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ABSTRACT 
 
 
 

This thesis focuses on evaluating the measurement errors in the gimbal system of 

the SUAV autonomous aircraft developed at NPS.  These measurements are used by the 

vision based target position estimation system developed at NPS.  Analysis of the errors 

inherent in these measurements will help direct future investment in better sensors to 

improve the estimation system’s performance.    
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I. INTRODUCTION  

A. BACKGROUND  
The purpose of the Small Unmanned Aerial Vehicle (SUAV) is to provide video 

and target position estimations to the Tactical Network Topology (TNT) Experiment 

being conducted by the Naval Postgraduate School.  “TNT is an integrated program of 

quarterly field experiments that develop and demonstrate new technologies to support 

near term needs of the war fighter” [4].  The experiment focuses mainly on “wireless 

networks, autonomous vehicles, sensor networks, situational awareness and target 

tracking and identification” [4].  

The SUAV is just one component in the TNT Experiment.  The SUAV provides 

Vision-Based Target Tracking (VBTT) which proves detailed reconnaissance and 

simultaneous imagery, see Figure (1).  The detailed reconnaissance includes target 

position estimation.  Targets can be acquired using an onboard gimbaled camera.  The 

angles of the camera (pointed toward a target) with respect to the body of the SUAV 

along with telemetry data from an onboard Inertial Navigation System (INS) allows us to 

estimate position of a target.  Along with live video this target position estimation is the 

main mission of the SUAV. 
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Figure 1.   VBTT Architecture  

 
B. SUAV 

The SUAV is like the Predator UAV although it is a fraction of the size and price. 

Its small size, light weight, ruggedness and endurance provide a very useful tool on the 

battlefield.      

Its primary payload is a gimbaled camera, Figure (2), that has an independent 

control system, manually or autonomously controllable from the ground.   



 
Figure 2.   Gimbaled Camera. 

 

The SUAV itself, Figures (3) and (4), is a modified hobby aircraft called the 

Senior Telemaster. It comes in at 2.5 meters across the wings and at a weight of 8kg. The 

SUAV is powered by a 23 cm  gasoline powered two stroke engine that, when coupled 

with its 1500 cm  gas tank, has the ability to loiter for around three hours.     

3

3

The SUAV carries the Piccolo avionics package which includes the INS; Piccolo 

allows the SUAV to be autonomous.   

 
Figure 3.   SUAV. 
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Figure 4.   SUAV and Camera. 

 
C. CONTROL SYSTEM 

The SUAV is equipped with an onboard integrated GPS/INS system which also 

transmits position, velocity, acceleration, Euler rates and angles to the ground.  

Computers on the ground, using this supplied telemetry data can then use it to control the 

flight of the aircraft and make the SUAV navigation autonomous.  Two types of autopilot 

control are used on the SUAV, The Piccolo Autopilot system and the NPS Autopilot.  

Both use the telemetry data which comes from the Piccolo avionics payload onboard the 

aircraft, Figure (5).  Rate gyros, accelerometers, a GPS receiver and a pressure sensor are 

all part of the avionics payload.  The payload communicates via a 900 MHz radio link to 

the ground station, Figure (6).  
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Figure 5.   Piccolo Avionics Payload. 

 

 
Figure 6.   Current Ground Station. 

 
 
1. Piccolo Autopilot 
Piccolo was developed by Cloud Cap Technology.  It has a user interface 

compatible with Windows run on a laptop computer in the field.  The user interface 

displays a map of the local area and allows the user to manipulate waypoints while the 

SUAV is in flight and view telemetry data being sent from the aircraft.  This data is saved 

in a file as it arrives.   

5 



The SUAV can be put into autonomous mode or be switched into manual mode at 

the press of a button.  When in autonomous mode Piccolo controls the aircraft by flying 

the aircraft to waypoints.  However, when a target is locked, NPS Autopilot is engaged 

and sends commands through the Piccolo software to the SUAV.  

   

2. NPS Autopilot 
NPS Autopilot was developed at the Naval Postgraduate School.  It is an autopilot 

system used once a target is locked to fly the SUAV around the target around the 

trajectory that converges to a circle.  Flying the SUAV around the target in a circle 

enables calculations to be made to estimate the range to the target, Equation(0.1).   

vρ
λ

= &      (0.1) 

Where λ& is the angular rate of the LOS to the target,  is the velocity of the 

SUAV and 

v

ρ  is the estimated range from the SUAV to the target.  With the estimated 

range to the target, the location of the SUAV, the Euler angles of the aircraft as well as 

the gimbal angles all known, the target position can be estimated.    

 

D. CAMERA 

The camera, attached to a gimbal pan/tilt unit, is the primary payload of the 

SUAV.  Video data is sent to the ground from the UAV through a 2.4 GHz omni-

directional antenna and received through a high gain tracking antenna.  Once received the 

video information is time stamped and displayed through PerceptiVU on a computer 

video screen.  PerceptiVU is the program used to lock onto a target. 

1. Gimbal Pan/Tilt Unit 
While searching for a target the Gimbal Pan/Tilt Unit is under manual control 

from the ground.  While in manual mode the user observes real-time video through a 

computer screen and moves the gimbal with a computer joystick. The range of the pan/tilt 

unit is 90 degrees tilt (strait ahead to directly at the ground) and 360 degrees pan.  The 

movement of the joystick is converted into commands for the gimbal.  Gimbal commands 

6 
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are sent via one way communication to the SUAV through a 900 MHz radio link.  The 

gimbal is under autonomous control when locked on a target.     

2. PerceptiVU 

PerceptiVU is image tracking software.  Developed by PerveptiVU inc. this is the 

software we use to lock onto a target and stay locked on.  A target lock is achieved by the 

user manning the joystick.  The user initially moves the gimbal so that the target is in the 

PerceptiVU video screen and presses the trigger on the joystick. Once locked onto a 

target, information provided by PerceptiVU software is used to control the gimbal 

autonomously.  While locked on, PerceptiVU outputs the location of the target in the 

camera frame.  The output is given in pixels.  The pixel where the target sits in the 

horizontal direction in the camera frame is called the “U” pixel. The vertical pixel is the 

“V” pixel.  The PerceptiVU frame has 320 pixels horizontal and 240 pixels vertical 

resolution.   

During the screen shot in Figure (7) PerceptiVU would output pixel values of 

+30V and +40U for example.  The gimbal commands while locked onto a target are 

based on this U, V data.  The pitch rate commands to the gimbal depend on the V pixel.  

The yaw rate commands to the gimbal depend on the U pixel.  These commands are 

meant to keep the target in the center of the camera frame.   

When the user wants to disengage and regain manual control of the gimbal the 

trigger is pulled again and the target is disengaged. 

 



      +30 V 

 +40 U 

 
Figure 7.   Screen Shot from PerceptiVU.  
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II. PROBLEM FORMULATION 

A. PROBLEM  

Errors in the target position estimation range on average from 20 to 50 meters.  

Some of these errors are attributed to imperfect measurements of Euler angles by Piccolo 

INS and of gimbal angles by NPS ground station.  The purpose of this thesis is to use 

available flight test data to quantify the errors in the Gimbal angle measurement.   

The approach adopted in this thesis is twofold: 

• Using known target and UAV positions, use Euler and gimbal angle 
measurements to determine where the target would appear in the camera 
frame.  Compare computed Target position with actual taken during the 
flight test 

• Using PerceptiVU measurements, determine the gimbal angles that would 
result in these measurements.  Compare these resultant angles with flight 
test data.  

1. Gimbal Angle Errors 
The gimbal data likely represents a source of errors.  In this work it is assumed 

that commands sent to the gimbal are executed immediately, therefore output position of 

the camera attached to it is equal to the input command.  However, extensive 

experimentation shows that this in not the case.  Several factors distort this input-output 

relation: 

• Calibration of the gimbal; 

• Time delay introduced by wireless RF link; 

• Noise due to the atmospheric and engine noise. 

 

B. AVAILABLE DATA 

To address these problems we will use the following flight test data: 

• Position of the target in the camera frame provided by PerceptiVU; 

• The location of the SUAV in geodetic coordinates; 

• The location of the target in geodetic coordinates; 

• The Euler angles of the aircraft in radians; 

• The gimbal angles in radians; 



• Video recording from the camera on the specific flight. 

From this data we can calculate orientation of the camera.  Using this orientation 

and the known location of the target we can estimate the location of the target in the 

camera frame and compare it to the true data taken from PerceptiVU.  The difference in 

this location of the target in the camera frame will provide us insight into the errors in the 

gimbal angles of the SUAV.  To calculate the estimated pixel location MATLAB 7.0 

Simulink was used.  A Simulink implementation of the approaches outlined in II.A is 

presented in Figure (8). 

 
Figure 8.   Entire Simulink Model 
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1. Loading Data 
Loading the data is the first block of the Simulink diagram.  For each flight of the 

SUAV its telemetry, gimbal and PerceptiVU data is saved versus real-time in the form of 

a MATLAB .mat file.  The data loaded at the first step of the Simulink model, Figure (8) 

is presented in Table 1.   

  

Data (units) Subfile Element 

Target Position (rad,m) N/A N/A 

SUAV Latitude (rad) Telem 1 

SUAV Longitude (rad) Telem 2 

SUAV Altitude, above ground (m) Telem 3 

SUAV Roll, psi, Gϕ  (rad) Ctrl 24 

SUAV Pitch, theta, Gθ  (rad) Ctrl 25 

SUAV Yaw, psi, Gψ  (rad) Ctrl 26 

Gimbal Pitch, tilt, Gα  Gmbl 1 

Gimbal Yaw, pan, Gβ  Gmbl 2 

Gimbal Lock Gmbl 3 

PerceptiVU  (pixel) trueU Gmbl 4 

PerceptiVU  (pixel) trueV Gmbl 5 

Table 1. Data input into simulink diagram. 
 

The Simulink block that loads the data can be seen in Appendix (A.A). 
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2. Geodetic to ECEF 
Flight test data provides the position of the target and SUAV in geodetic 

coordinates, Figure (9).  In order to solve our task we need to transfer coordinates into a 

Local Tangent Plane (LTP).  This transformation is done in two steps: first, is rotation 

from geodetic to ECEF (Figure (10)); second is to rotate from ECEF to LTP.   

First step is accomplished through Equation(0.2).   

2 2

2

1 sin

( ) cos cos

( ) cos sin

((1 ) )sin

e

e

e

e

rr

x r h

y r h

z r h

λ

λ

λ

λ

ε ϕ

ϕ λ

ϕ λ

ε ϕ

=
−

= +

= +

= − +

     (0.2) 

Where: 

• ϕ  is the Latitude angle (rad) 

• λ  is the Longitude angle (rad) 

• h is the height above sea level (m) 

Implementation of these equations using Simulink viewable in Appendix (A.B). 

 
Figure 9.   Geodetic Coordinate System. 
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Figure 10.   ECEF Coordinate System. 

 
 
 
3. ECEF to LTP 
LTP is a right hand rule reference frame which has its origin at a chosen spot.  For 

this case the LTP origin is placed at the target position.  The North-East-Down (NED) 

orientation of the LTP is assumed.  Equation (0.3) shows the rotation matrix used to 

transform ECEF to LTP. 

 

sin cos sin sin cos
sin cos 0

cos cos cos sin sin

NED
e R

ϕ λ ϕ λ
λ λ

ϕ

ϕ λ ϕ λ

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− − −⎣ ⎦ϕ

                    (0.3) 

ϕ  and λ  in Equation (0.3) are the Latitude and Longitude in the geodetic frame 

respectively.   

 

arg*( )e NED e e
SUAV e SUAV t etp R p p= −           (0.4) 
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]

 The position of the SUAV in LTP coordinates,  with components 

, is found through Equation (0.4) where  is the 

position of the SUAV represented in ECEF coordinates, and  is the location of the 

target in ECEF coordinates.  Equation (0.5) calculates the position of the target in LTP 

frame.  Recall,  is the origin and should be equal to [0,0,0]. 

NED
SUAVp

,[ ,NED NED NED
SUAV SUAV SUAVx y z e

SUAVp

arg
e

T etp

arg
e

T etp

 

arg arg arg*( )NED NED e e
T et e T et t etp R p p= −     (0.5) 

 

Implementation of this transformation using Simulink can be seen in Appendix 

(A.C). 

    

4. Target Position in Camera Frame 
With the Target position and SUAV position in LTP frame we can calculate the 

range from the SUAV to the Target in Equation(0.6). 

 

2 2( ) ( ) (NED NED NED
SUAV SUAV SUAVx y zρ = + + 2)                                  (0.6) 

 

Consider Figure (11) and Figure (12).  Angular position of the target in the 

camera frame is given by ,
c

LOS Tθ  and ,
c

LOS Tψ .   

 

 

 

 

 



cx

cz
c

Tp

,
c

LOS Tθ

 

 

Figure 11.   Visual Representation of ,
c

LOS Tθ . 
 
 

 

cx

cy

c
Tp

,
c

LOS Tψ

Figure 12.   Visual representation of ,
c

LOS Tψ . 
 

These two angles are computed using the vector from the SUAV to the Target and 

two rotation matrices. Because we let the target position be the origin of the LTP frame, 

the vector from the SUAV to the Target is .  The first rotation matrix, 

Equation(0.7), uses the Given Gimbal Angles, where 

NED
SUAVp−

Gα  is the given tilt gimbal angle 

and Gβ  is the given gimbal pan angle, from flight test data.  The second rotation matrix, 

Equation(0.8), uses the Given Euler Angles from Piccolo telemetry. 

  

cos cos sin sin cos
cos sin cos sin sin

sin 0 cos

G G G G
b
g G G G G

G G

R
G

G

α β β α β
α β β α β

α α

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

                                    (0.7) 
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G

 

cos cos cos sin sin sin cos cos sin cos
sin cos sin sin sin cos cos sin sin cos cos sin

sin cos sin cos cos

G G G G G G G G G G
n
b G G G G G G G G G G G

G G G G G

R
ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ
ψ θ ψ θ ϕ ψ ϕ ψ θ ϕ ψ ϕ

θ θ ϕ θ ϕ

−⎡ ⎤
⎢ ⎥= +⎢ ⎥
⎢ ⎥−⎣ ⎦

−

  

                                                                                                                            (0.8)  

 

Equation(0.9) rotates the vector from the SUAV to the Target, , around 

the flight test data gimbal angles to give us the position of the target in the body 

frame,

NED
SUAVp−

b
Tp . 

 

*( )b b NED
T g SUAVp R p= −      (0.9)  

 

Equation(0.10) rotates the position of the target in the body frame to the position 

in the camera frame, c
Tp .  

*c n b
T b Tp R p=      (0.10) 

 

Position of the Target in the camera frame, c
Tp , has components [ , , ]c c c

T T Tx y z . 

These components are used in the computation of the tilt angle to the target in the camera 

frame, ,
c

LOS Tθ , in Equation (0.11) and Figure (11).  The pan angle to the target in the 

camera frame, ,
c

LOS Tψ , is found in Equation (0.12) and Figure (12).  

, tan( )
c

c T
LOS T c

T

za
x

θ =      (0.11) 

, tan( )
c

c T
LOS T c

T

ya
x

ψ =      (0.12) 



The angular location of the target in the camera frame and the range are used to 

calculate pixel number in the camera frame, Figure (13).   

 

cy

c
Tp

Camera

cx
Target

Horizontal Position of Target 
in Camera Frame 

cz
cy

cz

 Camera LOS

Figure 13.   Target Projection onto the Camera Frame 
 

Implementation of the equations in this section using Simulink can be seen in           

Appendix (A.D). 

 

5. Pixel Calculation 

Our first task calls for us to compare  and  with  and .  In 

order to compute  and   we need the following: 

estimateV estimateU trueV trueU

estimateV estimateU

• Range from SUAV to Target, ρ  

• Field of view of the camera, FOVθ  and FOVψ  

• Angular position of the target in the camera frame, ,
c

LOS Tθ  and ,LOS Tψ  

To find FOVθ  and FOVψ  we set up the camera and pointed it at a wall.   We 

measured the distance from the camera frame to the wall, d .  One the wall we measured 

the width, , and height, z, of the camera’s field of view.  y
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2* tanFOV
za
d

θ =      (0.13) 

 

2* tanFOV
ya
d

ψ =       (0.14) 

Equation (0.13) shows us the field of view (FOV) in the vertical direction, FOVθ . 

Equation (0.14) finds the horizontal FOV, FOVψ .  

Once we know the camera field of view in the horizontal and vertical directions 

we can compute the pixel size, Equation (0.15) and (0.16) respectively.  Note that 240 is 

the number of pixels in the PerceptiVU window vertically while there are 320 pixels 

across the screen horizontally. 

2 tan( )
2

240

FOV

pixszv

θρ
=      (0.15) 

2 tan( )
2

320

FOV

pixszu

ψρ
=      (0.16) 

 

The distance from the center of the camera frame to the target position in the 

camera frame, vertically and horizontally, is calculated in Equations (0.17) and (0.18) 

respectively.   

 

,tan( )c
dist LOS Tv ρ θ=      (0.17) 

 

,tan( )c
dist LOS Tu ρ ψ=      (0.18) 

 

This distance divided by pixel size, Equations (0.19) and (0.20), gives us the 

position of the target in the camera frame with pixels as the units.  

18 



dist
estimate

pixsz

vV
v

=       (0.19) 

 

dist
estimate

pixsz

uU
u

=      (0.20) 

 

Implementation of the equations in this section using Simulink can be seen in           

Appendix (A.E). 

 

C. ANALYSIS OF THE RESULTS.  CONCLUSION 

The  and   pixels do not match up to  and , Figure (14).  

This offset in the pixel location of the target in the camera frame proves to us that there is 

an error.  This data suggests to us that there is a bias error in the pan angle of the camera 

and a larger bias in the tilt angle of the camera. 
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Figure 14.   Given vs. Found Pixel Location of the Target in Camera Frame. 
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The mean  pixel number is -1.7041 and the mean  pixel number is 7.863 

for this set of data.  This is near the center of the camera frame.  The Estimated pixels, 

however, are not near the center of the camera frame.  The mean  pixel number is 

306.2 and the mean  pixel number is 104.5. The difference between  and 

 is 307.9 pixels.  The difference between  and  is 96.63 pixels.  The mean 

location of the vertical pixel wouldn’t even put the target into the visible camera frame 

since the visible frame only goes to +120 pixels vertically, Figure (15).  

trueV trueU

estimateV

estimateU estimateV

trueV estimateU trueU
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Figure 15.   Plot of camera window. 

 

The standard deviation of the True Pixels , _ [19.42,27.71]T pixelσ = , seen in Figure 

(16) is much lower than the standard deviation of the Estimated Pixels, 

_ [65.83,48.37]Est pixelσ = , seen in Figure (17). 
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Figure 16.   True Pixel Standard Deviation. 
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Figure 17.   Estimated Pixel Standard Deviation. 
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In conclusion, the comparison between the /  pixels and the True 

pixels demonstrates that there is a biased constant error, that might be modeled as a fixed 

bias.  The error comes from the Given Gimbal and Euler Angles.  Using these angles for 

position estimation will therefore lead to a coherent error in the estimated target position. 

estimateV estimateU
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III. SYSTEM DEVELOPMENT 

A. OVERVIEW 

Since there are errors in the orientation of the LOS we must find the source of this 

error.  The LOS vector is used in the SUAVs most important mission, estimating the 

geodetic location of a target.  With an incorrect LOS vector the NPS Autopilot 

commands will be off as well causing the SUAV to circle around a biased point, but not 

the target’s position.   

To find where the most errors come from in the system we must first calculate 

Gimbal angles that would match  and   pixel location of the target with  

and  pixel location.  If the two pixel locations match, we know the LOS from the 

UAV to the target is correct and a more accurate target position is being estimated.  For 

every time step the Ideal Gimbal Angles (

estimateV estimateU trueV

trueU

Iα  and Iβ ) will be computed so that the 

estimated and true pixels equal to one another.   

The “Ideal” gimbal angles will be computed and compared with the gimbal angles 

that we have from the flight test data, Given angles.  The difference between the Given 

and Ideal Gimbal Angles will show us the error. 

 

B. COMPUTING FOUND ANGLES 

The Found Angles ( Fα , Fβ ) are those angles that will direct the camera LOS to 

point directly toward the target.  Transformation (0.21) is used to rotate a unity vector of 

the LOS in camera frame ([ ) to inertial frame ([1,0,0] LOSx ; ; ]) by using three 

consecutive rotations: 

LOSy LOSz

• g
c R - from Camera to Gimbal. 

•  b
g R - from Gimbal to Body. 

•  n
b R - from Body to Inertial. 
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⎤
⎥
⎥
⎥⎦

1
0
0

LOS
n b g

LOS b g c

LOS

x
y R R R
z

⎡ ⎤ ⎡
⎢ ⎥ ⎢=⎢ ⎥ ⎢
⎢ ⎥ ⎢⎣ ⎦ ⎣

     (0.21) 

 

The rotation matrix g
c R  , which contains the angles found later in equations (0.26) 

and (0.27), is removed from this part of the process, since those angles are not yet know, 

and is re-introduced when solving for the Ideal Angles in part C of this section.  

Found Gimbal Angles are computed while using the Given Euler Angles in the 
n
b R  rotation matrix of Equation(0.22).  

 

1
0
0

LOS
b b
n LOS g

LOS

x
R y R

z

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢= ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

     (0.22) 

      

Equation (0.23) through (0.25) calculate Found Gimbal Angles.  Since the gimbal 

only uses two angles and we have three known values we can solve Equation(0.23). 

 

cos cos
sin cos

sin

F F

F F

F

x
y
z

β α
β α

α

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

    (0.23) 

 

 

 

 

 

 



Simplified out we can solve for the Found Fα , Equation (0.24), and Found Fβ , 

Equation (0.25).   

 

sin( )F a zα = −      (0.24) 

tan( )F
ya
x

β =       (0.25) 

 

The Found Angles for the gimbal, Fα  and Fβ , are shown in Figure (18) and 
Figure (19). 
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Figure 18.   Fα  vs. Gα . 
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Figure 19.   Fβ  vs. Gβ . 

 

Notice that in most of the Found Angles there is a very noticeable, almost 

constant, difference from the given data.  Although the Found Angles are not the Ideal 

Angles, they still give us an initial idea of where the errors are occurring in the system.  

Gimbal α  and β  angles both appear to follow the same trend but with a bias between 

them.  Computing the Ideal Angle will give us the final angles we are looking for and we 

can draw our conclusions from there. 

Implementation of this section using Simulink is in Appendix (A.F). 

 

C. COMPUTING IDEAL ANGLES 

The Found Angle is calculated to give us a decent initial condition to feed into the 

iterative process used to calculate the Ideal Angles.  The Found Angle points the camera 

directly at the target.  Looking at our flight data, however, and the  and  pixels it 

gives us, we know that the camera is rarely pointed exactly toward the target, Figure (7).  

We know the camera is slightly off the direct line pointing toward the target and the 

target is moving around the screen.  Computing the Ideal Angles takes into account this 

trueV trueU
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small difference between the vector directly to the target and to the true center of the 

camera frame.   

1.  Simulink Portion 

The angles between the true camera vector and the true pixel location can be 

calculated as follows using the calculated pixel size and range. 

, _

*
tan( )true pixszc

LOS T TRUE

V v
aθ

ρ
=     (0.26) 

, _

*
tan( )true pixszc

LOS T TRUE

U u
aψ

ρ
=     (0.27) 

Once these true LOS to target angles are computed a MATLAB code is used to 

compute the Ideal Angles.   

The data we have obtained from Simulink and will use to find the Ideal Angles 

are: 

• Given Euler Angles (b_g.mat)  

• Given and Found Gimbal Angles (g_g.mat and g_f.mat) 

• SUAV to Target Vector,  (los.mat) NED
SUAVp−

• True LOS to True Target Position Angles, , _
c

LOS T TRUEθ , , _
c

LOS T TRUEψ  (l.mat) 

Parenthesis indicates the file name that this data is saved to after each run of the 

model. 

 

2. MATLAB Portion 

The data obtained in Simulink is saved and run through a MATLAB function to 

calculate the set of Ideal Angles.  The .m file called gimbal.m, Appendix (B.B), is used to 

calculate the Ideal Gimbal Angles.   

The FMINUNC command, Appendix (B.A,C), run in MATLAB calls upon the 

gimbal.m file.  The FMINUNC function iterates through combinations of angles until the 

condition of the FMINUNC command is satisfied, Equation(0.28).   When the condition 

of FMINUNC is satisfied, the LOS vector and the vector [1;0;0] rotated through the three 

rotation matrices are equal. 
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0 )
1

(
0

LOS
b g c

LOS n b g

LOS

x
F norm y R R R

z

⎡ ⎤ ⎡ ⎤
⎢ ⎥= − ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

    (0.28) 

When searching for the Ideal Gimbal Angles, the angles inside of the g
b R  rotation 

matrix are the ones that will be changed until the condition is satisfied.  The angles inside 
b
n R  are the Given Euler Angles from Piccolo.  The angles inside c

g R  were calculated 

with Equations (0.26) and (0.27).  

Once the FMINUNC function’s condition is satisfied it will output the Ideal 

Angles.  As was said earlier the Found Angles are used as initial conditions or the starting 

point in finding the Ideal Angles. It was decided that the Found angles were satisfactory 

as an initial condition, because the actual position of the target is never too far away from 

the center of the camera frame, where the Found Angles are pointing. 

Figure (20) is included to show visually how the FMINUNC function converges 

at its solution.  At a specific time in the data set the FMINUNC function runs through 

gimbal angles until the minimum of the function is reached. 

 



 
Figure 20.   FMINUNC Process Wide View 

Looking closer towards the minimum of Figure (20) we get Figure (21).  

Readings from the figure gives us a tilt ( Iα ) value at the minimum found between .885 

and .89, near .8855.  The pan ( Iβ ) value at the minimum is between -1.552 and -1.554, 

near -1.5535.  The FMINUNC function would then output [.8855,-1.5535] as the answer 

at this specific time.  These are the Ideal Angle we are looking for. 
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Figure 21.   FMINUNC Process Zoom. 
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IV. RESULTS 

A. IDEAL ANGLES 

The FMINUNC function gave us the results illustrated in Figures (22) and (23). 
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Figure 22.   Iα  vs. Fα  vs. Gα . 
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Figure 23.   Iβ  vs. Fβ  vs. Gβ . 

 
B. COMPARING RESULTS 

1. Gimbal Angles 

Upon visual inspection it follows that the Given Gimbal Angles follow the same 

path as the Ideal Gimbal Angles but are offset from one another by a certain bias,    

Figure (22) and Figure (23).  The offset or bias are plotted in Figure (24) and Figure (25).  

This could be attributed to errors in the calculation of the Ideal Gimbal Angles or it could 

be caused by some bias error in the given data.  
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Figure 24.   Difference Between Ideal Iα  and Given Gα . 
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Figure 25.   Difference Between Ideal Iβ  and Given Gβ .  
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It suggests that a simple addition or gain in the gimbal command could fix the 

bias in the α  and β  angles.  Fixing the bias would match the Given Angles to the Ideal 

Angles.  Eliminating the bias in the Gimbal Angles from the NPS ground station 

readiness/telemetry would reduce the error in the target position estimation.   

 

C. RECOMMENDATION 
My recommendation to the project is to invest additional resources into the 

following projects. 

• A model of the gimbal that will account errors induced while sending data 
to the gimbal, i.e. time delay, gimbal movement delays.   

• Taking the bias between the Ideal Gimbal Angles and the Given Gimbal 
Anlges into account when using the Given Gimbal Angle for position 
estimation. 

• In depth Gimbal calibration investigation. 

• A more accurate measuring device onboard the SUAV for better readings 
of its Euler Angles.    

It appears that some changes can be made in the gimbal loop that will not raise the 

price of the SUAV.  In the future, research should be done on modeling the gimbal 

dynamics and looking deeper into the bias found there.  If that does not solve the 

problem, then a better avionics package onboard the SUAV might solve our problems. 
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APPENDIX A: SIMULINK BLOCK DIAGRAMS 

A. LOAD DATA BLOCK 

angles in rad
alt in meters

angles in rad, alt in feet above sea level

double cl ick on matrix in workspace to open
in array editor.  save file through array editor

as telem, ctrl, gmbl

GIVEN DATA

6
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Figure 26.   Load Data Block. 
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B. LLA TO ECEF BLOCK 

LLA to ECEF

2
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1
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1
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2
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1
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Figure 27.   LLA to ECEF Block. 
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Figure 28.   Implementation of ECEF Equations in LLA to ECEF Block. 
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C. ECEF TO LTP BLOCK 

(P T,LTP) = Re2u*(P T,ECEF) [0,0,0]

(P UAV,LTP) = Re2u*((P UAV,ECEF) - (P T,ECEF))
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Figure 29.   ECEF to LTP Block. 

 
The MATLAB code within the Embedded MATLAB Function of Figure (39). 
 
 
function Re2u = fcn(latT,longT,hT) 
% This block supports an embeddable subset of the MATLAB language. 
% See the help menu for details.  
 
 
Re2u=[cos(latT)*cos(longT) cos(latT)*sin(longT) sin(latT); 
    -sin(longT) cos(longT) 0; 
    -sin(latT)*cos(longT) -sin(latT)*sin(longT) cos(latT)]; 
 
RNED=[0 0 1;0 1 0;-1 0 0]; 
 
Re2u=RNED*Re2u; 
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D. TARGET POSITION IN CAMERA FRAME BLOCK 
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Figure 30.   Target Position in Camera Frame Block. 

 
E. COMPUTE PIXEL BLOCK 
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Figure 31.   Compute Estimated Pixel Block. 
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Figure 32.   Compute Pixel Size Block. 

 
F. COMPUTE FOUND ANGLES BLOCK 
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Figure 33.   Compute Found Angles Block. 
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APPENDIX B: MATLAB CODE 

A. FMINUNC MATLAB HELP FILE 
FMINUNC finds the minimum of a function of several variables. 
    X=FMINUNC(FUN,X0) starts at X0 and attempts to find a local minimizer X  
    of the function FUN. FUN accepts input X and returns a scalar function  
    value F evaluated at X. X0 can be a scalar, vector or matrix.  
  
    X=FMINUNC(FUN,X0,OPTIONS) minimizes with the default optimization 
    parameters replaced by values in the structure OPTIONS, an argument 
    created with the OPTIMSET function.  See OPTIMSET for details.  Used 
    options are Display, TolX, TolFun, DerivativeCheck, Diagnostics, 
    FunValCheck GradObj, HessPattern, Hessian, HessMult, HessUpdate, 
    InitialHessType, InitialHessMatrix, MaxFunEvals, MaxIter, 
    DiffMinChange and DiffMaxChange, LargeScale, MaxPCGIter, 
    PrecondBandWidth, TolPCG, TypicalX. Use the GradObj option to specify 
    that FUN also returns a second output argument G that is the partial 
    derivatives of the function df/dX, at the point X. Use the Hessian 
    option to specify that FUN also returns a third output argument H that 
    is the 2nd partial derivatives of the function (the Hessian) at the 
    point X. The Hessian is only used by the large-scale method, not the 
    line-search method.  
  
    [X,FVAL]=FMINUNC(FUN,X0,...) returns the value of the objective  
    function FUN at the solution X. 
  
    [X,FVAL,EXITFLAG]=FMINUNC(FUN,X0,...) returns an EXITFLAG that describes  
    the exit condition of FMINUNC. Possible values of EXITFLAG and the  
    corresponding exit conditions are 
  
      1  FMINUNC converged to a solution X. 
      2  Change in X smaller than the specified tolerance. 
      3  Change in the objective function value smaller than the specified  
          tolerance (only occurs in the large-scale method). 
      0  Maximum number of function evaluations or iterations reached. 
     -1  Algorithm terminated by the output function. 
     -2  Line search cannot sufficiently decrease the objective function along  
          the current search direction (only occurs in the medium-scale method). 
     
    [X,FVAL,EXITFLAG,OUTPUT]=FMINUNC(FUN,X0,...) returns a structure OUTPUT 
    with the number of iterations taken in OUTPUT.iterations, the number 
    of function evaluations in OUTPUT.funcCount, the algorithm used in 
    OUTPUT.algorithm, the number of CG iterations (if used) in 
    OUTPUT.cgiterations, the first-order optimality (if used) in 
    OUTPUT.firstorderopt, and the exit message in OUTPUT.message. 
  
    [X,FVAL,EXITFLAG,OUTPUT,GRAD]=FMINUNC(FUN,X0,...) returns the value  
    of the gradient of FUN at the solution X. 
  
    [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN]=FMINUNC(FUN,X0,...) returns the  
    value of the Hessian of the objective function FUN at the solution X. 
  
    Examples 
      FUN can be specified using @: 
         X = fminunc(@myfun,2) 
  
    where MYFUN is a MATLAB function such as: 
  
        function F = myfun(x) 
        F = sin(x) + 3; 
  
      To minimize this function with the gradient provided, modify 
      the MYFUN so the gradient is the second output argument: 
         function [f,g]= myfun(x) 
          f = sin(x) + 3; 
          g = cos(x); 
      and indicate the gradient value is available by creating an options 
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      structure with OPTIONS.GradObj set to 'on' (using OPTIMSET): 
         options = optimset('GradObj','on'); 
         x = fminunc('myfun',4,options); 
  
      FUN can also be an anonymous function: 
         x = fminunc(@(x) 5*x(1)^2 + x(2)^2,[5;1]) 
  
    If FUN is parameterized, you can use anonymous functions to capture the 

problem- 
    dependent parameters. Suppose you want to minimize the objective given in the  
    function MYFUN, which is parameterized by its second argument A. Here MYFUN is  
    an M-file function such as 
  
      function [f,g] = myfun(x,a) 
  
      f = a*x(1)^2 + 2*x(1)*x(2) + x(2)^2; % function 
      g = [2*a*x(1) + 2*x(2)               % gradient 
           2*x(1) + 2*x(2)]; 
  
    To optimize for a specific value of A, first assign the value to A. Then  
    create a one-argument anonymous function that captures that value of A  
    and calls MYFUN with two arguments. Finally, pass this anonymous function  
    to FMINUNC: 
  
      a = 3;                              % define parameter first 
      options = optimset('GradObj','on'); % indicate gradient is provided  
      x = fminunc(@(x) myfun(x,a),[1;1],options) 
  

    See also optimset, fminsearch, fminbnd, fmincon, @, inline. 

 

B. GIMBAL.M 
function [F] = gimbal(x) 
% this block sets up the function to be used in the optimization  
%finding the best tilt and pan angles to show gimble command error 
 
load los; 
load b_g; 
load l; 
load g_f; 
global i 
 
LOS_v = [los(2,i);los(3,i);los(4,i)]; 
 
Rb2LTP=[cos(b_g(4,i))*cos(b_g(3,i)) sin(b_g(4,i))*cos(b_g(3,i)) -
sin(b_g(3,i));cos(b_g(4,i))*sin(b_g(3,i))*sin(b_g(2,i))-
(sin(b_g(4,i))*cos(b_g(2,i))) 
sin(b_g(4,i))*sin(b_g(3,i))*sin(b_g(2,i))+(cos(b_g(4,i))*cos(b_g(2,i))) 
cos(b_g(3,i))*sin(b_g(2,i));cos(b_g(4,i))*sin(b_g(3,i))*cos(b_g(2,i))+(sin(b_g(4,i
))*sin(b_g(2,i))) sin(b_g(4,i))*sin(b_g(3,i))*cos(b_g(2,i))-
(cos(b_g(4,i))*sin(b_g(2,i))) cos(b_g(3,i))*cos(b_g(2,i))].'; 
 
Rc2b=[cos(x(1))*cos(x(2)) cos(x(1))*sin(x(2)) sin(x(1));-sin(x(2)) cos(x(2)) 0;-
sin(x(1))*cos(x(2)) -sin(x(1))*sin(x(2)) cos(x(1))].'; 
 
RLOS2c=[cos(l(2,i))*cos(l(3,i)) cos(l(2,i))*sin(l(3,i)) sin(l(2,i));-sin(l(3,i)) 
cos(l(3,i)) 0;-sin(l(2,i))*cos(l(3,i)) -sin(l(2,i))*sin(l(3,i)) cos(l(2,i))].'; 
 
F=norm(LOS_v-(Rb2LTP*Rc2b*RLOS2c*[1;0;0])); 
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C. GIMBAL_OPTIMIZATION.M 
load g_f 
options = optimset('TolX',.000001); 
s=size(g_f,2); 
i=1; 
global i 
 
for i=1:s 
start=[g_f(2,i),g_f(3,i)]; 
[x,fval,exitflag] = fminunc(@(x)gimbal(x),start,options); 
g_i(1,i)=x(1,1); 
g_i(2,i)=x(1,2); 
fval_g(i)=fval; 
i=i+1 
end 
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