and Q values representing the radar return, will permit investigation of the
performance of different estimators for the weather signal parameters and their sensitivity
when varying radar parameters and precipitation models. In weather radar applications
the return signal samples can be used to estimate reflectivity, velocity and velocity
spread. These are the zeroth, first and second moments of the Doppler spectrum.
Reflectivity can be used to estimate the rain rate of the specific volume return. A number
of mathematical models relating rain rate to reflectivity exist and can be used when an
estimated power return is available. There are also a number of measures and statistics
for precipitation that have resulted in functions describing rain drop size distribution for a

certain rain rate, terminal velocities of rain drops, etc.

To minimize the number of samples required to realize small variance when
estimating average power independent samples are required meaning that the return
samples are de-correlated. On the other hand, measuring Doppler calls for coherent,
correlated samples, this typically requires a higher pulse repetition frequency (PRF). The
velocity spread effects the weather signal correlation time and therefore drives sample
rate. Although several empirical statistical models are available to describe precipitation

behavior, the creation of a physical model enables adaptation to actual data (e.g. rain rate,



wind shears) thereby making it possible to apply and examine different scanning
schemes, especially rapid scanning schemes, as well as to create output graphical
representations that can serve a pedagogical purpose. The output signal should therefore
correspond to the values expected using the empirical models. The simulator should also

enable input of data to create variation in reflectivity, velocity spread and Doppler.

The simulator is based on the reflection of each drop creating a scattered electric
field. A Marshall-Palmer drop size distribution is used. The sum of the fields scattered
by all drops at any particular instant of time gives the instantaneous scattered field, total
radar cross-section and instantaneous received power. Motion is imparted to each drop
using a terminal velocity based on drop size and wind field. The motion leads to a
rearrangement of drops in the sample volume and thus to a new value of instantaneous
received weather signal power at the next sample time. The effect of electromagnetic

coupling among drops is investigated.

B. OBJECTIVE

The main objective was to build a weather radar signal simulator that produces an
output consisting of a vector of I and Q values of the radar return. From this, average
power, Doppler and Doppler spread can be derived. To guide the research and provide

tools for verification and validation of the simulator the following questions were

addressed:

1. Is it possible to build a weather radar signal simulator based on a physical

model of a spatial region containing raindrops?

2. Can realistic motion that depends upon the type of weather system be

imparted to the raindrops?

3. Can the output of the weather radar simulator be used to study spatial and
temporal sampling schemes for constant or stepped frequency sampling

pulses?



4. Can the weather radar simulator be used to study the use of pulse
compression and range averaging as a means of rapidly obtaining

independent samples?

5. Can the output of the weather radar signal simulator be used to produce

displays of pedagogical interest?

6. Can the output of the weather radar signal simulator be used to study the

performance of estimators for the first three Doppler moments?

7. Can the output of the weather radar signal simulator be used to study the

utility of estimators for higher order Doppler moments?

C. APPROACH

The simulator was developed by building modules that represented a functionality
or physical behavior, testing and verifying the module, and then placing the module into
the final version of the simulator. Having a prototype from France provided valuable
ideas and experience for developing the simulator. Initially this version was translated,
evaluated, and respective function or module output was verified against empirical
models based on statistics of real life measurements. When all improvements were
implemented to the French version, new modules were created aiming at addressing the
research questions posed. The final product was optimized to give accurate results
structured and presented in a pedagogical manner. During the development Graphical

User Interfaces (GUIs) were of secondary concern.

When the simulator was working, i.e. it has passed the necessary testing for
verification; the application phase began. Research questions three to seven were then
addressed. Results were again compared with empirical models built on statistics of real
life measurements. Questions not addressed were formulated for future investigation by

others.

Although the subject title implies that meteorology will be extensively covered,
the goal of this work was to provide a tool to evaluate the effects on the radar output of

different weather systems. Precipitation physics was used to build a physical model, but



initially weather system input was included only as a conceptual mathematical vector

model to provide flexibility to later implement real models of weather.

D. RELATED WORK

M. Gosset, J. Nicol, and A. Sanchez submitted an abstract for The 6th Conference
on Hydrological Applications of Weather Radar describing a simulator with similar focus
[1]. After personal contact with M. Gosset we learned that the simulator was unfinished
and later the MATLAB code was sent to us to develop at NPS in cooperation with M.

Gosset.

J.S. Marshall and Walter Hitschfeld [2] thoroughly investigated theoretical effects
such as fluctuation echoes from randomly distributed scatterers providing mathematical
proofs and suggestions for pulsing and scanning schemes to improve estimate accuracy.
The paper defines probability distributions useful to interpret fluctuating returns and
describes different methods to achieve independent data using difference in time, range,

and frequency, to mention a few.

Richard J. Doviak and DuSan S. Zrni¢ [3] provide extensive guidance in the
weather radar area presenting tools and explanations of all aspects investigated in this
thesis. Most background data has originated from thoughts, theories, and descriptions
provided by their fantastic book. Building a simulator calls for in depth interpretation of

radar hardware solutions, which in large part can be found in their work.

Finally, John B Sandifer [4] developed scanning strategies for research and
operational applications. Interesting temporal schemes were presented aiming to provide
methods to rapidly scan and update large volumes using Phased Array Doppler radars.
The use of stepped frequency to acquire independent samples without having to wait for
the weather to reshuffle enough for de-correlation is explored and presented as one

successful way of achieving a fast scanning capability.



E. THESISOUTLINE

The thesis is organized as follows:

Chapter |1, titled Weather Radar and Weather/Rain theory, introduces the basic
principles of radar and the specific functions in weather applications. The physics of
precipitation is summarized with emphasis on electromagnetic effects (scatter), motion
behavior, and drop size distribution. The chapter also describes Radar Cross Section
(RCS) of rain. The basis of the simulator is the radar signal return from the rain, which is
why the electromagnetic effects will be examined to provide the foundation for the

simulator design.

Chapter Il covers simulator design considerations and the building of the
simulator. In this chapter the scope and the limitations of the simulator are presented
based upon the research questions that need to be addressed and the abilities of the
simulator building tool of choice (MATLAB). The chapter further describes the building
of the simulator. This chapter covers both the development and testing of the simulator.
MATLAB is the computer language of choice and the simulator is initially developed in
modules, to simplify development and testing. Ending the chapter the simulator parts are
described.

Chapter 1V provides analysis of applications. The final test or validation of the

simulator where the research questions 3-7 are addressed.

Chapter V presents the results from both the development and the applications

covered in the thesis.
Chapter VI contains conclusions and recommendations for future work
Appendix A Derivation of RCS for single drop
Appendix B Microwave Studio simulator setup
Appendix C  Simulator setup for the Weather Radar Simulator

Appendix D MATLAB code
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II. WEATHER RADAR AND WEATHER/RAIN THEORY

Laying the foundation for the simulator, the basic theory is covered in this chapter

ending with a statement of ground truth for later comparison and verification.

A. RADAR PRINCIPLES

Radar or RAdio Detecting And Ranging uses the return of transmitted
electromagnetic energy from a transmitter to detect and locate objects of interest.
Although the basic principles of radar have been known for decades new applications are
developed constantly as a consequence of the exploration of different areas of interest.
The basic function of a radar is provided by a transmitter that generates an
electromagnetic signal into space by the means of an antenna. Objects in the signal path
scatter or reflect part of the power projected by the transmitter back towards the receiver.
By measuring the return in terms of angle of incidence and time to the return, power

levels, etc. different factors can be estimated depending on the application. [5]

To be able to detect movement or to calculate average power, more than one
return pulse must be measured leading to the idea of Pulse Repetition Frequency (PRF).
By selecting different PRFs some quantities will be become ambiguous while others

become the unambiguous.

1 Estimation of Range

Finding the range to the object of interest is merely a question of measuring the
time it takes for the signal to travel from the transmitter to the target and back to the
receiver, or more precisely from and to the antenna. Knowing that the electromagnetic
energy travels at the speed of light, ¢, which in free space is approximately 3x10° m/s,
the distance R is given by

_cor
2

R 2.1)

where T is the time from the antenna to the object and back to the antenna.



To ensure unambiguous measurements of range the time difference between two
consecutive pulses must be at least the time it takes for the signal to travel to the range of

interest and back. The maximum ambiguous range, R, is thereby

R=—%=—- (22)

where T is the pulse repetition period and f the PRF.

2 Estimation of Power Density

a. Antenna Gain and Beam Shapes

An important part of a radar system is the antenna. The antenna is the
impedance matcher making it possible to transmit and direct energy into space with
minimal losses. Some antennas provide the ability to direct the energy, making the
power density higher in a limited solid angle while being lower elsewhere. This ability,
called directivity, is converted to a measure of power per unit solid angle radiated in a
particular direction and is compared to the same measure but without directivity. The
ratio is called the directive gain of an antenna and is a function of direction and it does

not include losses in the antenna.

Apart from resulting in a higher Gain, the ability to shape the beam can be
helpful to enhance angular resolution, since it will limit the volume of illumination. An

isotropic antenna has a power density at a range R of

P
R @3

where P is the transmitted power, while an antenna with gain has the power density of

_ RG
ArR’

(2.4)

b. Radar Range Equation
To be able to estimate the return power from an object, a parameter called

Radar Cross Section (RCS) must be defined. The RCS can be defined as [6]



o= Power reflected to receiver per unit solid angle

Incident power density/4n

The scattered density power at the receiving antenna is given by

PG o 2
= — [W/ ) 2.5
AR 4AnR [W/m’] 2.5)

Accounting for the capture area of the radar antenna, A, , results in received power

PG o

By using the relationship between transmit gain and receive effective area,

4 Ay
G= v (2.7)
where A is the radar wavelength, received power can be expressed as
P 2
- thG;ovI (2.8)
(47) R*

ignoring all system and propagation losses. Since losses are expected let us for now add a

one-way propagation loss term L rendering

_ PGG,o1’

. 2.9
(47)' R 29

rec

3. Estimation of Velocity

Pulsed radar can, by measuring the phase change between consecutive pulses,
estimate radial velocity. The effect, called Doppler, is the frequency change that occurs
due to the relative movement of a target with respect to the radar. Considering a two-way

propagation path renders a total phase change of

2R
p=2m==. (2.10)

In terms of angular frequency the result is



=92 %% dR_Amv 0t @2.11)

d A4 dt A

where V, is the radial velocity and f, is the doppler frequency [4].

From a pulse pair, using a coherent detector, the phase change can be extracted

using

V=1 +jQ =Ae"
arg{V,}=¢,

: 2.12
VooV, = AL AL e
arg Vn+lvn} = ¢n+] - ¢n = 5¢
leading to the single pulse pair velocity estimate
A8 A LAf
V=== argiV._ V' t=—2LargV V. 2.13
r 4ﬂ_5t 4ﬂ'Tp g n+ln } 472_ g n+tln } ( )

where T, is time between pulses and f is pulse repetition frequency.

B. WEATHER RADAR

The radar application that will be explored in this research is the ability to use the
radar to estimate weather parameters such as rain reflectivity and wind speed. Most radar
applications consider rain as clutter and find ways to filter out those effects. In weather
applications the scatter from precipitation is used to compute the estimates mentioned

earlier.

1 Sample Correlation
The return signal power level from weather will vary over time. To
compute an estimate of reflectivity with small variance a number of independent samples
are summed and averaged which means that the target volume must reshuffle enough to
ensure de-correlation during the observation time. The power spectral density of a

meteorological signal is approximately Gaussian [7] and can be written as

10



26%

_|(f—f)2}
S(f)=Se (2.14)
where f is the doppler frequency and o is the doppler spectrum variance. Taking the

Fourier transform of (2.14) and normalizing results in the correlation coefficient

p(7)= e{“J (2.15)

where o7 is the time spectrum variance and is related to o by

o,= ! (2.16)
2ro;
and
20,
o, =—2. 2.17
(=77 (2.17)

By using the correlation coefficient a measure of minimum difference in time can

be estimated ensuring dependent or independent samples. Nathanson claims that for

independent sampling p(1)<0.02 is required whereas p(1)>0.15 will insure

dependence [7]. Doviak and Zrni¢ [3] set a correlation threshold for coherence at

p’ (7)€" which corresponds to a value of p(7)20.6. Using this threshold renders

T.< 02524 (2.18)
10}

\

for highly correlated samples. For independent samples using [7] T, >O.70i is
/(o)

\

required.

2. Depth of Volume
Estimating range to a volume target, compared to a point target, still involves
measuring travel time. The range to every raindrop will not be determined since the

return signal will be the sum of several scatterers. Measuring a volume takes pulsewidth

11



into account as one of the parameters determining its size. A pulsewidth of 7 renders a

depth of the return volume of

d, =—. (2.19)

3. Estimation of Power Density and Reflectivity Z
a. Antenna Gain and Beam Effective Solid Angle
The directivity of an antenna is a function of both azimuth and elevation
angles. The radar beam has a width that has to be specified to enable an estimation of the
magnitude of the volume return. Estimates of a point target involve the angle off bore
sight to get the accurate gain level, while a volume target, like rain, takes into account the

total gain over the volume of interest. Estimation of the gain for a volume target uses the

antenna pattern function f(6,¢) integrated over the solid angle. Since the radar

equation is a power relation the pattern function needs to be squared, also, due to the two

way propagation, the power pattern function is squared again leading to

[11(6.0) de (2.20)

Using a Gaussian Pattern Model provides a good approximation of the
main beam between the 3 dB points. Extending it to both azimuth and elevation renders
92 ¢2

‘f(9,¢)‘2:e[72+‘52], |¢9|s%91, |¢|s%¢>1 (2.21)

g . B
where ¥’ = and §° =
4In2 41n2

, and 6, ¢@are the half power beamwiths in the

orthogonal planes. Performing the integration over the solid angle renders [8§]

26° 247

Hf (9=¢’)‘4 = T Te_[yﬁ‘yz}dew:%

sy 7%) (2.22)

where &< 0.034 and represents the contribution from the sidelobes. It corresponds to

0.15 dB error allowing for an approximation ignoring the term (1—¢) rendering

12
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. 2.23
&In2 ( )

J1t(6.9)]

b. Weather Radar Range Equation and Estimation of Reflectivity
To define the weather radar range equation we return to the original

formula

2
_RGGa" (2.24)
(47) R

rec
In the weather radar equation RCS (o) is replaced by RCS density 77, which is the
expected radar cross section density per unit volume. Since the target is a volume target,

the expected return needs to be integrated over the whole volume, which can be divided

into the solid angle and depth of the return. Letting the power level at the target be

P P ) )
Pareet = 1 tcliz dA= étht dQ and integrating the return power over the return volume
T V4
renders
_ P 2 7 P 2
P = [Py =00 [ e[t (0.0)] da= LB 225)
(4;;) . R 10247°R° 1In2

.. (072
recognizing that R> >

Radar meteorologists use reflectivity factor, Z, instead of instead of RCS

density where

_ T, p
7 —FIKWI Z, (2.26)
and
1
z=—>'D¢. 2.27
AV Z | (2.27)

Substituting (2.26) in (2.25) and solving for Z renders the reflectivity estimator

22 4 2 2
5_p 10247°R" In2 A _P . 1024R" In24

“ PA’GG,cri, .7r5|KW|2 “ PGG g K, [

(2.28)
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For an assumed continuous distribution of drops sizes with diameter density
N (D) (2.27) becomes

Dmax
Z= jo N (D) D*dD. (2.29)

Solving the integral form for an assumed Marshall-Palmer Drop Size Distribution,

DSD (Equation (2.35)), yields

6!N,

L) 230
(4.1R*>) (230

Z=[D'N(D)dD =

0
Drops do not exist in sizes ranging up to infinite diameter (see later sections for
details) but are likely to be limited by a maximum diameter. Doviak and Zrni¢ [3] state

that Equation (2.30) overestimates Z and suggest a truncated DSD with D=D__ . In this

case

z=— N 79 2.31)

(4.1R‘°'2‘)

where a=AD,_, and y(7,a) is the incomplete Gamma function. Equations (2.30) and

(2.31) provide an analytical means for computing Z and providing a reference as ground

truth reflectivity against which simulator estimates can be compared.

4, Estimation of Velocity

Measuring phase-change over time for a volume target demands coherence
between pulse pairs. Phase change will also occur due to other effects rather than radial
movement. To obtain an estimate of radial velocity with small variance, a number of
sample pairs need to be summed and averaged. Building on (2.13) we obtain the multiple

pulse pair estimator

N
Ve v, =———>arg{V, V/]. (2.32)
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5. Estimation of Velocity Spread
An estimate of the velocity spread can be computed using the velocity samples
obtained from a pulse pair comparison (Equation (2.13)). The estimator for sample

variance is given by

>(3-9)
52 = (2.33)

and the estimator for standard deviation is

6, =+/6;. (2.34)

C. PHYSICSOF PRECIPITATION
Why and how raindrops form and what constitutes their shape and behavior is
beyond the scope of this thesis, however, some basics in precipitation physics are needed

to develop a physical representation of rain for the simulator.

1 Size and Shape

All drops examined are assumed to be falling at or close to their terminal velocity.
Small drops, with a diameter D <0.35 mm, are spherical in shape. Drops ranging from
0.35<D<4 mm have progressively flattened bases, and can be approximated by
spheroids [2]. Larger raindrops tend to break up after collision and drops larger than
about 10 mm in diameter are unstable and break up even without collision [9]. Also
drops can cluster which will affect the drop size distribution. This phenomenon will not

be covered in this thesis. For further reading [10] is suggested.

2. Drop Size Distribution, DSD

RCS density is the average radar cross section density per unit volume, as
mentioned previously, and for independent scattering is the sum of the RCS of all
scatterers in the return volume divided by the volume. The drop size distribution
represents the diameter density (mm/m®) of drops for all diameters. The Marshall-Palmer

drop size distribution [11], derived empirically, provides a general model,
15



N(D)=N,exp(-AD),
A=41R*'mm™, (2.35)
N, =8x10°m~>mm™".

Applying truncation as suggested in [3] with a maximum drop diameter of D_,

yields

N -AD), D<D
N(D)= OeXp( ) max. (2.36)
0, D,.<D

ma;

3. Terminal Velocities
The terminal velocity of a water drop is dependent on the size of the drop. Atlas
and Ulbrich [12] derived an expression that relates terminal velocity to the diameter of

the water drop as
v(D)=1767D.[cm/ s] = 386.6D," [m/s] (2.37)

which is valid for 5x10™* <D <5x107,[m]. The result has been verified against

measured data [3]. Fall speed is also dependent on air pressure but that is a second order

effect not considered here.

4, Velocity Spectrum Width

There are several mechanisms contributing to the spread of the velocity spectrum
both from nature and the radar itself. The radar antenna motion, turbulence, differences
in fall speed due to drop size and wind shears all contribute to the spread of the radial
velocity of precipitation. Physically modeling all contributors demands great insight into
both behavior and effects, and is beyond the scope of this thesis. However, to control de-
correlation time a spread must be introduced in the simulator. This is accomplished by

imparting a random Gaussian distributed velocity component to drops.

5. Rainfall Rate
Rainfall rate determines depth of accumulated water per unit time, and can be
derived from water content and fall speeds. It can be shown that the a cloud’s water
density is
16



M =ngjD3N(D)dD (2.38)
0
where p,, is the water density of a drop.

Turning this into rainfall rate renders

R:%jDW(D)v(D)dD. (2.39)

0

D. RADAR CROSS SECTION (RCS) OF RAIN

1. Cross Section

A coherent measure of radar return can be found by summing the electric field
contribution from each point scatterer in the return volume of interest. Raindrops can be
approximated as small dielectric spheres. It can be shown (see appendix A) that the
backscatter field of a small sphere, when the radius is much smaller than a wavelength

(A), is given by
T,
Oy :F|KW| D°, (2.40)

(gr _1)

(e, +2)

r

where D is the drop diameter, K, =

and ¢, is the relative permittivity.

This approximation is valid as long as the wavelength is much larger than the
drop circumference and the drop is of spherical shape and is referred to as the Rayleigh
approximation [3]. As described under Physics of Precipitation, drops tend to flatten
when between 280 and 1000 #m which render a polarization dependent return. This can
be used to separate different sizes of precipitation when a dual-polarization radar is used

to obtain the ratio of two orthogonally polarized returns [3]. This will not be included in

the initial simulator work.

To verify the return predicted by the simulator, the RCS model needs to be
accurate. Not only does the model need to be accurate in terms of magnitude, the

fluctuation over time must also be accurate to assure the model will produce the proper

17



variation matching the theoretical density function. For the magnitude test for accuracy,
Microwave Studio has been used to predict the scatter from spheres with properties of
raindrops. Microwave Studio uses the Finite Integration Technique to calculate RCS. In
Microwave Studio a sphere was created with a diameter of 4 mm. Conductivity was set
to 0.0001 S/m (pure water) [13]. The set up for all simulations was in most aspects the

same and is described in Figure 1 and in detail in appendix B.

X

A

Figure 1. Simulation setup using Microwave Studio, single drop. k is
theincident field unit vector and E isthedirection of the electric field.

The calculations were made assuming an X-band radar. Although drops with
D >4 mm flatten out when falling, a spherical approximation was used allowing the

Rayleigh approximation for the backscatter. For an X-band radar with frequency
9.4 GHz the theoretical backscatter of a single drop with |Km|2 =0.93, and a diameter of
4 mmis
(4x107)’ .
— K[ =7 ——(9.4%10°) 0.93m?’
Cc
0, =1.124x10°m’ — —-59.5dBsm

The result using Microwave Studio with the same input values used in the above

is shown in Figure 2 and Figure 3.
18



Figure2. Farfield Scatter from a sphere of 4 mm in diameter in the 6-
planefor ¢ =90" and ¢ =270".

Figure 3. Farfield Scatter from a sphere of 4 mm in diameter in the € -
planefor ¢ =0 and ¢=180".
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In Figure 2 the level of the farfield scatter is equal in all directions, which is
expected considering the electric field direction (x-direction) and the view of observation.
The pattern is similar to a dipole where the farfield scatter has its maximum in the

orthogonal direction from the electric field [15]. In Figure 3 the zero directions are inline

with the polarization of the incident filed, which occurs when ¢ =0 and ¢ =180" with

0=90".

2. Array Factor

Multiple scatterers can be modeled as an array of scatterers even though they are
not identical. One must realize that calculating the total coherent RCS of multiple
scatterers is not a matter of summing the RCSs since RCS is acquired by summing the
scattered electric field which then is squared to get the RCS. A simple approach is to
calculate the electric field return from every scatterer and then add the contributions
vectorally [6]. The phase change due to difference in location using a far field

approximation is given by

gk | (2.41)
where g, represents the path difference for every drop with reference to X, ¥,,» Z,, and

is given by (see Figure 4)

Oop = % SIn@cos P+ Y, sin@sin @+ z,, cos. (2.42)
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To radar (r, 6, @)

X

Figure4. Far-field path difference due to shift from origin.

For equal sized scatterers the array factor which determines the total RCS

1S

N .
AF =" gl (2.43)

n=1
where g, :F|2l and I% the incident field unit vector (Figure 5). Letting ¢ =0 and the
distance between the drops be d gives g,, =(n—1)dsiné@, where n is the drop number.

Recognizing the geometric series and writing the sum in closed form yields

Nkd sin 8)
AF = 2 jK9gn __ 2]k n—1)dsin@ Sln( 2.44
Z Z sin (kd sin 0) (244)

For N=2,and D=4 mm,

|s1n Nkd sin @ |
/14 m| ‘ sin(kdsin ) ‘

0, =4.94x10°m’ — —53.5dBsm

O =7 =1.124x10° 2" m?

(2.45)

The result is independent of d, since max(

sin (Nkd sin 8) B
sin (kdsin @) B
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X

Figureb. Simulation setup using Microwave Studio, two drops. K isthe
incident field unit vector and E isthe direction of the electric field.

The value is calculated only for a direct reflection not taking into account the

cos’ @ dependence due to angle of incidence. The two drop setup using D =4 mm and
d = A rendered results presented in Figure 6 and Figure 7. In Figure 6 the farfield scatter

pattern show a maximum in the orthogonal direction from the electric field, as expected

since the electric field was along the y-axis (¢=90" and ¢=270" with §=90"). In

Figure 7 zero directions show for ¢ =0 and ¢ =180" with 8 =30" and & =150", which is

expected since

|s1n Nkd sin @ | sm( /1s1n49j‘ |s1n 47 sin @ |
‘ s1n kdsm@ ‘ ‘ ( lsmé’) ‘_‘sm 2ﬂ'sm9 ‘

(2.46)

So for #=30" and 8=150" the expression yields zero. Comparing the calculations,
Equation (2.45), with the results from the Microwave Studio simulations reveals a
difference of only 0.1 dB, which can be the effects of mutual coupling. The max values
are called Bragg lobes and their locations are dependent on the ratio of d/A, their

location with respect to each other, and the measuring point.
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Figure6. Farfield Scatter from two spheresof 4 mmin diameter in the
@-planefor ¢ =90" and ¢ =270".

Figure7. Farfield Scatter from two spheresof 4 mmin diameter in the
@-planefor ¢ =0 and ¢=180".
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The question of mutual coupling was addressed using Microwave Studio. The
scattering pattern from the illumination of first two and then three spheres was examined,
this time for different separation distances (Figure 8). The values plotted are the results

using the same drop setup as in Figure 5,1.e. D=4 mm, € =0 and ¢ =0. The measures

indicate coupling effects. However, the software is not optimized to calculate low
conductivity targets, as raindrops are. When the space between the drops increases the
program adds noise as the numerical grid becomes significant (see Appendix B).
Although mutual coupling is likely to appear, available tools could not provide guidance

how to provide realistic implementation.

RCS for different distances between drops

-50
-50.5 | | | | |
51 - q T r
| | | | | —— 2 drops
H1.5p---- T T T T T T T T — Reference level |
= 1 1 1 1 1 — 3.drops
& 52— lb---d----d----4----t---- — Reference level |---—
g o
8 525 | | | | :
o 1
-53 :
-53.5 :
-54
-54.5
Distance between drops, ())
Figure 8. Monostatic Back Scatter of two and three dropsof 4 mm
diameter when spacingisvaried from 0.14 to 2.
3. Averaging over Time

The weather radar return signal is composed of the scattered electric field from all
drops in the resolution cell (see Figure 9). The total scattered field of the drops in the

resolution cell is given by
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E.(0)= i E,(O) (2.47)

where N is the number of drops and O is the observation point.

— 12 —
Rearranging, o =4xr’|=>| renders & = Jo , S0 summing the
i Ei 4rr?
electric field from all scatterers yields
N .
E(r.0,¢)-d=) \o,e"a (2.48)
n=1

where y is given by y, =2kg,, and is a function of r, 8 and ¢ (Equation (2.43)) [6]

and & is a unit vector giving the direction of the scattered field.

Radar location

Figure9. Radar resolution cell used in Simulator.1

It can be argued that i is a random variable uniformly distributed on the

interval [0,27] thus, expected RCS will be

I Azimuth and Elevation angles are reversed compared to the mathematical conventions.
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<O-total > = i O-n (249)

n=1
where < > denotes the expected value. So to get the average power estimate a number of

independent samples need to be gathered and averaged.

4, Absorption and Attenuation

Apart from the fraction of the incident electric field that rain scatters, rain also
absorbs energy which causes attenuation. This has greater effect for higher frequencies,
which imposes limits on the possibilities of getting higher angular resolution by using
short-wavelength radars. The effects of attenuation can be used in bi-static setups
estimating the weather parameters based on the level of attenuation. Bi-static setups and

effects of attenuation will not be taken into account in the initial simulator work.

E. MATHEMATICAL MODELS

This section describes the basic formulas that will be used to model the
parameters required in the simulator to generate the return signal. The models for each
parameter are defined in Table 1. Although choosing Equation (2.30) as ground truth
will probably create too high estimates of reflectivity [3], this will be the initial reference

as the simulator development starts.

26



Table 1.

M athematical models for Weather Estimators.

Parameter

Input or estimator

Ground Truth

Drop Size Distribution,

DSD

N(D)=N,exp(-AD),
A=4.1R*""'mm”,
N, =8x10°m>mm’

Reflectivity Factor, Z

1024R* In24°

-0

“ RGG et K, |

r 6N,
(4. 1R

Average Radial Velocity | G _ 1 A arg {V v Compare with input value
N-1 4rx — n+l'n
Doppler Spectrum Width i (\7 _ \L/)z Compare with input value
6; =+ , 6,=V6"
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1. SIMULATOR DESIGN CONSIDERATIONSAND
DEVELOPMENT OF SIMULATOR

Having described the required parameter models in the previous chapter the
design and development of the simulator will commence. As stated, the simulator should
allow for inputs of rain rate, standard radar values (e.g. frequency, azimuth and elevation
angles, and pulsewidth), wind speeds and angles, and also velocity spread. Output signal
parameter estimators of interest are average power, average Doppler velocity and
Doppler spread. The output should preferably be in form of I and Q return voltage
making it possible to post process the data to obtain the estimate of average power,

Doppler velocity and Doppler spread.

A. SCOPE
To provide a tool to answer the research questions specified in the introduction

chapter, the following is required:

1. A physical model of a spatial region of raindrops must be created and later

tested and verified against real life measures or existing models,

2. A model for realistic motion of raindrops that are weather system
dependent must be created where at least an interface between weather

models and the simulator must be specified,

3. A method of implementing spatial and temporal sampling schemes to

study the output for constant or stepped frequency sampling,

4. A method to study the use of pulse compression and range averaging as a

means of rapidly obtaining independent samples,

5. Displays of pedagogical interest to facilitate the presentation and testing of

research issues mentioned,

6. A study of the performance of estimators for the first three Doppler

moments,

7. A study of the utility of estimators for higher order Doppler moments.
29



B. LIMITATIONS

The initial design will not include:
e Dual polarization

e Absorption/Attenuation

e Losses and noise

e Mutual coupling and multiple reflections

C. DEVELOPMENT

Having a prototype from M. Gosset [1] provided valuable ideas and experience

developing the simulator. The method used to develop the final version is described in

Figure 10.

Rewrite Modules
&
Construct Verification Programs

French MATLAB code
2 Gdjha Gdhnmbd; 2 Gdjha Gdhnmbd;
. 3 KJekjsj jkkj 3 KJckjs jikj
Module based (functions)
8K 8 Ik

1 %ongah Translation

2 Gdjha Gdhnmbd;
Epr &

6% aksd
7 JHMkNHKJH
84l

Correlation
Weighting

1 %Ghdjan 9 hikhj
2 Gjha Gahnmbd; 101
3 Kok Kt
4 Forfnjki

Interpretation

6% aksd
7 JHITKhHKAJH
8

9 hjkhj
100

6% aksd
7 JHkhHKNIH
8k

9 hjkhj
101

1 %Ghdjah
2 Gdjha Gahnmbd;
3 KJoks Kl

4 Forfnjkf

5

6% aksd
7 JHifjkhHKhJH
Jikj

Simulation

3 S e Speed N (D)= N, exp(~AD),
e 3 PR

% aksd 3 3 -1
s N, =8x10°'m’mm”, (Compare

GUI

9 hikhj
1ol

Figure10. Plan for development of Simulator using the French version.
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1. Trandation and Inter pretation

The French code consists of a main program that calls for functions that performs

different tasks to support the main program. The functions are2:
e Size
e Approximation
e Marshall-Palmer
e Resolution Volume
e Number of drops
e Initial Position
e Summation
e Movement
e Atlas Ulbrich

The input parameters are shown in Table 2.

Table 2. Simulator input parameters

Radar Data Weather Parameters
Transmit Power Drop size diameter limits
Max Antenna Gain Drop Diameter resolution
Range to resolution cell Rain rate
One-way 3 dB Beamwidth Rain angles
Pulsewidth Wind, speed and direction
Frequency
Pulse Repetition Frequency (PRF)
Elevation and Azimuth
Number of pulses for integration

2 The code was translated by Professor Monique Fargues of NPS.
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a. Function Description

The main program starts by calling the Size-function that generates a
discrete Diameter vector based on the diameter interval and resolution of interest. The
function calls the Approximation-function that calculates the RCS for each diameter
using Equation (2.40). The Marshall Palmer-function is called to calculate the number of
drops for each diameter using Equation (2.35). The resolution is multiplied with the
number of drops per diameter and stored in a matrix together with the Diameters and
RCSs. The Size-function also has a part that uses a pre-set threshold to take away the
smaller drops that account for 10 % of the total RCS. The matrix created in the Size-
function consists of Diameter, RCS, Number of drops, total RCS per diameter, and

Reflectivity Factor structured as

Dl DN
o - o
T=| N(D) .. N(D) 3.1)
o N(D,) - o, N(Dy)
Z] ZN

where the first values are set by the threshold and N by the upper Diameter limit.

The main program then calls the Resolution Volume-function to generate
the resolution volume using the radar data. The function adds a margin to the resolution
volume so that the drops can pass through the resolution volume as time passes between
pulses. Both the borders for the increased resolution volume, henceforth called the Box,
and the resolution volume are defined for later use. The main program uses the data to
feed the Number of drops-function that calculates the number of drops considering the

volume of the Box and changing the values in the Matrix.

Using the Initial Position-function, the simulator uniformly distributes
every drop inside the Box using the data from the Matrix. The positions are stored in
files unique for each diameter using spherical coordinates to simplify comparison when

determining whether a drop is inside the Resolution Volume or not.

The main program then starts the simulation for the number of pulses

specified. For all iterations the Summation-function calculates the return voltage and the
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return power taking into account the position and RCS of each drop. The radar cross

section is calculated summing the scattered electric field from each rain drop using

Eiota (tk)ZZZ\/a.eizkﬁ(tk)

5 i (3.2)

where t, 1s the sample time and s is the Diameter vector.

The results are stored in different files depending on what data it is.
Before next iteration the main program calls the Movement-Function to move the drops
according to wind and fall velocities. To get the estimated terminal velocities for each

diameter the Atlas Ulbrich-function [12] is used, which is based on Equation (2.37).

The output of the simulator consists of four plots that show the Box with
all initial drops plotted, the Resolution Volume with all positions the drops have during
the simulation plotted, power return levels for every pulse, and the phase of every drop

and every pulse.

b. Verification
To evaluate the accuracy of the simulator, verification programs were

created to estimate errors of the modules of the simulator. The modules to examine were
e Number of drops
e Average power estimation
e Doppler estimation

e Doppler spread estimation
(1) Number of drops. The original French program used a
diameter interval between 0.05 mm and 5 mm with a resolution varying from 0.08 mm
for the smaller drops (up to 1 mm) to 0.2 mm. Using the original rain rate set to 50 mm
renders a histogram as seen in Figure 11. The threshold, that removes the smaller drops

that account for 10 % of the total RCS, is also indicated in the same figure.
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Drop Size Distribution Comparison
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Figurell. Drop Size Distribution comparison for French simulator. The
volumeisset to 1 m® and therain rateto 50 mm.

Eliminating the smallest drops will effect the fluctuation of the
return signal as well as the peak values, which in turn affects the average value. This is
an effect of the array factor previously described that can make several small drops
generate high return values when in phase. Also the choice of upper limits will affect the
level of power return especially for higher rain rates, which will be examined in a later
section. These values are plotted without making the number of drops to integer values.
The simulator uses CEIL to round off the number of drops making the integer equal to or
higher than the original value. Simulations show that the effect becomes significant for
rain rates below 40 mm/hr, creating too high return power values (Figure 12, RCS using
original French simulator). To produce values closer to what the integral form generates
using Equation (2.30), the span of diameters needs to be widened and the round off tool
exchanged.

(2) Average Power Estimation. To verify the average power
return, a simplified simulator was built that didn’t include the movement of the drops.
The movement was simulated by randomly re-plotting the drops for all iterations. Using

the knowledge about the effects of choosing limits for the drops size, a simulation was
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performed verifying the levels for average return power. Also the statistical distribution
of the return signal was examined to assure it agreed with basic theory [1], [2]. The
simulator was run for 1000 samples and for rain rates between 10 and 120 mm/h and a
wavelength 4 =0.1 m.

The results (Figure 12) show that using the original French
simulator makes the relation between RCS and rain rate almost linear while the new
generator follows the integral form (Equation (2.30)). The new generator uses a wider
span of diameters (up to 15 mm), does not apply a threshold and uses ROUND instead of

CEIL making the value closer to the real value.

RCS density of 1 m3 of drops.
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Figurel2.  Average RCSdensity comparison using different drop
generators. 1000 sampleswere used and compared with theresult using theintegral
form of reflectivity to calculate RCS density. 4=0.1 m.

The new generator still produces values with errors up to 2 dB
even with sample sizes as large as 1000 samples. To examine the cause of this error
another version of a drop generator was constructed taking into account the error caused
by the rounding off. The generator keeps track of the error and adds it at the end of the

simulation. This also provided an idea of how to be able to improve the simulator speed
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by reducing the number of drops while still retrieving accurate RCS and statistical
behavior. Reducing the number of drops by dividing by a constant and after the
simulations multiply it back into the calculations to retrieve reflectivity, number of drops,
and rain rate is valid since all these operations are performed by integrating over the
diameter. Treating the error like a constant results in a max error of about 0.4 dB, an
error that seems to increase as the rain rate increases (see Figure 13). Since the simulator
replaces the integration by a summation, errors will arise. Using Equation (2.30) renders
a Z-value of 54.1 dBZ, for a rain rate of 100 mm/h. When using the same form of
summation the simulator applies, the same estimation is 54.5 dBZ, which explains the

error of 0.4 dB.

RCS density of 1 m3 of drops.
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Figure13. RCSdensity comparison using new drop generator with error
correction and reduction factor. 4=0.1 m.

To get the average value of the return power, several independent
samples are used. The RCS of a raindrop was derived using the radiation integral, which
can be used when the return complex voltage is calculated. Since I and Q are random

variables, independent and none of them dominant, the central limit theorem states that

36



(3.3)

4454. ¢= 0, 6= 1.5708

VI=(1 Q)

—— RCS density using eq (2.26) and Z=[ DGN(D)dD

— Awerage RCS density

—— RCS density

RCS density of 1m? of drops. Rainrate= 50. Number of drops

10,000 samples renders results shown in Figure 14 and Figure 15.
-56

their sum tends to be Gaussian, as long as the numbers of samples are large enough. The
is therefore expected to have a Rayleigh distribution [3]. Running the drop generator for

amplitude of the return voltage i.e. the absolute value of the I and Q voltage return,

(wsgp) Aususp SOY

10000
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Figure 14.
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Figure15.  Rayleigh fit of data from 10,000-samplerun of drop generator.

In Figure 14 the average value of RCS is lower than the result
using the integral form. This was explained earlier when the results from summing over
all diameters was compared with the integration from zero to infinity. The Rayleigh fit in
Figure 15 follows the expected distribution. The results were retrieved by plotting a
histogram of the 10,000-sample-run. Both the histogram and the fit were normalized to
allow for comparison.

(3) Doppler estimation. The module that moves the drops takes
into account the terminal velocities, determined by Equation (2.37) with an associated fall
angle, and wind speeds in x, y, and z-dimension. The spread of terminal velocities
together with the fall angle will contribute to the spread of the Doppler spectrum. To
evaluate the mean Doppler frequency a pulse pair algorithm is used to record the phase
change over time using Equation (2.32) and comparing the phase extracted from two
consecutive returns pulses. Applying this on the drop generator and the movement
module enables an estimate of the mean frequency. A simulation was run for 30 pulses
(29 pulse pairs) with a PRF of 2000 Hz. Wind speed was set to zero and the rain fall

angle to 30° with respect to the z-axis (for detailed specifications see appendix C). The
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simulation showed an average Doppler frequency de =-57.3 Hz or \A/r =-2.85 m/s in x-
direction (radial direction) and standard deviation of &, =26.8 Hz, which represents
6, =1.34 m/s (see Figure 16). The spread was induced by the differences in terminal

velocities for different drops sizes. To estimate the accuracy, calculations were made

using a 2 mm drop for which

v(D) = 386.6D%%7 =386.6-0.002"" =7.89[m/s].

Taking the fall angle into account renders

V,

x—dir

=V-sin(30")cos(0) =-3.01[m/s].

To further verify that the simulator generates accurate results, the

fall angle was removed and only wind in the x-direction was used. The same inputs were
used adding wind of -5 m/s rendering de =-105.1 Hz, which corresponds to
V. =-5.3 m/s as seen in Figure 17. The Doppler spread was &, =7.9 Hz (6,=0.4

m/s). Note that the first spectrum (Figure 16) is skewed towards zero indicating that the
smaller drops, constituting the majority of the drops, bias the result. Also the limited

number of samples (29 pulse pairs) can have effects on the shape of the histogram.
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Doppler Frequency Histogram with Gaussian Fit
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Figure16.  Doppler Frequency Histogram applying terminal velocitiesand
30° fall angle. 30 pulsesand 29 pulse pairs.
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direction. 30 pulsesand 29 pulse pairs.
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(4) Doppler spread. The simulation run above showed a standard
deviation of 1.18 m/s, which is a measure of how much the average radial velocity of all
scatterers of each pulse return spread over all samples. The data was fitted to a normal
density function, which is expected for a power spectrum [3], to explore if the data could
be considered Gaussian. The second run fits better with the Gaussian plot, which can be
explained by the randomness of the process different from the first simulation where the
spread is distorted by the differences in drop sizes and therefore terminal velocities. To
further examine the power spectrum new algorithms were implemented as described in

the upcoming section.

2. Adding New M odules

The verification programs have been used to validate the simulator but there are
still improvements that can be made to achieve better accuracy and realism. First to

recapitulate what has been accomplished up until this point:

A drop generator that provides the number of drops given by the

distribution of interest based on rain rate.

- An algorithm that calculates the complex scattered voltage return based

on the position of each drop within the radar resolution volume.

- A module that introduces movement to the drops concerning fall speed

with an associated angle, and wind speed.

- An algorithm that calculates the doppler frequency of the moving drops

based on phase change between pulse pairs.

- An error correcting algorithm that also can be used to reduce the number

of drops used in a simulation to make it faster.

a. Range Weighting
To provide a more realistic level of the return signal value, a range
weighting function, based on the radar range equation, was built and implemented. As

mentioned earlier, effects of absorption and other losses will not be considered, leaving
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only the effects of difference in range. To account for range effects, Equations (2.21),

(2.24), and (2.48) were used rendering

Eweighed —\/PIGI(H’3 )Gr(9’¢2/1 -E(r,9,¢)
(47) (r (6.9))

= P > E(r,6,9)
Eweigthed = L_.GA-|f (6, —_ 34
aves = | (an] F(6.0) = (34)

R
. R O-dej'//, [7’2 52} R
Eweigthed a= (4”)3 -GA- r2 a

where a is a unit vector giving the direction of the scattered field. For the total

Resolution Cell

Z Eweighted a= -a (3.5)

where y, =2kg,, and g,,is given by Equation (2.42).

b. Correlation
Another estimate of the doppler from frequency the return electric field
can be obtained by taking the discrete Fourier transform (here FFT) of the signal samples

using the complex voltage return. The Doppler Power Spectrum is given by

S(f)=|z(f )\ZTS/M
M-t _ (3.6)
Z(f)=> v(mr,)e > mn

m=0
where M is the number of samples. An estimate can be retrieved by taking the Fourier

transform of the autocorrelation function

> V(M (m+). (3.7)

42



Computing the autocorrelation function and the FFT for the output in the

example on pg. 39 produces the same average frequency estimate, fL:—IOS.l Hz as
before (see Figure 18).

Power Spectral Estimate
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Figure18.  Doppler spectrum using FFT and the Fourier transform of the
autocorrelation function. (They overlap each other). Peak gives average frequency

estimate f =-105.1 Hz

Both autocorrelation and FFT preserve amplitude information, which has
consequences interpreting average Doppler using these functions. Larger drops will
affect the power spectrum to a greater extent than smaller since drop RCS is proportional
to D°. Thus, any difference in the radial velocity of large and small drops will result in
the power spectrum being skewed towards the Doppler associated with the larger drops.
Using the pulse pair algorithm (Equation (2.13)) removes the amplitude information

producing a more “true” average doppler frequency or radial velocity.

C. Frequency Stepping
To accomplish rapid volumetric scanning there are several methods

proposed. One method to achieve de-correlation is by shifting in frequency. A fast
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scanning scheme to speed up the acquisition of independent samples was proposed by
Doviak and Zrni¢ [3]. They suggested a method where a pulse pair is sent with one
frequency assuring dependent doppler measures, then the frequency is changed a

minimum of 1/7, for de-correlation to send the next pulse pair. Implementing this

scheme into the simulator requires modules stepping between more than one PRF also
taking into account the differences in wavelengths when computing the meteorological
signal parameter estimates. In Figure 19, a three frequency stepping scheme is
introduced that transmits a pulse pair at frequency 1, and listens for the time set by the
Doppler Pulse Repetition Time, PRT,, before changing to frequency 2. Before the
second frequency can be transmitted the frequency oscillator needs a settling time, here
called delay. After all three frequencies have been transmitted the radar returns to
frequency 1. The waiting time will be dependent on the de-correlation time for frequency

1, which in this case is PRT, rendering a true time delay before resending frequency 1 of

tyuay = PRT, = N, (PRT, + Delay)
where N, equals the number of frequencies used.

Pulse 1 Pulse 2

D /: *
Frequency 1 ><__ |<—Delay—>:

5 6 7 Mg
Frequency 2 /:/\\

Frequency 3 |

<«—PRT—>] |

Figure19.  Frequency scheme using stepped frequenciesto obtain de-
correlation.
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d. Pulse Compression

A benefit of Pulse Compression lies in the capability of averaging over
wider range where the gain in range resolution provides independent samples that can be
used to estimate the average power for the volume of the wider pulse. Implementing
chirped pulse compression in the simulator calls for the ability to step in frequency as
well as range. A scheme was developed enabling stepped frequency and range (see
Figure 20), where the Resolution Cell is divided into smaller range bins defined by the

sub pulse width and the number of frequency steps.

Pulse 1

S» | Aouenbai4
Z Aousnbaig
N Aousnbaiq

A$

v

Pulse 2
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Z Aouanbali4
N Aouanbaiq

Figure20.  Pulse Compression implementation.

When the frequency has been stepped through the whole pulse, the drops
are moved in accordance to the chosen PRT. The process then starts the frequency and
range stepping again, collecting returns from the next pulse. The total power from each
pulse is summed over all frequencies and then averaged for the number of range bins

used.

e Plot of Phasors for Phase Change Comparison
To visually illustrate the phase change for pulse pairs over time, 30 pulse
pairs are presented in polar plots as phasors (see example Figure 21). The current version

of the simulator can only plot 30 pulse pairs but uses all simulation pulse pairs to
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calculate the average radial velocity estimate. The estimated radial velocities retrieved
from each pulse pair are plotted in a Histogram with a Gaussian fit for comparison, as

presented in Figure 22. A three frequency stepped scheme simulation (pg. 44) produced

an average radial velocity estimate of \L/r =-7.38 m/s and a standard deviation of
6, =4.68 n/s for a single run of 51 pulses calculated using Equations (2.32), (2.33) and

(2.34) (see Figure 22).

Figure2l. Thethreefirst pulse pairsplotted in a Phasor plot. Theinput
radial velocity was —10 m/swith a velocity spread of 4 m/s.
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Figure22.  Radial Velocity Histogram with Gaussian Fit for 51 pulse
pairs. Input velocity was —10 m/swith a velocity spread of 4 m/s.
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f. Adding Spread to the Doppler Spectrum

As described in a previous section, a spread of the velocity spectrum needs
to be implemented to make differences in correlation possible. Applying a Gaussian
random component to the wind velocity to introduce a controllable value of velocity
spread was tested. This enables verification of the theory of the spread contributing to
de-correlation. Results from running simulations, again using a PRF of 2000 Hz and no
fall angle, for different spreads applied can be observed in Figure 23. The spread applied

was, from left to right, o,=4 m/s, 0,=3 m/s, and 0,=2 m/s, and the average
simulator velocity spread estimates were &,=4.05 m/s, 6,=294 m/s, and

6, =2.00 m/s again calculated using Equations (2.32), (2.33) and (2.34).

Doppler Frequency Histogram with Gaussian Fit Doppler Frequency Histogram with Gaussian Fit Doppler Frequency Histogram with Gaussian Fit

S0 w0 w0 200 100 ) 100 200 350 300 250 200 150 100 50 0 5 100 250 200

El -150
Doppler Frequency [Hz] Doppler Frequency [Hz]

-100 50 50
Doppler Frequency [Hz]

Figure23.  Test of Doppler spread. (a) input spread was 4 m/s, output
4.05 m/s. (b) input spread was 3 m/s, output 2.94 m/s. (c) input spread was 2 m/s,
output 2.00 m/s.

The best de-correlation results were accomplished when the velocity
spread was applied in two steps; first, a spread representing the spread of wind velocity
over time, second, a spread representing the spread due to differences in drop sizes and
other effects that will make the velocity of each drop vary over time. The fact that drops
fall out of the resolution volume and new drops join adds an uncontrollable spread
mechanism that can be examined by running several consecutive runs with the same
input data. As the number of samples increases, the spread of the average velocity is

expected to become smaller [3], which can be used for comparison.
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D. SIMULATOR DESCRIPTION

The simulator was built in modules developed to enable desired functionalities.
Initially the modules were separate functions that a main program called for execution,
but MATLAB works faster when only one long script is used rather than functions. The
inputs are separated into Radar data and Rain parameters and are specified in previous
sections. Part I of the simulator uses input Radar data to generate a Beam Resolution cell
approximation and a Cube with an added margin to the Beam Resolution cell to allow for
the rain drops to fall the through beam over time. Part II uses the Rain Parameters to

generate a fundamental T Matrix consisting of:

e Diameter Vector and Number of drops in each diameter interval using the

Marshall-Palmer exponential approximation for drop size distribution.
e The backscatter RCSs for each Diameter size
e The total number of drops of each diameter per m’

When the frequency stepped version is used the RCSs are placed in a separate
matrix, since RCS is frequency dependent. In Part III all drops a placed randomly in the
Cube developed in Part I and in Part IV the coherent Electric field return is calculated for
every pulse. Between pulses all drops are moved in accordance with their velocities

where velocity has a random component determined by o,. In Part V the final

\

calculations are completed and the results are plotted.

1. Part |

To create the radar resolution cell based on the Radar data the volume of interest
is retrieved by calculating the volume of the cone segment that represents the resolution
cell (see Figure 9). Assuming an elliptical beam, the resolution volume can be

approximated as [5]

Vie = '(ﬁ@de)(ﬁ@aB)[%)' (3.8)

res

NG

To allow for the water drops to fall through the resolution cell over all pulses, a
margin is added to the resolution cell creating a box where all drops are initially placed.
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Both volumes are defined in spherical coordinates to allow for placement, plots, and later

comparison. Also the volumes are registered.

2. Part |1

This part produces a matrix of all drops that contribute to the total reflectivity of
the resolution cell. Using the diameter limits defined in Rain parameters, a drop size
vector is created. The limits can be chosen to create results close to the integral form by
pushing the upper limit of diameter to 15 mm (see results Figure 12), or to resemble more
realistic values setting the max diameter to around 6 mm. Depending on what limits are
chosen, the actual Z must be computed using the appropriate model, i.e. chose between
Equation (2.30) and (2.31). The simulator allows for differences in resolution for
different diameter ranges depending on what one wants to examine. The diameter vector
is then used to create an RCS vector applying Equation (2.40), and a Drop Size
Distribution (DSD) vector applying Equation (2.35) (Marshall-Palmer). To improve the
speed of the simulator the number of drops is scaled down by a factor (Norm), which is
used later to rescale the output values. The number of drops is rounded off to nearest
integer using the MATLAB function ROUND. Finally a matrix is created to store all

values computed in Part 11

D, D,
matrix_ T round=| o, Oy (3.9)
N(Dl) N(DN)

and errors due to rounding off are calculated. The errors accounted for are RCS, Z,
Number of Drops, and Rain Rate. In the stepped frequency and pulse compression

versions the RCSs are stored in a separate matrix

O-l O-N

res=| o . o | (3.10)
fa3 fq3
O-l O-N

3. Part 111
The drops created in Part II are placed inside the Box created in Part I. For each

diameter every drop is randomly placed inside the Box using a uniform distribution
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function and its position is stored in spherical coordinates in a position matrix saved in a

.mat-file
r My
matrixpos = Ao O (3.11)
6 - 6

angle --- angle,

where angle is the angle off boresight.

4. Part IV

In Part IV the Coherent Electric Field return is calculated for every pulse
specified in the Radar Data. For every diameter, drops that are positioned inside the
Resolution Cell are selected and based on matrices (3.9) and (3.11) the weighted electric
field return is calculated using Equation (3.5) and summed for all drop diameters. Also
the rain rate, for the specific Resolution Cell is calculated using Equation (2.39)
approximated by a summation over all drop sizes. After the calculations, all drops are
moved to a new position by applying the wind vector and terminal fall velocities
specified in Rain parameters using Equation (2.37). All drops are assumed to move with
the velocity of the wind vector with a Gaussian spread applied. The spread can be
applied equally to all drops, so all drops move with the same velocity between pulses and
the spread is applied over all pulses, or applied per diameter size so equally sized drops
move at the same velocity between two specific pulses and the spread is applied over
sizes. A third possibility is to apply the velocity spread on all drops individually creating

a true spread although not fully realistic. The new drop positions are stored in matrixpos.

In the stepped frequency version, two different PRTs are used together with a
delay described in previous sections. After the first pulse has been registered in terms of
I and Q return, using frequency 1, the drops are moved according to the Doppler PRT
(PRT_1). The phase is then registered completing the pulse pair before moving the drops
again, this time using the Doppler PRT and the delay marking the change of frequency.
Frequency 2 and frequency 3 are then applied in the same way as frequency 1. When
changing back to frequency 1 the simulator uses the second PRT (PRT_2) and subtracts

the time elapsed due to the other frequencies and their transmitted pulse pairs. The return
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values are stored in a matrix making sure the errors and the final estimates account for the

differences in wavelengths and range between the returns.

The pulse compression version steps through the number of stretched pulses
specified in the Radar data. For every stretched pulse the chirp is approximated by
discrete frequency steps using the frequency step size and the number of steps defined.
Every frequency is associated with a specific range bin defined by the Resolution Cell
depth and the number of frequency steps. After the return values for all frequencies and
range bins have been collected, all drops are moved and a new pulse initiated. The time

between pulses is defined by the PRT.

S. Part V
The final part of the simulation produces the weather signal parameter estimates

and plots the results. The estimated parameters are

A

e Average Power estimate, P, retrieved using the weighted electric field

returns.

e Reflectivity estimate, Z, retrieved from the average power estimate using
(2.28) and compared with Z based on the simulator inputs using (2.27),
evaluated by a summation and Equation (2.30), evaluated using the

parameters N, and A from the Marshall-Palmer DSD.

A

e Average doppler frequency estimate, f,, retrieved using a pulse pair

algorithm that extracts the phase-change over time (see Equation (2.32)).

e Doppler spectrum width estimate, &, retrieved taking the standard deviation

of the doppler frequency data (see Equation (2.33) and (2.34)).

Here the errors and the reduction factor are put back in the calculations. As a
comparison, the ground truth for the respective parameter is derived using the integral
form for calculation and plotted in the same graphs for clarity. Examples of output plots
are presented in Figure 24 where a simulation using three frequency steps was evaluated.
The input parameters include frequency steps from 3 GHz to 3.002 GHz with a 1 MHz
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frequency step, a Doppler PRF of 5,000 Hz, and the second PRF of 300 Hz. Further, the
radial velocity was —10 m/s with a velocity spread of 4 m/s, which should produce a

p =0.246, using T, =ﬁ s. The average Doppler frequency estimate fLd =—150 Hz

(Figure 24 (a)) is about 25 % from the expected Doppler frequency of f, =—200 Hz.

Only 51 sample pairs were used to estimate the average Doppler, which could explain the
difference between the estimate and the true value. The simulation is a point estimate,
which means that running consecutive trials would better show the behavior of the
velocity estimate. The offset can also be the effects of adding new drops and loosing
others in the resolution cell as explained in previous sections. The plot of Estimation of
Z, (c) presents results close to the outcome expected using the mathematical formulas for
comparison. The correlation value of 0.246 can explain why the value of the estimate Z
is so close to the integral form, as de-correlated samples will yield an estimate with a
smaller variance. The example output plot of correlation coefficient, (d), although close
to the expected value from the above described simulation, is from another simulation

running only one PRF. The input parameters were:
e Wavelength, 4 0.1 m
e PRF 300 Hz
e Wind —10m/s in x-direction (=radial velocity)
e Velocity spread 4 m/s

The expected correlation, using Equation (2.15), is p = 0.246, which is very close

to the simulator output value.
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Doppler frequency for all pulse pairs for PRF= 5000 Hz

(@ -

—— Awerage Doppler estimate f,

400 !
0 10 20 30 40 50 60
Pulse pair
Power Retum for all 51 pulses. Frequency stepped from 3 GHz to 3.002 GHz with 1 MHz steps.
-90
-100
E
o |
(b) 2 110 !
o
5 |
a |
-120 | r
| | | | = Power retumn per pulse
| | I | — Awerage Power estimate p
130 I I I T T
0 10 20 30 40 50 60
Sample time [ms]
Estimated Z per pulse Retum Voltage Correlation
60 1
| | | | | | | |
| | | | | | | |
55 — —I A -
|
! = S L A
50 - g
So6 L _J__ v _J__1____1__1__|
= ko
& 45 - t
(c) ~ | d) |
| B B e e e | e e e e |
40 4 4 ‘_E" | | | | | | |
| § 0 - -—r-a- -1~
|
02 ——— ¢ -7 A+ A - == =4
35~ - Simulation Z, per pulse . L -
— Awerage reflectivity estimate Z | | ! ! o — - — W fAVLA MALV T A LAY AL
— 7=[ DSN(D)dD, (eq 2.30) : : : ‘ :
% 10 20 30 40 50 60 70 80 % % 10 20 30 40 5 6 70 8 9 100

Sample time [ms] Number of pulses

Figure24.  Exampleoutput plotsfrom ssimulator. (a) Doppler, (b) power,
(c) reflectivity, and (d) correlation coefficient. Notethat (d) isfrom a different
simulation than (a) — (c).
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V. ANALYSISOF APPLICATIONS AND DISCUSSION OF
RESULTS

A. IS IT POSSIBLE TO BUILD A WEATHER RADAR SIGNAL
SIMULATOR BASED ON A PHYSICAL MODEL OF A SPATIAL
REGION CONTAINING RAINDROPS?

The physical model built is based on the Rayleigh scattering approximation and
the number of scatterers and their sizes are specified using the Marshal-Palmer drop size
distribution. The drops are approximated by spheres and are uniformly distributed in a
volume defined by the radar data and the return signal is calculated by summing the
electric field. The model accounts for varying terminal velocities for different drops sizes
and allow input for wind, which is represented by a 3-dimesional vector applied to every
drop. The wind vector is implemented with a Gaussian spread among drops enabling

investigation of correlation effects, which can be applied within or between pulses.

The results from running the simulator show that using the model developed will
generate data following expected theoretical distributions. The simulator treats the rain
drops as point targets adding the electric fields to generate the RCS. The results verify
the assumption that the average return from rain can be approximated by adding the
RCSs of all drops. The simulator can be adapted to explore effects of changes in DSD.
Since the simulator distributes the drops randomly within the whole volume, including
the resolution volume and its margins, the average distribution for sub-cells does not fully

follow that of Marshal-Palmer. The effects of this should be further explored.

The current version of the simulator does not take into account attenuation,
mutual coupling, and multiple scattering. Neither losses nor noise are introduced and
dual polarization is left for future work. Although simplified, the weather radar signal
simulator based on a physical model of a spatial region containing raindrops produced

from this research work will allow for further development improving realism.
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B. CAN REALISTIC MOTION THAT DEPENDS UPON THE TYPE OF
WEATHER SYSTEM BE IMPARTED TO THE RAINDROPS?

This work has prioritized the electromagnetic and radar aspects and the
meteorology portions have been kept to a minimum. The simulator version presented
uses a vector model to introduce motion to the raindrops. This can be adapted to impart
realistic motion. To do that, realistic models need to be acquired in vector form allowing
implementation in the simulator. The current version of the simulator measures only one
resolution cell exploring effects of de-correlation using different schemes. However, the
simulator can be extended to cover a larger volume including several range bins. Using
velocity spread as an input parameter makes it possible to simulate spectrum widening
effects without having to create a detailed physical model of each spreading factor.
There is no doubt that using a vector model would make it possible to implement realistic
motion to the raindrops although this has not been done in this version of the simulator. It

was beyond the scope of the thesis to fully implement realistic motion models.

C. CAN THE OUTPUT OF THE WEATHER RADAR SIMULATOR BE
USED TO STUDY SPATIAL AND TEMPORAL SAMPLING SCHEMES
FOR CONSTANT OR STEPPED FREQUENCY SAMPLING PUL SES?

Two methods have been implemented focusing on temporal sampling; namely
adapting Pulse Repetition Frequency so the drops have time to reshuffle between pulses,
and Frequency shifting between sample pairs. A simulation was run with the following

data (for details see appendix C):
e Wavelength, 4 0.1 m
e PRF 300 Hz
e Wind —5m/s in x-direction (=radial velocity)
e Velocity spread 2 m/s

To determine a suitable PRF the sample time threshold provided in Equation

(2.18) was used. The average Z of the simulator data lies within 0.5 dB of the integral
form which is also true for the value retrieved using the power samples (see Figure 25).

The reflectivity estimate based on sample power lies approximately 1 dB below the
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estimated average reflectivity, Z and 0.5 dB below the ground truth, which can be
explained by the approximation of the radar beam where only drops inside the half power
beamwidth are considered. The drop position within the radar beam will also affect the
gain level, which makes the position of the drops vital. A constant gain approximation
might result in a more accurate approximation. The chosen PRF led to a level of

correlation of p =0.543, which is just below the threshold of 0.6 but still enough to

make it difficult to estimate radial velocity with reasonable accuracy. The sample pairs
are not strongly correlated which makes an estimate possible but the variance will cause

errors partly due to the lack of correlation, and partly because there are too few samples.

A new simulation was run this time using a rapid scanning scheme with stepped
frequencies as described in a previous section. The new simulation was run using the
same inputs but adding another PRF of 5000 Hz to improve the Doppler estimation
capability.

The result were very similar to the first run using only time to acquire de-
correlation, however, comparing the total time to produce 50 samples differ significantly,
still accomplishing a Z-value close to the integral form (Figure 26). The reason for this is
that the 300 Hz PRF only needs to be used to separate equal frequencies while stepping
between frequencies can be done very quickly. Three de-correlated samples can now be
collected in almost the same amount of time as previously only one pulse could be. The
pulse pair scheme also enables an estimation of radial velocity seen in Figure 27. The
spread was larger than the input of 2 m/s which can be explained by the fact that the

spread was applied both between pulses and within pulses between different drop sizes.
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Figure25.  Temporal Sampling, PRF variation. PRF 300 Hz. Velocity
Spread 2 m/s between pulses and within pulsesfor drops of different sizes.

The output from the latest simulation presented an average radial velocity of
—5.25 m/s and a velocity spread of 4.6 m/s (using Equations (2.33) and (2.34)) which is

close to the expected values.
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Figure26.  Temporal Sampling, Stepped Frequency. PRF; 5000 Hz, PRF;
300 Hz. Velocity Spread 2 m/s between pulses and within pulsesfor drops of
different sizes.
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Figure27.  Veocity histogram with Gaussian Fit, Temporal Sampling

using stepped frequency. Theinput velocity was -5 m/s. 6, =4.6 isestimated
using Equations (2.33) and (2.34).
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To analyze the simulator behavior over time for several consecutive runs, a
simulation series was performed using 50 runs and the results were analyzed for different
number of pulses. In [2] the intensity probability distribution for the averaged return for
different numbers of pulses was plotted as in Figure 28, where the dependence of the

number of pulses can be seen.

4/A?

3/A?

2/A?

1/A?

A 2A2 3A°

Figure28.  Probability distributiongf Jk, Which isthereturn intensity.
Theintensity averageis A’ (From [2]).

Running the simulator using a 4=0.1 m, and a PRF of 200 Hz, which represents
a correlation coefficient of about 0.04 (Equation (2.15)) considering a velocity spread of
4 m/s, renders results seen in Figure 29. The figures resemble each other in shape but for
N =100 samples, the peak for the simulator distribution is not as high as the result in
Figure 28. As the number of pulses goes up the distribution become more Gaussian,
which is expected for any distribution if the number of samples increases. Also, the

spread decreases as the number of pulses increases. Having completely independent

samples will change the average velocity spread as o, =£, where K is the number of

N

60



pulses or samples. The results are somewhat expected since the distribution of the power
return is expected to be exponential [3]. The standard deviation of an exponential

distribution is expected to be equal to the mean of the same, which the results verify.

However, if samples are independent the spread should decrease with a factor of 1/ Jk

as K increases. For 2 pulses the expected value equals 1/ J2=0.71 , which matches the
simulator result. For 10 pulses the value is 0.316, while the simulator shows 0.41.
Finally for 100 pulses the value is 0.10. The simulator shows 0.21, which is more than
the double what is expected. This suggests that not all samples can be considered
independent. Why this occurs when a sufficient spread is applied cannot be explained at

this point but is of relevance for future investigations.

Histogram
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Figure29.  Histogram showing distribution of intensity (power) from 200
consecutiveruns. Number of pulsesaveraged is1, 2, 10 and 100. p =0.04 so

independent samples are expected. Therelative standard deviation (6, / 5) in
each caseis, 1 pulse=0.99, 2 pulses=0.74, 10 pulses=0.41, and 100 pulses=0.21.
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D. CAN THE WEATHER RADAR SIMULATOR BE USED TO STUDY THE
USE OF PULSE COMPRESSION AND RANGE AVERAGING AS A
MEANSOF RAPIDLY OBTAINING INDEPENDENT SAMPLES?

A simulation was performed using the simulator version adapted to pulse
compression as described in a previous section. The resolution volume differs from the
previous simulations because of the stretched pulse making the range dimension of the
resolution cell 10 times larger. All other data was set as before, i.e. PRF of 300 Hz, wind
speed of 5 m/s and a velocity spread of 2 m/s. The number of pulses is still 50 but they
are used differently letting every pulse cover a range bin equal to previous runs. The new
stretched pulse consists of 10 sub-pulses of different frequencies creating the chirp. Each
new pulse is summed over all frequencies stepped over the whole resolution cell and then
averaged. Effectively only 5 pulses are used, but since each pulse consists of 10

frequency steps, the average value is based on 50 samples.
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Figure30. Pulse Compression ssimulation. 5 pulses, Frequency stepped
from 3 GHzto 3.0018 GHz with 0.2 MHz stepsfor each pulse.

The estimate of Z based on averaging lies 1.0 dB above the result using the

integral form, which indicates good accuracy. The smaller deviation between samples

62



compared with previous simulations can be explained by the fact that each value really
represents an average of 10 range bins. The higher level can be explained by the method
used to average. The volume of the different resolution bins increases moving away from
the radar so if this is not taken into account when averaging, the values will end up
deviated from the expected value. Another explanation is the fact that the spread in
frequency is not enough to ensure sufficient de-correlation to get independent samples.
Running the simulator for 8 stretched pulses generated a result very close to the integral

form (0.4 dB) something that needs further investigation for verification.

The results show the possibility to use the simulator to study the use of pulse

compression and range averaging as a means of rapidly obtaining independent samples.

E. CAN THE OUTPUT OF THE WEATHER RADAR SIGNAL SIMULATOR
BE USED TO PRODUCE DISPLAYS OF PEDAGOGICAL INTEREST?

During the progress of building the simulator, several displays have been
developed and used to assist with the evaluation of each module. Once the simulator
output data has been produced it is all numbers making it possible to post process in
many different ways, displays being one. To be able to use the simulator in teaching,
visual aids presenting the signal pulse-to-pulse were developed as well a phasor
representation displaying the phase change over time between pulse pairs. Adding a
Graphical User Interface, GUI, would probably enhance the utility the simulator as a
pedagogical tool for investigating the effects of different weather phenomena and
variation of input values for both radar and weather parameters. Nevertheless, the output

of the existing simulator can be used to produce displays of pedagogical interest.

F. CAN THE OUTPUT OF THE WEATHER RADAR SIGNAL SIMULATOR
BE USED TO STUDY THE PERFORMANCE OF ESTIMATORS FOR
THE FIRST THREE DOPPLER MOMENTS?

The first versions of the simulator only allowed for changes in a single PRF
making it possible to vary time between pulses effecting de-correlations. The simple
form of return signal produced samples equally spaced in time making it simple to

perform post processing in the form of auto correlation and FFT. The spectrum was
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plotted and it was possible to derive an estimated radial velocity of the drops from the
average Doppler frequency. When the complexity of the return signal increased and the
simulator allowed for multiple PRFs and delays, the signal needed manipulation to enable
FFT or autocorrelation. Initial trials padding the signal with zeros making the samples
equally spaced in time were performed but adding time to a signal demands more signal
processing to remove effects of folding and aliases. Digital signal processing is beyond
the original scope of the thesis which is why this interesting trail was abandoned. There
are no test runs verifying that the simulator can be used to study the performance of
estimators for the first three Doppler moments but that does not imply that the simulator
cannot be used for this application. Having a complex return signal allows for post

processing of many sorts, as mentioned earlier.

G. CAN THE OUTPUT OF THE WEATHER RADAR SIGNAL SIMULATOR
BE USED TO STUDY THE UTILITY OF ESTIMATORS FOR HIGHER
ORDER DOPPLER MOMENTS?

Since the estimation of the lower order of estimators was not performed, the

higher order estimators have not been investigated.
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V. CONCLUSIONSAND RECOMMENDATIONSFOR FUTURE
DEVELOPMENT AND WORK

A. CONCLUSIONS

The objective of the research was to build a weather radar signal simulator
delivering I and Q channel outputs from a physical representation of rain drops. A
previously developed simulator was initially evaluated and verified serving as the basic
building block when developing the final version. The Radiation Integrals were used to

derive the electromagnetic scattering from rain drops approximated as dielectric spheres.

Without accounting for multiple scattering, attenuation, or coupling effects, the
scattered electric field from each drop is summed for every pulse providing the total RCS
of the rain in the radar resolution cell as well as a complex voltage return representation.
Using the Marshall-Palmer drop size distribution, an initial position for every drop is
determined within an extended volume enabling the drops to fall through the radar beam
for all samples. Between pulses the drops are moved according to their respective
terminal velocities based on the Atlas-Ulbrich approximation and wind. To allow for
width in the velocity spectrum, a Gaussian velocity spread is applied to the drops
between and within pulses. The simulator power return is weighted using the Radar
Range Equation for point targets, considering all drops as point targets, and evaluated as

a volume target using the Weather Radar Range Equation.

Several different functionalities have been implemented allowing for stepped
frequencies, multiple PRFs, pulse compression using a chirp, and variation of radar and
weather input parameters. Post processing capabilities include autocorrelation and FFT
(only for single PRF version); computation of weather parameter estimates such as
reflectivity factor, Z; average doppler, radial velocity, and velocity spread; pedagogical
plots including a Phasor plot of phase change over time, a velocity histogram, power and

reflectivity for each pulse over time.

This research has shown that building a weather radar signal simulator based on a
physical model of a spatial region containing raindrops is possible. The benefit of using a

physical model is improved realism and the ability to study effects of scientific interest.
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Also, the model permits isolation of effects making it possible to explore the results when
varying some parameters while keeping others fixed. Using a vector model to input wind
and other effects on the rain drops makes it possible to impart realistic motion to the
drops although this has not been done fully in this version of the simulator. This was
beyond the scope of this thesis but is a recommended area for further study. Evaluating
the result from averaging radial velocity rendered an interesting finding namely the
difference between using FFT, autocorrelation, and pulse pair processing to estimate
radial velocity. Using the FFT or autocorrelation skewed the result towards the bigger
drops because the amplitude information is kept in the process. On the other hand with
the pulse pair algorithm, only the phase information is used, resulting in a “true” average
velocity for all drops regardless of size. Intuitively smaller drops would be more
susceptive to wind than bigger drops which would emphasize the need for pulse pair
algorithms over the FFT or autocorrelation for better wind velocity estimates. No
theoretical investigation or look for research in this area has been performed but is
suggested for future studies. Different implementations of velocity spread have been
tested leading to variations in results. The final version of the simulator allows for spread
both between pulses, which represents how the average velocity is spread between
samples; and within pulses with a size dependent spread, which represents the spread

within the resolution cell.

The title of this research indicates where the priority lies, namely developing the
simulator to examine sampling rates and scanning schemes. The results show that it is
possible to use the weather radar simulator to study spatial and temporal sampling
schemes for constant or stepped frequency sampling pulses. The research aimed at
building the radar and not to fully explore the effects of different rate and schemes, but
the results from testing and verification indicate that using methods to more rapidly
obtain independent samples decreases the time to obtain accurate estimates of weather
signal parameters. By introducing three frequency steps, the time to acquire accurate
data was reduced by a third, still being able to acquire Doppler information as well as
reflectivity. However, more simulations need to be performed comparing results when
parameters are varied to fully explore the benefits of frequency stepping and its
limitations.
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By implementing a pulse compression capability, using frequency stepping and
range averaging, results were provided showing the ability to rapidly obtain independent
samples using pulse compression. Increasing the radar resolution cell slows down the
simulator, which can be compensated by increasing the Norm-factor (see previous
chapters for details). Again further testing is suggested exploring the effects of varying

parameters.

Post processing the signal samples provides wide-ranging opportunities for
different displays of pedagogical interest. Most plots have been developed to compare
and verify results but some plots have been developed only to display pedagogically
interesting phenomena. Being able to follow phase change over time is an example of the

latter. Implementing a GUI will probably be the greatest improvement in this area.

Having an accurate signal allows for more than just plots of results, it opens up
possibilities for post processing schemes beyond the scope of this work. Previously
indicated processing includes filtering, FFT and autocorrelation. In the introduction,
cross scientific benefits were mentioned signifying the use of knowledge from one area in
another. Having a weather signal consisting of rain echoes can be used to show or

investigate filtering to remove weather clutter.

The initial intentions included ideas of improving the simulator speed by
optimizing algorithms and scripts. This has not been accomplished. However, the
simulator runs a simulation locally on a PC with an Intel Pentium 4 processor 550
(3.4GHz, 1M, 800MHz FSB, NTFS Memory 4.0GB DDR2 Non-ECC SDRAM, 400Hz

(4DIMM)), in just a few minutes, depending on complexity and input parameters.

B. RECOMMENDATIONS FOR FUTURE RESEARCH

The simulator is ready to do its job, setting more than one path for future work.
The focus in this research has been to develop a tool for research, which leaves the
weather research parts for future work. Two main areas of development and research are

proposed:

e [Examine sampling rates and scanning schemes for fast volumetric scanning

and update
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e Simulator development

1. Examine Sampling Rates and Scanning Schemes for Fast Volumetric
Scanning and Update

Weather Radar Signal Simulator should be run to examine weather signal
parameter estimation sensitivity when varying radar parameters and precipitation
estimator models where changing the drop size distribution would be of interest.
Comparison should be made to real life measures as well as theoretical models. To
complement this work weather models should be explored to find the physics behind
different weather phenomena enabling implementation in the simulator. Alterations in

the simulator might be necessary to facilitate this implantation.

2. Simulator Development
Even though the final version of the simulator has several interesting

functionalities many interesting effects and functionalities can be added.

a. Adding a GUI
The main priority developing the simulator should be to create a GUI making the

tool more user-friendly.

b. Modeling Non-Spherical Drops

The current simulator approximates each drop, regardless of size, as a
dielectric sphere. Research show that drops flatten [9] while falling so an oblate spheroid
approximation would be more appropriate. Work done by Bringi and Chandrasekar [14]

provide good mathematical tools enabling implementation in the simulator.

C. Adding Dual Polarization
Implementing a spheroid approximation makes dual polarization
measurements possible and new estimates can be computed such as differential

reflectivity. The complexity of this can be overwhelming considering effects like cross
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talk and multiple scattering. This is a problem for scientists or students who are

searching for a real challenge.

d. Post Processing for Higher Order Moments

The output signal can be post processed to produce the power spectrum,
which was done in the early versions that had uniform time spacing between samples.
Applying digital signal processing to the output signal, retrieving the power spectrum
would make it possible to explore higher order moments of the spectrum and to evaluate

their utility as estimators.

e Linking Simulator Input to Storm Physics

As mentioned, storm models should be explored to determine the physics
associated with different weather phenomena. The physics can be used to determine the
wind velocity and velocity spread that should be used as simulator input parameters.
This will add to the realism of the simulator and will make it possible to explore effects

on the radar signal caused by different weather phenomenon.

f. Adding Noise to the Weather Signal
Real weather signals will always be contaminated by some noise. Noise
from all sources should therefore be added as a set of inputs. The benefit of this would

be the ability to study the degradation caused by noise.

0. Adding Mutual Coupling

Mutual coupling was examined but needs more attention and different
techniques to enable implementation into the simulator. For large rainfall rates, raindrops
may be spaced at distances that result in mutual coupling. The total RCS in this case will
be less than that computed assuming no coupling. This effect needs further investigation
to determine what storm types and rain rates result in coupling that renders the

independents scattering assumption invalid.
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APPENDIX A. DERIVATION OF RCSFOR SINGLE DROP

A water drop can be approximated as a small dielectric sphere. Let the sphere
radius be a, and the permittivity £, and permeability £, also let the sphere be centered at

the origin. An incident plane wave is present
E = ZEoe_jkx
The electric field at a point in space can be expressed as
E = Ei + Es
Using the volume equivalent principal, the current J can be written as
J=jo(e- & )E

Letting a> A, E is then approximately E = ZE, (constant inside). Using

—

E.= J E, can be derived as
3we,

_ _ j 3

JEi=E=E +Es=E +

3we,

jo(e.g,—¢€,)E _E_ (e, —1)2E
3we, | 3
5E, = Ei _ 3Ei
14 (& 3—1) (€ +2)

2E1=Ei+j

Now solving for J

_ 3E
(€ +2)
- —
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jo 13we, (€, ~DE
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2E,
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Finally putting the current in the radiation integral

E(r,6,0) :ﬂe"'kr Hjjejkgd\/, g=0

Jk77 o i 130 (& _DE 2 2 2@
E(r.0,9)=— "¢’ o [ dy [ o7
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E(r.0.0)=" e ((gg +;)) Ea’

Using this in the formula for RCS renders, (letting a=D/2)
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APPENDIX B. MICROWAVE STUDIO SIMULATION SETUP

First the target(s) was created. All targets were spheres of 4 mm in diameter with

the specifications of a water drop. The incident ray was a plane wave in the z-direction

with polarization in the x-direction or in the y-direction. When adding the second drop,

the drop was placed side by side with the first drop, i.e. in the x-direction. The plots are

farfield plots in spherical coordinates. The mesh resolution was set to 20 lines per

wavelength.
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Figurel. Target. Water drop.
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Heshplane at x= 8 ( Index= 8 )

Figure 4. Resolution of the Meshed grid.

Figure5. Two drop set-up.
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Heshplane ot y= 8 ( Index= 8 )

Figure 6. Resolution of the Meshed grid for two drops.
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APPENDI X C.

Radar Data
P_t=10e3;
G_dB=20;
G=10"(G_dB/10);
angle 3db=0.20;
pulsewidth=0.20;
elevation=3;
margine=>5;
azimuth=0;
number_pulses=50;
PRT=1/300;
distance=0.5;
wavelength=0.1;
k=2*pi/wavelength;

Rain parameters
diam_low=0.05;
diam_lim=1;
diam_mid=S5;
diam_high=15;
resolution1=0.08;
resolution2=0.3;
resolution3=0.8;
sort_approx=1;
kw=0.93;
rain_rate=50;
rain_anglel=0;
rain_angle2=0;
wind_vector=[-5,0,0];
spread=2;
Norm=100;

SIMULATION SETUP FOR THE WEATHER

RADAR SIMULATOR

% Transmitted power

% Maximum gain in dB

% Maximum gain

% 3 dB Beam angle [degrees], (half half power beamwidth)
% Pulsewidth [microsecond]

% Elevation angle [degrees]

% margin for resolution cell[m]

% Azimuth angle [rad]

% Number of pulses

% Pulse Repetition Time [seconds]

% Range from the radar to the resolution cell [Km]
% Wavelength [m]

% Lowest diameter of Precipitation [mm]
% Divider between low and mid [mm)]

% Divider between mid and high [mm)]

% Highest diameter of Precipitation [mm]
% Lower diameter resolution [mm]

% Higher diameter resolution [mm]

% Highest diameter resolution [mm]

% RCS approximation model; [1]=Rayleigh
% abs(K)"2 approx for water

% Rain Rate [mm/h]

% degrees Rain Angle (Phi)

% degrees Rain Angle (Theta)

% Wind speed vector (X,y,z) [m/s]

% Wind speed spread [m/s], (all directions)
% Normalization coefficient
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APPENDIX D. CODE DEVELOPED IN MATLAB.

There are currently four versions of the simulator:

1) The basic version, WR_basic, that will run with one PRF. The plots include
e Doppler per pulse pair with average Doppler,
e Radial velocity histogram with Gaussian fit
e Return power with average Return power
e Reflectivity estimations with Ground Truth for comparison

e Voltage Correlation function with estimation of p(7=T,)

e Power spectrum of return signal

2) Dual PRF version, WR dual prf, that will run with two PRFs. The plots

include
e Doppler per pulse pair with average Doppler,
e Radial velocity histogram with Gaussian fit
e Return power with average Return power
e Reflectivity estimations with Ground Truth for comparison

e Phasor plots for the 30 first pulse pairs.

3) Frequency step version, WR_fq_step, that will step through several frequencies
and transmit a pulse pair on every frequency. One PRF controls the time between pulses
in the pulse pair and one PRF controls the time between equal frequencies. The plots

include

e Doppler per pulse pair with average Doppler,
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e Radial velocity histogram with Gaussian fit
e Return power with average Return power
e Reflectivity estimations with Ground Truth for comparison

e Phasor plots for the 30 first pulse pairs.

4) Pulse compression version, WR_pulse com, that divide the resolution volume into
range bins and averages over bins and pulses. The chirped pulse is approximated by

discrete stepped frequencies. The plots include
e Return power with average Return power
e Reflectivity estimations with Ground Truth for comparison

1) WR_basic

% Weather Radar Signal Simulator, developed version
% UIf Schroder

% July, 2005

%

% Main program for The NPS/Marielle Gosset Weather Radar Signal Simulator.

%
% DESCRIPTION

% Part |

% From Radar Data:

% - Generate Beam Resolution cell approximation

% - Generate Cube adding a margine to the Beam Resolution cell to allow for
% the rain drops to fall trough the through beam over time.

%

% Part II

% From Rain Parameters:

% Generating the fundamental T Matrix concisting of

% - Diameter Vector and Number of drops in each diameter interval

% using the Marshall-Palmer exponential approximation.

% - the backscatter RCSs for each Diameter size

% - the total number of drops for each size per m"3

% Part III
% Randomly place all drops in cube

% Part IV
% For every pulse the coherent Electric field return is calculatet. Between
% pulses all drops are moved.

% Part V
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% Calculate and plot results
%

clear all
close all
clc

% Input Data
c=3e8; % Speed of light [m/s]

% Radar Data

P t=10e3; % Transmitted power

G_dB=20; % Maximum gain in dB

G=10"(G_dB/10); % Maximum gain

angle 3db=0.20; % 3 dB Beam angle [degrees], (half half power beamwidth)
pulsewidth=0.20; % Pulsewidth [microsecond]

elevation=3; % Elevation angle [degrees]

margine=5; % margin for resolution cell[m]

azimuth=0; % Azimuth angle [rad]

number pulses=40; % Number of pulses

PRT=1/200; % Pulse Repetition Time [seconds]

distance=0.5; % Range from the radar to the resolution cell [Km]

wavelength=0.1; % Wavelength [m]
k=2*pi/wavelength;

% Rain parameters

diam_low=0.05; % Lowest diameter of Precipitation [mm]
diam_lim=1; % Divider between low and mid [mm]
diam_mid=S5; % Divider between mid and high [mm]
diam_high=15; % Highest diameter of Precipitation [mm]
resolution1=0.08; % Lower diameter resolution [mm]
resolution2=0.3; % Higher diameter resolution [mm]
resolution3=0.8; % Highest diameter resolution [mm]
sort_approx=1; % RCS approximation model; [1]=Rayleigh
kw=0.93; % abs(K)"2 approx for water

rain_rate=50; % Rain Rate [mm/h]

rain_anglel=0; % degrees Rain Angle (Phi)

rain_angle2=0; % degrees Rain Angle (Theta)
wind_vector=[-10;0;0]; % Wind speed vector (x,y,z) [m/s]
spread=1; % Wind velocity spread [m/s], (all directions)
spread 2=4; % Drop velocity spread [m/s],

Norm=100; % Normalization coefficient

% Directional cosines
u=sin(pi/2-elevation*pi/180)*cos(azimuth*pi/180);
v=sin(pi/2-elevation*pi/180)*sin(azimuth*pi/180);
w=cos(pi/2-elevation*pi/180);

%
% Part I, Generate the resolution volume
%
% Approximation of the resolution cell of the pulse circular box,
% for any azimuth angle

%
% INPUT
% - distance
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% - angle 3dB
% - pulsewidth
% - elevation
% - margine

% - azimuth

%
% OUTPUT

% - volume_resolution: computed volume of the resolution cell

% - volume_box: volume of the box where the drops are put

% - box: the 8 rectangular coordinates of the box

% - coord_vol res: the coordinates of the resolution cell where the drops
% are taken.

%

%
% Creating the circular beam resolution cell
range_res=(c*pulsewidth*1e-6)/2;

% Range resolution (ct/2) [m]

% small angle approximation allows for following

angle rad=(angle 3db*pi)/180;
% 3 dB beamwidth [rad]

radius1=(tan(angle rad)*(distance*1000));
% Radius of beam at R=distance

radius2=(tan(angle rad)*((distance*1000)+range res)); ...
% Radius of beam at R=distance + range resolution

surfacel=pi*radius12;
surface2=pi*radius2”2;

% volume of cone = base surface times height for all three
volume_conel=(surfacel *(distance*1000))/3;
volume_cone2=(surface2*((distance*1000)+range res))/3;
volume_resolution=(volume cone2-volume conel); % Beam Cone Volume

% computation of the resolution cell coordinates, spherical coordinates
% elevation in radians

elevation _rad=(elevation*pi)/180; % Elevation [rad]
azimuth _rad=(azimuth*pi)/180; % Azimuth [rad]

% Matrix used when comparing wheather a drop is inside or outside
% beamwidth
coord_vol_res=[distance*1000,(distance*1000)+range res;elevation rad-angle rad,...
elevation_rad+angle rad;azimuth rad-angle rad,azimuth rad+angle rad];
%

%
% Creating the box

% computation of the box and its coordinates

coinl=[azimuth rad+angle rad,elevation rad+angle rad,distance*1000];
coin2=[azimuth rad-angle rad,elevation rad+angle rad,distance®*1000];
coin3=[azimuth_rad+angle rad,elevation rad-angle rad,distance*1000];
coind=[azimuth_rad-angle rad,elevation_rad-angle rad,distance*1000];

coin5=[azimuth rad+angle rad,elevation_rad+angle rad,distance*1000+range res];
coin6=[azimuth_rad-angle rad,elevation rad+angle rad,distance*1000+range res];
coin7=[azimuth _rad+angle rad,elevation rad-angle rad,distance*1000+range res];
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coin8=[azimuth_rad-angle rad,elevation rad-angle rad,distance*1000+range res];

[x1,y1,z1]=sph2cart(coinl(1),coinl(2),coinl(3));
[x2,y2,z2]=sph2cart(coin2(1),coin2(2),coin2(3));
[x3,y3,z3]=sph2cart(coin3(1),coin3(2),coin3(3));
[x4,y4,z4]1=sph2cart(coin4(1),coind(2),coin4(3));
[x5,y5,z5]=sph2cart(coin5(1),coin5(2),coin5(3));
[x6,y6,z6]=sph2cart(coin6(1),coin6(2),coin6(3));
[x7,y7,27]=sph2cart(coin7(1),coin7(2),coin7(3));
[x8,y8,z8]=sph2cart(coin8(1),coin8(2),coind(3));
xmax=max([x1,x2,x3,x4,x5,x6,x7,x8]);
xmin=min([x1,x2,x3,x4,x5,x6,x7,x8]);
ymax=max([y1,y2,y3,y4,y5,y6,y7,y8]);
ymin=min([y1,y2,y3,y4,y5,y6,y7.,y8]);
zmax=max([zl,22,73,74,25,26,27,28));
zmin=min([z1,22,z3,74,25,26,77,28));

% the box with its margin
coin_1=[xmin-margine,ymin-margine,zmin-margine];
coin_2=[xmin-margine,ymax+margine,zmin-margine];
coin_3=[xmax+margine,ymax+margine,zmin-margine];
coin_4=[xmax+margine,ymin-margine,zmin-margine];
coin_5=[xmin-margine,ymin-margine,zmax-+margine];
coin_6=[xmin-margine,ymax+margine,zmax-+margine];
coin_7=[xmax+margine,ymax+margine,zmax+margine];
coin_8=[xmax+margine,ymin-margine,zmax-+margine];

box=[coin_1',coin_2',coin_3',coin_4',coin_5',coin_6',coin_7',coin_8';

% calculate the volume of the box
volume_box=abs((xmax+margine-(xmin-margine))*(ymax+8-(ymin-margine))*...
(zmax-+margine-(zmin-margine)));

cube=[coin_1',coin_2',coin_3',coin_4',coin_1',coin_5',coin_6',coin_2',...
coin_6',coin_7',coin_3',coin_7',coin_8',coin_4',coin_8',coin_5'];
%

%
% Part II, Generate the fundamental T Matrix
%
% This part produces a matrix of all drops that contribute to the total
% reflectivity of the resolution cell

%
% First all sizes are created, with two vectors of different size resolution.

% The size vectors represents all diameters. Next the backscatter RCS for each

% size is computed.

% Using the Marshall-Palmer exponential approximation, the number of drops of
% each diameter is computed.

%
% INPUT

% - diam_low
% - diam_lim

% - diam_high
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% - resolution]

% - resolution2

% - sort_approx
% - wavelength
% - Kw

% - rain_rate

%
% OUTPUT

% - number_drops

% Matrix T:

% - first row all sizes

% - second row all the backscatter RCSs

% - third row the total number of drops for each size per m"3
% the columns starting from the smallest size

%
% Create dropsize vector

% Precipitaion Diameter vector (lowest<D<divider)
vector_size 1=diam_low:resolutionl:diam_lim;

% Precipitaion Diameter vector (divider<D<mid)
vector_size 2=diam_lim:resolution2:diam_mid;

% Precipitaion Diameter vector (mid<D<highest)
vector_size 3=diam_mid:resolution3:diam_high;

% Precipitaion Diameter Vector
vector_size=[vector_size 1,vector size 2,vector size 3];

%
% Create RCS vector for all Rain drops of Precipitation Vector.
res=((kw”2)*(pi*5)/(wavelength™4))*((vector_size*1e-3).76);

%

%
% The Marshall Palmer approximation is used to create Precipitaion Diameter
% Distribution Vector (Drop Size Distribution N(D) Vector)

% The number of drops are scaled down by a factor (Norm) to improve the

% speed of the simulator

%
lambda=4.1*(rain_rate”(-0.21)); %[mm-1]
number=8000*exp(-lambda*vector_size)/Norm,;

vector_resl=ones(1,length(vector size 1))*resolutionl;
vector_res2=ones(1,length(vector_size 2))*resolution2;
vector_res3=ones(1,length(vector_size 3))*resolution3;

% delta(Diameter) dD
vector_res=[vector_resl,vector res2,vector_res3];

% the approximate "true" number of drops N(D)dD vector
number=number.*vector_res;
%

%
% create matrix T
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T=[vector_size;rcs;number];

%
% Change matrix '"T" to matrix 'matrix_ T Round'
%
% This part computes the total number of drops by utilizing the resolution
% cell and the matrix T Round

% The only difference between the matrix T Round and T, is the fact that
% matrix_T Round has the total number of drops on the third row and they
% are rounded of to nearest integer value.

%

matrix T Round=T;
matrix T Round(3,:)=round(matrix T Round(3,:)*volume box);

% Keep track of errors due to round off
diff=T(3,:)*volume box-matrix T Round(3,:);
error_rcs=sum(diff.*matrix_ T Round(2,:))*Norm/volume box*volume resolution;
error_Z=error_rcs/volume_resolution*wavelength”4/pi*5/abs(kw)"2/1e-18;

%
% Part 111, Initial positioning of the drops within the volume
%
% This part generates the initial position of the drops in the volume of
% the box.

% The positions are recorded in the file "sizexx.mat' taking into account
% the azimuth angle

%
% INPUT

% - box

% - matrix_T Round
% - elevation

% - azimuth

%
% OUTPUT

% All files including the sizes. Each contains the positions of all drops
% for a given diameter. The data recoreded as follows:

% - radial distance r

% - elevation phi

% - azimuth theta

% - angle with respect to beam center. This parameter will be

% used to identify drops which are in the beam.

%

% Randomly put the calculated number of drops of each diameter in the box
number_size=length(matrix T Round(1,:));

for i=1:number_size

% select number of drops of certain Diameter
drops=matrix_T Round(3,i);

% create as many positions on the x axis as # drops per size
elements_x=rand(1,drops);

% put them in the range of interest
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% Random placement x for every drop
position_x=box(1,1)+(box(1,3)-box(1,1))*elements_x;

% create as many positionson the y axis as # drops per size
elements_y=rand(1,drops);

% put them in the range of interest
% Random placement y for every drop
position_y=box(2,1)+(box(2,2)-box(2,1))*elements_y;

% create as many positions on the z axis as # drops per size
elements_z=rand(1,drops);

% put them in the range of interest
% Random placement z for every drop
position_z=box(3,1)+(box(3,5)-box(3,1))*eclements_z;

% matrix of results
% Creating a drop Matrix using spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% Calculating the range, phi, theta and angle to every drop with

% reference to phi_0 and theta_ 0. Used to estimate weighted power return.
vector_azimuth=ones(1,drops)*((azimuth*pi)/180);
vector_elevation=ones(1,drops)*((elevation*pi)/180);
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);
range=sqrt((position_x-xf)."2.+(position_y-yf)."2.+(position z-zf)."2);

% approximation
angle=atan(range./r);

% Saving the drop positions in size%d.mat
% matrixpos
matrixpos=[r;phi;theta;angle];

save(sprintf('size%d.mat',1),'matrixpos');

end
%
%
% Part IV, Calculate Coherent Electric field return.
%
% For every pulse the coherent Electric field return is calculatet. Between
% pulses all drops are moved.

%

% Run the simulation for specified number of pulses

% Zero all vectors and matrices that are going to be used
phase_vector=[];

sum_E=[];

weighted E=[];

for p=1:number_pulses

disp(sprintf('calculate the power-return of pulse %d\n',p));
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% compute the (weighted) I and Q return
%

% computes the total number of drops
%
% INPUT

% - Matrix T

% - wavelength

% - angle 3dB

% - distance

% - coord_vol res
% - number_pulses
%
% OUTPUT

% - total E: the received complex Electric field)
% - power: the power

% - voltage: the voltage

% - drops_beam: the number of drops in the beam
%
% Only the drops which are in the resolution cell are selected for the
% computation

%

number_size=length(matrix T Round(1,:));
total E=0;

total phase=0;

new_E=0;

for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',1));

% removing drops that are outside the resolution cell
number drops_per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops_per_size
if (matrixpos(4,d)<=(angle_3db*pi/180))&(matrixpos(1,d)>=...
coord vol res(1,1))&(matrixpos(1,d)<=coord_vol res(1,2)));
dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);
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% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
total E=total E+sum(sqrt(matrix_ T Round(2,i)).*phase);

%

% ceate weighted power return, concidering range (r), theta, phi

% with reference to boresight and radar parameters

E_weighted=sqrt(P_t)*G*wavelength/(sqrt(4*pi)"3)./dropmatrix(1,:)...
A2 .*(exp(-4*log(2).*((dropmatrix(3,:)-vector_azimuth).~2/...
(2*angle 3db*pi/180)"2+((dropmatrix(2,:)-vector elevation)...
2/(2*angle 3db*pi/180)"2))));

new_E=new E+sum(E_weighted.*(sqrt(matrix T Round(2,i)).*phase));

end
end
%

%
% This part simulates the movement of the drops and gives new positions.
%
% INPUT
% - matrix_T Round
% - PRT
% - azimuth
% - elevation
% - rain_anglel
% - rain_angle2
% - diam_lim

% - resolution]

% - resolution2
% - wind_vector
%
% OUTPUTS
% Output files containing sizes with new positions
% structured the same way as in previous
% there is also an output file for speed (one for each size) for the pulse
% pair.
%

number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind_vector(1)=wind_vector(1)*normrnd(1,abs(spread/max(wind_vector(1))));
else
new_wind vector(1)=0;
end
if wind_vector(2)~=0
new_wind_vector(2)=wind vector(2)*normrnd(1,abs(spread/max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
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if wind_vector(3)~=0
new_wind_vector(3)=wind_vector(3)*normrnd(1,abs(spread/max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',i));

% total number of drops
drops=matrix_T Round(3,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix_T Round(1,1);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
% Approximation is valid in the diameter range 5*e-4, 5¥e-3
%

wtmax=386.6*((matrix T Round(1,1)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);

newest_wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between drops
if new_wind_vector(1)~=0
newest_wind_vector(1l,:)=new_wind_vector(1)*...
normrnd(1,abs(spread_2/max(new_wind vector(1))),1,drops);
else
newest wind_vector(1,:)=0;
end
if new_wind_vector(2)~=0
newest_wind_vector(2,:)=new_wind_vector(2)*...
normrnd(1,abs(spread_2/max(new_wind_vector(2))),1,drops);
else
newest_wind_vector(2,:)=0;
end
if new_wind_vector(3)~=0
newest_wind_vector(3,:)=new_wind_vector(3)*...
normrnd(1,abs(spread_2/max(new_wind vector(3))),1,drops);
else
newest wind_vector(3,:)=0;
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end

% If spread within pulse

velocityxt=newest wind vector(1,:)-velocityx;
velocityyt=newest wind vector(2,:)-velocityy;
velocityzt=newest_wind_vector(3,:)-velocityz;

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity");

deplacementx=velocityxt*PRT;
deplacementy=velocityyt*PRT;
deplacementz=velocityzt*PRT;

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);

range=sqrt((position_x-xf).”2.+(position_y-yf).*2.+(position_z-zf).*2);
% approximation
angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);

save(s, 'matrixpos');

end

%
% add to E-field and phase vector
sum_E=[sum_ Etotal E]J;
weighted E=[weighted E.new E];
phase_vector=[phase vector, ANGLE(total phase)];

end

%

%
% Power return for every pulse including error

running_Z=(Norm*abs(sum_E)."2)*wavelength"4/pi*5/abs(kw)"2/volume_resolution...
/1e-18+error_Z;
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power_return=Norm*abs(weighted E).”2; % [W]

% calculate average Power and Z

Z avg=sum(running_Z)/p;

Z avg plot=ones(1,p)*Z avg;

power return_avg=sum(Norm*abs(weighted E).*2)/p; % [W]
power_return_avg_plot=ones(1,p)*power_return_avg;

% calculate doppler frequency
phase vector u=unwrap(phase vector);
doppler_fq=([phase_vector u(2:p)-phase_vector u(1:p-1)])/2/pi/PRT;

number_vector=1:p;

%
% Calculate references

% Integral form of Z

1i=0:100/1000:100;

zz=11.76.%8000.*exp(-4.1.*rain_rate.”(-.21).*ii);

real Z=ones(1,number_pulses)*10*log10(trapz(ii,zz));

% reflectivity real=ones(1,number pulses)*10*log10(pi*5/wavelength”4*...
%  volume_resolution*abs(kw)"2*real Z*1e-18);

% Adding the error to the weighted E estimations
error_power=error_rcs*P_t*G"2*wavelength”2/pi"2*(2*angle 3db*pi/180)"2*...
(c*pulsewidth*1e-6)/1024/log(2)/pi*2/(distance* 1€3)"2/volume_resolution;

% Evaluate average Power return to make Z estimation including error
Z_estimation=power_return_avg/P_t/G"2/wavelength”2*...
pi*2/(2*angle 3db*pi/180)"2/(c*pulsewidth*1e-6)*1024*log(2)*(distance* 1e3)"2/...
((kw"2)*(pi”5)/(wavelength™4))/1e-18;
Z_estimation_plot=ones(1,number pulses)*10*logl0(Z_estimation+error Z);

% calculate the FFT of the weighted electric field return (1024 points) to
% get the power spectal estimate

NN=1024; % number of FFT points

spectral estimate=abs(fft(weighted E-mean(weighted E),NN))."2;
spectral_estimate_shifted=fftshift(spectral_estimate);

%
% Part V, Plot of results
%

figure(1);

subplot(2,1,1);

plot(number_vector(1:p-1),doppler_fq(1:p-1),"-x',number_vector(1:p),...
ones(1,p)*mean(doppler_fq),"--1');

title(['Doppler frequency for all pulse pairs for PRF=",num2str(1/PRT),' Hz']);

xlabel("Pulse pair’);

ylabel('f d");

legend('Doppler frequency per pulse pair','Average Doppler estimation')

grid on

subplot(2,1,2);
v_r=doppler_fq*wavelength/2;
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hist(v_r,15)
hold on

[ff;xx] = ksdensity(v_r);

plot(xx, ff/max(ff)*max(hist(v_r,15)))

title('Radial Velocity Histogram with Gaussian Fit');
xlabel('Radial velocity [m/s]');

ylabel('Frequency');

grid on

figure (2)

subplot(2,1,1)

% also converting to dBm

plot(number_vector,10*log10(power_return+error_power)+30,'-x',...
number vector,10*loglO(power return_avg plot+error power)+30,'--1");

title('Power Return for all pulses');

xlabel('Sample time');

ylabel("Power [dBm]');

legend('"Power return', 'Average Power return',0)

grid on

subplot(2,1,2);

plot(number_vector* 1000*PRT,10*log10(abs(running_Z7)),'-xb',number_vector...
*1000*PRT,10*log10(abs(Z_avg_plot)),-.r',number_vector*1000%*...
PRT,real Z,'-k',number vector*1000*PRT,Z_estimation_plot,":b");

title('"Estimated Z per pulse');

xlabel('Sample time");

ylabel('Z [dBZ]");

legend('Simulation Z, actual', 'Average Z','Z=\int D*6N(D)dD',...
'Estimated Z, Zeroth moment',0)

hline = findobj(gca, Type','line");

set(hline,'LineWidth',2)

grid on

figure (3)

subplot(2,1,1)

f=abs(xcorr((weighted E),'coeff));
tau_ts=ones(1,length(f))*f((length(f)+1)/2-1);
plot(1:length(f),abs(xcorr((weighted E),'coeff’)),'d',1:length(f),tau_ts,'--r");
title('Return Voltage Correlation');

xlabel('"Number of pulses');

ylabel('Normalized correlation value');

legend(['Correlation function'],["\rho(\tau=T _s)=',num2str(tau_ts(1))])

grid on

subplot(2,1,2)
% Prepare for ticks so every 100 Hz is marked
n=0:1/PRT/100;
N_i=100*(NN-1)*n*PRT;
alfa=zeros(1,1/PRT/100+1);
vic=(length(alfa)-1)/2;
for beta=1:length(alfa)

alfa(1,beta)=-vic*100;

vic=vic-1;
end
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avg_fq=mean(doppler fq)

std_fg=std(doppler_fq)
gauss_vector=min(alfa):10:max(alfa);
uu=length(gauss_vector);
[valuel,index1]=max(abs(spectral_estimate shifted));
avg fq fft=(index1-NN/2)/PRT/NN;

plot_gauss vector=linspace(0,NN,uu);
plot norm_fgq=normpdf(gauss_vector,avg fq,std fq/2);
plot norm_fft=normpdf(gauss_vector,avg fq fft,std fq/2);

plot(spectral estimate shifted/max(spectral_estimate shifted))

hold on

plot(fftshift(abs(fft(xcorr((weighted E),'coeff'),1024))/...
max(abs(fft(xcorr((weighted E),'coeff’),1024)))),"-k")

title('Power Spectral Estimate');

xlabel('Doppler Frequancy [Hz]');

ylabel('S|f], normalized'");

x1im([0 NNJ);

set(gca,'xtick’, N 1)

set(gca,'xticklabel', num2str(alfa'));

grid on

2) WR_dual prf

% Weather Radar Signal Simulator, developed version
% Two PRFs enabling pulse pair comparison

% UIf Schroder

% August, 2005

%

% Main program for The NPS/Marielle Gosset Weather Radar Signal Simulator.

%
% DESCRIPTION

% Part |

% From Radar Data:

% - Generate Beam Resolution cell approximation

% - Generate Cube adding a margine to the Beam Resolution cell to allow for
% the rain drops to fall trough the through beam over time.

%

% Part II

% From Rain Parameters:

% Generating the fundamental T Matrix concisting of

% - Diameter Vector and Number of drops in each diameter interval

% using the Marshall-Palmer exponential approximation.

% - the backscatter RCSs for each Diameter size

% - the total number of drops for each size per m"3

% Part III
% Randomly place all drops in cube

% Part IV
% For every pulse the coherent Electric field return is calculated. Between
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% pulses all drops are moved.

% Part V
% Calculate and plot results
%

clear all
close all
clc

% Input Data

c=3e8; % Speed of light [m/s]

% Radar Data

P t=10e3; % Transmitted power
G_dB=20; % Maximum gain in dB

G=10"(G_dB/10); % Maximum gain
angle 3db=0.20; % 3 dB Beam angle [degrees], (half half power beamwidth)
pulsewidth=0.20; % Pulsewidth [microsecond]

elevation=3; % Elevation angle [degrees]

margine=5; % margin for resolution cell[m]

azimuth=0; % Azimuth angle [rad]

number pulses=40; % Number of pulses

PRT_1=1/2000; % Doppler Pulse Repetition Time [seconds]
PRT 2=1/200; % Avg Power Pulse Repetition Time [seconds]
distance=0.5; % Range from the radar to the resolution cell [Km]

wavelength=0.1; % Wavelength [m]
k=2*pi/wavelength;

% Rain parameters

diam_low=0.05; % Lowest diameter of Precipitation [mm]
diam_lim=1; % Divider between low and mid [mm]
diam_mid=5; % Divider between mid and high [mm]
diam_high=15; % Highest diameter of Precipitation [mm]
resolution1=0.08; % Lower diameter resolution [mm]
resolution2=0.3; % Higher diameter resolution [mm]
resolution3=0.8; % Highest diameter resolution [mm]
sort_approx=1; % RCS approximation model; [1]=Rayleigh
kw=0.93; % abs(K)"2 approx for water

rain_rate=50; % Rain Rate [mm/h]

rain_anglel=0; % degrees Rain Angle (Phi)

rain_angle2=30; % degrees Rain Angle (Theta)
wind_vector=[-10;0;0]; % Wind speed vector (x,y,z) [m/s]

spread=1; % Wind speed spread [m/s], (all directions)
spread 2=4; % Drop velocity spread [m/s],
Norm=100; % Normalization coefficient

% Directional cosines
u=sin(pi/2-elevation*pi/180)*cos(azimuth*pi/180);
v=sin(pi/2-elevation*pi/180)*sin(azimuth*pi/180);
w=cos(pi/2-elevation*pi/180);

%
% Part I, Generate the resolution volume
%
% Approximation of the resolution cell of the pulse circular box,
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% for any azimuth angle
%
% INPUT

% - distance

% - angle 3dB
% - pulsewidth
% - elevation
% - margine

% - azimuth

%
% OUTPUT

% - volume_resolution: computed volume of the resolution cell

% - volume box: volume of the box where the drops are put

% - box: the 8 rectangular coordinates of the box

% - coord_vol_res: the coordinates of the resolution cell where the drops
% are taken.

%

%
% Creating the circular beam resolution cell
range res=(c*pulsewidth*1e-6)/2;

% Range resolution (ct/2) [m]

% small angle approximation allows for following

angle rad=(angle 3db*pi)/180;
% 3 dB beamwidth [rad]

radius1=(tan(angle rad)*(distance*1000));
% Radius of beam at R=distance

radius2=(tan(angle_ rad)*((distance*1000)+range res)); ...
% Radius of beam at R=distance + range resolution

surface1=pi*radius1/2;
surface2=pi*radius2/2;

% volume of cone = base surface times height for all three

volume conel=(surfacel*(distance*1000))/3;

volume cone2=(surface2*((distance*1000)+range res))/3;

volume resolution=(volume cone2-volume conel); % Beam Cone Volume

% computation of the resolution cell coordinates, spherical coordinates
% elevation in radians

elevation_rad=(elevation*pi)/180; % Elevation [rad]
azimuth_rad=(azimuth*pi)/180; % Azimuth [rad]

% Matrix used when comparing wheather a drop is inside or outside

% beamwidth

coord vol res=[distance*1000,(distance*1000)+range res;elevation rad-angle rad,...
elevation rad+angle rad;azimuth rad-angle rad,azimuth rad+angle rad];

%

%
% Creating the box

% computation of the box and its coordinates

coinl=[azimuth rad+angle rad,elevation rad+angle rad,distance*1000];
coin2=[azimuth_rad-angle rad,elevation rad+angle rad,distance*1000];
coin3=[azimuth_rad+angle rad,elevation rad-angle rad,distance*1000];
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coin4=[azimuth rad-angle rad,elevation rad-angle rad,distance*1000];
coinS=[azimuth_rad+angle rad,elevation rad+angle rad,distance*1000-+range res];
coin6=[azimuth rad-angle rad,elevation rad+angle rad,distance*1000+range res];
coin7=[azimuth rad+angle rad,elevation rad-angle rad,distance®*1000+range res];
coin8=[azimuth rad-angle rad,elevation rad-angle rad,distance*1000+range res];

[x1,y1,z1]=sph2cart(coinl(1),coinl(2),coinl(3));
[x2,y2,z2]=sph2cart(coin2(1),coin2(2),coin2(3));
[x3,y3,23]=sph2cart(coin3(1),coin3(2),coin3(3));
[x4,y4,z4]=sph2cart(coin4(1),coind(2),coin4(3));
[x5,y5,25]=sph2cart(coin5(1),coin5(2),coin5(3));
[x6,y6,z6]=sph2cart(coin6(1),coin6(2),coin6(3));
[x7,y7,27]=sph2cart(coin7(1),coin7(2),coin7(3));
[x8,y8,z8=sph2cart(coin8(1),coin8(2),coind(3));

xmax=max([x1,x2,x3,x4,x5,x6,x7,x8]);
xmin=min([x1,x2,x3,x4,x5,x6,x7,x8]);
ymax=max([y1,y2,y3,y4,y5,y6,y7.y8]);
ymin=min([y1,y2,y3,y4,y5,y6,y7.,y8]);
zmax=max([z1,z2,23,74,25,26,27,z8]);
zmin=min([z1,z2,z3,74,25,26,77,z8));

% the box with its margin
coin_1=[xmin-margine,ymin-margine,zmin-margine];
coin_2=[xmin-margine,ymax+margine,zmin-margine];
coin_3=[xmax+margine,ymax+margine,zmin-margine];
coin_4=[xmax+margine,ymin-margine,zmin-margine];
coin_5=[xmin-margine,ymin-margine,zmax-+margine];
coin_6=[xmin-margine,ymax-+margine,zmax-+margine];
coin_7=[xmax+margine,ymax+margine,zmax+margine];
coin_8=[xmax+margine,ymin-margine,zmax-+margine];

box=[coin_1',coin_2',coin_3',coin_4',coin_5',coin_6',coin_7',coin_8'];

% calculate the volume of the box
volume box=abs((xmax+margine-(xmin-margine))*(ymax+margine-(ymin-margine))*(...
zmax+margine-(zmin-margine)));

cube=[coin_1',coin_2',coin_3',coin_4',coin_1',coin_5',coin_6',coin_2',...
coin_6',coin_7',coin_3',coin_7',coin_8',coin_4',coin_8',coin_5'];
%

%
% Part II, Generate the fundamental T Matrix
%
% This part produces a matrix of all drops that contribute to the total
% reflectivity of the resolution cell

%
% First all sizes are created, with two vectors of different size resolution.

% The size vectors represents all diameters. Next the backscatter RCS for each

% size is computed.

% Using the Marshall-Palmer exponential approximation, the number of drops of
% each diameter is computed.

%
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% INPUT

% - diam_low
% - diam_lim
% - diam_high
% - resolutionl
% - resolution2
% - sort_approx
% - wavelength
% - Kw

% - rain_rate

%
% OUTPUT

% - number_drops

% Matrix T:

% - first row all sizes

% - second row all the backscatter RCSs

% - third row the total number of drops for each size per m”"3
% the columns start with the smallest size

%
% Create dropsize vector

% Precipitaion Diameter vector (lowest<D<divider)
vector_size 1=diam_low:resolutionl:diam_lim;

% Precipitaion Diameter vector (divider<D<mid)
vector size 2=diam_lim:resolution2:diam_mid;

% Precipitaion Diameter vector (mid<D<highest)
vector_size 3=diam_mid:resolution3:diam_high;

% Precipitaion Diameter Vector
vector_size=[vector_size 1,vector size 2,vector size 3];

%
% Create RCS vector for all Rain drops of Precipitation Vector.
res=((kw”2)*(pi"5)/(wavelength”4))*((vector_size*1e-3).16);
%

%
% The Marshall Palmer approximation is used to create Precipitaion Diameter
% Distribution Vector (Drop Size Distribution N(D) Vector)

% The number of drops are scaled down by a factor (Norm) to improve the

% speed of the simulator

%
lambda=4.1*(rain_rate”(-0.21)); %[mm-1]
number=8000*exp(-lambda*vector_size)/Norm;

vector _resl=ones(1,length(vector size 1))*resolutionl;
vector res2=ones(1,length(vector size 2))*resolution2;
vector_res3=ones(1,length(vector_size 3))*resolution3;

% delta(Diameter) dD
vector_res=[vector_resl,vector res2,vector res3];

% the approximate "true" number of drops N(D)dD vector
number=number.*vector_res;
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%

%
% create matrix T
T=[vector_size;rcs;number];

%
% Change matrix '"T' to matrix 'matrix T Round'
%
% This part computes the total number of drops by utilizing the resolution
% cell and the matrix_T Round

% The only difference between the matrix T Round and T, is the fact that
% matrix_T_ Round has the total number of drops on the third row and they
% are rounded off to nearest integer value.

%

matrix_T Round=T;
matrix_T Round(3,:)=round(matrix T Round(3,:)*volume box);

% Keep track of errors due to round off
diff=T(3,:)*volume_box-matrix T Round(3,:);
error_rcs=sum(diff.*matrix T Round(2,:))*Norm/volume box*volume resolution;
error_Z=error_rcs/volume_resolution*wavelength”4/pi*5/abs(kw)"2/1e-18;

%
% Part II1, Initial positioning of the drops within the volume
%
% This part generates the initial position of the drops in the volume of
% the box.

% The positions are recorded in the file "sizexx.mat' taking into account
% the azimuth angle

%
% INPUT

% - box

% - matrix_T Round
% - elevation

% - azimuth

%
% OUTPUT

% All files including the sizes. Each contains the positions of all drops
% for a given diameter. The data recoreded as follows:

% - radial distance r

% - elevation phi

% - azimuth theta

% - angle with respect to beam center. This parameter will be

% used to identify drops which are in the beam.

%

% Randomly put the calculated number of drops of each diameter in the box
number_size=length(matrix T Round(1,:));

for i=1:number_size

% select number of drops of certain Diameter
drops=matrix_T_ Round(3,i);
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% create as many positions on the x axis as # drops per size
elements_x=rand(1,drops);

% put them in the range of interest
% Random placement x for every drop
position_x=box(1,1)+(box(1,3)-box(1,1))*elements_x;

% create as many positionson the y axis as # drops per size
elements_y=rand(1,drops);

% put them in the range of interest
% Random placement y for every drop
position_y=box(2,1)+(box(2,2)-box(2,1))*elements_y;

% create as many positions on the z axis as # drops per size
elements_z=rand(1,drops);

% put them in the range of interest
% Random placement z for every drop
position_z=box(3,1)+(box(3,5)-box(3,1))*elements_z;

% matrix of results
% Creating a drop Matrix using spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% Calculating the range, phi, theta and angle to every drop with

% reference to phi_0 and theta_ 0. Used to estimate weighted power return.
vector_azimuth=ones(1,drops)*((azimuth*pi)/180);
vector_elevation=ones(1,drops)*((elevation*pi)/180);
[xf,yf,zf]=sph2cart(vector_azimuth,vector elevation,r);
range=sqrt((position_x-xf).”2.+(position_y-yf).”2.+(position_z-zf)."2);

% approximation
angle=atan(range./r);

% Saving the drop positions in size%d.mat
% matrixpos
matrixpos=[r;phi;theta;angle];

save(sprintf('size%d.mat',1),'matrixpos');

end
%

%
% Part IV, Calculate Coherent Electric field return.
%
% For every pulse the coherent Electric field return is calculatet. Between
% pulses all drops are moved.

%

% Run the simulation for specified number of pulses

% Zero all vectors and matrices that are going to be used
powerT=0;
vector_power=[];
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phas

e_vector=zeros(1,2*number_pulses);

imaginary return=zeros(1,2*number_pulses);
sum_E=[];
weighted E=[];

for p=1:number_pulses

disp(sprintf('calculate the power-return of pulse %d\n',p));

%
%

compute the (weighted) I and Q return

% computes the total number of drops
%
% INPUT

% - Matrix T

% - wavelength

% - angle 3dB

% - distance

% - coord _vol res
% - number_pulses
%
% OUTPUT

% - total _E: the received complex Electric field)
% - power: the power

% - voltage: the voltage

% - drops_beam: the number of drops in the beam
%

% Only the drops which are in the resolution cell are selected for the

% computation
%

number_size=length(matrix T Round(1,:));
total E=0;

total phase=0;

new_E=0;

for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',i));

% removing drops that are outside the resolution cell
number_drops_per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops_per_size
if ((matrixpos(4,d)<=(angle 3db*pi/180))&(matrixpos(1,d)>=...
coord_vol res(1,1))&(matrixpos(1,d)<=coord vol res(1,2)));
dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
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if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector_azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);

% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v-+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
total E=total E+sum(sqrt(matrix T Round(2,i)).*phase);

%
% ceate weighted power return, concidering range (r), theta, phi
% with reference to boresight and radar parameters
E_weighted=sqrt(P_t)*G*wavelength/(sqrt(4*pi)"3)./dropmatrix(1,:)."2.*...
(exp(-4*log(2).*((dropmatrix(3,:)-vector _azimuth)."2/...
(2*angle 3db*pi/180)"2+((dropmatrix(2,:)-vector_elevation).”2/...
(2*angle 3db*pi/180)"2))));
new_ E=new E+sum(E_weighted.*(sqrt(matrix T Round(2,i)).*phase));

end
end

phase_vector(2*p-1)=ANGLE(total phase);
imaginary_return(2*p-1)=total phase;

%

%
% This part simulates the movement of the drops and gives new positions.
% First using the Doppler PRT
%
% INPUT
% - matrix_T Round
% - PRT
% - azimuth
% - elevation
% - rain_anglel
% - rain_angle2
% - diam_lim
% - resolution]
% - resolution2
% - wind_vector
%
% OUTPUTS
% Output files containing sizes with new positions
% structured the same way as in previous
% there is also an output file for speed (one for each size) for the pulse
% pair.
%
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number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind vector(1)=wind vector(1)*normrnd(1,abs(spread/max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
if wind_vector(2)~=0
new_wind_vector(2)=wind_vector(2)*normrnd(1,abs(spread/max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind vector(3)*normrnd(1,abs(spread/max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',1));

% total number of drops
drops=matrix_T Round(3,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix_ T Round(1,1);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
pp
% Approximation is valid in the diameter range 5*e-4, 5*e-3
%

wtmax=386.6*((matrix_T_ Round(1,1)*0.001)*0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);

newest_wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between different drops sizes
if new_wind_vector(1)~=0
newest wind_vector(1,:)=new_wind_vector(1)*normrnd(1,...
abs(spread_2/max(new_wind_vector(1))),1,drops);
else
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newest_wind_vector(1,:)=0;
end
ifnew wind vector(2)~=0
newest_wind_vector(2,:)=new_wind_vector(2)*normrnd(1,...
abs(spread 2/max(new_wind_vector(2))),1,drops);
else
newest_wind_vector(2,:)=0;
end
if new_wind_vector(3)~=0
newest wind_vector(3,:)=new_wind_vector(3)*normrnd(1,...
abs(spread_2/max(new_wind_vector(3))),1,drops);
else
newest_wind_vector(3,:)=0;
end

velocityxt=newest wind vector(1,:)-velocityx;
velocityyt=newest wind_vector(2,:)-velocityy;
velocityzt=newest_wind_vector(3,:)-velocityz;

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity");

deplacementx=velocityxt*PRT 1;
deplacementy=velocityyt*PRT 1;
deplacementz=velocityzt*PRT 1;

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);

range=sqrt((position_x-xf).”2.+(position_y-yf).*2.+(position_z-zf).*2);
% approximation
angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);
save(s, 'matrixpos');

end
%

% Calculate phase for pulse pair
total phase=0;
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for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',i));

% removing drops that are outside the resolution cell
number_drops_per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops_per_size
if ((matrixpos(4,d)<=(angle_3db*pi/180))&(matrixpos(1,d)>=...
coord_vol res(1,1))&(matrixpos(1,d)<=coord vol res(1,2)));
dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector_azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);

% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
end
end

phase vector(2*p)=ANGLE(total phase);
imaginary_return(2*p)=total phase;

%

% This part simulates the movement of the drops and gives new positions
% using the Avg Power PRT
%

number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind_vector(1)=wind vector(1)*normrnd(1,abs(spread/max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
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if wind_vector(2)~=0
new_wind_vector(2)=wind_vector(2)*normrnd(1,abs(spread/max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind vector(3)*normrnd(1,abs(spread/max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',i));

% total number of drops
drops=matrix_T Round(3,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix T Round(1,i);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used

% Approximation is valid in the diameter range 5*e-4, 5*e-3

%

wtmax=386.6*((matrix_T_Round(1,i)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);

newest wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between different drops sizes
if new_wind_vector(1)~=0
newest_wind_vector(1,:)=new_wind_vector(1)*normrnd(1,...
abs(spread 2/max(new_wind_vector(1))),1,drops);
else
newest_wind_vector(1,:)=0;
end
if new_wind_vector(2)~=0
newest_wind_vector(2,:)=new_wind_vector(2)*normrnd(1,...
abs(spread_2/max(new_wind_vector(2))),1,drops);
else
newest wind_vector(2,:)=0;
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end
if new_wind_vector(3)~=0
newest_wind vector(3,:)=new_wind_vector(3)*normrnd(1,...
abs(spread_2/max(new_wind_vector(3))),1,drops);
else
newest_wind_vector(3,:)=0;
end

velocityxt=newest_wind_vector(1,:)+velocityx;
velocityyt=newest_wind_vector(2,:)+velocityy;
velocityzt=newest wind_vector(3,:)+velocityz;

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity");

deplacementx=velocityxt*(PRT 2-PRT 1);
deplacementy=velocityyt*(PRT 2-PRT 1);
deplacementz=velocityzt*(PRT 2-PRT 1);

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector_azimuth,vector elevation,r);

range=sqrt((position_x-xf).”2.+(position_y-yf).*2.+(position_z-zf).*2);
% approximation

angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);

save(s, 'matrixpos');

end

%

% add to E-field, drop and rain rate comparison
sum_E=[sum E total EJ;
weighted E=[weighted E,new E];

end

%
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%
% Calculate RCS and doppler

% calculate RCS, Z and Power return for every pulse including error

running_Z=(Norm*abs(sum_E)."2)*wavelength”4/pi"*5/abs(kw)"2/volume resolution/...
le-18+error_Z;

power return=Norm*abs(weighted E)."2; % [W]

% calculate average Power and Z

Z_avg=sum(running_Z)/p;

Z_avg plot=ones(1,p)*Z avg;
power_return_avg=sum(Norm*abs(weighted E).”2)/p; % [W]
power_return_avg_plot=ones(1,p)*power_return_avg;

% calculate doppler frequency
phase vector u=unwrap(phase vector);
doppler_fq=([phase_vector u(2:2:2*p)-phase_vector u(1:2:2*p-1)])/2/pi/PRT _1;

number_vector=1:p;

%
% Calculate references

% Integral form of Z

1i=0:100/1000:100;
zz=11.76.%8000.*exp(-4.1.*rain_rate.”(-.21).*ii);

real Z=ones(1,number pulses)*10*log10(trapz(ii,zz));

% Adding the error to the weighted E estimations
error_power=error_rcs*P_t*G"2*wavelength"2/pi"2*(2*angle 3db*pi/180)"2*...
(c*pulsewidth*1e-6)/1024/log(2)/pi*2/(distance* 1e3)"2/volume_resolution;

% Evaluate average Power return to make Z estimation including error
Z_estimation=power_return_avg/P_t/G"2/wavelength"2*...
pi*2/(2*angle 3db*pi/180)"2/(c*pulsewidth*1e-6)*1024*log(2)*(distance*1e3)"2/...
((kw"2)*(pi”5)/(wavelength™4))/1e-18;
Z_estimation_plot=ones(1,number_pulses)*10*log10(Z_estimationterror Z);

%
% Part V, Plot of results
%

figure(1);

subplot(2,1,1);

plot(number_vector(1:p),doppler_fq(1:p),-x',number_vector(1:p),ones(1,p)*...
mean(doppler fq),--1');

title(['Doppler frequency for all pulse pairs for PRF=",num2str(1/PRT 1),' Hz']);

xlabel("Pulse pair’);

ylabel('f d");

legend('Doppler frequency per pulse pair','Average Doppler estimation')

grid on

subplot(2,1,2)

hist(doppler fq,15)

hold on

[ff,xx] = ksdensity(doppler_fq);
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plot(xx, ff/max(ff)*max(hist(doppler fq,15)))
title('Doppler Frequency Histogram with Gaussian Fit');
ylabel('Frequency');

xlabel('Doppler Frequency [Hz]');

figure (2)

subplot(2,1,1);

% also converting to dBm

plot(number_vector*PRT 2*1000,10*logl O(power_return+error_power)+30,'-xb',...
number_vector*PRT 2*1000,10*logl0(power return_avg_plot+error power)+30,'--1');

title(['Power Return for all ',num2str(p),' pulses. PRF=",num2str(1/PRT 2),' Hz']);

xlabel('Sample time [ms]");

ylabel('"Power [dBm]');

legend('"Power return', 'Average Power return',0)

grid on

subplot(2,1,2);

plot(number_vector,10*log10(abs(running_Z)),'-xb',number_vector,10%...
log10(abs(Z_avg_plot)),"--r',;number_vector,real Z,'--k',...
number_vector,Z_estimation_plot,'--b');

title('Estimated Z per pulse');

xlabel('Sample time');

ylabel('Z [dBZ]");

legend('Simulation Z, (instantaneous)', 'Estimated Z, (average return)',...
'Z=\int D"6N(D)dD','Estimated Z, Zeroth moment',0)

grid on

figure(3)

polarmatrix(1:2:119)=zeros(1,60);
polarmatrix(2:2:120)=phase_vector u(1:60);
lengthmatrix(1:2:119)=zeros(1,60);
lengthmatrix(2:2:120)=ones(1,60);

subplot(5,6,1)

polar(polarmatrix(1:2),lengthmatrix(1:2),'-*")

hold on

polar(polarmatrix(3:4),lengthmatrix(3:4),'--*1'")

title(['17{st}. v_r=",num2str(doppler_fq(1)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,2)

polar(polarmatrix(5:6),lengthmatrix(5:6),'-*")

hold on

polar(polarmatrix(7:8),lengthmatrix(7:8),'--*1')

title(["27{nd}. v_r=",num2str(doppler_fq(2)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,3)

polar(polarmatrix(9:10),lengthmatrix(9:10),"-*")

hold on

polar(polarmatrix(11:12),lengthmatrix(11:12),":*1")

title(['3"{rd}. v_r=",num2str(doppler_fq(3)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,4)
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polar(polarmatrix(13:14),lengthmatrix(13:14),'-*")

hold on

polar(polarmatrix(15:16),lengthmatrix(15:16),":*r'")

title(['4" {th}. v_r=",num2str(doppler_fq(4)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,5)

polar(polarmatrix(17:18),lengthmatrix(17:18),"-*")

hold on

polar(polarmatrix(19:20),lengthmatrix(19:20),":*r")

title(['5*{th}. v_r=",num2str(doppler_fq(5)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,6)

polar(polarmatrix(21:22),lengthmatrix(21:22),'-*")

hold on

polar(polarmatrix(23:24),lengthmatrix(23:24),":*1")

title(['6” {th}. v_r=",num2str(doppler_fq(6)*wavelength/2),' m/s'])
hline = findobj(gca, Type',line");

set(hline,'LineWidth',3)

subplot(5,6,7)

polar(polarmatrix(25:26),lengthmatrix(25:26),'-*")

hold on

polar(polarmatrix(27:28),lengthmatrix(27:28),":*1'")

title(['77{th}. v_r=",num2str(doppler_fq(7)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,8)

polar(polarmatrix(29:30),lengthmatrix(29:30),'-*")

hold on

polar(polarmatrix(31:32),lengthmatrix(31:32),":*r")

title(['8"{th}. v_r=",num2str(doppler_fq(8)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,9)

polar(polarmatrix(33:34),lengthmatrix(33:34),"-*")

hold on

polar(polarmatrix(35:36),lengthmatrix(35:36),":*1'")

title(['9"{th}. v_r=",num2str(doppler_fq(9)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,10)

polar(polarmatrix(37:38),lengthmatrix(37:38),'-*")

hold on

polar(polarmatrix(39:40),lengthmatrix(39:40),":*1'")

title(['10" {th}. v_r=",num2str(doppler_fq(10)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,11)

polar(polarmatrix(41:42),lengthmatrix(41:42),'-*")

hold on

polar(polarmatrix(43:44),lengthmatrix(43:44),":*1")

title(['1 1 {th}. v_r=",num2str(doppler_fq(11)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,12)
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polar(polarmatrix(45:46),lengthmatrix(45:46),"-*")

hold on

polar(polarmatrix(47:48),lengthmatrix(47:48),":*1'")

title(['127{th}. v_r=",num2str(doppler_fq(12)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,13)

polar(polarmatrix(49:50),lengthmatrix(49:50),"-*")

hold on

polar(polarmatrix(51:52),lengthmatrix(51:52),":*r'")

title(['13”{th}. v_r=",num2str(doppler_fq(13)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,14)

polar(polarmatrix(53:54),lengthmatrix(53:54),'-*")

hold on

polar(polarmatrix(55:56),lengthmatrix(55:56),":*1")

title(['14”{th}. v_r=",num2str(doppler_fq(14)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,15)

polar(polarmatrix(57:58),lengthmatrix(57:58),'-*")

hold on

polar(polarmatrix(59:60),lengthmatrix(59:60),": *r")

title(['15{th}. v_r=",num2str(doppler_fq(15)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,16)

polar(polarmatrix(61:62),lengthmatrix(61:62),"-*")

hold on

polar(polarmatrix(63:64),lengthmatrix(63:64),":*1")

title(['16" {th}. v_r=",num2str(doppler_fq(16)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,17)

polar(polarmatrix(65:66),lengthmatrix(65:66),"-*")

hold on

polar(polarmatrix(67:68),lengthmatrix(67:68),":*1'")

title(['17{th}. v_r="num2str(doppler_fq(17)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,18)

polar(polarmatrix(69:70),lengthmatrix(69:70),'-*")

hold on

polar(polarmatrix(71:72),lengthmatrix(71:72),":*1'")

title(['18"{th}. v_r=",num2str(doppler_fq(18)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,19)

polar(polarmatrix(73:74),lengthmatrix(73:74),'-*")

hold on

polar(polarmatrix(75:76),lengthmatrix(75:76),":*1")

title(['197{th}. v_r=",num2str(doppler_fq(19)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,20)
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polar(polarmatrix(77:78),lengthmatrix(77:78),"-*")

hold on

polar(polarmatrix(79:80),lengthmatrix(79:80),":*1")

title(['20" {th}. v_r=",num2str(doppler_fq(20)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,21)

polar(polarmatrix(81:82),lengthmatrix(81:82),"-*")

hold on

polar(polarmatrix(83:84),lengthmatrix(83:84),":*1")

title(["21"{th}. v_r=",num2str(doppler_fq(21)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,22)

polar(polarmatrix(85:86),lengthmatrix(85:86),'-*")

hold on

polar(polarmatrix(87:88),lengthmatrix(87:88),":*1")

title(['227{th}. v_r=",num2str(doppler_fq(22)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,23)

polar(polarmatrix(89:90),lengthmatrix(89:90),'-*")

hold on

polar(polarmatrix(91:92),lengthmatrix(91:92),":*r'")

title(['23/{th}. v_r=",num2str(doppler_fq(23)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,24)

polar(polarmatrix(93:94),lengthmatrix(93:94),"-*")

hold on

polar(polarmatrix(95:96),lengthmatrix(95:96),":*1")

title(["24" {th}. v_r=",num2str(doppler_fq(24)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,25)

polar(polarmatrix(97:98),lengthmatrix(97:98),'-*")

hold on

polar(polarmatrix(99:100),lengthmatrix(99:100),":*1")

title(["25"{th}. v_r="num2str(doppler_fq(25)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,26)
polar(polarmatrix(101:102),lengthmatrix(101:102),'-*")

hold on

polar(polarmatrix(103:104),lengthmatrix(103:104),":*r")

title(['26" {th}. v_r=",num2str(doppler_fq(26)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,27)
polar(polarmatrix(105:106),lengthmatrix(105:106),'-*")

hold on

polar(polarmatrix(107:108),lengthmatrix(107:108),":*1")
title(['277{th}. v_r=",num2str(doppler_fq(27)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,28)
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polar(polarmatrix(109:110),lengthmatrix(109:110),'-*")

hold on

polar(polarmatrix(111:112),lengthmatrix(111:112),":*r")
title(['28"{th}. v_r=",num2str(doppler_fq(28)*wavelength/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,29)
polar(polarmatrix(113:114),lengthmatrix(113:114),"-*")

hold on

polar(polarmatrix(115:116),lengthmatrix(115:116),":*r")

title(["29" {th}. v_r=",num2str(doppler_fq(29)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,30)
polar(polarmatrix(117:118),lengthmatrix(117:118),'-*")

hold on

polar(polarmatrix(119:120),lengthmatrix(119:120),":*1")
title(['30"{th}. v_r=",num2str(doppler_fq(30)*wavelength/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

mean(doppler fq)
std(doppler_fq)

3) WR _fq step

% Weather Radar Signal Simulator, developed version
% Frequency step

% UIf Schroder

% August, 2005

%

% Main program for The NPS/Marielle Gosset Weather Radar Signal Simulator.

%
% DESCRIPTION

% Part I

% From Radar Data:

% - Generate Beam Resolution cell approximation

% - Generate Cube adding a margine to the Beam Resolution cell to allow for
% the rain drops to fall trough the through beam over time.

%

% Part 11

% From Rain Parameters:

% Generating the fundamental T Matrix concisting of

% - Diameter Vector and Number of drops in each diameter interval

% using the Marshall-Palmer exponential approximation.

% - the total number of drops for each size per m"3

% The backscatter RCSs for each Diameter size is put in a separate RCS

% Matrix to account for the differences due to frequency

% Part 111
% Randomly place all drops in cube

% Part IV
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% For every pulse the coherent Electric field return is calculated. Between
% pulses all drops are moved.

% Part V
% Calculate and plot results
%

clear all
close all
clc

% Input Data

c=3e8; % Speed of light [m/s]

% Radar Data

P t=10e3; % Transmitted power
G_dB=20; % Maximum gain in dB

G=10"(G_dB/10); % Maximum gain
angle 3db=0.20; % 3 dB Beam angle [degrees], (half half power beamwidth)
pulsewidth=0.20; % Pulsewidth [microsecond]

elevation=3; % Elevation angle [degrees]

margine=5; % margin for resolution cell[m]

azimuth=0; % Azimuth angle [rad]

number pulses=40; % Number of pulses

PRT 1=1/5000; % Doppler Pulse Repetition Time [seconds]
PRT 2=1/200; % Avg Power Pulse Repetition Time [seconds]
distance=0.5; % Range from the radar to the resolution cell [Km]

wavelength=0.1; % Wavelength [m]
frequency=c/wavelength; % Frequency [Hz]

%

%Introduced in stepped version

fq step=1le6; % Frequency step in [Hz]

delay=50e-6; % Delay for changing fq in [s]

n_steps=3; % Number of Frequency steps

%

% Rain parameters

diam_low=0.05; % Lowest diameter of Precipitation [mm]
diam_lim=1; % Divider between low and mid [mm]
diam_mid=S5; % Divider between mid and high [mm]
diam_high=15; % Highest diameter of Precipitation [mm]
resolution1=0.08; % Lower diameter resolution [mm]
resolution2=0.3; % Higher diameter resolution [mm]
resolution3=0.8; % Highest diameter resolution [mm]
sort_approx=1; % RCS approximation model; [1]=Rayleigh
kw=0.93; % abs(K)"2 approx for water

rain_rate=50; % Rain Rate [mm/h]

rain_anglel=0; % degrees Rain Angle (Phi)
rain_angle2=0; % degrees Rain Angle (Theta)
wind_vector=[-10;0;0]; % Wind speed vector (x,y,z) [m/s]
spread=0; % Wind speed spread [m/s], (all directions)
spread 2=4; % Drop velocity spread [m/s],

Norm=100; % Normalization coefficient

% Directional cosines
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u=sin(pi/2-elevation*pi/180)*cos(azimuth*pi/180);
v=sin(pi/2-elevation*pi/180)*sin(azimuth*pi/180);
w=cos(pi/2-elevation*pi/180);

%
% Part I, Generate the resolution volume
%
% Approximation of the resolution cell of the pulse circular box,
% for any azimuth angle

%
% INPUT

% - distance

% - angle 3dB
% - pulsewidth
% - elevation
% - margine

% - azimuth

%
% OUTPUT

% - volume_resolution: computed volume of the resolution cell

% - volume_box: volume of the box where the drops are put

% - box: the 8 rectangular coordinates of the box

% - coord_vol_res: the coordinates of the resolution cell where the drops
% are taken.

%

%
% Creating the circular beam resolution cell
range_res=(c*pulsewidth*1e-6)/2;

% Range resolution (ct/2) [m]

% small angle approximation allows for following

angle rad=(angle 3db*pi)/180;
% 3 dB beamwidth [rad]

radius1=(tan(angle rad)*(distance*1000));
% Radius of beam at R=distance

radius2=(tan(angle rad)*((distance*1000)+range res)); ...
% Radius of beam at R=distance + range resolution

surfacel=pi*radius1”2;
surface2=pi*radius2”2;

% volume of cone = base surface times height for all three
volume_conel=(surfacel *(distance*1000))/3;
volume_cone2=(surface2*((distance*1000)+range res))/3;
volume_resolution=(volume cone2-volume conel); % Beam Cone Volume

% computation of the resolution cell coordinates, spherical coordinates
% elevation in radians

elevation _rad=(elevation*pi)/180; % Elevation [rad]
azimuth _rad=(azimuth*pi)/180; % Azimuth [rad]

% Matrix used when comparing wheather a drop is inside or outside

% beamwidth

coord_vol_res=[distance*1000,(distance*1000)+range res;elevation rad-angle rad,...
elevation_rad+angle rad;azimuth rad-angle rad,azimuth rad+angle rad];
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%

%
% Creating the box

% computation of the box and its coordinates

coinl=[azimuth rad+angle rad,elevation rad+angle rad,distance*1000];
coin2=[azimuth rad-angle rad,elevation rad+angle rad,distance®*1000];
coin3=[azimuth_rad+angle rad,elevation rad-angle rad,distance*1000];
coin4=[azimuth_rad-angle rad,elevation rad-angle rad,distance*1000];
coin5=[azimuth rad+angle rad,elevation_rad+angle rad,distance*1000+range res];
coin6=[azimuth_rad-angle rad,elevation rad+angle rad,distance*1000+range res];
coin7=[azimuth_rad+angle rad,elevation rad-angle rad,distance*1000+range res];
coin8=[azimuth_rad-angle rad,elevation rad-angle rad,distance*1000-+range res];

[x1,y1,z1]=sph2cart(coinl(1),coinl(2),coinl(3));
[x2,y2,z2]=sph2cart(coin2(1),coin2(2),coin2(3));
[x3,y3,z3]=sph2cart(coin3(1),coin3(2),coin3(3));
[x4,y4,z4]1=sph2cart(coin4(1),coind(2),coin4(3));
[x5,y5,z5]=sph2cart(coin5(1),coin5(2),coin5(3));
[x6,y6,z6]=sph2cart(coin6(1),coin6(2),coin6(3));
[x7,y7,27]=sph2cart(coin7(1),coin7(2),coin7(3));
[x8,y8,z8]=sph2cart(coin8(1),coin8(2),coind(3));

xmax=max([x1,x2,x3,x4,x5,x6,x7,x8]);
xmin=min([x1,x2,x3,x4,x5,x6,x7,x8]);
ymax=max([y1,y2,y3,y4,y5,y6,y7,y8]);
ymin=min([y1,y2,y3,y4,y5,y6,y7,y8]);
zmax=max([zl,22,73,74,25,26,27,28));
zmin=min([z1,22,z3,74,25,26,77,28));

% the box with its margin
coin_1=[xmin-margine,ymin-margine,zmin-margine];
coin_2=[xmin-margine,ymax+margine,zmin-margine];
coin_3=[xmax+margine,ymax+margine,zmin-margine];
coin_4=[xmax+margine,ymin-margine,zmin-margine];
coin_5=[xmin-margine,ymin-margine,zmax-+margine];
coin_6=[xmin-margine,ymax+margine,zmax-+margine];
coin_7=[xmax+margine,ymax+margine,zmax+margine];
coin_8=[xmax+margine,ymin-margine,zmax-+margine];

box=[coin_1',coin_2',coin_3',coin_4',coin_5',coin_6',coin_7',coin_8';

% calculate the volume of the box
volume box=abs((xmax+margine-(xmin-margine))*(ymax+margine-(ymin-margine))...
*(zmax+margine-(zmin-margine)));

cube=[coin_1',coin_2',coin_3',coin_4',coin_1',coin_5',coin_6',coin_2',...
coin_6',coin_7',coin_3',coin_7',coin_8',coin_4',coin_8',coin_5';
%

%
% Part II, Generate the fundamental T Matrix
%
% This part produces a matrix of all drops that contribute to the total
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% reflectivity of the resolution cell
%
% First all sizes are created, with two vectors of different size resolution.

% The size vectors represents all diameters. Next the backscatter RCS for each

% size is computed.

% Using the Marshall-Palmer exponential approximation, the number of drops of
% each diameter is computed.

%
% INPUT

% - diam_low
% - diam_lim
% - diam_high
% - resolution]
% - resolution2
% - sort_approx
% - wavelength
% - Kw

% - rain_rate

%
% OUTPUT

% - number_drops

% Matrix T:

% - first row all sizes

% - second row all the backscatter RCSs

% - third row the total number of drops for each size per m"3
% the columns starting from the smallest size

%
% Create dropsize vector

% Precipitaion Diameter vector (lowest<D<divider)
vector_size 1=diam_low:resolutionl:diam_lim;

% Precipitaion Diameter vector (divider<D<mid)
vector_size 2=diam_lim:resolution2:diam_mid;

% Precipitaion Diameter vector (mid<D<highest)
vector_size 3=diam_mid:resolution3:diam_high;

% Precipitaion Diameter Vector
vector_size=[vector_size 1,vector size 2,vector size 3];

%
% Create RCS matrix for all Rain drops of Precipitation Vector and for all
% frequencies.

fq rr=frequency:fq_step:frequency-+(n_steps-1)*fq_step;
res(1:n_steps,:)=((kw”2)*(pi*5)/(c4)*fq_rr'.~)*((vector_size*1e-3).26);
%

%
% The Marshall Palmer approximation is used to create Precipitaion Diameter
% Distribution Vector (Drop Size Distribution N(D) Vector)

% The number of drops are scaled down by a factor (Norm) to improve the

% speed of the simulator

%
lambda=4.1*(rain_rate”(-0.21)); %[mm-1]
number=8000*exp(-lambda*vector_size)/Norm;
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vector _resl=ones(1,length(vector size 1))*resolutionl;
vector_res2=ones(1,length(vector_size 2))*resolution2;
vector_res3=ones(1,length(vector_size 3))*resolution3;

% delta(Diameter) dD
vector_res=[vector_resl,vector res2,vector res3];

% the approximate "true" number of drops N(D)dD vector
number=number.*vector_res;
%

%
% create matrix T without rcs
T=[vector_size;number];

%

%
% Change matrix '"T' to matrix 'matrix_T Round'
%
% This part computes the total number of drops by utilizing the resolution
% cell and the matrix_T Round

% The only difference between the matrix T Round and T, is the fact that
% matrix_T_ Round has the total number of drops on the third row and they
% are rounded of to nearest integer value.

%

matrix T Round=T;
matrix_T Round(2,:)=round(matrix T Round(2,:)*volume box);

% Keep track of errors due to round off
diff=T(2,:)*volume_box-matrix T Round(2,:);
error_rcs=diff*rcs"*Norm/volume box*volume resolution;
error_Z=error_rcs/volume_resolution*c”4./fq_rr."4/pi*5/abs(kw)"2/1e-18;

%
% Part II1, Initial positioning of the drops within the volume
%
% This part generates the initial position of the drops in the volume of
% the box.

% The positions are recorded in the file "sizexx.mat' taking into account
% the azimuth angle

%
% INPUT

% - box

% - matrix_T Round
% - elevation

% - azimuth

%
% OUTPUT

% All files including the sizes. Each contains the positions of all drops
% for a given diameter. The data recoreded as follows:

% - radial distance r

% - elevation phi

% - azimuth theta

% - angle with respect to beam center. This parameter will be
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% used to identify drops which are in the beam.
%

% Randomly put the calculated number of drops of each diameter in the box
number_size=length(matrix T Round(1,:));

for i=1:number_size

% select number of drops of certain Diameter
drops=matrix_T_ Round(2,i);

% create as many positions on the x axis as # drops per size
elements_x=rand(1,drops);

% put them in the range of interest
% Random placement x for every drop
position_x=box(1,1)+(box(1,3)-box(1,1))*elements_x;

% create as many positionson the y axis as # drops per size
elements_y=rand(1,drops);

% put them in the range of interest
% Random placement y for every drop
position_y=box(2,1)+(box(2,2)-box(2,1))*elements_y;

% create as many positions on the z axis as # drops per size
elements_z=rand(1,drops);

% put them in the range of interest
% Random placement z for every drop
position_z=box(3,1)+(box(3,5)-box(3,1))*elements_z;

% matrix of results
% Creating a drop Matrix using spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% Calculating the range, phi, theta and angle to every drop with

% reference to phi_0 and theta_ 0. Used to estimate weighted power return.
vector_azimuth=ones(1,drops)*((azimuth*pi)/180);
vector_elevation=ones(1,drops)*((elevation*pi)/180);
[xf,yf,zf]=sph2cart(vector_azimuth,vector elevation,r);
range=sqrt((position_x-xf).”2.+(position_y-yf).”*2.+(position_z-zf)."2);

% approximation
angle=atan(range./r);

% Saving the drop positions in size%d.mat
% matrixpos
matrixpos=[r;phi;theta;angle];

save(sprintf('size%d.mat',i),'matrixpos');

end
%
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%
% Part IV, Calculate Coherent Electric field return.
%
% For every pulse the coherent Electric field return is calculatet. Between
% pulses all drops are moved.

%

% Run the simulation for specified number of pulses

%

% Zero all vectors and matrices that are going to be used
phase_vector=zeros(1,2*number pulses);

imaginary return=zeros(1,2*number pulses);
sum_E=zeros(n_steps,ceil(number_pulses/n_steps));
weighted E=zeros(n_steps,ceil(number_pulses/n_steps));
running_Z=[];

% Initiate reference variables
p=0; % Used to separate pulses
hh=0; % Used to separate avg power samples

while p<number_ pulses

step_counter=0; % Used to separate frequencies
hh=hh+1;

for fq_new=frequency:fq_step:frequency+(n_steps-1)*fq_step
k=2*pi*fq new/c;
p=p+l;

step_counter=step_counter+1;

disp(sprintf('calculate the power-return of pulse %d\n',p));

%

% computes the (weighted) I and Q return

%
% computes the total number of drops
%
% INPUT

% - Matrix T

% - wavelength

% - angle 3dB

% - distance

% - coord_vol res
% - number_pulses
%
% OUTPUT

% - total E: the received complex Electric field)
% - power: the power

% - voltage: the voltage

% - drops_beam: the number of drops in the beam
%
% Only the drops which are in the resolution cell are selected for the
% computation

%
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number_size=length(matrix T Round(1,:));
total E=0;

total phase=0;

new_E=0;

for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',1));

% removing drops that are outside the resolution cell
number drops_per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops_per_size
if (matrixpos(4,d)<=(angle_3db*pi/180))&(matrixpos(1,d)>=...
coord_vol res(1,1))&(matrixpos(1,d)<=coord_vol res(1,2)));
dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector_azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);

% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
total E=total E+sum(sqrt(rcs(step_counter,i)).*phase);

%

% ceate weighted power return, concidering range (r), theta, phi

% with reference to boresight and radar parameters

E_weighted=sqrt(P_t)*G*c/fq_rr(step_counter)/(sqrt(4*pi)*3)./...
dropmatrix(1,:)."2.*(exp(-4*log(2).*((dropmatrix(3,:)-...
vector_azimuth).”2/(2*angle 3db*pi/180)"2+((dropmatrix(2,:)...
-vector_elevation).”2/(2*angle 3db*pi/180)"2))));

new_E=new E+sum(E_weighted.*(sqrt(rcs(step_counter,i)).*phase));

end

end

%
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phase vector(2*p-1)=ANGLE(total phase);
imaginary return(2*p-1)=total phase;

% add to E-field and drop- and rate-vector
sum_E(step_counter,hh)=total E;
weighted E(step_counter,hh)=new_ E;

%

%
% This part simulates the movement of the drops and gives new positions.
% First using the Doppler PRT (PRT 1)
%
% INPUT
% - matrix_T Round
% - PRT
% - azimuth
% - elevation
% - rain_anglel
% - rain_angle2
% - diam_lim
% - resolution]
% - resolution2
% - wind_vector
%
% OUTPUTS
% Output files containing sizes with new positions
% structured the same way as in previous
% there is also an output file for speed (one for each size) for the pulse
% pair.
%

number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind_vector(1)=wind_vector(1)*normrnd(1,abs(spread/max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
if wind_vector(2)~=0
new_wind_vector(2)=wind_vector(2)*normrnd(1,abs(spread/max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind_vector(3)*normrnd(1,abs(spread/max(wind_vector(3))));
else
new_wind vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',1));
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% total number of drops
drops=matrix_T Round(2,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix_T Round(1,1);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
% Approximation is valid in the diameter range 5*e-4, 5*e-3
%

wtmax=386.6*((matrix_T Round(1,1)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%

sin((rain_angle2*pi)/180);

%

%

% adding another Gaussian random term to make the wind speed

% spread between different drops sizes
ifnew wind vector(1)~=0

newest_wind_vector(1)=new_wind_vector(1)*normrnd(1,abs(spread 2/...

max(wind_vector(1))));
else
newest wind_vector(1)=0;
end
if new_wind_vector(2)~=0

newest_wind_vector(2)=new_wind_vector(2)*normrnd(1,abs(spread 2/...

max(wind_vector(2))));
else
newest_wind_vector(2)=0;
end
if new_wind_vector(3)~=0

newest_wind_vector(3)=new_wind_vector(3)*normrnd(1,abs(spread 2/...

max(wind_vector(3))));
else
newest wind_vector(3)=0;
end

% If spread within pulse

velocityxt=newest wind_vector(1)-velocityx;
velocityyt=newest wind vector(2)-velocityy;
velocityzt=newest wind vector(3)-velocityz;

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity");
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%
% If spread for all drops regardless of size
newest_wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between drops
if new_wind_vector(1)~=0
newest wind_vector(1,:)=new_wind_vector(1)*...
normrnd(1,abs(spread 2/max(new_wind vector(1))),1,drops);
else
newest_wind_vector(1,:)=0;
end
if new_wind_vector(2)~=0
newest wind_vector(2,:)=new_wind vector(2)*...
normrnd(1,abs(spread 2/max(new_new_wind_vector(2))),1,drops);
else
newest_wind_vector(2,:)=0;
end
if new_wind_vector(3)~=0
newest wind_vector(3,:)=new_wind_vector(3)*...
normrnd(1,abs(spread 2/max(new_wind vector(3))),1,drops);
else
newest_wind_vector(3,:)=0;
end

% If spread within pulse

velocityxt=newest wind vector(1,:)-velocityx;
velocityyt=newest wind_vector(2,:)-velocityy;
velocityzt=newest_wind_vector(3,:)-velocityz;

%
%

deplacementx=velocityxt*PRT 1;
deplacementy=velocityyt*PRT 1;
deplacementz=velocityzt*PRT 1;

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);

range=sqrt((position_x-xf)."2.+(position_y-yf)."2.+(position_z-zf)."2);
% approximation
angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];
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% save to file, matrixpos
s=sprintf('size%d.mat',i);
save(s, 'matrixpos');

end
%

% Calculate phase for pulse pair
total phase=0;

for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',i));

% removing drops that are outside the resolution cell
number_drops_per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops per size
if ((matrixpos(4,d)<=(angle 3db*pi/180))&(matrixpos(1,d)>=...
coord vol res(1,1))&(matrixpos(1,d)<=coord_vol res(1,2)));
dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);

% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
end
end

phase vector(2*p)=ANGLE(total phase);
imaginary return(2*p)=total phase;

%

% This part simulates the movement of the drops and gives new positions.
% Using the doppler PRT and the delay (PRT 2, delay)
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%

%

number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind_vector(1)=wind_vector(1)*normrnd(1,abs(spread/...
max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
if wind_vector(2)~=0
new_ wind vector(2)=wind_vector(2)*normrnd(1,abs(spread/...
max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind_vector(3)*normrnd(1,abs(spread/...
max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',1));

% total number of drops
drops=matrix_T Round(2,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix T Round(1,i);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
pp
% Approximation is valid in the diameter range 5*e-4, 5*e-3
%

wtmax=386.6*((matrix_T Round(1,1)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);

%
%
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

% adding another Gaussian random term to make the wind speed
% spread between different drops sizes
if new_wind_vector(1)~=0

newest_wind_vector(1)=new_wind_vector(1)*normrnd(1,abs(spread 2/...

max(wind_vector(1))));
else
newest wind_vector(1)=0;
end
if new_wind vector(2)~=0

newest_wind_vector(2)=new_wind_vector(2)*normrnd(1,abs(spread 2/...

max(wind_vector(2))));
else
newest_wind_vector(2)=0;
end
if new_wind_vector(3)~=0

newest_wind_vector(3)=new_wind_vector(3)*normrnd(1,abs(spread 2/...

max(wind_vector(3))));
else
newest wind_vector(3)=0;
end

% If spread within pulse

velocityxt=newest wind vector(1)-velocityx;
velocityyt=newest wind_vector(2)-velocityy;
velocityzt=newest wind_vector(3)-velocityz;

%
%
% If spread for all drops regardless of size
newest wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between drops
ifnew wind vector(1)~=0
newest wind vector(1l,:)=new_ wind vector(1)*...
normrnd(1,abs(spread 2/max(new_wind_vector(1))),1,drops);
else
newest_wind_vector(1,:)=0;
end
if new_wind_vector(2)~=0
newest wind_vector(2,:)=new_wind_vector(2)*...
normrnd(1,abs(spread 2/max(new_new_wind_vector(2))),1,drops);
else
newest_wind_vector(2,:)=0;
end
if new_wind vector(3)~=0
newest_wind_vector(3,:)=new_wind_vector(3)*...
normrnd(1,abs(spread 2/max(new_wind_vector(3))),1,drops);
else
newest wind_vector(3,:)=0;
end
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% If spread within pulse

velocityxt=newest_wind_vector(1,:)-velocityx;
velocityyt=newest wind_vector(2,:)-velocityy;
velocityzt=newest wind_vector(3,:)-velocityz;

%
%

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity');

deplacementx=velocityxt*(PRT 1+delay);
deplacementy=velocityyt*(PRT 1+delay);
deplacementz=velocityzt*(PRT 1+delay);

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles

vector azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);

range=sqrt((position_x-xf).”2.+(position_y-yf).”2.+(position_z-zf)."2);
% approximation

angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);

save(s, 'matrixpos');

end

%

%
% This part simulates the movement of the drops and gives new positions.
% Using the Avg Power PRT reduced by the sample times for the previous
% samples
%

%
number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0

129



new_wind_vector(1)=wind_vector(1)*normrnd(1,abs(spread/...
max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
if wind_vector(2)~=0
new_wind_vector(2)=wind_vector(2)*normrnd(1,abs(spread...
max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind_vector(3)*normrnd(1,abs(spread/...
max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',1));

% total number of drops
drops=matrix_T Round(2,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix_T Round(1,1);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
% Approximation is valid in the diameter range 5*e-4, 5*e-3
%

wtmax=386.6*((matrix_T Round(1,1)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);

%
%

%
%
%
%
%
%
%
%

% adding another Gaussian random term to make the wind speed
% spread between different drops sizes

if new wind vector(1)~=0

newest_wind_vector(1)=new_wind_vector(1)*normrnd(1,abs(spread 2/...

max(wind_vector(1))));
else
newest wind_vector(1)=0;
end
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

if new_wind_vector(2)~=0

newest_wind_vector(2)=new_wind_vector(2)*normrnd(1,abs(spread 2/...

max(wind_vector(2))));
else
newest_wind_vector(2)=0;
end
if new_wind_vector(3)~=0

newest_wind_vector(3)=new_wind_vector(3)*normrnd(1,abs(spread 2/...

max(wind_vector(3))));
else
newest wind_vector(3)=0;
end

% If spread within pulse

velocityxt=newest wind vector(1)-velocityx;
velocityyt=newest wind vector(2)-velocityy;
velocityzt=newest_wind_vector(3)-velocityz;

%
%
% If spread for all drops regardless of size
newest wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between drops
if new_wind_vector(1)~=0
newest wind vector(l,:)=new_wind vector(1)*...
normrnd(1,abs(spread_2/max(new_wind_vector(1))),l,drops);
else
newest_wind_vector(1,:)=0;
end
if new_wind_vector(2)~=0
newest_wind_vector(2,:)=new_wind_vector(2)*...
normrnd(1,abs(spread 2/max(new_new_wind_vector(2))),1,drops);
else
newest_wind_vector(2,:)=0;
end
if new_wind_vector(3)~=0
newest_wind_vector(3,:)=new_wind_vector(3)*...
normrnd(1,abs(spread_2/max(new_wind_vector(3))),1,drops);
else
newest wind_vector(3,:)=0;
end

% If spread within pulse

velocityxt=newest_wind_vector(1,:)-velocityx;
velocityyt=newest_wind_vector(2,:)-velocityy;
velocityzt=newest wind vector(3,:)-velocityz;

%
%

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
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save(sprintf('velocity%d.mat',i),'m_velocity');

deplacementx=velocityxt*(PRT 2-n_steps*(PRT_1+delay));
deplacementy=velocityyt*(PRT 2-n_steps*(PRT_1+delay));
deplacementz=velocityzt*(PRT 2-n_steps*(PRT _l+delay));

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector_azimuth,vector elevation,r);

range=sqrt((position_x-xf).*2.+(position_y-yf)."2.+(position_z-zf).*2);
% approximation
angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);
save(s, 'matrixpos');
end

end
end

%

%
% Calculate RCS and doppler
%

%
% calculate RCS, Z and Power return for every pulse including error
%
for o=1:n_steps
running_Z(o,:)=(Norm*abs(sum_E(o,:))."2)*c"4/fq_rr(o)"4/pi*5/...
abs(kw)"2/volume_resolution/le-18+error Z(0);
end

running_Z=reshape(running_Z,1,[]); = % Transform into a vector

%
% Adding the error to the weighted E estimations
%

error_power=error_rcs¥P_t*G"2*c2./fq_rr."2/pi"2*(2*angle 3db*pi/180)"2*...
(c*pulsewidth*1e-6)...
/1024/10g(2)/pi*2/(distance* 1e3)"2;

132



for o=1:n_steps
power return_matrix(o,:)=Norm*abs(weighted E(o,:))."2+error power(o);
end

power_return=reshape(power return matrix,1,[]);% Transform into a vector

%
% calculate average Power and Z
%
Z_avg=sum(running_Z)/p;

Z avg plot=ones(1,p)*Z avg;

power_return_avg=sum(sum(Norm*abs(weighted E).*2,2)+error_power')/p; % [W]
power return_avg_plot=ones(1,p)*power return avg;

%
% calculate doppler frequency

% use unwrap to make sure no alias is presented
%
phase vector u=unwrap(phase vector);

doppler_fq=([phase vector u(2:2:2*p)-phase vector u(1:2:2*p-1)])/2/pi/PRT 1;

number_vector=1:p;

%
% Calculate references
% Integral form of Z
%
11=0:100/1000:100;
zz=11.76.%8000.*exp(-4.1.*rain_rate.”"(-.21).*ii);
real_Z=ones(1,p)*10*log10(trapz(ii,zz));

%
% Evaluate average Power return to make Z estimation including error
%
% To make the estimate with the correct frequency, the power return Matrix
% is used. For the plot the result must me summed and divided by the number
% of samples used to average

Z_estimation=power_return_matrix'*(fq_rr."2)"/P_t/G"2/c"2*...
pi*2/(2*angle 3db*pi/180)"2/(c*pulsewidth*1e-6)*1024*log(2)*(distance* 1e3)"2/...
((kw”2)*(pinS)/(wavelength”4))/1e-18;

Z_estimation_plot=ones(1,p)*10*log10((sum(Z_estimation)+sum(error_Z))/p);

%
% Part V, Plot of results
%

figure(1);

subplot(2,1,1);

plot(number_vector(1:p),doppler_fq(1l:p),-x',number_vector(1:p),ones(1,p)*...
mean(doppler_fq),'--1');

title(['Doppler frequency for all pulse pairs for PRF=",num2str(1/PRT _1),' Hz']);

xlabel('Pulse pair');

ylabel('f d");
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legend('Doppler frequency per pulse pair','Average Doppler estimation')
grid on

subplot(2,1,2)

% To account for the differences in wavelengths a correct wavelength vector
% is created and multiplied with the doppler frequency vector
u=ones(1,p/n_steps);

lambida=[u*c/fq_rr(1);u*c/fq _rr(2);u*c/fq _rr(3)];
wave_l=reshape(lambida,1,[]);

v_r=doppler_fq.*wave 1/2;

hist(v_r,15)
hold on

[ff;xx] = ksdensity(v_r);
plot(xx,ff/max(ff)*max(hist(v_r,15)))

title('Radial Velocity Histogram with Gaussian Fit');
xlabel('Radial velocity [m/s]");

ylabel('Frequency');

grid on

figure(2)

subplot(2,1,1);

kl=0:p/n_steps-1;

power_number_vector=[kI*PRT_2; kI*PRT 2+PRT 1+PRT Il+delay; kI*PRT 2+2%*...
(PRT_1+PRT _l+delay)];

power_number_vector=reshape(power number_vector,1,[]);

text_string=["Power Return for all ,num2str(p),' pulses.',' Frequency stepped from ',...
num2str(fq_rr(1)/1e9),' GHz to ',num2str(fq_rr(n_steps)/1e9),' GHz with ',...
num2str(fq_step/1e6),' MHz steps.'];

% also converting to dBm

plot(power number_ vector*1000,10*logl0(power_return)+30,'-xb',...

power_number_vector*1000,10*log10(power_return_avg_plot)+30,'--1');

title(text_string);

xlabel('Sample time [ms]');

ylabel('"Power [dBm]');

legend('"Power return', 'Average Power return',0)

grid on

subplot(2,1,2);

plot(power number_vector*1000,10*log10(abs(running_Z)),"-xb',power_number vector*...
1000,10*log10(abs(Z_avg_plot)),'-.r',power number vector*1000,real Z,'-k',...
power_number vector*1000,Z_estimation_plot,'--b");

title('Estimated Z per pulse');

xlabel('Sample time');

ylabel('Z [dBZ]");

legend('Simulation Z, (instantaneous)', 'Estimated Z, (average return)',...
'Z=\int D"6N(D)dD','Estimated Z, Zeroth moment',0)

grid on

figure (3)
% This plot only works if the number of pulse pairs exceed 30
polarmatrix(1:2:119)=zeros(1,60);
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polarmatrix(2:2:120)=phase_vector_u(1:60);
lengthmatrix(1:2:119)=zeros(1,60);
lengthmatrix(2:2:120)=ones(1,60);

subplot(5,6,1)

polar(polarmatrix(1:2),lengthmatrix(1:2),'-*")

hold on

polar(polarmatrix(3:4),lengthmatrix(3:4),'--*r")

title(['1* {st}. v_r=",num2str(doppler_fq(1)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,2)

polar(polarmatrix(5:6),lengthmatrix(5:6),'-*")

hold on

polar(polarmatrix(7:8),lengthmatrix(7:8),'--*1')

title(['2"{nd}. v_r=",num2str(doppler_fq(2)*c/fq_rr(2)/2),’ m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,3)

polar(polarmatrix(9:10),lengthmatrix(9:10),"-*")

hold on

polar(polarmatrix(11:12),lengthmatrix(11:12),":*r")
title(['37{rd}. v_r=",num2str(doppler_fq(3)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,4)
polar(polarmatrix(13:14),lengthmatrix(13:14),'-*")

hold on

polar(polarmatrix(15:16),lengthmatrix(15:16),":*1'")

title(['4”~ {th}. v_r=",num2str(doppler_fq(4)*c/fq_rr(1)/2),' m/s'T)
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,5)
polar(polarmatrix(17:18),lengthmatrix(17:18),'-*")

hold on

polar(polarmatrix(19:20),lengthmatrix(19:20),":*r'")
title(['5*{th}. v_r=",num2str(doppler_fq(5)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,6)
polar(polarmatrix(21:22),lengthmatrix(21:22),"-*")

hold on

polar(polarmatrix(23:24),lengthmatrix(23:24),":*1")

title(['6™ {th}. v_r=",num2str(doppler_fq(6)*c/fq_rr(3)/2),' m/s"])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,7)
polar(polarmatrix(25:26),lengthmatrix(25:26),'-*")

hold on

polar(polarmatrix(27:28),lengthmatrix(27:28),":*1'")

title(['7* {th}. v_r=",num2str(doppler_fq(7)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,8)
polar(polarmatrix(29:30),lengthmatrix(29:30),'-*")

hold on

polar(polarmatrix(31:32),lengthmatrix(31:32),":*1")
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title(['8"{th}. v_r=",num2str(doppler_fq(8)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,9)

polar(polarmatrix(33:34),lengthmatrix(33:34),'-*")

hold on

polar(polarmatrix(35:36),lengthmatrix(35:36),":*1")

title(['9 {th}. v_r=",num2str(doppler_fq(9)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,10)

polar(polarmatrix(37:38),lengthmatrix(37:38),"-*")

hold on

polar(polarmatrix(39:40),lengthmatrix(39:40),":*1'")

title(['10" {th}. v_r=",num2str(doppler_fq(10)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,11)

polar(polarmatrix(41:42),lengthmatrix(41:42),"-*")

hold on

polar(polarmatrix(43:44),lengthmatrix(43:44),":*1'")

title(['1 1~ {th}. v_r=",num2str(doppler_fq(11)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,12)

polar(polarmatrix(45:46),lengthmatrix(45:46),'-*")

hold on

polar(polarmatrix(47:48),lengthmatrix(47:48),":*1'")

title(['127{th}. v_r=",num2str(doppler_fq(12)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,13)

polar(polarmatrix(49:50),lengthmatrix(49:50),'-*")

hold on

polar(polarmatrix(51:52),lengthmatrix(51:52),":*r'")

title(['13/~{th}. v_r=",num2str(doppler_fq(13)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,14)

polar(polarmatrix(53:54),lengthmatrix(53:54),"-*")

hold on

polar(polarmatrix(55:56),lengthmatrix(55:56),":*1")

title(['14" {th}. v_r=",num2str(doppler_fq(14)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,15)

polar(polarmatrix(57:58),lengthmatrix(57:58),"-*")

hold on

polar(polarmatrix(59:60),lengthmatrix(59:60),":*1')

title(['157{th}. v_r="num2str(doppler_fq(15)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,16)

polar(polarmatrix(61:62),lengthmatrix(61:62),'-*")

hold on

polar(polarmatrix(63:64),lengthmatrix(63:64),":*1'")
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title(['167 {th}. v_r=",num2str(doppler_fq(16)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,17)

polar(polarmatrix(65:66),lengthmatrix(65:66),'-*")

hold on

polar(polarmatrix(67:68),lengthmatrix(67:68),":*1")

title(['17"{th}. v_r=",num2str(doppler_fq(17)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,18)

polar(polarmatrix(69:70),lengthmatrix(69:70),'-*")

hold on

polar(polarmatrix(71:72),lengthmatrix(71:72),":*1'")

title(['18"{th}. v_r=",num2str(doppler_fq(18)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,19)

polar(polarmatrix(73:74),lengthmatrix(73:74),"-*")

hold on

polar(polarmatrix(75:76),lengthmatrix(75:76),":*1'")

title(['197{th}. v_r=",num2str(doppler_fq(19)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,20)

polar(polarmatrix(77:78),lengthmatrix(77:78),'-*")

hold on

polar(polarmatrix(79:80),lengthmatrix(79:80),":*1")

title(['20" {th}. v_r=",num2str(doppler_fq(20)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,21)

polar(polarmatrix(81:82),lengthmatrix(81:82),'-*")

hold on

polar(polarmatrix(83:84),lengthmatrix(83:84),":*r")

title(['217{th}. v_r=",num2str(doppler_fq(21)*c/fq_1r(3)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,22)

polar(polarmatrix(85:86),lengthmatrix(85:86),"-*")

hold on

polar(polarmatrix(87:88),lengthmatrix(87:88),":*1")

title(["22" {th}. v_r=",num2str(doppler_fq(22)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,23)

polar(polarmatrix(89:90),lengthmatrix(89:90),'-*")

hold on

polar(polarmatrix(91:92),lengthmatrix(91:92),":*r'")

title(['237{th}. v_r=",num2str(doppler_fq(23)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,24)

polar(polarmatrix(93:94),lengthmatrix(93:94),'-*")

hold on

polar(polarmatrix(95:96),lengthmatrix(95:96),":*1'")
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title(['24" {th}. v_r=",num2str(doppler_fq(24)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,25)

polar(polarmatrix(97:98),lengthmatrix(97:98),'-*")

hold on

polar(polarmatrix(99:100),lengthmatrix(99:100),":*r")
title(['257{th}. v_r=",num2str(doppler_fq(25)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,26)
polar(polarmatrix(101:102),lengthmatrix(101:102),'-*")

hold on

polar(polarmatrix(103:104),lengthmatrix(103:104),":*r")

title(['26" {th}. v_r=",num2str(doppler_fq(26)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,27)
polar(polarmatrix(105:106),lengthmatrix(105:106),'-*")

hold on

polar(polarmatrix(107:108),lengthmatrix(107:108),":*r")
title(["27"{th}. v_r=",num2str(doppler_fq(27)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,28)
polar(polarmatrix(109:110),lengthmatrix(109:110),'-*")

hold on

polar(polarmatrix(111:112),lengthmatrix(111:112),":*r")

title(['28" {th}. v_r=",num2str(doppler_fq(28)*c/fq_rr(1)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

subplot(5,6,29)
polar(polarmatrix(113:114),lengthmatrix(113:114),'-*")

hold on

polar(polarmatrix(115:116),lengthmatrix(115:116),":*r")

title(['297 {th}. v_r=",num2str(doppler_fq(29)*c/fq_rr(2)/2),' m/s'])
hline = findobj(gca,' Type','line");

set(hline,'LineWidth',3)

subplot(5,6,30)
polar(polarmatrix(117:118),lengthmatrix(117:118),'-*")

hold on

polar(polarmatrix(119:120),lengthmatrix(119:120),":*1")

title(['30" {th}. v_r=",num2str(doppler_fq(30)*c/fq_rr(3)/2),' m/s'])
hline = findobj(gca, Type','line");

set(hline,'LineWidth',3)

mean(doppler fq)
std(doppler fq)

4) WR_pulse com

% Weather Radar Signal Simulator, developed version
% Pulse compression
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% UIf Schroder
% August, 2005
%

% Main program for The NPS/Marielle Gosset Weather Radar Signal Simulator.

%
% DESCRIPTION

% Part 1

% From Radar Data:

% - Generate Beam Resolution cell approximation

% - Generate Cube adding a margine to the Beam Resolution cell to allow for
% the rain drops to fall trough the through beam over time. The stretched

% pulse will make the resolution cell larger and divided into range bins

% according to specified input data. To get a resonable average the middle

% range bin will serve as the "average" range bin

%

% Part 11

% From Rain Parameters:

% Generating the fundamental T Matrix concisting of

% - Diameter Vector and Number of drops in each diameter interval

% using the Marshall-Palmer exponential approximation.

% - the backscatter RCSs for each Diameter size

% - the total number of drops for each size per m"3

% Part 111
% Randomly place all drops in cube

% Part IV
% For every pulse the coherent Electric field return is calculated. Between
% pulses all drops are moved.

% Part V
% Calculate and plot results
%

clear all
close all
cle

% Input Data
c=3e8; % Speed of light [m/s]

% Radar Data

P t=10e3; % Transmitted power

G_dB=20; % Maximum gain in dB

G=10"(G_dB/10); % Maximum gain

angle 3db=0.20; % 3 dB Beam angle [degrees], (half half power beamwidth)
pulsewidth=0.20; % Pulsewidth [microsecond]

elevation=3; % Elevation angle [degrees]

margine=5; % margin for resolution cell[m]

azimuth=0; % Azimuth angle [rad]

PRT 1=1/200; % Pulse Repetition Time [seconds]
distance=0.5; % Range from the radar to the resolution cell [Km]

wavelength=0.1; % Wavelength [m]
frequency=c/wavelength; % Frequency [Hz]
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%
%Introduced in Pulse Compression version

chirp_width=2e6; % Frequency step in [Hz]

n_steps=10; % Number of Frequency steps

fq step=chirp_width/n_steps; % Frequency step in [Hz]
d_range=c*pulsewidth*n_steps*1e-6/2/n_steps; % range bin due to pulse compression
num_runs=10; % Number of runs (pulse compressed)

rangg_bin=(distance* 1000):d_range:(distance*1000+(n_steps-1)*d_range);
%

% Rain parameters

diam_low=0.05; % Lowest diameter of Precipitation [mm]
diam_lim=1; % Divider between low and mid [mm]
diam_mid=5; % Divider between mid and high [mm]
diam_high=15; % Highest diameter of Precipitation [mm]
resolution1=0.08; % Lower diameter resolution [mm]
resolution2=0.3; % Higher diameter resolution [mm]
resolution3=0.8; % Highest diameter resolution [mm]
sort_approx=1; % RCS approximation model; [1]=Rayleigh
kw=0.93; % abs(K)"2 approx for water

rain_rate=50; % Rain Rate [mm/h]

rain_anglel=0; % degrees Rain Angle (Phi)
rain_angle2=0; % degrees Rain Angle (Theta)
wind_vector=[-10;0;0]; % Wind speed vector (x,y,z) [m/s]
spread=1; % Wind speed spread [m/s], (all directions)
spread 2=4; % Drop velocity spread [m/s]

Norm=200; % Normalization coefficient

% Directional cosines
u=sin(pi/2-elevation*pi/180)*cos(azimuth*pi/180);
v=sin(pi/2-elevation*pi/180)*sin(azimuth*pi/180);
w=cos(pi/2-elevation*pi/180);

%
% Part I, Generate the resolution volume
%
% Approximation of the resolution cell of the pulse circular box,
% for any azimuth angle

%
% INPUT

% - distance

% - angle 3dB
% - pulsewidth
% - elevation
% - margine

% - azimuth

%
% OUTPUT

% - volume_resolution: computed volume of the resolution cell

% - volume box: volume of the box where the drops are put

% - box: the 8 rectangular coordinates of the box

% - coord _vol res: the coordinates of the resolution cell where the drops
% are taken.

%
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%
% Creating the circular beam resolution cell
range res=(c*pulsewidth*n_steps*1e-6)/2;

% small angle approximation allows for following
angle rad=(angle 3db*pi)/180;
% 3 dB beamwidth [rad]
radius1=(tan(angle rad)*(distance*1000));
% Radius of beam at R=distance
radius2=(tan(angle rad)*((distance*1000)+range res));
% Radius of beam at R=distance + range resolution

surfacel=pi*radius12;
surface2=pi*radius2"2;

% volume of cone = base surface times height for all three

volume conel=(surfacel*(distance*1000))/3;

volume cone2=(surface2*((distance*1000)+range res))/3;
volume_resolution=(volume cone2-volume conel); % Beam Cone Volume

% To assure right volume for averaging

DR=1:10;

range res ref=(c*pulsewidth*DR*1e-6)/2;

radius2_ref=(tan(angle rad)*((distance*1000)+range res ref))

surface2 ref=pi*radius2 ref."2;

volume cone2 ref=(surface2 ref.*((distance*1000)+range res_ref))/3;

volume resolution ref=(volume cone2 ref-[volume conel volume cone2 ref(1:end-1)]);
% Beam Cone Volume

% computation of the resolution cell coordinates, spherical coordinates
% elevation in radians

elevation_rad=(elevation*pi)/180; % Elevation [rad]
azimuth_rad=(azimuth*pi)/180; % Azimuth [rad]

% Matrix used when comparing wheather a drop is inside or outside

% beamwidth

coord vol res=[distance*1000,(distance*1000)+range res;elevation rad-angle rad,...
elevation rad+angle rad;azimuth rad-angle rad,azimuth rad+angle rad];

%

%
% Creating the box

% computation of the box and its coordinates

coinl=[azimuth rad+angle rad,elevation rad+angle rad,distance*1000];
coin2=[azimuth rad-angle rad,elevation rad+angle rad,distance®*1000];
coin3=[azimuth_rad+angle rad,elevation rad-angle rad,distance*1000];
coin4=[azimuth rad-angle rad,elevation rad-angle rad,distance*1000];

coin5=[azimuth rad+angle rad,elevation rad+angle rad,distance*1000+range res];
coin6=[azimuth rad-angle rad,elevation rad+angle rad,distance*1000+range res];
coin7=[azimuth rad+angle rad,elevation rad-angle rad,distance®*1000+range res];
coin8=[azimuth_rad-angle rad,elevation rad-angle rad,distance*1000+range res];

[x1,y1,z1]=sph2cart(coinl(1),coinl(2),coin1(3));
[x2,y2,22]=sph2cart(coin2(1),coin2(2),coin2(3));
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[x3,y3,z3]=sph2cart(coin3(1),coin3(2),coin3(3));
[x4,y4,z4]=sph2cart(coin4(1),coin4(2),coin4(3));
[x5,y5,z5]=sph2cart(coin5(1),coin5(2),coin5(3));
[x6,y6,z6]=sph2cart(coin6(1),coin6(2),coin6(3));
[x7,y7,27]=sph2cart(coin7(1),coin7(2),coin7(3));
[x8,y8,z8]=sph2cart(coin8(1),coin8(2),coind(3));

xmax=max([x1,x2,x3,x4,x5,x6,x7,x8]);
xmin=min([x1,x2,x3,x4,x5,x6,x7,x8]);
ymax=max([yl,y2,y3,y4,y5,y6,y7,y8]);
ymin=min([y1,y2,y3,y4,y5.,y6,y7.,y8]);
zmax=max([z1,z2,23,74,75,26,27,78]);
zmin=min([z1,22,23,74,25,26,77,28]);

% the box with its margin
coin_l=[xmin-margine,ymin-margine,zmin-margine];
coin_2=[xmin-margine,ymax+margine,zmin-margine];
coin_3=[xmax+margine,ymax+margine,zmin-margine];
coin_4=[xmax-+margine,ymin-margine,zmin-margine];
coin_S5=[xmin-margine,ymin-margine,zmax-+margine];
coin_6=[xmin-margine,ymax+margine,zmax-+margine];
coin_7=[xmax+margine,ymax+margine,zmax+margine];
coin_8=[xmax+margine,ymin-margine,zmax-+margine];

box=[coin_1',coin_2',coin_3',coin_4',coin_5',coin_6',coin_7',coin_8'];

% calculate the volume of the box
volume box=abs((xmax+margine-(xmin-margine))*(ymax+margine-(ymin-margine))*...
(zmax+margine-(zmin-margine)));

cube=[coin_1',coin_2',coin_3',coin_4',coin_1',coin_5',coin_6',coin_2',...
coin_6',coin_7',coin_3',coin_7',coin_8',coin_4',coin_8',coin_5'];
%

%
% Part II, Generate the fundamental T Matrix
%
% This part produces a matrix of all drops that contribute to the total
% reflectivity of the resolution cell

%
% First all sizes are created, with two vectors of different size resolution.

% The size vectors represents all diameters. Next the backscatter RCS for each

% size is computed.

% Using the Marshall-Palmer exponential approximation, the number of drops of
% each diameter is computed.

%
% INPUT

% - diam_low
% - diam_lim
% - diam_high
% - resolutionl
% - resolution2
% - sort_approx
% - wavelength
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% - Kw

% - rain_rate
%
% OUTPUT

% - number_drops

% Matrix T:

% - first row all sizes

% - second row all the backscatter RCSs

% - third row the total number of drops for each size per m"3
% the columns start with the smallest size

%
% Create dropsize vector

% Precipitaion Diameter vector (lowest<D<divider)
vector_size 1=diam_low:resolutionl:diam_lim;

% Precipitaion Diameter vector (divider<D<mid)
vector_size 2=diam_lim:resolution2:diam_mid;

% Precipitaion Diameter vector (mid<D<highest)
vector_size 3=diam_mid:resolution3:diam_high;

% Precipitaion Diameter Vector
vector_size=[vector size 1,vector size 2,vector size 3];

%
% Create RCS matrix for all Rain drops of Precipitation Vector and for all
% frequencies.

fq_rr=frequency:fq_step:frequency-+(n_steps-1)*fq_step;
res(1:n_steps,:)=((kw"2)*(pi"5)/(c"4)*fq_rr'.~4)*((vector_size*1e-3).76);
%

%
% The Marshall Palmer approximation is used to create Precipitaion Diameter
% Distribution Vector (Drop Size Distribution N(D) Vector)

% The number of drops are scaled down by a factor (Norm) to improve the

% speed of the simulator

%
lambda=4.1*(rain_rate’(-0.21)); %[mm-1]
number=8000*exp(-lambda*vector_size)/Norm,;

vector_resl=ones(1,length(vector_size 1))*resolutionl;
vector_res2=ones(1,length(vector_size 2))*resolution2;
vector_res3=ones(1,length(vector size 3))*resolution3;

% delta(Diameter) dD
vector_res=[vector resl,vector res2,vector_res3];

% the approximate "true" number of drops N(D)dD vector
number=number.*vector_res;
%

%
% create matrix T without rcs
T=[vector_size;number];

%
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%
% Change matrix '"T" to matrix 'matrix_ T Round'
%
% This part computes the total number of drops by utilizing the resolution
% cell and the matrix T Round

% The only difference between the matrix T Round and T, is the fact that
% matrix_T Round has the total number of drops on the third row and they
% are rounded of to nearest integer value.

%

matrix T Round=T;
matrix_T Round(2,:)=round(matrix T Round(2,:)*volume box);

% Keep track of errors due to round off

diff=T(2,:)*volume box-matrix T Round(2,:);

error_rcs=diff*rcs'*Norm/volume_box*sum(volume resolution ref)/n_steps;

error_Z=error_rcs/sum(volume resolution ref)/n_steps*c™4./fq_rr.”4/pi*5/...
abs(kw)”"2/1e-18;

%
% Part 111, Initial positioning of the drops within the volume
%
% This part generates the initial position of the drops in the volume of
% the box.

% The positions are recorded in the file "sizexx.mat' taking into account
% the azimuth angle

%
% INPUT

% - box

% - matrix_T Round
% - elevation

% - azimuth

%
% OUTPUT

% All files including the sizes. Each contains the positions of all drops
% for a given diameter. The data recoreded as follows:

% - radial distance r

% - elevation phi

% - azimuth theta

% - angle with respect to beam center. This parameter will be

% used to identify drops which are in the beam.

%

% Randomly put the calculated number of drops of each diameter in the box
number_size=length(matrix T Round(1,:));

for i=1:number_size

% select number of drops of certain Diameter
drops=matrix_T Round(2,i);

% create as many positions on the x axis as # drops per size
elements_x=rand(1,drops);

% put them in the range of interest
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% Random placement x for every drop
position_x=box(1,1)+(box(1,3)-box(1,1))*elements_x;

% create as many positionson the y axis as # drops per size
elements_y=rand(1,drops);

% put them in the range of interest
% Random placement y for every drop
position_y=box(2,1)+(box(2,2)-box(2,1))*elements_y;

% create as many positions on the z axis as # drops per size
elements_z=rand(1,drops);

% put them in the range of interest
% Random placement z for every drop
position_z=box(3,1)+(box(3,5)-box(3,1))*eclements_z;

% matrix of results
% Creating a drop Matrix using spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% Calculating the range, phi, theta and angle to every drop with

% reference to phi_0 and theta_ 0. Used to estimate weighted power return.
vector_azimuth=ones(1,drops)*((azimuth*pi)/180);
vector_elevation=ones(1,drops)*((elevation*pi)/180);
[xf,yf,zf]=sph2cart(vector azimuth,vector elevation,r);
range=sqrt((position_x-xf)."2.+(position_y-yf)."2.+(position z-zf)."2);

% approximation
angle=atan(range./r);

% Saving the drop positions in size%d.mat
% matrixpos
matrixpos=[r;phi;theta;angle];

save(sprintf('size%d.mat',1),'matrixpos');

end
%

%
% Part IV, Calculate Coherent Electric field return.
%
% For every pulse the coherent Electric field return is calculatet. Between
% pulses all drops are moved.

%

% Run the simulation for specified number of pulses

%

% Zero all vectors and matrices that are going to be used
phase_vector=[];

sum_E=zeros(num_runs,n_steps);

weighted E=zeros(num_runs,n_steps);

running_Z=[];

% Initiate reference variables
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p=0; % Used to separate runs

for runs=1:num_runs

p=p+l;
hh=0; % Used to separate frequencies

for fq_new=frequency:fq_step:frequency+(n_steps-1)*fq step

hh=hh+1;
k=2*pi*fq_new/c;

disp(sprintf('calculate the power-return of pulse %d\n',p));

%

% computes the (weighted) I and Q return

%
% computes the total number of drops
%
% INPUT

% - Matrix T

% - wavelength

% - angle 3dB

% - distance

% - coord_vol_res
% - number_pulses
%
% OUTPUT

% - total E: the received complex Electric field)
% - power: the power

% - voltage: the voltage

% - drops_beam: the number of drops in the beam
%
% Only the drops which are in the resolution cell are selected for the
% computation

%

number_size=length(matrix T Round(1,:));
total E=0;

total phase=0;

new_E=0;

for i=1:number_size

% opening the file of registered data matrixpos.
load(sprintf('size%d.mat',1));

% removing drops that are outside the resolution cell
number drops per_size=length(matrixpos(1,:));
dropmatrix=[];

% Filling the drop matrix with all drops inside the beam
% resolution volume
for d=1:number_drops per_size
if ((matrixpos(4,d)<=(angle_3db*pi/180))&(matrixpos(1,d)>=...
range bin(hh))&(matrixpos(1,d)<=range bin(hh)+d_range));
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dropmatrix=[dropmatrix,matrixpos(:,d)];
end
end

%
% Convert to cartesian coordinates
if isempty(dropmatrix)==0
[position_x,position_y,position_z]=sph2cart(dropmatrix(3,:),...
dropmatrix(2,:),dropmatrix(1,:));

% Create comparison vectors
vector_azimuth=ones(1,length(dropmatrix(1,:)))*((azimuth*pi)/180);
vector_elevation=ones(1,length(dropmatrix(1,:)))*((elevation*pi)/180);

% Create a phase vector for the drops of current Diameter
r_phase=position_x.*u+position_y.*v+position_z.*w;
phase=exp((2*j*k).*r_phase);

% Sum the contributions to the E-field
total phase=total phase+sum(phase);
total E=total E+sum(sqrt(rcs(hh,i)).*phase);

%

% ceate weighted power return, concidering range (r), theta, phi

% with reference to boresight and radar parameters

E weighted=sqrt(P_t)*G*c/fq_rr(hh)/(sqrt(4*pi)*3)./dropmatrix(1,:).”2.*...
(exp(-4*log(2).*((dropmatrix(3,:)-vector azimuth).”2/...
(2*angle 3db*pi/180)"2+((dropmatrix(2,:)-

vector_elevation).*2/(2*angle 3db*pi/180)"2))));
new_E=new_ E+sum(E_weighted.*(sqrt(rcs(hh,i)).*phase));

end
end

%
% add to E-field and phase vector
sum_E(p,hh)=total E;

weighted E(p,hh)=new E;
phase_vector(2*p-1)=ANGLE(total phase);
%

end
%

% This part simulates the movement of the drops and gives new positions.
% First using the Doppler PRT (PRT 1)
%
% INPUT
% - matrix_T Round
% - PRT
% - azimuth
% - elevation
% - rain_anglel
% - rain_angle2
% - diam_lim
% - resolutionl
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% - resolution2
% - wind_vector
%
% OUTPUTS
% Output files containing sizes with new positions
% structured the same way as in previous
% there is also an output file for speed (one for each size) for the pulse
% pair.
%

number_size=length(matrix T Round(1,:));

% adding a Gaussian random term to make the wind speed spread
if wind_vector(1)~=0
new_wind_vector(1)=wind vector(1)*normrnd(1,abs(spread/max(wind_vector(1))));
else
new_wind_vector(1)=0;
end
if wind_vector(2)~=0
new_wind_vector(2)=wind_vector(2)*normrnd(1,abs(spread/max(wind_vector(2))));
else
new_wind_vector(2)=0;
end
if wind_vector(3)~=0
new_wind_vector(3)=wind_vector(3)*normrnd(1,abs(spread/max(wind_vector(3))));
else
new_wind_vector(3)=0;
end

for i=1:number_size

% opening of data file registered in matrixpos.
load(sprintf('size%d.mat',i));

% total number of drops
drops=matrix_T Round(2,i);

% transforming to rectangular coordinates
[x,y,z]=sph2cart(matrixpos(3,:),matrixpos(2,:),matrixpos(1,:));

diameter=matrix_T Round(1,i);

%
% Drop fall speed depends on drop diameter in the z axis,
% Atlas-Ulbrich approximation is used
% Approximation is valid in the diameter range 5*e-4, 5*e-3
%

wtmax=386.6*((matrix T Round(1,1)*0.001)"0.67);

velocityz=(wtmax*(ones(1,drops)))*cos((rain_anglel*pi)/180);

velocityx=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
cos((rain_angle2*pi)/180);

velocityy=(wtmax*(ones(1,drops)))*sin((rain_anglel*pi)/180)*...
sin((rain_angle2*pi)/180);
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

%
%

%

% adding another Gaussian random term to make the wind speed
% spread between different drops sizes
if new_wind_vector(1)~=0
newest_wind_vector(l)=new_wind_vector(1)*normrnd(1,abs(spread...
/max(wind_vector(1))));
else
newest wind_vector(1)=0;
end
if new_wind_vector(2)~=0
newest_wind_vector(2)=new_wind_vector(2)*normrnd(1,abs(spread...
/max(wind_vector(2))));
else
newest_wind_vector(2)=0;
end
if new_wind_vector(3)~=0
newest wind_vector(3)=new_wind_vector(3)*normrnd(1,abs(spread...
/max(wind_vector(3))));
else
newest_wind_vector(3)=0;
end

% If spread within pulse

velocityxt=newest wind vector(1)-velocityx;
velocityyt=newest wind vector(2)-velocityy;
velocityzt=newest_wind_vector(3)-velocityz;

%

% If spread for all drops regardless of size
newest_wind_vector=[];

% adding Gaussian random term to make the wind speed
% spread between drops
if new_wind_vector(1)~=0

newest_wind_vector(1l,:)=new_wind_vector(1)*...
normrnd(1,abs(spread_2/max(new_wind vector(1))),1,drops);

else

newest wind_vector(1,:)=0;

end
if new_wind_vector(2)~=0

newest_wind_vector(2,:)=new_wind_vector(2)*...
normrnd(1,abs(spread 2/max(new_new_wind vector(2))),1,drops);

else

newest_wind_vector(2,:)=0;

end
if new_wind_vector(3)~=0

newest_wind_vector(3,:)=new_wind_vector(3)*...
normrnd(1,abs(spread_2/max(new_wind vector(3))),1,drops);

else

newest wind_vector(3,:)=0;
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end

% If spread within pulse

velocityxt=newest wind vector(1,:)-velocityx;
velocityyt=newest wind vector(2,:)-velocityy;
velocityzt=newest_wind_vector(3,:)-velocityz;

%
%

% speed registration
m_velocity=[velocityxt;velocityyt;velocityzt];
save(sprintf('velocity%d.mat',i),'m_velocity');

deplacementx=velocityxt*PRT 1;
deplacementy=velocityyt*PRT 1;
deplacementz=velocityzt*PRT 1;

position_x=x+deplacementx;
position_y=y+deplacementy;
position_z=z+deplacementz;

% transformation into spherical coordinates
[theta,phi,r]=cart2sph(position_x,position_y,position_z);

% computation of new angles
vector_azimuth=ones(1,drops)*(azimuth*pi)/180;
vector_elevation=ones(1,drops)*(elevation*pi)/180;
[xf,yf,zf]=sph2cart(vector_azimuth,vector elevation,r);

range=sqrt((position_x-xf).”2.+(position_y-yf).*2.+(position_z-zf).*2);
% approximation

angle=atan(range./r);

% matrixpos
matrixpos=[r;phi;theta;angle];

% save to file, matrixpos
s=sprintf('size%d.mat',i);
save(s, 'matrixpos');

end

end

%

%

% calculate RCS, Z and Power return for every pulse including error. The

% reflectivity is caculated for each volume bin and then summed and

% averaged.

%

for o=1:num_runs
running_Z(o,:)=(Norm*abs(sum_E(0,:))."2)*c"4./fq_rr(0)"4/pi"5/...

abs(kw)"2/volume_resolution_ref(o0)/1e-18+error_Z(0);
end
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running_Z=sum(running_Z,2)"/n_steps; % Transform into a vector

%

% Adding the error to the weighted E estimations

%

error_power=error_rcs*P_t*G”2*c 2./fq_rr.~2/pi"2*(2*angle 3db*pi/180)"2*...
(c*pulsewidth* 1e-6)/1024/log(2)/pi*2/(distance* 1e3)"2;

for o=1:num_runs
power_return(o,:)=Norm*abs(weighted E(o,:))."2+error_power(o);
end

power_return=sum(power_return,2)'/n_steps; % Transform into a vector

% to use to estimate zeroth moment
for o=1:n_steps

power_return_ref matrix(:,0)=Norm*abs(weighted E(:,0))."2+error power(0);
end

power_return_ref=sum(power return_ref matrix,1)/num_runs; % Transform into a vector

%
% calculate average Power and Z
%
Z avg=sum(running_Z)/p;

Z avg plot=ones(1,p)*Z avg;

power return_avg=sum(power return)/p; % [W]
power_return_avg_plot=ones(1,p)*power_return_avg;

number_vector=1:p;

%
% Calculate references
% Integral form of Z
%
1i=0:100/1000:100;
zz=11."6.*%8000.*exp(-4.1.*rain_rate.”(-.21).*i1);
real_Z=ones(1,p)*10*logl0(trapz(ii,zz));

%
% Evaluate average Power return to make Z estimation including error
%
% To make the estimate with the correct frequency, the power return Matrix
% is used. For the plot the result must me summed and divided by the number
% of samples used to average (which means over both frequency and pulse).

Z estimation=power return ref matrix*((fq_rr."2).*((c./fq_rr).”4))'/P_t/G"2/c"2*...
pi*2/(2*angle 3db*pi/180)"2/(c*pulsewidth*1e-
6)*1024*log(2)*(distance*1e3+range res/2)"2/...
((kw"2)*(pin5))/1e-18;
Z_estimation_plot=ones(1,p)*10*log10(sum(Z_estimation)/n_steps/num_runs);

%
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% Part V, Plot of results
%

figure(1);
kl=1:p;
number_vector=kI.*PRT_1*1000;

text_string=['"Power Return for all ,num2str(p),' pulse trains."...
,' Frequency stepped from ',num2str(fq_rr(1)/1e9),' GHz to ',...
num2str(fq_rr(n_steps)/1€9),' GHz with ',num2str(fq_step/1e6)...
,' MHz steps.'];

% also converting to dBm

plot(number_vector,10*log10(power_return)+30,"-xb', number_vector,10*log10...

(power return_avg plot)+30,'--1");

title(text_string);

xlabel('Sample time [ms]');

ylabel("Power [dBm]');

legend('"Power return', 'Average Power return',0)

grid on

figure (2)

plot(number_vector,10*log10(abs(running_Z)),'-xb',number_vector,10%...
log10(abs(Z_avg_plot)),--r',number_vector,real Z,'--k',...
number_vector,Z_estimation_plot,'--b");

title('Estimated Z per pulse');

xlabel('Sample time'");

ylabel('Z [dBZ]");

legend('Simulation Z, (instantaneous)', 'Estimated Z, (average return)',’Z=\int D*6N(D)dD,...
'Estimated Z, Zeroth moment',0)

grid on
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