

Task Feasibility Analysis and Dynamic Voltage Scaling in Fault-Tolerant
Real-Time Embedded Systems*

Ying Zhang and Krishnendu Chakrabarty

Department of Electrical & Computer Engineering
Duke University, Durham, NC 27708, USA

E-mail: {yingzh, krish}@ee.duke.edu

Abstract
 We investigate dynamic voltage scaling (DVS) in real-
time embedded systems that use checkpointing for fault
tolerance. We present feasibility-of-scheduling tests for
checkpointing schemes for a constant processor speed as well
as for variable processor speeds. DVS is then carried out on
the basis of the feasibility analysis. We incorporate practical
issues such as faults during checkpointing and state
restoration, rollback recovery time, memory access time and
energy, and DVS overhead. Simulation results are presented
for real-life checkpointing data and embedded processors.

1. Introduction
 Many embedded systems in use today rely on dynamic
voltage scaling (DVS) for dynamic power management
(DPM). DVS is made possible by the availability of
embedded processors that can dynamically scale the
frequency by adjusting the operating voltage. A large number
of embedded systems are also designed for real-time
applications. As a result, several techniques have been
proposed for low-energy, real-time task scheduling [1, 2].
 Fault-tolerant computing refers to the correct execution of
user programs and system software in the presence of faults.
Tolerance to transient faults is typically achieved in real-time
systems through on-line fault detection [3], checkpointing
and rollback recovery. At each checkpoint, the system saves
its state in a secure device. When a fault is detected, the
system rolls back to the most recent checkpoint and resumes
normal execution.*
 A combination of DVS and checkpointing can be used to
reduce energy consumption and improve the run-time
reliability of embedded systems. Moreover, a combination of
the two strategies can facilitate trade-offs between energy and
fault tolerance. Finally, lower processor voltages are likely to
lead to lower noise margins and more transient faults. Hence
DVS techniques that are tied to system-level fault tolerance
are of particular interest for embedded systems.
 DPM and fault tolerance for embedded real-time systems
have largely been studied as separate problems in the
literature. DVS techniques for power management do not

* This research was sponsored in part by DARPA, and administered by the
Army Research Office under Emergent Surveillance Plexus MURI Award
No. DAAD19-01-1-0504. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the authors and
do not necessarily reflect the views of the sponsoring agencies.

consider fault tolerance [1, 2], and checkpoint placement
strategies for fault tolerance do not address DPM [4, 5]. It is
only recently that an attempt has been made to combine fault
tolerance with DPM [6, 7, 8].
 In [6], checkpointing is combined with DVS for soft real-
time systems. [7] makes a number of simplifying
assumptions, e.g., a task is subject to at most one fault
occurrence, the processor can adjust its speed in a continuous
range, and the state restoration cost is zero. In addition, faults
during checkpointing and state restoration are not considered.
[8] is based on similar simplifying assumptions; in addition, it
uses computationally-intensive search algorithms.
 In this paper, we investigate fault tolerance and DPM in
hard real-time embedded systems. Our approach can handle
faults during checkpointing and rollback recovery, DVS
overhead, and state restoration costs. We consider job-
oriented feasibility tests, in which the goal is to tolerate k
fault occurrences for each job, as well as hyperperiod-
oriented feasibility tests, in which the goal is to tolerate up to
k fault occurrences in a hyperperiod. Following this, we
extend the feasibility tests to variable-speed processors. We
present a heuristic approach based on a genetic algorithm
(GA) to reduce the computation cost of calculating a feasible
voltage schedule. Simulation results are presented for
benchmark task sets and commercial embedded processors
with a discrete set of voltage/speed settings.

2. Practical issues in checkpointing and DVS
 In this section, we review some practical issues in
checkpointing and DVS for real-time embedded systems.
2.1 Stable storage
 Checkpoints need to be saved to stable storage such that
the recovery data persists through the tolerated faults [9].
Embedded systems have limited memory, and most of them
do not contain a hard disk acting as nonvolatile storage. In
addition to SRAM and DRAM, ROM and flash memory are
used as nonvolatile storage for embedded systems. Since a
ROM is a read-only device, it cannot be used for saving
checkpoints.
 SRAM in embedded systems is used for frequently-
accessed and time-critical storage, such as caches and register
files. Its typical capacity is only in the order of kilobytes,
hence SRAM is of limited use for checkpointing.
 DRAM is used as main memory in embedded systems,
while flash memory is used for storing boot images and other

1530-1591/04 $20.00 (c) 2004 IEEE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2004 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Task Feasibility Analysis and Dynamic Voltage Scaling in Fault-Tolerant
Real-Time Embedded Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

non-volatile data; both have a capacity of tens of megabytes.
Flash memory can be read at almost DRAM speeds, but its
write access time is 10 to 100 times higher [10]. The large
access time for write operations limits the use of flash
memory as stable storage for short-duration real-time tasks.
Therefore, DRAM is more appropriate for storing
checkpoints in real-time embedded systems.
2.2 Checkpoint types and data size
 Full checkpointing refers to the writing of the entire
address space to stable storage during each checkpoint. In
contrast, incremental checkpointing reduces data volume by
writing only the pages of the address space that have been
modified since the previous checkpoint [9].
 For full checkpointing, only the most recent checkpoint
data needs to be retained for recovery. For incremental
checkpointing, old checkpoint files cannot be automatically
deleted because the program’s data state is spread out over
many checkpoint files [11]. In resource-constrained
embedded systems, it is undesirable to introduce extra
hardware overhead to maintain the page table necessary for
incremental checkpointing. Hence full checkpointing is more
viable, despite the drawback of higher data read/write time.
 The size of a checkpoint depends on the task set. For
example, applications that rely on matrix operations produce
megabytes of checkpoint data [11]. However, many
embedded systems are targeted for real-time control in
response to sensor inputs, hence data volume for such
systems is limited. Furthermore, resource constraints in
embedded systems limit data volume. The only source
available to us in the literature that describes checkpoint size
for embedded systems is [12]. The checkpoint size ranges
from 0.497 KB to 2.897 KB for games on Palm handheld
devices. In the absence of additional literature, we use [12] as
a basis and assume that the checkpoint size is at most a few
kilobytes.
2.3 Fault arrival rate
 For systems that operate in harsh environments, the fault
arrival rate can be as high as 10-2 to102 per hour [13]. For
example, in an orbiting satellite, the number of errors caused
by protons and cosmic ray ions was measured to be as high as
35 in a 15-minute interval [13].
 Prior work on checkpointing is usually based on the
assumptions that no faults occur during checkpointing and
that the state restoration time is zero. These assumptions are
unrealistic in practice, especially for high fault arrival rates
and if the checkpoint data size is not negligible.
2.4 Cost of voltage scaling
 Voltage-scaling costs cannot be ignored for real-time and
power-constrained embedded systems [1]. For example, the
StrongArm 1100 processor takes 250 µs to switch from a
1.5V supply voltage to a 1.23V supply voltage [14].
Typically, tens of µJ of energy is needed for voltage
switching. Hence for a set of short-duration real-time tasks, it
is counterproductive to employ DVS. For longer-duration
tasks, the consideration of DVS overheads leads to more
accurate conclusions.

3. Feasibility analysis under constant speed
 We are given a set Γ = {τ1, τ2, …, τn} of n periodic real-
time tasks, where task τi is modeled by a tuple τi = (Ti, Di,
Ei), Ti is the period of τi, Di is its deadline, and Ei is the worst-
case execution time (WCET) of τi under fault-free conditions.
The WCET values can be obtained using techniques
described in [15]. Let the time required to store (retrieve) a
checkpoint be Cs(Cr). We make the following assumptions:
(i) Γ is scheduled using fixed-priority methods such as the
rate-monotonic scheme [16]; (ii) Γ is schedulable under fault
free conditions; (iii) task τi has higher priority than task τj if i
< j; (iv) each instance of the task is released at the beginning
of the period; (v) the checkpointing intervals for the same
task are equal; (vi) faults are detected as soon as they occur.
 We next provide two solutions corresponding to two
different fault-tolerance requirements. One is to tolerate k
faults for each job (task instance), termed as job-oriented
fault-tolerance; the other is to tolerate k faults within a
hyperperiod (defined as the least common multiple of all the
task periods [16]), termed as hyperperiod-oriented fault-
tolerance. The choice of an appropriate fault tolerance
criterion can be made based on the needs of the real-time
application.
 We first consider the case of a single job. Suppose the
checkpointing interval is ∆ = E/(m+1), where m is the
number of checkpoints inserted equidistantly to tolerate k
faults in one job. The objective here is to find the optimal
checkpointing interval to minimize the worst-case response
time in the presence of faults.
 The total execution time of the job can be divided into
three categories: effective computation (the time when the job
performs real computation), checkpoint saving, and state
retrieval. Based on this classification, we can further divide
the occurrences of the k faults during task execution. Suppose
k1 faults occur during checkpointing saving, k2 faults occur
during checkpoint retrieval, and k3 faults occur during
effective computation, where k = k1 + k2 + k3; see Figure 1.
Whenever a fault occurs during job execution or checkpoint
saving, the system rolls back to the most recent checkpoint
and restores the system state. As a result, the maximum time
penalty due to a fault during job execution is ∆+Cr, as
indicated in Figure 1(a). Similarly, the maximum time
penalty due to a fault during checkpoint saving is ∆+Cs+Cr,
as indicated in Figure 1(b). If a fault occurs during state
restoration, the system rolls back to the checkpoint and
attempts to restore state, as demonstrated in Figure 1(c).
Hence the maximum time penalty due to a fault during
checkpoint retrieval is Cr.
 The response time R for the job is composed of five
terms: (i) the fault-free job execution time: E; (ii) the total
time for saving m checkpoints: mCs; (iii) the additional
penalty due to k1 faults during checkpoint saving:
k1(∆+Cs+Cr); (iv) the penalty due to k2 faults during state
restoration: k2Cr; (v) the penalty due to k3 faults during job
execution: k3(∆+Cr). Hence the response time is expressed as:

∆

(a) Fault during
 job execution.

State
 restoration

∆

(b) Fault during
checkpoint saving.

Cs

(c) Fault during
state restoration.

Cr

Fault

Cr Cr

Checkpoint
 saving

∆

Cr

Normal
 execution Fault as

in (a), (b)

Figure 1: Illustration of fault occurrence.

R = E + (m + k1)Cs +(k1+ k3)∆ + kCr. It can be seen that the
worst-case response time is obtained when k1 = k, and k2 = k3
= 0. This means that all k faults occur at the end of
checkpoint saving. Replacing ∆ with E/(m+1), the worst-case
response time Rworst-case is further expressed as: Rworst-case(m) =
E + k(Cs + Cr) + mCs + kE/(m+1). We next find the optimal
value of m such that Rworst-case is minimized. To satisfy the
deadline constraint, we must have Rworst-case(m) ≤ D.
 The minimum value of Rworst-case(m) is obtained for

1/ −= sCkEm . Let 1/ −=∆
sCkEm denote the value of m

from the pair { }






 −− 1/1/ , ss CkECkE that minimizes

Rworst-case. Furthermore, since m is a non-negative integer, we
have)0,max(0

∆= mm . Let f(m0) = Rworst-case(m0)−D.
 If f(m0) ≤ 0, there exists equidistant checkpointing
schemes for k-fault-tolerance, and the response time is
minimum when m0 checkpoints are inserted. If f(m0) > 0, then
no equidistant checkpointing schemes exists for tolerating up
to k faults.
 The feasibility analysis for more than one job is based on
the time-demand analysis for fixed-priority, preemptive task
scheduling [16]. The steps in the analysis are as following:
(1) Compute the response time Ri for τi according to the
equation:  ∑

−

=
+= 1

1
/i

h hhiii ETRER . Here Th and Eh are the

period and the execution time of a task τh with higher priority
than τi. This equation can be solved by forming a recurrence
relation:  ∑

−

=

+ +=
1

1

)()1(/
i

h hh
j

ii
j

i ETRER . (1)

(2) The iteration is terminated either when)()1(j
i

j
i RR =+ and

i
j

i DR ≤)(for some j or when i
j

i DR >+)1(, whichever occurs
sooner. In the former case, τi is schedulable; in the later case,
τi is not schedulable.
 According to [16], the time complexity of the time-
demand analysis for each task is O(nR), where R is the ratio
of the largest period to the smallest period.
3.1 Job-oriented fault-tolerance
 In this case, we require that all tasks can meet their
deadlines under the condition that at most k faults occur
during the execution of each job.
 In the worst-case scenario, the additional time due to
checkpointing and recovery should be incorporated. When
there are mj equidistant checkpoints for each instance of τj,
we have:

  .)]1/()([/

)]1/()([
1

1∑
−

=
++++++

+++++=
i

h hhshrshhi

iisirsii

mkECmCCkETR

mkECmCCkER

Let fi(mi) = Ei + k(Cs + Cr) + miCs + kEi/(mi+1). Then

 ∑
−

=
+=

1

1
)(/)(

i

h hhhiiii mfTRmfR . To minimize response time Ri,

fi(mi) must be minimized. Let)0,1/max(* −= sii CkEm . We

then employ the following relation:

 )(/)(*1

1

)(*)1(
hh

i

h h
j

iii
j

i mfTRmfR ∑
−

=

+ += . When)()1(j
i

j
i RR =+ and

i
j

i DR ≤)(for some j, τi is schedulable; when i
j

i DR >+)1(, τi is
not schedulable. The overall time complexity of this
procedure is)(2 RnO .
Example 1: Consider a hypothetical task set composed of
two tasks: τ1 = (60, 25, 7) and τ2 = (80, 47, 8), and let k = 3,
Cs = Cr = 1. Then m1

* = 4 and m2
* = 4. After applying the

recurrence equation, we get the response times: R1 = 21.2 <
25; R2 = 44.0 < 47. Thus checkpointing is feasible for this
task set if up to three faults occur during each job. Next we
examine the case of k = 4. For this case, m1

* = 4 and m2
* = 5.

The response times are: R1 = 24.6 < 25 and R2 = 50.9 > 47.
As a result, checkpointing is not feasible.
3.2 Hyperperiod-oriented fault-tolerance
 We require here that tasks meet their deadlines under the
condition that at most k faults occur during a hyperperiod. Let

)1/(+= jjj mEF . The response time Ri for τi is expressed as:

  }{max)()(/)(1

1

1 jijrs

i

h shhhisiii FkCCkCmETRCmER ≤≤

−

=
++++++= ∑

 Any time we increase the number of checkpoints for a
task, all the lower-priority tasks need to be re-examined.
Upper bounds on the number of checkpoints sufficient for
timely completion of tasks are described in [8]. A
checkpointing algorithm for off-line feasibility analysis is
also described in [8]. The algorithm in [8] can be easily
extended to handle faults during checkpointing and state-
restoration cost by using the above expression for Ri.

4. Feasibility analysis with DVS
 Here we are given a variable-speed processor equipped
with l speeds f1 < f2 < …< fl. We are also given a set Γ = {τ1,
τ2, …, τn} of n periodic real-time tasks, where task τi is
modeled by a tuple τi = (Ti, Di, Ei), Ti is the period of τi and
Di is its deadline (Di ≤ Ti), and Ei is the number of
computation cycles of τi under fault-free conditions.
 We assume that processor voltage scaling does not affect
the cost of checkpoint saving and state restoration. For
processors with on-chip cache, we can simply consider an
upper limit on the cache write-back cost. As in Section 3, we
use Cs(Cr) to denote the time needed for checkpoint saving
(data retrieval). Let the energy cost for saving(retrieving) one
checkpoint be Eng_Cs(Eng_Cr). In addition to the
assumptions in Section 3, we assume the task set Γ is
schedulable under fault free conditions at the lowest speed,
and a single speed switch incurs time cost of tss and energy
consumption of Eng_ss.

 The power consumption P(f) at a clock frequency f for an
embedded processor can be found in the data sheets. For a
task with N single-cycle instructions, the energy consumption
can be expressed as: Eng(N, f) = P(f)*N /f. Speed scaling can
be done at the application level, i.e., all tasks for the
application are assigned the same speed, or at the task level,
i.e., different tasks are assigned different speeds. Speed
scaling can also be carried out at the job level, i.e., different
jobs for a task can have different speeds. Let s(τi) : τi → fj (1
≤ i ≤ n, 1 ≤ j ≤ l) denote the speed scaling function, which
maps a task τi to speed fj.
 Let the hyperperiod be denoted by Ht and the number of
checkpoints for τi be denoted by mi. The off-line feasibility
analysis with DVS provides two important pieces of
information: first, it provides the feasibility analysis under the
worst-case scenario; second, it provides static results such as
speed assignment and checkpoint interval, which can be
further used for on-line adjustment during task execution.
4.1 Job-oriented fault-tolerance with DVS
 The difficulty in modeling DVS cost accurately is that
voltage-switching events can only be known after the
schedule is obtained; hence it is not possible to characterize it
during feasibility analysis. Therefore, we employ a
conservative method here, which assumes that voltage
switching occurs between any two consecutive jobs. If the
task set can be scheduled under this conservative assumption,
it is guaranteed that the task set can be scheduled under any
voltage-switching scenario.
 The worst-case response time for task τi is expressed as:

 ∑
−

=
+++++++

+++++=
1

1
])()(/))1/([(/

])()(/))1/([(
i

h ssshrshhhhhi

sirsiiiii

tCmCCksmkEETR

CmCCksmkEER

τ

τ (2)

 The total energy consumption during one hyperperiod is
expressed as:

]__)__(

))(),1/(([/_
1

ssEngCEngmCEngCEngk

smkEEEngTHtengTotal

sirs

iiii

n

i i

++++

++=∑ =
τ (3)

 To minimize all response times, we must have:
niCskEm siii ≤≤−= 1),0,1))(/(max(* τ . As a feasibility test,

we employ the recurrence equation as follows:

 ∑
−

=

+

+++++++

+++++=
1

1

**)(

**)1(

])()(/))1/([(/

])()(/))1/([(
i

h ssshrshhhhh
j

i

sirsiiii
j

i

tCmCCksmkEETR

CmCCksmkEER

τ

τ

 If)()1(j
i

j
i RR =+ and i

j
i DR ≤)(for some j, τi is schedulable;

if i
j

i DR >+)1(, τi is not schedulable.
 Since the optimal number of checkpoints depends on the
speed assignment, we first need to choose appropriate
processor speeds. After that we can calculate the optimal
number of checkpoints, insert these values in Equation (2),
and carry out the feasibility test.
(1) Application-level speed scaling: here all tasks have the
same speed f* and s(τ1) = s(τ2) = … = s(τn) = f*, where f* ∈
{f1, f2, …, fl}. Then Equation (2) is simplified as:

 ∑
−

=

+

+++++++

+++++=
1

1

***)(

***)1(

])(/))1/([(/

])(/))1/([(
i

h sshrshhhh
j

i

sirsiii
j

i

tCmCCkfmkEETR

CmCCkfmkEER

 For each given speed f*, in order to minimize all response
times, we must have:

niCfkEm sii ≤≤−= 1),0,1)/(max(** . The iterative method

described in Section 3.1 can be used here. To examine the
feasibility for each task, all l possible speeds have to be
examined. The lowest speed that satisfies the timing
constraints is selected to minimize energy consumption.
(2) Task-level speed scaling: to obtain an optimal solution, a
straightforward solution is to use an exhaustive search
method. Since each task can be run at l speeds, there are ln
possible speed combinations for n tasks. Given a speed
assignment, in order to minimize all response times, we must
have: niCskEm siii ≤≤−= 1),0,1))(/(max(* τ . The feasibility

test is performed according to Equation (2). Meanwhile, the
energy consumption is calculated from Equation (3). A speed
combination that satisfies the timing constraints with the
minimum energy consumption is chosen as the optimal
solution.
4.2 Hyperperiod-oriented fault-tolerance with DVS
 Let)]1)((/[+= jjjj msEF τ . The worst-case response time for
task τi can be expressed as:

 

)4(}{max)(

])(/[/])(/[

1

1

1

jijrs

i

h ssshhhhisiiii

FkCCk

tCmsETRCmsER

≤≤

−

=

+++

++++= ∑ ττ

 The total energy consumption during one hyperperiod is
expressed as:

)5())(),(()__(

]__))(,([/_

1

ττ

τ

ssFkEngCEngCEngk

ssEngCEngmsEEngTHtengTotal

rs

siiii

n

i

+++

++=∑ =

 Here τ* is the task with the longest checkpointing interval,
F* represents its checkpointing interval and s(τ*) represents its
corresponding speed assignment.
(1) Application-level speed scaling: here all tasks have the
same speed f* and s(τ1) = s(τ2) = … = s(τn) = f*, where f* ∈
{f1, f2, …, fl}. Let)]1(/[* += jjj mfEF . Then Equation (4) is
simplified to:

  }{max)(]/[/]/[
1

*1

1

*
jijrsssshh

i

h hisiii FkCCktCmfETRCmfER
≤≤

−

=
+++++++= ∑

 For each given speed f*, we examine the feasibility of the
task set using the method in Section 3.2. If it is schedulable,
the corresponding number of checkpoints for each task can be
obtained. The energy consumption is calculated from
Equation (5). The lowest speed that satisfies the timing
constraints is selected to minimize energy consumption.
(2) Task-level speed scaling: to obtain an optimal solution,
we use an exhaustive method and enumerate ln speed
combinations. For each speed combination, the feasibility test
is performed according to Equation (4). Energy consumption
is calculated from Equation (5). The speed combination that
satisfies the timing constraints with the minimum energy

Procedure Init(ΓΓΓΓ)
Input: Task set Γ and processor speeds f1, f2, …, fl
Ouput: Initial chromosome population Ω with a size of P
(1) Find the lowest speed f* which makes the task set schedulable;
(2) Generate one chromosome α0=(f*, f*, …, f*)
(2) Apply random mechanism to generate the other (P – 1) chromosomes

Procedure GA(ΩΩΩΩ)
Input: Initial chromosome population: Ω ={αi |αi =(vi 1, vi2, …, vin), 1≤ i ≤ P}
Ouput: chromosome α*=(f1*, f2

*, …, fn
*) which makes the task set schedulable and minimizes

energy consumption
(1) while number of generations not exhausted do
(2) for j =1 to PopulationSize do
(3) Select two chromosomes with the highest fitness values, apply the crossover operator
randomly, generate two children;
(4) Apply mutation to two children randomly, update their fitness values;
(5) endfor
(6) endwhile
(7) Report the best chromosome as the final solution

Figure 2. Heuristic search based on GA.
consumption is chosen as the optimal solution.
4.3 Heuristic method based on a genetic algorithm
 The exhaustive method for task-level speed scaling is
very time-consuming, especially when the size of the task set
or the number of processor speeds is large. We present here a
heuristic procedure based on genetic algorithms.
 The heuristic procedure is divided into two stages:
application-level population generation, and task-level
heuristic search. The procedure is described in Figure 2. Each
chromosome αi is an n-dimensional vector (vi1, vi2, …, vin),
where n is the number of tasks and vij is the corresponding
speed for task τj. Furthermore, αi is viable only if the task set
can be scheduled under the corresponding speed assignment.
Procedure Init(Γ) initializes the search space (chromosome
population). One chromosome is initially generated based on
the application-level speed scaling. This is to ensure that the
initial population always includes a schedulable solution if
such a solution exists. The other chromosomes are generated
randomly. The initial population Ω is composed of these
chromosomes. Procedure GA(Ω) applies crossover and
mutation operators to Ω based on the fitness values. The
operations are repeated for a predefined number of
generations Q. The fitness value fit(αi) is calculated as
follows: (1) If αi is not viable: fit(αi)= rand(), where rand()
is a uniform random function that returns a value between 0
and 1; (2) If αi is viable: fit(αi) = 0.6 + 0.4 × B/Energy(αi),
where B is a constant and Energy(αi) is the energy
consumption for the task set under chromosome αi.
 Since the fitness value of a viable chromosome is always
greater than 0.6, and the fitness value of a chromosome that is
not viable is a random number whose probability is between
0 and 1 with a uniform probability distribution, there is a
higher probability that a viable chromosome is selected to
generate children. Furthermore, a chromosome with low-
energy consumption has a high fitness value, which makes it
more likely to be selected.
 The mutation and crossover operators used in the
procedure are defined as follows:
(1) Crossover: find an index randomly; then one child keeps
the information of its parent to the left of the index and fills
the right with the other parent chromosome, and the other
child keeps the information of its parent to the right of the
index and fills the left with the other parent chromosome.

(2) Mutation: choose a certain number of bits from two
children randomly and replace them with different
information.
 The complexity of this heuristic method is linear in the
number of generations Q and the population size P.

5. Simulation results
 We next compare the performance of the proposed
scheme with the VSLP technique proposed in [2]. We also
compare our approach with a fault-tolerant scheme that does
not consider energy.
 We use the following notation to refer to the different
variants of our scheme: 1) JFTC: job-oriented fault tolerance
under constant speed; 2) JFTA: job-oriented fault tolerance
with application-level speed scaling; 3) JFTT: job-oriented
fault tolerance with task-level speed scaling; 4) HFTC:
hyperperiod-oriented fault tolerance under constant speed; 5)
HFTA: hyperperiod-oriented fault tolerance with application-
level speed scaling; 6) HFTT: hyperperiod-oriented fault-
tolerance with task-level speed scaling.
 We choose two low-power embedded processors for our
experiments: Intel XScale PXA260 [17] and Transmeta
Crusoe [18]. The relevant parameters for these processors are
listed in Table 1.
 We evaluate our schemes on three real-life task sets [1].
These task sets include a computer numerical control (CNC)
task set, an inertial navigation system (INS) task set, and a
generic aviation platform (GAP) task set, respectively. The
task execution times (provided in µs in the literature) are
assumed for a nominal CPU frequency of 200 MHz.
 Based on the discussion in Section 2, we assume that the
checkpoint size is 5 KB, and that checkpoint data is saved in
DRAM. Based on the typical access speeds of DRAM, the
time to read or write a checkpoint of size 5 KB is assumed to
be 0.4 ms. We choose a power consumption value of 400mW
for the DRAM [19]. Hence the energy consumption for
saving or retrieving a checkpoint is 160 µJ. In addition, based
on data provided in the literature in [14], we assume that a
single DVS transition takes 100 µs, and consumes 30 µJ.
 Since the number of tasks for CNC and INS is relatively
small, the simulation results for CNC and INS are obtained
using the exhaustive search method. The simulation results
for GAP are obtained using the heuristic method.
 Simulation results on JFTT for the Intel XScale processor
are shown in Table 2. The last two columns of the table show
the energy saving of JFTT compared to VSLP and JFTC,
respectively. In the table, “NF” denotes that the task set
cannot be feasibly scheduled, E13=(E1−E3)/E1×100%, and
E23=(E2−E3)/E2×100%. DVS is not effective for CNC because
the voltage switching time is comparable to its task execution
times. For INS and GAP, whose tasks have longer execution
times compared to the checkpointing cost, JFTT outperforms
VSLP. For INS with k = 2, VSLP is unfeasible but JFTT is
still feasible. The performance for JFTC and JFTT are
comparable. This is because JFTT has to often run at the
highest processor speed to ensure timely task completion.

Intel XScale PXA260 Transmeta Crusoe
CPU

Frequency
(MHz)

Voltage
(V)

CPU
Power
(mW)

CPU
Frequency

(MHz)

Voltage
(V)

CPU
Power
 (W)

200 1.0 178 300 1.2 1.3
300 1.1 283 400 1.225 1.9

533 1.35 3.0
600 1.5 4.2

400 1.3 411

667 1.6 5.3
Table 1. Processor frequencies, voltages and power [19, 20].

Task
Set k VSLP:

E1(mJ)
JFTC:
E2(mJ)

JFTT:
E3(mJ) E13 E23

CNC 1 NF 25.1 25.1 − 0
1 1830.8 1659.6 1657.6 9.5 0.1 INS 2 NF 1993.9 1993.9 − 0

GAP 1 40433.3 34758.5 34120.4 15.6 1.8
Table 2. JFTT for Intel XScale.

Task
Set k VSLP:

E1(mJ)
JFTC:
E2(mJ)

JFTT:
E3(mJ) E13 E23

1 NF 193.9 193.9 − 0
2 NF 265.2 265.2 − 0 CNC
3 NF NF NF − 0
1 8205.2 11853.5 5895.2 28.2 50.3
2 15076.4 12633.0 7837.3 48.0 38.0 INS
3 NF 14802.8 14802.8 − 0
1 208334.5 239392.8 135858.2 34.8 43.2
2 463647.2 274543.1 177580.4 61.7 35.3
3 NF 298035.2 297312.7 − 0.2 GAP

4 NF 338236.6 338236.6 − 0
Table 3. JFTT for Transmeta Crusoe.

Task
Set k

VSLP:
E1(mJ)

HFTC:
E2(mJ)

HFTT:
E3(mJ) E13 E23

1 NF 98.2 98.2 − 0
2 NF 172.6 172.6 − 0 CNC
3 NF NF NF − 0
1 8233.2 7184.1 4010.4 51.3 44.1
2 15147.6 7243.7 4032.6 73.4 44.3
3 NF 7308.7 4208.7 − 42.4
4 NF 7382.8 4672.5 − 36.7
5 NF 7424.6 5326.3 − 28.3

INS

6 NF 7517.3 7517.3 − 0
1 208314.0 159429.2 90185.8 56.7 43.4
2 463715.6 159443.7 98305.8 78.8 38.3
3 NF 159995.1 109918.4 − 31.3 GAP

4 NF 160003.2 126734.2 − 20.8
Table 4. HFTT for Transmeta Crusoe.

 The simulation results for JFTT for the Transmeta Crusoe
processor are shown in Table 3. Compared to VSLP, JFTT
saves more energy when both schemes are feasible. For
example, the energy saving for GAP with k = 2 is as high as
61.7%. JFTT can also tolerate more faults. For example,
JFTT can tolerate 3 faults for INS and 4 faults for GAP,
while VSLP can tolerate only 2 faults for INS and 2 faults for
GAP. Next we compare JFTT and JFTC. As expected, JFTT
saves more energy when the number of faults to be tolerated
is small. For example, JFTT saves 43.2% energy over JFTC
for GAP with k = 1, but it saves only 0.2% energy with k = 3.
 Finally, the simulation results for HFTT for the
Transmeta Crusoe processor are shown in Table 4. HFTT

saves as much as 78.8% in energy over VSLP, and as much
as 44.3% over HFTC.

6. Conclusions
 We have shown how a combination of checkpointing and
DVS can be used in real-time embedded systems. We have
presented feasibility-of-scheduling tests for checkpointing
schemes under both constant processor speed and variable
processor speed. A heuristic method has been proposed to
reduce the computational complexity for voltage scaling. We
have presented simulation results for two commercial
embedded processors using real-time benchmark task sets.

References
[1] Y. Shin and K. Choi, “Power conscious fixed priority scheduling
for hard real-time systems”, Proc. DAC, pp. 134-139, 1999.
[2] G. Quan and X. Hu, “Energy efficient fixed-priority scheduling
for real-time systems on variable voltage processors”, Proc. DAC,
pp. 828-833, 2001.
[3] K. G. Shin and Y.-H. Lee, “Error detection process Model,
design and its impact on computer performance”, IEEE Trans.
Computers, vol. C-33, pp. 529-540, Jun. 1984.
[4] A. Ziv and J. Bruck, “An on-line algorithm for checkpoint
placement”, IEEE Trans. Computers, vol. 46, no. 9, pp. 976-985,
Sep. 1997.
[5] S. W. Kwak et al, “An optimal checkpointing-strategy for real-
time control systems under transient faults”, IEEE Trans. Reliability,
vol. 50, no. 3, pp. 293-301, Sep. 2001.
[6] Y. Zhang and K. Chakrabarty, “Energy-aware adaptive
checkpointing in embedded real-time systems”, Proc. DATE, pp.
918-923, 2003.
[7] R. Melhem et al, “The interplay of power management and fault
recovery in real-time systems'', to appear in IEEE Trans. Computers,
2003. Available online at:
http://www.cs.pitt.edu/PARTS/papers/ieeetc_03.pdf.
[8] Y. Zhang et al, “Energy-aware fault tolerance in fixed-priority
real-time embedded systems”, Proc. ICCAD, pp. 209-214, 2003.
[9] E. N. Elnozahy et al, “The performance of consistent
checkpointing”, Proc. Reliable Distributed Systems, pp. 39-47,
1992.
[10] J. L. Hennessy and D. A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, CA, 2002.
[11] J. S. Plank et al, “Libckpt: Transparent checkpointing under
Unix”, Proc. Usenix Tech. Conf., pp. 213-223, 1995.
[12] C.-Y. Lin et al, “A checkpointing tool for Palm operating
system”, Proc. DSN, pp. 71-76, 2001.
[13] A. Campbell et al, “Single event upset rates in space”, IEEE
Trans. Nuclear Science, vol. 39, pp. 1828-1835, Dec. 1992.
[14] D. Grunwald et al., “Policies for dynamic clock scheduling”,
Proc. Symp. OSDI, pp. 73-86, 2000.
[15] W. Ye et al, “The design and use of SimplePower: A cycle-
accurate energy estimation tool”, Proc. DAC, pp. 340-345, 2000.
[16] J. W. Liu, Real-Time Systems, Prentice Hall, Upper Saddle
River, NJ, 2000.
[17] Intel® PXA26x Processor Family Electrical, Mechanical, and
Thermal Specification Datasheet: http://developer.intel.com.
[18] Transmeta LongRun Power Management - Dynamic Power
Management for Crusoe Processors: http://www.transmeta.com.
[19] T. Simunic et al, “Event-driven power management”, IEEE
Trans. CAD, vol. 20, pp. 840-857, July 2001.

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

	Main Page
	DATE'04
	Front Matter
	Table of Contents
	Author Index

