

AFRL-IF-RS-TR-2005-335
Final Technical Report
September 2005

SITUATIONAL AWARENESS ANALYSIS TOOLS
FOR AIDING DISCOVERY OF SECURITY EVENTS
AND PATTERNS

University of Minnesota

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2005-335 has been reviewed and is approved for publication

APPROVED: /s/

THOMAS J. PARISI
Project Engineer

 FOR THE DIRECTOR: /s/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
SEPTEMBER 2005

3. REPORT TYPE AND DATES COVERED
Final Jul 03 – May 05

4. TITLE AND SUBTITLE
SITUATIONAL AWARENESS ANALYSIS TOOLS FOR AIDING DISCOVERY
OF SECURITY EVENTS AND PATTERNS

6. AUTHOR(S)
Vipin Kumar, Yongdae Kim, Jaideep Srivastava, Zhi-Li Zhang,
Mark Shaneck, Varun Chandola, Haiyang Liu, Changho Choi,
Gyorgy Simon, Eric Eilertson and Prasanna Desikan

5. FUNDING NUMBERS
C - F30602-03-C-0243
PE - 31011G
PR - B104
TA - 00
WU - 11

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Minnesota
University of Minnesota Sponsored Projects
200 Oak Street SE
Minneapolis Minnesota 55455

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFGA
525 Brooks Road
Rome New York 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-335

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Thomas J. Parisi/IFGA/(315) 330-1875/ Thomas.Parisi@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of the effort was to develop a comprehensive situational awareness analysis tool for discovery of intrusive
behavior in information infrastructures and understanding anomalous network traffic. The University of Minnesota team
has developed a comprehensive, multi-stage analysis framework which provides tools and analysis methodologies to
aid cyber security analysts in improving the quality and productivity of their analyses. It consists of several components:
various Level-I sensors and analysis modules for detecting suspicious or anomalous events and activities, the output of
which are then fed into a multi-step Level-II analysis system - the core of the analysis framework - that correlate and
fuse Level-I sensor data and alerts, extract likely attack contexts and produce sequences of attack events to build a
plausible attack scenario.

15. NUMBER OF PAGES
142

14. SUBJECT TERMS
Security Events and Patterns, Decision Support, Automated Profile Creating, Intrusive
Network Behavior 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 Table of Contents

1 INTRODUCTION ... 2

1.1 MOTIVATION ... 2
1.2 SECURITY THREATS & CHALLENGES... 3

2 PROJECT OBJECTIVE, RATIONALE AND KEY OUTCOMES ... 4
3 SYSTEM OVERVIEW ... 6

3.1 LEVEL I ANALYSIS... 6
3.1.1 MINDS Anomaly Detector.. 6
3.1.2 Scan Detector ... 8
3.1.3 P2P Detector .. 9

3.2 HISTORICAL BEHAVIOR PROFILER ... 10
3.3 LEVEL II ANALYSIS ... 11

3.3.1 Anchor Point Identification .. 11
3.3.2 Context Extraction.. 11

4 EVALUATION AND LESSONS LEARNED ... 12
4.1 LEVEL I ANALYSIS TOOLS ... 12

4.1.1 MINDS Scan Detector .. 12
4.1.2 P2P Detector .. 13

4.2 LEVEL II ANALYSIS ... 14
4.2.1 Skaion Dataset.. 14
4.2.2 Evaluation Methodology... 15
4.2.3 Summary of Results .. 16

5 LESSONS LEARNED... 18
6 FUTURE WORK... 19
7 PUBLICATION LIST FROM THIS PROJECT.. 20

 i

goodelle
Text Box
Executive Summary...1

List of Appendixes

Appendix A: A Level II Analysis Framework for Detecting Multi-Step Attack
 Scenarios .. 21
Appendix B: Profiling Internet Backbone Traffic: Behavior Models and
 Applications ... 41
Appendix C: Reducing Unwanted Traffic in a Backbone Network 53
Appendix D: Estimation of False Negatives in Classification... 60
Appendix E: Estimating Missed Actual Positives Using Independent
 Classifiers... 64
Appendix F: Incremental Page Rank Computation on Evolving Graphs70
Appendix G: Analyzing Network Traffic to Detect E-Mail Spamming Machines 79
Appendix H: MINDS Level 2 - A Multi-level Analysis Framework for Network
 Intrusion Detection..89
Appendix I: MINDS Level 2 - A Multi-level Analysis Framework for Network
 Intrusion Detection, (User Manual) ... 115
Appendix J: Scan Detection: A Data Mining Approach... 130

List of Figures

Figure 1: Multi-level Analysis Framework.. 5
Figure 2: Architecture of MINDS system.. 6
Figure 3: Anomalous connections with highest scores found by the MINDS anomaly
detector in a 10-minute window 48 hours after the “slammer worm” started (January
27th, 2003). .. 8
Figure 4: Level-II Analysis System ... 11
Figure 5: Attack Characterization.. 19

List of Tables

Table 1: Performance of the proposed approach on the two test data sets 12
Table 2: Evaluation of P2P Flow Detector .. 13
Table 3: Summary of results for different Skaion scenarios.. 16

 ii

Executive Summary

Attacks launched against IC networks are likely distributed, multi-step, stealthy attacks
that are low-intensity, spread out in time, with the ulterior intention to break into
protected hosts within the IC networks for access to sensitive and confidential
information of interest. Detecting and identifying such attacks are extremely challenging,
in particular, in a network with a large number of hosts, diverse applications/services and
massive amount of traffic. Hence there is a great need for techniques, tools and analysis
methodologies that will enable cyber security analysts and IC network defenders to
quickly analyze large volumes of data, test their hypotheses, and focus on the most
promising directions. It is crucial that such a framework have low false positive and false
negative rates in order to increase the ratio of productive work done by analysts, and to
provide a higher degree of confidence in the overall performance of the analysis.

The University of Minnesota team has developed a comprehensive, multi-stage analysis
framework which provides tools and analysis methodologies to aid cyber security
analysts in improving the quality and productivity of their analyses. It consists of several
components: various Level-1 sensors and analysis modules for detecting suspicious or
anomalous events and activities, the output of which are then fed into a multi-step Level-
II analysis system – the core of our analysis framework – that correlate and fuse Level-I
sensor data and alerts, extract likely attack contexts and produce sequences of attack
events to build a plausible attack scenario. To reduce false alarm rates while the same
time increasing the likelihood of detecting attack events, both Level-I and Level-II
analysis modules rely on the host and service profiling component which build profiles of
normal traffic activities and communication patterns for hosts (and their associated
services) within the IC networks. In developing the analysis framework and the resulting
system, we have drawn upon the team’s extensive experience with security analysts in
public University settings and the Intelligence Community (IC). The developed system
and its various components have been evaluated using both Skaion datasets that are
especially generated for ARDA’s P2INGS program as well as the real world network
data at the University of Minnesota and at the ARL Center for Intrusion Monitoring and
Protection. The results are very promising, and provide strong evidence for the efficacy
and success of our system.

 1

1 Introduction

1.1 Motivation
The Internet has become the de facto global information infrastructure that underpins much of
today’s commercial, social and cultural activities. Accompanying the increasingly important role
the Internet plays in our society, a growing number of cyber threats and attacks aimed at this
critical information infrastructure. The sophistication of attacks and their severity has also
increased. Internet wide attacks, such as Slammer and MyDoom. have attracted a lot of media
attention, largely due to their obvious visibility. However, for an organization that has sensitive
data, e.g., national security data in intelligence community (IC), much more dangerous threats
arise from sophisticated attackers, who (i) often work in concert, (ii) can leverage the resources
of Internet-wide insecure ‘zombie’ machines that they have co-opted, and (iii) can make use
unknown exploits.
As an initial step in launching a cyber attacks, attackers probe and scan machines on the Internet,
or the intelligence community’s (IC) information infrastructure, in order to discover network
systems and hosts that are vulnerable. They exploit the discovered vulnerabilities to compromise
a system by altering data and system configurations, planting malicious codes, or stealing
identities. Attackers also exploit “social engineering” to distribute and spread malicious codes via
email, web downloads, instant messaging and file sharing. In addition to attacking the
compromised systems, attackers and intruders use them as stepping-stones or handlers to launch
further attacks. Thus, attacks are increasingly multi-step, spread out over hours, days or even
weeks. Recent years have seen an increased proliferation of sophisticated tools, thus enabling an
assailant to create and launch attacks against discovered vulnerabilities in a short time and with
little effort. Because the “discover vulnerability create attack launch attack” sequence has
been significantly shortened, a greater number of attacks appear novel1 to current defensive
mechanisms, making it much harder to protect against.
The rapid increase in the speed of processors and communication systems is working against
those protecting the cyber infrastructure. Specifically, the dramatic rise in legitimate activity –
both system and network – has made it easier for attackers to hide their malicious activity, now in
a much larger crowd. This stealthy-ness of attacks is of rising concern. Furthermore, the insecure
Internet, with its large number of high-speed, interconnected machines, has become a powerful
resource that can be used by attackers to launch large-scale distributed attacks. Additionally,
flaws and vulnerabilities in protocol design and implementation, complex software code,
misconfigured systems, and the inattentiveness of system operations, regularly leaves a number of
machines open to being co-opted by malicious hackers who infect them with specialized
malware. Hundreds to thousands of such machines, known as ‘zombies’, can be called upon to
launch a coordinated attack against a sensitive resource, often at very short notice.
Approaches for discovering sophisticated attacks of the type described require considerable
human intervention, and have very high false positive and false negative rates2. Consequently, the
approaches (i) are not scalable due to data volume, (ii) create frustration for the analyst due to
false positives, and (iii) are have low reliability due to false negatives.

1 An attack that has never before been seen; thus there are no signatures for it.
2 A non-attack activity reported as an attack is called a ‘false positive’, while an attack activity reported as a non-attack
is called a ‘false negative’.

 2

1.2 Security Threats & Challenges

There are many challenges that make detecting sophisticated cyber attacks extremely difficult.
First, the amount of data being generated from various monitoring devices is at a scale that makes
human analysis essentially impossible. For example, the University of Minnesota receives about
300 million connections per day. Inexpensive signature-based IDSs, including the popular open
software, Snort, cannot handle such a large volume of communications; thus, they drop many
connections. A more serious problem in large organizations is the storage and capture of network
data. Specifically, typical software-based packet capturing tool such as TCPdump drop lots of
packets, and popular flow tools such as the NetFlow tool for CISCO routers, do not output the
contents of packets. Hardware-based packet capturing tools are effective, but expensive. The
difficulty of packet capture causes false negatives since, even when no packet is lost, the whole
communication volume is large enough that storing such data for long duration is difficult, if not
impossible.
Second, attacks are launched in multiple steps. Monitoring devices observe activities at the level
of events, usually recording only those events that are unusual or interesting. This poses two
limitations for identifying sophisticated attacks, namely (i) only some of the events caused by the
attack may be unusual and thus collected, and (ii) the connection between various events is not
seen. The metaphor of ‘counting the trees and missing the forest’ holds here. Detecting cyber
attacks in early stages is critical so that security analysts can issue early warnings and take
defensive actions against such attacks before widespread damage is made.
Third, modern attacks are extremely distributed. Typically, hackers compromises unattended
hosts and use them as command-and-control centers, which are used to further compromise many
more machines, called zombies. In turn, the zombies are used to attack the actual target system.
Therefore, watching for one or a few outside attackers does not help to detect sophisticated
attacks. When a sophisticated attack is launched, the command-and-control will send a specific
signal to each zombie it controls, which makes it behave in a specific malicious manner. Under
normal conditions, zombies behave like regular machines, and thus are not suspected. The power
of hackers to launch sophisticated, large-scale attacks stems from their ability to harvest the
power of hundreds to thousands of zombies at short notice.
Fourth, it is difficult to assess or evaluate the impact of the attack or intention of the attacker by
the security analyst. This requires that some form of automated analysis is needed for the data.
This automated analysis must extract higher-level information in a form and scale
comprehensible to a human security analyst. Additionally, there must be mechanisms by which
the security analyst’s judgment can be incorporated into the automated analysis system to make it
more effective. Finally, automated analysis needs to help security analysts to visualize and
understand the cyber defensive environment of their information infrastructure, to understand a
potential adversary's courses of actions that affect the critical infrastructures and to identify where
to look for key indicators of malicious activity.
Fifth, false positive rates are extremely high for most of signature-based intrusion detection
systems. Furthermore, tools such as Snot or Stick generate many false alarms automatically. This
is typically reduced by correlating intrusion alerts. However, it is hard to correlate intrusion alert
with the large number of false negatives and false positives in a real network.
Sixth and most importantly, false negatives are unavoidable in signature-based intrusion detection
systems. Zero-day exploits are extremely popular. When new exploits are found (or new patches
are released, but not applied by users), attackers immediately launch an attack. In this case,
signature-based intrusion detection systems cannot detect the attack. Morphing an existing exploit
reduces detection rate of signature-based intrusion detection system significantly. Research has
shown that if the signatures are not sufficiently robust in describing the attack conditions then

 3

simple modifications can be made which will allow the attack to succeed by using popular
mutating engines such as ADMmutate or CLET. Even when alerts are correlated, a false negative
can effectively disconnect two graphs that are supposed to be joined.

2 Project Objective, Rationale and Key Outcomes
Given the present situation, there is a need to develop a framework, consisting of techniques,
tools and analysis methodologies that will enable cyber security analysts and IC network
defenders to quickly analyze large volumes of data, test their hypotheses, and quickly focus on
the most promising directions. It is crucial that such a framework have low false positive and
false negative rates in order to increase the ratio of productive work done by analysts, and to
provide a higher degree of confidence in the overall performance of the analysis.
Hence, the overall objective of our project is to develop a comprehensive situational awareness
analysis framework which provides tools and analysis methodologies to aid IC network defenders
and security analysts in identifying important cyber threats and gaining both local and global
situational awareness, thereby improving the quality and productivity of their analyses.

Threat Model and Assumptions: In developing our situational awareness analysis framework,
we focus particularly on distributed, stealthy, multi-step, novel attacks, due to the following
considerations. We believe that attacks on IC networks are likely to occur in multiple stages that
are spread out in time, with the intention to break into protected hosts, e.g., mail servers or
databases containing classified data, for access to sensitive and confidential information of
interest. To achieve the goal, malicious attackers would likely first perform reconnaissance
activities by scanning hosts inside the IC networks for (known or unknown) vulnerabilities, and if
such vulnerable hosts are found, attempt to compromise them and possibly use them as stepping
stones for attacks on protected hosts of interest. Hence such attack activities typically originate
from hosts from outside of the IC networks (i.e., hosts on the public Internet), but may also
involve (compromised) hosts from inside the IC networks. Unlike denial-of-service attacks and
spread of malware (e.g., worms) that are more prevalent on the Internet at large, these malicious
attacks will typically generate low-intensity traffic so as to hide behind normal traffic, and are
likely carried out in multiple steps to avoid detection. However, since the goal of the attackers is
to penetrate the protected hosts in order to access sensitive data of interest, we believe that such
attack activities will deviate from the “normal” traffic and activities within the IC networks. For
example, in order to launch effective attacks at the IC networks, attackers perform intelligent
reconnaissance and probe for vulnerabilities in the IC networks. Most of compromised hosts tend
to be less-well protected client hosts (e.g., home desktops, laptops), and are marshaled by the
attackers for eventual attacks targeted at the IC networks. Because of the nature of activities they
engage in, their behavior is likely to be “anomalous”, e.g., probing ports with known or unknown
exploits, unusual file transfer via backdoor channels, and so forth. Such anomalous and
suspicious activities would inevitably leave certain “traces” that can be detected and tracked. The
key challenge is to detect and identify such “anomalous” and “suspicious” activities from a
massive amount of collected network data that are extremely rich and diverse with as little false
positives as possible, while without incurring too many false negatives.

Key Novel Ideas and Contributions: The rationale behind the analysis framework we have
developed is the following key observation: despite the stealthy-ness and low traffic intensity of
distributed, multi-step attacks that are likely launched against the IC networks, hosts involved in
such attacks (e.g., attacking and attacked hosts) are inevitably “linked” by suspicious traffic
patterns and/or communications activities that deviate from normal behaviors of the hosts within
the IC networks. Although individually, each of these “suspicious” traffic patterns or
communication activities may not be conspicuous or significant, as it may resemble many other

 4

“innocent” activities that generate IDS alerts that turn out to be “false positive,” when analyzed
by linking them together, they tend to accentuate the suspiciousness or anomaly of the attacks
events, giving rise to a plausible attack scenario that can be better analyzed with reduced
probability of misidentification.

Motivated by the above observations, we have proposed and developed a comprehensive, multi-
stage analysis framework that consists of several components (see Figure 1): various Level-1
sensors and analysis modules for detecting suspicious or anomalous events and activities, the
output of which are then fed into a multi-step Level-II analysis system that correlate and fuse
Level-I sensor data and alerts, extract likely attack contexts and produce sequences of attack
events to build a plausible attack scenario. To reduce false alarm rates while the same time
increasing the likelihood of detecting attack events, both Level-I and Level-II analysis modules
rely on the host and service profiling component which build profiles of normal traffic activities
and communication patterns for hosts (and their associated services) within the IC networks. In a
sense, our proposed multi-stage analysis framework first performs “shallow” analysis of
voluminous network-wide sensor data to identify “anchor points” for in-depth follow-on analysis
in a focused context by correlating and linking together suspicious activities and events that are
likely part of an attack. As a result, it transforms large amount of sensor data into a small set of
labeled event sequences that can be more understood and analyzed by human security analysts,
thus improving their ability to uncover large portions of multi-step attacks with reduced false
alarm rates. We believe that our analysis framework is likely to perform better on IC networks
than in a general Internet environment, as network traffic in IC networks is expected to be cleaner
and more regulated, therefore it is easier to build profiles for hosts, services, and communication
patterns.

Signature -based IDS

Anomaly Detector

Attack Context
Extraction

Attack
Characterization

Situation
Assessment

Anchor point
identification

Level I Level II

Scan Detector

Behavior Profiling

Host/Service Profiling Flow Anomaly Analysis Attack Profiling

Figure 1: Multi-level Analysis Framework

The key contributions and outcomes of our project are summarized as follows.

• As the main contribution of our project, we have developed a novel Level-II analysis system

and associated techniques for aiding IC network defenders and security analysts in
identifying distributed, stealthy, multi-step attacks. The Level-II analysis system consists of
three major steps and modules – anchor point identification via correlating and fusing
multiple sensor data, context extraction via spatio-temporal chaining analysis in the

 5

communication graph to extract larger context of suspicious activities, and attack
characterization via event sequencing and labeling.

• In addition, we have developed various Level-I analysis modules for detecting anomalous and
suspicious network events and activities. In particular, we have improved and refined the
original MINDS anomaly detection system, augmented with new modules such as scan
detectors and peer-to-peer (p2p) traffic identification to reduce false alarm rates and improve
quality of anomaly detection.

• We have also developed a host and service profiling platform that profiles network traffic
profiles along multiple dimensions to characterize normal/abnormal behavior based on
historical traffic data, thus enabling improved level I and level II analysis

We have evaluated the whole analysis framework, and in particular, the Level-II analysis system,
using both Skaion datasets especially generated for ARDA’s P2INGS program as well as the real
world network data at the University of Minnesota and at the ARL - Center for Intrusion
Monitoring and Protection, where data is collected from multiple DoD sites. The results are very
promising, and provide strong evidence for the efficacy and success of our system.

3 System Overview

3.1 Level I Analysis

3.1.1 MINDS Anomaly Detector3
The MINDS Anomaly Detector is a data mining based system for detecting network anomalies.
Figure 3 illustrates the process of analyzing real network traffic data using the MINDS system. At
present, a prototype of the MINDS system is being used by the University of Minnesota (UM)
network security analysts, in a live system, as follows. Input to MINDS is net-flow version 5 data
collected using net-flow tools. Net-flow tools only capture packet header information (i.e., they
do not capture message content), and build one-way sessions (flows). Net-flow data for each 10-
minute window, which typically result in 1 to 2 million flows, is stored in a flat file. The analyst
uses MINDS to analyze these 10-minute data files in a batch mode. Before applying MINDS to
these data files, a data filtering step is performed by the system administrator to remove network
traffic that is not interesting for analysis. For example, the removed attack-free network data in
data filtering step may include the data coming from trusted sources, non-interesting network data
(e.g. portions of http traffic) or unusual/anomalous network behavior for which it is known that it
does not correspond to intrusive behavior.

Figure 2: Architecture of MINDS system

network

Data capturing
device

Anomaly
detection

Filtering

…
…

Anomaly
scores

Human
analyst

Detected
novel attacks

Summary
of attacks

MINDS
M
I
N
D
S

Known attack
detection

Detected
wn akno ttacks

Labels

MINDSAT

Association
pattern analysis

Feature
Extraction

3 Majority of MINDS anomaly detector is developed outside of this project. However, since this plays the
crucial role in our whole system, we include it for the completeness of the document.

 6

The first step in MINDS anomaly detector includes constructing features that are used in the data
mining analysis. Basic features, available directly from net-flow data, include source IP address,
source port, destination IP address, destination port, protocol, flags, number of bytes, and number
of packets. Derived features include time-window and connection-window based features. Time-
window based features are constructed to capture connections with similar characteristics in the
last T seconds, since typically Denial of Service (DoS) and scanning attacks involve hundreds of
connections in the short time intervals. However, some scanning attacks scan the hosts (or ports)
using a much larger time interval, for example once per hour. In order to detect such slow scans
we not only have to keep statistics for the last T seconds, but we also need to keep statistics for
the last N connections generated from every source. We refer to these features as the connection-
window based features.

After the feature construction step, the known attack detection module is used to detect network
connections that correspond to attacks for which the signatures are available, and then to remove
them from further analysis. Next, the data is fed into the MINDS anomaly detection module that
uses an outlier detection algorithm to assign an anomaly score to each network connection. The
output of the MINDS anomaly detector contains the original net-flow data along with the
anomaly score and relative contribution of each of the 16 attributes used by anomaly detection
algorithm. Figure 4 shows the output of the system on January 27th for a 10-minute window.
Most of the top ranked connections shown in Figure 4 belong to the SQL Slammer/Sapphire
worm. This is despite the fact that for this period (which was 48 hours after the worm started)
network connections related to the worm were only about 2% of the total traffic. This shows the
effectiveness of the MINDS anomaly detection scheme in identifying connections due to worms.
The network connections that are part of the “slammer worm” are highlighted in light gray in
Figure 4. It can be observed that the highest contributions to anomaly score for these connections
were due to the features 9 and 11. This was due to the fact that the infected machines outside our
network were still trying to communicate with many machines inside our network. Similarly, it
can be observed from Figure 4 that during this time interval there is another scanning activity
(ICMP ping scan, highlighted in dark gray) that was detected again mostly due to the features 9
and 11. The two non-shaded flows are replies from half-life game servers, which were flagged
anomalous since those machines were talking to only port 27016/udp. For web connections, it is
common to talk only on port 80, and it is well represented in the normal sample. However, since
half-life connections did not match any normal samples with high counts on feature 15, they
became anomalous.

 7

score srcIP sPort dstIP dPort protocoflags packets bytes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
37674.69 63.150.X.253 1161 128.101.X.29 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
26676.62 63.150.X.253 1161 160.94.X.134 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.59 0 0 0 0 0
24323.55 63.150.X.253 1161 128.101.X.185 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
21169.49 63.150.X.253 1161 160.94.X.71 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19525.31 63.150.X.253 1161 160.94.X.19 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
19235.39 63.150.X.253 1161 160.94.X.80 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
17679.1 63.150.X.253 1161 160.94.X.220 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.81 0 0.58 0 0 0 0 0
8183.58 63.150.X.253 1161 128.101.X.108 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.58 0 0 0 0 0
7142.98 63.150.X.253 1161 128.101.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
5139.01 63.150.X.253 1161 128.101.X.142 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
4048.49 142.150.X.101 0 128.101.X.127 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
4008.35 200.250.X.20 27016 128.101.X.116 4629 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3657.23 202.175.X.237 27016 128.101.X.116 4148 17 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
3450.9 63.150.X.253 1161 128.101.X.62 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
3327.98 63.150.X.253 1161 160.94.X.223 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2796.13 63.150.X.253 1161 128.101.X.241 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2693.88 142.150.X.101 0 128.101.X.168 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2683.05 63.150.X.253 1161 160.94.X.43 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2444.16 142.150.X.236 0 128.101.X.240 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2385.42 142.150.X.101 0 128.101.X.45 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
2114.41 63.150.X.253 1161 160.94.X.183 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
2057.15 142.150.X.101 0 128.101.X.161 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1919.54 142.150.X.101 0 128.101.X.99 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1634.38 142.150.X.101 0 128.101.X.219 2048 1 16 [2,4) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1596.26 63.150.X.253 1161 128.101.X.160 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1513.96 142.150.X.107 0 128.101.X.2 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1389.09 63.150.X.253 1161 128.101.X.30 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1315.88 63.150.X.253 1161 128.101.X.40 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.82 0 0.57 0 0 0 0 0
1279.75 142.150.X.103 0 128.101.X.202 2048 1 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1237.97 63.150.X.253 1161 160.94.X.32 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1180.82 63.150.X.253 1161 128.101.X.61 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0
1107.78 63.150.X.253 1161 160.94.X.154 1434 17 16 [0,2) [0,1829) 0 0 0 0 0 0 0 0 0.83 0 0.56 0 0 0 0 0

Figure 3: Anomalous connections with highest scores found by the MINDS anomaly

 detector in a 10-minute window 48 hours after the “slammer worm” started (January 27th,
 2003).

3.1.2 Scan Detector
A precursor to many attacks on networks is often a reconnaissance operation, more commonly
referred as a scan. Identifying what attackers are scanning for can alert a system administrator or
security analyst to what services or type of computers are being targeted. Knowing what services
are being targeted before an attack allows an system administrator to take preventive measures to
protect resources they oversee, e.g. installing patches, firewalling service from the outside, or
removing services on machines which do not need to be running them. Therefore, scan detector is
an essential part of intrusion detection system. The MINDS Scan Detector is a practical heuristic-
based level-I sensor for identifying and labeling flows that are suspected to pertain to scanning
activity.

The MINDS scan detector is a practical, score-based algorithm. The observation underlying the
algorithm is that the distribution of the failed service requests over the sources (clients) is
bimodal: one mode describing scanners and the other mode describing normal clients. A service
request by definition fails if the requested service is not offered by the destination (server). The
information whether a service is offered or not is ideally readily available, but even if it is not, it
can be deduced from the network traffic provided that sufficient historic information is available.

Given an accurate list of services, the scan detector assigns a score to every source that initiated a
connection attempt. This score is descriptive of the system's confidence in the source being
involved in scanning activity. Specifically, the source is initially assigned a score of 0. Every time
the source requests a service not offered by the destination, the score is increased; every time the
source successfully establishes a connection, the score is decreased. For each distinct destination,
only the first connection attempt is considered.

Once the score exceeds a user-defined threshold, the source is declared.

 8

3.1.3 P2P Detector

P2P detector is designed to detect and filters connections that are made by P2P programs. This
component is necessary since 1) a lot of false alarms for MINDs anomaly detector as well as Scan
detector are from P2P traffic, and 2) much of the analysis done in later stages can be greatly
hindered by P2P traffic. Thus it is necessary to detect which connections are of this type, so that
they can either be ignored in later analysis, or special processing can be done for these
connections. Also, it is more important for the P2P detection mechanism to have few false
positives than to have few false negatives, since the result of a false positive might be the
exclusion of a true attack connection in later analysis, whereas a false negative would result in the
inclusion of a P2P connection. Thus the module should detect as much P2P traffic as possible,
while minimizing the false detection rate.

The code uses three main heuristics. The first is a simple one that flags connections on well
known p2p ports. The second and third are based on ideas in the paper entitled "Transport Layer
Identification of P2P Traffic" by Thomas Karagiannis, et al. (In Proceedings of the ACM
SIGCOMM/USENIX Internet Measurement Conference (IMC 2004), Italy, October, 2004).

The second heuristic simply checks if two IPs are making connections on both TCP and UDP.
Certain P2P systems frequently exhibit this type of behavior, and this will flag all connections
between these two IPs as P2P. Since this type of behavior can also be exhibited by certain benign
programs, there is a white list of ports (that is set in the configuration file) and if the two IPs that
are communicating on both TCP and UDP also make a connection using one of these white listed
ports, then none of the connections between the two IPs will be flagged as P2P.

The third heuristic relies on the following characteristic of P2P systems. Frequently, in making a
P2P connection, a peer will connect to another peer only once, for example to download a file. If
the peer downloads another file, it will most likely be from a different peer. This type of behavior
is quite different from other applications, for example web traffic. In web traffic it is common to
make many connections from one client to one web server. For each connection the client will
select a different source port. Thus, if we look at a particular destination IP/port pair, and count
the number of unique IPs that connect to it, and count the number of unique source ports used to
connect to it, the two counts should be close if the destination is P2P, and the port count should
be much higher in other applications, such as P2P. This heuristic categorizes connections into 3
categories: unknown, p2p, non-p2p. All connections start in the unknown category. If the
difference in the counts for a particular IP/port pair is less than 10 (and the port is not a well
known p2p port), then the connection is marked as a p2p connection. If the difference in counts is
greater than 20, then the connection is marked as non-p2p. If the port in question happens to be a
well known p2p port, then the difference must be less than 2 to be marked as p2p and the
difference must be greater than 10 to be marked as non-p2p. Also, in order for this check to be
applied the count for the number of distinct IPs that connects to this IP/port pair must be greater
than some threshold (which can be set through the configuration file, with a default value of 20).

For this heuristic, there are many "counter" heuristics to mitigate the false alarms. The first of
these is the "DNS" heuristic, which determines connections to be non-P2P if the source port and
the destination port of a connection are the same and both of the ports are less than 501. The
second false positive reduction heuristic is as follows: if the connection is to a well known p2p
port AND either the number of distinct byte counts for connections to this IP/port is 1 or the
number of distinct average packet sizes for connections to this IP/port pair is less than 3 AND
either the port is less than 501 or the port is a well known malware port or the number of distinct
IPs that made connections to this IP/port pair is greater than 5, then mark this IP/port as non-p2p.

 9

The third false positive reduction heuristic is as follows: if there are at least a lower threshold
number of connections made by a particular IP (which can be set in the configuration file and
defaults to 10) and if the difference between the number of distinct ports this IP made connections
on and the number of those ports which were made to "good" ports is (strictly) less than some
threshold (which can be set in the configuration file and defaults to 1) then mark this IP as non-
p2p. (The idea being that if most - or all - of the connections were made the well known ports,
such as 80, 21, 53, etc, then this IP is probably not p2p.)

Finally for the third heuristic, the ends of the connections have been marked as unknown, p2p, or
non-p2p. For each connection, if neither source nor destination was marked as non-p2p, and at
least one end was marked as p2p, then the connection is flagged as p2p. At the end of the p2p
detection routine, the connections have been flagged with the logical OR of the following flags
(in order to indicate which heuristic flagged it): KNOWN_P2P_PORT, TCP_UDP, and
IP_PORT_COUNT.

3.2 Historical Behavior Profiler
Hosts repeatedly show the same session behaviors as servers or clients. For example, a web
server will have many inbound sessions going to port 80 or 443 from many clients and the web
server does not open sessions to other hosts unless it is a proxy server. In addition a server
serving several services generally does not behave as a client unless it is a P2P server.
Furthermore a host that behaves as a client generally does not provide any services. Therefore if
we can correctly profile services that a server provides or a client uses, we can easily identify
abnormal services going to the server or coming from the client.

Services are recognized through service ports. Therefore service can be profiled with service
ports through which servers provide services and clients make connections. We profile normal
flows that have matching flows (e.g., flows that have corresponding service request or reply
flows.) Flow merging is preceded before finding matching flows in Netflow data. A flow in
Netflow is defined by 7-tuple such as source IP, destination IP, source port, destination port,
protocol, ToS, and incoming interface. We are interested in only end-to-end communications.
Therefore we can ignore ToS and incoming interface attributes from each flow and merge flows
that have the same 5-tuple (e.g., source IP, destination IP, source port, destination port, and
protocol). We use only matched UDP and TCP flows for service profiling. Time window scheme
is used to find UDP matching flows. If a corresponding response or request flow appears within
time τ, we match the flows (e.g., service request and response flows). However there is no
corresponding flow within time τ, we regard the flow as an non-matching flow. We currently use
3 minutes as τ and this time window should be adjustable. Matching flows must overlapped in
TCP flows and only normal TCP flag flows (e.g., flows with SYN, ACK and FIN flag) are
considered in service profiling. We define a pair of matching flows as a session. The session is
identified by unique 5-tuple (source IP, destination IP, source port, destination port, protocol). We
profile only inside hosts that reside in our interesting network. We also separately profile services
such as inbound/outbound service sessions in intranet/extranet communications. Inbound service
session means that a local host is a server and remote hosts initiate a session to the local host.
Outbound service session is a session that is initiated by a local host. In this case the local host
acts as a client. We define inbound sessions as server sessions and outbound sessions as client
sessions. Intranet communications occur between hosts in our interesting local network. Extranet
communications include communications between one local host and one remote host.

 10

3.3 Level II Analysis

A
ttack Assessm

ent

Anchor Point
Identification

Context
Extraction

Attack
Characterization

List of
anchor
points

Event
activity
graph

IDS
Sensor
Data

Labeled
Attack

Sequences

Configuration/
Selection of

Analysis Strategies

Search size,
depth,

time frame
Labeling /

Scoring Rules

Figure 4: Level-II Analysis System

3.3.1 Anchor Point Identification
The first phase of the multi-step analysis involves the identification of starting points (anchor
points) for analysis. This is done by taking a set of low-level IDS alerts from one or more
(preferably independent) sources and selecting from this set a number of anchor points, such that
we have high confidence that the set contains very few false positives. This can be done in many
ways. One way is to use a single IDS configured to operate in a very restrictive manner, resulting
in a high confidence yet incomplete set of attack events. Another way of doing this is through
correlation techniques. It is well known that if an alert can be correlated with many other alerts,
we can be more confident that this alert corresponds to a true positive. Thus, in this manner, alerts
from multiple sources can be combined together, where only the alerts which have high
confidence are selected. However, there is a difference between the goal of this step and the goal
of traditional alert correlation techniques. The difference is that we are not trying to balance false
positives versus false negatives. Instead, Anchor Point Identification attempts to aggressively
reduce false positives while maintaining high coverage of attack scenarios (where an attack
scenario is considered ”covered” if at least one attack event in the scenario is selected in this
step). The low false positive requirement is needed to ensure that the subsequent context
extraction starts from a highly trusted base thus can focus on reducing false negatives. Because
high attack coverage can accommodate high false negatives, this challenge is a relaxation of the
more stringent requirement on traditional techniques that require low false positives and low false
negatives simultaneously.

3.3.2 Context Extraction
The anchor points generated in the previous step are comprised of events in which there is high
confidence that they are part of an attack. The Context Extraction step generates a suspicious
context around these anchor points, both temporally and spatially. This step detects events related
to the anchor points which are also anomalous or suspicious, but not enough so to be detected by
the previous step. The goal of this phase is to add to the context only those activities that are part
of the attack, thus filling in the attack steps missed by the previous step, while keeping the low
false positive rate achieved by the Anchor Point Identification. This is done by relaxing the
restrictions conditionally, i.e. “lowering the bar”, but only for those events that are connected
somehow to an anchor point.

The major requirement for this step is some type of ranking for each network connection. One
way this is accomplished is by an anomaly detection system. In this type of system, all
connections are ranked according to how anomalous they are as compared to all other network
connections, and this is typically done using data mining techniques. This can also be done by
building historical behavior profiles for each host, determining which machines are servers and

 11

clients for particular services. When using historical behavior profiles, connections would be
added to the context if they deviated from the historical behavior profiles for the hosts that they
involved, for example if a web server started initiating connections, which it had never done
before. This must be done carefully, however, for example in the case of peer-to-peer
connections, which can be difficult to profile. If this type of traffic is not carefully profiled then
the context can expand rapidly, effectively invalidating the result. One way to deal with this is to
use peer-to-peer detection techniques and ignore the peer-to-peer traffic when profiling.

This step also makes use of domain knowledge in the form of rules. Certain behavior patterns are
known to be signs of malicious activity. For example, attackers often scan a network on a
particular port to look for vulnerable machines. These scans most often result in failed connection
attempts, as most machines will not have a service on that port. Thus, these machines will not
respond (or will reject the connection attempt), and therefore are not vulnerable to being attacked
on this port. This can be captured in a rule which states that all scans that do not result in a full
connection (no successful reply from the scanned host) should be ignored, and all scans which do
receive a successful response should be included.

4 Evaluation

4.1 Level I Analysis

4.1.1 MINDS Scan Detector
The core of the MINDS Scan Detector is Ripper, a rule-based classifier and a set of features that
successfully captures aggregate behaviors and encodes the vast amount of expert knowledge that
accumulated over the years. As a data mining based approach, the MINDS Scan Detector (SD)
needs to be trained on labeled data. For the purpose of training, we used the first 4 million flows
of 03/10/2005 13:40pm-14:00pm. The scan detector was evaluated on two test data set
03/10/2005 14:00pm-14:20pm and 05/02/2005 14:00pm-14:20pm.

 MINDS Scan Detector TRW [threshold=2]
Label Recall Precision Recall Precision

03/10 14:00
Scanner 84.95 91.52 12.33 37.41
Normal 95.09 95.27 13.10 99.71
Dontknow 74.33 69.93 99.38 15.71

05/02 14:00
Scanner 57.69 89.83 10.52 69.49
Normal 76.01 97.36 13.93 99.72
Dontknow 53.96 1.72 92.77 0.87

Table 1: Performance of the proposed approach on the two test data sets

The results depicted in the table show that the MINDS Scan Detector clearly outperforms TRW
on both datasets. The fact, that MINDS performed so well on test data sets which are 2 months
apart evidences that the succuss in not by chance. The rules generated by Ripper clearly show
that there exists only a limited number of patterns that scanning behavior follows and these
patterns could be concisely described by the features we applied. The stunning difference
between MINDS' performance and TRW can be explained by two factors. First, TRW requires
that the source IP makes at least two connection attempts on a given destination port before it can

 12

be declared a scanner. In contrast, the MINDS Scan Detector has removed this limitation by
introducing features that observe the aggregate behavior of a source IP. For example, if a source
IP makes connection attempts to a single destination IP on multiple ports that are blocked, is
enough evidence to declare the IP a scanner, even if it did not make connection attempts to two
destination IPs on any of the ports. Half of the scanners make connection attempts to only one
destination IP on each port. Second, MINDS Scan Detector has the ability to learn exceptions. It
has features that allow the identification of certain types of traffic that is exhibiting scanning-like
behavior but are not scanners per se. Examples of such traffic include backscatter, P2P, ident,
traceroute. These two abilities -- both stemming from MINDS' ability to analyze the aggregated
behavior of the source IPs via the carefully crafted features -- give it the competitive edge over
the existing other approaches.

4.1.2 P2P Detector

A detailed analysis of false positives is difficult since we only have access to the netflow data,
and thus cannot always be certain which are false positives. However, we can examine the details
of the results and estimate the false positives based on the port information. For example, if a
connection is made to port 80 with source port 6346 (a well known gnutella port), it is probably a
false positive. This can be used with any ports under 1024 (which are reserved system ports) to
estimate the false positives. Also, we can use the trends in the p2p usage over the course of a day
to determine if it would match the trend. We would expect that over night the percentage of p2p
usage would increase as legitimate users would be using the network less. However around 8:00
am, we would expect normal users to come online and the p2p percentage to drop. We examined
the data over the course of March 23, from 12:00 to 11:00 am. The p2p usage followed this trend
exactly, with a rather sharp dropoff around 8:00 am. This can be seen in the following table.

Time Percentage P2P Time Percentage P2P Time Percentage P2P
12:00 am 12.5% 4:00 am 16.3% 7:30 am 14.1%
1:00 am 13.0% 5:00 am 17.5% 7:40 am 14.0%
2:00 am 13.1% 6:00 am 16.7% 7:50 am 13.8%
3:00 am 15.2% 7:00 am 16.0% 8:00 am 12.8%

 8:10 am 11.9%

Table 2: Evaluation of P2P Flow Detector

Also, by using the above mentioned false positive estimation techniques, we examined the time
period between 5:00 am and 5:10 am (with the heaviest p2p usage) and found 1,079 false
positives out of 113,160 flows identified as p2p, for a false positive rate of about 1%. Also, the
113,160 p2p flows were identified out of 921,538 total flows.

This technique will need to be further refined in the future, due to the growing and changing
nature of p2p. P2P clients can be reconfigured to use any port, and thus reliance on specific port
numbers can become less effective as a means of detecting p2p. Thus the other techniques need
to be further refined to detect more p2p traffic (in the above sample, 111,702 p2p flows were
detected by the port number heuristic, and 1,458 were detected by the second two methods).
Also, the port number techniques needs to be further refined to reduce the number of false
positives due to the random nature of source port selection (where the randomly chosen source
port may coincide with a known p2p port). However, with the current p2p detection mechanism
in place, we are already seeing good results in the detection of p2p flows.

 13

4.2 Level II Analysis
We evaluated our level II analysis framework using datasets generated by Skaion corporation.
These datasets are simulated to be statistically similar to the traffic found in Intelligence
Community. This dataset has several scenarios with attacks injected that follow different patterns.
In the following sections we first describe the nature of the Skaion dataset, then discuss methods
we used to evaluate our framework, and finally we show our results. As can be seen in the
following results, even though our approach currently uses only simple implementations for each
component, our overall analysis captures the major attack steps successfully.

4.2.1 Skaion Datasets
As part of the ARDA P2INGS research project, the Skaion Corporation has released several sets
of simulated network traffic data. This data includes various scenarios of multi-step sophisticated
attacks on resources within a protected network. The scenarios for which they have generated
data include single stage attacks (a simple scan or exploit or data exfiltration scenario), bank shot
attacks (where an internal host is compromised and used to attack another internal host), and
misdirection attacks (where a “noisy” attack is staged on one part of the network while the true
attack takes place in a more stealthy manner in another part of the network). In addition to the
main attack, there are other background attacks (none of which are successful) and scans. For the
sake of space, we present a summary of our results on scenarios. The network topology in these
scenarios is comprised of the following four domains: (i) the target protected domain, BPRD
comprising of various servers which are the typical targets for attacks; (ii) a secondary internal
domain which is not as protected as the protected domain and comprises of servers as well as
clients. The hosts inside this domain have additional privileges to access the protected domain,
BPRD; (iii) a set of external hosts which consists of attackers as well as normal users and (iv) a
trusted domain which consists of remote users access the protected network with additional
privileges over a dialup or a VPN connection. All traffic entering and leaving the entire internal
network is captured by tcpdump. Snort alerts are collected for traffic exchanged between the
external network and entire internal network.

Single Stage Attacks: These scenarios are compromised of a simple attack made up of four
steps. First, scanning is used to determine the IP addresses in the target network that are actually
associated with live hosts. Typically in these scenarios, this is done by an attacker performing
reverse DNS lookups to see which IPs have domain names associated with them. The next step
consists of an attacker (or multiple attackers) probing these live hosts to determine certain
properties, such as which OS and version is running on the host. Then one of these hosts is
attacked (possibly by a host that was not involved in any previous steps) and compromised.
Finally, a backdoor is opened, to which the attacker connects, and performs various malicious
activities, such as data exfiltration or the downloading and installation of attack tools.

Bank-Shot Attacks: These attacks are aimed at avoiding detection by using an “insider” host to
launch the actual attack. In this scenario, initial scanning is done, and then an attack is launched
against a host in the BPRD network. This attack fails, and the attacker then scans and
compromises a host in the secondary internal domain. From this server, the attacker scans and
launches attacks on hosts in the protected BPRD network. A host is then compromised, from
which data is exfiltrated.

Misdirection Attacks: The attacker attempts to draw the attention of the analyst away from the
real attack. He does this by launching a noisy attack (one which sets off many IDS alerts) on a

 14

particular set of hosts in the protected network. Then using a previously compromised host in the
trusted domain, he attacks and compromises another host in the BPRD network, from which he
exfiltrates data.

4.2.2 Evaluation Methodology
Before discussing the results of our experiments, we first describe how we performed the
experiments and the methods we used to evaluate our framework. For a given scenario, we first
ran all low-level IDS tools to generate the alerts, anomaly scores, etc. For profiling, a host was
profiled as a server only if it had more than 10 inbound connections. Similarly, a host was
profiled as a client only if it had more than 5 outbound connections. In addition we only profiled
ports with more than two connections. We then ran Anchor Point Identification using multiple
rules for detecting the anchor points in order to compare the performance and sensitivity of each
set of rules. First, we used Snort alone, where each Snort alert was selected as an anchor point.
Next, we used the MINDS anomaly detector alone, where the connections that ranked in the top
k% of anomalies were selected as anchor points. Finally, we combined Snort and MINDS in the
method described in Section 3.3. The anchor points selected were those Snort alerts in which at
least one of the IPs was involved in a highly ranked anomaly (ranked within the top k% of
MINDS Anomaly Detector output). The evaluation criteria for the anchor points are twofold:
first, whether it covers the attack (i.e. did it have any true positives), and second, whether it has
low false positives (the lower the better). The Anchor Point Identification step generates a set of
events (anchor points) which represents a connection between two hosts. An anchor point is
related to the attack scenario if the connection it represents is a part of some attack step. In our
results section, the results of this step are represented by the number of attack related hosts
detected (true positives) and number of non-attack related hosts detected (false positives). A host
is counted as attack related if it is present in an attack related anchor point (in this case we call it
covered). If a host is present only in non-attack related anchor points, it is counted as a false
positive.

Following the Anchor Point Identification step, Context Extraction was run with each set of
anchor points found by different rules utilized by Anchor Point Identification. No other
parameters were varied for this step, since the parameters mainly consist of limiting the
expansion, and for our experiments this step was run until no more context was added. The goal
for this step is to detect all attack related steps (with emphasis on the more important steps, e.g.
initial scanning is less important then exploits or backdoor accesses) while reducing the number
of non-attack related steps. Note that there are two types of non-attack related hosts that could be
added to the context. First, they could be part of background attacks, which are still interesting for
the analyst. Second, there are real false positives, which are not a part of the actual attack scenario
or the background attacks.

All the tables for the results follow the following notation:

• AS (Attack Steps): This represents the high level attack steps like probing (information

gathering), actual exploit, backdoor access, or data exfiltration.
• AH (Attack-related Hosts): This includes all hosts related to the attack scenario including

external scanners, external attackers, internal hosts scanned by the attackers for information
and the eventual victims which get compromised.

• BA (Background Attack Related Hosts): This involves all hosts related to the background
attacks in the traffic as attackers or victims.

• FP (False Positives): This counts all hosts that are not related to the actual attack scenario or
to the background attacks but are wrongly detected by our framework.

 15

4.2.3 Summary of Results
The results of our analysis on other scenarios are summarized in Table 3. The configuration used
for Anchor Point Identification was the combination of Snort Alerts and top 0.5% of MINDS
Anomaly Detector Output. From the table we observe that our implementation is able to capture
all important steps of each attack scenario except for the scenario - Five by Five (In this case, the
volume of traffic related to the victim host was not enough to be profiled, thereby that host was
not added to the context). The attack steps which were missed in all cases involved failed attack
attempts or probes before attacks. Our implementation captured all the important attack events,
such as the actual exploit, data exfiltration for all but one scenario from which the core attack
scenario can be generated. From the results we can observe that by using strict thresholds for
Anchor Point Identification, we are able to detect some attack related events (as anchor points)
while keeping the number of false positives very low. Using these anchor points, we successfully
detect the core attack scenario in all but one scenario along with some background attack activity.
Since the number of non attack related anchor points are low, the false positives in the context
extraction step are also very few.

Ground Truth Anchor
Points

Context
Extraction Scenario

#Conn #Hosts #Alerts AS AH AH FP AS AH BA FP
Naïve 1739 581 27 4 10 2 0 4 3 0 0

Simple Ten 12040 2616 114 4 246 4 0 4 6 0 1
Five by

Five 7853 2101 177 3 13 5 45 0 0 0 5

Ten by Ten 9459 1435 54 4 16 5 11 4 5 0 1
S9 4833 472 53 3 2 2 3 3 2 0 0

S10 4792 582 58 4 3 2 6 3 2 0 0
S14 8915 1210 95 3 2 2 9 3 2 12 4
S16 5711 368 1372 4 3 2 4 3 2 2 3
S24 4334 699 452 6 10 2 4 4 4 1 3

Single Stage

3S10 47490 3084 3150 3 6 21 21 3 6 1 5
S1 45161 12292 10896 6 7 32 32 6 7 11 3 Bankshot S37 23970 1517 7671 6 5 18 18 6 4 0 0

Misdirection S29 10926 627 451 7 6 1 1 7 6 0 4

Table 3: Summary of results for different Skaion scenarios

A brief description of our results on each scenario is given below:

• Naive Attacker: All attack related steps are detected. The 7 attack-related hosts that are not

detected are the hosts inside BPRD which are scanned by the attacker as part of the probe, but
do not reply back. Thus they do not supply any information to the external attackers.

• Simple Ten: All attack related steps are detected. The 240 attack-related hosts not detected
are again the scanned hosts which do not reply back.

• Five by Five: We fail to detect any attack steps or any attack related hosts. In this scenario,
the victim host inside the network was not involved in any traffic with external world apart
from the attacks launched by outside attacker. There was no profile generated for this host
and hence the attacks could not be distinguished from normal traffic. The attack would have
been detected if there was enough traffic which would meet the thresholds related to profiling
of internal servers.

 16

• Ten by Ten: All attack related steps are detected. 11 attack-related hosts not detected include
6 scanned hosts which do not reply back and 5 external scanners who never get a reply back
from the hosts which they scan. Thus effectively, these external scanners never get any
information about the internal network and hence do not contribute to the actual attack
scenario.

• s9: All attack related steps and attack related hosts are detected without any false positives.
• s10: One attack step is missed in this scenario. The missed step is a failed attack launched by

one external attacker on an internal host which is not the eventual victim. Thus this step is not
an important part of the whole attack scenario.

• s14: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise due to
mislabeled connections (replies labeled as initiating connections). This occurs during the
conversion of tcpdump data to netflow format.

• s16: One attack step is missed in this scenario. The reason for this is same as in scenario s10.
We also detect two background attacks as a part of the context. The false positives arise
because of two outside hosts involved in traffic on random high ports with internal servers
which do not conform to the normal profile of those internal servers.

• s24: In this scenario three external attackers did a distributed scanning of the internal
network. One of the scanners got a reply back from the eventual victim while the other two
did not get any replies from the hosts which they scanned. These two scanning steps which
did not contribute any information were missed. The false positives occurred because of the
same reason as in scenario s16.

• 3s10: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise due to
mislabeled connections (replies labeled as initiating connections) or due to outside hosts
accessing internal servers on random high ports.

• s1: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise because of
external hosts accessing internal servers on random high ports.

• s37: In this scenario, one of the attackers port scans two internal servers but gets reply only
from one which is eventually attacked. The other server does not supply any information back
to the attacker. Only this server is not detected while all other involved hosts and attack steps
are detected.

• s29: All attack steps except for one initial probe, which did not get any replies, were detected.
The false alarms occur for the same reason as in scenario s1.

 17

5 Lessons Learned
A number of lessons have been learned in the execution of this project. In this section we outline
some of the key ones.

• The framework was quite useful in the analysis and detection of many kinds of novel
cyber attacks. On the Skaion data, which was provided as part of the P2INGS program,
the analysis was successful in detecting attacks with low false positive and false negative
rates.

• While the system did perform well on Skaion data, we observed that this data was quite
clean, compared to the data collected from the University of Minnesota routers. Having
clean data leads to improved traffic profiling, and this in turn leads to more effective
anomaly analysis. It was not so easy to obtain clean profiles with the University data, and
thus the detection rate was not as high.

• Full details are known about synthetic data sets, e.g. the Skaion dataset. This makes it
possible to measure the ‘false negative’ rate (the rate of missing true attacks) of the
technique. The same cannot be done for the real data, where it is not possible to obtain
the false negative rate.

• A negative of evaluation using synthetic data is that the types of attacks may not be as
rich as those encountered in reality.

• With over 300,000 connections per minute, at the University of Minnesota network
gateway router campus, scalability of the analysis is a key consideration. In addition, if
the system must run in an on-line manner, there is the additional challenge of making the
analysis real-time.

• One clear bottleneck that was faced was access to (and sufficient bandwidth from)
security analysts who understood the domain, and could evaluate the results produced by
the system. While we were lucky to get input from the security analyst at the University,
this continued to be an issue throughout the project.

• An overall lesson is that the approach is promising, and is expected to be applicable
especially in Intelligence networks, that have relatively low levels of noise in the traffic.

 18

6 Future Work
As described in the introduction, the scope of the analysis framework we have conceived is quite
broad, and not all of its capabilities have been realized in the present phase of the project. While
the system in its present form is already quite useful, and detects many heretofore undetectable
attacks, adding the remaining analysis components will make the system much more complete
and powerful. In the following we sketch our future work:

Attack Characterization: Once the attack context has been determined, i.e. once the traffic
related to the attack has been identified, the components of the attack need to be characterized.
This includes breaking the traffic into related steps and determining potential relationships
between these steps. These components can be categorized into high level steps, such as
scanning, compromise, or data exfiltration, and then sequenced to develop the attack plan. In
addition, hosts that are involved in the context can be scored and labeled regarding their potential
involvement in the attack. For example, if an inside host receives traffic from an outside host, and
subsequently begins engaging in suspicious activity, such as scanning, we can determine with
high probability that this inside host has been compromised. This knowledge is used to describe
the nature of the attack and how each host was involved. These plans are presented to an analyst
for interpretation and possible action. Essentially, this phase (as shown in Figure) takes the
context from the previous phase and sequences, labels, and scores each edge and involved host,
and determines the type of attack that was executed.

Sequencing
Labeling/
Scoring

Plan
Recognition

Context Characterized
Attacks

Figure 5: Attack Characterization

Behavior Profiling & Anomaly Analysis: Even sophisticated and stealthy attacks often include
some steps that are departures from the normal behavior. Anomaly detection systems aim to
identify these deviations to discover attacks. The global anomaly detection system used in
MINDS assigns an anomaly score to each individual flow based upon its relationship to all other
flows in the entire network traffic being analyzed. Behavior profiling can be used to augment
anomaly detection. The behavior profile of an object is a minimal set of features that captures the
normal behavior of the object with high fidelity in a concise manner. Profiles will help detect the
following kinds of anomalies: (i) the deviation of the current behavior of an object from its
normal behavior in terms of the profiled attribute(s); e.g., by profiling individual servers, we can
detect a Web server initiating a connection; (ii) the similarity of the current profile to a known
bad profile.

The questions to be addressed in profiling are (i) how to use the profile, (ii) how to assess the
extent of deviation from the profile and (iii) how to handle the temporal aspect of the profiles.

 19

7 Publications
1. “A Level II Analysis Framework for Detecting Multi-Step Attack Scenarios”, Mark

Shaneck, Varun Chandola, Haiyang Liu, Changho Choi, Gyorgy Simon, Eric Eilertson,
Yongdae Kim, Jaideep Srivastava, Zhi-Li Zhang, Vipin Kumar, Technical Report,
ARDA Project, (Contract No. AR/F30602-03-C-0243), 2005.

2. "Profiling Internet Backbone Traffic: Behavior Models and Applications", Kuai Xu, Zhi-
Li Zhang, Supratik Bhattacharya, In Proc. of ACM SIGCOMM 2005 Conference,
Philadelphia, PA, August 22-26, 2005

3. "Reducing Unwanted Traffic in a Backbone Network". Kuai Xu and Zhi-Li Zhang,
Supratik Bhattacharyya, In Proc. of First USENIX Workshop on Steps to Reduce
Unwanted Traffic (SRUTI'05), Boston, MA, July 7-8, 2005

4. "Estimation of false negatives in classification", Sandeep Mane, Jaideep Srivastava, San-
Yih Hwang and Jamshid Vayghan, ICDM 2004.

5. "Estimating missed actual positives using independent classifiers." Sandeep Mane,
Jaideep Srivastava and San-Yih Hwang, SIGKDD 2005

6. "Incremental Page Rank Computation on Evolving Graphs", P. Desikan, Nishith Pathak,
J. Srivastava and V. Kumar, Poster Paper at Fourteenth International World Wide Web
Conference on May 10-14, 2005, in Chiba, Japan. (AHPCRC Technical Report TR-
#2004-195).

7. "Analyzing Network Traffic to Detect E-Mail Spamming Machines", P. Desikan and J.
Srivastava, ICDM Workshop on Privacy and Security Aspects of Data Mining, Brighton ,
UK, Nov 2004.

8. “MINDS Level 2: A Multi-level Analysis Framework for Network Intrusion Detection,
(Design Document)”, Release 1.0, University of Minnesota, 2005.

9. “MINDS Level 2: A Multi-level Analysis Framework for Network Intrusion Detection,
(User Manual)”, Release 1.0, University of Minnesota, 2005.

10. “Scan Detection: A Data Mining Approach”, Gyorgy J. Simon, Hui Xiong, Eric Eilertson and
Vipin Kumar, Technical Report AHPCRC 2005-038, University of Minnesota, 2005

 20

A Level II Analysis Framework for Detecting
Multi-Step Attack Scenarios

A Technical Report presenting part of the Level-II Analysis System
for Situational Awareness developed under the ARDA Project
“Situational Awareness Analysis Tool for Aiding Discoveryof

Security Events and Patterns”

(Contract No. AR/F30602-03-C-0243)

Principal Investigators:
Vipin Kumar (PI), Yongdae Kim, Jaideep Srivastava,Zhi-Li Zhang

Graduate Student Participants:
Mark Shaneck, Varun Chandola, Haiyang Liu,
Changho Choi, Gÿorgy Simon, Eric Eilertson

University of Minnesota - Twin Cities
Email:{kumar, kyd, srivasta, zhzhang, shaneck, chandola, hliu, choi,

gsimon, eric}@cs.umn.edu

Appendix A

21

Abstract

With growing dependence upon interconnected networks, defending these networks
against intrusions is becoming increasingly important. Inthe case of attacks that are
composed of multiple steps, detecting the entire attack scenario is of vital importance.
In this research report we present an analysis framework that is able to detect these
scenarios with little predefined information. The core of the system is the decomposi-
tion of the analysis into two steps: first detecting a few events in the attack with high
confidence, and second, expanding from these events to determine the remainder of the
events in the scenario. Our experiments show that we can accurately identify the major-
ity of the steps contained within the attack scenario with relatively few false positives.
Our framework can handle sophisticated attacks that are highly distributed, try to avoid
standard pre-defined attack patterns, use cover traffic or “noisy” attacks to distract an-
alysts and draw attention away from the true attack, and attempt to avoid detection by
signature-based schemes through the use of novel exploits or mutation engines.

Keywords Intrusion Detection, Attack Scenarios, False Alarms, Missed Attacks

22

1 Introduction

As the threat of attacks by network intruders increases, it is important to correctly iden-
tify and detect these attacks. However, network attacks arefrequently composed of
multiple steps, and it is desirable to detect all of these steps together, as it 1) gives
more confidence to the analyst that the detected attack is real, 2) enables the analyst to
more fully determine the effects of the attack, and 3) enables the analyst to be better
able to determine the appropriate action that needs to be taken. Traditional IDSs face a
major problem in dealing with these multi-step attacks, in that they are designed to de-
tect single events contained within the attack, and are unable to determine relationships
between these events.

Many alert correlation techniques have been proposed to address this issue by de-
termining higher level attack scenarios [4, 6, 24, 27, 34]. However, if the data that is
being protected by the network is highly valuable, an attacker can spend more time,
money, and effort to make his attacks more sophisticated in order to bypass the se-
curity measures and avoid detection. Attackers, then, may use techniques to prevent
their attacks from being reconstructed, such as making their attackshighly distributed;
avoiding standard pre-defined attack patterns; usingcover traffic or “noisy” attacksto
distract analysts and draw attention away from the true attack; and attempting to avoid
detection by signature-based schemes through the use ofnovel attacks or mutation en-
gines[38]. In these more sophisticated attacks, many of these correlation techniques
face certain difficulties. In the case of matching against attack models [4] or analysis
of prerequisites/consequences [6, 24, 27, 34], attackers can (and often do) perform un-
expected or novel attacks to confuse the analysis. In addition, the information for these
schemes must be specified ahead of time, and thus the analyst must be careful to specify
complete information and not miss any possible situation.

Furthermore, these correlation approaches, as well as traditional IDS techniques,
suffer from a fundamental problem, in that they try to achieve both a low false positive
rate and a low false negative rate simultaneously. These goals, however, are inherently
conflicting. If the mechanism used is set to be too restrictive then there will be many
false negatives, yet if the mechanism is set to be less restrictive, many false positives
will be introduced. Also, if signature-based systems, suchas Snort [32], are used with
many rules, too much time will be spent processing each packet, resulting in a high
rate of dropping packets [30]. If these dropped packets contain attacks, then they will
be missed. While some of the approaches have techniques to deal with missed attack
steps [4, 24, 27], they cannot handle the absence of many of the steps in the attack.

Contributions.
In this research report, we propose an analysis framework that addresses this tradeoff
between false positives and negatives by decomposing the analysis into two steps. In the
first step, the analysis is performed in a highly restrictive fashion,which selects events
that have avery low false positive rate. In thesecond step, these events are expanded
into a complete attack scenario by using aless restrictive analysis, with the condition
that the events added are related somehow to the events detected in the first step. We
describe how this framework is suitable for this problem as it addresses the tradeoff
between false positives and false negatives. In addition, our framework is 1) flexible, as

23

it allows the analyst to exercise control over the results ofthe analysis, 2) designed to be
modular and extensible, and thus makes it easy to improve theindividual components
of the analysis and incorporate new sources of data. We also implemented and evaluated
our framework on a dataset that contained several attack scenarios, and we were able to
successfully detect the majority of the steps within those scenarios.

Organization. The remainder of this research report is organized as follows. In Sec-
tion 2 we describe our framework. In Section 3 we describe ourimplementation of this
framework and show its experimental results in Section 4. Next we discuss whether the
framework achieves the goals set forth in the design and discuss the limitations of our
approach in Section 5. We then describe some areas of relatedresearch in Section 6 and
draw some conclusions and outline directions for our futurework in Section 7.

2 Framework Design

The goals for our analysis framework are as follows: First, the system should address
the inherent tradeoff between false positives and false negatives. Second, the system
should be able to detect the majority of the steps contained within an attack and make
connections between these steps to form the attack scenario. For this we assume that at
least one step in the attack is visible (if none of the attack steps are visible to any lower
level IDS, and thus the attack is perfectly stealthy, then wewill be unable to detect the
attack). Third, our analysis framework should provide highcoverage of attacks (mean-
ing that most or all of the attacks are detected). Finally, the system should be modular
by design, thus making it simple to incrementally improve our approach.

The main challenge faced in designing this kind of system is balancing false posi-
tives and false negatives. To address this problem, our analysis framework is composed
of two main steps. The first step,Anchor Point Identification, is focused on detecting a
set of events (anchor points) in a very restrictive fashion,such that the set contains very
few false positives. However, this will inevitably result in a large number of missed at-
tack steps. To deal with this, the second step,Context Extraction, relaxes the restrictions
conditionally; for a (potential) attack step to be examinedin this step, it must meet the
lower requirements as set by the detection mechanism, and itmust also be connected
in some way to an event captured in the first step. The overall framework is shown
in Figure 1. Note that in Figure 1 there are three steps, wherethe third step,Attack
Characterization, is concerned with giving semantic meaning to the steps in the overall
attack scenario, as detected by the first two steps. This stepinvolves on-going research
and thus it is not presented in the current description of ourframework. In addition, the
analysis scheme incorporates domain specific knowledge to further refine the results,
which it does by keeping a human analyst in the loop. The analyst can control the out-
put of Anchor Point Identification and Context Extraction byspecifying the sensitivity
of the tools which they utilize or applying domain knowledgein the rules that are used.

In addition, the analyst can control his view, in that he can specify the events that
he is interested in seeing. For example, if the analyst is securing a specific machine that
contains important data, he can set that machine to be the anchor point and search for
relevant context that is related to that machine; or if the analyst knows about a certain

24

Anchor Point

Identification

Context

Extraction

Attack

Characterization

Human

Analyst

Traffic
Attack
Scenario

Control
Threshold

Configuration

Search size,
depth, time frame

Labeling and
Sequencing rules

Anchor

Points

Historical Behavior Profiles

Network

Attack

Context

Low level IDS Alerts

Fig. 1.The different phases of the analysis framework

activity that occurred on the network, or has a list of known bad hosts in a blacklist, he
can specify the hosts involved in that activity.

2.1 Anchor Point Identification

The first phase of the multi-step analysis involves the identification of starting points
(anchor points) for analysis. This is done by taking a set of low-level IDS alerts from
one or more (preferably independent) sources and selectingfrom this set a number of
anchor points, such that we have high confidence that the set contains very few false
positives. This can be done in many ways. One way is to use a single IDS configured
to operate in a very restrictive manner, resulting in a high confidence yet incomplete
set of attack events. Another way of doing this is through correlation techniques. It is
well known that if an alert can be correlated with many other alerts, we can be more
confident that this alert corresponds to a true positive [24]. Thus, in this manner, alerts
from multiple sources can be combined together, where only the alerts which have
high confidence are selected. However, there is a differencebetween the goal of this
step and the goal of traditional alert correlation techniques. The difference is that we
are not trying to balance false positives versus false negatives. Instead, Anchor Point
Identification attempts to aggressively reduce false positives while maintaining high
coverage of attack scenarios (where an attack scenario is considered ”covered” if at
least one attack event in the scenario is selected in this step). The low false positive
requirement is needed to ensure that the subsequent contextextraction starts from a
highly trusted base thus can focus on reducing false negatives. Because high attack
coverage can accommodate high false negatives, this challenge is a relaxation of the
more stringent requirement on traditional techniques thatrequire low false positives
and low false negatives simultaneously.

2.2 Context Extraction

The anchor points generated in the previous step are comprised of events in which there
is high confidence that they are part of an attack. TheContext Extractionstep generates
a suspicious context around these anchor points, both temporally and spatially. This

25

step detects events related to the anchor points which are also anomalous or suspicious,
but not enough so to be detected by the previous step. The goalof this phase is to add to
the context only those activities that are part of the attack, thus filling in the attack steps
missed by the previous step, while keeping the low false positive rate achieved by the
Anchor Point Identification. This is done by relaxing the restrictions conditionally, i.e.
“lowering the bar”, but only for those events that are connected somehow to an anchor
point.

The major requirement for this step is some type of ranking for each network con-
nection. One way this is accomplished is by an anomaly detection system. In this type
of system, all connections are ranked according to how anomalous they are as com-
pared to all other network connections, and this is typically done using data mining
techniques. This can also be done by building historical behavior profiles for each host,
determining which machines are servers and clients for particular services. When using
historical behavior profiles, connections would be added tothe context if they deviated
from the historical behavior profiles for the hosts that theyinvolved, for example if a
web server started initiating connections, which it had never done before. This must
be done carefully, however, for example in the case of peer-to-peer connections, which
can be difficult to profile. If this type of traffic is not carefully profiled then the con-
text can expand rapidly, effectively invalidating the result. One way to deal with this is
to use peer-to-peer detection techniques [19] and ignore the peer-to-peer traffic when
profiling.

This step also makes use of domain knowledge in the form of rules. Certain behavior
patterns are known to be signs of malicious activity. For example, attackers often scan
a network on a particular port to look for vulnerable machines. These scans most often
result in failed connection attempts, as most machines willnot have a service on that
port. Thus, these machines will not respond (or will reject the connection attempt),
and therefore are not vulnerable to being attacked on this port. This can be captured in a
rule which states that all scans that do not result in a full connection (no successful reply
from the scanned host) should be ignored, and all scans whichdo receive a successful
response should be included.

3 Implementation Details

We implemented our framework to evaluate its effectiveness. Our framework could be
instantiated in many ways, however we chose to implement it using simple components,
in order to see how the framework performed even with simple components. As seen
in Section 4, even with the simple components, our analysis framework successfully
detected the attacks contained within the data on which we tested. These components,
however, leave much room for improvement and, since the framework is designed to be
modular, newer and more sophisticated techniques can be easily designed and inserted.
In our implementation, we also utilized certain “primitives”, such as low level IDS
systems. The choice of these systems were driven by simplicity and practicality, and
could easily be replaced by any other system that achieves the same goals.

26

3.1 Data Sources

Our framework requires certain data sources to be present inorder to perform the anal-
ysis. We evaluated our framework on a specific data set (whichis described in Sec-
tion 4), and thus many of the choices for primitives were driven by this dataset. First,
the network traffic was in tcpdump format, which we then converted into a netflow for-
mat [33]. Thus all the analysis we performed was done on aggregated network header
information. Also, along with the traffic, Snort alerts wereincluded. Thus, our imple-
mentation used these alerts as one low-level IDS. In addition, we also used our MINDS
anomaly detector [11, 12] and MINDS scan detector [10]. Notethat these choices were
made based on practical reasons and could be replaced by other systems. For example,
Snort could be replaced by any other signature-based system, such as ISS Real Se-
cure [16]. Also, any scan detector could be used in place of the MINDS scan detector,
such as TRW [18], and the following host/service profiler could be replaced by a more
systematic host/service profiler such as the port pattern anomaly detector used in the
EMERALD system [29, 35].

For the context extraction, we implemented a simple historical behavior profiler
(e.g. host/service profiler), which examines the network traffic and determines which
machines run which services, and which machines are clientsfor particular services.
How it was used for context extraction is described in Section 3.3. It is based on the
fact that machines typically exhibit the same behavior repeatedly. Thus, a web server
might accept many connections on port 80 and 443, and rarely have any connection
requests on other ports or make outgoing connections on any ports. The profiler con-
structs a probability distribution of services which have been accessed on each host.
The probability is calculated for each host by dividing the number of connections made
to/from a particular port by the total number of connectionsto/from that host. If this
probability is greater than a configurable threshold, then it is declared to be a server
(or client, depending on the direction of the connections) on that port. In addition the
profiler only profiles valid connections that have bidirectional flows (i.e. incoming flow
and corresponding outgoing flow). This prevents the profilerfrom being skewed, for
example by receiving scan packets on a port on which it does not offer any services.
In our implementation, only internal hosts which have a degree of connectivity greater
than some threshold (e.g.Ts for the server,Tc for client) are profiled. Once the profiles
have been generated, each connection is examined and matched against the profile for
the host involved. If it matches the profile (e.g. the connection in incoming on port 80 to
a machine that has been profiled as a server on port 80), then the connection is assigned
a score of0, meaning normal. If the connection does not match any profilefor the host,
then it is assigned a score of1, meaning anomalous.

3.2 Anchor Point Identification

The Anchor Point Identification step takes the output of multiple alert sensors and pro-
duces the set of events involved in attacks with higher confidence than relying on any
single low-level IDS tool. In order for the alert combination to be effective, the data
should be as orthogonal as possible, thus maximizing the overall information. In our im-
plementation, we achieved this through the use of Snort alerts and the MINDS anomaly

27

detector [11]. These two IDSs use vastly different mechanisms to flag traffic, and thus fit
the requirement that the sources be orthogonal. We combinedthese two data sources in
a simple manner, selecting Snort alerts to be anchor points if either the source or desti-
nation machine was also involved in a highly ranked anomaly.Note that the anomalous
activity need not be the same connection that was flagged by Snort. The intuition be-
hind this mechanism to combine the data is as follows. If a machine is truly attacked
and compromised, it is likely that the attacker would use themachine in a way that it
normally does not behave, causing anomalous traffic to/fromthis host. The threshold
for determining if a flow is considered to be highly anomalousis configurable. Details
on how sensitive this threshold was and how effective this technique was can be found
in Section 4.

3.3 Context Extraction

The next step in the analysis process is theContext Extractionstep. The main goal of
this step is to add events from the set of all network traffic that are related to the attack(s)
represented by the anchor points detected in the previous step. The main challenge faced
by this step of the analysis is to properly refine the context so as to add the maximum
number of attack steps to the context, while adding the minimum number of unrelated
events. As noted in Section 2.2, we made use of two main techniques, rules drawn from
domain expertise and host/service profiling. The rules usedare as follows: First, we
ignored all traffic that was flagged as a scan in which the scanned host did not reply
(i.e. did not successfully open a TCP connection). Conversely, we selected all scanning
traffic that did result in a full bidirectional connection. Finally, each connection for
which the previous rules did not apply was selected or ignored based on its host/service
profiling score. If the score was above a configurable threshold, then the connection
would be selected and added to the context, otherwise it would be ignored. Note that for
a connection to be considered for addition to the context it must be related somehow to
the anchor points. For our implementation we define this relation such that a connection
is related to the anchor points if one of the IPs in the connection is already contained
within the context, where the initial context is the set of anchor points.

Once we have a method to define which network events are to be selected for the
context, the algorithm for context extraction is quite simple. The algorithm goes through
a series of iterations. At the beginning of each iteration, there is a list of all the IPs
contained within the context. During the iteration, each flow is processed. If one of the
IPs involved in the flow in contained within the context already, and if the flow passes
the specified rules (and the flow is not already in the context)then the flow is added
to the context (and any IPs not already contained within the context will be added).
The iterations continue until no more flows are added to the context (i.e. the transitive
closure has been reached). The Context Extraction could also be limited to add only
a set number of flows or distinct hosts to the context, howeverthis could result in the
loss of some of the attack. In addition, the threshold for thehost/service profiling score
can be dynamically adjusted, to require, for example, that connections added in later
iterations (and thus more loosely connected to the originalanchor points) have higher
profile anomaly scores.

28

4 Experimental Evaluation

We evaluated our proposed framework using datasets generated by Skaion corporation
[1]. These datasets are simulated to be statistically similar to the traffic found in Intel-
ligence Community. This dataset has several scenarios withattacks injected that follow
different patterns. In the following sections we first describe the nature of the Skaion
dataset, then discuss methods we used to evaluate our framework, and finally we show
our results. As can be seen in the following results, even though our approach currently
uses only simple implementations for each component, our overall analysis captures the
major attack steps successfully.

4.1 Skaion Dataset

As part of the ARDA P2INGS research project, the Skaion Corporation has released
several sets of simulated network traffic data. This data includes various scenarios of
multi-step sophisticated attacks on resources within a protected network. The scenarios
for which they have generated data include single stage attacks (a simple scan or exploit
or data exfiltration scenario), bank shot attacks (where an internal host is compromised
and used to attack another internal host), and misdirectionattacks (where a “noisy”
attack is staged on one part of the network while the true attack takes place in a more
stealthy manner in another part of the network). In additionto the main attack, there
are other background attacks (none of which are successful)and scans. To date, they
have released 3 datasets to date, including many instances of these scenarios. However,
for the sake of space, we will describe our results on one scenario in detail and present
a summary of our results on other scenarios. The network topology in these scenarios
is comprised of the following four domains: (i) the target protected domain, BPRD
(Bureau of Paranormal Research and Defense) comprising of various servers which are
the typical targets for attacks; (ii) a secondary internal domain which is not as protected
as the protected domain and comprises of servers as well as clients. The hosts inside
this domain have additional privileges to access the protected domain, BPRD; (iii) a set
of external hosts which consists of attackers as well as normal users and (iv) a trusted
domain which consists of remote users access the protected network with additional
privileges over a dialup or a VPN connection. All traffic entering and leaving the entire
internal network is captured by tcpdump. Snort alerts are collected for traffic exchanged
between the external network and entire internal network.

Single Stage AttacksThese scenarios are compromised of a simple attack made up of
four steps. First, scanning is used to determine the IP addresses in the target network
that are actually associated with live hosts. Typically in these scenarios, this is done
by an attacker performing reverse DNS lookups to see which IPs have domain names
associated with them. The next step consists of an attacker (or multiple attackers) prob-
ing these live hosts to determine certain properties, such as which OS and version is
running on the host. Then one of these hosts is attacked (possibly by a host that was
not involved in any previous steps) and compromised. Finally, a backdoor is opened,
to which the attacker connects, and performs various malicious activities, such as data
exfiltration or the downloading and installation of attack tools.

29

Bank-Shot Attacks These attacks are aimed at avoiding detection by using an “in-
sider” host to launch the actual attack. In this scenario, initial scanning is done, and
then an attack is launched against a host in the BPRD network.This attack fails, and the
attacker then scans and compromises a host in the secondary internal domain. From this
server, the attacker scans and launches attacks on hosts in the protected BPRD network.
A host is then compromised, from which data is exfiltrated.

Misdirection Attacks The attacker attempts to draw the attention of the analyst away
from the real attack. He does this by launching a noisy attack(one which sets off many
IDS alerts) on a particular set of hosts in the protected network. Then using a previously
compromised host in the trusted domain, he attacks and compromises another host in
the BPRD network, from which he exfiltrates data.

4.2 Evaluation Methodology

Before discussing the results of our experiments, we first describe how we performed
the experiments and the methods we used to evaluate our framework. For a given sce-
nario, we first ran all low-level IDS tools to generate the alerts, anomaly scores, etc. For
profiling, we used ten and five connections forTs andTc respectively. This means that a
host was profiled as a server only if it had more than 10 inboundconnections. Similarly,
a host was profiled as a client only if it had more than 5 outbound connections. In addi-
tion we only profiled ports with more than two connections. Wethen ran Anchor Point
Identification using multiple rules for detecting the anchor points in order to compare
the performance and sensitivity of each set of rules. First,we used Snort alone, where
each Snort alert was selected as an anchor point. Next, we used the MINDS anomaly de-
tector alone, where the connections that ranked in the top k%of anomalies were selected
as anchor points. Finally, we combined Snort and MINDS in themethod described in
Section 3.2. The anchor points selected were those Snort alerts in which at least one of
the IPs was involved in a highly ranked anomaly (ranked within the top k% of MINDS
Anomaly Detector output). The evaluation criteria for the anchor points is twofold: first,
whether it covers the attack (i.e. did it have any true positives), and second, whether it
has low false positives (the lower the better). The Anchor Point Identification step gen-
erates a set of events (anchor points) which represents a connection between two hosts.
An anchor point is related to the attack scenario if the connection it represents is a part
of some attack step. In our results section, the results of this step are represented by
the number of attack related hosts detected (true positives) and number of non-attack
related hosts detected (false positives). A host is countedas attack related if it is present
in an attack related anchor point (in this case we call it covered, as introduced in section
2). If a host is present only in non-attack related anchor points, it is counted as a false
positive.

Following the Anchor Point Identification step, Context Extraction was run with
each set of anchor points found by different rules utilized by Anchor Point Identifica-
tion. No other parameters were varied for this step, since the parameters mainly consist
of limiting the expansion, and for our experiments this stepwas run until no more con-
text was added. The goal for this step is to detect all attack related steps (with emphasis

30

on the more important steps, e.g. initial scanning is less important then exploits or back-
door accesses) while reducing the number of non-attack related steps. Note that there
are two types of non-attack related hosts that could be addedto the context. First, they
could be part of background attacks, which are still interesting for the analyst. Second,
there are real false positives, which are not a part of the actual attack scenario or the
background attacks.

All the tables for the results follow the following notation:

AS:Attack Steps This represents the high level attack steps like probing (information
gathering), actual exploit, backdoor access, or data exfiltration.

AH: Attack-related Hosts This includes all hosts related to the attack scenario includ-
ing external scanners, external attackers, internal hostsscanned by the attackers for
information and the eventual victims which get compromised.

BA:Background Attack Related Hosts This involves all hosts related to the background
attacks in the traffic as attackers or victims.

FP : False Positives This counts all hosts that are not related to the actual attack sce-
nario or to the background attacks but are wrongly detected by our framework.

4.3 Detailed Analysis: Skaion Scenario - 3s6

We present our detailed analysis on one of the bank shot attack scenarios. The scenario
we evaluated (called 3s6) had 122,331 connections in the traffic, involving 4516 unique
IPs, on which there were 6974 Snort alerts.

O6

O∗

1

S2

O∗

4

O7

O5

O∗

2

S∗

1

O∗

3

S3

I1

I3

I4

I∗
2

External Hosts

Secondary Internal Hosts
Primary Target Hosts

A4
A1

A5

A6

A3 A2

(BPRD)

Fig. 2.Different steps and hosts involved in the attack scenario 3s6

31

Table 1.Results for anchor point identification on bank-shot scenario 3s6

Config AH FP

Snort 96 169

Topk%-anomalies
0.2 5 5
0.5 8 67
1.0 50 114

Snort +
0.2 93 0
0.5 95 39

Topk%-anomalies1.0 98 83
Table 2.Results for context extraction on bank-shot scenario 3s6

Config #Iterations AS AH BA FP

Snort 2 5(A1,A2,A4,A5,A6) 24 3 75

Topk%-anomalies
0.2 2 5(A1,A2,A4,A5,A6) 24 3 43
0.5 2 5(A1,A2,A4,A5,A6) 24 3 58
1.0 2 5(A1,A2,A4,A5,A6) 24 3 93

Snort + Topk%-anomalies
0.2 2 5(A1,A2,A4,A5,A6) 24 3 45
0.5 2 5(A1,A2,A4,A5,A6) 24 3 47
1.0 2 5(A1,A2,A4,A5,A6) 24 3 47

The attack graph for the scenario 3s6 is shown in figure 2. The various steps involved
(in chronological order) are :

– A1 : O1 (74.205.114.158) scans 92 hosts(936 flows)inside the BPRD network.
– A2 : O2 (42.152.69.166) attacks internal server,I1 (100.10.20.4) four times (17

flows) and fails each time.
– A3 : O3 (168.225.9.78) port scans(18 flows)secondary internal host,S1 (100.20.20.15

alias100.20.1.3).
– A4 : O4 (91.13.103.83) attacksS1 (78 flows)usingApache OpenSSL SSLv2 Ex-

ploit [3] and succeeds.
– A5 : S1 port scans 6 servers in the BPRD network(895 flows)including the eventual

victim, I2 (100.10.20.8).
– A6 : S1 launches attacks onI2 usingIIS IDA-IDQ exploit[2] and succeeds. It also

browses through the files ofI2 (4 flows).

The attackers try to confuse the analyst by first scanning andunsuccessfully attempt-
ing to attack the internal network (StepsA1 andA2). Most of the attack related Snort
alerts are on this traffic. Another attacker then attacks thesecondary network and com-
promises an internal host (S1). This host is then used to scan the BPRD network and
launches an attack onI2. Since this traffic is internal, it is not detected by Snort. The
results of context extraction in Table 2 show that the framework succeeds in capturing
a large portion of the attack scenario (5 out of 6 attack steps). The context also captures
some background attacks present in the traffic. The false alarms arise because of follow-
ing reasons - 1)Mislabeled Flows- These arise because of errors in the data converting
component due to which initiating flows might be labeled as replies and vice versa. 2)

32

False alarms from Our Profiler- Host/service profiler has an associated false alarm rate
due to which some non-attack related flows are added to the context.

All configurations for anchor points result in detecting a portion of the scanning
activity by O1 as anchor points in Table 1. From these anchor points, the scanning
activity A1 is added to the context. SinceI1 is scanned byO1, its traffic is analyzed.
This results in adding the failed attack attempts,A2 to the context.I2 is also scanned by
O1. SinceI2 is attacked byS1, this attack stepA6, is added to the context. On analyzing
the traffic to and fromS1, the scanning activityA5 is added to the context. Similarly the
attack step,A4 on S2 is also added to the context. The attack stepA3, is not captured
since it involves probing ofS1 on ports on which it is a server. However, we capture all
those attack steps from which we can construct the core attack scenario.

We observe from Table 1 that if we use a correlation of AnomalyDetector and Snort
we get less number of false positives as anchor points. As we relax the constraints in
Anchor Point Identification step, we detect more attack related hosts, but the number of
false positives also increases. However, from the context extraction results in Table 2
we observe that we still detect the major portion of the attack scenario even if we start
with a less number of anchor points. Moreover, the presence of false positives in anchor
points results in a high false positive rate for context extraction.

4.4 Results for Other Scenarios

The results of our analysis on other scenarios are summarized in Table 3. The configu-
ration used for Anchor Point Identification was the combination of Snort Alerts and top
0.5% of MINDS Anomaly Detector Output. From the table we observe that our imple-
mentation is able to capture all important steps of each attack scenario except for the
scenario -Five by Five(In this case, the volume of traffic related to the victim hostwas
not enough to be profiled, thereby that host was not added to the context). The attack
steps which were missed in all cases involved failed attack attempts or probes before
attacks. Our implementation captured all the important attack events, such as the actual
exploit, data exfiltration for all but one scenario from which the core attack scenario
can be generated. From the results we can observe that by using strict thresholds for
Anchor Point Identification, we are able to detect some attack related events (as anchor
points) while keeping the number of false positives very low. Using these anchor points,
we successfully detect the core attack scenario in all but one scenario along with some
background attack activity. Since the number of non attack related anchor points are
low, the false positives in the context extraction step are also very few.
A brief description of our results on each scenario is given below:

Naive Attacker All attack related steps are detected. The 7 attack-relatedhosts that are
not detected are the hosts inside BPRD which are scanned by the attacker as part
of the probe, but do not reply back. Thus they do not supply anyinformation to the
external attackers.

Simple Ten All attack related steps are detected. The 240 attack-related hosts not de-
tected are again the scanned hosts which do not reply back.

Five by Five We fail to detect any attack steps or any attack related hosts. In this sce-
nario, the victim host inside the network was not involved inany traffic with exter-
nal world apart from the attacks launched by outside attacker. There was no profile

33

Table 3.Summary of results for different Skaion scenarios

Scenario
Ground Truth Anchor PointsContext Extraction

Conn# Hosts# Alerts AS AH AH FP AS AH BA FP

Single Stage

Naive 1739 581 27 4 10 2 0 4 3 0 0
Simple Ten 12040 2616 114 4 246 4 0 4 6 0 1
Five by Five 7853 2101 177 3 13 5 45 0 0 0 5
Ten by Ten 9459 1435 54 4 16 5 11 4 5 0 1

s9 4833 472 53 3 2 2 3 3 2 0 0
s10 4792 582 58 4 3 2 6 3 2 0 0
s14 8915 1210 95 3 2 2 9 3 2 12 4
s16 5711 368 1372 4 3 2 4 3 2 2 3
s24 4334 699 452 6 10 2 4 4 4 1 3
3s10 47490 3084 3150 3 6 5 21 3 6 1 5

Bankshot
s1 45161 12292 10896 6 7 4 32 6 7 11 3
s37 23970 1517 7671 6 5 4 18 6 4 0 0

Misdirection s29 10926 627 451 7 6 5 1 7 6 0 4

generated for this host and hence the attacks could not be distinguished from nor-
mal traffic. The attack would have been detected if there was enough traffic which
would meet the thresholds related to profiling of internal servers.

Ten by Ten All attack related steps are detected. 11 attack-related hosts not detected
include 6 scanned hosts which do not reply back and 5 externalscanners who never
get a reply back from the hosts which they scan. Thus effectively, these external
scanners never get any information about the internal network and hence do not
contribute to the actual attack scenario.

s9 All attack related steps and attack related hosts are detected without any false posi-
tives.

s10 One attack step is missed in this scenario. The missed step isa failed attack launched
by one external attacker on an internal host which is not the eventual victim. Thus
this step is not an important part of the whole attack scenario.

s14 All attack related steps and attack related hosts are detected. We also detect some
of the background attacks in the traffic. The false positivesdetected in this scenario
arise due to mislabelled connections (replies labelled as initiating connections).
This occurs during the conversion of tcpdump data to netflow format.

s16 One attack step is missed in this scenario. The reason for this is same as in scenario
s10. We also detect two background attacks as a part of the context. The false
positives arise because of two outside hosts involved in traffic on random high ports
with internal servers which does not conform to the normal profile of those internal
servers.

s24 In this scenario three external attackers did a distributedscanning of the internal
network. One of the scanners got a reply back from the eventual victim while the
other two did not get any replies from the hosts which they scanned. These two
scanning steps which did not contribute any information were missed. The false
positives occurred because of the same reason as in scenarios16.

34

3s10 All attack related steps and attack related hosts are detected. We also detect some
of the background attacks in the traffic. The false positivesdetected in this scenario
arise due to mislabelled connections (replies labelled as initiating connections) or
due to outside hosts accessing internal servers on random high ports.

s1 All attack related steps and attack related hosts are detected. We also detect some
of the background attacks in the traffic. The false positivesdetected in this scenario
arise because of external hosts accessing internal serverson random high ports.

s37 In this scenario, one of the attackers port scans two internal servers but gets reply
only from one which is eventually attacked. The other serverdoes not supply any
information back to the attacker. Only this server is not detected while all other
involved hosts and attack steps are detected.

s29 All attack steps except for one initial probe, which did not get any replies, were
detected. The false alarms occur for the same reason as in scenarios1.

5 Discussion

In Section 2 we described the main design goals for our system. The first goal was that
the analysis framework should address the inherent tradeoff between false positives and
false negatives. We address this issue in the design of our framework by decomposing
the problem into two steps. In the first, we focus on the reduction of false positives, by
selecting network events in such a way that gives us high confidence that the events are
part of an attack. This was achieved in our simple implementation, through the use of
Snort alerts combined with the MINDS anomaly detector. Second, we fill in the missed
attack steps by extracting the context from the set of anchorpoints. By requiring that
the anchor points be of high quality (low false positives) wecan relax the restrictions
on what we add to the context if they are connected to the anchor points. This was also
achieved by our simple Context Extraction module, in that relatively few false positives
were added to the context when the anchor points contained few false positives.

The second goal was to detect the majority of attack steps in the attack scenario.
Evaluating this is not completely straightforward, since not all attack steps would be
considered equal, and thus a measure such as a straight percentage of attack-related
connections would not be sufficient. This is due to the fact that not all attack steps are
of the same importance. For example, in the scenario described in Section 4.3, if we
had detected all of the scans and nothing else, we would have detected the vast major-
ity of network connections that were relevant to the attack (95%), but this information
would be useless to the analyst. A better measure would be aggregating the connections
together into steps (using techniques such as those proposed in [9, 36]), and measuring
the number of attack steps that were detected. In this experiment, however, we man-
aged to detect all major attack steps (including attacks, internal stepping stones, and
data exfiltration) and many connections in the scanning. Thus we achieved the goal of
detecting the majority of the attack steps.

The third goal set forth in Section 2 was high coverage of attacks. In the Skaion
scenarios, however, only one attack was present in each scenario. Thus, while not fully
tested, this goal was initially achieved in the fact that we were able to detect the main
attack in each scenario, except for the one with insufficientprofiling information.

35

The final goal was to make the system modular by design. This design goal was
achieved as seen in Section 2. First, the two components in our framework are indepen-
dent of each other. Thus the implementation of one can be changed without affecting
the other. Context Extraction does not depend on how the anchor points are found, as
long as they are of high quality. Also, Anchor Point Identification is not concerned with
how the anchor points are used, and thus any algorithm can be used to implement the
Context Extraction. Also, the system is not tied to any low-level IDS system. None of
the design of our framework hinges on the types of alerts available. For example, in
our implementation Snort alerts were used. However, any other signature-based system
could replace it. The only restriction is that the information needed by the particular im-
plementation of the later stages needs to be present in some form. In addition, we could
incorporate other types of information that could be used todetect intrusions, such as
system logs [14, 15] and host based IDS alerts [8, 17, 20].

5.1 Limitations and Improvements

This leads us to consider the limitations of our framework. The biggest limitation is
that it has greater storage requirements than most IDSs. Snort, for example, examines
traffic in real time, and creates alerts based on what it finds.All that needs to be stored
are the alerts. However, our system needs storage of both thelow-level IDS alerts as
well as the actual network traffic (in some form). The more detailed the data and longer
time frame for which the data is stored, the better our systemwill perform. Also, de-
tecting sophisticated attacks may require the capture of traffic between internal hosts.
Capturing the traffic between every host within the network would be difficult, and in
many cases infeasible. This storage requirement can be greatly mitigated by storing the
data in the net-flow format, where only header information isaggregated and kept. In
the University of Minnesota campus network, 1 year of net-flow information can be
stored in 0.5 TB, whereas 1 week of tcpdump data requires 2-3 TB of storage. On the
other hand, if complete forensic analysis is to be performed, it would be very desirable
for the tcpdump data to be present, and thus our framework would pose no extra stor-
age requirement. A operational system designed to store relevant raw network data for
forensic analysis is described in [21].

One last important point to discuss is the effect of a framingattack, that is, how an
attacker can attack the analysis framework itself. If an attacker knows the rules used by
Anchor Point Identification, then he would be able to generate spurious anchor points.
However, the amount of anchor points he can generate dependsgreatly upon the rules
used by Anchor Point Identification. If Snort alerts alone were used, then the attacker
could easily generate an arbitrary amount of anchor points involving every internal
machine [13, 22]. This would basically reduce our frameworkto a low-level IDS system
with a low threshold, flagging much of the traffic as part of an attack. If the rules used for
Anchor Point Identification were Snort combined with the MINDS anomaly detector,
which was shown to be effective in our experiments, then the effect that the attacker can
impose on the anchor points is more limited. Again the attacker can send packets that
cause Snort alerts to all the hosts in the network, but to be flagged as anchor points, each
of these flows must also be in the top tier of anomalies. By the definition of anomaly,
all of these packets would have to be unique with respect to the attributes used by

36

the anomaly detector to rank the network connections. This is a difficult thing to do,
since the attacker would have to know a priori what will be considered anomalous for
the time period that will be examined. Also the attacker would have to be careful not to
send too many packets with certain similarities, since while they may be abnormal when
compared to the rest of the traffic, they may form their own cluster and be considered
normal with respect to themselves. Also, if too much abnormal traffic is sent, there
could be enough abnormal traffic that the abnormal traffic becomes the “norm”, making
it very hard to predict what will be flagged as abnormal. For example, if the attacker sent
large packets to cause the anomalies, after too many such packets, large packets will be
considered normal. In addition, for the Snort and MINDS combination, there is an upper
limit on the number of anomalies that will be used for selecting anchor points (due to
the cutoff threshold). Thus, the Anchor Point Identification step can, through careful
design and implementation, provide some measure of resistance against this type of
attack. Another useful aspect of Anchor Point Identification is that it is dynamically
configurable (depending on the available data sources), so if it generates too many false
positives, it can be run again with a different set of anchor point selection criteria. This
opens up two lines of future work on this component. First, weplan to investigate and
design better approaches to combine the data sources in order to select anchor points.
Second, we plan to test the designs against these types of attacks to better understand
the effects that they can have on the results of our system.

Context Extraction is less resistant to this framing attack, especially when using a
port profiling technique, as it is difficult to cause a machineto act outside of its profile,
without actually compromising it (to do this effectively, the attacker would need some
insider knowledge of the port usage of the internal machines, such as ports on which
the internal machines actually offered service but had low enough volume so as to not
be profiled). However, Context Extraction would be affectedby the false anchor points
generated by attacks on the Anchor Point Identification step.

6 Related Work

The most related area of research to this work is IDS alert aggregation and correlation.
Alert aggregation has to do with taking alerts from multiplesensors and merging them
into one higher level alert. Generally this is done on singleevents that trigger alerts
across multiple sensors. For example, if a subnetwork is setup such that traffic going
between it and the outside internet would pass through two Snort sensors, then an attack
that triggers a Snort alert would trigger two such alerts. Ifan analyst is looking at these
alerts, it is more efficient if the analyst only looks at the alert once. This gets more
difficult when the sensors are not the same type of sensor and report different sets of
information, and often a probabilistic approach must be taken [36].

Correlation has two main aspects to it. One is the fusion of different alerts that refer
to different events in an attack but are highly related. For example, if there is a DOS
attack, and each probe sets off an alert, there will be many alerts from a certain source
IP to a certain destination IP. Thus all of these alerts couldbe merged into one higher
level “DOS” alert. This type of fusion can be achieved by clustering alerts based on
specific fields in the alert containing matching information[28].

37

The second area of correlation is in the realm of relating alerts together that fit into
an attack scenario. This is the most closely related work in correlation to our approach.
Much of the work done in this area has been done in matching prerequisites and con-
sequences of alerts [5, 9, 23–26]. In this approach, the analyst defines the set of actions
that must take place before a given alert can occur (its prerequisites), and then once
an alert has happened what actions can subsequently take place (its consequences). By
placing this information with each alert, a system can matchthem together (along with
extra information such as IP addresses or time-stamps) to form sequences of attacks,
or attack scenarios. One limitation of this approach is thatit requires extensive expert
domain knowledge to determine exactly what is required for an action to take place
and what its consequences can be. In addition to prerequisites and consequences, there
have also been probabilistic matching approaches proposed[7], and matching detected
events against attack models [4].

There have been many other approaches proposed to correlating alerts, and many of
these have been incorporated in the comprehensive system in[37].

7 Conclusion and Future Work

We have shown how the multi-step analysis approach can be beneficial in analyzing
network traffic and IDS alerts to discover multi-step, sophisticated attacks. One of the
most important directions for future work is to utilize the output of the context ex-
traction module in a way that allows for easy analysis. This is the task of the Attack
Characterization step, which was ignored in the description of the framework. Even if
the output of the context extraction is 100% accurate, it is still a (potentially large) col-
lection of raw network traffic data. Presenting this information to the analyst in a easy
to use format, perhaps using visualization techniques, would be beneficial to the anal-
ysis, and could help to reduce the effect of false positives from the Context Extraction.
Thus, we intend to investigate mechanisms to infer semanticmeaning from these con-
nections to determine the full scope of the attack. One way toaccomplish this is to use
alert aggregation techniques [9, 36]. A second mechanism that could be useful is attack
graphs [31], which are possible paths of attack and are generated based on vulnera-
bility assessment and network connectivity information. Matching the detected context
against full attack graphs could provide more information to the Attack Characteriza-
tion step. The final way that we are investigating is the use ofvisualization techniques to
be able to “see” the data, from which an analyst can infer the attack scenario. Another
area of future research is to create better and more sophisticated components for the
individual steps in the analysis framework. Our approach worked well with the simple
components, and improving them will improve the overall result.

References

1. Skaion corporation. http://www.skaion.com/news/rel20031001.html.
2. IIS IDA-IDQ Exploit, Cert Advisory CA-2001-13. http://www.cert.org/advisories/CA-2001-

13.html.

38

3. Apache OpenSSL SSLv2 Exploit, Cert Advisory CA-2002-23.
http://www.cert.org/advisories/CA-2002-23.html.

4. S. Cheung, U. Lindqvist, and M. Fong. Modeling Multistep Cyber Attacksfor Scenario
Recognition. InProceedings of the Third DARPA Information Survivability Conference and
Exposition (DISCEX-III 2003), 2003.

5. F. Cuppens and A. Miege. Alert Correlation in a Cooperative Intrusion Detection Framework.
In Proceedings of the IEEE Symposium on Security and Privacy, 2002.

6. F. Cuppens and R. Ortalo. LAMBDA: A Language to Model a Databasefor Detection of
Attacks. InProceedings of the International Symposium on Recent Advances in Intrusion
Detection, 2000.

7. O. Dain and R. Cunningham. Building Scenarios from a Heterogeneous Alert Stream. In
IEEE Transactions on Systems, Man and Cybernetics, 2002.

8. H. Debar, M. Dacier, and A. Wespi. Towards a taxonomy of intrusiondetection systems. In
Computer Networks, 1999.

9. H. Debar and A. Wespi. Aggregation and Correlation of Intrusion Detection Alerts. In
Proceedings of the International Symposium on Recent Advances in Intrusion Detection,
2001.

10. L. Ertoz, E. Eilertson, P. Dokas, V. Kumar, and K. Long. Scan Detection - Revisited. Tech-
nical Report 127, Army High Performance Computing Research Center, 2004.

11. L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, P. Dokas, J. Srivastava, and V. Kumar. Detec-
tion and Summarization of Novel Network Attacks Using Data Mining. Technical report,
University of Minnesota, 2003.

12. L. Ertoz, E. Eilertson, A. Lazarevic, P. Tan, J. Srivastava, V. Kumar, and P. Dokas.Next
Generation Data Mining, chapter 11. MIT Press, 2004.

13. C. Giovanni. Fun with packets: Designing a stick.
http://www.eurocompton.net/stick/papers/Peopledos.pdf.

14. S. Hansen and E. Atkins. Automated System Monitoring and Notification With Swatch. In
Proceedings of the Seventh Systems Administration Conference (LISA’93), 1993.

15. D. Hughes. Tklogger.ftp://coast.cs.purdue.edu/pub/tools/unix/tklogger.tar.Z.
16. ISS RealSecure. http://www.iss.net.
17. R. Jagannathan, T. Lunt, D. Anderson, C. Dodd, F. Gilham, C. Jalali, H. Javitz, P. Neumann,

A. Tamaru, and A. Valdes. System Design Document: Next-Generation Intrusion Detection
Expert System (NIDES). Technical report, SRI International, 1993.

18. J. Jung, V. Paxson, A. Berger, and H. Balakrishnan. Fast Portscan Detection Using Sequential
Hypothesis Testing. InProceedings IEEE Symposium on Security and Privacy, 2004.

19. T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy. Transport Layer Identification of P2P
Traffic. In Proceedings of the ACM SIGCOMM/USENIX Internet Measurement Conference,
2004.

20. G. H. Kim and E. H. Spafford. The design and implementation of tripwire: a file system
integrity checker. InCCS ’94: Proceedings of the 2nd ACM Conference on Computer and
communications security. ACM Press, 1994.

21. K. Long. Catching the Cyberspy: ARL’s Interrogator. InArmy Science Conference, 2004.
22. D. Mutz, G. Vigna, and R. Kemmerer. An Experience Developing anIDS Stimulator for the

Black-Box Testing of Network Intrusion Detection Systems. InProceedings of the Annual
Computer Security Applications Conference, 2003.

23. P. Ning, Y. Cui, and D. Reeves. Analyzing Intensive Intrusion Alerts via Correlation. In
Proceedings of the International Symposium on Recent Advances in Intrusion Detection,
2002.

24. P. Ning, Y. Cui, and D. Reeves. Constructing Attack Scenarios Through Correlation of
Intrusion Alerts. InProceedings of the ACM Conference on Computer and Communications
Security, 2002.

39

25. P. Ning, D. Reeves, and Y. Cui. Correlating Alerts Using Prerequisites of Intrusions. Tech-
nical report, North Carolina State University, Department of Computer Science, 2001.

26. P. Ning and D. Xu. Learning Attack Strategies from Intrusion Alerts. In Proceedings of the
ACM Conference on Computer and Communications Security, 2003.

27. P. Ning, D. Xu, C. Healey, and R. S. Amant. Building Attack Scenariosthrough Integration
of Complementary Alert Correlation Methods. InNetwork and Distributed System Security
Symposium, 2004.

28. P. Porras, M. Fong, and A. Valdes. A Mission-Impact-Based Approach to INFOSEC Alarm
Correlation. InProceedings of the International Symposium on Recent Advances in Intrusion
Detection, 2002.

29. P. Porras and P. Neumann. EMERALD: Event Monitoring Enabling Responses to Anoma-
lous Live Distrurbances.National Information Security Conference, 1997.

30. L. Schaelicke, T. Slabach, B. Moore, and C. Freeland. Characterizing the Performance of
Network Intrusion Detection Sensors. InProceedings of the International Symposium on
Recent Advances in Intrusion Detection, 2003.

31. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. Wing. Automated Generation and Anal-
ysis of Attack Graphs. InProceedings of the IEEE Symposium on Security and Privacy,
2002.

32. Snort - The Open Source Network Intrusion Detection System. http://www.snort.org.
33. C. Systems. Netflow services and applications. http://www.cisco.com/warp/public/cc/pd/iosw/ioft/neflct/tech/nappswp.htm.
34. S. Templeton and K. Levit. A Requires/Provides Model for ComputerAttacks. InProceed-

ings of New Security Paradigms Workshop, 2000.
35. A. Valdes. Detecting Novel Scans Through Pattern Anomaly Detection. In Proceedings of

the Third DARPA Information Survivability Conference and Exposition (DISCEX-III 2003),
2003.

36. A. Valdes and K. Skinner. Probabilistic Alert Correlation. InProceedings of the International
Symposium on Recent Advances in Intrusion Detection, 2001.

37. F. Valeur, G. Vigna, C. Kruegel, and R. Kemmerer. A Comprehensive Approach to Intrusion
Detection Alert Correlation. InIEEE Transactions on Dependable and Secure Computing,
2004.

38. G. Vigna, W. Robertson, and D. Balzarotti. Testing Network-based Intrusion Detection Sig-
natures Using Mutant Exploits. InProceedings of the ACM Conference on Computer and
Communications Security, 2004.

40

Profiling Internet BackboneTraffic: Behavior
Models and Applications

Kuai Xu
Computer Science Dept.
University of Minnesota
Minneapolis, MN, USA

kxu@cs.umn.edu

Zhi-Li Zhang
Computer Science Dept.
University of Minnesota
Minneapolis, MN, USA

zhzhang@cs.umn.edu

Supratik Bhattacharyya
Sprint ATL

One Adrian Court
Burlingame, CA, USA

supratik@sprintlabs.com

ABSTRACT
Recent spates of cyber-attacks and frequent emergence of
applications affecting Internet traffic dynamics have made
it imperative to develop effective techniques that can ex-
tract, and make sense of, significant communication pat-
terns from Internet traffic data for use in network operations
and security management. In this paper, we present a gen-
eral methodology for building comprehensive behavior pro-
files of Internet backbone traffic in terms of communication
patterns of end-hosts and services. Relying on data min-
ing and information-theoretic techniques, the methodology
consists of significant cluster extraction, automatic behav-
ior classification and structural modeling for in-depth inter-
pretive analyses. We validate the methodology using data
sets from the core of the Internet. The results demonstrate
that it indeed can identify common traffic profiles as well as
anomalous behavior patterns that are of interest to network
operators and security analysts.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Algorithms, Measurement, Performance, Security

Keywords
Behavior profiles, Traffic measurement, Network monitoring

1. INTRODUCTION
As the Internet continues to grow in size and complex-

ity, the challenge of effectively provisioning, managing and
securing it has become inextricably linked to a deep under-
standing of Internet traffic. Although there has been sig-
nificant progress in instrumenting data collection systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05, August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

for high-speed networks at the core of the Internet, devel-
oping a comprehensive understanding of the collected data
remains a daunting task. This is due to the vast quantities
of data, and the wide diversity of end-hosts, applications
and services found in Internet traffic. While there exists an
extensive body of prior work on traffic characterization on
IP backbones – especially in terms of statistical properties
(e.g., heavy-tail, self-similarity) for the purpose of network
performance engineering, there has been very little attempt
to build general profiles in terms of behaviors, i.e., commu-
nication patterns of end-hosts and services. The latter has
become increasingly imperative and urgent in light of wide
spread cyber attacks and the frequent emergence of disrup-
tive applications that often rapidly alter the dynamics of
network traffic, and sometimes bring down valuable Inter-
net services. There is a pressing need for techniques that
can extract underlying structures and significant communi-
cation patterns from Internet traffic data for use in network
operations and security management.

The goal of this paper is to develop a general methodol-
ogy for profiling Internet backbone traffic that i) not only
automatically discovers significant behaviors of interest from
massive traffic data, ii) but also provides a plausible in-
terpretation of these behaviors to aid network operators
in understanding and quickly identifying anomalous events
of significance. This second aspect of our methodology is
both important and necessary due to voluminous interest-
ing events and limited human resources. For these purposes,
we employ a combination of data mining and information-
theoretic techniques to automatically cull useful informa-
tion from largely unstructured data, and classify and build
structural models to characterize host/service behaviors of
similar patterns.

In our study we use packet header traces collected on In-
ternet backbone links in a tier-1 ISP, which are aggregated
into flows based on the well-known five-tuple - the source IP
address (srcIP), destination IP address (dstIP), source port
(srcPrt), destination port (dstPrt), and protocol fields.
Since our goal is to profile traffic in terms of communication
patterns, we start with the essential four-dimensional fea-
ture space consisting of srcIP, dstIP, srcPrt and dstPrt.
Using this four-dimensional feature space, we extract clus-
ters of significance along each dimension, where each cluster
consists of flows with the same feature value (referred to as
cluster key) in the said dimension. This leads to four collec-
tions of interesting clusters – srcIP clusters, dstIP clusters,
srcPrt clusters, and dstPrt clusters. The first two represent

41

Appendix B

a collection of host behaviors while the last two represent
a collection of service behaviors. In extracting clusters of
significance, instead of using a fixed threshold based on vol-
ume, we adopt an information-theoretic approach that culls
interesting clusters based on the underlying feature value
distribution (or entropy) in the fixed dimension. Intuitively,
clusters with feature values (cluster keys) that are distinct
in terms of distribution are considered significant and ex-
tracted; this process is repeated until the remaining clus-
ters appear indistinguishable from each other. This yields
a cluster extraction algorithm that automatically adapts to
the traffic mix and the feature in consideration.

Given the extracted clusters along each dimension of the
feature space, the second stage of our methodology is to
discover “structures” among the clusters, and build com-
mon behavior models for traffic profiling. For this purpose,
we first develop a behavior classification scheme based on
observed similarities/dissimilarities in communication pat-
terns (e.g., does a given source communicate with a single
destination or with a multitude of destinations?). For ev-
ery cluster, we compute an information-theoretic measure of
the variability or uncertainty of each dimension except the
(fixed) cluster key dimension, and use the resulting metrics
to create behavior classes. We study the characteristics of
these behavior classes over time as well as the dynamics of
individual clusters, and demonstrate that the proposed clas-
sification scheme is robust and provides a natural basis for
grouping together clusters of similar behavior patterns.

In the next step, we adopt ideas from structural modeling
to develop the dominant state analysis technique for mod-
eling and characterizing the interaction of features within
a cluster. This leads to a compact “structural model” for
each cluster based on dominant states that capture the most
common or significant feature values and their interaction.
The dominant state analysis serves two important purposes.
First, it provides support for our behavior classification –
we find that clusters within a behavior class have nearly
identical forms of structural models. Second, it yields com-
pact summaries of cluster information which provides inter-
pretive value to network operators for explaining observed
behavior, and may help in narrowing down the scope of a
deeper investigation into specific clusters. In addition, we
investigate additional features such as average flow sizes of
clusters (in terms of both packet and byte counts) and their
variabilities, and use them to further characterize similar-
ities/dissimilarities among behavior classes and individual
clusters.

We validate our approach using traffic data collected from
a variety of links at the core of the Internet, and find that our
approach indeed provides a robust and meaningful way of
characterizing and interpreting cluster behavior. We show
that several popular services and applications, as well as
certain types of malicious activities, exhibit stable and dis-
tinctive behavior patterns in terms of the measures we for-
mulate. The existence of such “typical” behavior patterns
in traffic makes it possible to separate out a relatively small
set of “atypical” clusters for further investigation. To this
end, we present case studies highlighting a number of clus-
ters with unusual characteristics that are identified by our
profiling techniques, and demonstrate that these clusters ex-
hibit malicious or unknown activities that are worth inves-
tigating further. Thus our technique can become a powerful
tool for network operators and security analysts with ap-

plications to critical problems such as detecting anomalies
or the spread of hitherto unknown security exploits, profil-
ing unwanted traffic, tracking the growth of new services or
applications, and so forth.

The contributions of this paper are summarized as follows:

• We present a novel adaptive threshold-based clustering
approach for extracting significant clusters of interest
based on the underlying traffic patterns.

• We introduce an information-theoretic behavior classi-
fication scheme that automatically groups clusters into
classes with distinct behavior patterns.

• We develop structural modeling techniques for inter-
pretive analyses of cluster behaviors.

• Applying our methodology to Internet backbone traf-
fic, we identify canonical behavior profiles for captur-
ing typical and common communication patterns, and
demonstrate how they can be used to detect interest-
ing, anomalous or atypical behaviors.

The remainder of the paper is organized as follows. Sec-
tion 1.1 briefly discusses the related work, and Section 2
provides some background. The adaptive-threshold cluster-
ing algorithm is presented in Section 3. In Section 4 we
introduce the behavior classification and study its tempo-
ral characteristics. We present the dominant state analysis
and additional feature exploration in Section 5, and apply
our methodology for traffic profiling in Section 6. Section 7
concludes the paper.

1.1 Related Work
Most of the prior work has analyzed specific aspects of

traffic or applied metrics that are deemed interesting a pri-
ori to identify significant network events of interest. For
example, [1, 2] focus on efficient techniques for identifying
“heavy-hitters” in one or several dimensions, and [3, 4] focus
on identifying port scans. [5] studies the behavior of flash
crowds, while [6, 7, 8] focus on analyzing worm and other
exploit activities on the Internet. Research in [9, 10, 11]
applies signal processing and statistical inference techniques
for identifying traffic anomalies, mostly from the perspective
of link-level traffic aggregate. Signature-based intrusion de-
tection systems such as SNORT [12] or Bro [13] look for well-
known signatures or patterns in network traffic, while several
behavior-based anomaly detection systems (see, e.g., [14, 15]
and references therein) have been developed using data min-
ing techniques. In [16], information-theoretic measures are
proposed for evaluating anomaly detection schemes.

Closer to our work, [17] focuses on resource consumption
in network traffic, and develops a clustering algorithm that
automatically discovers significant traffic patterns along one
or multiple dimensions using fixed volume thresholds. The
studies in [18, 19] focus on communication patterns or pro-
files of applications instead of broader network traffic. Con-
current with our work, [20, 21] are most similar in spirit,
and in a sense are complementary, to ours. In [20], the au-
thors study the “host behaviors” (communication patterns)
at three levels, with the objective to classify traffic flows us-
ing packet header information only. Arguably, our entropy-
based behavior classification and dominant state analysis
provide a formal framework to analyze host behaviors at
functional and application levels. As an extension to their

42

early work [9, 10], the authors in [21] also use entropy to
characterize traffic feature distributions, with emphasis on
detecting network-wide traffic anomalies at PoP-level OD
(origin-destination) flows: the PCA-based subspace method
is used to separate “anomalies” from “normal” traffic. In
contrast, our objective is to build behavior profiles at host
and service levels using traffic communication patterns with-
out any presumption on what is normal or anomalous.

2. BACKGROUND AND DATASETS
Information essentially quantifies “the amount of uncer-

tainty” contained in data [22]. Consider a random variable
X that may take NX discrete values. Suppose we randomly
sample or observe X for m times, which induces an empir-
ical probability distribution1 on X, p(xi) = mi/m, xi ∈ X,
where mi is the frequency or number of times we observe X
taking the value xi. The (empirical) entropy of X is then
defined as

H(X) := −
X

xi∈X

p(xi) log p(xi) (1)

where by convention 0 log 0 = 0.
Entropy measures the “observational variety” in the ob-

served values of X [23]. Note that unobserved possibili-
ties (due to 0 log 0 = 0) do not enter the measure, and
0 ≤ H(X) ≤ Hmax(X) := log min{NX ,m}. Hmax(X) is
often referred to as the maximum entropy of (sampled) X,

as 2Hmax(X) is the maximum number of possible unique val-
ues (i.e., “maximum uncertainty”) that the observed X can
take in m observations. Clearly H(X) is a function of the
support size NX and sample size m. Assuming that m ≥ 2
and NX ≥ 2 (otherwise there is no “observational variety”
to speak of), we define the standardized entropy below – re-
ferred to as relative uncertainty (RU) in this paper, as it
provides an index of variety or uniformity regardless of the
support or sample size:

RU(X) :=
H(X)

Hmax(X)
=

H(X)

log min{NX ,m} . (2)

Clearly, if RU(X) = 0, then all observations of X are of
the same kind, i.e., p(x) = 1 for some x ∈ X; thus obser-
vational variety is completely absent. More generally, let A
denote the (sub)set of observed values in X, i.e., p(xi) > 0
for xi ∈ A. Suppose m ≤ NX . Then RU(X) = 1 if and only
if |A| = m and p(xi) = 1/m for each xi ∈ A. In other words,
all observed values of X are different or unique, thus the ob-
servations have the highest degree of variety or uncertainty.
Hence when m ≤ NX , RU(X) provides a measure of “ran-
domness” or “uniqueness” of the values that the observed
X may take – this is what is mostly used in this paper, as
in general m 	 NX .

In the case of m > NX , RU(X) = 1 if and only if
mi = m/NX , thus p(xi) = 1/NX for xi ∈ A = X, i.e.,
the observed values are uniformly distributed over X. In
this case, RU(X) measures the degree of uniformity in the
observed values of X. As a general measure of unifor-
mity in the observed values of X, we consider the condi-
tional entropy H(X|A) and conditional relative uncertainty
RU(X|A) by conditioning X based on A. Then we have
H(X|A) = H(X), Hmax(X|A) = log |A| and RU(X|A) =

1With m → ∞, the induced empirical distribution ap-
proaches the true distribution of X.

Table 1: Multiple links used in our analysis.

Link Time Util. Duration Packets Trace size
L1 01/28/2004 78 Mbps 24 hours 1.60 G 95 GB
L2 01/28/2004 86 Mbps 24 hours 1.65 G 98 GB
L3 02/06/2004 40 Mbps 3 hours 203 M 12 GB
L4 02/06/2004 52 Mbps 3 hours 191 M 11 GB
L5 04/07/2003 207 Mbps 3 hours 518 M 28 GB

H(X)/log|A|. Hence RU(X|A) = 1 if and only if p(xi) =
1/|A| for every xi ∈ A. In general, RU(X|A) ≈ 1 means that
the observed values of X are closer to being uniformly dis-
tributed, thus less distinguishable from each other, whereas
RU(X|A) 	 1 indicates that the distribution is more skewed,
with a few values more frequently observed. This measure
of uniformity is used in Section 3 for defining “significant
clusters of interest”.

We conclude this section by providing a quick descrip-
tion of the datasets used in our study. The datasets consist
of packet header (the first 44 bytes of each packet) traces
collected from multiple links in a large ISP network at the
core of the Internet (Table 1). For every 5-minute time slot,
we aggregate packet header traces into flows, which is de-
fined based on the well-known 5-tuple (i.e., the source IP
address, destination IP address, source port number, desti-
nation port number, and protocol) with a timeout value of
60 seconds [24]. The 5-minute time slot is used as a trade-
off between timeliness of traffic behavior profiling and the
amount of data to be processed in each slot.

3. EXTRACTING SIGNIFICANT CLUSTERS
We start by focusing on each dimension of the four-feature

space, srcIP, dstIP, srcPrt, or dstPrt, and extract “sig-
nificant clusters of interest” along this dimension. The ex-
tracted srcIP and dstIP clusters yield a set of “interesting”
host behaviors (communication patterns), while the srcPrt

and dstPrt clusters yield a set of “interesting” service/port
behaviors, reflecting the aggregate behaviors of individual
hosts on the corresponding ports. In the following we intro-
duce our definition of significance/interestingness using the
(conditional) relative uncertainty measure.

Given one feature dimension X and a time interval T , let
m be the total number of flows observed during the time
interval, and A = {a1, . . . , an}, n ≥ 2, be the set of dis-
tinct values (e.g., srcIP’s) in X that the observed flows
take. Then the (induced) probability distribution PA on
X is given by pi := PA(ai) = mi/m, where mi is the num-
ber of flows that take the value ai (e.g., having the srcIP

ai). Then the (conditional) relative uncertainty, RU(PA) :=
RU(X|A), measures the degree of uniformity in the ob-
served features A. If RU(PA) is close to 1, say, > β = 0.9,
then the observed values are close to being uniformly dis-
tributed, and thus nearly indistinguishable. Otherwise, there
are likely feature values in A that “stand out” from the
rest. We say a subset S of A contains the most significant
(thus “interesting”) values of A if S is the smallest subset
of A such that i) the probability of any value in S is larger
than those of the remaining values; and ii) the (conditional)
probability distribution on the set of the remaining values,
R := A − S, is close to being uniformly distributed, i.e.,
RU(PR) := RU(X|R) > β. Intuitively, S contains the most
significant feature values in A, while the remaining values
are nearly indistinguishable from each other.

43

0 50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Time

sr
cI

P
 c

lu
st

er
s

Total values
Significant values

(a) srcIP dimension

0 50 100 150 200 250 300
10

1

10
2

10
3

10
4

10
5

10
6

Time

ds
tIP

 c
lu

st
er

s

Total values
Significant values

(b) dstIP dimension

0 50 100 150 200 250 300

10
1

10
2

10
3

10
4

10
5

10
6

Time

sr
cP

or
t c

lu
st

er
s

Total values
Significant values

(c) srcPrt dimension

0 50 100 150 200 250 300

10
1

10
2

10
3

10
4

10
5

10
6

Time

ds
tP

or
t c

lu
st

er
s

Total values
Significant values

(d) dstPrt dimension

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

A
da

pt
iv

e
th

re
sh

ol
d

(%
)

(e) srcIP dimension

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time

A
da

pt
iv

e
th

re
sh

ol
d

(%
)

(f) dstIP dimension

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time

A
da

pt
iv

e
th

re
sh

ol
d

(%
)

(g) srcPrt dimension

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time

A
da

pt
iv

e
th

re
sh

ol
d

(%
)

(h) dstPrt dimension

Figure 1: The total number of distinct values and significant clusters extracted from four feature dimensions of L1 over a one-

day period (top row). The corresponding final cut-off threshold obtained by the information-based significant cluster extraction

algorithm (bottom row).

To see what S contains, order the feature values of A based
on their probabilities: let â1, â2, . . . , ân be such as PA(â1) ≥
PA(â2) ≥ · · · PA(ân). Then S = {â1, â2, . . . , âk−1} and
R = A − S = {âk, âk+1, . . . , ân} where k is the smallest
integer such that RU(PR) > β. Let α∗ = âk−1. Then α∗

is the largest “cut-off” threshold such that the (conditional)
probability distribution on the set of remaining values R is
close to being uniformly distributed.

Algorithm 1 Entropy-based Significant Cluster Extraction

1: Parameters: α := α0; β := 0.9; S := ∅;
2: Initialization: S := ∅; R := A; k := 0;
3: compute prob. dist. PR and its RU θ := RU(PR);
4: while θ ≤ β do
5: α = α × 2−k; k + +;
6: for each ai ∈ R do
7: if PA(ai) ≥ α then
8: S := S ∪ {ai}; R := R − {ai};
9: end if

10: end for
11: compute (cond.) prob. dist. PR and θ := RU(PR);
12: end while

Algorithm 1 presents an efficient approximation algorithm2

(in pseudo-code) for extracting the significant clusters in S
from A (thereby, the clusters of flows associated with the
significant feature values). The algorithm starts with an ap-
propriate initial value α0 (e.g., α0 = 2%), and searches for
the optimal cut-off threshold α∗ from above via “exponential
approximation” (reducing the threshold α by an exponen-
tially decreasing factor 1/2k at the kth step). As long as
the relative uncertainty of the (conditional) probability dis-

2An efficient algorithm using binary search is also devised,
but not used here.

tribution PR on the (remaining) feature set R is less than
β, the algorithm examines each feature value in R and in-
cludes those whose probabilities exceed the threshold α into
the set S of significant feature values. The algorithm stops
when the probability distribution of the remaining feature
values is close to being uniformly distributed (> β = 0.9).
Let α̂∗ be the final cut-off threshold (an approximation to
α∗) obtained by the algorithm.

Our algorithm adaptively adjusts the “cut-off” threshold
α̂∗ based on the underlying feature value distributions to ex-
tract significant clusters. Fig. 1 presents the results we ob-
tain by applying the algorithm to the 24-hour packet trace
collected on L1, where the significant clusters are extracted
in every 5-minute time slot along each of the four feature
dimensions. In the top row we plot both the total number
of distinct feature values as well as the number of signifi-
cant clusters extracted in each 5-minute slot over 24 hours
for the four feature dimensions (note that the y-axis is in log
scale). In the bottom row, we plot the corresponding final
cut-off threshold obtained by the algorithm. We see that
while the total number of distinct values along a given di-
mension may not fluctuate very much, the number of signif-
icant feature values (clusters) may vary dramatically, due to
changes in the underlying feature value distributions. These
changes result in different cut-off thresholds being used in
extracting the significant feature values (clusters). In fact,
the dramatic changes in the number of significant clusters
(or equivalently, the cut-off threshold) also signifies major
changes in the underlying traffic patterns.

To provide some specific numbers, consider the 15th time
slot. There are a total of 89261 distinct srcIP’s, 79660
distinct dstIP’s, 49511 srcPrt’s and 50602 dstPrt’s. Our
adaptive-threshold algorithm extracts 117 significant srcIP

44

clusters, 273 dstIP clusters, 8 srcPrt clusters and 12 dstPrt

clusters, with the resulting cut-off threshold being 0.0625%,
0.03125%, 0.25% and 1%, respectively. We see that the num-
ber of significant clusters is far smaller than the number of
feature values n, and that the cut-off thresholds α̂∗ for the
different feature dimensions also differ. This shows that no
single fixed threshold would be adequate in the definition of
“significant” behavior clusters.

4. CLUSTER BEHAVIOR CLASSIFICATION
In this section we introduce an information-theoretic ap-

proach to characterize the “behavior” of the significant clus-
ters extracted using the algorithm in the previous section.
We show that this leads to a natural behavior classification
scheme that groups the clusters into classes with distinct
behavior patterns.

4.1 Behavior Class Definition
Consider the set of, say, srcIP, clusters extracted from

flows observed in a given time slot. The flows in each clus-
ter share the same cluster key, i.e., the same srcIP address,
while they can take any possible value along the other three
“free” feature dimensions. Hence the flows in a cluster in-
duce a probability distribution on each of the three “free”
dimensions, and thus a relative uncertainty measure can be
defined. For each cluster extracted along a fixed dimension,
we use X, Y and Z to denote its three “free” dimensions,
using the convention listed in Table 2. Hence for a srcIP

cluster, X, Y , and Z denote the srcPrt, dstPrt and dstIP

dimensions, respectively. This cluster can be characterized
by an RU vector [RUX , RUY , RUZ].

Table 2: Convention of free dimension denotations.

Cluster key Free dimensions
X Y Z

srcIP srcPrt dstPrt dstIP
dstIP srcPrt dstPrt srcIP
srcPrt dstPrt srcIP dstIP
dstPrt srcPrt srcIP dstIP

In Fig. 2(a) we represent the RU vector of each srcIP

cluster extracted in each 5-minute time slot over a 1-hour
period from L1 as a point in a unit-length cube. We see
that most points are “clustered” (in particular, along the
axises), suggesting that there are certain common “behavior
patterns” among them. Fig. 3 shows similar results using
the srcIP clusters on four other links. This “clustering”
effect can be explained by the “multi-modal” distribution of
the relative uncertainty metrics along each of the three free
dimensions of the clusters, as shown in Figs. 2(b), (c) and
(d) where we plot the histogram (with a bin size of 0.1) of
RUX , RUY and RUZ of all the clusters on links L1 to L5

respectively. For each free dimension, the RU distribution
of the clusters is multi-modal, with two strong modes (in
particular, in the case of srcPrt and dstPrt) residing near
the two ends, 0 and 1. Similar observations also hold for
dstIP, srcPrt and dstPrt clusters extracted on these links.

As a convenient way to group together clusters of similar
behaviors, we divide each RU dimension into three cate-
gories (assigned with a label): 0 (low), 1 (medium) and 2

(high), using the following criteria:

L(ru) =

8><
>:

0(low), if 0 ≤ ru ≤ ε,

1(medium), if ε < ru < 1 − ε,

2(high), if 1 − ε ≤ ru ≤ 1,

(3)

where for the srcPrt and dstPrt dimensions, we choose
ε = 0.2, while for the srcIP and dstIP dimensions, ε =
0.3. This labelling process classifies clusters into 27 possible
behavior classes (BC in short), each represented by a (label)
vector [L(RUX), L(RUY), L(RUZ)] ∈ {0, 1, 2}3. For ease
of reference, we also treat [L(RUX), L(RUY), L(RUZ)] as
an integer (in tierary representation) id = L(RUX) · 32 +
L(RUY) · 3 + L(RUZ) ∈ {0, 1, 2, . . . , 26}, and refer to it
as BCid. Hence srcIP BC6 = [0, 2, 0], which intuitively
characterizes the communicating behavior of a host using a
single or a few srcPrt’s to talk with a single or a few dstIP’s
on a larger number of dstPrt’s. We remark here that for
clusters extracted using other fixed feature dimensions (e.g.,
srcPrt, dstPrt or dstIP), the BC labels and id’s have a
different meaning and interpretation, as the free dimensions
are different (see Table 2). We will explicitly refer to the
BCs defined along each dimension as srcIP BCs, dstIP BCs,
srcPrt BCs and dstPrt BCs. However, when there is no
confusion, we will drop the prefix.

4.2 Temporal Properties of Behavior Classes
We now study the temporal properties of the behavior

classes. We introduce three metrics to capture three differ-
ent aspects of the characteristics of the BC’s over time: i)
popularity: which is the number of times we observe a par-
ticular BC appearing (i.e., at least one cluster belonging to
the BC is observed); ii) (average) size: which is the average
number of clusters belonging to a given BC, whenever it is
observed; and iii) (membership) volatility: which measures
whether a given BC tends to contain the same clusters over
time (i.e., the member clusters re-appear over time), or new
clusters.

Formally, consider an observation period of T time slots.
For each BCi, let Cij be the number of observed clusters
that belong to BCi in the time slot τj , j = 1, 2, . . . , T ,
Oi the number of time slots that BCi is observed, i.e.,
Oi = |{Cij : Cij > 0}|, and Ui be the number of unique
clusters belonging to BCi over the entire observation pe-
riod. Then the popularity of BCi is defined as Πi = Oi/T ;

its average size Σi =
PT

j=1 Cij/Oi; and its (membership)

volatility Ψi = Ui/
PT

j=1 Cij = Ui/(ΠiOi). If a BC contains
the same clusters in all time slots, i.e., Ui = Cij , for every
j such that Cij > 0, then Ψi = 0. In general, the closer Ψi

is to 0, the less volatile the BC is. Note that the member-
ship volatility metric is defined only for BC’s with relatively
high frequency, e.g., Π > 0.2, as otherwise it contains too
few “samples” to be meaningful.

In Figs. 4(a), (b) and (c) we plot Πi, Σi and Ψi of the
srcIP BC’s for the srcIP clusters extracted using link L1

over a 24-hour period, where each time slot is a 5-minute
interval (i.e., T = 288). From Fig. 4(a) we see that 7 BC’s,
BC2 [0,0,2], BC6 [0,2,0], BC7 [0,2,1], BC8 [0,2,2], BC18

[2,0,0], BC19 [2,0,1] and BC20 [2,0,2], are most popular, oc-
curring more than half of the time; while BC11 [2,0,2] and
BC12 [2,1,0] and BC24 [2,2,1] have moderate popularity, oc-
curring about one-third of the time. The remaining BC’s
are either rare or not observed at all. Fig. 4(b) shows that

45

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)

R
U

(d
st

IP
)

(a) RU vector (L1)

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Relative uncertainty

P
er

ce
nt

ag
e

of
 c

lu
st

er
s

L
1

L
2

L
3

L
4

L
5

(b) srcPrt free dimen-
sion

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Relative uncertainty

P
er

ce
nt

ag
e

of
 c

lu
st

er
s

L
1

L
2

L
3

L
4

L
5

(c) dstPrt free dimen-
sion

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Relative uncertainty

P
er

ce
nt

ag
e

of
 c

lu
st

er
s

L
1

L
2

L
3

L
4

L
5

(d) dstIP free dimen-
sion

Figure 2: The distribution of relative uncertainty on free dimensions for srcIP clusters from L1 during a 1-hour period.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)

R
U

(d
st

IP
)

(a) RU vector (L2)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)

R
U

(d
st

IP
)

(b) RU vector (L3)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)
R

U
(d

st
IP

)

(c) RU vector (L4)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

RU(srcPort)RU(dstPort)

R
U

(d
st

IP
)

(d) RU vector (L5)

Figure 3: The distribution of relative uncertainty on free dimensions for srcIP clusters from L2,3,4,5 during a 1-hour period.

the five popular BC’s, BC2, BC6, BC7, BC18, and BC20,
have the largest (average) size, each having around 10 or
more clusters; while the other two popular BC’s, BC8 and
BC19, have four or fewer BC’s on the average. The less
popular BC’s are all small, having at most one or two clus-
ters on the average when they are observed. From Fig. 4(c),
we see that the two popular BC2 and BC20 (and the less
popular BC11, BC12 and BC24) are most volatile, while the
other five popular BC’s, BC6, BC7, BC8, BC18 and BC19

are much less volatile. To better illustrate the difference in
the membership volatility of the 7 popular BC’s, in Fig. 4(d)
we plot Ui as a function of time, i.e., Ui(t) is the total num-
ber of unique clusters belonging to BCi up to time slot t. We
see that for BC2 and BC20, new clusters show up in nearly
every time slot, while for BC7, BC8 and BC19, the same
clusters re-appear again and again. For BC6 and BC18,
new clusters show up gradually over time and they tend to
re-occur, as evidenced by the tapering off of the curves and
the large average size of these two BC’s.

4.3 Behavior Dynamics of Individual Clusters
We now investigate the behavior characteristics of indi-

vidual clusters over time. In particular, we are interested in
understanding i) the relation between the frequency of a clus-
ter (i.e., how often it is observed) and the behavior class(es)
it appears in; and ii) the behavior stability of a cluster if it
appears multiple times, namely, whether a cluster tends to
re-appear in the same BC or different BC’s?

We use the set of srcIP clusters extracted on links with
the longest duration, L1 and L2, over a 24-hour period as
two representative examples to illustrate our findings. Fig.5
shows the frequency distribution of clusters in log-log scale,

where the x-axis is the cluster id ordered based on its fre-
quency (the most frequent cluster first). The distribution is
“heavy-tailed”: for example more than 90.3% (and 89.6%)
clusters in L1 (and L2) occur fewer than 10 times, of which
47.1% (and 55.5%) occur only once; 0.6% (and 1.2%) oc-
cur more than 100 times. Moreover, the most frequent
clusters all fall into the five popular but non-volatile BC’s,
BC6, BC7, BC8, BC18 and BC19, while a predominant ma-
jority of the least frequent clusters belong to BC2 and BC20.
The medium-frequency clusters belong to a variety of BCs,
with BC2 and BC20 again dominant.

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

Clusters

F
re

qu
en

cy

L
1

L
2

Figure 5: Frequencies of all srcIP clusters on L1 and L2.

Next, for those clusters that appear at least twice (2443
and 4639 srcIP clusters from link L1 and L2, respectively),
we investigate whether they tend to re-appear in the same
BC or different BC’s. We find that a predominant majority
(nearly 95% on L1 and 96% on L2) stay in the same BC
when they re-appear. Only a few (117 clusters on L1 and
337 on L2) appear in more than 1 BC. For instance, out
of the 117 clusters on L1, 104 appear in 2 BC’s, 11 in 3
BC’s and 1 in 5 BC’s. We refer to these clusters as “multi-

46

0 2 6 7 8 1112 181920 24 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Behavior classes

P
op

ul
ar

ity

(a) Popularity (Π)

2 6 7 8 181920
0

5

10

15

20

25

Behavior classes

A
ve

ra
ge

 s
iz

e

(b) Average size (Σ)

2 6 7 8 181920
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Behavior classes

M
em

be
rs

hi
p

vo
la

til
ity

(c) Volatility (Ψ)

0 50 100 150 200 250 300
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time

A
cc

um
ul

at
in

g
su

m
 o

f u
ni

qu
e

cl
us

te
rs

BC2
BC6
BC7
BC8
BC18
BC19
BC20

(d) Ui(t) over time

Figure 4: Temporal properties of srcIP BCs using srcIP clusters on L1 over a 24-hour period.

BC” clusters. We have performed an in-depth analysis on
the “behavior transitions” of these “multi-BC” clusters in
terms of their RU vectors (RUVs), the detail of which can be
found in [25]. We find that most of the behavior transitions
(i.e., a cluster from one BC to another BC) are between
“neighboring” or “akin” BC’s (e.g., from BC7 to BC8), more
a consequence of the choice of ε in Eq.(3), rather than any
significant behavioral changes. Only a very few (e.g., only
28 out of the 117 “multi-BC” clusters on L1) exhibit large
“deviant” behavior transitions (e.g., from a BC to a “non-
akin” BC) that are due to significant traffic pattern changes,
and thus can be regarded as unstable clusters.

We conclude this section by commenting that our obser-
vations and results regarding the temporal properties of be-
havior classes and behavior dynamics of individual clusters
hold not only for the srcIP clusters extracted on L1 but
also on other dimensions and links we studied. Such results
are included in [25]. In summary, our results demonstrate
that the behavior classes defined by our RU-based behavior
classification scheme manifest distinct temporal characteris-
tics, as captured by the frequency, populousness and volatil-
ity metrics. In addition, clusters (especially those frequent
ones) in general evince consistent behaviors over time, with
only a very few occasionally displaying unstable behaviors.
In a nutshell, our RU-based behavior classification scheme
inherently captures certain behavior similarity among (sig-
nificant) clusters. This similarity is in essence measured by
how varied (e.g., random or deterministic) the flows in a
cluster assume feature values in the other three free dimen-
sions. The resulting behavior classification is consistent and
robust over time, capturing clusters with similar temporal
characteristics.

5. STRUCTURAL MODELS
In this section we introduce the dominant state analysis

technique for modeling and characterizing the interaction
of features within a cluster. We also investigate additional
features, such as average flow sizes of clusters and their vari-
abilities for further characterizing similarities/dissimilarities
among behavior classes and individual clusters. The dom-
inant state analysis and additional feature inspection to-
gether provide plausible interpretation of cluster behavior.

5.1 Dominant State Analysis
Our dominant state analysis borrows ideas from struc-

tural modeling or reconstructability analysis in system the-

ory ([26, 27, 28]) as well as more recent graphical models
in statistical learning theory [29]. The intuition behind our
dominant state analysis is described below. Given a cluster,
say a srcIP cluster, all flows in the cluster can be repre-
sented as a 4-tuple (ignoring the protocol field) 〈u, xi, yi, zi〉,
where the srcIP has a fixed value u, while the srcPrt (X
dimension), dsrPrt (Y dimension) and dstIP (Z dimension)
may take any legitimate values. Hence each flow in the clus-
ter imposes a “constraint” on the three “free” dimensions
X,Y and Z. Treating each dimension as a random variable,
the flows in the cluster constrain how the random variables
X, Y and Z “interact” or “depend” on each other, via the
(induced) joint probability distribution P(X,Y, Z). The ob-
jective of dominant state analysis is to explore the interac-
tion or dependence among the free dimensions by identifying
“simpler” subsets of values or constraints (called structural
models in the literature [26]) to represent or approximate the
original data in their probability distribution. We refer to
these subsets as dominant states of a cluster. Hence given
the information about the dominant states, we can repro-
duce the original distribution with reasonable accuracy.

We use some examples to illustrate the basic ideas and
usefulness of dominant state analysis. Suppose we have a
srcIP cluster consisting mostly of scans (with a fixed srcPrt

220) to a large number of random destinations on dstPrt

6129. Then the values in the srcPrt, dstPrt and dstIP

dimensions these flows take are of the form 〈220, 6129, ∗〉,
where ∗ (wildcard) indicates random or arbitrary values.
Clearly this cluster belongs to srcIP BC2 [0,0,2], and the
cluster is dominated by the flows of the form 〈220, 6129, ∗〉.
Hence the dominant state of the cluster is 〈220, 6129, ∗〉,
which approximately represents the nature of the flows in
the cluster, even though there might be a small fraction of
flows with other states.

For want of space, in this paper we do not provide a formal
treatment of the dominant state analysis. Instead in Fig. 6
we depict the general procedure we use to extract dominant
states from a cluster. Let {A,B,C} be a re-ordering of the
three free dimensions X,Y, Z of the cluster based on their
RU values: A is the free dimension with the lowest RU,
B the second lowest, and C the highest; in case of a tie,
X always precedes Y or Z, and Y precedes Z. The dom-
inant state analysis procedure starts by finding substantial
values in the dimension A (step 1). A specific value a in
the dimension A is substantial if the marginal probability
p(a) :=

P
b

P
c p(a, b, c) ≥ δ, where δ is a threshold for se-

lecting substantial values. If no such substantial value exists,

47

Table 3: Dominant states for srcIP clusters on L1 in a 1-hour period: δ = 0.2.

srcIP No. of Structural Models Range of Range of Range of Range of Brief Comments
BC’s Clusters µ(P KT) CV (P KT) µ(BT) CV (BT)

BC2 119 srcPrt(·)→dstPrt(·)→dstIP(*) small low small low mostly ICMP
[0, 0, 2] or scanning traffic

114 srcPrt(0)→dstPrt(0)→dstIP(*)[>99%] [1,2] [0,1.6] [72,92] [0,8.9] ICMP traffic
1 srcPrt(1026)→dstPrt(137)→dstIP(*)[100%] 1 0 78 0 137: NetBIOS
1 srcPrt(1153)→dstPrt(1434)→dstIP(*)[>98%] 1 0 404 0 1434: MS SQL
3 srcPrt(220)→dstPrt(6129)→dstIP(*)[100%] [1,2] [0, 1.2] [40,80] [0,2.6] 6129: Dameware

BC6 16 srcPrt(·)→dstIP(· · ·)→dstPrt(*) large high large high server replying
[0, 2, 0] to a few hosts

2 srcPrt(25)→dstIP(· · ·)→dstPrt(*) [10,15] [1041,2217] [120,750] [36,102] 25: Email
5 srcPrt(53)→dstIP(· · ·)→dstPrt(*) [1,5] [8.6,78] [160,380] [111,328] 53: DNS
7 srcPrt(80)→dstIP(· · ·)→dstPrt(*) [3,31] [460,1.2 ∗ 104] [195,1.2 ∗ 105] [16,1612] 80: Web
2 srcPrt(443)→dstIP(· · ·)→dstPrt(*) [3,12] [320,1.5 ∗ 104] [2166,1.1 ∗ 105] [29,872] 443: https

BC7 19 srcPrt(·)→dstIP(· · ·)→ dstPrt(*) large high large high server replying
[0, 2, 1] to many hosts

2 srcPrt(25)→dstIP→dstPrt(*) [14,35] [1129,1381]] [2498,3167]] [190,640] 25: Email
17 srcPrt(80)→dstIP→dstPrt(*) [4,26] [210,9146] [671,1.0 ∗ 104] [29,3210] 80: Web

BC8 7 srcPrt(.)→(dstPrt(*),dstIP(*)) large high large high server replying to
[0, 2, 2] large # of hosts

7 srcPrt(80)→(dstPrt(*),dstIP(*)) [4,27] [1282,1.1 ∗ 104] [740, 1.5 ∗ 104] [72, 598] 80: Web

BC18 10 dstPrt(·)→(·)dstIP→srcPrt(*) medium high medium high host talking to
[2, 0, 0] a server on fixed dstPrt

3 dstPrt(53)→dstIP→srcPrt(*) [2,5] [32,1.5 ∗ 105] [120,325] [82,878] 53: DNS
7 dstPrt(80)→dstIP→srcPrt(*) [3,18] [26,6869] [189,1728] [87,5086] 80: Web

BC19 6 dstPrt(·)→dstIP(*)→srcPrt(*) medium high medium high host talking to multiple
[2, 0, 1] hosts on fixed dstPrt

2 dstPrt(53)→dstIP(*)→srcPrt(*) [2,6] [28,875] [116,380] [112,456] 53: DNS
3 dstPrt(80)→dstIP(*)→srcPrt(*) [4,16] [72.3356] [220,2145] [122,2124] 80: Web
1 dstPrt(7070)→dstIP(*)→srcPrt(*) 3 462 288 261 7070: RealAudio

BC20 58 dstPrt(·)→(srcPrt(*),dstIP(*)) small low small low host talking to large
[2, 0, 2] # hosts on fixed dstPrt

44 dstPrt(135)→(srcPrt(*),dstIP(*)) [1,2] [0,1.6] [48,96] [0,2.7] 135: Microsoft RPC
1 dstPrt(137)→(srcPrt(*),dstIP(*)) 1 0 78 0 137: NETBIOS
2 dstPrt(139)→(srcPrt(*),dstIP(*)) 3 0 144 0 139: NETBIOS
2 dstPrt(445)→(srcPrt(*),dstIP(*)) [1,3] [0,2.2] [48,144] [0,3.6] 445: Microsoft-DS
1 dstPrt(593)→(srcPrt(*),dstIP(*)) 1 0 48 0 593: http RPC
2 dstPrt(901)→(srcPrt(*),dstIP(*)) [1,2] [0,1.6] [48,96] [0,3.9] 901: SMPNAMERES
3 dstPrt(3127)→(srcPrt(*),dstIP(*)) [1,3] [0,1.8] [48,144] [0,2.9] 3127: myDoom worm
1 dstPrt(6129)→(srcPrt(*),dstIP(*)) 1 0 40 0 6129: Dameware
1 dstPrt(17300)→(srcPrt(*),dstIP(*)) 1 0 48 0 17300: unknown
1 dstPrt(34816)→(srcPrt(*),dstIP(*)) 1 0.2 64 0.5 34816: unknown

BC24 1 dstIP(.)→srcPrt(*)→dstPrt(*) - - - - two hosts chatting
[2, 2, 0] on random ports

1 dstIP(.)→srcPrt(*)→dstPrt(*) 1 0 889 0 vertical scan

we stop. Otherwise, we proceed to step 2 and explore the
“dependence” between the dimension A and dimension B by
computing the conditional (marginal) probability of observ-
ing a value bj in the dimension B given ai in the dimension
A: p(bj |ai) :=

P
c p(ai, bj , c)/p(ai). We find those substan-

tial bj ’s such that p(bj |ai) ≥ δ. If no substantial value exists,
the procedure stops. Otherwise, we proceed to step 3 com-
pute the conditional probability, p(ck|ai, bj), for each ai, bj

and find those substantial ck’s, such that p(ck|ai, bj) ≥ δ.
The dominant state analysis procedure produces a set of
dominate states of the following forms: (∗, ∗, ∗) (i.e., no dom-
inant states), or ai → (∗, ∗) (by step 1), ai → bj → ∗ (by
step 2), or ai → bj → ck (by step 3). The set of domi-
nate states is an approximate summary of the flows in the
cluster, and in a sense captures the “most information” of
the cluster. In other words, the set of dominant states of a
cluster provides a compact representation of the cluster.

Cluster

a1 ...a2

Step 1: Find substantial
values in A

b2b1
...

c2c1 ...

Step 2: Find substantial
values in B given each a

Step 3: Find substantial
values in C given each ab

Figure 6: General procedure for dominant state analysis.

We apply the dominant state analysis to the clusters of

four feature dimensions extracted on all links with varying
δ in [0.1, 0.3]. The results with various δ are very similar,
since the data is amenable to compact dominant state mod-
els. Table 3 (ignoring columns 4-7 for the moment, which we
will discuss in the next subsection) shows dominant states of
srcIP clusters extracted from link L1 over a 1-hour period
using δ = 0.2. For each BC, the first row gives the total
number of clusters belonging to the BC during the 1-hour
period (column 2) and the general or prevailing form of the
structural models (column 3) for the clusters. The subse-
quent rows detail the specific structural models shared by
subsets of clusters and their respective numbers. The no-
tations dstIP(·), srcPrt(· · ·), etc., indicate a specific value
and multiple values (e.g., in dstIP) that are omitted for clar-
ity, and [> 90%] denotes that the structural model captures
at least 90% of the flows in the cluster (to avoid too much
clutter in the table, this information is only shown for clus-
ters in BC2). The last column provides brief comments on
the likely nature of the flows the clusters contain, which will
be analyzed in more depth in Section 6.

The results in the table demonstrate two main points.
First, clusters within a BC have (nearly) identical forms of
structural models; they differ only in specific values they
take. For example, BC2 and BC20 consist mostly of hosts
engaging in various scanning or worm activities using known
exploits, while srcIP clusters in BC6, BC7 and BC8 are
servers providing well-known services. They further sup-
port our assertion that our RU-based behavior classification
scheme automatically groups together clusters with simi-
lar behavior patterns, despite that the classification is done
oblivious of specific feature values that flows in the clusters

48

take. Second, the structural model of a cluster presents a
compact summary of its constituent flows by revealing the
essential information about the cluster (substance feature
values and interaction among the free dimensions). It in it-
self is useful, as it provides interpretive value to network op-
erators for understanding the cluster behavior. These points
also hold for clusters extracted from other dimensions [25].

5.2 Exploring Additional Cluster Features
We now investigate whether additional features (beyond

the four basic features, srcIP, dstIP, srcPrt and dstPrt)
can i) provide further affirmation of similarities among clus-
ters within a BC, and in case of wide diversity, ii) be used to
distinguish sub-classes of behaviors within a BC. Examples
of additional features we consider are cluster sizes (defined
in total flow, packet and byte counts), average packet/byte
count per flow within a cluster and their variability, etc. In
the following we illustrate the results of additional feature
exploration using the average flow sizes per cluster and their
variability.

For each flow fi, 1 ≤ i ≤ m, in a cluster, let PKTi and
BTi denote the number of packets and bytes respectively
in the flow. Compute the average number of packets and
bytes for the cluster, µ(PKT) =

P
i PKTi/m, µ(BT) =P

i BTi/m. We also measure the flow size variability in
packets and bytes using coefficient of variance, CV (PKT) =
σ(PKT)/µ(PKT) and CV (BT) = σ(BT)/µ(BT), where
σ(PKT) and σ(BT) are the standard deviation of PKTi

and BTi.
In Table 3, columns 4-7, we present the ranges of µ(PKT),

CV (PKT), µ(BT) and CV (BT) of subsets of clusters with
the similar dominant states, using the 1-hour srcIP clusters
on L1. Columns 4-7 in the top row of each BC are high-level
summaries for clusters within a BC (if it contains more than
one cluster): small, medium or large average packet/byte
count, and low or high variability. We see that for clusters
within BC6, BC7, BC8 and BC18, BC19, the average flow
size in packets and bytes are at least 5 packets and 320 bytes,
and their variabilities (CV (PKT) and CV (BT)) are fairly
high. In contrast, clusters in BC2 and BC20 have small
average flow size with low variability, suggesting most of the
flows contain a singleton packet with a small payload. The
same can be said of most of the less popular and rare BCs.

Finally, Figs. 7(a)(b)(c)(d) show the average cluster sizes3

in flow, packet and byte counts for all the unique clusters
from the dataset L1 within four different groups of BC’s (the
reason for the grouping will be clear in the next section):
{BC6, BC7, BC8}, {BC18, BC19}, {BC2, BC20}, and the
fourth group containing the remaining less popular BC’s.
Clearly, the characteristics of the cluster sizes of the first
two BC groups are quite different from those of the second
two BC groups. We will touch on these differences further
in the next section. To conclude, our results demonstrate
that BC’s with distinct behaviors (e.g., non-akin BC’s) of-
ten also manifest dissimilarities in other features. Clusters
within a BC may also exhibit some diversity in additional
features, but in general the intra-BC differences are much
less pronounced than inter-BC differences.

3We compute the average cluster size for clusters appearing
twice or more.

6. APPLICATIONS
We apply our methodology to obtain general profiles of

the Internet backbone traffic based on the datasets listed
in Table 1. We find that a large majority of the (signif-
icant) clusters fall into three “canonical” profiles: typical
server/service behavior (mostly providing well-known ser-
vices), typical “heavy-hitter” host behavior (predominantly
associated with well-known services) and typical scan/exploit
behavior (frequently manifested by hosts infected with known
worms). The canonical behavior profiles are characterized
along the following four key aspects: (i) BCs they belong to
and their properties, (ii) temporal characteristics (frequency
and stability) of individual clusters, (iii) dominant states,
and (iv) additional attributes such as average flow size in
terms of packet and byte counts and their variabilities.

Clusters with behaviors that differ in one or more aspects
of the three canonical profiles automatically present them-
selves as more interesting, thus warrant closer examination.
Generally speaking, there are two types of interesting or
anomalous behaviors we find using our behavior profiling
methodology: i) novel or unknown behaviors that match
the typical server/service profile, heavy-hitter host profile,
or scan/exploit profile, but exhibit unusual feature values,
as revealed by analyses of their dominant states; and ii) de-
viant or abnormal behaviors that deviate significantly from
the canonical profiles in terms of BCs (e.g., clusters belong-
ing to rare BCs), temporal instability (e.g., unstable clusters
that jump between different BCs), or additional features.

6.1 Server/Service Behavior Profile

Table 4: Three canonical behavior profiles.

Profile Dimension BCs Examples

Servers srcIP BC6,7,8 web, DNS, email
or dstIP BC18,19,20
Services srcPrt BC23 aggregate service

dstPrt BC25 traffic

Heavy srcIP BC18,19 NAT boxes
Hitter Hosts dstIP BC6,7 web proxies, crawlers

Scans srcIP BC2,20 scanners, exploits
or dstIP BC2,8 scan targets
Exploits dstPrt BC2,5,20,23 aggregate exploit traffic

As shown in Table 4, a typical server providing a well-
known service shows up in either the popular, large and
non-volatile srcIP BC6 [0,2,0], BC7 [0,2,1] and BC8 [0,2,2],
or dstIP BC18 [2,0,0], BC19 [2,0,1] and BC20 [2,0,2] (note
the symmetry between the srcIP and dstIP BCs, with the
first two labels (srcPrt and dstPrt) swapped). These BCs
represent the behavior patterns of a server communicating
with a few, many or a large number of hosts. In terms of
their temporal characteristics, the individual clusters asso-
ciated with servers/well-known services tend to have a rel-
atively high frequency, and almost all of them are stable,
re-appearing in the same or akin BCs. The average flow size
(in both packet and byte counts) of the clusters shows high
variability, namely, each cluster typically consists of flows of
different sizes.

Looking from the srcPrt and dstPrt perspectives, the
clusters associated with the well-known service ports almost
always belong to the same BC’s, e.g., either srcPrt BC23

[2,1,2] or dstPrt BC25 [2,2,1], representing the aggregate
behavior of a (relatively smaller) number of servers commu-
nicating with a much larger number of clients on a specific

49

0 100 200 300 400
10

2

10
4

10
6

10
8

Cluster index

C
lu

st
er

 s
iz

e
Flows
Packets
Bytes

(a) BC6, BC7, BC8

0 100 200 300 400
10

2

10
4

10
6

10
8

Cluster index

C
lu

st
er

 s
iz

e

Flows
Packets
Bytes

(b) BC18, BC19

0 1000 2000 3000 4000
10

2

10
4

10
6

10
8

Cluster index

C
lu

st
er

 s
iz

e

Flows
Packets
Bytes

(c) BC2, BC20

0 20 40 60 80
10

2

10
4

10
6

10
8

Cluster index

C
lu

st
er

 s
iz

e

Flows
Packets
Bytes

(d) Other BC’s

Figure 7: Average cluster size (in flow, packet and byte count) distributions for clusters within four groups of BC’s for srcIP
clusters on L1. Note that in (c) and (d), the lines of flow count and packet count are indistinguishable, since most flows in the

clusters contain a singleton packet.

well-know service port. For example, Fig. 8(a) plots the
cluster sizes (in flow, packet and byte counts) of the dstPrt

TCP 80 cluster (representing aggregate behavior of all web
servers) over the 24-hour period, whereas in Fig. 8(b) we
plot the corresponding RUsrcPrt, RUsrcIP and RUdstIP of
its three free dimensions over time. We see that the dstPrt

TCP port 80 cluster is highly persistent, observed in ev-
ery time slot over the 24-hour period, with the number of
srcIP’s (web servers) fairly stable over time. The cluster
size over time shows a diurnal pattern, but otherwise does
not fluctuate dramatically. In addition, the packet and byte
counts of the cluster are considerably larger than the total
number of flows, indicating that on the average each flow
contains at least several packets and a few hundred bytes.

0 50 100 150 200 250 300
10

4

10
5

10
6

10
7

10
8

10
9

Time

C
lu

st
er

 s
iz

e

Flows
Packets
Bytes

(a) Cluster sizes

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

Time

R
el

at
iv

e
un

ce
rt

ai
nt

y

RU(srcPrt)
RU(srcIP)
RU(dstIP)

(b) RU measures

Figure 8: Cluster sizes (in flow, packet and byte
counts) and RU measures of the dstPrt 80 cluster
(aggregate web traffic) on L1 over time.

An overwhelming majority of the srcIP clusters in BC6,7,8

are corresponding to Web, DNS or Email servers. They
share very similar behavior characteristics, belonging to the
same BC’s, stable with relatively high frequency, and con-
taining flows with diverse packet/byte counts. Among the
remaining clusters, most are associated with http-alternative
services (e.g., 8080), https(443), real audio/video servers
(7070), IRC servers (6667), and peer-to-peer (P2P) servers
(4662). Most interestingly, we find three srcIP clusters with
service ports 56192, 56193 and 60638. They share similar
characteristics with web servers, having a frequency of 12,
9 and 22 respectively, and with diverse flow sizes both in
packet and byte counts. These observations suggest that

they are likely servers running on unusual high ports. Hence,
these cases represent examples of “novel” service behaviors
that our profiling methodology is able to uncover.

6.2 Heavy Hitter Host Behavior Profile
The second canonical behavior profile is what we call the

heavy-hitter host profile, which represents hosts (typically
clients) that send a large number of flows to a single or a few
other hosts (typically servers) in a short period of time (e.g.,
a 5-minute period). They belong to either the popular and
non-volatile srcIP BC18 [2,0,0] or BC19 [2,0,1], or the dstIP
BC6 [0,2,0] and BC7 [0,2,1]. The frequency of individual
clusters is varied, with a majority of them having medium
frequency, and almost all of them are stable. These heavy-
hitter clusters are typically associated with well-known ser-
vice ports (as revealed by the dominant state analysis), and
contain flows with highly diverse packet and byte counts.
Many of the heavy-hitter hosts are corresponding to NAT
boxes (many clients behind a NAT box making requests to a
few popular web sites, making the NAT box a heavy hitter),
web proxies, cache servers or web crawlers.

For example, we find that 392 and 429 unique srcIP clus-
ters from datasets L1 and L2 belong to BC18 and BC19.
Nearly 80% of these heavy hitters occur in at least 5 time
slots, exhibiting consistent behavior over time. The most
frequent ports used by these hosts are TCP port 80 (70%),
UDP port 53 (15%), TCP port 443 (10%), and TCP port
1080(3%). However, there are heavy-hitters associated with
other rarer ports. In one case, we found one srcIP clus-
ter from a large corporation talking to one dstIP on TCP
port 7070 (RealAudio) generating flows of varied packet and
byte counts. It also has a frequency of 11. Deeper inspec-
tion reveals this is a legitimate proxy, talking to an Audio
server. In another case, we found one srcIP cluster talking
to many dstIP hosts on TCP port 6346 (Gnutella P2P file
sharing port), with flows of diverse packet and byte counts.
This host is thus likely a heavy file downloader. These re-
sults suggest that the profiles for heavy-hitter hosts could
be used to identify these unusual heavy-hitters.

6.3 Scan/Exploit Profile
Behaviors of hosts performing scans or attempting to spread

worms or other exploits constitute the third canonical pro-
file. Two telling signs of typical scan/exploit behavior [30]
are i) the clusters tend to be highly volatile, appearing and

50

disappearing quickly, and ii) most flows in the clusters con-
tain one or two packets with fixed size, albeit occasionally
they may contain three or more packets (e.g., when per-
forming OS fingerprinting or other reconnaissance activi-
ties). For example, we observe that most of the flows using
TCP protocol in these clusters are failed TCP connections
on well-known exploit ports. In addition, most flows using
UDP protocol or ICMP protocol have a fixed packet size
that matches widely known signature of exploit activities,
e.g., UDP packets with 376 bytes to destination port 1434
(Slammer Worm), ICMP packets with 92 bytes (ICMP ping
probes). These findings provide additional evidence to con-
firm that such clusters are likely associated with scanning
or exploit activities.

A disproportionately large majority of extracted clusters
fall into this category, many of which are among the top
in terms of flow counts (but in general not in byte counts,
cf. Fig. 7). Such prevalent behavior signifies the sever-
ity of worm/exploit spread and the magnitude of infected
hosts (cf. [7, 8]). On the plus side, however, these hosts
manifest distinct behavior that is clearly separable from
the server/service or heavy hitter host profiles: the srcIP

clusters (a large majority) belong to BC2 [0,0,2] and BC20

[2,0,2], corresponding to hosts performing scan or spreading
exploits to random dstIP hosts on a fixed dstPrt using ei-
ther fixed or random srcPrt’s; the dstIP clusters (a smaller
number) belong to BC2 [0,0,2] and BC8 [0,2,2], reflecting
hosts (victims of a large number of scanners or attacks) re-
sponding to probes on a targeted srcPrt. Using specific
dstPrt’s that are targets of known exploits, e.g., 1434 (used
by SQL Slammer), the aggregate traffic behavior of exploits
is also evidently different from that of normal service traffic
behavior (e.g., web): the dstPrt clusters typically belong
to BC23 [2,1,2], but sometimes to BC2 [0,0,2], BC5 [0,1,2],
or BC20 [2,0,2], representing a relatively smaller number of
srcIP hosts probing a larger number of dstIP hosts on the
target dstPrt using either fixed or random srcPrt’s. This is
in stark contrast with normal service traffic aggregate such
as web (i.e., dstPrt 80 cluster), where a much larger num-
ber of clients (srcIP’s) talk to a relatively smaller number of
servers (dstIP’s) using randomly generated srcPrt’s, thus
belonging to dstPrt BC25 [2,2,1].

In addition to those dstPrt’s that are known to have
exploits, we also find several (srcIP) clusters that mani-
fest typical scan/exploit behavior, but are associated with
dstPrt’s that we do not know to have known exploits. For
example, we find that in one time slot a srcIP cluster is
probing a large number of destinations on UDP port 12827,
with a single UDP packet. This host could simply engage
in some harmless scanning on UDP port 12827, but it could
also be a new form of RATs (remote access trojans) or even
a precursor of something more malicious. Further inspec-
tion is clearly needed. Nonetheless it illustrates that our
profiling technique is capable of automatically picking out
clusters that fit the scan/exploit behavior profile but with
unknown feature values. This will enable network opera-
tors/security analysts to examine novel, hitherto unknown,
or ”zero-day” exploits.

6.4 Deviant or Rare Behaviors
We have demonstrated how we are able to identify novel or

anomalous behaviors that fit the canonical profiles but con-
tain unknown feature values (as revealed by the dominant

state analysis). We now illustrate how rare behaviors or de-
viant behaviors are also indicators of anomalies, and thus
worthy of deeper inspection. In the following, we present a
number of case studies, each of which is selected to highlight
a certain type of anomalous behavior. Our goal here is not
to exhaustively enumerate all possible deviant behavioral
patterns, but to demonstrate that building a comprehensive
traffic profile can lead to the identification of such patterns.

Clusters in rare behavior classes. The clusters in the
rare behavior classes by definition represent atypical behav-
ioral patterns. For example, we find three dstPrt clusters
(TCP ports 6667, 113 and 8083) suddenly appear in the
rare dstPrt BC15 [1,2,0] in several different time slots, and
quickly vanish within one or two time slots. Close examina-
tion reveals that more than 94% of the flows in the clusters
are destined to a single dstIP from random srcIP’s. The
flows to the dstIP have the same packet and byte counts.
This evidence suggests that these dstIP’s are likely experi-
encing a DDoS attack.

Behavioral changes for clusters. Clusters that exhibit
unstable behaviors such as suddenly jumping between BCs
(especially when a frequent cluster jumps from its usual BC
to a different BC) often signify anomalies. In one case,
we observe that one srcIP cluster (a Yahoo web server) on
L1 makes a sudden transition from BC8 to BC6, and then
moves back to BC8. Before the transition, the server is
talking to a large number of clients with diverse flow sizes.
After the behavior transition to BC6, a single dstIP ac-
counts for more than 87% of the flows, and these flows all
have the same packet and byte counts. The behavior of the
particular client is suspicious. This example illustrates how
fundamental shifts in communication patterns can point a
network security analyst to genuinely suspicious activities.

Unusual profiles for popular service ports. Clusters
associated with common service ports that exhibit behaviors
that do not fit their canonical profiles are of particular con-
cern, since these ports are typically not blocked by firewalls.
For example, we have found quite a few srcIP clusters in
BC2 and BC20 that perform scans on dstPrt 25, 53, 80,
etc. Similar to the clusters with known exploit ports, these
srcIP clusters have small packet and byte counts with very
low variability. Note that these common service ports are
generally used by a very large number of clients, thereby
making it impossible to examine the behavior of each client
individually. Our profiling technique, however, can auto-
matically separate out a handful of potentially suspicious
clients that use these ports for malicious activities.

7. CONCLUSIONS
Extracting significant or interesting events from vast masses

of Internet traffic has assumed critical importance in light
of recent cyber attacks and the emergence of new and dis-
ruptive applications. In this paper, we have used data-
mining and information-theoretic techniques to automati-
cally discover significant behavior patterns from link-level
traffic data, and to provide plausible interpretation for the
observed behaviors. We have demonstrated the applicabil-
ity of our profiling approach to the problem of detecting
unwanted traffic and anomalies. We are currently in the pro-
cess of implementing an on-line anomaly detection system
based on our profiling methodology, and carefully evaluat-

51

ing false positives and false negatives of this methodology
using trace-driven traffic simulations. In addition, we are
looking into the problems of correlating anomalies on multi-
ple links, handling changes in traffic patterns due to routing
updates, and addressing “stealthy” attacks that attempt to
mask their malicious activities with seemingly benign traf-
fic. Finally, we also would like to understand the implica-
tions and potential benefits of extending our profiling ap-
proach beyond flow-level header information to application-
level payload carried in IP packets.

Acknowledgement
We are grateful to Jean Bolot and Travis Dawson of Sprint
ATL for valuable feedback. We would also like to thank
the anonymous reviewers for helpful comments. Kuai Xu
and Zhi-Li Zhang were supported in part by the National
Science Foundation under the grants ITR 0085824 and CNS
0435444 as well as ARDA grant AR/F30602-03-C0243.

8. REFERENCES
[1] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen,

“Sketch-based Change Detection: Methods,
Evaluation, and Applications,” in Proc. of
ACM/USENIX IMC, 2003.

[2] G. Cormode, F. Korn, S. Muthukrishnan and D.
Srivastava, “Finding hierarchical heavy hitters in data
streams,” in Proc. of VLDB, 2003.

[3] S. Staniford, J. Hoagland, and J. McAlerney,
“Practical automated detection of stealthy portscans,”
Journal of Computer Security, vol. 10, pp. 105–136,
2002.

[4] J. Jung and V. Paxson and A. Berger and H.
Balakrishna, “Fast portscan detection using sequential
hypothesis testing,” in Proc. of IEEE Symposium on
Security and Privacy, 2004.

[5] J. Jung, B. Krishnamurthy, and M. Rabinovich,
“Flash Crowds and Denial of Service Attacks:
Characterization and Implications for CDNs and Web
Sites,” in Proc. of International World Wide Web
Conference, 2002.

[6] N. Weaver, V. Paxon, S. Staniford and R.
Cunningham, “A taxonomy of computer worms,” in
Proc. of CCS Workshop on Rapid Malcode(WORM),
2003.

[7] V. Yegneswaran , P. Barford and J. Ullrich, “Internet
intrusions: global characteristics and prevalence,” in
Proc. of ACM SIGMETRICS, 2003.

[8] R. Pang, V. Yegneswaran, P. Barford, V. Paxson and
L. Peterson, “Characteristics of Internet Background
Radiation,” in Proc. of ACM SIGCOMM IMC, 2004.

[9] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing
Network-Wide Traffic Anomalies,” in Proc. of ACM
SIGCOMM, 2004.

[10] A. Lakhina, M. Crovella and C. Diot,
“Characterization of Network-Wide Anomalies in
Traffic Flows,” in Proc. of ACM SIGCOMM IMC,
2004.

[11] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal
analysis of network traffic anomalies,” in Proc. of
ACM SIGCOMM IMW, 2002.

[12] “SNORT,” http://www.snort.org/.

[13] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time,” Computer Networks, vol. 31,
pp. 2435–2463, Dec 1999.

[14] MINDS, “Minnesota Intrusion Detection System,”
http://www.cs.umn.edu/research/minds/.

[15] A. Lazarevic, L. Ertoz, A. Ozgur, J. Srivastava and V.
Kumar, “A comparative study of anomaly detection
schemes in network intrusion detection,” in Proc. of
SIAM Conf. Data Mining, 2003.

[16] W. Lee and D. Xiang, “Information-Theoretic
Measures for Anomaly Detection,” in Proc. of IEEE
Symposium on Security and Privacy, 2001.

[17] C. Estan, S. Savage, and G. Varghese, “Automatically
Inferring Patterns of Resource Consumption in
Network Traffic,” in Proc. of ACM SIGCOMM,
September 2003.

[18] F. Hernandez-Campos, A. B. Nobel, F. D. Smith, and
K. Jeffay, “Statistical Clustering of Internet
Communication Patterns,” in Proc. of Symposium on
the Interface of Computing Science and Statistics,
2003.

[19] S. J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern, and
C. Hu, “Behavior Profiling of Email,” in Proc. of
NSF/NIJ Symposium on Intelligence & Security
Informatics, 2003.

[20] T. Karagiannis, K. Papagiannaki and M. Faloutsos,
“BLINC: Multilevel Traffic Classification in the
Dark,” in Proc. of ACM SIGCOMM, August 2005.

[21] A. Lakhina, M. Crovella and C. Diot, “Mining
Anomalies Using Traffic Feature Distributions,” in
Proc. of ACM SIGCOMM, August 2005.

[22] C. E. Shannon and W. Weaver, The Mathematical
Theory of Communication. University of Illinois
Press, 1949.

[23] T. Cover and J. Thomas, Elements of Information
Theory. Wiley Series in Telecommunications, 1991.

[24] k. claffy, H.-W. Braun, and G. Polyzos, “A
parameterizable methodology for Internet traffic flow
profiling,” IEEE Journal of Selected Areas in
Communications, 1995.

[25] K. Xu, Z.-L. Zhang and S. Bhattacharyya, “Profiling
Internet Backbone Traffic: Behavior Models and
Applications,” Sprint ATL Research Report
RR05-ATL-020777, Tech. Rep., February 2005.

[26] K. Krippendorff, Information theory: structural
models for qualitative data. Sage Publications, 1986.

[27] R. Cavallo and G. Klir, “Reconstructability analysis of
multi-dimensional relations: A theoretical basis for
computer-aided determination of acceptable systems
models,” International Journal of General Systems,
vol. 5, pp. 143–171, 1979.

[28] M. Zwick , “An overview of reconstructability
analysis,” International Journal of Systems &
Cybernetics, 2004.

[29] M. Jordan, “Graphical models,” Statistical Science,
Special Issue on Bayesian Statistics, vol. 19, pp.
140–155, 2004.

[30] K. Xu, Z.-L. Zhang and S. Bhattacharyya, “Reducing
Unwanted Traffic in a Backbone Network,” in Proc. of
Steps to Reducing Unwanted Traffic on the Internet
Workshop (SRUTI), July 2005.

52

Estimation of False Negatives in Classification ∗†

Sandeep Mane, Jaideep Srivastava
Department of Computer Science

University of Minnesota
Minneapolis, USA

{smane, srivasta}@cs.umn.edu

San-Yih Hwang
Department of Information Management

National Sun-Yat-Sen University
Kaohsiung, Taiwan

shwang@cs.umn.edu

Jamshid Vayghan
IBM Corporation

Minneapolis, USA
vayghan@us.ibm.com

Abstract

In many classification problems such as spam detection
and network intrusion, a large number of unlabeled test
instances are predicted negative by the classifier. How-
ever, the high costs as well as time constraints on an ex-
pert’s time prevent further analysis of the “predicted false”
class instances in order to segregate the false negatives from
the true negatives. A systematic method is thus required
to obtain an estimate of the number of false negatives. A
capture-recapture based method can be used to obtain an
ML-estimate of false negatives when two or more indepen-
dent classifiers are available. In the case for which inde-
pendence does not hold, we can apply log-linear models to
obtain an estimate of false negatives. However, as shown
in this paper, lesser the dependencies among the classifiers,
better is the estimate obtained for false negatives. Thus, ide-
ally independent classifiers should be used to estimate the
false negatives in an unlabeled dataset. Experimental re-
sults on the spam dataset from the UCI Machine Learning
Repository are presented.

1 Introduction

Detecting intrusions in a computer network can be con-
sidered as a 2-class classification problem. The task is to
analyze each network flow and label it as ‘suspicious’ or
‘normal’. 1 There are some unique characteristics of this
problem. First, the rate of data generation is very high, e.g.
200,000-300,000 connections per minute. Second, the oc-

∗Sandeep Mane’s and Jaideep Srivastava’s work was supported in part
by NSF Grant ISS-0308264, ARDA Grant F30602-03-C-0243, and a grant
from IBM. San-Yih Hwang’s work was supported by a Fulbright scholar-
ship. Jamshid Vayghan’s work was supported by the IBM Corporation.

†The authors would like to acknowledge comments from Prof. Vipin
Kumar and Dr. Philip Yu which led to the formulation of this problem.

1Data mining is suitable for detecting novel, i.e. previously unseen,
attacks. In such a case, automated techniques can only identify unusual or
suspicious behavior. An expert analyst must then examine it to determine
if it is truly an intrusion.

currence of ‘intrusions’ is much rarer than the occurrence
of ‘normal’ traffic. For such a dataset, a classifier will la-
bel relatively very few instances as positive as compared to
those labeled negative. The predicted positive instances can
be given to an expert who can further analyze them in or-
der to separate the true positives from the false positives.
However, the negatively classified instances, being much
larger in number, would require an unacceptable amount
of time to separate the false negatives from the true nega-
tives. Thus, getting a complete picture of classifier accu-
racy, e.g. ROC curves, is infeasible. However, since the
cost of a false negative may be much higher than of a false
positive, e.g. an actual attack being missed, obtaining at
least an estimate of false negatives predicted by the clas-
sifier is required. This, for example, can be used to es-
timate false negatives detected by two intrusion detection
systems (say SNORT – http://www.snort.org/ and MINDS –
http://www.cs.umn.edu/research/minds/MINDS.htm) for an
unlabeled dataset, and then comparing their performance.

In the commercial domain, an example of this problem
is the estimation of missed opportunities during the sales
opportunity analysis process (Vayghan et al. [11]). Here,
once a sales opportunity has been classified as negative (not
promising) by a human expert (e.g. a business manager),
there is no further analysis of that opportunity in order to
verify whether it was actually unprofitable or there was a
judgment error. A method for estimating the number of
false negatives predicted by the decision maker would be
useful to estimate the accuracy of the human expert w.r.t. the
ground truth (actual outcome). Furthermore, for an individ-
ual decision maker, it will help identify strengths and weak-
ness in different domains of opportunities, e.g. the ability to
identify ‘hardware-selling opportunities’ vs. the ability to
identify ‘software-services opportunities’.

The examples above motivate the need for estimating
false negatives for a classifier on an unlabeled dataset. In
this paper we present a methodology for obtaining such an
estimate for false negatives based on the classical capture-
recapture method for parameter estimation in statistics. In
addition, we also illustrate a number of important issues

Appendix D

60

that need to be explored in making the application of this
method practicable. The remainder of this paper is orga-
nized as follows: section 2 provides a brief overview of the
approach and related work, section 3 presents experimental
results, and section 4 concludes future research directions.

2 General approach and related work

Hook and Regal [8] present a survey on false negative
estimation in epidemiology using two or more detection
methods (classifiers) and the capture-recapture method [4].
Goldberg and Wittes [6] present a generalized approach to
false estimation for the multi-class classification problem,
which is illustrated using the 2-class case. Consider a la-
beled dataset which is classified by a {True, False}-class
classifier, whose confusion matrix for the classifier is shown
in the Table 1.

Here, TP, FP,Actual class
True False Total

Predicted True TP FP PP
class False FN TN PN

Total AP AN N

Table 1: Confusion matrix for a classifier

FN and TN rep-
resent the num-
bers of true pos-
itives, false pos-
itives, false neg-
atives and true

negatives respectively. Also, AP, AN, PP and PN are the
numbers of actual positives, actual negatives, predicted
positives and predicted negatives instances, while N is the
total number of instances in the dataset. Actual positives
are the instances in the dataset whose actual (real) class is
True. The performance of the classifier can be determined
using this confusion matrix.

However, for a skewed-class distribution classifier with
a very high data volume, e.g. network intrusion detection,
for a given unlabeled dataset only the predicted positive in-
stances are manually classified into true positives and false
positives. The predicted negative instances, being very large
in number, are not analyzed further by the human expert.
Thus, the confusion table for the classifier for the dataset
will look as shown in Table 2.

The notationActual class
True False

Predicted True TP FP
class False FN + TN

Table 2: Confusion matrix for a rare-
class, large-dataset classifier.

used in Table 2 is
identical to that in
Table 1. Here, only
the total (TP+FN)
can be obtained.
Now, if AP in the

dataset is known, then, from the Table 1, FN can be deter-
mined. (This is because TP+FN=AP) Thus, the method for
estimation of FN is based on the estimation of AP in the
dataset.

The main idea behind the method for estimating actual
positives using the capture-recapture method can be ex-
plained using the following example problem.

Problem: Estimate the number of fish in a pond.
Estimation Method: A two step method, called the ‘cap-
ture’ and ‘recapture’ steps, is used for this. In step one (cap-
ture), let f1 be the number of fish caught, which are then
marked (presumably with an indelible ink) and released in
the lake. In the second step (recapture), let f2 be the num-
ber of fish that are caught (presumably after sufficient time
to allow the fishes to mix, but not mate and produce more
fishes, or even die). Let f12 be the number of fish caught
in second step, which are found to be marked. Under the
stated assumptions, f12 will follow a hyper-geometric dis-
tribution, since the process is equivalent to ‘selection with
replacement’. Thus, the estimate for the total number of the
fish in the lake is

(
f1∗f2

f12

)
. Now, if the actual positive in-

stances in the dataset are compared to fish in the lake, then
the capture-recapture methodology can be used to estimate
the number of actual positives in the dataset, given that the
two steps (samplings) are independent of each other. Thus,
for applying this technique, there is a need for at least two
independent classifiers (detection methods). It should be
noted that this method can be extended to the case where
more than two independent samplings are available. �

We now explain the method for estimating the number of
actual positives using the capture-recapture method and the
classifiers in detail.

SupposeAPs detected
by classifier 1
Yes No Total

APs detected Yes n11 n12 n2

by classifier 2 No n21 n22 n4

Total n1 n3 n

Table 3: Contingency table of actual positives
for the case of two classifiers

that two
independent
classifiers
classify the
two-class
dataset. Let
n1 and n2 be
the number

of true positive instances detected by the first and second
classifiers, respectively. Let n11 be the number of true
positives detected by both classifiers. Also, as shown in
Table 3, let n12 be the actual positive instances classified
as True by only the first classifier and let n21 be the
actual positive instances classified as True by only the
second classifier. The value n22, the number of actual
positive instances not detected (i.e. classified False) by
both classifiers, is unknown and needs to be estimated. The
sum n of the values in all the cells of the Table 3 is equal
to the number of actual positives in the dataset. If the two
classifiers are independent, then the ML-estimate for the
unknown value n22, as shown by Goldberg and Wittes [6],
is : n22 =

(
n12∗n21

n11

)
.

Wittes et al. [14, 13] discuss the problems arising from
decision making in the capture and recapture steps being
dependent. If so, i.e. when independence does not hold
between the variables in the contingency table, log-linear
models (Knoke and Burke [9]) must be used for the con-

61

tingency table. Fienberg [5] describes a method for con-
structing log-linear models for the contingency table in such
cases and obtaining the best-fitting model. In this approach,

Figure 1: Method for estimation of false negatives.

m dimensional

False

False

True

DATA

One cell with unknown value

FPFalse

TP

TP

TP

True

True CONTINGENCY TABLE
EXPERTClassifier m

the number of APs in the data.)
contingency table is equal to
(The sum of all cells in the

Classifier 2

Classifier 1

FP

EXPERT

FP

EXPERT

the conditional relationship between two or
more discrete categorical variables (here,
the class labels assigned by the classi-
fiers are discrete categorical variables) is
analyzed by taking the natural logarithm
of the cell frequencies within a contin-
gency table. For example, for the con-
tingency Table 3, the following model
is used to represent the expected fre-
quency of each cell (i,j) in the table –

Ln(Fij) = µ + λA
i + λB

j + λAB
ij

where, Ln(Fij) is the log of the expected
cell frequency of the instances in the cell
(i,j) in the contingency table; µ is the over-
all mean of the natural log of the expected frequencies; A
and B are the variables (APs detected by each classifier); i,j
refer to the categories within the variables; λA

i is the main
effect of the variable A on the cell frequency; λB

i is the main
effect of the variable B on the cell frequency; and λAB

ij is the
interaction effect of variables A and B on cell frequency.

The basic strategy involves fitting a set of such models
to the observed frequencies in all cells of the table. In fit-
ting these models, no distinction is made between indepen-
dent and dependent variables, i.e. log-linear models demon-
strate the general association between variables. Different
sets of models depending upon various possible dependen-
cies among the variables are fitted to the table. A log-linear
model for the entire table can thus be represented as a set
of expected frequencies (which may or may not represent
the observed frequencies). Such a model is described in
terms of the marginals it fits and the dependencies that are
assumed to be present in the data. Iterative computation
methods for fitting such a model to a table are described in
Christensen [2]. Using deviance measures, e.g. the likeli-
hood ratio or χ2 measure, as a measure of the goodness-of-
fit for a model, the best-fitting, parsimonious (least number
of dependencies) model for the table is determined. This
model is then used to estimate of the unknown value n22.
The purpose of log-linear modeling is thus to choose min-
imum dependencies in a model for the given cells, while
achieving a good goodness-of-fit. This method requires is
computationally intensive since models corresponding to all
possible dependencies among the variables need to be com-
puted. The disadvantage of this method is that a sufficiently
large amount of data (cell values) is required for obtaining a
good estimation of the contingency table model. Also, high
degrees of association among the variables makes it difficult
to comprehend the model. 2

2The capture-recapture method for false estimation thus requires mod-
eling of concepts for independent, quasi-independent and dependent con-

The Figure 1 illustrates the method of estimating actual
positives (and hence false negatives) using m classifiers.
Given m different classifiers and a dataset, the number of

true positives detected by each of the m classifiers is de-
termined and cross-tabulated in a contingency table. One
cell in the contingency table will be unknown, which cor-
responds to the number of actual positives not detected by
all m classifiers. Using ML-estimation technique or log-
linear model (depending upon whether independence does
or does not hold), an estimate for the unknown cell is ob-
tained. Thus, the total number of actual positives is esti-
mated. The assumption to be noted is that the classifiers
used in the capture-recapture method do a good job of keep-
ing the number of false positives low. This helps to keep the
number of instances to be manually classified by experts
low. Once an estimate of the number of actual positives,
ÂP in dataset has been obtained, the same dataset is clas-
sified using a classifier whose performance (accuracy) is to
be evaluated. The instances predicted True by the classi-
fier are analyzed manually to separate TP and FP. Next, the
estimate ÂP is used to estimate the false negatives (F̂N)
and true negatives (T̂N) detected by the classifier. Using
these estimates, the performance (accuracy) of the classifier
is evaluated.

3 Experimental work

For experimental work, a two-class classification prob-
lem using the SPAM email dataset [1] was used. Goldberg
and Wittes [6] defined independence of two classifiers as
disjoint feature sets. Instead of using disjoint condition as
the only criterion for independence, we quantified indepen-
dence in terms of independence of feature sets, using mu-
tual information [3]. Three disjoint subsets for the dataset
were obtained and three different decision tree classifiers
A, B and C were trained (using WEKA [12]). As all the
features were continuous and due to the limited amount of

tingency tables which are summarized by Goodman [7].

62

Figure 2: Pair-wise mutual information given class ‘True’ for fea-
tures used by the classifiers

0

5

10

15

20

25

0
5

10
15

20
25

7.2

7.25

7.3

7.35

7.4

Features : 1st classifier

Pairwise mutual information for features of the two classifiers

Features : 2nd classifier

M
ut

ua
l i

nf
or

m
at

io
n

(a) Classifiers A and B

0

5

10

15

20

25

1
2

3
4

5
6

7
8

7.23

7.24

7.25

7.26

7.27

7.28

7.29

Features : 1st classifier

Pairwise mutual information for features of the two classifiers

Features : 2nd classifier

M
ut

ua
l i

nf
or

m
at

io
n

(b) Classifiers A and C

training data, it was not possible to decide the independence
of two feature subsets (in terms of mutual information). In
other words, it was not possible to estimate the exact mutual
information between two feature subsets, each having suffi-
ciently large number of continuous features. This is an ef-
fect of the curse of dimensionality. To overcome this, we in-
stead computed the pair-wise mutual information (MI) [10]
between the individual features pairs for each pair of clas-
sifiers. The plots of MI for two pairs of classifers, namely
(A,B) and (A,C), are shown in Figure 2. 3 It was noted that
the feature pairs for the classifiers A and B were on average
more pair-wise dependent than feature pairs of classifiers A
and C.

The classifiers A, B and C were used to classify the test
dataset and the numbers of TPs detected by each classifier
were determined. The TPs for each pair of classifiers were
cross-tabulated into a contingency table and then the num-
ber of APs not detected by all classifiers was estimated us-
ing log-linear models. Since the test dataset used was la-
beled, the number of APs actually missed by all the classi-
fiers was also determined. The results were summarized in
the Table 4. The classifiers A, B and C had an approximate

Classifiers No. of APs not detected No. of APs not detected
used by both classifiers by both classifiers

(Using labels for test data) (Using log-linear modeling)
A and B 31 4
A and C 5 3
B and C 8 3

Table 4: Cross-tabulation of missed APs and estimated APs.

training accuracy of 95%, 93% and 74% respectively. Thus,
it is noted that even though classifier B had higher accuracy
than classifier C, the pair of classifiers A and C gave a better
estimate of the total number of actual positives than the pair
of classifiers A and B.

3Note: The range for Z-axis is different for two subfigures. Also light
color represents more MI and vice versa. In subfigure (a), the features of
the first classifier (A) were plotted along the X-axis and that of the second
classifier (B) along the Y-axis. Likewise for subfigure(b).

4 Conclusions

In this paper, a capture-recapture based method for the
estimation of false negatives has been presented. The need
for having independent classifiers for the method of esti-
mation of false negatives was illustrated using a real-world
dataset. Furthermore, it was shown that if the pair-wise MI
between the features of a pair of classifiers is low – even if
that pair of classifiers has relatively lower accuracy than an-
other pair of classifiers – it may be possible to obtain a better
estimate of missed APs using the former pair. Thus, a better
estimate for total number of APs, and hence for false nega-
tives, is obtained using independent classifiers. Our current
research will address the issues in obtaining sufficiently ac-
curate and independent classifiers for a given dataset.

References

[1] C. Blake and C. Merz. UCI repository of machine learning
databases, 1998.

[2] R. Christensen. Log-Linear Models and Logistic Regression.
Springer-Verlag Inc, New York, USA, 1997.

[3] T. M. Cover and J. A. Thomas. Elements of Information
Theory. New York: Wiley, 1991.

[4] J. N. Darroch. The multiple-recapture census: I. estimation
of a closed population. Biometrika, 45(3/4), 1958.

[5] S. E. Fienberg. An iterative procedure for estimation in con-
tingency tables. Ann. Math. Stat., 41(3), 1970.

[6] J. Goldberg and J. Wittes. The estimation of false negatives
in medical screening. Biometrics, 34(1):77–86, March 1978.

[7] L. A. Goodman. The analysis of cross-classified data: in-
dependence, quasi-independence and interactions in contin-
gency tables with or without missing entries. J. Amer. Stat.
Assn., 63(324), 1968.

[8] E. B. Hook and R. R. Regal. Capture-recapture methods
in epidemiology: methods and limitations. Epid. Reviews,
17(2), 1995.

[9] D. Knoke and P. Burke. Log-Linear Models. Sage Publica-
tions, Inc. USA, 1980.

[10] R. Moddemeijer. On estimation of entropy and mutual in-
formation of continuous distributions. Sig. Proc., 16, 1989.

[11] J. Vayghan, J. Srivastava, S. Mane, P. Yu, and G. Ado-
mavicius. Sales opportunity miner: Data mining for auto-
matic evaluation of sales opportunity. Book Chapter in New
Generation of Data Mining Applications edited by Mehmed
Kantardzic and Jozef Zurada, 2004.

[12] I. H. Witten and E. Frank. Data Mining: Practical machine
learning tools with Java implementations. Morgan Kauf-
mann, San Francisco, 2000.

[13] J. Wittes. Applications of a multinomial capture-recapture
model to epidemiological data. J. Amer. Stat. Assn., 69(345),
1974.

[14] J. Wittes, T. Colton, and V. Sidel. Capture-recapture meth-
ods for assessing the completeness of case ascertainment
when using multiple information sources. J. Chronic Dis-
eases, 27(1), 1974.

63

Estimating Missed Actual Positives Using Independent
Classifiers ∗

Sandeep Mane
Dept. of Computer Science

University of Minnesota
Minneapolis, USA

smane@cs.umn.edu

Jaideep Srivastava
Dept. of Computer Science

University of Minnesota
Minneapolis, USA

srivasta@cs.umn.edu

San-Yih Hwang
Dept. of Info. Mgmt.

NSYSU
Kaohsiung, Taiwan

syhwang@mis.nsysu.edu.tw

ABSTRACT
Data mining is increasingly being applied in environments having
very high rate of data generation like network intrusion detection
[7], where routers generate about 300,000 – 500,000 connections
every minute. In such rare class data domains, the cost of missing a
rare-class instance is much higher than that of other classes. How-
ever, the high cost for manual labeling of instances, the high rate
at which data is collected as well as real-time response constraints
do not always allow one to determine the actual classes for the col-
lected unlabeled datasets. In our previous work [9], this problem
of missed false negatives was explained in context of two different
domains – “network intrusion detection” and “business opportunity
classification”. In such cases, an estimate for the number ofsuch
missed high-cost, rare instances will aid in the evaluationof the
performance of the modeling technique (e.g. classification) used.
A capture-recapture method was used for estimating false nega-
tives, using two or more learning methods (i.e. classifiers). This
paper focuses on the dependence between the class labels assigned
by such learners. We define the conditional independence forclas-
sifiers given a class label and show its relation to the conditional
independence of the features sets (used by the classifiers) given a
class label. The later is a computationally expensive problem and
hence, a heuristic algorithm is proposed for obtaining conditionally
independent (or less dependent) feature sets for the classifiers. Ini-
tial results of this algorithm on synthetic datasets are promising and
further research is being pursued.

Categories and Subject Descriptors
H.2.8 [Database management]: Database Applications—data min-
ing; G.3 [Probability and statistics]: Contingency table analysis;
H.1.1 [Models and principles]: Systems and infomation theory—
information theory

∗S. Mane’s and J. Srivastava’s work was supported by NSF Grant
ISS-0308264, ARDA Grant F30602-03-C-0243, and a grant from
IBM. S.-Y. Hwang’s work was supported by a Fulbright scholar-
ship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’05, August 21–24, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-135-X/05/0008 ...$5.00.

General Terms
Algorithms, Measurement.

Keywords
false negative, capture-recapture method, conditional independence
of classifiers given class label, conditional independenceof features
given class label, conditional mutual information.

1. INTRODUCTION
In many data mining or machine learning domains, the distri-

bution of the data instances (or just instances) over classes is ex-
tremely skewed in addition to a high rate of data generation.For
example, data mining is being applied to the problem of network
intrusion detection (Lazarevic et al. [7]), where routers generate
about 300,000 – 500,000 connections every minute. Classification
(and/or anomaly detection) techniques are used to determine if a
given network connection belongs to class ‘intrusion’ or class ‘nor-
mal’. A normal security analyst may not be able to examine more
than about 10 reported events per minute. The manual labeling of
the remaining connections is constrained by both the cost aswell
as time requirements. Hence, in this domain, only instancespre-
dicted as “intrusions” (rarer class – also lesser number of instances
are predicted as intrusions) are usually analysed to check whether
they are actually intrusions or not. However, there is no or very lit-
tle analysis to determine whether there are any intrusions that may
have been missed by the intrusion detection system. A methodof
false negative estimation was illustrated for such analysis in our
previous work (Mane et al. [9]). The method also allows to obtain
an estimate of the distribution of classes in an unlabeled dataset
through much less effort of manual labeling.

The method of false negative estimation makes use of model-
ing the data in a contingency table, which is obtained by cross-
tabulating the number of true positives detected by severalclassi-
fiers. However, since the number of true positives detected by each
classifier is small, the modeling technique used for the contingency
table may not be able to capture the dependencies between cell fre-
quencies. This motivated us to study and to show that independence
(or to be more practical, low dependence) between the classifiers
used in this method will aid in reducing the error in the estimate. A
fundamental question that remains open is “how to train classifiers
that are independent ?” In this paper, we address this question.
First, we show the relationship between the conditional indepen-
dence of models and the feature sets used by the models. This lays
the theoretical groundwork for our filter-based “feature subset se-
lection algorithm” to obtain less dependent models. Note that our
approach can be extended to use techniques like anomaly detection
and semi-supervised learning.

Appendix E

64

One cell with unknown value

Filter based feature

EXPERT

FP

Classifier 1 TPTrue

False
DATA

FP

Classifier 2 EXPERT
True

False

1st

classifier
2nd

classifier

CONTINGENCY TABLE

(The sum of all cells in the
contingency table is equal to
the number of APs in the data.)

TP

Yes

Yes No

No

subsets selection

Figure 1: Estimating actual positives in an unlabeled dataset.

The remainder of this paper is organized
as follows – the section 2 explains false
negative estimation problem using capture-
recapture method and then defines the
problem addressed in this paper. Section
3 provides theoretical background. Section
4 shows a practical approach. Section 5 ex-
plains some experimental results. Section 6
draws conclusions and identifies future re-
search directions.

2. BACKGROUND
The main idea behind the method of es-

timation of false negatives (Goldberg and
Wittes [5], Hook and Regal [6]) is to first
estimate the number of actual positives
(APs) in the unlabeled dataset. Using this
estimate for actual positives, an estimate
for false negatives is obtained. The capture-recapture method (Dar-
roch [3]) is used for such estimation of the number of actual posi-
tives in the unlabeled dataset using two or more different classifica-
tions1 of the dataset. The rare class is treated as positive class and
the remaining class(es) is(are) treated as negative class(es). This
keeps the number of predicted positive classes low and hencethey
can be manually segregated into true positives and false positives.

The Figure 1 illus- APs detected
by classifier 1
Yes No

APs detected Yes n11 n10

by classifier 2 No n01 n00

Table 1: Contingency table of actual
positives in an unlabeled dataset.

trates the overall method-
ology for estimating ac-
tual positives in an un-
labeled dataset using two
classifiers. Given two
different classifiers and
an unlabeled dataset, the
number of true positives
detected by each of the two classifiers is determined and these are
then cross-tabulated in a contingency table, as shown in thetable 1.

The sum of all the cells in this Actual class
True False

Predicted True TP FP

class False dFN dTN

dAP

Table 2: Application of es-
timate of actual positives:
Confusion matrix for a
classifier.

contingency table equals the num-
ber of actual positives in the dataset.
Only one cell in the contingency
table will be unknown (n00), which
corresponds to the number of ac-
tual positives not detected by both
classifiers. If independence holds
between the cell frequencies of the
contingency table, then ML- esti-
mation techniques can be used to
estimate the unknown value (bn00 = n01×n10

n11
). In case indepen-

dence does not hold between the cell frequencies, log-linear models
can be used to estimate the unknown cell (bn00). Thus, an estimate
for total number of actual positives in the dataset is obtained. An
implicit assumption made here is that the classifiers used inthe
capture-recapture method do a good job of keeping the numberof
false positives low (i.e. they have sufficiently good accuracy). This
helps to keep the number of instances to be manually classified by
experts low.

Once an estimate for the missing cell, and hence the total num-
ber of actual positives, is made (i.ecAP for the dataset has been ob-
tained), the same dataset is then classified using a classifier whose
performance (accuracy) is to be evaluated. As shown in table2, the
instances predictedTrue by the classifier are analyzed manually to
separate true positives from false positives. The estimatefor
1called “views” by Blum and Mitchell [1]

cAP is used to obtain an estimate for false negatives (cFN) and true
negatives (dTN) detected by a classifier. Using these estimates, the
performance (accuracy) of the classifier is evaluated.

2.1 Example illustrating the need for condi-
tional independence of classifiers:

Before we proceed further, we present an example to illustrate
the effect of independence of cell frequencies on the error in the
estimate obtained forbn00. We consider the same setting (two-class
problem using two classifiers), as used previously in table 1.

APs detected Pr(n11) (Pr(n11)+Pr(n01)) bn00 Error
n11 n01 n10 n00 * (Pr(n11)+Pr(n10)) ML-estimate |n00−bn00|

n00

6 0 0 4 0.6 0.36 0 100%
5 1 1 3 0.5 0.36 1 67.7%
4 2 2 2 0.4 0.36 1 50%
3 3 3 1 0.3 0.36 3 200%
2 4 4 0 0.2 0.36 8 ∝

Table 3: Lesser is the dependence among cells in contingency
table, better is the estimatebn00.

The table 3 illustrates the need for independence of classifiers
using a synthetic two-class example for estimating actual positives
using two classifiers. Let us assume that each classifier has acon-
stant accuracy = 60 % for the positive rare class and the unlabeled
dataset has 10 actual positive instances (for ease of explaination,
we have used small numbers). Then, the rows in table 3 represent
all the possible scenarios for actual positives detected bythe clas-
sifiers (with accuracy condition met). The probabilities inthe fifth
and sixth column are conditioned on the actual positive class. For
example, for the first row, Pr(n11) = (n11/Total number of actual
positives)= 6/10 = 0.6 . The fourth column (n00) represents
the actual number of missed actual positives while the second last
column (bn00) represents ML-estimate for the fourth column (ob-
tained using the first three columns). From the table, it is noted that
with accuracy remaining the same, as the classifiers become more
(positively or negatively) dependent on each other, with respect to
the number of true positives identified by each classifier, the error
in the predicted estimate for the number of actual positivesmissed
by both classifiers increases. This can be noted from the lastcol-
umn of the table 3. This example thus demonstrates the need for
independence of classifiers.

To best of the authors’ knowledge, little research has been car-
ried out related to independence of classifiers. Kuncheva etal. [8]
have demonstrated that, opposite to the common notion, negative
dependence may be an asset for classifier fusion. They have illus-
trated this using a table similar to table 3 for a synthetic dataset.

65

However, their work does not address the issue of how to obtain
independent or dependent classifiers. Blum and Mitchell [1]speak
about the conditional independence of features of classifiers given
a label. There is some similarity between this paper and their work
as regards of this definition. However, this paper is less restrictive
about the probability distributionD of instances over the features
than their work, as will be illustrated later on.

2.2 Problem definition
An important assumption in the method using ML-estimates is

that two or more feature sets are available for a dataset suchthat
the classifiers trained using those feature sets are independent. In
case of the estimates using log-linear model, lesser is the depen-
dency between the variables (class labels), better will be the esti-
mate for actual positives obtained using log-linear model.This is
because lesser are dependencies between variables in the contin-
gency table, lesser will be the number of parameters that must be
estimated for the log-linear model. Another important observation
for a rare class problem is that the data (i.e number of true positives
detected by each classifier) available for the contingency table (Ta-
ble 1) is small. Thus, lesser are the dependencies between variables
in the contingency table, better is the estimate obtained using the
available small frequencies in cells of the contingency table.

This motivates us to define the main problem addressed in this
paper –
“Given a labeled dataset with a set of features, what is an optimal
way to train independent (or less dependent) classifiers that will be
used in the capture-recapture based method for estimating actual
positives in other unlabeled datasets?”

3. THEORETICAL FOUNDATION

3.1 Terminology and basic definitions
This work will continue using a two classC = {True ,False}

problem of estimating the actual positives using two classifiers.
Other notations used in this paper are – a bold upper case symbol
represents a set of features, bold lower case symbol represents val-
ues of the set of features for an instance, normal upper case symbol
represents a single feature while normal lower case symbol repre-
sents the value that a single feature can take. Also, a symbolhaving
calligraphic style font is used to represent a set of values,either for
a single feature or for a set of features.

3.2 Conditional independence of classifiers
given class label

The table 1 motivates us to begin by formally defining what is
conditional independence of classifiers given a class label.

DEFINITION 1. Consider a 2-class,{True ,False}, classifica-
tion problem. Letp be an instance whose actual class isTrue. Let
C1 be the class assigned by the1st classifier to the instancep and
C2 be the class assigned by the2nd classifier to the same instance
p . Then the two classifiers are “conditionally independent given
classCa = True” (i.e. conditionally independent for given class
label) if and only if the following condition holds for each actual
positive –

Pr(C1 = True , C2 = True |Ca = True) =

Pr(C1 = True |Ca = True) × Pr(C2 = True |Ca = True)

(1)
�

Figure 2 illustrates the definition 1. It should be noted thatwe
are interested that equation 1 hold only for all actual positives and

LEGEND

Probability that an instance is
classified True by first classifier

Probability that a true positive
is detected by first classifier

Probability that a true positive
is detected by second classifier

Probability that an instance is

Actual class = FalseActual class = True

classified True by second classifier

Figure 2: Venn diagram of predicted class labels for two class
classification.

not all instances in the dataset. In the method of estimationof ac-
tual positives in an unlabeled dataset, definition 1 should hold for
the true positives detected by the two classifiers in order for inde-
pendence to hold among the cells in table 1. Since the class label
(dependent variable) assigned by a classifier is a function of fea-
tures (independent variables), this motivates us to study the influ-
ence of conditional independence relationship between feature sets
of classifiers on the conditional independence of classifiers given a
class label.

3.3 Conditional independence of feature
sets given class label

For a two-classC = {True ,False} dataset, letF= {Fi} be the
feature set. Choose disjoint subsetsF1,F2 ⊂ F and build classi-
fiersPr(C1|F1), Pr(C2|F2), whereC1 andC2 are the class labels
assigned to an instance by the two respective classifiers. Mathemat-
ically, it can be stated that the first classifier will predictan instance
having feature vectorF1 = f1 as belonging to a specific class if
the probability of that instance belonging to that class is maximum.
Hence, the condition under which the first classifier will predict an
instance withF1 = f1 as belonging toTrue class is,

Pr(Ca = True |F1 = f1) = max
c∈C

Pr(Ca = c|F1 = f1) (2)

where, Ca is the actual class of the instance.
Thus, for instances havingF1 = f1 for which eq. 2 holds,

F1 = f1 ⇒ C1 = True.
For an instance with a value ofF1 for which the eq.2 does not

hold, the classifier will assign classFalse, i.e. a class different
than theTrue, to the instance. Similar equations also hold for the
second classifier trained using feature setF2.

We are interested in actual positives detected correctly (i.e. true
positives detected) by each classifier and the independencebetween
number of actual positives detected (i.e. true positives) by each
classifier. Since, as illustrated above, the fact whether aTrue in-
stance is predicted asTrue by a classifier depends on the values
that an instance has for the features (i.e.F1 or F2), we define con-
ditional independence between features of classifiers given class
label.

DEFINITION 2. For two classifiers trained with feature setsF1

and F2 respectively, the two classifiers are said to have “condi-
tionally independent feature sets given class labelCa = True” iff

66

∀ F1 = f1,F2 = f2 of actual positives

Pr(F1 = f1,F2 = f2|Ca = True) =

Pr(F1 = f1|Ca = True) × Pr(F2 = f2|Ca = True) (3)

�

This definition of conditional independence of feature setsgiven
a class label is similar to the conditional independence given the
label defined by Blum and Mitchell [1]. In their work, the proba-
bility distributionD of instances over the featuresF = F1 ×F2 is
defined, whereF1 andF2 are two subsets of features (which give
different “views” or classifications of the instance.) Our work dif-
fers from their work since we relax the conditional independence of
features given a class label to hold only for the rare class (i.e. class
label of interest). Also, in our work,D can have non-zero proba-
bility for an instance withF1 = f1 andF2 = f2, where classifiers
usingF1 andF2 give different class label from each other and/or
from the combined classifier.

In definition 2, we are interested whether equation 3 holds only
for all those valuesF1 = f1, F2 = f2 of actual instances that have
non-zero probability over the probability distributionD. A classi-
fier (like a decision tree) built using feature setF1 may, at some
decision node (leaf node), use only a subset of featuresF′

1 ⊂ F1

to classify an instance asTrue . Thus, a more strict condition for
eq.3 in definition 2 is –∀ F′

1 ⊆ F1, F′
2 ⊆ F2, the following con-

dition holds,

Pr(F′
1 = f ′1,F′

2 = f ′2|Ca = True)

= Pr(F′
1 = f ′1|Ca = True) × Pr(F′

2 = f ′2|Ca = True)
(4)

The Apriori (anti-monotonic) property does not hold for this
stricter definition eq.4. Hence, to reduce the computational costs,
we consider only eq.3 in definition 2. The theorem 1 explains the
relationship between conditional independence of features given
class label and conditional independence of classifiers given class
label. This theorem will hold in case of the stricter equation (eq.4)
for definition 2.

THEOREM 1. For two classifiers built using feature setsF1 and
F2 respectively, the two feature sets are independent given class
label if and only if the two classifiers are independent givenclass
label i.e. eq.3⇐⇒ eq.1 holds. N

Proof: Let D be the probability distribution of instances with
featuresF1,F2 over class labelsC = {True ,False}, as shown in
figure 3. For the two feature subsetsF1, F2 ⊂ F, letX = {x1,x2,
x3,x4,x5} be the set of all possible values ofF1 for actual posi-
tives and letY = {y1,y2,y3,y4} be the set of all possible values
of F2 for actual positives. Note, there may be values ofF1 = {x6,
x7, . . .} andF2 = {y5,y6, . . .} which may not be included in the
table shown in figure 3 since those values have zero probability in D
for actual positives. The proof will not be affected by such values.

False class1

F2

y1

y2

y3

y4

x5x3 x4 x5 1x x2 x3 x4x21x

Pr(C = True ,C =True,C =True) 1 2 a

True classF

Figure 3: Probability distribution D
of (F1,F2) over C.

We use a prob-
abilistic framework
wherein the classi-
fier assigns a prob-
ability that an in-
stance belongs to a
particular class la-
bel. The probabil-
ity True class is as-
signed by a classifier
to an instance with
F1 = f1 will be

equal to the probability ofTrue class overD, i.e.

Pr(C1 = True|F1 = f1) = Pr(Ca = True|F1 = f1) (5)

where,Ca is the actual class label for an instance withF1 = f1.
Similarly, the probability thatTrue is assigned by a classifier to

an instance withF2 = f2 will be

Pr(C2 = True|F2 = f2) = Pr(Ca = True|F2 = f2) (6)

The probability thatTrue class is assigned by a combined clas-
sifier to an instance withF1 = f1 andF2 = f2 will be

Pr(C1 = True, C2 = True|F1 = f1,F2 = f2)

=Pr(Ca = True|F1 = f1,F2 = f2)
(7)

We have, from eq.7,

Pr(C1 = True , C2 = True |F1 = f1, F2 = f2)

= Pr(Ca = True |F1 = f1, F2 = f2)

=
Pr(F1 = f1,F2 = f2|Ca = True) × Pr(Ca = True)

Pr(F1 = f1,F2 = f2)

∴ Pr(C1 = True, C2 = True, F1 = f1,F2 = f2)

= Pr(F1 = f1,F2 = f2|Ca = True) × Pr(Ca = True)
(8)

Consider an actual positivep with feature valuesF1 = f1 and
F2 = f2, wheref1 ∈ X andf2 ∈ Y. Sincef1 andf2 are features of
the same instance, there is only one probability value for anactual
positivep in the figure 3 which corresponds to
Pr(C1 = True , C2 = True ,F1 = f1,F2 = f2)
which forp is,
Pr(C1 = True, C2 = True, Ca = True)
This is the highlighted cell in figure 3 forf1 = x1 andf2 = y1.
Notice that this probability is the probability from perspective of
AP p. Thus, we have, for APp,

Pr(C1 = True, C2 = True,F1 = f1,F2 = f2)

=Pr(C1 = True, C2 = True, Ca = True)
(9)

Thus, using eq.8 and eq.9

∴ Pr(C1 = True , C2 = True , Ca = True)

= Pr(F1 = f1,F2 = f2|Ca = True) × Pr(Ca = True)

∴
Pr(C1 = True , C2 = True , Ca = True)

Pr(Ca = True)

= Pr(F1 = f1,F2 = f2|Ca = True)

∴ Pr(C1 = True, C2 = True|Ca = True)

= Pr(F1 = f1, F2 = f2|Ca = True)
(10)

Similarly, we can prove that,
Pr(C1 = True |Ca = True) = Pr(F1 = f1|Ca = True) (11)
Pr(C2 = True |Ca = True) = Pr(F2 = f2|Ca = True) (12)

Sufficient condition:
Assume that eq.3 holds for all actual positives. Hence, using eq.10,
eq.11 and eq.12, we have,

Pr(C1 = True , C2 = True |Ca = True)

= Pr(F1 = f1,F2 = f2|Ca = True)

= Pr(F1 = f1|Ca = True) × Pr(F2 = f2|Ca = True)

= Pr(C1 = True |Ca = True) × Pr(C2 = True |Ca = True)

Thus, the sufficient condition is proved.
Necessary condition:
Assume that eq.1 holds for all actual positives. Hence, using eq.10,

67

eq.11 and eq.12, we have,

Pr(F1 = f1,F2 = f2|Ca = True)

= Pr(C1 = True , C2 = True |Ca = True)

= Pr(C1 = True |Ca = True) × Pr(C2 = True |Ca = True)

= Pr(F1 = f1|Ca = True) × Pr(F2 = f2|Ca = True)

Thus, the necessary condition is proved. ⊠

4. A PRACTICAL APPROACH

4.1 Measure of independence of features
given class label

1

F1

F2

y2

APs classified True
by first classifier

A
P

s
cl

as
si

fie
d

T
ru

e
by

 s
ec

on
d

cl
as

si
fie

r

y4

3y

1x 2x 3x 4x 5x

y

Figure 4: Cross-tabulation of
probability distribution of actual
positives detected asTrue using
F1 and F2

Given a dataset with a
set of features, we want
to choose subsets of fea-
tures such that classi-
fiers trained using these
feature subsets satisfy
definition 2. For real-
world datasets, the def-
inition 2 may not hold
for any of all possi-
ble splits ofF into two
subsets. Hence, there
is a need for a mea-
sure to quantify the con-
ditional dependence be-
tween any two feature
subsetsF1, F2 ⊆ F.
We use the information-
theoretic measure ofmu-

tual information(Cover and Thomas [2]) between two random vari-
ables since it gives a measure of independence between two random
variables. Important properties of mutual information of random
variables U and V are:
(i) I(U,V) ≥ 0 with equality iff U and V are independent, and
(ii) I(U,V) =I(V,U) , i.e. mutual information is a symmetricmea-
sure.

The joint probability distribution ofF1 andF2 given class label
True for the actual positive instances will be as shown in the figure
4. The shaded cells in figure 4 represent the probabilities oftrue
positives detected by the two classifiers (i.e. these are theproba-
bilities conditioned onCa = True). Using figure 4 and the same
notations forX andY as used previously in the proof of theorem
1, we define –

DEFINITION 3. The “conditional mutual information given class
labelCa = True” between two discrete feature setsF1 andF2, is
defined as,

I(F1;F2|Ca = True) =
» X

f1∈X

X

f2∈Y

„
Pr(F1 = f1,F2 = f2|Ca = True) ∗

log
h Pr(F1 = f1, F2 = f2|Ca = True)

Pr(F1 = f1|Ca = True)Pr(F2 = f2|Ca = True)

i«–
�

4.2 Search space for splitting a feature set:
The previous sections 3.3 and 4.1 discussed about the condition

for solving the problem. The main issue that now needs to be ad-
dressed is – given a labeled dataset with a set of featuresF, is it

Algorithm 1 Feature subset selection algorithm

Input:
• Set of labeled instances with feature setF
• a class labelTrue

• a user-specified thresholdδ for maximum conditional mutual
information

• a user-specified minimum sizek for the subsets.

Output:
• Two subsets of featuresF1,F2.

Pseudo-code:
1. Choose instances belonging toTrue class.
2. Obtain “pairwise-conditional mutual information” matrix for

all features values ofF of actual positives.
3. Apply block diagonalization algorithm on the pairwise-

conditional mutual information matrix to obtain blocks (clus-
ters) of feature subsets.

4. Discard the subsets having size less than user specified
thresholdk.

5. Evaluate conditional mutual information between the re-
maining feature subsets.

6. Choose two best subsetsF1,F2 having least conditional mu-
tual information and having conditional mutual information
less thanδ.

possible to search for two feature subsetsF1,F2 ⊆ F such that the
classifiers, obtained by training using each feature subset, are least
dependent and they have a minimum threshold accuracy ? Such a
required dependence relationship between subsets of a feature set
F does not have Apriori property. This problem is analogous to
global optimization problem with constraints, since we aretrying
to find a pair of classifiers with best accuracies (global optimum)
subject to a non-convex constraint that the two feature setsare con-
ditionally independent given class label.

4.3 Feature subset selection algorithm

We used a heuristic approach to solve this computation intensive
search problem. The algorithm 1 is based on the equation 4 (i.e. the
more strict form of definition 2) – which requires that for twofea-
ture subsetsF1 andF2 to be conditionally independent given class
label, the equation 3 must hold for each of the individual features
also, i.e.∀ F1 ∈ F1 andF2 ∈ F2, I(F1, F2|Ca = True) = 0

The algorithm proceeds as follows. Using the values of the fea-
tures of actual positives, the conditional mutual information for
each pair of features is computed and cross-tabulated to obtain a
pairwise- conditional mutual information matrix. A block diag-
onalization technique,reverse CutHill-McKee algorithm(George
and Liu [4]), is then used to cluster the features with minimum
inter-subset pairwise-conditional mutual information. The condi-
tional mutual information between each pair of the clustered fea-
ture subsets is determined. Feature subsets having conditional mu-
tual information less than a user-specified threshold are selected.
Assuming that each feature provides equal amount of information
about the class for an instance (i.e. each feature has equal predic-
tive power), the algorithm 1 also uses a user-specified limiton min-
imum number of features required in each subset. This guarantees
a minimum accuracy for each classifier.

5. EXPERIMENTAL RESULTS
To evaluate the performance of algorithm 1, we used noise-added

68

Dataset # of Using algorithm 1 Using random split
No. APs Avg. classifier accuracy Avg. conditional Estimate for # of Avg. classifier accuracy Avg. conditional Estimate for # of

in test for True class mutual missed APs actual missed for True class mutual missed APs actual missed
data Classifier 1 Classifier 2 information bn00 APs Classifier 1 Classifier 2 information bn00 APs

1. 409 75.72 74.64 4.19 21 32 74.55 75.38 4.38 19 36
(1.67) (2.91) (0.02) (2.88) (5.09) (2.53) (1.16) (0.02) (1.41) (8.90)

2. 395 91.07 75.8 3.61 8 13 91.22 89.49 3.71 2 23
(2.69) (2.74) (0.02) (4.92) (5.72) (2.47) (1.48) (0.02) (0.84) (7.68)

3. 406 85.84 85.1 5.97 7 15 83.57 83.13 5.95 11 15
(1.16) (3.41) (0.01) (1.92) (4.87) (2.19) (3.62) (0.01) (2.70) (2.59)

4. 385 56.09 32.52 7.1 113 115 61.55 51.98 6.66 44 87
(1.74) (2.38) (0.01) (15.94) (10.35) (1.76) (1.94) (0.02) (8.64) (5.59)

5. 419 86.72 73.72 7.24 16 13 78.26 70.33 7.32 40 15
(1.64) (2.61) (0.01) (2.92) (5.02) (1.50) (4.99) (0.01) (6.90) (3.03)

Table 4: Performance of feature subset selection algorithmvs. a random split.

synthetic datasets generated using “data generator” (http://www.
datgen.com). One of the reasons for this was that it was difficult to
obtain largelabeleddatasets for training. Sufficiently large datasets
(each with 100,000 instances) were generated, each with moder-
ate number (20-24) of attributes, and a skewed class distribution –
approximately 2%True class instances with remaining 98% be-
longing toFalse class. Each dataset was divided into a training
set (80%) and a test set (20%), keeping the class distribution same
in the training and test data as in the original data. The algorithm
1 was applied to the feature set of actual positives in the training
dataset withk = 5 andδ = 10. A decision tree (WEKA [10])
was trained on the training data using each of the feature subsets.
For the test dataset, the true positives detected by each such classi-
fier were determined, then cross-tabulated into a contingency table
(similar to table 1), and finally an estimate for missed actual posi-
tives (bn00) was obtained.

The table 4 shows the summarized results for algorithm 1 for
different synthetic datasets. The values within parentheses repre-
sent the standard deviations. The columns “average classifier ac-
curacy forTrue class” represent the classifier accuracies forTrue

class instances only, i.e. it represents what fraction of actual posi-
tives were correctly identified asTrue by a classifier. For datasets
‘4’ and ‘5’, the conditional mutual information between classifiers
is nearly same but dataset ‘5’ has more accurate classifiers than
dataset ‘4’. The accuracy of estimate is better for dataset ‘4’ (|113-
115| /115) than that for dataset ‘5’ (|16-13|/13). Thus, dependence
among classifiers plays a more important role in improving the ac-
curacy of the estimate when the accuracies of the classifiersare
low. The results for estimate of actual positives using a random
split of feature set for same synthetic datasets are also shown. As
seen from the table 4, the algorithm 1 provides a better splitting
method for the feature set. The first dataset in the table 4 illustrates
that with the accuracy of the classifiers remaining approximately
constant, if the conditional mutual information between the feature
subsets increases, then the error (e.g. the absolute difference be-
tweenbn00 and the number of actual positives actually missed) in
the estimatebn00 increases. The second dataset illustrates that even
though accuracies of the classifiers increase, the increasein condi-
tional mutual information more than negates that effect resulting in
more error in the estimate. The third dataset illustrates that even
though the accuracies of the classifiers decrease, since thecondi-
tional mutual information also decreases for random split,it gives
a better (closer) estimate. The last two datasets illustrate that the al-
gorithm 1 does a good job at keeping the estimate for missed actual
positives closer to the actual number of missed actual positives.

Similar experiments done using Naive Bayes classifier show that
decision trees performed better, which asserts that the stricter con-
dition of definition 2 is more useful for decision trees.

6. CONCLUSIONS
The main aim of this paper was to study the relationship of the

conditional independence of classifiers given a class labelto the
conditional independence of the feature sets (used to trainclassi-
fiers) given a class label. The problem of obtaining such condi-
tionally independent subsets of features for a given dataset is com-
putationally expensive. A heuristic approach for obtaining feature
subsets was proposed and the results of application of this algo-
rithm to synthetic datasets were shown. Application of thisalgo-
rithm to compare the performance of two network intrusion detec-
tion systems using a real world dataset will be demonstratedin our
future work. An important observation made from the experiments
was that, in addition to independent classifiers, more accurate are
the classifiers for a given class, better is the estimate obtained.
Thus, the future research directions involve developing efficient al-
gorithms for obtaining the right balance between the conditional
accuracies of classifiers and the conditional dependence between
classifiers given class.

7. REFERENCES
[1] A. Blum and T. Mitchell. Combining labeled and unlabeled

data with co-training. InCOLT, pages 92–100, 1998.
[2] T. M. Cover and J. A. Thomas.Elements of Information

Theory. Wiley, New York, 1991.
[3] J. N. Darroch. The multiple-recapture census: I. estimation

of a closed population.Biometrika, 45(3/4):343–359, 1958.
[4] A. George and W. Liu.Computer Solution of Large Sparse

Positive Definite Systems. Prentice-Hall series in
computational mathematics, 1981.

[5] J. Goldberg and J. Wittes. The estimation of false negatives
in medical screening.Biometrics, 34(1):77–86, 1978.

[6] E. Hook and R. Regal. Capture-recapture methods in
epidemiology: methods and limitations.Epidemiol Rev,
17(2):243–64, 1995.

[7] A. Lazarevic et. al. A survey of intrusion detection
techniques. InManaging Cyber Threats: Issues, Approaches
and Challenges. Kluwer Academic Publishers, 2004.

[8] L. Kuncheva et. al. Is independence good for combining
classifiers? InProc. of 15th ICPR, pages 168–171, 2000.

[9] S. Mane et. al. Estimation of false negatives in
classification. InProc. of 4th IEEE ICDM, pages 475–478,
2004.

[10] I. H. Witten and E. Frank.Data Mining: Practical machine
learning tools with Java implementations. Morgan
Kaufmann, San Francisco, 2000.

69

Incremental Page Rank Computation on Evolving Graphs
Prasanna Desikan

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

desikan@cs.umn.edu

Nishith Pathak

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

npathak@cs.umn.edu

Jaideep Srivastava

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

srivasta@cs.umn.edu

Vipin Kumar

Dept. of Computer Science
University of Minnesota
Minneapolis, MN 55455

USA

kumar@cs.umn.edu

ABSTRACT
Link Analysis has been a popular and widely used Web mining

technique, especially in the area of Web search. Various ranking

schemes based on link analysis have been proposed, of which the

PageRank metric has gained the most popularity with the success

of Google. Over the last few years, there has been significant

work in improving the relevance model of PageRank to address

issues such as personalization and topic relevance. In addition, a

variety of ideas have been proposed to address the computational

aspects of PageRank, both in terms of efficient I/O computations

and matrix computations involved in computing the PageRank

score. The key challenge has been to perform computation on

very large Web graphs. In this paper, we propose a method to

incrementally compute PageRank for a large graph that is

evolving. We note that although the Web graph evolves over

time, its rate of change is rather slow. When compared to its size.

We exploit the underlying principle of first order markov model

on which PageRank is based, to incrementally compute PageRank

for the evolving Web graph. Our experimental results show

significant speed up in computational cost, the computation

involves only the (small) portion of Web graph that has

undergone change. Our approach is quite general, and can be used

to incrementally compute (on evolving graphs) any metric that

satisfies the first order Markov property.

Keywords
Link Analysis, Web Search, PageRank, Incremental Algorithms

1. INTRODUCTION
The importance of link analysis on the Web graph has gained

significant prominence after the advent of Google [1]. The key

observation is that a hyperlink from a source page to a destination

page serves as an endorsement of the destination page by the

(author of the) source page on some topic. This idea has been

exploited by various researchers and has resulted in a variety of

hyperlink based ranking metrics for ranking of Web Pages.

Kleinberg’s Hubs and Authority [2] and Google’s Pagerank [3]

are the most popular among such metrics. A variety of

modifications and improvements to these approaches have been

developed in recent years[6,7,8,9,10].

Link analysis techniques have adopted different knowledge

models for the measures developed for various applications on the

Web [15]. Kleinberg’s Hubs and Authority is based on the

observation that the Web graph has a number of bipartite cores

[2], while Google’s PageRank is based on the observation that a

user’s browsing of the Web can be approximated as a first order

markov model [3]. Giles, et al [5] have used network flow models

to identify web communities. Thus, a variety of models have been

used to measure different properties of the Web Graph at a given

time instance. Success of Google has signified the importance of

Pagerank as a ranking metric. This has also led to a variety of

modifications and improvisations of the basic PageRank metric.

These have either focused on changing the underlying model or

on reducing the computation cost.

Another important dimension of Web mining is the evolution of

the Web graph [4]. The Web is changing over time, and so is the

users’ interaction on (and with) the Web, suggesting the need to

study and develop models for the evolving Web Content, Web

Structure and Web Usage. The study of such evolution of the

Web would require computing the various existing measures for

the Web graph at different time instances. A straightforward

approach would be to compute these measures for the whole Web

Graph at each time instance. However, given the size of the Web

graph, this is becoming increasingly infeasible. Furthermore,, if

the percent of nodes that change during a typical time interval

when the Web is crawled by search engines is not high, a large

portion of the computation cost may be wasted on re-computing

the scores for the unchanged portion. Hence, there is a need for

computing metrics incrementally, to save on the computation

costs.

Techniques for incremental computations, to study changes in

graph structure over time, would depend on the underlying

knowledge model that defines a metric [15]. For example, the

computation of hub and authority scores is based on mutual

reinforcement of nodes, and hence a change in the indegree or

outdegree of a node may affect its score. Mutual reinforcement

makes hub and authority scores a second order model. However,

for PageRank whose random surfer model is based on the first

order markov property, the change in out degree of the node does

not affect the score of the node. Hence, the level of penetration of

change in scores due to a change in the degree of a node is not as

high in PageRank as in hub and authority scores.

In this paper, we describe an approach to compute PageRank in

an incremental fashion. We exploit the underlying first order

markov model1 property of the metric, to partition the graph

1 The property that the PageRank score of a page depends only on the

PageRank scores of the pages pointing to it.

Copyright is held by the author/owner(s).

WWW 2005, May 10--14, 2005, Chiba, Japan.

Appendix F

70

into two portions such one of them is unchanged since the last

computation, and it has only outgoing edges to the other partition.

Since there are no coming edges from the other partition, the

distribution of PageRank values of the nodes in this partition will

not be affected by the nodes in the other partition. The other

partition is the rest of the graph, which has undergone changes

since the last time the metric was computed. Figure 1 gives an

overview of our approach and explains the difference between

related work and the work in this paper. This paper is organized

as follows. In Section 2, we give an introduction to the basic

PageRank metric and the various issues involved in its

computation. Section 3 gives an overview of our approach to

incrementally compute PageRank for evolving Web graphs. We

describe the Incremental PageRank Algorithm in Section 4 and

present our experimental results in Section 6. Section 7 discusses

the related work and places our work in context. Finally, in

Section 8 we conclude the and provide directions for future work.

Figure 1. Overview of the Proposed Approach.

2. PAGERANK
PageRank is a metric for ranking hypertext documents that

determines their quality. It was originally developed by Page et

al. [3] for the popular search engine, Google [1]. The key idea is

that a page has high rank if it is pointed to by many highly ranked

pages. Thus, the rank of a page depends upon the ranks of the

pages pointing to it. The rank of a page p can thus be written as:

Here, n is the number of nodes in the graph and OutDegree(q) is

the number of hyperlinks on page q. Intuitively, the approach can

be viewed as a stochastic analysis of a random walk on the Web

graph. The first term in the right hand side of the equation

corresponds to the probability that a random Web surfer arrives at

a page p from somewhere, i.e. (s)he could arrive at the page by

typing the URL or from a bookmark, or may have a particular

page as his/her homepage. d would then be the probability that a

random surfer chooses a URL directly – i.e. typing it, using the

bookmark list, or by default – rather than traversing a link.

Finally, 1/n is the uniform probability that a person chooses page

p from the complete set of n pages on the Web. The second term

in the right hand side of the equation corresponds to a factor

contributed by arriving at a page by traversing a link. 1- d is the

probability that a person arrives at the page p by traversing a link.

The summation corresponds to the sum of the rank contributions

made by all the pages that point to the page p. The rank

contribution is the PageRank of the page multiplied by the

probability that a particular link on the page is traversed. So for

any page q pointing to page p, the probability that the link

pointing to page p is traversed would be 1/OutDegree(q),

assuming all links on the page is chosen with uniform probability.

Figure 2 illustrates an example of computing PageRank of a page

P from the pages, P1, P2, P3 pointing to it.

There are other computational challenges that arise in PageRank.

Apart from the issue of scalability, the other important

computational issues are the convergence of PageRank iteration

and the handling of dangling nodes. The convergence of

PageRank is guaranteed only if the Web graph is strongly

connected and is aperiodic. To ensure the condition of strong

connectedness, the dampening factor is introduced, which assigns

a uniform probability to jumping to any page. In a graph theoretic

sense it is equivalent of adding an edge between every pair of

vertices with a transition probability of d/n. The aperiodic

property is also guaranteed for the Web graph.

Another important issue in computation of PageRank is the

handling of dangling nodes. Dangling nodes are nodes with no

outgoing edge. These nodes tend to act as rank sink, as there is no

way for rank to be distributed among the other nodes. The

suggestion made initially to address this problem, was to

iteratively remove all the nodes that have an outdegree of zero,

− + =

G p q

q PR
p

) , (
) (

)
) 1 ∑

∈
⋅

q OutDegree
d

n
d PR

(
() ((1)

G1

Link Analysis

PageRank

G2

Link Analysis

PageRank

Diff(G1,G2)

G2
’ G2

’’

Scale

Merge

Partition(G2)

Incremental Approach (this paper)

Link Analysis

71

and compute the PageRank on the remaining nodes [3]. The

reasoning here was that dangling nodes do not affect the

PageRank of other nodes. Another suggested approach was to

remove the dangling nodes while computation initially and add

them back during the final iterations of the computation [7]. Other

popular approaches to handling dangling nodes, is to add self

loops to dangling nodes[11,20] and to add links to all nodes in the

graph, G from each of the dangling node to distribute the

PageRank of the dangling node uniformly among all nodes[3].

Figure 2. Illustrative example of PageRank.

3. PROPOSED APPROACH
In the proposed approach, we exploit the underlying first order

Markov Model on which the computation of PageRank is based.

It should be noted that PageRank of a page depends only on the

pages that point to it and is independent of the outdegree of the

page. The principle idea of our approach is to find a partition such

that there are no incoming links from a partition, Q (includes all

changed nodes) to a partition, P. In such a case the PageRank of

the partition, Q is computed separately and later scaled and

merged with the rest of the graph to get the actual PageRanks of

vertices in Q. The scaling is done with respect to the number of

vertices in partition, P-`n(P) to the total number of nodes in the

whole graph, G –n(P UQ)=V. The PageRank of the partition Q is

computed, taking the border vertices that belong to the partition P

and have edges pointing to the vertices in partition Q. The

PageRank values of partition P are obtained by simple scaling.

This basic idea of partitioning the Web graph, and computing the

PageRanks for individual partitions and merging works extremely

well when incrementally computing PageRank for a Web graph

that has evolved over time. Given, the Web graphs at two

consecutive time instances, we first determine the portion of the

graph that has changed. A vertex is declared to be changed when

a new edge added or deleted between the vertex and any other

vertex belonging to the graph or if the weight of a node or an edge

weight adjoined to that node has changed. Once the changed

portion is defined, for each page we determine iteratively all the

pages that will be affected by its PageRank. In this process, we

include pages that remain unchanged but whose; PageRank gets

affected due to the pages that have changed. in partition Q. The

rest of the unchanged graph is in partition P.

The whole concept is illustrated in Figure 3. Let the graph at the

new time be G(V,E), and

 =
b
v Vertex on the border of the left partition from which there

are only outgoing edges to the right partition.

unchanged remainswhich partition left on the vertex =
ul
v

The set of unchanged vertices can be represented as,

{ }V
u
v

u
v

u
V ∈∀= , where

u
v is a vertex which has not

changed.

 =
ur
v Vertex on the right partition which remains unchanged,

but whose PageRank is affected by vertices in the changed

component.

 =
cr
v Vertex on the right partition which has changed, or has

been a new addition.

Therefore, the set of changed vertices can be represented as,

{ }V
cr
v

cr
v

c
V ∈∀= ,

In order to compute PageRank incrementally, for every vertex

in
c
V , which is a set of changed vertices, perform a BFS to find

out all vertices reachable from this set. The PageRank of these

vertices will be affected by vertices in
cr
V . These set of vertices

can be denoted by the set,

{ }V
ur
v

ur
v

ur
V ∈∀= ,

Similarly, the set of vertices
b
v can be denoted as,

{ }V
b
v

b
v

b
V ∈∀= ,

Hence the set of vertices whose PageRank has to be computed in

the incremental approach corresponds to the partition Q described

above, and can be denoted as,

b
V

ur
V

c
V

Q
V UU=

Let an edge set,
Q
E , be defined as set of edges,

{ }
Q
Vyx

yx
e

Q
E ∈= ,|

,
, where

yx
e
,
represents a directed

edge from vertex x to vertex y.

The set of partitioning edges can be defined as,

{ }
Q
Vy

P
Vx

yx
e

Part
E ∈∈= ,|

,
,

P1

P2

P3

P

)1(

1

POutDeg

)2(

1

POutDeg

)3(

1

POutDeg

N
d

P1

P2

P3

P

)1(

1

POutDeg

)2(

1

POutDeg

)3(

1

POutDeg

N
d
d/N









++−+=

)3(

)3(

)2(

)2(

)1(

)1(
)1()(

POutDeg

PPR

POutDeg

PPR

POutDeg

PPR
dNdPPR

72

Figure 3. Incremental Computation of PageRank.

The vertices in partition P can be defined as,

b
V

Q
VV

P
V +−=

And the edges that correspond to this partition can be defined as,

{ }
P
Vyx

yx
e

P
E ∈= ,|

,
, where

yx
e
,
represents a directed

edge from vertex x to vertex y.

Thus, the given graph ()EVG , can be partitioned into two

graphs namely, ()
P
E

P
V

P
G , and 







Q
E

Q
V

Q
G , .

Now, since we know that the graph ()
P
E

P
V

P
G , has remained

unchanged from the previous time instance and the PageRank of

vertices in this partition is not affected by the partition,








Q
E

Q
V

Q
G , . Now a change in a node induces a change in

the distribution of PageRank values for all its children and since

all the nodes that are influenced by changes are already separated

in the partition Q. The distribution of PageRank values for the

nodes in partition GP is going to be the same as it was for the

corresponding nodes in the previous time instance G’. Thus the

PageRank of the vertices in partition P could be calculated by

simply scaling the scores from the previous time instance. And

the scaling factor will be
()

()Gn
Gn ′

, where G′ is the graph at

the previous time instance. And the PageRank for the partition,








Q
E

Q
V

Q
G , can be computed using the regular PageRank

Algorithm and scaled for the size of the graph, G. Since the

percent change in the structure of the Web is not high, the

computation of the changed portion will be a smaller graph

compared to the whole Web. And the existence of such partitions

is also suggested by the bow-tie model of the Web [12], where

about 27% of Web contributes to the influx. It should also be

noted that while computing PageRanks for the changed portion, in

order to maintain the stochastic property of the incremental

matrix, we have to scale the PageRanks of nodes in Vb such that

they correspond to the number of nodes for which the PageRank

is actually computed. Also taken into account is the outdegree of

these border nodes that have edges in partition P, since the way

they distribute their PageRanks to nodes in partition Q, will

depend on their outdegree.

4. INCREMENTAL ALORITHM
In this section, we will describe the incremental algorithm to

compute PageRank. The initial step is to read the graph at a new

instance and determine the vertices that have changed. This does

not require additional time as it can be computed as we read the

new graph. Thus, after reading the graph, we can assume that we

are given two sets of vertices – one containing the vertices which

ulv

bv

urv

crv

Vertex on the border of left

partition from which there are

outgoing edges to the right

partition

Vertex on left partition, which

remains unchanged

Vertex on right partition, which

remains unchanged but whose

PageRank gets affected by

vertices in changed partition

Vertex on right partition, which

has changed or has been added.

Partition

The distribution of

PageRanks of the vertices in

the left remains unchanged,

since their structure has not

changed and there are no

incoming links from the right

partition.

The distribution of

PageRanks of the vertices

changes and also depends

on the PageRanks of the

border nodes of the left

partition.

Vertices whose edges have

not changed

Vertices whose edges have

not changed

73

have changed from a previous time instance and the other

containing vertices that have remain unchanged. Hence, the input

to the algorithm is the graph G, and the two lists Vc and Vu.. The

outline of the algorithm is shown in Figure 3. We will describe

each step briefly:

Step 1 - Initialize a list VQ

Step 2 - A change in a vertex induces a change in the PageRank

distribution of all its children. All such changed vertices are in the

queue Vc. In this step, the list of “changed vertices” is extended to

a partition to include all descendents of the initial list of “changed

vertices”. All these vertices are pushed into the list Q2.

Step 3 – For the remaining vertices are there is no change in their

PageRank distribution. The New PageRank is simply obtained by

scaling the previous PageRank scores. The scaling factor is

simply:

()
()Gn

Gn ′
=Order of graph at previous time instance/Order of

the graph at the present time instance.

Also all those vertices from this set of unchanged vertices that

point to a changed vertex, will influence the PageRank value of

that changed vertex, hence these too must be included in the list

VQ as their PageRank scores will be required for computing the

PageRank scores for the changed vertices.

Step 4 – Now original PageRank computation algorithm along

with steps taken to ensure stochastic property of transition matrix

is performed on the nodes that are in Q2 and colored violet (i.e.

nodes which have changed) to get the new PageRank values for

these changed nodes.

Thus, we end up localizing the changed partition to a certain sub-

graph of the web which consists of all changed nodes and then

basic PageRank algorithm is performed only on this changed sub-

graph. The PageRank value for the rest of the nodes is simply a

matter of scaling the previous values.

Figure 4. Incremental PageRank Algorithm.

Step 2 has a cost of E’, where
PartQ EEE −=′ , is the number

of edges in the partition Q. Now the PageRank values for the

partition P are obtained by scaling the PageRank values with

respect to ranks in the previous time instance. This step requires a

cost of V’’, where V’’ is number of vertices in partition P. Now

using these scaled values and the naïve approach PageRank for

the vertices in partition Q is calculated. This step (including that

required to scale the border nodes) requires a cost of nE + E’ +Vb,

where n is number of iterations required for PageRank values to

converge and E’ is again number of edges in partition Q. Thus,

the total cost for incremental PageRank can be summed up to be

O(2E’+V’’+nE+Vb).

5. EXPERIMENTAL RESULTS
To test our theoretical approach on real datasets, we needed

graphs at two different time instances to compute the incremental

version. We performed the experiments on two different web

sites- the Computer Science website and the Institute of

Technology website at the University of Minnesota. We

performed the experiments at different time intervals to study the

change and effect of the incremental computation. For the

Computer Science website our analysis was done at a time

interval of two days, eight days and ten days. We also performed

the analysis for a time interval of two days for the Institute of

technology web site.

In our experiments we also simulated the focused crawling, by not

considering the Web pages that have very low PageRank into our

graph construction and PageRank Computation. This was to

emulate the real world scenario where not all pages are crawled.

We wanted to analyze, how the incremental approach performs

when pages with low PageRank are not crawled.

We used the following approximate measure to compare the

computational costs of our method versus the naïve method.

Number of Times Faster = Num of Iterations(PR)/(1 + (fraction

of changed portion)*Number of iterations(IPR))

The intuition behind the measure was how fast the convergence

threshold will be reached computing PageRank incrementally

versus computing PageRank in a naïve method for the whole

graph. The convergence threshold that was chosen on our

experiments was 1x10-8

The experimental results are presented in Figure 5. These results

are from actual experiments conducted on the Computer Science

and Institute of Technology websites. For the Computer Science

website, in the first time interval of eight days, there seemed to be

a significant change in the structure of the Website – about 60%

of the pages had changed their link structure. We found out such a

sea change occurred because a whole subgraph that contained the

documentation for Matlab help was removed. The incremental

approach still however, performed 1.86 as much faster as the

naïve PageRank. Similarly, for a period of ten days the

incremental approach performed around 1.75 times faster. For a

period of two days the improvement was 8.65 times faster. These

results are for the case of an unfocussed crawl. The results for

focused crawl for the CS Website were better. In the first case,

when the time interval was eight days, the improvement was 1.9

times and when the time interval was 10 days, the improvement

was 1.76 times. For a period of two days the improvement with

IPR(G,Vu,Vc) :-

Step 1 – Initialize the list VQ

Step 2 – Pop a Vertex N from Vc

2.1 For all the children of N

if children of N list Vu

remove them from Vu

push them in Vc

2.2. Push N in VQ and repeat step 2 till

queue Vc is empty

Step 3 – For each element in list Vu

3.1 Take the element and scale the

previous pagerank value to get new

pagerank value.

3.2 Look up whether any of the children, of the

element of Vu belong to VQ, if so remove this

element of Vu, copy it in Vb .

Step 4 – Scale Border Nodes in Vb for stochastic

property

Perform Original PageRank(VQ Vb)
U

∈

74

focused crawling was 9.88 times. Thus, it suggests that focused

crawling can also improve the computational costs of the

incremental algorithm.

Computer Science Website

Focussed Crawl

July19 vs July 27th

percentage of change = 53.1429% L1 -norm : 4.38609e-05 NumTimes faster= 1.900538

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.25071% L1-norm : 1.60988e-07 NumTimes faster= 9.885481

6 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July19th vs 29th

percentage of change = 58.3493% L1-norm : 4.38692e-05 NumTimes faster= 1.755669

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

Unfocussed Crawl

July19 vs July 27th

percentage of change = 60.2997% norm : 1.70552e-07 NumTimes faster= 1.867123

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.56966% norm : 1.51747e-07 NumTimes faster= 8.659162

9 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July 19th vs July 29th

percentage of change = 65.0586% norm : 1.60377e-07 NumTimes faster= 1.749526

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

Institute of Technology Website

Unfocussed/Focussed Crawl

July 30th vs Aug 1st

percentage of change = 0% norm : 8.15708e-07 NumTimes faster= 11

0 iteration(s) for inc_pagerank

11 iteration(s) for actual pagerank

Figure 5. Comparison of results for Incremental PageRank Algorithm versus Naïve PageRank Algorithm for the following

departments at the University: (a) Computer Science Website, (b) Institute of Technology Website.

The Institute of technology website typically represented a

website that doesn’t change too often. The change over a period

of two days in the Web Structure was none. Since there was no

change detected, there was no necessity to compute the PageRank

for the graph at the new time instance. And by our measure, it was

11 times faster. Since, there was no change in the graph structure,

the improvements for the case of focused crawling and

unfocussed crawling remain the same.

6. RELATED WORK
Determining the quality of a page has been the primary focus of

Web mining research community and various measures and

metrics have been developed for the same for different

applications. PageRank [3] was developed by Google founders,

for ranking hypertext documents. The overall idea is described in

detail in Section 2. The other popular metric based on link

analysis is hub and authority scores. From a graph theoretic point

(a)

(b)

75

of view, hubs and authorities can be interpreted as ‘fans’ and

‘centers’ in a bipartite core of a Web graph. The hub and

authority scores computed for each Web page indicate the extent

to which the Web page serves as a ‘hub’ pointing to good

‘authority’ pages or the extent to which the Web page serves as an

‘authority’ on a topic pointed to by good hubs. The hub and

authority scores for a page are not based on a formula for a single

page, but are computed for a set of pages related to a topic using

an iterative procedure, namely HITS algorithm [2]. A detail study

of link analysis techniques can be found in [13, 14, 15, 21, 22].

There have been a number of extensions of the basic PageRank

that have been proposed, such as including the topic information

of page to determine the topic relevance. One approach [17] was

to precalculate different PageRank vectors for a given number of

terms, focusing on the subset of pages that contain the term of

interest. The search results for a query would be ranked according

to scores that were precalculated for the collection of terms that

contain the query words. Another approach for introducing topic

relevance was addressed by Haveliwala et al [9]. In the approach,

PageRank is calculated for all pages according to each category of

the Open directory project. The pages that belong to a particular

category have higher scores for the PageRank values computed

for that category. Ranking of results of a search query is done

according to scores of the category in which the query terms

belong to. Oztekin et al [16], proposed Usage Aware PageRank.

Their modified PageRank metric incorporates usage information.

Weights are assigned to a link based on number of traversals on

that link, and thus modifying the probability that a user traverses a

particular link. Also the probability to arrive at a page directly is

computed using the usage statistics.

There has been a variety of work on improving on the PageRank

computation. I/O efficient techniques for computing PageRank

has been addressed by Haveliwala et al [8] and Yen Yu Chen[10].

The basic of their approach is to partition the link file of the

whole graph into partitions such that destination vector of each

partition fits into the main memory. Kamvar et al in [6] have

suggested quadratic extrapolation techniques to accelerate the

convergence of PageRank. In a different paper [7], they have also

suggested a way of exploiting the block-structure of the Web to

compute Block Ranks for different domains and compute local

PageRanks. Chein et al [19] have also exploited the idea of

evolving graph to compute PageRank. However, their idea is to

collapse the unchanged portion to a single node and compute the

PageRank for the new graph. This leads to approximate PageRank

values.

In out paper, we provide an approach to incrementally compute

PageRanks. We do so by exploiting the underlying first order

Markov model on which PageRank is based and partition the

graph in such a manner so that we compute the exact PageRank

values for a graph at a new time instance. Incremental

computations are very useful to study the evolution of graphs. The

significance of to study the temporal behavior of graph is

addressed in our earlier paper [4].

7. CONCLUSIONS AND FUTURE
DIRECTIONS
In this paper we have provided an approach to compute PageRank

incrementally for evolving graphs. The key observation is that

evolution of the Web graph is slow, with large parts of it

remaining unchanged. By carefully delineating the changed and

unchanged portions, and the dependence across them, it is

possible to develop efficient algorithms for computing the

PageRank metric incrementally. We follow a generic approach

that can be applied to any algorithm that has been developed for

efficient computation of the PageRank metric. Experimental

results show significant speed up in computation of PageRank

using our approach as compared to naive approach. Also, in the

incremental approach, if the partitioned sub-graph that has

changed is small, the whole PageRank computation might perhaps

be performed in main memory.

Many issues remain to be investigated. In this paper we have

proposed an incremental approach that applies to graph metrics

based on first order Markov model, such as PageRank. An area to

explore is for similar incremental approaches for other link based

metrics. We have provided a method for an efficient incremental

computation of relevance metric for a single node level. However,

to study graph evolution, we would need measures and metrics

defined at the level of a subgraph and a whole graph, and efficient

methods to incrementally compute them

8. ACKNOWLEDGMENTS
We would like to thank Data Mining Research group at the

Department of Computer Science for providing valuable

suggestions. This work was been partially supported by the

ARDA Agency under contract F30602-03-C-0243 and Army

High Performance Computing Research Center contract number

DAAD19-01-2-0014. The content of the work does not

necessarily reflect the position or policy of the government and no

official endorsement should be inferred. Access to computing

facilities was provided by the AHPCRC and the Minnesota

Supercomputing Institute.

9. REFERENCES
[1] http://www.google.com

[2] J.M. Kleinberg, “Authoritative Sources in Hyperlinked
Environment”, 9th Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 668-667, 1998

[3] L. Page, S. Brin, R. Motwani and T. Winograd “The
PageRank Citation Ranking: Bringing Order to the

Web” Stanford Digital Library Technologies, January

1998.

[4] P. Desikan and J. Srivastava, "Mining Temporally
Evolving Graphs", WebKDD Workshop, Seattle

(2004).

[5] Gary William Flake, Steve Lawrence, C. Lee Giles .

Efficient Identification of Web Communities. Sixth

ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. August 2000,

pp. 150-160.

[6] Sepandar D. Kamvar, Taher H. Haveliwala,

Christopher D. Manning, and Gene H. Golub,

"Extrapolation Methods for Accelerating PageRank

Computations." In Proceedings of the Twelfth

76

International World Wide Web Conference, May,

2003.

[7] Sepandar D. Kamvar, Taher H. Haveliwala,

Christopher D. Manning, and Gene H. Golub,

"Exploiting the Block Structure of the Web for

Computing PageRank." Preprint, March, 2003

[8] Taher Haveliwala. "Efficient Computation of

PageRank," Stanford University Technical Report,

September 1999.

[9] Taher Haveliwala. "Topic-Sensitive PageRank," In
Proceedings of the Eleventh International World Wide

Web Conference, May 2002

[10] Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the 11th

International Conf. on Information and Knowledge

Management, pages 549--557, November 2002.

[11] G. Jeh and J. Widom. Scaling personalized web
search. In 12th Int. World Wide Web Conference,

2003.

[12] R. Kumar, P. Raghavan, S. Rajagopalan, D.

Sivakumar, A. Tomkins, and E. Upfal. The Web as a

graph. In ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems, pages

1-10, 2000.

[13] Kemal Efe, Vijay Raghavan, C. Henry Chu, Adrienne
L. Broadwater, Levent Bolelli, Seyda Ertekin (2000),

The Shape of the Web and Its Implications for

Searching the Web, International Conference on

Advances in Infrastructure for Electronic Business,

Science, and Education on the Internet- Proceedings at

http://www.ssgrr.it/en/ssgrr2000/proceedings.htm,

Rome. Italy, Jul.-Aug. 2000.

[14] Monika Henzinger, Link Analysis in Web Information
Retrieval, ICDE Bulletin Sept 2000, Vol 23. No.3.

[15] P. Desikan, J. Srivastava, V. Kumar, P.-N. Tan,
“Hyperlink Analysis – Techniques & Applications”,

Army High Performance Computing Center Technical

Report, 2002.

[16] B.U. Oztekin, L. Ertoz and V. Kumar, “Usage Aware
PageRank”, World Wide Web Conference, 2003.

[17] M. Richardson and P. Domingos. The intelligent
surfer: Probabilistic combination of link and content

information in pagerank. In Advances in Neural

Information Processing Systems, 2002.

[18] J. Srivastava, P.Desikan and V.Kumar. "Web Mining -
Concepts, Applications and Research Directions."

Book Chapter in Data Mining: Next Generation

Challenges and Future Directions, MIT/AAAI 2004.

[19] S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution. Unpublished

manuscript, 2001.

[20] Eiron, N., McCurley, K., Tomlin, J.: Ranking the Web
frontier. In: Proc. 13th conference on World Wide

Web, ACM Press (2004) 309—318

[21] S.Acharyya and J.Ghosh, “A Maximum Entropy
Framework for Link Analysis on Directed Graphs”, in

LinkKDD2003, pp 3-13, Washington DC, USA, 2003

[22] C. Ding, H. Zha, X. He, P. Husbands and H.D. Simon,
“Link Analysis: Hubs and Authorities on the World

Wide Web” May 2001. LBNL Tech Report 47847.

77

10. APPENDIX: PROOF OF ALGORITHM’S

SCALABILITY

Consider a Graph),(EVG

Let order of graph G be n

Let weight of a node iv be iw , Vvi ∈∀

Also, Ww
n

i

i =∑
=1

, sum of the weights of all nodes.

PageRank score calculation is analogous to the convergence of a

first order Markov chain.

For calculation of PageRank we perform the operation,

 1+= ii MMT

over a number of iterations. Here, T is the transition matrix and

iM is the PageRank score vector at the end of ith iteration.

We also have initial PageRank score vector,

































=

Ww

Ww

Ww

M

n

.

.

.

.

.

2

1

0

For a node s we have,

∑
=

−+=
1

11 1

1

)(deg
)(

)1()()(
k

i i

i
f

s
f xreeOut

xPR
d

W
w

dsPR

where, fd is the dampening factor.

 1,...,2,111 kixi =∀ are all those nodes that have at

least one outgoing edge to s

For the sake of representation let us assume that all those nodes

that have outgoing edge(s) to a node imx are represented as

)1(+mix .

Now, if l iterations are required for convergence towards the
PageRank score vector then we have,

∑
=

−+=
1

11 1

1

)(deg
)(

)1()()(
k

i i

i
f

s
f xreeOut

xPR
d

W
w

dsPR

∑
∑ ∑

=

= =
⋅

−+

−+=
1

11 1

2

12 1

2

)(deg

)}(/)..}
)(deg

({..)1()({

)1()()(

1

k

i i

k

i

kl

il

i
il

x
f

x
f

f
s

f
xreeOut

xOutdergee
xreeOutW

w
d

W

w
d

d
W

w
dsPR

ili

Notice that the term W can be taken out as common. Thus, we

have,

]
)(deg

)}(deg/)..}
)(deg

({..)1({

)1([
1

)(
1

11 1

2

12 1

21

∑
∑ ∑

=

= =

−+

−+=
k

i i

k

i

kl

il

i
il

x
fxf

ff
xreeOut

xreeOut
xreeOut

w
dwd

dd
W

sPR

il

i

W
sPR

α
=∴)(

where,
=α

]
)(deg

)}(deg/)..}
)(deg

({..)1({

)1([
1

11 1

2

12 1

21

∑
∑ ∑

=

= =

−+

−+
k

i i

k

i

kl

il

i
il

x
fxf

ff
xreeOut

xreeOut
xreeOut

w
dwd

dd

il

i

Now, suppose graph),(EVG changes to),(''' EVG

However the changes that occur are such that there is no change

in the structure and weight of the of the node s as well as no
change in the in the structure and weight of all the ancestors of the

node s ……………… [condition (1)].

Now following along the lines of the previous graph we have, for

the new graph
'G

'

'
')(

W
sPR

α
=

The terms α and
'α depend mainly only on the structure of the

graph and the weights of, node s and its ancestors, from

condition(1) we can see that both of them are identical in the

graphs G and
'G for the node s , assuming that the same

dampening factor is used for both the pagerank calculations.

Thus,
'αα =

)()('' sPRWsPRW ⋅=⋅∴

)()()(
'

' sPR
W

W
sPR =⇒ ………….result(1)

Thus, the new pagerank score of any node x in 'G is simply

obtained by scaling the pagerank of score of the same node x in

G by a factor of)('WW provided that condition(1) holds

for the node x and the same dampening factors are used for both
pagerank calculations.

In most cases all nodes of a graph are equally likely here we have,

1....321 ===== nwwww

)(GnW =∴ ,

where)(Gn is the order of the graph G .

When this graph changes to a graph
'G we have result(1); in

this case as,

)(
)(

)(
)(

'

' xPR
Gn

Gn
xPR =

From the above result it is also trivial to deduce that a change in a

node influences the pagerank values of all its descendents.

78

Analyzing Network Traffic to Detect E-Mail Spamming Machines

Prasanna Desikan and Jaideep Srivastava
Department of Computer Science

University of Minnesota, Minneapolis, MN-55455

{desikan,srivasta}@cs.umn.edu

Abstract

E-Mail spam detection is a key problem in Cyber

Security; and has evoked great interest to the research

community. Various classification based and signature

based systems have been proposed for filtering spam and

detecting viruses that cause spam. However, most of these

techniques require content of an email or user profiles,

thus involving in high privacy intrusiveness. In this paper,

we address the problem of detecting machines that

behave as sending spam. Our approach involves very low

privacy intrusion as we look at only the border network

flow data. We propose two kinds of techniques for

detecting anomalous behavior. The first technique is

applicable for single instance network flow graph. The

second technique involves analyzing the evolving graph

structures over a period of time. We have run our

experiments on University of Minnesota border network

flow. Our results on this real data set show that the

techniques applied have been effective and also point to

new directions of research in this area.

KEYWORDS: E-Mail Spam Detection, Privacy and

Security

1. Introduction

Cyber Security has emerged as one of the key areas of

research interest with increase in information stored

online and the vulnerability to attacks of such an

information infrastructure. Over the years, the

dependency on information infrastructure has increased,

and so has their sophistication and potency. There have

been intelligent and automated tools that exploit

vulnerabilities in the infrastructure that arise due to flaws

in protocol design and implementation, complex software

code, mis-configured systems, and inattentiveness in

system operations and management. The most common

exploit seen is the buffer-overflow attack [4].

Technological advancements on the Internet have

contributed very significantly in making information

exchange very easy across the globe. E-Mail is the most

popular medium for individuals to communicate with

each other. However, such an effective communication

medium is being increasingly abused. According to a

recent survey, the number of spam mails has increased

from 8% in 2001 and 50% in 2004 [8]. This alarming

increase in the rate of spam mails is of concern for

operational as well as security reasons. The total

estimated cost incurred due to spamming was around

$10B/yr in US (2002) [8]. To the cyber-security

community, this is of concern, especially when machines

inside a sensitive network are sending spam or huge

amounts of information to the outside. Also, of interest

are machines from outside the network that try to scan to

use the exploits in the machines inside the network. It is

very critical to differentiate such machines from those

that are sending mail normally.

In this paper, we address the issue of identifying the

machines that are sending spam, or machines that have

been compromised and are being used as a spam relay.

Note that our focus is not on identifying individual users

who send spam, or filtering an e-mail as spam based on

its content. There has been work in such areas which is

not directly related to ours [10, 11, 15]. Recent work on

detection of spam trojans suggests the use of signature

and behavior based techniques [12]. However, using

signatures will fail to detect novel attacks at an early stage

and require looking into message content. Dealing with

such problems would require availability of data that

would be sensitive with respect to security and privacy

which limits the applicability of these techniques. We

have implemented our techniques as a part of the MINDS

project [7].

In section 2 we describe the various kinds of data that

can be analyzed from e-mail traffic, and the levels of

privacy involved. Section 3 gives a brief overview of link

analysis techniques that can be applied for network

security. Our approaches are explained in detail in

Sections 4, 5. Results of experimental evaluation of our

approaches are presented in Section 6. Section 7 discusses

other works that are related to this topic. Finally, we

conclude in Section 8 and point to future directions.

2. E-Mail Architecture and Privacy Issues

Electronic Mail is technically a file transfer from one

machine to another and is initiated by the sender. The

architecture of this service is illustrated in Figure 1. The

Mail Client is responsible for creating the message files

and sending and receiving them at the host level.

Appendix G

79

Figure 1. Architecture of Electronic Mail

The Mail Client handles the part of transferring a file

to or from a mail server. The Mail Server handles the

message files received from various mail clients within its

network, and transfers them to the Internet where other

mail transfer agents transfer the files to the mail servers of

respective destinations. A receiving Mail Server is

responsible for putting the received message files in

mailboxes of the respective users. The Mail Client at the

recipient end can retrieve the message files from the Mail

Server. The transfer of messages between a mail server

and other mail transfer agents within the Internet takes

place via a TCP connection using the SMTP protocol.

The transfer between a client and the local mail server

uses protocols such as POP or IMAP. It should be noted

that all emails do not necessarily pass through the mail

server and a client can open a connection on a different

port and communicate directly to another machine1. The

border router collects all information about the network

connections made in and out of the network.

It can be seen that with this architecture, data can be

collected at different points. Data collected at such point

reveals different kinds of information and with different

1 However, such email is the rare exception rather than

norm

granularity and privacy levels. We now discuss the kinds

of information that can be extracted, and the respective

levels of privacy intrusion. The darkness of the shaded

boxes indicates the level of privacy intrusion in Figure 1.

Mail Client Data: The data that can be collected at this

level is primarily the files that have been transferred and

received. These files contain information about all the

people the user sent mail to or received mail from, the

date and time of such transfer. Mail clients also contain

meta data such as the folders in which these files are

stored, the mails that been replied to, forwarding, and

more recently introduced concept of ‘conversations’.

Other interesting information that can be obtained at a

meta level is the contact information from the address

book. Such data has high level of privacy intrusiveness.

Mail Server Data: The data that can be obtained at this

level is the set of all files that have been transferred.

These files can reveal who communicated with whom,

when and about what topic. The level of granularity is

fine, as we know everything that has been exchanged

between the sender and receiver of email. The main

difference between the data at the Mail Server level

versus the Mail Client Level is the meta-data for each

user discussed earlier. The level of privacy intrusion still

remains high, as all information about the content of the

file exchanged is available.

Mail Client

Mail ServerMail Client

Mail Client

Mail Client

Mail Server Mail Client

Mail Client

R
O
U
T
E
R

R
O
U
T
E
R

Internet

Client Level Data

Server Level Data

Network Level Data

INTERNET

E-Mail Connection that

follows Client-Server

Protocol.

E-Mail Connection that

directly connects to the

destination machine by

passing local mail server

High Privacy Intrusiveness

Medium Privacy Intrusiveness

Low Privacy Intrusiveness

Mail Client

Mail ServerMail Client

Mail Client

Mail Client

Mail Server Mail Client

Mail Client

R
O
U
T
E
R

R
O
U
T
E
R

Internet

Client Level Data

Server Level Data

Network Level Data

INTERNET

E-Mail Connection that

follows Client-Server

Protocol.

E-Mail Connection that

directly connects to the

destination machine by

passing local mail server

High Privacy Intrusiveness

Medium Privacy Intrusiveness

Low Privacy Intrusiveness

80

Network Level Data: These include data that can be

collected at the network interface levels. The two main

kinds of such data are the Tcpdump data and Netflow

data. Tcpdump data contains a log of all the packets that

passed the network sensor, including the packet content.

Thus, the data provides a fine level of information

granularity, which can lead to high level of privacy

intrusiveness, though analyst may not be able to figure

out the exact conversation if secure protocols such as SSL

are used. Netflow data on the other hand is collected from

routers (e.g. Cisco, Juniper). Each flow is a summary of

traffic traveling in one direction in a session. When the

router tears down a flow, a flow record is created. This

flow record contains basic information about the

connection, such as source/destination IP/ports, number

of packets/bytes transferred, protocol used, and

cumulative OR of TCP flags. However, flow records do

not contain payload information. An email service

connection that uses the SMTP protocol typically has the

destination port as 25. The Netflow data has medium

granularity of information and the privacy intrusiveness is

at a much lower level as compared to the data obtained at

the client level or the server level.

3. Link Analysis Techniques for Network
Security

An interesting kind of information infrastructure that

can be constructed from the types of data discussed

previously is a ‘link graph’. Link graphs can be used to

represent information from a single source of data or from

multiple sources. Interaction between different systems

can be understood better by modeling them as link

graphs. The key idea to modeling a given data as a link

graph is to represent an agent of information or a given

state as a node and the link as the connection or transition

between them. For example, nodes can be IP addresses,

ports, usernames or routers and the links the different

connections between them. Once a link graph is

generated, link analysis techniques can then be used to

identify all interaction based behavioral patterns that are

causes of possible threats.

Link analysis techniques have been popular in various

domains and the significance and emergence of these

techniques has been discussed by Barabasi in his book

[1]. Link analysis has been successfully applied to mine

information in domains like web [5], social networks [10]

and computer security [15]. In our earlier work we have

surveyed the existing link analysis techniques to the web

domain and introduced taxonomy for research in this area

[4]. A consequence of this was to develop a methodology

to adopt link analysis techniques to different applications.

Link analysis can be thus been viewed as primarily

used for two purposes namely, integration of different

data sources, and profiling the system or user interactions.

Accordingly, the kind of analysis performed varies

depending on the data available. For example, Netflow

data gives traffic flowing in one direction and hence a

directed graph can be built at the level of an IP address or

port. If we use TCP dump data, additional information

about the content will be available and we can weigh the

nodes and links accordingly to get a better picture of

actual traffic. The traffic data will help in building graphs

that reflect system interactions. Link analysis can then be

used to find ‘communities’ of systems that have similar

interactive behavior patterns. At the host level, syslogs

can be used to model the sequence of commands (or the

applications executed one after other can be connected by

a link) as a graph and profile the host based on the

command-command graphs. A mapping between the user

(or a machine) and the list of commands issued

(executed) will enable the profiling of users (machines)

that execute these commands (run the applications)

frequently. For example, analysis of a bipartite structure,

with users (machines) as one set and the commands

(applications) as the other set, would identify a group of

users (machines) with similar behavior patterns.

Information from server logs such as the web server or

the database server can also be integrated. Link analysis

techniques can be applied BGP router information to

identify communities of networks that have similar usage

pattern, and also key router locations that need to be

monitored. The trade-off in privacy for the various kind

of data was discussed in the earlier section.

Most techniques in link analysis have so far

concentrated on identifying prominent normal behavior

[9]. Other techniques such as attack graphs[16] have

modeled possible plans based on a formal logic approach

and have an underlying assumption that all events are

observable. This makes them incapable of detecting novel

attacks. Hence, there is a need to define measures for

anomalous behavior in the link graph terminology to help

detect attacks. Furthermore, most techniques developed

so far have been related to static graphs. However, the

network topology keeps changing and so do user patterns,

and hence there is a need to develop robust techniques for

evolving graphs. For long-term analysis, historical data of

attacks or anomalous behavior can be collected and used

to identify nodes that have been prominent ‘perpetrators’

and nodes that have been most ‘vulnerable’. In summary

Link Analysis Techniques for Network Security can be

used to:

• Identify nodes (machines) and edges

(connections) that are anomalous in behavior.

• Identify nodes highly likely to be possible sources

of attack or are vulnerable over a period of time.

• Identify ‘communities’ of machines involved in

‘normal’ as well as ‘anomalous’ connections.

81

• Study the changing behavior of connections by

analyzing temporal behavior of graphs.

4. Our Approach

E-mail servers traditionally send and receive mails

from other e-mail servers. Thus, e-mail servers among

themselves form a community due to interactions with

each other. More precisely, they form among themselves

a dense bipartite graph. We utilize this behavior of e-mail

servers to profile normal versus anomalous behavior. In

the following sub-section, we describe an existing

approach to identify such bipartite graphs that has been

used in other domains such as the web. We will then

describe a way to utilize this to detect anomalous

behavior of e-mail servers.

Figure 2. Hubs and Authorities

4.1 Hubs and Authorities

Identifying bipartite cores has been of interest in Web

Mining domain. A bipartite core (i, j) is defined as a

complete directed bipartite sub-graph with at least i nodes

from one set of nodes to at least j nodes from another set

of nodes. Figure 2 illustrates this concept.

With reference to the Web graph, i pages that contain

the links are referred to as ‘hubs’ and j pages that are

referenced are the ‘authorities’. For a set of pages related

to a topic, a bipartite core can be found that represents the

Hubs and Authorities for the topic can be found using

HITS algorithm [9]. Hubs and Authorities are important

since they serve as good sources of information for the

topic in question. In the domain of e-mail traffic flow,

‘hubs’ are equivalent to machines that send mails and

‘authorities’ are machines that receive mails and together

they form a bipartite core. Such a behavior is typical of e-

mail servers that send and receive mails from other

servers. E-mail servers serve as both good hubs and good

authorities. Hence, a bipartite graph captures the behavior

of machines that are typically E-Mail Servers.

We will briefly describe the idea behind HITS

algorithm. Let A be an adjacency matrix such that if there

exists at least one connection from machine i to machine

j, then Ai, j = 1, else Ai, j = 0. Kleinberg’s algorithm,

popularly known as the HITS algorithm [9], is described

in Figure 3. This is a recursive algorithm where each node

is assigned an authority score and a hub score. Hence we

see that hub scores will be higher if it points to many

nodes or nodes with high authority. Conversely, authority

scores will be higher if it is pointed to by many nodes or

pointed by good hubs.

The recursive nature of the iterations in the matrix

computation will result in the convergence of authority

and hub score vectors to the principal eigen-vectors of

ATA and AAT respectively.

Figure 3. HITS Algorithm

4.2 Identifying Potential Perpetrators

Existing link analysis techniques fail to detect

machines that send spam or are used to relay spam. Most

techniques are used to mine for behavior that is normal

and dense within a community, as opposed to anomalous

or rare behavior. To detect e-mail spamming machines we

need to differentiate their behavior from those of the e-

mail servers. Both of them will tend to have high

outgoing traffic. However, an e-mail server tends to send

e-mails to only other e-mail servers whereas a spamming

machine sends mail to all machines. We make use of this

behavioral aspect to detect the potential perpetrators.

We follow the following sequence of steps:

1. Pre-process the netflow data and construct the
graph for e-mail connections.

� Graphs can be constructed for patterns that
represent other kind of services like ftp.

Bipartite Core

Hubs

Authorities

HITS ALGORITHM

Let a is the vector of authority scores and h be

the vector of hub scores

a=[1,1,….1], h = [1,1,…..1] ;

do

 a=A
T
h;

 h=Aa;

 Normalize a and h;

while a and h do not converge(reach a

convergence threshold)

a
*
 = a;

h
*
 = h;

return a
, h

The vectors a* and h*represent the authority and

hub weights

82

� Node can be an IP or AS or port or any
combination depending on the problem. We do

our analysis at an IP Level.

2. Perform the HITS Algorithm on the generated
graph.

� The nodes with top hub and authority scores
represent typical e-mail servers

3. Remove edges between top k% of hubs to top k%
authorities.

� These top k % connections correspond to
normal e-mail traffic between regular mail

servers that have high hub and authority score.

4. Perform the HITS algorithm on the resultant graph.

� A simple outdegree also works fine on the
resultant graph.

5. The new scores are the Perpetrator Scores.

� Spamming machines obtain high rank
compared to other e-mail servers.

It can be seen that our approach is two-fold. Firstly, it

identifies connections between regular mail servers. Such

connections form a dense bipartite graph between servers,

assigning them high hub and authority scores. All such

connections that contribute to normal e-mail traffic are

then removed. Note, only the edges are deleted and not

the nodes. This eliminates normal e-mail server behavior.

The second step identifies machines that behave like

servers and have high traffic that does not correspond to

regular e-mail connections. These machines are most

likely spamming, since they send mails to a lot of other

machines that do not take part in regular e-mail

connections. Since no node is deleted, such an approach

also helps to identify e-mail servers that are affected and

sending spam. Figure 4 illustrates this concept clearly.

Figure 4: Identifying spamming machines

5. Temporal Evolution of Graphs

Link Analysis techniques have primarily focused

on analyzing a graphs at a single time instance.

However, graphs evolve over time, and much

information can be gained by understanding their

evolution. In earlier work, we have shown the

significance of mining information from such evolving

graphs in the web domain [5]. Graphs such as network

graphs based on e-mail connections change rapidly, and

there is a need to define properties that need to be

measured and develop techniques capture the changing

behavior. The sequence of steps for such an analysis is

described below:

• Decide the Scope of Analysis: Single Node,
Subgraph, Whole Graph.

Top Hub and Authority Nodes

Top Hub and Authority Nodes

Mail Server

Spamming

Machine

Connection between Top

Hub and Top Authority

Connection between

Spamming machine and

non-Authority

Spamming Machine is a top hub

Top Hub and Authority Nodes

Top Hub and Authority Nodes

Mail Server

Spamming

Machine

Connection between Top

Hub and Top Authority

Connection between

Spamming machine and

non-Authority

Spamming Machine is a top hub

83

• Develop Time Aware Models (e.g. Graph
Models + Time Series Models).

• Define Time Aware Measures and Metrics.

• Design Efficient Algorithms (Incremental and
Parallel) for computing metrics for all graphs.

In the following subsection we will describe the

three levels of scope of analysis in detail. Figure 5

illustrates an example of an evolving graph. G1, G2,

G3, G4 represent the snapshots of the graph taken at the

end of consecutive time periods. The different

subgraphs in each snapshot are represented as g1, g2,

g3, g4. Each time period is of length, ∆t. The start and

end time instances of each time period are represented

from t1 to t5. The order and size of graph are

represented as |v| and |E|.

5.1 Analysis Scope

The models and techniques developed will also

depend on the scope of analysis. The temporal behavior

of the Web graph can be analyzed at three levels:

• Single Node: Studying the behavior of a single
node across different time periods. Over a period

of time, inherent properties of a node, such as

machine configuration, can change, signifying the

change in functionality of the node. Also, structural

changes of a node over a time period can be

analyzed by

studying the variation of properties. Typical

examples of properties based on link structure are
indegree, outdegree, authority score, hub score and

PageRank score. Such behavior will also serve as

useful feedback to a network analyst. Finally, study

of usage data of a single node across a time period,

will reflect the activity of a node during the given

time period. The temporal dimension will helps to

identify current trends and helps in the prediction of

active machines.

• Sub-graphs: At the next hierarchical level,
changing sub-graph patterns evoke interest. These

sub-graphs may represent different communities or

connection patterns, representing services like e-

mail, ftp, p2p, etc. that evolve over time. The idea

of mining frequent sub-graphs has been applied

with a large graph, or a set of small graphs, as input

[16]. However, with addition of a temporal

dimension, we look at an evolving graph, which

may have different sets of sub-graphs at different

time instances. Figure 5 illustrates an example of an

evolving graph, and the sequential patterns that can

be mined. In the example it is seen that if a

subgraph pattern, g1, occurs during a time interval,

the probability that a subgraph, g2, will occur in the

next time period is higher than any other sequence

of subgraphs over adjacent time periods. It can be

seen that mining of sequential patterns of sub-

graphs might provide useful information in

profiling the changing behavior. Sequence mining

may also help in predicting an emerging trend or

predict an abnormal behavior in network traffic.

Figure 5: Analysis of evolving graphs

G4

g1

g2

g2

g2

g3

g1

g4

g3

g2

g3

∆ t ∆ t ∆ t ∆ t

G1 G2 G3

G1 G2 G3 G4

|v|=n(G1)=5 |v|=n(G2)=7 |v|=n(G3)=8 |v|=n(G4)=8

|E| =e(G)=4 |E| =e(G2)=4 |E| =e(G)=7 |E| =e(G4)=5

of Cpts= 2 # of Cpts= 3 # of Cpts= 2 # of Cpts= 3

(t1,t3]

g1->g2

g2->g3

g1->g3

(t2,t4]

g2->g1

g2->g4

g3->g1

g3->g4

(t3,t5]

g1->g3

g1->g2

g4->g3

Sequential Patterns:

e.g: g1->g2 is frequent (compared to others)

Subgraph Analysis Wholegraph Analysis

84

• Whole graph: While analysis of single nodes and
sub-graphs tends to give specific information,

analysis at the level of the whole graph will reveal

higher level concepts. For each graph at a given

time instance, a vector of features consisting of

basic properties and derived properties can be built.

Choosing the appropriate components of such a

vector and its variation in time is an interesting area

of research. Figure 3 illustrates the concept of the

graph evolving and how the different graph

properties change with time. Modeling such an

evolving vector space and analyzing its behavior

over time poses interesting challenges.

5.2 Rank Evolution

We analyze the evolution of the network graph at a

single node level. For each node, we determine its rank

based on its Perpetrator Score(PScore) and call it

Perpetrator Rank. We then define another metric based

on its Perpetrator Rank(PR) called Perpetrator Height.

The height is a measure of ‘how far’ a node is from an

infinitely low ranked node. For a node i at a time t, its

Perpetrator Height can be expressed as:

PHeightit=log2(1+1/PR)

Here we note that for a top ranked node, PR=1 and

its PHeight=1. For a node with almost infinite rank,

PR=∞ , and its PHeight would be zero. We then study

rate of change in the rank of a node over time. The

change for a time period ∆ t can be defined as:

v = ∆ PHeight/∆ t

Since we are interested only in the change and not in

a negative or a positive change in the rank (for the

present work), we take the square of v for our analysis

of how the node behaves. We also weigh the node

according to the perpetrator score, PScore. We do this

since a small change in a highly ranked node or a big

change in a low ranked node is more interesting than a

small or moderate change in a low ranked node. We can

now define a quantity Rank Energy of a node as:

Rank Energy = Weight* v2

This measure would be a good indicator of any rapid

changes in the network behavior of machines. Such a

rapid change would be of particular interest to the

security analyst as it may indicate machines suddenly

spamming or a mail server going down. Also, though

we presently use PScore to weigh the node, the node

can be weighed on other factors such as inside the

network versus outside the network. The weight factor

can be a vector of properties inherent to the node. The

strength of the approach lies in its ability to detect

anomalous behavior at an early stage.

6. Experimental Evaluation

Experiments were performed to evaluate two kinds

of analyses. Firstly, we focused on identifying potential

perpetrators given netflow data for a 10 minute time

window. Second, we observed at a 3 hour time period

and analyzed the rank evolution of each node. We

discuss the details in the following subsections.

6.1 Analysis at a Single Time Instance

The first dataset was netflow data for the University

for a 10 minute window from 07:10 to 07:20 hrs on

June 17th, 2004. The total number of flows during this

time period was 856470, with 228276 distinct IPs. Of

these the number of connections that used SMTP

protocol for E-Mail was 10368, with 1633 distinct IPs.

Using our approach described in section 4, we

ranked the nodes according to their perpetrator scores. It

was found that all main email servers were ranked low.

Among those that were ranked on the top were, small e-

mail severs that did not have traffic to the scale of the

main e-mail servers. Most importantly, we were able to

detect a machine, at address 134.84.S.44, that was

known to be sending spam during that time period. This

particular machine was ranked 2nd when ordered

according to Perpetrator Score. We also noticed that

once we remove the edges between the top hub and top

authorities, a simple outdegree of the resultant graph

also gave a fair measure of anomalous behavior. The

rank of this machine according to authority scores was

1563, indicating that it was sending mails and not

receiving them. The results are shown in Figure 6.

6.2 Analysis of Rank Evolution

The second dataset was netflow data for the

University for a three hour time period from 7am to

10am on July 21st. We constructed graphs for each ten

minute period, to obtain a set of eighteen graphs for this

time period. The results are depicted in Figure 7.

We first generated Perpetrator Scores for each time

instance and determined the rank of each node for that

time period. The shading is a reflection of node rank.

The top ranked node has a darker shade. Each column

indicates one time period, and each row is an IP. For an

IP not present in a time period we assign a default score

of zero. Thus, the picture on the left indicates the

variation of rank of the nodes. The last column is

ranking of the node for the aggregated time period.

85

Figure 6. Identifying Perpetrators

Figure 7. Analysis of Rank Evolution

IP Address Authority

Score

Hub Score IP Address Indegree Outdegree

128.101.X.109 0 0.728289 128.101.X.109 0 363

134.84.S.44 0 0.033964 160.94.X.36 1 176

160.94.X.36 0 0.02685 134.84.S.44 0 147

160.94.X.35 0 0.02016 160.94.X.35 1 112

160.94.X.35 0 0.016173 160.94.X.36 1 106

160.94.X.36 0 0.014935 160.94.X.36 1 103

160.94.X.36 0 0.014778 128.101.X.119 0 99

128.101.X.119 0 0.013571 160.94.X.35 1 92

160.94.X.67 0 0.011118 160.94.X.35 1 60

160.94.X.33 0 0.010552 160.94.X.33 0 45

160.94.X.35 0 0.007896 160.94.X.33 0 45

160.94.X.33 0 0.006688 160.94.X.33 0 36

134.84.X.117 0 0.006529 128.101.X.10 0 33

128.101.X.10 0 0.005942 134.84.X.4 0 28

134.84.X.172 0 0.005282 134.84.X.2 0 26

134.84.X.4 0 0.005127 128.101.X.2 0 26

128.101.X.21 0 0.005016 134.84.X.172 0 25

128.101.X.1 0 0.004601 160.94.X.11 0 24

160.94.X.33 0 0.004492 160.94.X.34 0 22

160.94.X.100 0 0.004374 128.101.X.104 0 21

Sorted by Hub Score

At this time, 134.84.S.44 was known to be sending spam . All

of the other hosts were known, good email servers that were

sending email

Total Flows: 856470

Email Flows: 10368

Distinct IPs (Total): 228276

Distinct IPs (Email): 1633

Sorted by Outdegree

Height Metric
Energy Metric

Machine found to be affected and sending spam during the time period 7am to 10am on July 21st in the CS network

Ranked #1 according to the height metric for the aggregate time period.

Ranked #3 according to the energy metric

Mail Server possibly sending news letters

86

It can be seen that the sudden changes in the node ranks,

for certain machines (such as mail server sending

newsletters as shown in Figure 7), can be eclipsed by

high change in one node, when computed for an

aggregated time period.

In the second part, we computed the Rank Energy of

each node by computing the change in the rank across

consecutive time periods. This measure helps in

eliminating most noise occurring due to changes in

lesser important nodes in terms of anomaly behavior.

The picture on the right depicts the energy of the nodes

across the three hour time period.

7. Related Work

E-Mail Spamming has been a prominent area of

research and different approaches have been taken to

solve this problem. The two main class of problems

studied have been ‘spam email filtering’ and ‘detection

and prevention of virus/worm intrusion and spreading’.

Spam analysis can be broadly classified into content

based techniques and flow statistics based techniques.

There are commercial products that use signatures

developed by analyzing the content [2,13].

Collaborative filtering approaches have also been

developed by analyzing the content [3]. Classification

based approaches that use heuristics or rules such as

SpamAssasin [14] are also popular. MSN8[11] uses

Bayesian based approaches to classify e-mails as spam.

However, all these techniques have high privacy

intrusiveness as they analyze the e-mail content.

Behavior based techniques such as the E-Mail

Mining Toolkit [15] use user profiles to construct user

cliques and analyze the e-mail attachment statistics for

detection of e-mail worms or viruses. However, such

techniques also need to obtain data at least at the mail

server level and have a medium level of privacy

intrusiveness. Sandvine Incorporated [12] suggests the

use of behavior based techniques coupled with signature

based techniques for detection of spam trojans.

However, signature based methods fail to detect novel

attacks at an early stage and such an approach would

require looking into message content, raising privacy

concerns. Also, the technical details of behavior based

approach in the work are not clearly described.

Our goal in this work is not to identify individual

users sending spam or classifying an individual email as

a spam. Instead, we focus on detecting machines that are

sending spam and we capture e-mail traffic that does not

necessarily pass through an e-mail server or use a

particular user id or a mail client. Compared to ‘receiver

based’ approaches such as content filtering, and ‘sender

based’ approaches such as IP blocking; our approach is

in the complementary area of ‘transport based’

approaches where the e-mail is suppressed by stopping

the mis-behaving mail system machine. In addition to

being less privacy intensive, we believe this is also a

new and complementary approach to spam reduction.

8. Conclusions

We have presented in this paper the different levels

of privacy involved in analyzing e-mail behavior. We

have proposed an approach to detect anomalous

behavior in E-Mail traffic at the network level, with low

privacy intrusiveness. Finally, we have presented a

framework for studying evolving graphs and how it can

be applied to network traffic for early detection

suspicious behavior. We have restricted our work to a

level of single node for the present work.

Further research in this area would be to develop

models and measures to mine information from

evolving graphs at the level of subgraphs and whole

graphs.

9. Acknowledgements

We would like to thank Prof. Vipin Kumar and

MINDS Research group at the Department of Computer

Science for providing valuable suggestions. We would

also like to thank Paul Dokas for providing the results

for the University of Minnesota network. This work

was been partially supported by the ARDA Agency

under contract F30602-03-C-0243 and Army High

Performance Computing Research Center contract

number DAAD19-01-2-0014. The content of the work

does not necessarily reflect the position or policy of the

government and no official endorsement should be

inferred. Access to computing facilities was provided by

the AHPCRC and the Minnesota Supercomputing

Institute.

10. References
[1] A.L. Barabasi, “Linked: The New Science of
Networks. Cambridge, Massachusetts: Perseus

Publishing, 2002.

[2] BrightMail, http://www.brightmail.com/

[3] CloudMark, http://www.cloudmark.com/

[4] C.Cowan, P.Wagle, C.Pu, S.Beattie, and J. Walpole,

“Buffer Overflows: Attacks and Defenses for the

Vulnerability of the Decade”, DARPA Information

Survivability Conference and Expo (DISCEX), Hilton

Head Island SC, January 2000.

[5] P.Desikan, J. Srivastava, V. Kumar, P.-N. Tan,

“Hyperlink Analysis – Techniques & Applications”,

Army High Performance Computing Center Technical

Report, 2002.

87

[6] P.Desikan, J. Srivastava, “Mining Temporally

Evolving Graphs”, WebKDD 2004, Seattle.

[7] L.Ertoz, ,E. Eilertson, A. Lazarevic, A., P.Tan, J.

Srivastava, V. Kumar, P. Dokas, The MINDS -

Minnesota Intrusion Detection System, "Next

Generation Data Mining", MIT /AAAI Press 2004.

[8] J. Goodman, G. Hulten, “Junk E-mail Filtering”,
Tutorial , KDD 2004

[9] J.M.Kleinberg, “Authoritative Sources in

Hyperlinked Environment”, 9th Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 668-667,

1998.

[10] V.Krebs, “Data Mining Email to Discover Social

Networks and Communities of Practice”,

http://www.orgnet.com/email.html, 2003

[11] M. Sahami, S. Dumais, D. Heckerman, and E.

Horvitz, “A Bayesian Approach to Filtering Junk E-

mail” Learning for Text Categorization: Papers from the
1998 Workshop.

[12] Sandvine Incorporated, “Trend analysis: Spam

trojans and their impact on broadband service

providers”,http://www.sandvine.com/solutions/pdfs/spa

m_trojan_trend_analysis.pdf, June 2004

[13] O.Sheyner, J.Haines, S.Jha, R.Lippmann, and J. M.
Wing, “Automated Generation and Analysis of Attack

Graphs”, IEEE Symposium on Security and Privacy ,

April 2002.

[14] SpamAssassin, http://spamassassin.apache.org/

[15] S.J. Stolfo, et al. "A Behavior-based Approach to
Securing Email Systems". "Mathematical Methods,

Models and Architectures for Computer Networks

Security", Proceedings published by Springer Verlag,

Sept. 2003
[16] SurfControl http://www.surfcontrol.com/

88

MINDS Level 2
A Multi-level Analysis Framework for

Network Intrusion Detection

(Design Document)

Release 1.0

Minds Group
minds@cs.umn.edu

University of Minnesota,
Department of Computer Science

Minneapolis, MN 55455

Appendix H

89

1 Introduction... 3

2 Design Overview .. 4

2.1 Anchor Point Identification ... 5

2.2 Context Extraction... 5

3 Description of each component .. 6

3.1 Data Preprocessing .. 6

3.1.1 Data Format Converter ... 6

3.1.2 Flow Merge and Match... 6

3.2 Level I Primitive Modules... 7

3.2.1 Scan Detector .. 7

3.2.2 P2P Detector ... 7

3.2.3 Services Profiling.. 9

3.2.4 MINDS Anomaly Detector ... 12

3.3 Level 2 Analysis Modules ... 15

3.3.1 Anchor Point Identification... 15

3.3.2 Context Extraction .. 17

4 Case Studies: SKAION data ... 19

4.1 SKAION Dataset ... 19

4.1.1 Single Stage Attacks ... 20

4.1.2 Bank-Shot Attacks .. 20

4.1.3 Misdirection Attacks... 20

4.2 Evaluation Methodology ... 20

4.3 Detailed Analysis: SKAION Scenario - 3s6.. 21

4.4 Results for Other Scenarios ... 24

5 Conclusion .. 25

90

1 Introduction
As the threat of attacks by network intruders increases, it is important to correctly
identify and detect these attacks. However, network attacks are frequently composed of
multiple steps, and it is desirable to detect all of these steps together, as it 1) gives more
confidence to the analyst that the detected attack is real, 2) enables the analyst to more
fully determine the effects of the attack, and 3) enables the analyst to be better able to
determine the appropriate action that needs to be taken. Traditional IDSs face a major
problem in dealing with these multi-step attacks, in that they are designed to detect single
events contained within the attack, and are unable to determine relationships between
these events.
 Many alert correlation techniques have been proposed to address this issue by
determining higher level attack scenarios. However, if the data that is being protected by
the network is highly valuable, an attacker can spend more time, money, and effort to
make his attacks more sophisticated in order to bypass the security measures and avoid
detection. Attackers, then, may use techniques to prevent their attacks from being
reconstructed, such as making their attacks highly distributed; avoiding standard pre-
defined attack patterns; using cover traffic or ``noisy'' attacks to distract analysts and
draw attention away from the true attack; and attempting to avoid detection by signature-
based schemes through the use of novel attacks or mutation engines. In these more
sophisticated attacks, many of these correlation techniques face certain difficulties.
In the case of matching against attack models or analysis of prerequisites/consequences,
attackers can (and often do) perform unexpected or novel attacks to confuse the
analysis. In addition, the information for these schemes must be specified ahead of time,
and thus the analyst must be careful to specify complete information and not miss any
possible situation. Furthermore, these correlation approaches, as well as traditional IDS
techniques, suffer from a fundamental problem, in that they try to achieve both a low
false positive rate and a low false negative rate simultaneously. These goals, however,
are inherently conflicting. If the mechanism used is set to be too restrictive then there
will be many false negatives, yet if the mechanism is set to be less restrictive, many false
positives will be introduced. Also, if signature-based systems, such as Snort, are used
with many rules, too much time will be spent processing each packet, resulting in a high
rate of dropping packets. If these dropped packets contain attacks, then they will be
missed. While some of the approaches have techniques to deal with missed attack steps,
they cannot handle the absence of many of the steps in the attack.
 In this document, we describe an analysis framework that addresses this tradeoff
between false positives and negatives by decomposing the analysis into two steps. In the
first step, the analysis is performed in a highly restrictive fashion, which selects events
that have a very low false positive rate. In the second step, these events are expanded
into a complete attack scenario by using a less restrictive analysis, with the condition that
the events added are related somehow to the events detected in the first step. We
describe how this framework is suitable for this problem as it addresses the tradeoff
between false positives and false negatives. In addition, our framework is 1) flexible, as
it allows the analyst to exercise control over the results of the analysis, 2) designed to be
modular and extensible, and thus makes it easy to improve the individual components of
the analysis and incorporate new sources of data. We also implemented and evaluated our

91

framework on a dataset that contained several attack scenarios, and we were able to
successfully detect the majority of the steps within those scenarios.

2 Design Overview
The goals for our analysis framework are as follows: First, the system should address the
inherent tradeoff between false positives and false negatives. Second, the system should
be able to detect the majority of the steps contained within an attack and make
connections between these steps to form the attack scenario. For this we assume that at
least one step in the attack is visible (if none of the attack steps are visible to any lower
level IDS, and thus the attack is perfectly stealthy, then we will be unable to detect the
attack). Third, our analysis framework should provide high coverage of attacks (meaning
that most or all of the attacks are detected). Finally, the system should be modular by
design, thus making it simple to incrementally improve our approach.

Anchor Point
Identification

Context
Extraction

Attack
Characterization

Threshold
Configuration

Search size,
Depth,

time frame

Labeling/
Scoring Rules

Correlation/fusion of
multiple sensor data

Behavior Anomaly
Analysis

Watchlist/Blacklist

Anchor
Points

Attack
Context

Profile based
chaining analysis

Domain specific
guided search

Temporal
sequencing

l i

Knowledge based
event labeling

Attack pattern
matching …

…

…

IDS
Sensor
Data

Attack
Scenario

Human Analyst

Data
Preprocessing

Data Format
Converter

Flow Merge/Match

…

 Figure 1. The different phases of the analysis framework

The main challenge faced in designing this kind of system is balancing false positives and
false negatives. To address this problem, our analysis framework is composed of two
main steps. The first step, Anchor Point Identification, is focused on detecting a set of
events (anchor points) in a very restrictive fashion, such that the set contains very few
false positives. However, this will inevitably result in a large number of missed attack
steps. To deal with this, the second step, Context Extraction, relaxes the restrictions
conditionally; for a (potential) attack step to be examined in this step, it must meet the
lower requirements as set by the detection mechanism, and it must also be connected in

92

some way to an event captured in the first step. The overall framework is shown in Figure
1. Note that in Figure 1 there are three steps, where the third step, Attack
Characterization, is concerned with giving semantic meaning to the steps in the overall
attack scenario, as detected by the first two steps. This step is not addressed in the
description of our framework. In addition, the analysis scheme incorporates domain
specific knowledge to further refine the results, which it does by keeping a human analyst
in the loop. The analyst can control the output of Anchor Point Identification and Context
Extraction by specifying the sensitivity of the tools which they utilize or applying domain
knowledge in the rules that are used.

In addition, the analyst can control his view, in that he can specify the events that he is
interested in seeing. For example, if the analyst is securing a specific machine that
contains important data, he can set that machine to be the anchor point and search for
relevant context that is related to that machine; or if the analyst knows about a certain
activity that occurred on the network, or has a list of known bad hosts in a blacklist, he
can specify the hosts involved in that activity.

2.1 Anchor Point Identification
The first phase of the multi-step analysis involves the identification of starting points
(anchor points) for analysis. This is done by taking a set of low-level IDS alerts from one
or more (preferably independent) sources and selecting from this set a number of anchor
points, such that we have high confidence that the set contains very few false positives.
This can be done in many ways.
One way is to use single IDS configured to operate in a very restrictive manner, resulting
in a high confidence yet incomplete set of attack events. Another way of doing this is
through correlation techniques. It is well known that if an alert can be correlated with
many other alerts, we can be more confident that this alert corresponds to a true positive.
Thus, in this manner, alerts from multiple sources can be combined together, where only
the alerts which have high confidence are selected. However, there is a difference
between the goal of this step and the goal of traditional alert correlation techniques. The
difference is that we are not trying to balance false positives versus false negatives.
Instead, Anchor Point Identification attempts to aggressively reduce false positives while
maintaining high coverage of attack scenarios (where an attack scenario is
considered ”covered” if at least one attack event in the scenario is selected in this step).
The low false positive requirement is needed to ensure that the subsequent context
extraction starts from a highly trusted base thus can focus on reducing false negatives.
Because high attack coverage can accommodate high false negatives, this challenge is a
relaxation of the more stringent requirement on traditional techniques that require low
false positives and low false negatives simultaneously.

2.2 Context Extraction
The anchor points generated in the previous step are comprised of events in which there
is high confidence that they are part of an attack. The Context Extraction step generates a
suspicious context around these anchor points, both temporally and spatially. This step

93

detects events related to the anchor points which are also anomalous or suspicious, but
not enough so to be detected by the previous step. The goal of this phase is to add to the
context only those activities that are part of the attack, thus filling in the attack steps
missed by the previous step, while keeping the low false positive rate achieved by the
Anchor Point Identification. This is done by relaxing the restrictions conditionally, i.e.
“lowering the bar”, but only for those events that are connected somehow to an anchor
point.
The major requirement for this step is some type of ranking for each network connection.
One way this is accomplished is by an anomaly detection system. In this type of system,
all connections are ranked according to how anomalous they are as compared to all other
network connections, and this is typically done using data mining techniques. This can
also be done by building historical behavior profiles for each host, determining which
machines are servers and clients for particular services. When using historical behavior
profiles, connections would be added to the context if they deviated from the historical
behavior profiles for the hosts that they involved, for example if a web server started
initiating connections, which it had never done before. This must be done carefully,
however, for example in the case of peer-to-peer connections, which can be difficult to
profile. If this type of traffic is not carefully profiled then the context can expand rapidly,
effectively invalidating the result. One way to deal with this is to use peer-to-peer
detection techniques and ignore the peer-to-peer traffic when profiling.
This step also makes use of domain knowledge in the form of rules. Certain behavior
patterns are known to be signs of malicious activity. For example, attackers often scan a
network on a particular port to look for vulnerable machines. These scans most often
result in failed connection attempts, as most machines will not have a service on that port.
Thus, these machines will not respond (or will reject the connection attempt), and
therefore are not vulnerable to being attacked on this port. This can be captured in a rule
which states that all scans that do not result in a full connection (no successful reply from
the scanned host) should be ignored, and all scans which do receive a successful response
should be included.

3 Description of each component

3.1 Data Preprocessing
The primary goal of the data preprocessing module is to reconstruct sessions. The format
converter converts the supported data flow formats to a common format and the merge
and match module approximates the sessions.

3.1.1 Data Format Converter
The format converter module transforms the currently supported network data flow
formats into a common format that contains all information about the bi-directional
sessions in a single data structure called ‘mm_record’.

The currently supported data formats are Cisco NetFlows v. 5 and TCP Dump. The
conversion from Cisco NetFlow format to merge-match-record (MMR) (a stream of
mm_records) is facilitated by the ‘nf2mmrecord’ utility.

3.1.2 Flow Merge and Match

94

Some of the data formats (i.e. NetFlows) supported by the MINDS system are
unidirectional: the inherently bi-directional flows of packets are broken into two (or more)
unidirectional flows when recorded by the router. Based on information encoded in the
header, the merge and match Module attempts to reconstruct the original session.

The reconstruction is carried out in two steps. First, in the merge step, same 5-tuple
(sources IP, destination IP, source port, destination port, and protocol) unidirectional
flows are joined into a single unidirectional flow. Next, sessions are formed by matching
the appropriate merged, unidirectional flows.
Merge. The router under ideal conditions would form flows of packets that are sent by
the same sources to the same destinations in a single session. Due to limitations, some of
these flows get recorded as multiple, sometimes even overlapping flows. The primary
concern in the Merge Step is to compensate for this kind of error. In particular, flows
with identical protocol, source IP and port, destination IP and port with no more than
MERGE_WINDOW seconds elapsing between the last packet of the earlier flow and the
first packet of the latter flow, are merged together.
Match. As described earlier, the goal of the Match Step is to approximate the original
sessions based on information encoded in the unidirectional flow headers. Specifically,
flows between the same sources and destinations in opposite directions (that is the source
of one flows is the destination of the other) with no more than MATCH_WINDOW
seconds displacement in time are considered a session.

3.2 Level I Primitive Modules
3.2.1 Scan Detector
The Scan Detector is a practical heuristic-based level-I sensor for identifying and labeling
flows that are suspected to pertain to scanning activity.

In this context, we consider a source IP a scanner, if it requests a certain service from
multiple hosts that do not exist, do not offer the service or they offer the service but are
very infrequently requested under normal usage and no additional evidence points
towards the legitimacy of the use of the service. The Scan Detector assigns a scan score
to every source that attempted a connection such that this score is reflective of the
likelihood of this source being involved in scanning activity. For each source, the system
keeps track of the source’s history and the scan score – initially 0 – is increased for every
distinct host that the source initiates a connection to. The score increase is reflective of
the system’s belief of this connection attempt being part of a scanning activity: the score
is maximal for blocked ports, non-existent destination IPs or hosts that do not offer the
requested service. When there is no evidence of the service not existing, the increase in
the scan score is inverse-logarithmically proportional to the frequency of requests for the
service in question as observed by the sensor.

3.2.2 P2P Detector
This component is designed to detect connections that are made by P2P programs. Much
of the analysis done in later stages can be greatly hindered by P2P traffic. Thus it is
necessary to detect which connections are of this type, so that they can either be ignored
in later analysis, or special processing can be done for these connections. Also, it is more
important for the P2P detection mechanism to have few false positives than to have few
false negatives, since the result of a false positive might be the exclusion of a true attack
connection in later analysis, whereas a false negative would result in the inclusion of a

95

P2P connection. Thus the module should detect as much P2P traffic as possible, while
minimizing the false detection rate.

Design of the Component

The code uses three main heuristics. The first is a simple one that flags connections
on well known p2p ports. The second and third are based on ideas in the paper entitled
"Transport Layer Identification of P2P Traffic" by Thomas Karagiannis, et al. (In
Proceedings of the ACM SIGCOMM/USENIX Internet Measurement Conference (IMC
2004), Italy, October, 2004).

The second heuristic simply checks if two IPs are making connections on both TCP
and UDP. Certain P2P systems frequently exhibit this type of behavior, and this will flag
all connections between these two IPs as P2P. Since this type of behavior can also be
exhibited by certain benign programs, there is a white list of ports (that is set in the
configuration file) and if the two IPs that are communicating on both TCP and UDP also
make a connection using one of these white listed ports, then none of the connections
between the two IPs will be flagged as P2P.

The third heuristic relies on the following characteristic of P2P systems. Frequently,
in making a P2P connection, a peer will connect to another peer only once, for example
to download a file. If the peer downloads another file, it will most likely be from a
different peer. This type of behavior is quite different from other applications, for
example web traffic. In web traffic it is common to make many connections from one
client to one web server. For each connection the client will select a different source port.
Thus, if we look at a particular destination IP/port pair, and count the number of unique
IPs that connect to it, and count the number of unique source ports used to connect to it,
the two counts should be close if the destination is P2P, and the port count should be
much higher in other applications, such as P2P. This heuristic categorizes connections
into 3 categories: unknown, p2p, non-p2p. All connections start in the unknown category.
If the difference in the counts for a particular IP/port pair is less than 10 (and the port is
not a well known p2p port), then the connection is marked as a p2p connection. If the
difference in counts is greater than 20, then the connection is marked as non-p2p. If the
port in question happens to be a well known p2p port, then the difference must be less
than 2 to be marked as p2p and the difference must be greater than 10 to be marked as
non-p2p. Also, in order for this check to be applied the count for the number of distinct
IPs that connect to this IP/port pair must be greater than some threshold (which can be set
through the configuration file, with a default value of 20).

For this heuristic, there are many "counter" heuristics to mitigate the false alarms. The
first of these is the "DNS" heuristic, which determines connections to be non-P2P if the
source port and the destination port of a connection are the same and both of the ports are
less than 501. The second false positive reduction heuristic is as follows: if the
connection is to a well known p2p port AND either the number of distinct byte counts for
connections to this IP/port is 1 or the number of distinct average packet sizes for
connections to this IP/port pair is less than 3 AND either the port is less than 501 or the
port is a well known malware port or the number of distinct IPs that made connections to
this IP/port pair is greater than 5, then mark this IP/port as non-p2p. The third false
positive reduction heuristic is as follows: if there are at least a lower threshold number of
connections made by a particular IP (which can be set in the configuration file and

96

defaults to 10) and if the difference between the number of distinct ports this IP made
connections on and the number of those ports which were made to "good" ports is
(strictly) less than some threshold (which can be set in the configuration file and defaults
to 1) then mark this IP as non-p2p. (The idea being that if most - or all - of the
connections were made the well known ports, such as 80, 21, 53, etc, then this IP is
probably not p2p.)

Finally for the third heuristic, the ends of the connections have been marked as
unknown, p2p, or non-p2p. For each connection, if neither source nor destination was
marked as non-p2p, and at least one end was marked as p2p, then the connection is
flagged as p2p. At the end of the p2p detection routine, the connections have been
flagged with the logical OR of the following flags (in order to indicate which heuristic
flagged it): KNOWN_P2P_PORT (1), TCP_UDP (2), and IP_PORT_COUNT (4).

Configuration Options

• print_p2p_details: This option defaults to 1 and if set to one it will print the
flows that were flagged as p2p into an output file.

• p2p_success_threshold: This option is not used.
• p2p_wellknown_threshold: This option (which defaults to 1) is the threshold

used in the third false positive reduction technique, and is the limit of the
number of connections that can be made to non-"good" ports. This limit is not
inclusive, and thus a value of 1 means that all connections must be made to
the good ports.

• p2p_minflow_threshold: This option (which defaults to 10) is used in the third
false positive reduction heuristic, and is the minimum number of flows
required before this test will be applied. This limit is inclusive and so a value
of 10 means that at least 10 connections must have been made by this IP.

• p2p_min_connected_ips: This option (which defaults to 20) is the lower limit
on the number of IPs connected to a particular IP/port in order for the third
heuristic to be applied. This limit is not inclusive and so a value of 20 means
that more than 20 IPs must connect for this heuristic to be applied.

• malware_port: This option is used in the second false positive reduction
technique as a list of known malware ports. To specify multiple ports, this
option should be repeated, with one port per entry.

• good_tcp_udp: This option is used for the white list in the second heuristic.
Multiple ports are specified as in the malware_port option.

• good_port: This option is used in the third false positive reduction technique,
and specifies the "good" ports. This list should include ports such as
20,21,53,80,etc (i.e. ports that are known to be used frquently for benign
traffic). Multiple ports are specified as in the malware_port option.

3.2.3 Historical Behavior Profiler
Hosts repeatedly show the same session1 behaviors as servers or clients. For example, a
web server will have many inbound sessions2 going to port 80 or 443 from many clients

1 We define a session as a pair of a service request flow and the corresponding response flow.

97

and the web server does not open sessions to other hosts unless it is a proxy server. In
addition a server serving several services generally does not behave as a client unless it is
a P2P server. Furthermore a host that behaves as a client generally does not provide any
services. Therefore if we can correctly profile services that a server provides or a client
uses, we can easily identify abnormal services going to the server or coming from the
client.

Design of the Component

Services are recognized through service ports. Therefore service can be profiled with
service ports through which servers provide services and clients make connections. We
profile normal flows that have matching flows (e.g., flows that have corresponding
service request or reply flows.) Flow merging is preceded before finding matching flows
in Netflow data. A flow in Netflow is defined by 7-tuple such as source IP, destination IP,
source port, destination port, protocol, ToS, and incoming interface. We are interested in
only end-to-end communications. Therefore we can ignore ToS and incoming interface
attributes from each flow and merge flows that have the same 5-tuple (e.g., source IP,
destination IP, source port, destination port, and protocol). We use only matched UDP
and TCP flows for service profiling. Time window scheme is used to find UDP matching
flows. If a corresponding response or request flow appears within time τ, we match the
flows (e.g., service request and response flows). However there is no corresponding flow
within time τ, we regard the flow as an unmatching flow. We currently use 3 minutes as
τ and this time window should be adjustable. Matching flows must overlapped in TCP
flows and only normal TCP flag flows (e.g., flows with SYN, ACK and FIN flag) are
considered in service profiling. We define a pair of matching flows as a session. The
session is identified by unique 5-tuple (source IP, destination IP, source port, destination
port, protocol). We profile only inside hosts that reside in our interesting network. We
also separately profile services such as inbound/outbound service sessions in
intranet/extranet communications. Inbound service session means that a local host is a
server and remote hosts initiate a session to the local host. Outbound service session is a
session that is initiated by a local host. In this case the local host acts as a client. We
define inbound sessions as server sessions and outbound sessions as client sessions.
Intranet communications occur between hosts in our interesting local network. Extranet
communications include communications between one local host and one remote host.

Implementation Details
We use several configuration parameters for service profiling like below.

 Number of sessions related to a service: if the number of sessions that uses the
service is smaller than a threshold we ignore the service in a host

 Usage ratio of service: if the usage ratio of a service (e.g., sessions that use a
service over total number of sessions going to/coming from to a host) is smaller
than a threshold we do not profile the service.

We assign anomaly scores in terms of deviations for each session based on profiled

services. The anomaly score will be a real number between 0 (i.e., normal sessions) and 1

2 Inbound session to host A: sessions initiated from another host to host A while outbound sessions are
initiated by host A.

98

(i.e., most highly anomalous sessions). The higher anomaly score a session has, the more
anomalous the session is. Anomaly score is assigned as follows. Figure 2 shows the flow
chart of assigning anomaly score to each server session as an example.

• If a host provides services without connection initiation to other hosts (e.g., the

host will have only inbound session profiles; host could be a server) and a session
is initiated by the host, we assign 1(i.e., most highly anomalous) as an anomaly
score of profile deviation to the initiated session.

• If a host does not provide any services (e.g., the host does not any inbound
sessions; host could be a client) and an inbound session to the host appears, we
assign 1 as anomaly score of profiled deviation to the inbound session.

• If a host has a profiled port (e.g., p) and its usage ratio is α, we assign (1-α) to
anomaly score of a flow that uses port p.

• If a host has a profiled ports but new session’s port does not exist in profiled port,
we set anomaly score as 1

Has Profiled
Server Port Is p profiled Port

Yes

Yes

No

No

Anomaly score=1

Add Server Session
and

Anomaly score=0

Yes

No

Anomaly score=(1-α)

Anomaly Score = 1

Has Profiled
Client Port

Server Session with
service port p

* α is port usage ratio of p
Figure 2. Assigning Anomaly Score to Server session

Input:
Matched Netflow data after merging flow

Output:
Port list and session ratio which a host provides service through or a host uses service
through

• Output file (i.e., server/client port list file) format
IP address
Direction #sessions port_1 port_1_session_ratio port_2 port_2_session_ratio …

o IP address: 32-bit unsigned integer or dotted decimal IP address
o direction

 0: inbound sessions from remote domain hosts to local domain
hosts

 1: outbound sessions from local domain hosts to remote domain
hosts

 2: inbound sessions between local domain hosts

99

 3: outbound sessions between local domain hosts
o #sessions: total number of sessions going to the IP address or coming from

the IP address
o port_n: port number
o port_n_session_ratio: (#sessions going to port_n)/(total number of

inbound or outbound sessions)

Configuration File(profiler.config) Attributes:

• inside: Inside host network ID and network prefix length: it is used for
identifying inside hosts

• multihome: Multi-homing IP addresses: multi-homed host can be dealt as one IP
host

• serverthreshold: Inbound (i.e., server) session threshold. If the total number of
sessions going to an inside host is below this threshold, we do not profile this
inside host for server sessions.

• serverportthreshold: Inbound (i.e., server) port session threshold. If a session
ratio going to a port in an inside host is below a server port session threshold,
we do not profile this port session.

• clientthreshold: outbound(i.e., client) session threshold. If the total number of
outbound sessions from an inside host is below this threshold, we do not profile
this inside host for client sessions.

• clientportthreshold: outbound(i.e., client) port session threshold. It is the same
as sportthreshold except that it is effect to client sessions.

• portthreshold: profiled port threshold. We profile ports whose sum of usage
ratio is smaller than or equal to this portthreshold.

• absolutesession: threshold of absolute number of sessions going to a port. If the
number of sessions going to a port is less than this absolutesession threshold, we
do not profile the port.

3.2.4 MINDS Anomaly Detector
The anomaly detector is a component of MINDS (Minnesota Intrusion Detection System).
The anomaly detector analyses a network's data and builds models of normal behavior. It
then assigns an anomaly score to each connection based on its deviation from this normal
model. The anomaly detector is based on the principle of local outlier factor.

Configuration Parameters

minds.config
This file contains the configuration parameters which can be set by the user to run the
anomaly detector. The various parameters and their explanations are given below

 inside: The IP and mask for the inside network which is being analyzed by
the anomaly detector. The user can specify multiple inside networks one in
each line preceding with “inside”

 session: This specifies what kind of communication is used for anomaly
detection. 0 – all flows, 1 – sessions and 2 – initiating flows only

100

 train: The size of the training set. The anomaly detector picks up a random
sample from the flow file and trains on that.

 test: The size of the test set. The anomaly detector takes all connections if the
value is 0.

 time window: length of the time window(in milliseconds) used for feature
extraction

 connection window: length of the connection window used for feature
extraction

 TIMEOUT: Time(in seconds) after which a connection can be ignored
(usually set for a day)

 nn: Number of near neighbours for the LOF algorithm
 weights: These are the weights assigned to each of the eighteen features

which are used by the LOF algorithm while calculating distance between two
connections.

minds.rules
This file allows a user to specify a subset of the input data on which the anomaly
detection algorithm has to be run. A typical rule file looks like as follows.

ruleset all active
select all
subset tcp active all
select protocol == 6

How Does the Anomaly Detector Work?
The anomaly detector works with the netflow data collected from the router of an
organization's network. The anomaly detector first extracts features from the flow data.
Ten of these features are obtained directly from the flows:

 Source IP address
 Source Port
 Destination IP address
 Destination Port
 Protocol
 Duration
 Number of packets received
 Number of bytes received
 Number of packets sent as reply
 Number of bytes sent as reply

There are eight extracted features as follows.
Time based features

 Number of unique connections made by the same source IP as the current one
in last < time fi window > secs.

 Number of unique connections made from to the same source Port as the
current one in last < time fi window > secs.

 Number of unique connections made to the same destination IP as the current
one in last < time fi window > secs.

101

 Number of unique connections made to the same source Port as the current
one in last < time fi window > secs.

Connection based features
 Number of unique connections made by the same source IP as the current one

from among last < connection fi window > connections.
 Number of unique connections made from to the same source Port as the

current one from among last < connection fi window > connections.
 Number of unique connections made to the same destination IP as the current

one from among last < connection fi window > connections.
 Number of unique connections made to the same source Port as the current

one from among last < connection fi window > connections.

The code randomly chooses a training set from the entire input. The size of the train and
test sets is specified separately in a config file which will be explained later. The code
considers each test connection and finds its distance from its neighbors according to the
LOF algorithm. Based on this distance and the distance of the neighbors their neighbors
an anomaly score is assigned. Thus if a connection is an outlier its anomaly score would
be higher than a connection which is close to its neighbors. After calculating the anomaly
scores, the code finds the contribution of each feature towards the score. The scores,
connection details and the contributions are printed out to an output file.

Building and Running the anomaly detector code
The anomaly detector code is available as a gzipped tarred file - minds.tar.gz
To unzip
% tar -zxvf minds.tar.gz
Inside the minds directory the Makefile needs to be modified as follows
FTLIB should point to the lib directory of the flow-tools.
FTINC1 should point to the lib directory of the flow-tools.
FTINC2 should point to the source directory of the flow-tools.
To build
% make
To run
% cat flow-file | minds minds.config minds.rules output file method
The output file is the prefix appended to the output files generated by the anomaly
detector.

Output of Anomaly Detector
The output of the anomaly detector is sorted based on the anomaly score of the
communication. Each line corresponds to one connection. The fields for each connection
are as follows:

 Anomaly Score for the connection
 Start time for the connection
 Duration of the connection
 Source AS
 Source IP
 Source Port

102

 Destination AS
 Destination IP
 Destination Port
 Protocol
 TCP Flags
 Number of Packets
 Number of Octets

The next 18 fields correspond to the contribution of each of the above mentioned 18
features in calculating the anomaly score.

System Requirements
The distribution of the anomaly detector contains a number of files written entirely in
C++, and is portable on most UNIX systems that have a GNU GCC compiler. It also
requires the flow tools which are available at http://www.splintered.net/sw/flow-tools/.

3.3 Level 2 Analysis Modules
3.3.1 Anchor Point Identification
The anchor point identification (API) process takes the outputs of multiple alert sensors
(e.g. Snort, MINDS scan detection and MINDS anomaly detection) as evidences, and
produces the set of events involved in attacks with higher confidence than relying on any
single level 1 IDS tool. Though API could be generally categorized as one type of alerts
correlation, we draw the distinction from traditional correlation systems that this
approach incurs unique requirements such as API does not need to catch all or most of
the steps of an attack as the rest of the attack can be picked up by the attack context
extraction phase. The key requirements for API are summarized below:

 API must have low false positives while maintaining high coverage of attacks.
An attack is considered “covered” if at least one attack event in this attack is
picked up by API. The Low false positive requirement is needed to ensure that
the subsequent context extraction starts from a highly trusted base thus can focus
on reducing low false negatives. Because high attack coverage can accommodate
high false negative, this challenge is a relaxation of the conventional more
stringent requirement that requires low false positives and low false negatives
simultaneously. This requirement gives hope for API to achieve extremely low
false positives.

 API must be fast given that the network events and alerts can be very high in
volume.

 API must be easy to configure to support a variety of rules.

Design of the component
In order to address the above requirements, the API design went through the following 4
steps:

1. Select the right set of level-1 IDS outputs for correlation
2. Select an group of effective methods for correlation to support
3. Build a mechanism to support flexible configurations (i.e. correlation

specifications)
4. Data structures and algorithms are used / designed such that required times of

103

scanning the input alerts especially the annotated minds flows is minimized.

To address the high coverage of attacks requirement, level-1 IDS inputs are selected such
that they provide orthogonal information. We found that Snort and MINDS anomaly
detection are good candidates since Snort is a signature-based system with knowledge of
known suspicious patterns while MINDS looks at the network behavior and has the
capability of detecting novel attacks using data mining techniques such as clustering.
Experiments with SKAION data has shown that they indeed provide a good combination
for coverage.
The low false positive requirement can be achieved through aggressive alert reduction
and setting stringent threshold. Our experiments with SKAION data revealed that using
the intersection of Snort and MINDS with anomaly rank threshold of 0.5% yielded very
low false positives while covered all attacks. Our preliminary experience with UMN
network traffic showed that inside scanners, blacklists and host behavior anomaly might
also be effective. Thus the current version of API supports all of the above methods. An
intuitive predicate-based rule configuration is used in API to specify the correlation
methods and corresponding parameters. Std::Map’s are extensively used to reduce the
sequential scan of alerts.

Implementation details
API takes four arguments specifying the configuration file, snort alert file, blacklist file
and the annotated MINDS output file. API first loads in the configuration files and builds
a set of rules. Then blacklisted IP’s or subnets are loaded in and stored in a vector.
Finally the MINDS output – annotated flows are read in. While being stored in a vector,
all snort alerts are ranked based the highest rank of the flows that either the source ip or
the destination ip of the snort alert gets involved in. The blacklisted flows are also built
up in this pass.
After loading the data and the initial processing, the rules are evaluated against their data
set one by one to build the anchor point lists. Note that current rule configuration allows
uses to build a “select” set and an “ignore” set. The final anchor point list is (the “select”
set – “ignore” set). Finally the anchor point list is compressed according to (source ip,
destination ip). Redundant (source ip, destination ip) pairs are suppressed and a count of
number of occurrence is provided for each pair.

Input/output formats

 The format of annotated flows from MINDS is same as the MINDS output as
specified in section x.x.x.x.

 The format of the snort alert conforms to the one used in SKAION dataset as
illustrated in sample file api.snort.

 The formats of blacklist file start with keyword inside and followed by the subnet
address and network mask. Note an individual IP is specified by making the
network mask 32. All three fields are space separated.

 The format of configuration file starts with keyword select or ignore, specifying
the destination buckets. Then data source is specififed. Right now, thress data
sources are supported, i.e. blacklist / snort / minds_flows. Following each data
source are a set of the operators and operands (i.e. predicates) logically AND-ed

104

together. The sample configuration file api.config illustrates how to construct the
common rules.

 The output of the API is a list of anchor points identified by the (SrcIP, DestIP)
pair and supplemented with information such as the highest rank, the index of the
associated flow the timestamp of the flow and how many anchor points of the
same pair are suppressed. The exact order of these attributes follows: “Rank”
“Index” “Timestamp” “SrcIP” “DstIP” “# of alerts”.

Sample usage
The following is a sample usage of the API.

 api api.config api.snort api.blacklist minds.flows

Executing this command line generates a file anchors.API. All the sample files
(api.config api.snort api.blacklist minds.flows, anchors.API) are provided with this
document in directory.

3.3.2 Context Extraction
In the Attack Context Extraction stage, entities (hosts, flows, etc) relevant to the attacks
represented by the anchor points are identified. Specifically, this stage uses the anchor
points and finds other network events related to them, in time, IP space, or other
attributes. Viewing individual events as nodes of a graph, and relationships between them
as (directed) edges, this is essentially a graph expansion stage. Precise behavior profiling
plays a crucial role in this stage since failing to limit the expansion to truly anomalous
entities will cause the expansion to cover a large number of entities irrelevant to attacks,
thus reducing the fidelity of the analysis. The main objective of the context extraction
step is to use the anchor points detected in the previous step and provide a complete set of
attack-related events which can be used in further analysis, either by an analyst or an
automated process.

This analysis is done recursively on the new events added to the context. This step
enhances the output of the anchor point identification step by adding any attack related
information which could be missed in the earlier step. As described in the previous
section, the anchor point identification strives to minimize the false positives while
leaving a margin for missing some attack events. Context extraction aims at capturing
these missed events while preserving the low false positive rate. If the context is not
refined properly, it could soon grow to cover the entire network. This is the main
challenge for the context extraction step. The context refinement is done by using
“normal” profiles for hosts to ignore the normal traffic related to an anchor point and
using certain “attack” profiles to add similar traffic to the context.

Design of the Component

The algorithm currently goes through a series of "Iterations". At the beginning of each
iteration, there is a list of all the IPs contained within the context. During the iteration,
the flows are each processed. If one of the IPs involved in the flow in contained within
the context already, and if the flow passes the specified rules (and the flow is not already
in the context) then the flow is added to the context (and any IPs not already contained
within the context will be added. The iterations continue until a pre-specified limit is

105

reached - either the maximum number of iterations is reached, or the maximum number
of nodes has been added, or no more nodes were added (the transitive closure was
obtained). Currently the rules are as follows:

• Ignore P2P
• Ignore Scans without replies
• Ignore non-tcp traffic
• Ignore flows which are flagged as normal by the host profiling module (this rule

is ignored if the flow is a scan with a reply).
The first 3 rules can be turned off via the configuration file. The thresholds for what is
defined as normal can also be defined through the configuration file.

Input/Output Format

For input, this component takes the following files (the formats have been described
earlier):

• Annotated Flow file as output from MINDS anomaly detection
• Anchor point list as output from the APID module
• Configuration file

The output of this stage is in the same format as the MINDS annotated flow file (with
the addition of one field at the end of each line to identify the iteration in which this flow
was added). This file contains a subset of all the flows in the annotated flow file,
specifically those flows that were found to be within the context.

Configuration File Attributes

The format of the configuration file is as follows: each option is on a line by itself,
with the option name followed by a space and then the value for that option. Comments
can be inserted by making the first character of the line a ‘#’ symbol.

• num_nodes: Maximum number of nodes to be added to the context. 0 means no
limit. (This limit is checked at the end of each iteration, so more nodes may be
added than this limit, but no more after an iteration.)

• num_iterations: The maximum number of iterations for which to run the context
extraction. 0 means no limit.

• normal_threshold: The threshold for what defines normal as flagged by the host
profiling module. Completely normal is defined as 0 and completely abnormal is
defined as 1.

• attenutation_factor: After each iteration the normal_treshold is multiplied by this
value, to allow for an ever increasing (or decreasing) definition of normal. This
allows for the functionality of increasing the threshold to only add flows and
nodes in later iterations that are more abnormal. Set to 1 for the threshold to
remain constant, >1 to increase (later flows must be more abnormal), or <1 to
decrease (later nodes can be less abnormal). <1 is not recommended.

• ignore_scan_no_reply: This allows the user to turn off the rule to ignore scans
with no replies. Set to 1 to enable, 0 to disable.

• ignore_p2p: Same as above, but for p2p traffic. It is recommended to set this to 1
for public type traffic and 0 for IC type traffic (where p2p would be expected to
be non existant).

106

• only_use_tcp: This allows the user to ignore all non-tcp traffic or to consider all
types of traffic. Set to 1 to only look at tcp and 0 to look at all types.

• ignore_conns_with_no_reply: This allows the user to turn off the rule of ignoring
failed connection attempts. This rule prevents the context from blowing up too
much by not adding IPs for which there was no successful connection (no bytes in
response). 1 turns the rule on, 0 turns the rule off (so that failed connections will
be added to the context).

4 Case Studies: SKAION data
We evaluated our proposed framework using datasets generated by SKAION
Corporation . These datasets are simulated to be statistically similar to the traffic found in
Intelligence Community. This dataset has several scenarios with attacks injected that
follow different patterns. In the following sections we first describe the nature of the
SKAION dataset, then discuss methods we used to evaluate our framework, and finally
we show our results. As can be seen in the following results, even though our approach
currently uses only simple implementations for each component, our overall analysis
captures the major attack steps successfully.

4.1 SKAION Dataset
As part of the ARDA P2INGS research project, the SKAION Corporation has released
several sets of simulated network traffic data. This data includes various scenarios of
multi-step sophisticated attacks on resources within a protected network. The scenarios
for which they have generated data include single stage attacks (a simple scan or exploit
or data exfiltration scenario), bank shot attacks (where an internal host is compromised
and used to attack another internal host), and misdirection attacks (where a “noisy” attack
is staged on one part of the network while the true attack takes place in a more stealthy
manner in another part of the network). In addition to the main attack, there are other
background attacks (none of which are successful) and scans. To date, they have released
3 datasets to date, including many instances of these scenarios. However, for the sake of
space, we will describe our results on one scenario in detail and present a summary of our
results on other scenarios. The network topology in these scenarios is comprised of the
following four domains: (i) the target protected domain, BPRD (Bureau of Paranormal
Research and Defense) comprising of various servers which are the typical targets for
attacks; (ii) a secondary internal domain which is not as protected as the protected
domain and comprises of servers as well as clients. The hosts inside this domain have
additional privileges to access the protected domain, BPRD; (iii) a set of external hosts
which consists of attackers as well as normal users and (iv) a trusted domain which
consists of remote users access the protected network with additional privileges over a
dialup or a VPN connection. All traffic entering and leaving the entire internal network is
captured by tcpdump. Snort alerts are collected for traffic exchanged between the
external network and entire internal network.

107

4.1.1

4.1.2

4.1.3

Single Stage Attacks
 These scenarios are compromised of a simple attack made up of four steps. First,
scanning is used to determine the IP addresses in the target network that are actually
associated with live hosts. Typically in these scenarios, this is done by an attacker
performing reverse DNS lookups to see which IPs have domain names associated with
them. The next step consists of an attacker (or multiple attackers) probing these live hosts
to determine certain properties, such as which OS and version is running on the host.
Then one of these hosts is attacked (possibly by a host that was not involved in any
previous steps) and compromised. Finally, a backdoor is opened, to which the attacker
connects, and performs various malicious activities, such as data exfiltration or the
downloading and installation of attack tools.

Bank-Shot Attacks
 These attacks are aimed at avoiding detection by using an “insider” host to launch the
actual attack. In this scenario, initial scanning is done, and then an attack is launched
against a host in the BPRD network. This attack fails, and the attacker then scans and
compromises a host in the secondary internal domain. From this server, the attacker scans
and launches attacks on hosts in the protected BPRD network. A host is then
compromised, from which data is exfiltrated.

Misdirection Attacks
The attacker attempts to draw the attention of the analyst away from the real attack. He
does this by launching a noisy attack (one which sets off many IDS alerts) on a particular
set of hosts in the protected network. Then using a previously compromised host in the
trusted domain, he attacks and compromises another host in the BPRD network, from
which he exfiltrates data.

4.2 Evaluation Methodology
Before discussing the results of our experiments, we first describe how we performed the
experiments and the methods we used to evaluate our framework. For a given scenario,
we first ran all low-level IDS tools to generate the alerts, anomaly scores, etc. For
profiling, we used ten and five connections for Ts and Tc respectively. This means that a
host was profiled as a server only if it had more than 10 inbound connections. Similarly, a
host was profiled as a client only if it had more than 5 outbound connections. In addition
we only profiled ports with more than two connections. We then ran Anchor Point
Identification using multiple rules for detecting the anchor points in order to compare the
performance and sensitivity of each set of rules. First, we used Snort alone, where each
Snort alert was selected as an anchor point. Next, we used the MINDS anomaly detector
alone, where the connections that ranked in the top k% of anomalies were selected as
anchor points. Finally, we combined Snort and MINDS in the method described in
Section 3.3.1. The anchor points selected were those Snort alerts in which at least one of
the IPs was involved in a highly ranked anomaly (ranked within the top k% of MINDS
Anomaly Detector output). The evaluation criterion for the anchor points is twofold: first,
whether it covers the attack (i.e. did it have any true positives), and second, whether it has
low false positives (the lower the better). The Anchor Point Identification step generates a
set of events (anchor points) which represents a connection between two hosts.

108

An anchor point is related to the attack scenario if the connection it represents is a part of
some attack step. In our results section, the results of this step are represented by the
number of attack related hosts detected (true positives) and number of non-attack related
hosts detected (false positives). A host is counted as attack related if it is present in an
attack related anchor point (in this case we call it covered, as introduced in section 3.3.1).
If a host is present only in non-attack related anchor points, it is counted as a false
positive.
Following the Anchor Point Identification step, Context Extraction was run with each set
of anchor points found by different rules utilized by Anchor Point Identification. No other
parameters were varied for this step, since the parameters mainly consist of limiting the
expansion, and for our experiments this step was run until no more contexts were added.
The goal for this step is to detect all attack related steps (with emphasis on the more
important steps, e.g. initial scanning is less important then exploits or backdoor accesses)
while reducing the number of non-attack related steps. Note that there are two types of
non-attack related hosts that could be added to the context. First, they could be part of
background attacks, which are still interesting for the analyst. Second, there are real false
positives, which are not a part of the actual attack scenario or the background attacks.

All the tables for the results follow the following notation:

 AS:Attack Steps This represents the high level attack steps like probing
(information gathering), actual exploit, backdoor access, or data exfiltration.

 AH:Attack-related Hosts This includes all hosts related to the attack scenario
including external scanners, external attackers, internal hosts scanned by the
attackers for information and the eventual victims which get compromised.

 BA:Background Attack Related Hosts This involves all hosts related to the
background attacks in the traffic as attackers or victims.

 FP : False Positives This counts all hosts that are not related to the actual attack
scenario or to the background attacks but are wrongly detected by our
framework.

4.3 Detailed Analysis: SKAION Scenario - 3s6
We present our detailed analysis on one of the bank shot attack scenarios. The scenario
we evaluated (called 3s6) had 122,331 connections in the traffic, involving 4516 unique
IPs, on which there were 6974 Snort alerts.

109

Figure 3. Different steps and hosts involved in attack scenario 3s6

The attack graph for the scenario 3s6 is shown in Figure 3. The various steps involved
(in chronological order) are :

 A1: O1 (74.205.114.158) scans 92 hosts (936 flows) inside the BPRD network.
 A2: O2 (42.152.69.166) attacks internal server, I1 (100.10.20.4) four times (17

flows) and fails each time.
 A3: O3 (168.225.9.78) port scans (18 flows) secondary internal host, S1

(100.20.20.15 alias 100.20.1.3).
 A4: O4 (91.13.103.83) attacks S1 (78 flows) using Apache OpenSSL SSLv2

Exploit and succeeds.
 A5: S1 port scans 6 servers in the BPRD network (895 flows) including the

eventual victim, I2 (100.10.20.8).
 A6: S1 launches attacks on I2 using IIS IDA-IDQ exploit and succeeds. It also

browses through the files of I2 (4 flows).
The attackers try to confuse the analyst by first scanning and unsuccessfully attempting to
attack the internal network (Steps A1 and A2). Most of the attack related Snort alerts are
on this traffic. Another attacker then attacks the secondary network and compromises an
internal host (S1). This host is then used to scan the BPRD network and launches an
attack on I2. Since this traffic is internal, it is not detected by Snort.

110

Config AH FP
Snort 96 169

0.2 5 5
0.5 8 67Top k% anomalies
1.0 50 114
0.2 93 0
0.5 95 39 Snort +

Top k% anomalies 1.0 98 83
Table 1: Results for Anchor Point Identification on Bank-Shot Scenario 3s6

Config # Iterations AS AH BA FP
Snort 2 5(A1, A2, A4, A5, A6) 24 3 75

0.2 2 5(A1, A2, A4, A5, A6) 24 3 43
0.5 2 5(A1, A2, A4, A5, A6) 24 3 58 Top k% anomalies
1.0 2 5(A1, A2, A4, A5, A6) 24 3 93
0.2 2 5(A1, A2, A4, A5, A6) 24 3 45
0.5 2 5(A1, A2, A4, A5, A6) 24 3 47 Snort +

Top k% anomalies 1.0 2 5(A1, A2, A4, A5, A6) 24 3 47

Table 2: Results of Context Extraction on Bank-Shot Scenario 3s6

The results of context extraction in Table 2 show that the framework succeeds in
capturing a large portion of the attack scenario (5 out of 6 attack steps). The context also
captures some background attacks present in the traffic. The false alarms arise because of
following reasons - 1) Mislabeled Flows - These arise because of errors in the data
converting component due to which initiating flows might be labeled as replies and vice
versa. 2) False alarms from Our Profiler - Host/service profiler has an associated false
alarm rate due to which some non-attack related flows are added to the context.
All configurations for anchor points result in detecting a portion of the scanning activity
by O1 as anchor points in Table 1. From these anchor points, the scanning activity A1 is
added to the context. Since I1 is scanned by O1, its traffic is analyzed. This results in
adding the failed attack attempts, A2 to the context. I2 is also scanned by O1. Since I2 is
attacked by S1, this attack step A6, is added to the context. On analyzing the traffic to and
from S1, the scanning activity A5 is added to the context. Similarly the attack step, A4 on
S2 is also added to the context. The attack step A3, is not captured since it involves
probing of S1 on ports on which it is a server. However, we capture all those attack steps
from which we can construct the core attack scenario.

We observe from Table 1 that if we use a correlation of Anomaly Detector and Snort we
get less number of false positives as anchor points. As we relax the constraints in Anchor
Point Identification step, we detect more attack related hosts, but the number of false
positives also increases. However, from the context extraction results in Table 2 we
observe that we still detect the major portion of the attack scenario even if we start with a
less number of anchor points. Moreover, the presence of false positives in anchor points
results in a high false positive rate for context extraction.

111

4.4 Results for Other Scenarios
The results of our analysis on other scenarios are summarized in Table 3. The
configuration used for Anchor Point Identification was the combination of Snort Alerts
and top 0.5% of MINDS Anomaly Detector Output. From the table we observe that our
implementation is able to capture all important steps of each attack scenario except for
the scenario - Five by Five (In this case, the volume of traffic related to the victim host
was not enough to be profiled, thereby that host was not added to the context). The attack
steps which were missed in all cases involved failed attack attempts or probes before
attacks. Our implementation captured all the important attack events, such as the actual
exploit, data exfiltration for all but one scenario from which the core attack scenario can
be generated. From the results we can observe that by using strict thresholds for Anchor
Point Identification, we are able to detect some attack related events (as anchor points)
while keeping the number of false positives very low. Using these anchor points, we
successfully detect the core attack scenario in all but one scenario along with some
background attack activity. Since the number of non attack related anchor points are low,
the false positives in the context extraction step are also very few.

Ground Truth Anchor
Point Context Extraction Scenario

Conn # Hosts # Alerts AS AH AH FP AS AH BA FP
Naïve 1739 581 27 4 10 2 0 4 3 0 0

Simple Ten 12040 2616 114 4 246 4 0 4 6 0 1
Five by

Five
7853 2101 177 3 13 5 45 0 0 0 5

Ten by Ten 9459 1435 54 4 16 5 11 4 5 0 1
S9 4833 472 53 3 2 2 3 3 2 0 0
S10 4792 582 58 4 3 2 6 3 2 0 0
S14 8915 1210 95 3 2 2 9 3 2 12 4
S16 5711 368 1372 4 3 2 4 3 2 2 3
S24 4334 699 452 6 10 2 4 4 4 1 3

Single Stage

3s10 47490 3084 3150 3 6 5 21 3 6 1 5
s1 45161 12292 10896 6 7 4 32 6 7 11 3 Bank shot s37 23970 1517 7671 6 5 4 18 6 4 0 0

Misdirection s29 10926 627 451 7 6 5 1 7 6 0 4

Table 3: Summary of results for different SKAION scenarios

A brief description of our results on each scenario is given below:
• Naive Attacker All attack related steps are detected. The 7 attack-related hosts

that are not detected are the hosts inside BPRD which are scanned by the attacker
as part of the probe, but do not reply back. Thus they do not supply any
information to the external attackers.

• Simple Ten All attack related steps are detected. The 240 attack-related hosts not
detected are again the scanned hosts which do not reply back.

• Five by Five We fail to detect any attack steps or any attack related hosts. In this
scenario, the victim host inside the network was not involved in any traffic with
external world apart from the attacks launched by outside attacker. There was no
profile generated for this host and hence the attacks could not be distinguished
from normal traffic. The attack would have been detected if there was enough
traffic which would meet the thresholds related to profiling of internal servers.

112

• Ten by Ten All attack related steps are detected. 11 attack-related hosts not
detected include 6 scanned hosts which do not reply back and 5 external scanners
who never get a reply back from the hosts which they scan. Thus effectively,
these external scanners never get any information about the internal network and
hence do not contribute to the actual attack scenario.

• s9 All attack related steps and attack related hosts are detected without any false
positives.

• s10 One attack step is missed in this scenario. The missed step is a failed attack
launched by one external attacker on an internal host which is not the eventual
victim. Thus this step is not an important part of the whole attack scenario.

• s14 All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise due to mislabeled connections (replies labeled as initiating
connections). This occurs during the conversion of tcpdump data to netflow
format.

• s16 One attack step is missed in this scenario. The reason for this is same as in
scenario s10. We also detect two background attacks as a part of the context. The
false positives arise because of two outside hosts involved in traffic on random
high ports with internal servers which does not conform to the normal profile of
those internal servers.

• s24 In this scenario three external attackers did a distributed scanning of the
internal network. One of the scanners got a reply back from the eventual victim
while the other two did not get any replies from the hosts which they scanned.
These two scanning steps which did not contribute any information were missed.
The false positives occurred because of the same reason as in scenario s16.

• 3s10 All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise due to mislabeled connections (replies labeled as initiating
connections) or due to outside hosts accessing internal servers on random high
ports.

• s1 All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise because of external hosts accessing internal servers on random high
ports.

• s37 In this scenario, one of the attackers port scans two internal servers but gets
reply only from one which is eventually attacked. The other server does not
supply any information back to the attacker. Only this server is not detected while
all other involved hosts and attack steps are detected.

• s29 All attack steps except for one initial probe, which did not get any replies,
were detected. The false alarms occur for the same reason as in scenario s1.

5 Conclusion
We have shown an analysis framework and the results of case studies through SKAION
data. Our main contributions are to address the tradeoff between false positive and false
negative by decomposing the analysis into two steps. In the first step, anchor point

113

identification analyzes highly restrictive fashion, which selects the events that have a low
false positive rate. In the second step, these events are expanded into a complete attack
scenario by using a less restrictive analysis, with the condition that the events added are
related somehow to the events detected in the first step. We have shown two-step analysis
approach can be beneficial in analyzing network traffic and IDS alerts to discover multi-
step, sophisticated attacks. Our two-step approach worked well with the simple
components.

114

MINDS Level 2
A Multi-level Analysis Framework for Network

Intrusion Detection
User Manual

May 26, 2005

MINDS Group∗†
∗Department of Computer Science, University of Minnesota

†Army High Performance Computing and Research Center (AHPCRC), Minnesota

1

Appendix I

115

1 Introduction to MINDS 2.0
MINDS level II analysis system (or MINDS 2.0) captures attack scenarios from net-
work traffic using a two-step methodology. The first step involves detecting highly
suspicious attack related events using a combination of several intrusion detection com-
ponents. The second step recursively builds a context around these suspicious events
to capture the other less suspicous attack related events. Refer to the design document
for detailed architecture of the whole system.

2 System Requirements
MINDS 2.0 is written in GNU C++ and Perl and tested extensively on Linux and
FreeBSD. Currently the distribution is available in binary format which can run on
ix86 architectures.

3 Download and Installation
The installation requires two external libraries.

1. libpcap - This library is a system-independent interface for user-level packet
capture and is required by the tcpdump converter module. The library can be
downloaded from -
http://www.tcpdump.org/release/libpcap-0.8.3.tar.gz
To unzip
$ tar -zxvf libpcap-0.8.3.tar.gz

2. flow-tools - Flow-tools is a software package for collecting and processing Net-
Flow data from Cisco and Juniper routers and is required by the flow-converter
module. The package can be downloaded from -
ftp://ftp.eng.oar.net/pub/flow-tools/flow-tools-0.66.tar.gz
To unzip
$ tar -zxvf flow-tools-0.66.tar.gz

Note that above two libraries need to be built before installing the MINDS 2.0 software.
See the documentation provided with these packages for build instructions.

To install the software first copy the files from the CDROM to a local directory -
$local-home.
To install
$ cd $local-homeinstall $.install During installation the location of the above two
libraries will be asked.
The executables and the configuration files are installed in $local-homebin

2

116

4 Description of Input Data
The MINDS 2.0 converts the input network data into its own internal format. Refer
to the design document for the structure of this format. Currently, the system supports
conversion of Cisco Netflow Format and TCPDump data to the internal format. The
TCPDump data is first converted to an intermediate flow format using the collector
utility. Adding support for any other format would require writing filter for that format
and plugging it into the system. For more details regarding format conversion refer to
section 7.1.

5 Executing MINDS 2.0 - Basic Usage
MINDS 2.0 can be executed from the command line as follows

$ cd $local-homebin $ minds2 <flow-file> <flow-format> <output-file> The first
parameter specifies the location of the network traffic flow file and the second parame-
ter specifies the format of the flows. Currently the system supports two flow formats.

• flow-format = 1, if the flows are of CISCO Netflow format.

• flow-format = 2, if the flows are of TCPDump intermediate flow format.

The output-file contains the final output of the system which includes the highly sus-
picious flows captured from the input traffic. The details about the output format are
provided in section 6.

5.1 Setting Configuration Parameters
As mentioned earlier, the MINDS 2.0 system involves multiple execution steps. The
output of each step can be controlled by specifying several threshold and other control
parameters through configuration files. The description of the configuration files for
each of the section are given below.

5.1.1 Historical Profiling

The configuration file used is named - serverDetection.config. The various parameters
that can be set in this file are:

• inside: Inside host network ID and network prefix length. It is used for identify-
ing inside hosts

• serverthreshold: Inbound (i.e., server) session threshold. If the total number of
sessions going to a local host is below serverthreshold, we do not profile this
local host for server sessions.

• serverportthreshold: Inbound (i.e., server) port session threshold. If a session
ratio going to a port in a local host is below a serverportthreshold, we do not
profile this port session(s).

3

117

• clientthreshold: outbound(i.e., client) session threshold. If the total number of
outbound sessions from a local host is below clientthreshold, we do not profile
this local host for client sessions.

• clientportthreshold: outbound(i.e., client) port session threshold. If a session
ratio going to a port in a remote host is below a clientportthreshold, we do not
profile this port session(s).

• portthreshold: profiled port threshold. We profile ports belong to first n largest
port usage ratio. In this case the sum of usage ratio of the n ports should smaller
than or equal to this portthreshold in a host.

• absolutesession: threshold of absolute number of sessions going to a port. If the
number of sessions going to a port is less than this absolutesession, we do not
profile the port.

• format: it tells if the input trace is tcpdump intermediate flows (1) or CISCO
netflows (0)

A sample configuration file is shown in figure 1.

Serviceprofiler.config
inside 100.0.0.0 8

serverthreshold 10
serverportthreshold 0.2
clientthreshold 5
clientportthreshold 0.1
portthreshold 0.8
absolutesession 2

Figure 1: A sample configuration file for Behavioral Profiling Component

5.1.2 Anomaly Detector

The MINDS Anomaly Detector requires a configuration file - minds.config and a ruleset
file - minds.rules.

minds.config This file contains the configuration parameters which can be set by the
user to run the anomaly detector. The various parameters and their explanations are:

• inside: The IP and mask for the inside network which is being analyzed by the
anomaly detector. The user can specify multiple inside networks one in each line
preceding with ”inside”.

• session: This specifies what kind of communication is used for anomaly detec-
tion. 0 - all flows, 1 - sessions and 2 - initiating flows only.

4

118

• train: The size of the training set. The anomaly detector picks up a random
sample from the flow file and trains on that.

• test: The size of the test set. The anomaly detector takes all connections if the
value is 0.

• time window: length of the time window(in milliseconds) used for feature ex-
traction

• connection window: length of the connection window used for feature extraction

• TIMEOUT: Time(in seconds) after which a connection can be ignored (usually
set for a day)

• nn: Number of near neighbours for the LOF algorithm

• weights: These are the weights assigned to each of the eighteen features which
are used by the LOF algorithm while calculating distance between two connec-
tions.

Figure 2 shows a sample configuration file for Anomaly Detector Component.

minds.rules This file describes how the rule files can be used to filter the data.

• Ruleset keyword can be used to combine multiple runs in one shot. Anomaly
detection is run for every subset of flows corresponding to each ruleset.

• After a Ruleset keyword, rules can be typed in. There are two types of rules:
select and ignore. The default action of a ruleset is ignore all, i.e. if no select
rule applies for a given record, it’s ignored. Not all the rules have to be executed
for every single flow record. The action suggested by the rule (select / ignore) is
applied right away when a rule matches the record, i.e. if a select rule matches
the record, it’s added to the subset even if a later ignore rule matches the record
too. The precedence of the rules is from top to bottom; if the first rule doesn’t
apply, only then the second will be applied.

• After a select / ignore keyword, one of the following keywords can be used.
srcip, dstip, srcport, dstport, protocol, packets, octets or all. The operations
that can be specified on these fields are: >=, >, ==, !=, <=, <, inside, outside,
net equal, net not equal.

• The operations should be followed by values of appropriate type. Multiple rules
on one line will be interpreted as AND’ed together. ”inside” and ”outside” can
be used provided that the boundaries of the network should be specified in the
config file.

In the case of ’all’, the rule will match anything and the action suggested by the rule
will be executed right away. Figure 3 shows some sample rules.

5

119

5.1.3 P2P Detector

The various configuration parameters for P2P Detector are specified as follows.

• print p2p details: Flag to print detailed information about the connections flagged
as p2p

• p2p success threshold: Not used

• p2p port: ports that are known to have p2p traffic on them (this option can be
repeated as many times as necessary - one for each port)

• malware port: ports that are known to have malware traffic on them (this option
can be repeated as many times as necessary - one for each port)

• good tcp udp: ports that are known to have traffic that uses both tcp and udp on
them (this option can be repeated as many times as necessary - one for each port)

• good port: well known commonly used ports (this option can be repeated as
many times as necessary - one for each port)

• p2p wellknown threshold: the (non-inclusive) upper limit on the difference be-
tween the number of connections and the number of connections to ports labeled
as ”good port”

• p2p minflow threshold: for the above condition to be applied (p2p wellknown threshold),
there must be at least this many connections for a given host (inclusive)

• p2p min connected ips: only consider for labeling as p2p, if this ip/port pair has
communicated with at least this many distinct ips(non-inclusive)

A sample configuration file for P2P Detector is shown in figure 4.

5.1.4 Anchor Point Identification

This component requires following configuration and other input files.

• api.snort - This contains the SNORT alerts used for anchor point identification.
A sample entry looks like
11/30-14:38:18.829992 [**] [119:4:1] (http inspect) BARE BYTE UNICODE ENCOD-
ING [**] TCP 192.168.222.2:46490 -> 100.5.55.100:80

• api.blacklist - This contains the list of blacklisted hosts. The format of blacklist
file starts with keyword ”inside” and followed by the subnet address and network
mask. Note an individual IP is specified by making the network mask 32. All
three fields are space separated. A sample entry looks like:
inside 100.5.111.0 24

• api.config - This contains the rules used to select anchor points. Currently, three
data sources are supported, i.e. blacklist / snort / minds flows. Following each
data source are a set of the operators and operands (i.e. predicates) logically
AND-ed together. ”#” is used for comments. ”&” is used to specify the logical
AND of two predicates within one rule.

6

120

Figure 5 shows sample Anchor Point Identification rules.

5.1.5 Context Extraction

The different configuration parameters used for context extraction are listed below.

• num nodes: Maximum number of nodes to be added to the context. 0 means no
limit. (This limit is checked at the end of each iteration, so more nodes may be
added than this limit, but no more after an iteration.)

• num iterations: The maximum number of iterations for which to run the context
extraction. 0 means no limit.

• normal threshold: The threshold for what defines normal as flagged by the host
profiling module. Completely normal is defined as 0 and completely abnormal
is defined as 1.

• attenutation factor: After each iteration the normal treshold is multiplied by this
value, to allow for an ever increasing (or decreasing) definition of normal. This
allows for the functionality of increasing the threshold to only add flows and
nodes in later iterations that are more abnormal. Set to 1 for the threshold to
remain constant, ¿1 to increase (later flows must be more abnormal), or ¡1 to
decrease (later nodes can be less abnormal). ¡1 is not recommended.

• ignore scan no reply: This allows the user to turn off the rule to ignore scans
with no replies. Set to 1 to enable, 0 to disable.

• ignore p2p: Same as above, but for p2p traffic. It is recommended to set this to
1 for public type traffic and 0 for IC type traffic (where p2p would be expected
to be non existent).

• only use tcp: This allows the user to ingore all non-tcp traffic or to consider all
types of traffic. Set to 1 to only look at tcp and 0 to look at all types.

• ignore conns with no reply: This allows te user to turn off the rule of ignoring
failed connection attempts. This rule prevents the context from blowing up too
much by not adding IPs for which there was no successful connection (no bytes
in response). 1 turns the rule on, 0 turns the rule off (so that failed connections
will be added to the context).

Figure 6 shows a sample configuration file for context extraction.

6 Output Format
The output file of MINDS 2.0 is a text file with each line corresponding to suspicious
connection. Each line has 40 attributes. The labels and description of these attributes
is given in table 1.

7

121

Column Label Description
1 Connection ID ID of the Connection
2 Anomaly Score Score assigned by Anomaly Detector
3 Time Stamp Time at which the connection starts
4 duration Duration in seconds for which the connection lasted
5 Src IP/ Src Port Source IP and the Source Port in the connection
6 Dst IP/ Dst Port Destination IP and the Destination Port in the connection
7 Protocol Protocol - tcp, udp, icmp, arp etc.
8 ttl Time to live - Defined for TCP connections
9 TCP Flags Defined for TCP Connections
10 window size Defined for TCP Connections
11 packets sent Number of packets sent from src to dst
12 bytes sent Number of bytes sent from src to dst
13 packets received Number of packets sent from dst to src
14 bytes received Number of bytes sent from dst to src
15 p2p bit 0 - normal connection, 1 - p2p connection
16 scan bit 0 - normal connection 1- scan 2 - scan with a reply
17 inside bit 0 - dst ip inside network 1 - src ip inside network
18 host anomaly Profile Anomaly for the src IP (client)
19 server anomaly Profile Anomaly for the dst IP (server)

20-39 Contribution Vector Assigned by the Anomaly Detector
40 Iteration # Iteration of the Context Extraction when connection was detected

Table 1: Description of each column in the final output of MINDS 2.0

7 Step-by-step Execution of MINDS2.0 - Advanced Us-
age

7.1 Format conversion
Currently the system supports two input formats.

1. TCPDump Data - To convert a TCPDump file to the intermediate flow format

$ collector <tcpdump-file> tmp-file
$ e2mmrecord –if tmp-file –of <output-file>

2. Netflows Data - To convert a network flow file to the intermediate flow format

$ nf2mmrecord –if <netflow-file> –of <output-file>

7.2 Historical Profiling - Description of Historical Profiles
The profiler takes as input the connections in the intermediate format and outputs the
historical profile for the hosts inside the network.
To run profiling from command line:

$ perl batch-server-detection.pl –file <input-file > The input file should be in
the intermediate flow format. The program assumes configuration file - serverDetec-
tion.config in the current working directory. Description of the configuration file has
been provided in section 5.1.1. The program writes out two output files - svrport.txt
and svrport HUMAN.txt. The second file is a human readable format of the first file.
The description of the output file is given below.

8

122

7.3 Level-1 analysis
This phase involves following programs

1. $ scan-detect –if <input-file > –of <output-file > –pr <profile >

This program takes as input the connections in the intermediate flow format and
performs following operations on the connections

(a) Merge and Match - Merges flows into sessions (connections).

(b) Profile based anomaly detection - Assigns client or server anomalies to
each connection based on the profile file provided as the input.

(c) Scan Detection - Detects if a connection is a scan or not.

2. $ minds <minds.config> <minds.rules> <output-file-prefix> <input-file > <training-
file-prefix > <number-of-threads > <p2p.config>

This program takes as input the output of the scan-detect program and performs
following operations on the connections

(a) P2P Detection - Detects if a connection is a p2p connection. This is done
in the same code as the anomaly detection.

(b) Anomaly Detection - Assigns an anomaly score to each connection based
on its lof score.

This program writes out a text file with the prefix as <output-file-prefix> fol-
lowed by the name of the ruleset specified in <minds.rules>. The output text
file has one line for each connection. Each line has 39 fields which are exactly
same as the first 39 fields of the output of the context extraction as described in
section 6.

7.4 Anchor Point Identification
This phase can be executed as follows

$ api <config-file> <snort-alerts> <blacklist-files> <annotated flows>
This program takes as input the configuration file whose structure is described in

section 5.1.4. It also requires a valid snort alert file or a list of blacklist hosts or the out-
put of the previous program based on the rules used in the configuration file. The output
of the API is a list of anchor points in text format identified by the (SrcIP, DestIP) pair
and supplemented with information such as the highest rank, the index of the associ-
ated flow the timestamp of the flow and how many anchor points of the same pair are
suppressed. The exact order of these attributes follows: ”Rank” ”Index” ”Timestamp”
”SrcIP” ”DstIP” ”# of alerts”. A sample anchor point file is listed below in figure 7.
For example, the first entry specifies an anchor point (100.1.22.37, 58.78.162.142). Its
associated highest rank is 2, as identified a flow with index 4346 in the MINDS output.
The flow start time is 11/30-14:40:44.462282. There is only one occurence for this
anchor point.

9

123

7.5 Context Extraction
This phase can be executed as follows

$ context <config file> <anchor point file> <annotated flows> <output filename>
This program takes the anchor points as input from the previous program and builds

a context around them using the annotated output of the level I phase. The description
of configuration parameters is discussed in section 5.1.5. The output of this program is
in text format and is also described in the same section.

10

124

minds.config
Copyright 2002, Regents of the University of Minnesota
#
Permission to use, copy, modify, distribute, and sell this software
and its documentation, in whole or in part, for any
purpose is hereby granted without fee, provided that
the above copyright notice and this permission notice appear in all
copies of the software and related documentation.
Notices of copyright and/or attribution which appear at the beginning of
any file included in this distribution must remain intact.
The software is provided ”as-is” and without warranty of any kind, express, implied or otherwise.

specify Local IP addresses (IP, mask)
inside 100.0.0.0 8
parameters for the anomaly detector
If anomaly detection is to be done on flows or sessions. 0 - flows, 1 - sessions, 2 - initiating flows
session 1
number of connections to pick for train
train 5000
number of connections to test (0 for all)
test 0
time window in microseconds
time window 1000000
conn window 256
number of near neighbors for algorithms
nn 15

weights
srcIP 1.0
dstIP 1.0
srcPort 1.0
dstPort 1.0
proto 1.0
scan 0.000001
p2p 0.000001

duration 0.1
octets 0.01
packets 0.001
soctets 0.01
spackets 0.001

unique inside src rate 0.1
same src port rate 0.1
unique inside dst rate 0.1
same dst port rate 0.1
unique inside src count 0.1
same src port count 0.1
unique inside dst count 0.1
same dst port count 0.1

Figure 2: A sample configuration file for Anomaly Detection Component. The lines
beginning with # are comments.

11

125

(a)
ruleset example

ignore srcIP inside dstIP inside
ignore srcIP outside dstIP outside
select srcport > 1024 dstport > 1024 protocol == 6
ignore protocol == 17
select srcip >= 1.1.1.0 srcip <= 1.1.1.255
select srcip net equal 1.1.1.0 24
select srcip net equal 1.1.1.0 255.255.255.0

(b)
ruleset all

select all

Figure 3: Two sample rulesets for MINDS Anomaly Detection Component. The last
three lines of ruleset example are equivalent.

12

126

p2p.config
print the details of the p2p detection output to a file
print p2p details 1
not used
p2p success threshold 50

well known p2p ports
p2p port 4661
p2p port 4662
p2p port 4665

well known ports that have malware
malware port 3127
malware port 3128
malware port 1433
malware port 2745

ports that commonly have tcp and udp communications
good tcp udp 135
good tcp udp 137

well known, commonly used ports
good port 20
good port 21
good port 80
good port 443

#the following options should not be modified

the (non-inclusive) upper limit on the difference between the number
of connections and the number of connections to ports labeled as ”good port”
p2p wellknown threshold 1

for the above condition to be applied (p2p wellknown threshold),
there must be at least this many connections for a given host (inclusive)
p2p minflow threshold 10

only consider for labeling as p2p, if this ip/port pair has communicated
with at least this many distinct ips (non-inclusive)
p2p min connected ips 20

Figure 4: A sample configuration file for P2P Detector Component.

13

127

api.config
#anchor points are selected as the top 0.5% of the (srcIP, desIP) pairs, ranked by MINDS,
#which has corresponding snort alerts
select snort rank r <= 4

#this rule picks the anchor points with ranks between top 0.5% and top 1 %
#this type of rules can be used for threshold sensitivity studies
select snort rank r > 4
ignore snort rank r <= 9

#This rule picks the (srcIP, desIP) pairs from the top 3 entries out of the ranked snort alerts
select snort pos ¡= 2

#this rule enables selecting anchor points based on communicating with blacklisted IPs
select blacklist

#This rule constructs anchor points directly from MINDS output by picking inside scanners
#which are not involved in p2p traffic
select minds flows scan != 0
& minds flows insidebit == 1
& minds flows p2p == 0

#This rule simply picks the top 10 flows in the sorted MINDs output
select minds flows rank < 10

This rule simply picks the flows in MINDS output if their host anomaly score is greater
than 0.01
select minds flows host anom > 1

This rule simply picks the flows in MINDS output if their server anomaly score is greater
than 0.01
select minds flows server anom > 1

Figure 5: A sample configuration file for Anchor Point Identification Component

14

128

context.config
max limits
num nodes 1000
num iterations 1000
”abnormal” sessions will be ignored (with host anom score above this threshold
normal threshold 0.50
threshold can be ”aged”, increased or decreased for each iteration
attenuation factor 1
ignore scans with no replies: 1
ignore scan no reply 1
ignore p2p traffic: 1
ignore p2p 1
ignore non-tcp? 1 means ignore non-tcp, 0 means look at all protocols
only use tcp 1
ignore connections with no replies (so the context doesn’t blow up for failed connection attempts)
ignore conns with no reply 1

Figure 6: A sample configuration file for Context Extraction Component

Rank Index Timestamp SrcIP DstIP # of Alerts
2 4346 11/30-14:40:44.462282 100.1.22.37 58.78.162.142 1
2 4346 11/30-14:40:04.452454 100.1.22.37 82.185.190.71 1
2 4346 11/30-14:40:15.685069 100.1.22.37 158.78.180.18 1

Figure 7: A sample output of the api program

15

129

Scan Detection: A Data Mining Approach

György J. Simon
Computer Science

Univ. of Minnesota

gsimon@cs.umn.edu

Hui Xiong
Computer Science

Univ. of Minnesota

huix@cs.umn.edu

Eric Eilertson
Computer Science

Univ. of Minnesota

eric@cs.umn.edu

Vipin Kumar
Computer Science

Univ. of Minnesota

kumar@cs.umn.edu

Abstract
Given its importance, the problem of scan detection has

been given a lot of attention by a large amount of re-
searchers in the network security community. Despite the
vast amount of expert knowledge spent on these methods,
they suffer from high percentage of false alarms and low ra-
tio of scan detection. In this paper, we formalize the prob-
lem of scan detection as a data mining problem. We show
how the network traffic data sets can be converted into a
data set that is appropriate for running off-the-shelf classi-
fiers on and we propose a set of powerful features that en-
code the expert knowledge accumulated over the years. Our
method successfully demonstrates that data mining models
can encapsulate expert knowledge to create an adaptable
algorithm that can substantially outperform state of the art
methods for scan detection in both coverage and precision.

1 Introduction

A precursor to many attacks on networks is often a re-
connaissance operation, more commonly referred to as a
scan. Identifying what attackers are scanning for can alert
a system administrator or security analyst to what services
or type of computers are being targeted. Knowing what ser-
vices are being targeted before an attack allows an adminis-
trator to take preventative measures to protect the resources
e.g. installing patches, firewalling services from the outside,
or removing services on machines which do not need to be
running them.

Given its importance, the problem of scan detection has
been given a lot of attention by a large amount of re-
searchers in the network security community. Despite the
vast amount of expert knowledge spent on these methods,
they suffer from high percentage of false alarms and low
ratio of scan detection. A recently developed scheme by
Jung [5] has better performance than earlier methods, but it
requires that scanners attempt connections to several hosts
before they can be detected.

Data mining techniques have been successfully applied
to the generic network intrusion detection problem[8, 2, 10],

but not to scan detection.1In this paper, we present a method
for transforming network traffic data into a feature space
that successfully encodes the accumulated expert knowl-
edge. We show that an off-the-shelf classifier, Ripper[3],
can achieve outstanding performance both in terms of miss-
ing only very few scanners and also in terms of very low
false alarm rate.

1.1 Contributions

This paper has the following key contributions:

• We formalize the problem of scan detection as a data
mining problem and present a method for transforming
network traffic data into a data set that classifiers are
directly applicable to. Specifically, we formulate a set
of features that encode expert knowledge relevant to
scan detection.

• We construct carefully labeled data sets to be used for
training and test from real network traffic data at the
University of Minnesota and demonstrate that Ripper
can build a high-quality predictive model for scan de-
tection. We show that our method is capable of very
early detection (as early as the first connection attempt
on the specific port) without compromising the preci-
sion of the detection.

• The proposed method has substantially better perfor-
mance than the state of the art methods both in terms
of coverage and precision.

2. Related Works

Until recently, scan detection has been thought of as the
process of counting the distinct destination IPs talked to by
each source on a given port in a certain time window [12].
This approach is straightforward to evade by decreasing the
frequency of scanning. With a sufficiently low threshold (to

1Scans were part of the set of attacks used in the KDD Cup ’99 [1]data
set generated from the DARPA ’98/’99 data sets. Nearly all ofthese scans
were of the obvious kind that could be detected by the simplestthreshold-
based schemes that simply look at the number of hosts touched in aperiod
of time or connection window.

Appendix J

130

allow capturing slow scanners), the false alarm rate can be-
come high enough to render the algorithm useless. On the
other hand, higher thresholds can leave slow and stealthy
scanners undetected. A number of more sophisticated meth-
ods [9, 13, 11, 5, 4] have been developed to address the lim-
itations of the basic method.

Robertson [11] assigns an anomaly score to a source IP
based on the failed connection attempts it has made. This
scheme is more accurate than the ones that simply count
all connections since scanners tend to make failed con-
nections more frequently. However, the scanning results
still vary greatly depending on how the threshold is set.
Lickie [9] uses a statistical approach to determine the like-
lihood of a connection being normal versus being part of a
scan. The main flaw of this algorithm is that it generates
too many false alarms when access probabilities are highly
skewed (which is often the case.) SPICE [13] is another
statistical-anomaly based system which sums the negative
log-likelihood of dst IP/port pairs until it reaches a given
threshold. One of the main problems with this approach is
that it will declare a connection to be a scan simply because
it is to a destination that is infrequently accessed.

The current state of the art for scan detection is Thresh-
old Random Walk (TRW) proposed by Jung et al. [5]. It
traces the source’s connection history performing sequen-
tial hypothesis testing. The hypothesis testing is continued
until enough evidence is gathered to declare the source ei-
ther scanner or normal. Assuming that the source touched
k distinct hosts, the test statistics (the likelihood ratio of the
source being scanner or normal) is computed as follows:

Λ =

k
∏

i=1







γ0 if the first connection to

host i succeeded
1

γ1

ow.,

whereγ0 andγ1 are constants. The source is declared a
scanner, ifΛ is greater than a postive threshold; normal,
if Λ is less than a negative threshold. The thresholds are
computed from the nominal significance level of the tests.

TRW has high precision at the recommended threshold
corresponding to 99% significance level and has better re-
call than most prior methods in practical settings.

It is worth pointing out that in a logarithmic space, if the
first-connection attempt to all hosts failed andlog γ0 = 1,
log Λ is the number of distinct hosts. Therefore, when
log γ0 = 1, the log threshold can be interpreted as the
number of first-connection failures required for a source
to be declared as scanner – provided that none of the first-
connections succeeded.

Even though TRW can achieve high precision at 99%
significance level, it requires at least 4 (and on average 5)
connection attempts to reach a decision. Reducing the con-
fidence level will naturally reduce the required number of
connection attempts – at the cost of deteriorating precision.

Reducing the required connection attempts to 1 will result
in an unacceptably high rate of false alarms. This renders
TRW unable to reliably detect scans that only make one
connection attempt within the observation period.

3. Definitions and Method Description

In the course of scanning, the attacker aims to map the
services offered by the target network. There are two gen-
eral types of scans (1)horizontal scans, where the attacker
has an exploit at his disposal and aims to find hosts that are
exploitable by checking many hosts for a small set of ser-
vices. (2) In avertical scan, the attacker is interested in
compromising a specific computer or a small set of specific
computers. They often scan for dozens or hundreds of ser-
vices.

Source IP, destination port pairs (SIDPs) are the basic
units of scan detection; they are the potential scanners. As-
sume that a user is browsing the Web (destination port 80)
from a computer with a source IPS. Further assume thatS

is infected and is simultaneously scanning for port 445. Our
definition of scan allows us to correctly distinguish between
the user surfing the Web (whose SIDP< S, 80 > is not a
scanner) from the SIDP< S, 445 > which is scanning.

Scan Detection Problem Given a set of network traffic
(network trace data) records each containing the following
information about a session (source IP, source port, desti-
nation IP, destination port, protocol, number of bytes and
packets exchanged and whether the destination port was
blocked), scan detection is a classification problem in which
each SIDP, whose source IP is outside our network, is la-
beled asscanner if it was found scanning,normal if it
was found not scanning, ordontknow if there is insuffi-
cient information to declare it either way.

The key challenge in designing a data mining method for
a concrete application is the necessity to integrate the ex-
pert knowledge into the method. Not only is the integration
of expert knowledge beneficial through improved quality of
results but it also gives us confidence that good results are
rooted in knowledge accumulated in the given application
domain.

This knowledge is incorporated in the form of features
listed in Table 1.

The first feature,ndstips is the most basic feature.
It keeps track of the number of different IPs touched by a
source IP on the specific port being considered.

The next six features (blocked, ndark, nser-
vice, rservice, avgbytes and avgpackets)
have only recently been applied. These features make it
possible to distinguish normal connections from suspicious
connections that may be destined to blocked ports, non-
existent (“dark”) IPs, destination IPs that do not offer the
requested service or suspiciously low amount of traffic.

131

Destination port and protocol together define the ser-
vice. This allows for the identification of certain traffic, P2P,
ident, traceroute, that can be very similar to scanning traffic.

The remaining four features (nDPpSI, rDPDIpSI,
nDPpSISP and nDPDIpSISP) are not frequently used.
These features describe aggregated behaviors, namely the
behaviors of the source IP, or specific behaviors, such as
the behavior of the source IP, source port pair. These fea-
ture have the ability to distinguish among vertical scanners,
backscatter and horizontal scanners.

Table 1. Features used for scan detection
Name Description

Describing the SIDP(src ip, dst port)
ndstips Number of distinct IPs touched.
blocked Is the service blocked by the firewall?
ndark Number of distinct IPs touch that have no hosts.
nservice Number of distinct IPs that offer the requested

service.

rservice nsservice
ndstips

avgbytes
avgpckt Indicative of the traffic volume.
protocol
dst port Defines the service scanned for.

Describing thesrc ip of the SIDP
nDPpSI Number of destination ports touched.

[Read: (n)umber of (D)st(P)ort (p)er (S)rc(I)P]
rDPDIpSI Avg number of dst ports touched on each dst IP.

[(r)atio of (D)st(P)rt to (D)st(I)P per SrcIP]
Describing thesrc ip,src port of each SIDP

nDPpSISP Number of destination ports touched.
[number of DstPrt per SrcIP-SrcPort]

rDPDIpSISP Avg number of dst ports touched on each dst IP.

Choice of classifier. Our understanding of data mining
classifier algorithms guided us towards choosing Ripper.
We chose Ripper, because (a) the data is not linearly sep-
arable, (b) most of the attributes are continuous, (c) the
data has multiple modes and (d) the data has unbalanced
class distribution. Ripper can handle all of these properties
quite well. Furthermore, it produces a relatively easily in-
terpretable model in the form of rules allowing us to assess
whether the model reflects reality well or if it is merely coin-
cidental. An additional benefit is that classification is com-
putationally inexpensive2. The drawback of Ripper is its
greedy optimization algorithm and the fact that it requires
a minimal set of attributes: giving a larger than necessary
set of attributes are more likely to trap it in a local sub-
optimum.

2Building the model is computationally expensive, but it can beper-
formed off-line. It is the actual classification that needs tobe carried out in
real-time.

Table 2. Characteristics of Experimental Data
[number of SIDPs]
Data Set dontknow normal scanner Total

03/10.13:40 20,962 97,717 14,549 133,228
03/10.14:00 18,660 10,3834 13,729 136,223
05/20.14:00 1,023 10,2697 23,905 127,625

4. Experimental Evaluation

Experimental Data Sets.For our experiments, we used
real-world network trace data collected at the University
of Minnesota. The data was collected on 03/10/2005
13:40pm-14:00pm, 03/10/2005 14:00pm-14:20pm and
05/02/2005 14:00pm-14:20pm. (These data sets will
be referred to as03/10.13:40, 03/10.14:00 and
05/02.14:00, respectively.) Table 2 describes the main
characteristics of these data sets:

We ran the experiments on a Free-BSD box with 1GB
of main memory. Due to our memory limitation, we used
the first 4 million flows of each time period, which covered
more than 80% of the connections in each period.

We used03/10.13:40 as the training data set and
the remaining two sets as test sets. Due to the close
temporal proximity with the training set, we expect that
03/10.14:00 will have a similar distribution of scan-
ners (in terms of what service they scan for), so this time
period can be used to verify how well Ripper learned the
rules. The05/02.14:00 test set – being one and a half
month removed in time – will help us assess how generic the
rules are and how well the system can adapt to the changing
scanning behavior.

Labeling the data sets. In the labeling process, we assign
the labelscanner (normal) to a source IP, destination
port pair (SIDP) that was conclusively found to be scan-
ning (not scanning). As a policy, SIDPs with insufficient
evidence for a conclusive decision using our heuristics are
labeleddontknow.

The main idea is to first label SIDPs with obviously scan-
ning or normal behavior on the 20-min data. SIDPs that
receive adontknow label based on their behavior during
the 20 minutes are observed for 3 days and then are labeled
based on their aggregate behavior over the 3 days. Observ-
ing SIDPs over 3 days is very resource-consuming and can
not be carried out for all SIDPs – that is why we do this
analysis only for the sources that cannot be labeled conclu-
sively by analyzing their behaviors during 20 minutes.

A SIDP is conclusivelynormal, if
(a) it is involved in P2P traffic3(makes connection attempts

3Peer-To-Peer systems were made popular by file-sharing systemslike
Kazaa. These are distributed system with no central control. Nodes indi-
vidually maintain a list of hosts that that they exchanged information with

132

to a P2P port) [p2p],
(b) it is involved in backscatter traffic4(it made connection
attempts to 200 different destinations from the same srouce
IP and srouce port and the destination IPs and ports are uni-
formly distributed over the entire range of IPs and ports)
[backscatter],
(c) it is performing traceroute5(identified by the destination
port) [traceroute],
(d) it is performing ident (destination port 113/tcp)
[ident],
(e) 100 % of its connections were successfully established
and these connections were destined for at least 2 distinct
destinations [success100], OR
(f) at least 90% of its connection attempts were successful
and it established at least two connections [success90].

A SIDP is conclusivelyscanner, if
(a) it is a vertical scanner (it touched at least 10 different
ports and never less than 3 ports on a single host) [vertical],
(b)it made at least two connection attempts to hosts that do
not offer the service, no more than 10% of the hosts offered
the service and at least one attempt was to a blocked port
[blocked],
(c) it made at least two connection attempts to hosts that do
not offer the service, no more than 10% of the hosts offered
the service and one of the destination IPs was dark [dark],
OR
(d) it made at least two connection attempts to hosts that
do not offer the service and no more than 10% of the hosts
offered the service. [noservice].

Rules (f) to (e) fornormal (and (d) through (b) for
scanner) subsume each other [i.e. everynormal cov-
ered by (f) is also covered by (e)] reflecting our decreas-
ing confidence in the labels. Although we say ’decreasing
confidence’, even rule (d) or (f) correspond to TRW with
a threshold of at least 96. To give the readers a view as to
how reliable the labeling is, Table 3 denotes the number of

in the near past. Upon connecting to the P2P network, they tryto set up
connections with hosts on this list. At the time of the connection attempts,
many of the hosts on the list may not be offering P2P (e.g. dynamicIP has
changed or the computer is temporarily turned off by its owner), hence the
host trying to establish connections with multiple hosts on the list unsuc-
cessfully appear to be scanning[7, 6].

4Denial of Service (DoS) attack is an attack where a server is flooded
with packets with forged (randomly chosen)src ip, src port. The
server will diligently send packets back to the (forged) SIDPs, which
on the receiving end will appear as multiple packets from the same
<src IP,src port> (the server under attack) to mostly non-existent
(randomly chosen) destinations.

5Traceroute is a service for tracing the route that a packet followed
to get to its destination. The destination sends packets to the source with
time-to-live (TTL) increasing from 1 by 1. At every hop towards the source
TTL is decreased. Once it reaches 0, the packet is discarded and the source
is notified about it. The route can be reconstructed from the notifications.
(See the man page fortraceroute for more details.).

6Authors’ recommendation is 5

Table 3. Breakdown of the rules applied to labeling
the SIDPs

Rule 03/10 03/10 05/02
13:40 14:00 14:00

Normal
p2p 1681 1807 893

backscatter 17240 17731 4562
traceroute 393 410 320

ident 158 133 181
service100 12684 13588 14296
service90 7 11 7

3-day 65554 70154 82438

Scanner
vertical 3848 2941 742
blocked 1624 1453 1624

dark 103 114 93
noservice 84 107 76

3-day 8890 9114 21370

SIDPs that were labeled by each of the rules. We refer to
the rules by their mnemonics in bold in square brackets.

The procedure for labeling is as follows:
(i) Label the data set representing the 20-min period in ques-
tion. Try to apply thenormal rules from (a) to (f) first and
then thescanner rules from (a) to (d). Label a SIDP by
the first rule that applies.
(ii) For thedontknows, repeat the labeling using the above
definitions, except that observe their behavior over 3 days
(as opposed to 20 mins). The SIDPs labled based on their
3-day behaviors are denoted ’3-day’ in Table 3.
(iii) SIDPs, that we still have insufficient evidence for are
left labeleddontknow.

The labeling procedure and the set of rules is a joint ef-
fort with our security expert and is a result of many carefully
repeated refinements. Also, samples of the labeled output
has been manually verified by our expert.

In order to further verify that the labeling is correct, we
followed all of the SIDPs labeled for 3 days looking for
signs of behavior that is the opposite of the label. Note, that
in case oflabeling, we looked the behavior of the SIDP on
a macro level, namely aggregated over the 3 days, while in
case ofverification, we look at it on a micro level, namely
for each 20-min time period. During verification, we try
to answer the question: even though this SIDP exhibited
scanning behavior over the 3 days, is there a 20-min period,
where it appeared normal? Table 4 shows the number of
SIDPs who could have been labeled differently if we looked
at only a specific (for that SIDP)single20-min time window
during the 3 days.

The results indicate, that SIDPs who exhibited an aggre-

133

Table 4. Number of SIDPs exhibiting behavior that
is the opposite of their label

Label 03/10 03/10 05/20
13:30 14:00 14:00

scanner 6 3 9
normal 203 201 89

Table 5. Performance of the proposed approach
on the two test data sets

Proposed Method TRW [threshold=2]
Label Recall Precision Recall Precision

03/10.14:00
scanner 84.95 91.52 12.33 37.41
normal 95.09 95.27 13.10 99.71
dontknow 74.33 69.93 99.38 15.71

05/02.14:00
scanner 57.69 89.83 10.52 69.49
normal 76.01 97.36 13.93 99.72
dontknow 53.96 1.72 92.77 0.87

gated scanning behavior were consistent with this behavior,
because only less than 1% of them were found to have the
opposite behavior in any 20-min interval. This result is in
accordance with the observation of bimodal behavior made
in [5] namely that a sharp distinction exists between SIDPs
that exhibit normal behavior and SIDPs that scan.

Evaluation measure. We evaluated the SIDPs using pre-
cision and recall. For example, with regards to the label
scanner,

classified as classified as
scanner notscanner

actualscanner TP FN
actual notscanner FP TN

prec =
TP

TP + FP
, recall =

TP

TP + FN
.

4.1. Comparative Evaluation

Table 5 shows a direct comparison of the performance of
the proposed approach with TRW in terms of precision and
recall. The threshold of 2 was chosen for TRW because it
seems to provide the most optimal tradeoff between preci-
sion and recall for our data sets. At higher thresholds (e.g.
4 as recommended in [5]), recall drops dramatically.

Our proposed approach achieved reasonably high preci-
sion and recall percentages on both test sets for all classes.
Overall, this result is substantially better than for TRW. For
classifyingscanners, on03/10.14:00, our approach
achieved a seven-fold improvement over TRW in terms of

recall and a three-fold improvement in terms of precision
and on05/02.14:00, a five-fold improvement in terms
of recall and 25 % improvment in terms of precision.

Note, that the poor performance of Ripper fordont-
knows on05/02.14:00is due to the very low number
of dontknow instances (less than 1%). A vast majority
of the SIDPs make connection attempts to only one host.
TRW classifies all of these SIDPs asdontknows hence
their high recall and poor precision.

The performance advantage of our method stems from
two factors. First, Ripper is capable of detecting scanners
even if they attempt only one connection to our network,
while TRW – even at a threshold of 2 – is still unable to
identify them. Second, for SIDPs that attempt connections
to more than 2 hosts on our network, the use of Ripper is
advantageous because it managed to learn the common ex-
ceptions: P2P, backscatter, traceroute, etc.

Analysis of Single-Host Scanners In this section we iso-
late the performance of our approach on scanners (i.e.
source IP, desination port pairs) that only attempted connec-
tions to a single host on our network (single-host scanners)
and scanners that made connection attempts to at least two
distinct hostsmulti-host scanners.

1 2 3 4 5 6 7 8 9 10+
0

1000

2000

3000

4000

5000

6000

7000

8000

Number of destinatons touched

N
um

be
r

of
 s

ca
nn

er
s

03/10.13:40

03/10.14:00

05/02.14:00

Figure 2. The number of TCP scanners who at-
tempted connection to 1, 2, 3, . . . , 9, 10 or more
distinct destinations on the U of MN network dur-
ing the three time periods.

Recognizing single-touch scanners is of paramount im-
portance. Not only do most of the SIDPs (117,327 out of
136,223 on03/10.14:00) make connection attempts to
only one host on our network, as Figure 2 shows, almost
half of the TCP SIDPs scanning our network attempted
only one connection during the examined 20-minute period.
Hence an algorithm unable to detect single-touch scanners
is doomed to have a recall less than 50%.

Since the threshold for TRW can be interpreted as the

134

1 2 3 4 5
0

20

40

60

80

100
Scanners, 03/10

1 2 3 4 5
0

20

40

60

80

100
Scanners, 05/02

Figure 1. Performance comparison of the proposed approach t o TRW in terms of precision and recall on
the two test data sets

Table 6. Analysis of SIDPs that made connection
attempts only to a certain host. FC=F denotes
SIDPs whose first connection failed and FC=S de-
notes SIDPs whose first connection succeeded.

FC dontknow normal scanner Total
03/10.13:40

F 8434 40044 10777 59255
S 12353 41945 1737 56035

03/10.14:00
F 7593 42710 9564 59867
S 10880 44148 2432 57460

05/02.14:00
F 427 22967 21121 44515
S 412 63844 232 64488

number of consecutive “mistakes”7 a given SIDP has to
make in order to get declared asscanner, setting a lower
threshold enables TRW to detect single-touch scanners.
However, Table 6 indicates, that even setting the threshold
to 1 will not help. On03/10.14:00, setting the threshold
to 1 will cause TRW to declare the 42,710normal SIDPs
scanners, while only discovering 9,564 truescanners.
Accordingly, Figure 1 shows, that the threshold is a param-
eter that balances between precision and recall. Granted
that on03/10.14:00, TRW can achieve 80% recall at
the threshold of 1, its precision at the same time is less than
20 %. Meanwhile, the data mining based approach yields
precision and recall that are both in excess of 80%simul-
taneously. Similar discussion applies to05/02.14:00,
too.

4.2. Separate Models for Single-Host and Multi-
Host Scanners

In this section we demonstrate that the rules Ripper
learned indeed encode the knowledge that security experts

7failed first-connection attempts

accumulated. We show that the rules are reflective of
scanning behavior and we also show that Ripper explicitly
learned exceptions.

The feature that distinguishes scanning from non-
scanning behavior varies between SIDPs that made con-
nection attempts to only a single host (single-host SIDP)
and SIDPs that made connection attempts to multiple hosts
(multi-host SIDPs). In the case of single-host SIDPs, the
scan detector needs to look at the aggregate behavior of the
SIDP IP, while in case of multi-host SIDPs, features per-
taining to the behavior of the SIDP in question are expected
to be more descriptive. In order to verify that this distinc-
tion can be found in the Ripper-generated models, we built
separate models for single-host and multi-host SIDPs.

Table 7. Performance of the separate model clas-
sification on the single-host and multi-host SIDPs

03/10.14:00 05/02.14:00
Label Recall Precision Recall Precision

Single-host Sources

scanner 73.67 92.34 46.14 86.35
normal 95.92 91.93 72.86 93.42
dontknow 68.77 74.15 61.03 1.71

Multi-host Sources

scanner 98.27 98.10 98.12 95.68
normal 99.84 99.58 99.22 99.36
dontknow 72.73 97.84 63.04 81.69

Table 7 shows the precision and recall for the two mod-
els. As expected, the predictor performance is much better
for multi-host SIDPs, but the performance for single-host
SIDPs is also quite reasonable. We show all the rules dis-
covered by Ripper for these two cases in Table 8.

The rule set verifies our expectations: every one of the
14 rules extracted for single-scanner starts with a feature
describing aggregate behavior, while only one rule for the
multi-host scanners starts with an aggregate feature. That

135

one rule detects vertical scanners, which is impossible to
achieve without looking at the aggregate behavior.

The rules are interpretable and acceptable as correct from
a network security standpoint. The first rule for example
describes vertical scanning behavior. While our heuristic-
based labeler required connection attempts to only 3 ports
per destination IP on average from a source IP, Ripper re-
quires 10. The second rule also describes vertical scan-
ners. Rule 2 captures the scanning behavior of more intel-
ligent scanning tools. This behavior is making connection
attempts to a single IP address. If this IP address is dark, it
moves onto the next IP; if it succeeds – i.e. it is not a dark
IP – the tool then proceeds to scan a few hundred ports. So
Ripper declares SIDPs with as little as 1.5 destination ports
per IP scanned. The fact that they touched dark IPs explains
the low average and the requirement of 187 ports touched
on a host provides sufficient evidence.

The rule set also demonstrates that Ripper did learn ex-
ceptions: in rule 4, theDPpSISP <= 18 condition dis-
tinguishes vertical scanners from backscatter traffic, or in
rule 10, thedstport >= 6350 condition distinguishes
the horizontal scanners from P2P8. Moreover, the high fre-
quency of therservice <= small value conditions
gives additional credibility to the method: both [11] and [5]
point out that the existence of a server at the destination9 is
highly discriminating between scanners and non-scanners.

Some of the rules generated by Ripper are fairly obvious
and easily understandable, while others are rather complex
and do not lend themselves to be easily constructed by a
human expert.

4.3. Discovering Non-Trivial Scanners

We have demonstrated that our approach is capable of
detecting scanners who have only made one connection at-
tempt to our network. We have also shown that our method
is capable of learning exceptions. On the other hand, as our
labeling method best indicates, many of these scanners are
trivial to detect and the exceptions are straightforward to
remove. So what does data mining offer to us?

The strength of data mining lies in its ability to recognize
patterns. As long as scanning behavior can be described by
a number of high-level patterns, describable by the features
we selected, data mining algorithms should be able to ex-
tract these patterns and classify SIDPs reasonably well even
on non-trivial cases.

In the following experiment we built a model on the com-
plete03/10.13:40 set and tested the model on the two
test sets with the trivial exceptions and scanners removed.
Trivial exceptions are P2P, backscatter, ident, traceroute
and trivial scanners are vertical scanners, scanners touch-
ing dark IPs or blocked ports; essentially the nontrivial test

8There is a range of popular P2P ports between 6346 and 6349
9success of the first-connection in TRW terminology

sets contain the scanners that required 3 days’ observation
to label correctly. Table 9 shows the number ofscanner,
normal anddontknow SIDPs in the non-trivial test sets
and it also shows how many of those attempted connections
to only a single destination (single-host SIDPs).

Table 9. Distribution of scanning, normal and
dontknow traffic in the non-trivial test sets
Test Set dontknow normal scanner Total

All nontrivial sources
03/10 18,660 83,753 9,221 111,634
05/02 1,023 96,741 21,446 119,210

Single-host sources
03/10 18,473 69,675 9,072 97,220
05/02 839 82,036 21,330 104,205

Table 10. Performance of Ripper and TRW on non-
trivial scanners

Label Ripper TRW
Recall Prec Recall Prec

03/10.14:00
scanner 78.98 87.80 1.19 44.18
normal 94.02 94.16 16.24 99.71
dontknow 74.33 70.36 99.38 18.97

03/10.14:00
scanner 53.02 88.27 0.37 37.80
normal 74.58 97.19 14.78 99.72
dontknow 53.96 1.72 92.77 0.91

Considering that Ripper only traced these SIDPs for 20-
mins (while our heuristic-based labeling scheme required
3 days’ observation to reach a conclusive decision about
these scanners), the 79% and 53% recall with 88 % pre-
cision is remarkable. The results indicate that the Ripper-
generated model has indeed identified key aspects of the
scanning behavior. On the other hand, the high percent-
age of single-host scanners (versus all scanners) – which
TRW can not recognize – explains why TRW performed so
poorly in terms of recall. The relatively low precision is due
to DNS false alarms, and some P2P-like traffic, which is by
and large successful over 3 days, but not during our 20-min
period.

5 Summary and Conclusion

In this paper we have introduced a method for formal-
izing the scan detection problem as a classification prob-
lem solvable with data mining techniques. We proposed a
method for transforming network trace data into data sets
that off-the-self classifiers can be run on. We selected Rip-
per, a fast, rule-based classifier, because it is particularly
capable of learning rules from multi-modal data sets and it
provides results that are easy to interpret.

We found that by using our method of transforming the
data set (including the use of our proposed features) we

136

Table 8. Rules built of single-host and multi-host scanners
ID Instances Rule

covered

Rules for Single-host Scanners
1 5542 rDPDIpSI >= 9.5 proto = TCP
2 184 rDPDIpSI >= 1.4615 ndark >= 1 DPpSI >= 187
3 236 rDPDIpSI >= 1.4615 blocked = Y dstport <= 445
4 313 rDPDIpSI >= 3.0625 DPpSI >= 10 DPpSISP <= 18 avgpacktes >= 3 proto = TCP
5 36 rDPDIpSI >= 1.4615 blocked = Y rDPDIpSI >= 4
6 37 rDPDIpSI >= 1.4615 ndark >= 1 blocked = Y DPpSI >= 3
7 49 rDPDIpSI >= 1.4615 rDPDIpSI >= 9.5 dstport >= 33510
8 50 rDPDIpSI >= 1.4615 ndark >= 1 dstport <= 1025 DPpSI >= 4
9 18 rDPDIpSI >= 1.4615 blocked = Y rDPDIpSISP <= 1.4615 ndark <= 0
10 42 rDPDIpSI <= 0.75 rDPDIpSI <= 0.3529 dstport >= 6350 avgbytes <= 188
11 25 DPpSI >= 2 blocked = Y rDPDIpSI <= 0.75
12 8 rDPDIpSI >= 1.4615 blocked = Y DPpSISP <= 2 dstport >= 1433 avgbytes <= 96 ...
13 51 rDPDIpSI >= 2.8 DPpSI >= 10 DPpSI <= 19 DPpSISP <= 14 dstport <= 23127
14 9 DPpSI >= 2 DPpSISP <= 1 blocked = Y dstport >= 3127

Rules for Multi-host Scanners
15 1730 blocked = Y rservice <= 0.5
16 189 rDPDIpSI >= 33 nservice <= 1
17 54 rservice <= 0.25 dstport <= 443 dstport <= 80
18 22 rservice <= 0.18421 avgbytes >= 138.89 dstport <= 6256 avgbytes >= 432
19 34 rservice <= 0.18667 avgpacktes >= 2.33 dstport <= 6280 DPpSI >= 2 DPpSI <= 3
20 29 dstport >= 7304 DPpSI <= 2 proto = TCP nservice <= 1
21 3 dstport >= 37852 DPpSI <= 1
22 5 rservice <= 0.18667 rDPDIpSI <= 0.0133
23 3 dstport >= 6711 DPpSI <= 2 avgbytes <= 79.5 dstport <= 11371
24 3 nservice <= 0 proto = UDP dstport <= 6112 dstport >= 4110

achieved a substantial improvement in coverage, a factor
of 5, and more than 25% improvement in precision over the
state-of-the-art heuristic-based scan detector, TRW.

We demonstrated that the gain stems from the classifier’s
ability to accurately detect scanners that only attempted one
connection to our network on specific ports at a high pre-
cision and recall. We also pointed out that another factor
that enabled this improvement was the classifier’s ability to
automatically learn exceptions and thereby avoid misclas-
sifying common exceptions such as P2P, DNS, backscatter,
etc.

Classifiers like Ripper that learn from examples need
training. We have shown that using our features, Ripper
managed to build a rule set that was sufficiently generic to
extract the true underlying mechanics of scanning.

References

[1] Kdd cup ’99 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[2] D. Barbara, N. Wu, and S. Jajodia. Detecting novel network
intrusions using bayes estimators. InSDM, 2001.

[3] W. W. Cohen. Fast effective rule induction. InICML, 1995.

[4] L. Ertoz, E. Eilertson, P. Dokas, V. Kumar, and K. Long.
Scan detection - revisited. Technical Report AHPCRC 127,
University of Minnesota – Twin Cities, 2004.

[5] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In
IEEE Symposium on Security and Privacy, 2004.

[6] T. Karagiannis, A. Broido, N. Brownlee, and kc claffy. Is
p2p dying or just hiding? InIEEE Globecom 2004 ”Emerg-
ing Technologies Applications and Services”, 2004.

[7] T. Karagiannis, A. Broido, M. Faloutsos, and kc claffy.
Transport layer identification of p2p traffic. InInternational
Measurement Conference (IMC), 2004.

[8] W. Lee, S. J. Stolfo, and K. W. Mok. Mining audit data to
build intrusion detection models. InKDD, 1998.

[9] C. Lickie and R. Kotagiri. A probabilistic approach to de-
tecting network scans. InEighth IEEE Network Operations
and Management, 2002.

[10] M. V. Mahoney and P. K. Chan. Learning rules for anomaly
detection of hostile network traffic. InICDM, 2003.

[11] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo.
Surveillance detection in high bandwidth environments. In
DARPA DISCEX III Conference, 2003.

[12] M. Roesch. Snort: Lightweight intrusion detection for net-
works. InLISA, pages 229–238, 1999.

[13] S. Staniford, J. A. Hoagland, and J. M. McAlerney. Prac-
tical automated detection of stealthy portscans.Journal of
Computer Security, 10(1/2):105–136, 2002.

Acknowledgements.This work was partially supported by the Army High
Performance Computing Research Center contract number DAAD19-01-
2-0014, by the ARDA Grant AR/F30602-03-C-0243 and by the NSFgrant
IIS-0308264. The content of the work does not necessarily reflect the po-
sition or policy of the government and no official endorsement should be
inferred. Access to computing facilities was provided by theAHPCRC and
the Minnesota Supercomputing Institute.

Special thanks to Paul Dokas, the chief security analyst at the Univer-
sity of Minnesota for his help in labeling the data and understanding the
problem.

137

	Introduction
	Motivation
	Security Threats & Challenges

	Project Objective, Rationale and Key Outcomes
	System Overview
	Level I Analysis
	MINDS Anomaly Detector
	Scan Detector
	P2P Detector

	Historical Behavior Profiler
	Level II Analysis
	Anchor Point Identification
	Context Extraction

	Evaluation
	Level I Analysis
	MINDS Scan Detector
	P2P Detector

	Level II Analysis
	Skaion Datasets
	Evaluation Methodology
	Summary of Results

	Lessons Learned
	Future Work
	Publications
	App H.pdf
	1 Introduction
	2 Design Overview
	2.1 Anchor Point Identification
	2.2 Context Extraction
	3 Description of each component
	3.1 Data Preprocessing
	3.1.1 Data Format Converter
	3.1.2 Flow Merge and Match

	3.2 Level I Primitive Modules
	3.2.1 Scan Detector
	3.2.2 P2P Detector
	3.2.3 Historical Behavior Profiler
	
	
	3.2.4 MINDS Anomaly Detector

	3.3 Level 2 Analysis Modules
	3.3.1 Anchor Point Identification
	3.3.2 Context Extraction

	4 Case Studies: SKAION data
	4.1 SKAION Dataset
	
	4.1.1 Single Stage Attacks
	4.1.2 Bank-Shot Attacks
	4.1.3 Misdirection Attacks

	4.2 Evaluation Methodology
	4.3 Detailed Analysis: SKAION Scenario - 3s6
	4.4 Results for Other Scenarios

	5 Conclusion

