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Executive Summary

Attacks launched against IC networks are likely distributed, multi-step, stealthy attacks
that are low-intensity, spread out in time, with the ulterior intention to break into
protected hosts within the IC networks for access to sensitive and confidential
information of interest. Detecting and identifying such attacks are extremely challenging,
in particular, in a network with a large number of hosts, diverse applications/services and
massive amount of traffic. Hence there is a great need for techniques, tools and analysis
methodologies that will enable cyber security analysts and 1C network defenders to
quickly analyze large volumes of data, test their hypotheses, and focus on the most
promising directions. It is crucial that such a framework have low false positive and false
negative rates in order to increase the ratio of productive work done by analysts, and to
provide a higher degree of confidence in the overall performance of the analysis.

The University of Minnesota team has developed a comprehensive, multi-stage analysis
framework which provides tools and analysis methodologies to aid cyber security
analysts in improving the quality and productivity of their analyses. It consists of several
components: various Level-1 sensors and analysis modules for detecting suspicious or
anomalous events and activities, the output of which are then fed into a multi-step Level-
Il analysis system — the core of our analysis framework — that correlate and fuse Level-I
sensor data and alerts, extract likely attack contexts and produce sequences of attack
events to build a plausible attack scenario. To reduce false alarm rates while the same
time increasing the likelihood of detecting attack events, both Level-l1 and Level-lI
analysis modules rely on the host and service profiling component which build profiles of
normal traffic activities and communication patterns for hosts (and their associated
services) within the 1C networks. In developing the analysis framework and the resulting
system, we have drawn upon the team’s extensive experience with security analysts in
public University settings and the Intelligence Community (IC). The developed system
and its various components have been evaluated using both Skaion datasets that are
especially generated for ARDA’s P2INGS program as well as the real world network
data at the University of Minnesota and at the ARL Center for Intrusion Monitoring and
Protection. The results are very promising, and provide strong evidence for the efficacy
and success of our system.



1 Introduction

1.1 Motivation

The Internet has become the de facto global information infrastructure that underpins much of
today’s commercial, social and cultural activities. Accompanying the increasingly important role
the Internet plays in our society, a growing number of cyber threats and attacks aimed at this
critical information infrastructure. The sophistication of attacks and their severity has also
increased. Internet wide attacks, such as Slammer and MyDoom. have attracted a lot of media
attention, largely due to their obvious visibility. However, for an organization that has sensitive
data, e.g., national security data in intelligence community (IC), much more dangerous threats
arise from sophisticated attackers, who (i) often work in concert, (ii) can leverage the resources
of Internet-wide insecure ‘zombie’ machines that they have co-opted, and (iii) can make use
unknown exploits.

As an initial step in launching a cyber attacks, attackers probe and scan machines on the Internet,
or the intelligence community’s (IC) information infrastructure, in order to discover network
systems and hosts that are vulnerable. They exploit the discovered vulnerabilities to compromise
a system by altering data and system configurations, planting malicious codes, or stealing
identities. Attackers also exploit “social engineering” to distribute and spread malicious codes via
email, web downloads, instant messaging and file sharing. In addition to attacking the
compromised systems, attackers and intruders use them as stepping-stones or handlers to launch
further attacks. Thus, attacks are increasingly multi-step, spread out over hours, days or even
weeks. Recent years have seen an increased proliferation of sophisticated tools, thus enabling an
assailant to create and launch attacks against discovered vulnerabilities in a short time and with
little effort. Because the “discover vulnerability - create attack - launch attack” sequence has
been significantly shortened, a greater number of attacks appear novel® to current defensive
mechanisms, making it much harder to protect against.

The rapid increase in the speed of processors and communication systems is working against
those protecting the cyber infrastructure. Specifically, the dramatic rise in legitimate activity —
both system and network — has made it easier for attackers to hide their malicious activity, now in
a much larger crowd. This stealthy-ness of attacks is of rising concern. Furthermore, the insecure
Internet, with its large number of high-speed, interconnected machines, has become a powerful
resource that can be used by attackers to launch large-scale distributed attacks. Additionally,
flaws and vulnerabilities in protocol design and implementation, complex software code,
misconfigured systems, and the inattentiveness of system operations, regularly leaves a number of
machines open to being co-opted by malicious hackers who infect them with specialized
malware. Hundreds to thousands of such machines, known as ‘zombies’, can be called upon to
launch a coordinated attack against a sensitive resource, often at very short notice.

Approaches for discovering sophisticated attacks of the type described require considerable
human intervention, and have very high false positive and false negative rates?. Consequently, the
approaches (i) are not scalable due to data volume, (ii) create frustration for the analyst due to
false positives, and (iii) are have low reliability due to false negatives.

1 An attack that has never before been seen; thus there are no signatures for it.
2 A non-attack activity reported as an attack is called a “false positive’, while an attack activity reported as a non-attack
is called a ‘false negative’.



1.2 Security Threats & Challenges

There are many challenges that make detecting sophisticated cyber attacks extremely difficult.

First, the amount of data being generated from various monitoring devices is at a scale that makes
human analysis essentially impossible. For example, the University of Minnesota receives about
300 million connections per day. Inexpensive signature-based IDSs, including the popular open
software, Snort, cannot handle such a large volume of communications; thus, they drop many
connections. A more serious problem in large organizations is the storage and capture of network
data. Specifically, typical software-based packet capturing tool such as TCPdump drop lots of
packets, and popular flow tools such as the NetFlow tool for CISCO routers, do not output the
contents of packets. Hardware-based packet capturing tools are effective, but expensive. The
difficulty of packet capture causes false negatives since, even when no packet is lost, the whole
communication volume is large enough that storing such data for long duration is difficult, if not
impossible.

Second, attacks are launched in multiple steps. Monitoring devices observe activities at the level
of events, usually recording only those events that are unusual or interesting. This poses two
limitations for identifying sophisticated attacks, namely (i) only some of the events caused by the
attack may be unusual and thus collected, and (ii) the connection between various events is not
seen. The metaphor of ‘counting the trees and missing the forest’ holds here. Detecting cyber
attacks in early stages is critical so that security analysts can issue early warnings and take
defensive actions against such attacks before widespread damage is made.

Third, modern attacks are extremely distributed. Typically, hackers compromises unattended
hosts and use them as command-and-control centers, which are used to further compromise many
more machines, called zombies. In turn, the zombies are used to attack the actual target system.
Therefore, watching for one or a few outside attackers does not help to detect sophisticated
attacks. When a sophisticated attack is launched, the command-and-control will send a specific
signal to each zombie it controls, which makes it behave in a specific malicious manner. Under
normal conditions, zombies behave like regular machines, and thus are not suspected. The power
of hackers to launch sophisticated, large-scale attacks stems from their ability to harvest the
power of hundreds to thousands of zombies at short notice.

Fourth, it is difficult to assess or evaluate the impact of the attack or intention of the attacker by
the security analyst. This requires that some form of automated analysis is needed for the data.
This automated analysis must extract higher-level information in a form and scale
comprehensible to a human security analyst. Additionally, there must be mechanisms by which
the security analyst’s judgment can be incorporated into the automated analysis system to make it
more effective. Finally, automated analysis needs to help security analysts to visualize and
understand the cyber defensive environment of their information infrastructure, to understand a
potential adversary's courses of actions that affect the critical infrastructures and to identify where
to look for key indicators of malicious activity.

Fifth, false positive rates are extremely high for most of signature-based intrusion detection
systems. Furthermore, tools such as Snot or Stick generate many false alarms automatically. This
is typically reduced by correlating intrusion alerts. However, it is hard to correlate intrusion alert
with the large number of false negatives and false positives in a real network.

Sixth and most importantly, false negatives are unavoidable in signature-based intrusion detection
systems. Zero-day exploits are extremely popular. When new exploits are found (or new patches
are released, but not applied by users), attackers immediately launch an attack. In this case,
signature-based intrusion detection systems cannot detect the attack. Morphing an existing exploit
reduces detection rate of signature-based intrusion detection system significantly. Research has
shown that if the signatures are not sufficiently robust in describing the attack conditions then



simple modifications can be made which will allow the attack to succeed by using popular
mutating engines such as ADMmutate or CLET. Even when alerts are correlated, a false negative
can effectively disconnect two graphs that are supposed to be joined.

2 Project Objective, Rationale and Key Outcomes

Given the present situation, there is a need to develop a framework, consisting of techniques,
tools and analysis methodologies that will enable cyber security analysts and IC network
defenders to quickly analyze large volumes of data, test their hypotheses, and quickly focus on
the most promising directions. It is crucial that such a framework have low false positive and
false negative rates in order to increase the ratio of productive work done by analysts, and to
provide a higher degree of confidence in the overall performance of the analysis.

Hence, the overall objective of our project is to develop a comprehensive situational awareness
analysis framework which provides tools and analysis methodologies to aid IC network defenders
and security analysts in identifying important cyber threats and gaining both local and global
situational awareness, thereby improving the quality and productivity of their analyses.

Threat Model and Assumptions: In developing our situational awareness analysis framework,
we focus particularly on distributed, stealthy, multi-step, novel attacks, due to the following
considerations. We believe that attacks on IC networks are likely to occur in multiple stages that
are spread out in time, with the intention to break into protected hosts, e.g., mail servers or
databases containing classified data, for access to sensitive and confidential information of
interest. To achieve the goal, malicious attackers would likely first perform reconnaissance
activities by scanning hosts inside the IC networks for (known or unknown) vulnerabilities, and if
such vulnerable hosts are found, attempt to compromise them and possibly use them as stepping
stones for attacks on protected hosts of interest. Hence such attack activities typically originate
from hosts from outside of the IC networks (i.e., hosts on the public Internet), but may also
involve (compromised) hosts from inside the IC networks. Unlike denial-of-service attacks and
spread of malware (e.g., worms) that are more prevalent on the Internet at large, these malicious
attacks will typically generate low-intensity traffic so as to hide behind normal traffic, and are
likely carried out in multiple steps to avoid detection. However, since the goal of the attackers is
to penetrate the protected hosts in order to access sensitive data of interest, we believe that such
attack activities will deviate from the “normal” traffic and activities within the 1C networks. For
example, in order to launch effective attacks at the IC networks, attackers perform intelligent
reconnaissance and probe for vulnerabilities in the 1C networks. Most of compromised hosts tend
to be less-well protected client hosts (e.g., home desktops, laptops), and are marshaled by the
attackers for eventual attacks targeted at the 1C networks. Because of the nature of activities they
engage in, their behavior is likely to be “anomalous”, e.g., probing ports with known or unknown
exploits, unusual file transfer via backdoor channels, and so forth. Such anomalous and
suspicious activities would inevitably leave certain “traces” that can be detected and tracked. The
key challenge is to detect and identify such “anomalous” and “suspicious” activities from a
massive amount of collected network data that are extremely rich and diverse with as little false
positives as possible, while without incurring too many false negatives.

Key Novel Ideas and Contributions: The rationale behind the analysis framework we have
developed is the following key observation: despite the stealthy-ness and low traffic intensity of
distributed, multi-step attacks that are likely launched against the 1C networks, hosts involved in
such attacks (e.g., attacking and attacked hosts) are inevitably “linked” by suspicious traffic
patterns and/or communications activities that deviate from normal behaviors of the hosts within
the IC networks. Although individually, each of these *“suspicious” traffic patterns or
communication activities may not be conspicuous or significant, as it may resemble many other



“innocent” activities that generate IDS alerts that turn out to be “false positive,” when analyzed
by linking them together, they tend to accentuate the suspiciousness or anomaly of the attacks
events, giving rise to a plausible attack scenario that can be better analyzed with reduced
probability of misidentification.

Motivated by the above observations, we have proposed and developed a comprehensive, multi-
stage analysis framework that consists of several components (see Figure 1): various Level-1
sensors and analysis modules for detecting suspicious or anomalous events and activities, the
output of which are then fed into a multi-step Level-Il analysis system that correlate and fuse
Level-1 sensor data and alerts, extract likely attack contexts and produce sequences of attack
events to build a plausible attack scenario. To reduce false alarm rates while the same time
increasing the likelihood of detecting attack events, both Level-1 and Level-Il analysis modules
rely on the host and service profiling component which build profiles of normal traffic activities
and communication patterns for hosts (and their associated services) within the 1C networks. In a
sense, our proposed multi-stage analysis framework first performs “shallow” analysis of
voluminous network-wide sensor data to identify “anchor points” for in-depth follow-on analysis
in a focused context by correlating and linking together suspicious activities and events that are
likely part of an attack. As a result, it transforms large amount of sensor data into a small set of
labeled event sequences that can be more understood and analyzed by human security analysts,
thus improving their ability to uncover large portions of multi-step attacks with reduced false
alarm rates. We believe that our analysis framework is likely to perform better on IC networks
than in a general Internet environment, as network traffic in 1C networks is expected to be cleaner
and more regulated, therefore it is easier to build profiles for hosts, services, and communication
patterns.

Level | Level Il

Signature -based IDS

? Anchor point Attack Context
— identification "  Extraction

Anomaly Detector —

Attack __, Situation
Characterization Assessment

Scan Detector

= 2

Behavior Profiling

——— Host/Service Profiling Flow Anomaly Analysis Attack Profiling

Figure 1: Multi-level Analysis Framework
The key contributions and outcomes of our project are summarized as follows.

e As the main contribution of our project, we have developed a novel Level-Il analysis system
and associated techniques for aiding IC network defenders and security analysts in
identifying distributed, stealthy, multi-step attacks. The Level-Il analysis system consists of
three major steps and modules — anchor point identification via correlating and fusing
multiple sensor data, context extraction via spatio-temporal chaining analysis in the



communication graph to extract larger context of suspicious activities, and attack
characterization via event sequencing and labeling.

e In addition, we have developed various Level-I analysis modules for detecting anomalous and
suspicious network events and activities. In particular, we have improved and refined the
original MINDS anomaly detection system, augmented with new modules such as scan
detectors and peer-to-peer (p2p) traffic identification to reduce false alarm rates and improve
quality of anomaly detection.

e We have also developed a host and service profiling platform that profiles network traffic
profiles along multiple dimensions to characterize normal/abnormal behavior based on
historical traffic data, thus enabling improved level I and level 1l analysis

We have evaluated the whole analysis framework, and in particular, the Level-1I analysis system,
using both Skaion datasets especially generated for ARDA’s P2INGS program as well as the real
world network data at the University of Minnesota and at the ARL - Center for Intrusion
Monitoring and Protection, where data is collected from multiple DoD sites. The results are very
promising, and provide strong evidence for the efficacy and success of our system.

3 System Overview

3.1 Level | Analysis

3.1.1 MINDS Anomaly Detector®

The MINDS Anomaly Detector is a data mining based system for detecting network anomalies.
Figure 3 illustrates the process of analyzing real network traffic data using the MINDS system. At
present, a prototype of the MINDS system is being used by the University of Minnesota (UM)
network security analysts, in a live system, as follows. Input to MINDS is net-flow version 5 data
collected using net-flow tools. Net-flow tools only capture packet header information (i.e., they
do not capture message content), and build one-way sessions (flows). Net-flow data for each 10-
minute window, which typically result in 1 to 2 million flows, is stored in a flat file. The analyst
uses MINDS to analyze these 10-minute data files in a batch mode. Before applying MINDS to
these data files, a data filtering step is performed by the system administrator to remove network
traffic that is not interesting for analysis. For example, the removed attack-free network data in
data filtering step may include the data coming from trusted sources, non-interesting network data
(e.g. portions of http traffic) or unusual/anomalous network behavior for which it is known that it
does not correspond to intrusive behavior.

MINDS

Anomal Association *Summary
pattern analvsis of attgcks
scores g {
: Anomaly F. Detected MINDSAT UL Human
Data capturing l detection novel attacks analyst
device L abels |

:

o Feature Known attack Detected
|jl Filtering 7> EXtraC“O”H detection [ known attacks .

Figure 2: Architecture of MINDS system

® Majority of MINDS anomaly detector is developed outside of this project. However, since this plays the
crucial role in our whole system, we include it for the completeness of the document.



The first step in MINDS anomaly detector includes constructing features that are used in the data
mining analysis. Basic features, available directly from net-flow data, include source IP address,
source port, destination IP address, destination port, protocol, flags, number of bytes, and number
of packets. Derived features include time-window and connection-window based features. Time-
window based features are constructed to capture connections with similar characteristics in the
last T seconds, since typically Denial of Service (DoS) and scanning attacks involve hundreds of
connections in the short time intervals. However, some scanning attacks scan the hosts (or ports)
using a much larger time interval, for example once per hour. In order to detect such slow scans
we not only have to keep statistics for the last T seconds, but we also need to keep statistics for
the last N connections generated from every source. We refer to these features as the connection-
window based features.

After the feature construction step, the known attack detection module is used to detect network
connections that correspond to attacks for which the signatures are available, and then to remove
them from further analysis. Next, the data is fed into the MINDS anomaly detection module that
uses an outlier detection algorithm to assign an anomaly score to each network connection. The
output of the MINDS anomaly detector contains the original net-flow data along with the
anomaly score and relative contribution of each of the 16 attributes used by anomaly detection
algorithm. Figure 4 shows the output of the system on January 27th for a 10-minute window.
Most of the top ranked connections shown in Figure 4 belong to the SQL Slammer/Sapphire
worm. This is despite the fact that for this period (which was 48 hours after the worm started)
network connections related to the worm were only about 2% of the total traffic. This shows the
effectiveness of the MINDS anomaly detection scheme in identifying connections due to worms.
The network connections that are part of the “slammer worm” are highlighted in light gray in
Figure 4. It can be observed that the highest contributions to anomaly score for these connections
were due to the features 9 and 11. This was due to the fact that the infected machines outside our
network were still trying to communicate with many machines inside our network. Similarly, it
can be observed from Figure 4 that during this time interval there is another scanning activity
(ICMP ping scan, highlighted in dark gray) that was detected again mostly due to the features 9
and 11. The two non-shaded flows are replies from half-life game servers, which were flagged
anomalous since those machines were talking to only port 27016/udp. For web connections, it is
common to talk only on port 80, and it is well represented in the normal sample. However, since
half-life connections did not match any normal samples with high counts on feature 15, they
became anomalous.
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Figure 3: Anomalous connections with highest scores found by the MINDS anomaly
detector in a 10-minute window 48 hours after the “slammer worm” started (January 27th,
2003).

3.1.2 Scan Detector

A precursor to many attacks on networks is often a reconnaissance operation, more commonly
referred as a scan. Identifying what attackers are scanning for can alert a system administrator or
security analyst to what services or type of computers are being targeted. Knowing what services
are being targeted before an attack allows an system administrator to take preventive measures to
protect resources they oversee, e.g. installing patches, firewalling service from the outside, or
removing services on machines which do not need to be running them. Therefore, scan detector is
an essential part of intrusion detection system. The MINDS Scan Detector is a practical heuristic-
based level-1 sensor for identifying and labeling flows that are suspected to pertain to scanning
activity.

The MINDS scan detector is a practical, score-based algorithm. The observation underlying the
algorithm is that the distribution of the failed service requests over the sources (clients) is
bimodal: one mode describing scanners and the other mode describing normal clients. A service
request by definition fails if the requested service is not offered by the destination (server). The
information whether a service is offered or not is ideally readily available, but even if it is not, it
can be deduced from the network traffic provided that sufficient historic information is available.

Given an accurate list of services, the scan detector assigns a score to every source that initiated a
connection attempt. This score is descriptive of the system's confidence in the source being
involved in scanning activity. Specifically, the source is initially assigned a score of 0. Every time
the source requests a service not offered by the destination, the score is increased; every time the
source successfully establishes a connection, the score is decreased. For each distinct destination,
only the first connection attempt is considered.

Once the score exceeds a user-defined threshold, the source is declared.



3.1.3 P2P Detector

P2P detector is designed to detect and filters connections that are made by P2P programs. This
component is necessary since 1) a lot of false alarms for MINDs anomaly detector as well as Scan
detector are from P2P traffic, and 2) much of the analysis done in later stages can be greatly
hindered by P2P traffic. Thus it is necessary to detect which connections are of this type, so that
they can either be ignored in later analysis, or special processing can be done for these
connections. Also, it is more important for the P2P detection mechanism to have few false
positives than to have few false negatives, since the result of a false positive might be the
exclusion of a true attack connection in later analysis, whereas a false negative would result in the
inclusion of a P2P connection. Thus the module should detect as much P2P traffic as possible,
while minimizing the false detection rate.

The code uses three main heuristics. The first is a simple one that flags connections on well
known p2p ports. The second and third are based on ideas in the paper entitled "Transport Layer
Identification of P2P Traffic" by Thomas Karagiannis, et al. (In Proceedings of the ACM
SIGCOMM/USENIX Internet Measurement Conference (IMC 2004), Italy, October, 2004).

The second heuristic simply checks if two IPs are making connections on both TCP and UDP.
Certain P2P systems frequently exhibit this type of behavior, and this will flag all connections
between these two IPs as P2P. Since this type of behavior can also be exhibited by certain benign
programs, there is a white list of ports (that is set in the configuration file) and if the two IPs that
are communicating on both TCP and UDP also make a connection using one of these white listed
ports, then none of the connections between the two IPs will be flagged as P2P.

The third heuristic relies on the following characteristic of P2P systems. Frequently, in making a
P2P connection, a peer will connect to another peer only once, for example to download a file. If
the peer downloads another file, it will most likely be from a different peer. This type of behavior
is quite different from other applications, for example web traffic. In web traffic it is common to
make many connections from one client to one web server. For each connection the client will
select a different source port. Thus, if we look at a particular destination IP/port pair, and count
the number of unique IPs that connect to it, and count the number of unique source ports used to
connect to it, the two counts should be close if the destination is P2P, and the port count should
be much higher in other applications, such as P2P. This heuristic categorizes connections into 3
categories: unknown, p2p, non-p2p. All connections start in the unknown category. If the
difference in the counts for a particular IP/port pair is less than 10 (and the port is not a well
known p2p port), then the connection is marked as a p2p connection. If the difference in counts is
greater than 20, then the connection is marked as non-p2p. If the port in question happens to be a
well known p2p port, then the difference must be less than 2 to be marked as p2p and the
difference must be greater than 10 to be marked as non-p2p. Also, in order for this check to be
applied the count for the number of distinct IPs that connects to this IP/port pair must be greater
than some threshold (which can be set through the configuration file, with a default value of 20).

For this heuristic, there are many "counter" heuristics to mitigate the false alarms. The first of
these is the "DNS" heuristic, which determines connections to be non-P2P if the source port and
the destination port of a connection are the same and both of the ports are less than 501. The
second false positive reduction heuristic is as follows: if the connection is to a well known p2p
port AND either the number of distinct byte counts for connections to this IP/port is 1 or the
number of distinct average packet sizes for connections to this IP/port pair is less than 3 AND
either the port is less than 501 or the port is a well known malware port or the number of distinct
IPs that made connections to this IP/port pair is greater than 5, then mark this IP/port as non-p2p.



The third false positive reduction heuristic is as follows: if there are at least a lower threshold
number of connections made by a particular IP (which can be set in the configuration file and
defaults to 10) and if the difference between the number of distinct ports this IP made connections
on and the number of those ports which were made to "good" ports is (strictly) less than some
threshold (which can be set in the configuration file and defaults to 1) then mark this IP as non-
p2p. (The idea being that if most - or all - of the connections were made the well known ports,
such as 80, 21, 53, etc, then this IP is probably not p2p.)

Finally for the third heuristic, the ends of the connections have been marked as unknown, p2p, or
non-p2p. For each connection, if neither source nor destination was marked as non-p2p, and at
least one end was marked as p2p, then the connection is flagged as p2p. At the end of the p2p
detection routine, the connections have been flagged with the logical OR of the following flags
(in order to indicate which heuristic flagged it): KNOWN_P2P_PORT, TCP_UDP, and
IP_PORT_COUNT.

3.2 Historical Behavior Profiler

Hosts repeatedly show the same session behaviors as servers or clients. For example, a web
server will have many inbound sessions going to port 80 or 443 from many clients and the web
server does not open sessions to other hosts unless it is a proxy server. In addition a server
serving several services generally does not behave as a client unless it is a P2P server.
Furthermore a host that behaves as a client generally does not provide any services. Therefore if
we can correctly profile services that a server provides or a client uses, we can easily identify
abnormal services going to the server or coming from the client.

Services are recognized through service ports. Therefore service can be profiled with service
ports through which servers provide services and clients make connections. We profile normal
flows that have matching flows (e.g., flows that have corresponding service request or reply
flows.) Flow merging is preceded before finding matching flows in Netflow data. A flow in
Netflow is defined by 7-tuple such as source IP, destination IP, source port, destination port,
protocol, ToS, and incoming interface. We are interested in only end-to-end communications.
Therefore we can ignore ToS and incoming interface attributes from each flow and merge flows
that have the same 5-tuple (e.g., source IP, destination IP, source port, destination port, and
protocol). We use only matched UDP and TCP flows for service profiling. Time window scheme
is used to find UDP matching flows. If a corresponding response or request flow appears within
time t, we match the flows (e.g., service request and response flows). However there is no
corresponding flow within time t, we regard the flow as an non-matching flow. We currently use
3 minutes as t and this time window should be adjustable. Matching flows must overlapped in
TCP flows and only normal TCP flag flows (e.g., flows with SYN, ACK and FIN flag) are
considered in service profiling. We define a pair of matching flows as a session. The session is
identified by unique 5-tuple (source IP, destination IP, source port, destination port, protocol). We
profile only inside hosts that reside in our interesting network. We also separately profile services
such as inbound/outbound service sessions in intranet/extranet communications. Inbound service
session means that a local host is a server and remote hosts initiate a session to the local host.
Outbound service session is a session that is initiated by a local host. In this case the local host
acts as a client. We define inbound sessions as server sessions and outbound sessions as client
sessions. Intranet communications occur between hosts in our interesting local network. Extranet
communications include communications between one local host and one remote host.
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3.3.1 Anchor Point Identification

The first phase of the multi-step analysis involves the identification of starting points (anchor
points) for analysis. This is done by taking a set of low-level IDS alerts from one or more
(preferably independent) sources and selecting from this set a number of anchor points, such that
we have high confidence that the set contains very few false positives. This can be done in many
ways. One way is to use a single IDS configured to operate in a very restrictive manner, resulting
in a high confidence yet incomplete set of attack events. Another way of doing this is through
correlation techniques. It is well known that if an alert can be correlated with many other alerts,
we can be more confident that this alert corresponds to a true positive. Thus, in this manner, alerts
from multiple sources can be combined together, where only the alerts which have high
confidence are selected. However, there is a difference between the goal of this step and the goal
of traditional alert correlation techniques. The difference is that we are not trying to balance false
positives versus false negatives. Instead, Anchor Point Identification attempts to aggressively
reduce false positives while maintaining high coverage of attack scenarios (where an attack
scenario is considered “covered” if at least one attack event in the scenario is selected in this
step). The low false positive requirement is needed to ensure that the subsequent context
extraction starts from a highly trusted base thus can focus on reducing false negatives. Because
high attack coverage can accommodate high false negatives, this challenge is a relaxation of the
more stringent requirement on traditional techniques that require low false positives and low false
negatives simultaneously.

3.3.2 Context Extraction

The anchor points generated in the previous step are comprised of events in which there is high
confidence that they are part of an attack. The Context Extraction step generates a suspicious
context around these anchor points, both temporally and spatially. This step detects events related
to the anchor points which are also anomalous or suspicious, but not enough so to be detected by
the previous step. The goal of this phase is to add to the context only those activities that are part
of the attack, thus filling in the attack steps missed by the previous step, while keeping the low
false positive rate achieved by the Anchor Point Identification. This is done by relaxing the
restrictions conditionally, i.e. “lowering the bar”, but only for those events that are connected
somehow to an anchor point.

The major requirement for this step is some type of ranking for each network connection. One
way this is accomplished is by an anomaly detection system. In this type of system, all
connections are ranked according to how anomalous they are as compared to all other network
connections, and this is typically done using data mining techniques. This can also be done by
building historical behavior profiles for each host, determining which machines are servers and
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clients for particular services. When using historical behavior profiles, connections would be
added to the context if they deviated from the historical behavior profiles for the hosts that they
involved, for example if a web server started initiating connections, which it had never done
before. This must be done carefully, however, for example in the case of peer-to-peer
connections, which can be difficult to profile. If this type of traffic is not carefully profiled then
the context can expand rapidly, effectively invalidating the result. One way to deal with this is to
use peer-to-peer detection techniques and ignore the peer-to-peer traffic when profiling.

This step also makes use of domain knowledge in the form of rules. Certain behavior patterns are
known to be signs of malicious activity. For example, attackers often scan a network on a
particular port to look for vulnerable machines. These scans most often result in failed connection
attempts, as most machines will not have a service on that port. Thus, these machines will not
respond (or will reject the connection attempt), and therefore are not vulnerable to being attacked
on this port. This can be captured in a rule which states that all scans that do not result in a full
connection (no successful reply from the scanned host) should be ignored, and all scans which do
receive a successful response should be included.

4 Evaluation

4.1 Level | Analysis

4.1.1 MINDS Scan Detector

The core of the MINDS Scan Detector is Ripper, a rule-based classifier and a set of features that
successfully captures aggregate behaviors and encodes the vast amount of expert knowledge that
accumulated over the years. As a data mining based approach, the MINDS Scan Detector (SD)
needs to be trained on labeled data. For the purpose of training, we used the first 4 million flows
of 03/10/2005 13:40pm-14:00pm. The scan detector was evaluated on two test data set
03/10/2005 14:00pm-14:20pm and 05/02/2005 14:00pm-14:20pm.

MINDS Scan Detector | TRW [threshold=2]
Label Recall | Precision | Recall | Precision
03/10 14:00
Scanner 84.95 91.52 12.33 37.41
Normal 95.09 95.27 13.10 99.71
Dontknow 74.33 69.93 99.38 15.71
05/02 14:00
Scanner 57.69 89.83 10.52 69.49
Normal 76.01 97.36 13.93 99.72
Dontknow 53.96 1.72 92.77 0.87

Table 1: Performance of the proposed approach on the two test data sets

The results depicted in the table show that the MINDS Scan Detector clearly outperforms TRW
on both datasets. The fact, that MINDS performed so well on test data sets which are 2 months
apart evidences that the succuss in not by chance. The rules generated by Ripper clearly show
that there exists only a limited number of patterns that scanning behavior follows and these
patterns could be concisely described by the features we applied. The stunning difference
between MINDS' performance and TRW can be explained by two factors. First, TRW requires
that the source IP makes at least two connection attempts on a given destination port before it can
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be declared a scanner. In contrast, the MINDS Scan Detector has removed this limitation by
introducing features that observe the aggregate behavior of a source IP. For example, if a source
IP makes connection attempts to a single destination IP on multiple ports that are blocked, is
enough evidence to declare the IP a scanner, even if it did not make connection attempts to two
destination IPs on any of the ports. Half of the scanners make connection attempts to only one
destination IP on each port. Second, MINDS Scan Detector has the ability to learn exceptions. It
has features that allow the identification of certain types of traffic that is exhibiting scanning-like
behavior but are not scanners per se. Examples of such traffic include backscatter, P2P, ident,
traceroute. These two abilities -- both stemming from MINDS' ability to analyze the aggregated
behavior of the source IPs via the carefully crafted features -- give it the competitive edge over
the existing other approaches.

4.1.2 P2P Detector

A detailed analysis of false positives is difficult since we only have access to the netflow data,
and thus cannot always be certain which are false positives. However, we can examine the details
of the results and estimate the false positives based on the port information. For example, if a
connection is made to port 80 with source port 6346 (a well known gnutella port), it is probably a
false positive. This can be used with any ports under 1024 (which are reserved system ports) to
estimate the false positives. Also, we can use the trends in the p2p usage over the course of a day
to determine if it would match the trend. We would expect that over night the percentage of p2p
usage would increase as legitimate users would be using the network less. However around 8:00
am, we would expect normal users to come online and the p2p percentage to drop. We examined
the data over the course of March 23, from 12:00 to 11:00 am. The p2p usage followed this trend
exactly, with a rather sharp dropoff around 8:00 am. This can be seen in the following table.

Time Percentage P2P | Time | Percentage P2P | Time | Percentage P2P
12:00 am 12.5% 4:00 am 16.3% 7:30 am 14.1%
1:00 am 13.0% 5:00 am 17.5% 7:40 am 14.0%
2:00 am 13.1% 6:00 am 16.7% 7:50 am 13.8%
3:00 am 15.2% 7:00 am 16.0% 8:00 am 12.8%
8:10 am 11.9%

Table 2: Evaluation of P2P Flow Detector

Also, by using the above mentioned false positive estimation technigques, we examined the time
period between 5:00 am and 5:10 am (with the heaviest p2p usage) and found 1,079 false
positives out of 113,160 flows identified as p2p, for a false positive rate of about 1%. Also, the
113,160 p2p flows were identified out of 921,538 total flows.

This technique will need to be further refined in the future, due to the growing and changing
nature of p2p. P2P clients can be reconfigured to use any port, and thus reliance on specific port
numbers can become less effective as a means of detecting p2p. Thus the other technigques need
to be further refined to detect more p2p traffic (in the above sample, 111,702 p2p flows were
detected by the port number heuristic, and 1,458 were detected by the second two methods).
Also, the port number techniques needs to be further refined to reduce the number of false
positives due to the random nature of source port selection (where the randomly chosen source
port may coincide with a known p2p port). However, with the current p2p detection mechanism
in place, we are already seeing good results in the detection of p2p flows.
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4.2 Level Il Analysis

We evaluated our level 11 analysis framework using datasets generated by Skaion corporation.
These datasets are simulated to be statistically similar to the traffic found in Intelligence
Community. This dataset has several scenarios with attacks injected that follow different patterns.
In the following sections we first describe the nature of the Skaion dataset, then discuss methods
we used to evaluate our framework, and finally we show our results. As can be seen in the
following results, even though our approach currently uses only simple implementations for each
component, our overall analysis captures the major attack steps successfully.

4.2.1 Skaion Datasets

As part of the ARDA P2INGS research project, the Skaion Corporation has released several sets
of simulated network traffic data. This data includes various scenarios of multi-step sophisticated
attacks on resources within a protected network. The scenarios for which they have generated
data include single stage attacks (a simple scan or exploit or data exfiltration scenario), bank shot
attacks (where an internal host is compromised and used to attack another internal host), and
misdirection attacks (where a “noisy” attack is staged on one part of the network while the true
attack takes place in a more stealthy manner in another part of the network). In addition to the
main attack, there are other background attacks (none of which are successful) and scans. For the
sake of space, we present a summary of our results on scenarios. The network topology in these
scenarios is comprised of the following four domains: (i) the target protected domain, BPRD
comprising of various servers which are the typical targets for attacks; (ii) a secondary internal
domain which is not as protected as the protected domain and comprises of servers as well as
clients. The hosts inside this domain have additional privileges to access the protected domain,
BPRD; (iii) a set of external hosts which consists of attackers as well as normal users and (iv) a
trusted domain which consists of remote users access the protected network with additional
privileges over a dialup or a VPN connection. All traffic entering and leaving the entire internal
network is captured by tcpdump. Snort alerts are collected for traffic exchanged between the
external network and entire internal network.

Single Stage Attacks: These scenarios are compromised of a simple attack made up of four
steps. First, scanning is used to determine the IP addresses in the target network that are actually
associated with live hosts. Typically in these scenarios, this is done by an attacker performing
reverse DNS lookups to see which IPs have domain names associated with them. The next step
consists of an attacker (or multiple attackers) probing these live hosts to determine certain
properties, such as which OS and version is running on the host. Then one of these hosts is
attacked (possibly by a host that was not involved in any previous steps) and compromised.
Finally, a backdoor is opened, to which the attacker connects, and performs various malicious
activities, such as data exfiltration or the downloading and installation of attack tools.

Bank-Shot Attacks: These attacks are aimed at avoiding detection by using an “insider” host to
launch the actual attack. In this scenario, initial scanning is done, and then an attack is launched
against a host in the BPRD network. This attack fails, and the attacker then scans and
compromises a host in the secondary internal domain. From this server, the attacker scans and
launches attacks on hosts in the protected BPRD network. A host is then compromised, from
which data is exfiltrated.

Misdirection Attacks: The attacker attempts to draw the attention of the analyst away from the
real attack. He does this by launching a noisy attack (one which sets off many IDS alerts) on a
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particular set of hosts in the protected network. Then using a previously compromised host in the
trusted domain, he attacks and compromises another host in the BPRD network, from which he
exfiltrates data.

4.2.2 Evaluation Methodology

Before discussing the results of our experiments, we first describe how we performed the
experiments and the methods we used to evaluate our framework. For a given scenario, we first
ran all low-level IDS tools to generate the alerts, anomaly scores, etc. For profiling, a host was
profiled as a server only if it had more than 10 inbound connections. Similarly, a host was
profiled as a client only if it had more than 5 outbound connections. In addition we only profiled
ports with more than two connections. We then ran Anchor Point Identification using multiple
rules for detecting the anchor points in order to compare the performance and sensitivity of each
set of rules. First, we used Snort alone, where each Snort alert was selected as an anchor point.
Next, we used the MINDS anomaly detector alone, where the connections that ranked in the top
k% of anomalies were selected as anchor points. Finally, we combined Snort and MINDS in the
method described in Section 3.3. The anchor points selected were those Snort alerts in which at
least one of the IPs was involved in a highly ranked anomaly (ranked within the top k% of
MINDS Anomaly Detector output). The evaluation criteria for the anchor points are twofold:
first, whether it covers the attack (i.e. did it have any true positives), and second, whether it has
low false positives (the lower the better). The Anchor Point Identification step generates a set of
events (anchor points) which represents a connection between two hosts. An anchor point is
related to the attack scenario if the connection it represents is a part of some attack step. In our
results section, the results of this step are represented by the number of attack related hosts
detected (true positives) and number of non-attack related hosts detected (false positives). A host
is counted as attack related if it is present in an attack related anchor point (in this case we call it
covered). If a host is present only in non-attack related anchor points, it is counted as a false
positive.

Following the Anchor Point Identification step, Context Extraction was run with each set of
anchor points found by different rules utilized by Anchor Point Identification. No other
parameters were varied for this step, since the parameters mainly consist of limiting the
expansion, and for our experiments this step was run until no more context was added. The goal
for this step is to detect all attack related steps (with emphasis on the more important steps, e.g.
initial scanning is less important then exploits or backdoor accesses) while reducing the number
of non-attack related steps. Note that there are two types of non-attack related hosts that could be
added to the context. First, they could be part of background attacks, which are still interesting for
the analyst. Second, there are real false positives, which are not a part of the actual attack scenario
or the background attacks.

All the tables for the results follow the following notation:

o AS (Attack Steps): This represents the high level attack steps like probing (information
gathering), actual exploit, backdoor access, or data exfiltration.

o AH (Attack-related Hosts): This includes all hosts related to the attack scenario including
external scanners, external attackers, internal hosts scanned by the attackers for information
and the eventual victims which get compromised.

e BA (Background Attack Related Hosts): This involves all hosts related to the background
attacks in the traffic as attackers or victims.

o FP (False Positives): This counts all hosts that are not related to the actual attack scenario or
to the background attacks but are wrongly detected by our framework.
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4.2.3 Summary of Results

The results of our analysis on other scenarios are summarized in Table 3. The configuration used
for Anchor Point Identification was the combination of Snort Alerts and top 0.5% of MINDS
Anomaly Detector Output. From the table we observe that our implementation is able to capture
all important steps of each attack scenario except for the scenario - Five by Five (In this case, the
volume of traffic related to the victim host was not enough to be profiled, thereby that host was
not added to the context). The attack steps which were missed in all cases involved failed attack
attempts or probes before attacks. Our implementation captured all the important attack events,
such as the actual exploit, data exfiltration for all but one scenario from which the core attack
scenario can be generated. From the results we can observe that by using strict thresholds for
Anchor Point Identification, we are able to detect some attack related events (as anchor points)
while keeping the number of false positives very low. Using these anchor points, we successfully
detect the core attack scenario in all but one scenario along with some background attack activity.
Since the number of non attack related anchor points are low, the false positives in the context
extraction step are also very few.

Anchor Context
Scenario Ground Truth Points Extraction
#Conn | #Hosts | #Alerts |AS |AH | AH FP |AS|AH |BA|FP
Naive 1739 581 27 4 |10 2 0 4 | 3 010
Simple Ten | 12040 | 2616 114 | 4 |246| 4 0 416 |01
F'F"if/sy 7853 | 2101 | 177 |3 |13| 5 |45 |0 |0 | 0|5
Ten by Ten | 9459 | 1435 54 4 |16 5 11 (4] 5|0 |1
Single Stage S9 4833 | 472 53 312 2 3 3121010
S10 4792 | 582 58 4 | 3 2 6 312 |01|0
S14 8915 | 1210 95 3|2 2 9 3|12 (12| 4
S16 5711 | 368 1372 | 4 | 3 2 4 3121|213
S24 4334 | 699 452 6 | 10 2 4 414113
3510 47490 | 3084 | 3150 | 3 | 6 21 21 | 3|6 | 1|5
Bankshot S1 45161 | 12292 | 10896 | 6 | 7 32 32 | 6|7 |11 3
S37 23970 | 1517 | 7671 | 6 | 5 18 18 | 6| 4| 0|0
Misdirection S29 10926 | 627 451 7|6 1 1 716|014

Table 3: Summary of results for different Skaion scenarios
A brief description of our results on each scenario is given below:

o Naive Attacker: All attack related steps are detected. The 7 attack-related hosts that are not
detected are the hosts inside BPRD which are scanned by the attacker as part of the probe, but
do not reply back. Thus they do not supply any information to the external attackers.

o Simple Ten: All attack related steps are detected. The 240 attack-related hosts not detected
are again the scanned hosts which do not reply back.

o Five by Five: We fail to detect any attack steps or any attack related hosts. In this scenario,
the victim host inside the network was not involved in any traffic with external world apart
from the attacks launched by outside attacker. There was no profile generated for this host
and hence the attacks could not be distinguished from normal traffic. The attack would have
been detected if there was enough traffic which would meet the thresholds related to profiling
of internal servers.
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Ten by Ten: All attack related steps are detected. 11 attack-related hosts not detected include
6 scanned hosts which do not reply back and 5 external scanners who never get a reply back
from the hosts which they scan. Thus effectively, these external scanners never get any
information about the internal network and hence do not contribute to the actual attack
scenario.

s9: All attack related steps and attack related hosts are detected without any false positives.
s10: One attack step is missed in this scenario. The missed step is a failed attack launched by
one external attacker on an internal host which is not the eventual victim. Thus this step is not
an important part of the whole attack scenario.

s14: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise due to
mislabeled connections (replies labeled as initiating connections). This occurs during the
conversion of tcpdump data to netflow format.

516: One attack step is missed in this scenario. The reason for this is same as in scenario s10.
We also detect two background attacks as a part of the context. The false positives arise
because of two outside hosts involved in traffic on random high ports with internal servers
which do not conform to the normal profile of those internal servers.

s24: In this scenario three external attackers did a distributed scanning of the internal
network. One of the scanners got a reply back from the eventual victim while the other two
did not get any replies from the hosts which they scanned. These two scanning steps which
did not contribute any information were missed. The false positives occurred because of the
same reason as in scenario s16.

3s10: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise due to
mislabeled connections (replies labeled as initiating connections) or due to outside hosts
accessing internal servers on random high ports.

s1: All attack related steps and attack related hosts are detected. We also detect some of the
background attacks in the traffic. The false positives detected in this scenario arise because of
external hosts accessing internal servers on random high ports.

s37: In this scenario, one of the attackers port scans two internal servers but gets reply only
from one which is eventually attacked. The other server does not supply any information back
to the attacker. Only this server is not detected while all other involved hosts and attack steps
are detected.

s29: All attack steps except for one initial probe, which did not get any replies, were detected.
The false alarms occur for the same reason as in  scenario  sl.
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5 Lessons Learned

A number of lessons have been learned in the execution of this project. In this section we outline
some of the key ones.

e The framework was quite useful in the analysis and detection of many kinds of novel
cyber attacks. On the Skaion data, which was provided as part of the P2INGS program,
the analysis was successful in detecting attacks with low false positive and false negative
rates.

e While the system did perform well on Skaion data, we observed that this data was quite
clean, compared to the data collected from the University of Minnesota routers. Having
clean data leads to improved traffic profiling, and this in turn leads to more effective
anomaly analysis. It was not so easy to obtain clean profiles with the University data, and
thus the detection rate was not as high.

o Full details are known about synthetic data sets, e.g. the Skaion dataset. This makes it
possible to measure the ‘false negative’ rate (the rate of missing true attacks) of the
technique. The same cannot be done for the real data, where it is not possible to obtain
the false negative rate.

e A negative of evaluation using synthetic data is that the types of attacks may not be as
rich as those encountered in reality.

e With over 300,000 connections per minute, at the University of Minnesota network
gateway router campus, scalability of the analysis is a key consideration. In addition, if
the system must run in an on-line manner, there is the additional challenge of making the
analysis real-time.

e One clear bottleneck that was faced was access to (and sufficient bandwidth from)
security analysts who understood the domain, and could evaluate the results produced by
the system. While we were lucky to get input from the security analyst at the University,
this continued to be an issue throughout the project.

e An overall lesson is that the approach is promising, and is expected to be applicable
especially in Intelligence networks, that have relatively low levels of noise in the traffic.
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6 Future Work

As described in the introduction, the scope of the analysis framework we have conceived is quite
broad, and not all of its capabilities have been realized in the present phase of the project. While
the system in its present form is already quite useful, and detects many heretofore undetectable
attacks, adding the remaining analysis components will make the system much more complete
and powerful. In the following we sketch our future work:

Attack Characterization: Once the attack context has been determined, i.e. once the traffic
related to the attack has been identified, the components of the attack need to be characterized.
This includes breaking the traffic into related steps and determining potential relationships
between these steps. These components can be categorized into high level steps, such as
scanning, compromise, or data exfiltration, and then sequenced to develop the attack plan. In
addition, hosts that are involved in the context can be scored and labeled regarding their potential
involvement in the attack. For example, if an inside host receives traffic from an outside host, and
subsequently begins engaging in suspicious activity, such as scanning, we can determine with
high probability that this inside host has been compromised. This knowledge is used to describe
the nature of the attack and how each host was involved. These plans are presented to an analyst
for interpretation and possible action. Essentially, this phase (as shown in Figure ) takes the
context from the previous phase and sequences, labels, and scores each edge and involved host,
and determines the type of attack that was executed.

Context _ Labeling/ Plan Characterized
Sequencing Scoring Recognition Attacks

Figure 5: Attack Characterization

Behavior Profiling & Anomaly Analysis: Even sophisticated and stealthy attacks often include
some steps that are departures from the normal behavior. Anomaly detection systems aim to
identify these deviations to discover attacks. The global anomaly detection system used in
MINDS assigns an anomaly score to each individual flow based upon its relationship to all other
flows in the entire network traffic being analyzed. Behavior profiling can be used to augment
anomaly detection. The behavior profile of an object is a minimal set of features that captures the
normal behavior of the object with high fidelity in a concise manner. Profiles will help detect the
following kinds of anomalies: (i) the deviation of the current behavior of an object from its
normal behavior in terms of the profiled attribute(s); e.g., by profiling individual servers, we can
detect a Web server initiating a connection; (ii) the similarity of the current profile to a known
bad profile.

The questions to be addressed in profiling are (i) how to use the profile, (ii) how to assess the
extent of deviation from the profile and (iii) how to handle the temporal aspect of the profiles.
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Abstract

With growing dependence upon interconnected networksndifig these networks
against intrusions is becoming increasingly importantthia case of attacks that are
composed of multiple steps, detecting the entire attackesais of vital importance.
In this research report we present an analysis framewotkighable to detect these
scenarios with little predefined information. The core @ flystem is the decomposi-
tion of the analysis into two steps: first detecting a few évémthe attack with high
confidence, and second, expanding from these events tordet¢ethe remainder of the
events in the scenario. Our experiments show that we camaebuidentify the major-
ity of the steps contained within the attack scenario withtieely few false positives.
Our framework can handle sophisticated attacks that ardyhétistributed, try to avoid
standard pre-defined attack patterns, use cover trafficasyhattacks to distract an-
alysts and draw attention away from the true attack, andngttéo avoid detection by
signature-based schemes through the use of novel expioitstation engines.

Keywords Intrusion Detection, Attack Scenarios, False Alarms, ElisAttacks

22



1 Introduction

As the threat of attacks by network intruders increases,jiihportant to correctly iden-

tify and detect these attacks. However, network attacksrarpiently composed of

multiple steps, and it is desirable to detect all of thespsstegether, as it 1) gives
more confidence to the analyst that the detected attacklj)eznables the analyst to
more fully determine the effects of the attack, and 3) ersmtile analyst to be better
able to determine the appropriate action that needs to lea tdkaditional IDSs face a

major problem in dealing with these multi-step attackshai they are designed to de-
tect single events contained within the attack, and arelanafietermine relationships
between these events.

Many alert correlation techniques have been proposed teasldhis issue by de-
termining higher level attack scenarios [4, 6, 24,27, 34wiver, if the data that is
being protected by the network is highly valuable, an attadan spend more time,
money, and effort to make his attacks more sophisticatedderao bypass the se-
curity measures and avoid detection. Attackers, then, nsaytechniques to prevent
their attacks from being reconstructed, such as making #itigickshighly distributed
avoiding standard pre-defined attack patterasingcover traffic or “noisy” attacksto
distract analysts and draw attention away from the truelatnd attempting to avoid
detection by signature-based schemes through the usavef attacks or mutation en-
gines[38]. In these more sophisticated attacks, many of theseeledion techniques
face certain difficulties. In the case of matching againstcikt models [4] or analysis
of prerequisites/consequences [6, 24, 27, 34], attackargand often do) perform un-
expected or novel attacks to confuse the analysis. In adlihe information for these
schemes must be specified ahead of time, and thus the analstshencareful to specify
complete information and not miss any possible situation.

Furthermore, these correlation approaches, as well asidorzd IDS techniques,
suffer from a fundamental problem, in that they try to ackibeth a low false positive
rate and a low false negative rate simultaneously. Thesls,duavever, are inherently
conflicting. If the mechanism used is set to be too restactien there will be many
false negatives, yet if the mechanism is set to be less ¢ty many false positives
will be introduced. Also, if sighature-based systems, saagl$nort [32], are used with
many rules, too much time will be spent processing each pacsulting in a high
rate of dropping packets [30]. If these dropped packetsaiomtttacks, then they will
be missed. While some of the approaches have techniquesltwitleaissed attack
steps [4, 24, 27], they cannot handle the absence of mang atéips in the attack.

Contributions.

In this research report, we propose an analysis framewaitkattidresses this tradeoff
between false positives and negatives by decomposing ghgséminto two steps. In the
first step the analysis is performed in a highly restrictive fashiwhjch selects events
that have avery low false positive rate In thesecond stepthese events are expanded
into a complete attack scenario by usinigss restrictive analysiswith the condition
that the events added are related somehow to the eventsedbbedhe first step. We
describe how this framework is suitable for this problemtaaddresses the tradeoff
between false positives and false negatives. In additionframework is 1) flexible, as
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it allows the analyst to exercise control over the resulthefanalysis, 2) designed to be
modular and extensible, and thus makes it easy to improvimtinddual components
of the analysis and incorporate new sources of data. Weralgemented and evaluated
our framework on a dataset that contained several attackasos, and we were able to
successfully detect the majority of the steps within thassarios.

Organization. The remainder of this research report is organized as fslldw Sec-
tion 2 we describe our framework. In Section 3 we describaraptementation of this
framework and show its experimental results in Section 4«tMe discuss whether the
framework achieves the goals set forth in the design andissthe limitations of our
approach in Section 5. We then describe some areas of re¢etearch in Section 6 and
draw some conclusions and outline directions for our futuwek in Section 7.

2 Framework Design

The goals for our analysis framework are as follows: Fitst, $ystem should address
the inherent tradeoff between false positives and falsatheg. Second, the system
should be able to detect the majority of the steps contairitdnaan attack and make
connections between these steps to form the attack sceRarithis we assume that at
least one step in the attack is visible (if none of the attdaegsare visible to any lower
level IDS, and thus the attack is perfectly stealthy, therwiliebe unable to detect the
attack). Third, our analysis framework should provide higherage of attacks (mean-
ing that most or all of the attacks are detected). Finally,sisstem should be modular
by design, thus making it simple to incrementally improve approach.

The main challenge faced in designing this kind of systenalaricing false posi-
tives and false negatives. To address this problem, ouysiadiamework is composed
of two main steps. The first steAnchor Point Identificationis focused on detecting a
set of events (anchor points) in a very restrictive fashsoich that the set contains very
few false positives. However, this will inevitably resuita large number of missed at-
tack steps. To deal with this, the second s@mtext Extractionrelaxes the restrictions
conditionally; for a (potential) attack step to be examiirethis step, it must meet the
lower requirements as set by the detection mechanism, andst also be connected
in some way to an event captured in the first step. The ovamthdwork is shown
in Figure 1. Note that in Figure 1 there are three steps, wtierahird step Attack
Characterizationis concerned with giving semantic meaning to the stepsdrotierall
attack scenario, as detected by the first two steps. Thidrstelves on-going research
and thus it is not presented in the current description oframework. In addition, the
analysis scheme incorporates domain specific knowledgertoefr refine the results,
which it does by keeping a human analyst in the loop. The ahabn control the out-
put of Anchor Point Identification and Context Extractiondpecifying the sensitivity
of the tools which they utilize or applying domain knowledgéehe rules that are used.

In addition, the analyst can control his view, in that he gaecefy the events that
he is interested in seeing. For example, if the analyst igrsega specific machine that
contains important data, he can set that machine to be th®eapoint and search for
relevant context that is related to that machine; or if thalyst knows about a certain
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Fig. 1. The different phases of the analysis framework

activity that occurred on the network, or has a list of knovad bosts in a blacklist, he
can specify the hosts involved in that activity.

2.1 Anchor Point Identification

The first phase of the multi-step analysis involves the ifieation of starting points
(anchor point} for analysis. This is done by taking a set of low-level ID8rtd from
one or more (preferably independent) sources and selefttimgthis set a number of
anchor points, such that we have high confidence that theosgdios very few false
positives. This can be done in many ways. One way is to usegéedinS configured
to operate in a very restrictive manner, resulting in a highficlence yet incomplete
set of attack events. Another way of doing this is throughedation techniques. It is
well known that if an alert can be correlated with many otHerts, we can be more
confident that this alert corresponds to a true positive.[PAUs, in this manner, alerts
from multiple sources can be combined together, where drdyaierts which have
high confidence are selected. However, there is a differert@een the goal of this
step and the goal of traditional alert correlation techagjurhe difference is that we
are not trying to balance false positives versus false negatinstead, Anchor Point
Identification attempts to aggressively reduce false pesitwhile maintaining high
coverage of attack scenarios (where an attack scenarin&dsyed "covered” if at
least one attack event in the scenario is selected in thig.sStke low false positive
requirement is needed to ensure that the subsequent cexteattion starts from a
highly trusted base thus can focus on reducing false negatBecause high attack
coverage can accommodate high false negatives, this obellis a relaxation of the
more stringent requirement on traditional techniques thquire low false positives
and low false negatives simultaneously.

2.2 Context Extraction

The anchor points generated in the previous step are caedmfevents in which there
is high confidence that they are part of an attack. Thatext Extractiorstep generates
a suspicious context around these anchor points, both tehpand spatially. This
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step detects events related to the anchor points whichsse@abmalous or suspicious,
but not enough so to be detected by the previous step. The@bibéd phase is to add to
the context only those activities that are part of the atttulks filling in the attack steps
missed by the previous step, while keeping the low falsetipesiate achieved by the
Anchor Point Identification. This is done by relaxing thetrieions conditionally, i.e.
“lowering the bar”, but only for those events that are coe@somehow to an anchor
point.

The major requirement for this step is some type of rankimgeéxh network con-
nection. One way this is accomplished is by an anomaly detesystem. In this type
of system, all connections are ranked according to how almumahey are as com-
pared to all other network connections, and this is typycdttne using data mining
techniques. This can also be done by building historicahiiehn profiles for each host,
determining which machines are servers and clients foiqodait services. When using
historical behavior profiles, connections would be addatiéacontext if they deviated
from the historical behavior profiles for the hosts that timegplved, for example if a
web server started initiating connections, which it hadenelone before. This must
be done carefully, however, for example in the case of peg@etr connections, which
can be difficult to profile. If this type of traffic is not cardifuprofiled then the con-
text can expand rapidly, effectively invalidating the nés@ne way to deal with this is
to use peer-to-peer detection techniques [19] and igh@ @der-to-peer traffic when
profiling.

This step also makes use of domain knowledge in the form e$r@ertain behavior
patterns are known to be signs of malicious activity. Fomgxa, attackers often scan
a network on a particular port to look for vulnerable machirehese scans most often
result in failed connection attempts, as most machinesnaillhave a service on that
port. Thus, these machines will not respond (or will rejéwt tonnection attempt),
and therefore are not vulnerable to being attacked on thisplais can be captured in a
rule which states that all scans that do not result in a fulhextion (no successful reply
from the scanned host) should be ignored, and all scans wloichceive a successful
response should be included.

3 Implementation Details

We implemented our framework to evaluate its effectiven@ss framework could be
instantiated in many ways, however we chose to implemestrigisimple components,
in order to see how the framework performed even with simplagonents. As seen
in Section 4, even with the simple components, our analyaimdéwork successfully
detected the attacks contained within the data on which stede These components,
however, leave much room for improvement and, since thedveork is designed to be
modular, newer and more sophisticated techniques can b @asigned and inserted.
In our implementation, we also utilized certain “primitd’e such as low level IDS
systems. The choice of these systems were driven by sittypéiod practicality, and
could easily be replaced by any other system that achieeesatine goals.
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3.1 Data Sources

Our framework requires certain data sources to be presentier to perform the anal-
ysis. We evaluated our framework on a specific data set (wikictescribed in Sec-
tion 4), and thus many of the choices for primitives were ehiby this dataset. First,
the network traffic was in tcpdump format, which we then cotactinto a netflow for-
mat [33]. Thus all the analysis we performed was done on gatgd network header
information. Also, along with the traffic, Snort alerts wéneluded. Thus, our imple-
mentation used these alerts as one low-level IDS. In addlitie also used our MINDS
anomaly detector [11, 12] and MINDS scan detector [10]. Nlo&t these choices were
made based on practical reasons and could be replaced lyspsitems. For example,
Snort could be replaced by any other signature-based sysigrth as ISS Real Se-
cure [16]. Also, any scan detector could be used in placeeoMINDS scan detector,
such as TRW [18], and the following host/service profilerlddue replaced by a more
systematic host/service profiler such as the port patteomaly detector used in the
EMERALD system [29, 35].

For the context extraction, we implemented a simple histrbehavior profiler
(e.g. host/service profiler), which examines the netwoakitr and determines which
machines run which services, and which machines are clfenfsarticular services.
How it was used for context extraction is described in Sec8@. It is based on the
fact that machines typically exhibit the same behavior atgaly. Thus, a web server
might accept many connections on port 80 and 443, and raeelg Any connection
requests on other ports or make outgoing connections on @nty. T he profiler con-
structs a probability distribution of services which haweb accessed on each host.
The probability is calculated for each host by dividing tlhenber of connections made
to/from a particular port by the total number of connectita'érom that host. If this
probability is greater than a configurable threshold, thés declared to be a server
(or client, depending on the direction of the connections}tat port. In addition the
profiler only profiles valid connections that have bidirentl flows (i.e. incoming flow
and corresponding outgoing flow). This prevents the profilem being skewed, for
example by receiving scan packets on a port on which it doesffer any services.
In our implementation, only internal hosts which have a de@f connectivity greater
than some threshold (e.g; for the server for client) are profiled. Once the profiles
have been generated, each connection is examined and chaighi@st the profile for
the host involved. If it matches the profile (e.g. the conieadh incoming on port 80 to
a machine that has been profiled as a server on port 80), ta@otimection is assigned
a score of), meaning normal. If the connection does not match any pridfilthe host,
then it is assigned a score bfmeaning anomalous.

3.2 Anchor Point Identification

The Anchor Point Identification step takes the output of ipldtalert sensors and pro-
duces the set of events involved in attacks with higher cenfid than relying on any
single low-level IDS tool. In order for the alert combinatito be effective, the data
should be as orthogonal as possible, thus maximizing thethirgformation. In our im-

plementation, we achieved this through the use of Snottissdeid the MINDS anomaly
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detector [11]. These two IDSs use vastly different mechmasi® flag traffic, and thus fit
the requirement that the sources be orthogonal. We comkfieseé two data sources in
a simple manner, selecting Snort alerts to be anchor pdieither the source or desti-
nation machine was also involved in a highly ranked anoniNdye that the anomalous
activity need not be the same connection that was flagged bst.Srhe intuition be-
hind this mechanism to combine the data is as follows. If ahimecis truly attacked
and compromised, it is likely that the attacker would userttaehine in a way that it
normally does not behave, causing anomalous traffic to/tlumhost. The threshold
for determining if a flow is considered to be highly anomal@usonfigurable. Details
on how sensitive this threshold was and how effective thibrigue was can be found
in Section 4.

3.3 Context Extraction

The next step in the analysis process is@untext Extractiorstep. The main goal of
this step is to add events from the set of all network trafiit tre related to the attack(s)
represented by the anchor points detected in the previepsEte main challenge faced
by this step of the analysis is to properly refine the contexasto add the maximum
number of attack steps to the context, while adding the mininmumber of unrelated
events. As noted in Section 2.2, we made use of two main tqaksj rules drawn from
domain expertise and host/service profiling. The rules @sedas follows: First, we
ignored all traffic that was flagged as a scan in which the szhhost did not reply
(i.e. did not successfully open a TCP connection). Conlerae selected all scanning
traffic that did result in a full bidirectional connectioninglly, each connection for
which the previous rules did not apply was selected or igthbesed on its host/service
profiling score. If the score was above a configurable thidsitioen the connection
would be selected and added to the context, otherwise itddmilgnored. Note that for
a connection to be considered for addition to the contexuitrbe related somehow to
the anchor points. For our implementation we define thigimlauch that a connection
is related to the anchor points if one of the IPs in the coriords already contained
within the context, where the initial context is the set oflaor points.

Once we have a method to define which network events are toldetest for the
context, the algorithm for context extraction is quite siefhe algorithm goes through
a series of iterations. At the beginning of each iteratibere is a list of all the IPs
contained within the context. During the iteration, eackvfie processed. If one of the
IPs involved in the flow in contained within the context atitgaand if the flow passes
the specified rules (and the flow is not already in the contiveth the flow is added
to the context (and any IPs not already contained within tretext will be added).
The iterations continue until no more flows are added to thmeoo (i.e. the transitive
closure has been reached). The Context Extraction coutdbadimited to add only
a set number of flows or distinct hosts to the context, howthisrcould result in the
loss of some of the attack. In addition, the threshold forhibst/service profiling score
can be dynamically adjusted, to require, for example, tbahections added in later
iterations (and thus more loosely connected to the originahor points) have higher
profile anomaly scores.
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4 Experimental Evaluation

We evaluated our proposed framework using datasets geddrptSkaion corporation
[1]. These datasets are simulated to be statistically airtdl the traffic found in Intel-
ligence Community. This dataset has several scenariosattihks injected that follow
different patterns. In the following sections we first déserthe nature of the Skaion
dataset, then discuss methods we used to evaluate our faakyemd finally we show
our results. As can be seen in the following results, eveaghaur approach currently
uses only simple implementations for each component, eenathanalysis captures the
major attack steps successfully.

4.1 Skaion Dataset

As part of the ARDA P2INGS research project, the Skaion Caiian has released
several sets of simulated network traffic data. This datludtes various scenarios of
multi-step sophisticated attacks on resources within tepted network. The scenarios
for which they have generated data include single stagekatta simple scan or exploit
or data exfiltration scenario), bank shot attacks (wheretamnal host is compromised
and used to attack another internal host), and misdireetitatks (where a “noisy”
attack is staged on one part of the network while the truelatizkes place in a more
stealthy manner in another part of the network). In additmthe main attack, there
are other background attacks (none of which are successfdlscans. To date, they
have released 3 datasets to date, including many instahttesse scenarios. However,
for the sake of space, we will describe our results on onessizeim detail and present
a summary of our results on other scenarios. The networkdgpadn these scenarios
is comprised of the following four domains: (i) the targebtgcted domain, BPRD
(Bureau of Paranormal Research and Defense) comprisirgyioiss servers which are
the typical targets for attacks; (ii) a secondary interrmathdin which is not as protected
as the protected domain and comprises of servers as welleasscIThe hosts inside
this domain have additional privileges to access the ptetestomain, BPRD; (iii) a set
of external hosts which consists of attackers as well as alousers and (iv) a trusted
domain which consists of remote users access the proteetank with additional
privileges over a dialup or a VPN connection. All traffic airtg and leaving the entire
internal network is captured by tcpdump. Snort alerts allected for traffic exchanged
between the external network and entire internal network.

Single Stage AttacksThese scenarios are compromised of a simple attack made up of
four steps. First, scanning is used to determine the IP addsen the target network
that are actually associated with live hosts. Typicallyhege scenarios, this is done
by an attacker performing reverse DNS lookups to see whisth#®e domain names
associated with them. The next step consists of an attaskenltiple attackers) prob-

ing these live hosts to determine certain properties, saoltach OS and version is
running on the host. Then one of these hosts is attackediljpoby a host that was

not involved in any previous steps) and compromised. Rinalbackdoor is opened,

to which the attacker connects, and performs various noalécactivities, such as data
exfiltration or the downloading and installation of attackls.
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Bank-Shot Attacks These attacks are aimed at avoiding detection by using an “in
sider” host to launch the actual attack. In this scenaritiairscanning is done, and
then an attack is launched against a host in the BPRD netWhikattack fails, and the
attacker then scans and compromises a host in the secontiamal domain. From this
server, the attacker scans and launches attacks on hdsésprotected BPRD network.

A host is then compromised, from which data is exfiltrated.

Misdirection Attacks The attacker attempts to draw the attention of the analyayaw
from the real attack. He does this by launching a noisy attew& which sets off many
IDS alerts) on a particular set of hosts in the protected odtwl hen using a previously
compromised host in the trusted domain, he attacks and amiges another host in
the BPRD network, from which he exfiltrates data.

4.2 Evaluation Methodology

Before discussing the results of our experiments, we firstiilee how we performed
the experiments and the methods we used to evaluate ounfiaind-or a given sce-
nario, we first ran all low-level IDS tools to generate thetaleanomaly scores, etc. For
profiling, we used ten and five connections1Qrand?. respectively. This means that a
host was profiled as a server only if it had more than 10 inbaamthections. Similarly,
a host was profiled as a client only if it had more than 5 outblaxonnections. In addi-
tion we only profiled ports with more than two connections. t&en ran Anchor Point
Identification using multiple rules for detecting the anchoints in order to compare
the performance and sensitivity of each set of rules. Rirstused Snort alone, where
each Snort alert was selected as an anchor point. Next, wiehes®INDS anomaly de-
tector alone, where the connections that ranked in the topfi@omalies were selected
as anchor points. Finally, we combined Snort and MINDS inrtfeghod described in
Section 3.2. The anchor points selected were those Snat adevhich at least one of
the IPs was involved in a highly ranked anomaly (ranked withe top k% of MINDS
Anomaly Detector output). The evaluation criteria for theldor points is twofold: first,
whether it covers the attack (i.e. did it have any true pessfi, and second, whether it
has low false positives (the lower the better). The Anchanfdentification step gen-
erates a set of events (anchor points) which representsnection between two hosts.
An anchor point is related to the attack scenario if the cotioe it represents is a part
of some attack step. In our results section, the resultsisfstiep are represented by
the number of attack related hosts detected (true positared number of non-attack
related hosts detected (false positives). A host is cowsgexdtack related if it is present
in an attack related anchor point (in this case we call it pedgas introduced in section
2). If a host is present only in non-attack related anchontgoit is counted as a false
positive.

Following the Anchor Point Identification step, Context E&dtion was run with
each set of anchor points found by different rules utilizgdAmchor Point Identifica-
tion. No other parameters were varied for this step, sine@#rameters mainly consist
of limiting the expansion, and for our experiments this st&s run until no more con-
text was added. The goal for this step is to detect all atteleited steps (with emphasis
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on the more important steps, e.g. initial scanning is leg®ant then exploits or back-
door accesses) while reducing the number of non-attactetekteps. Note that there
are two types of non-attack related hosts that could be anbdén context. First, they
could be part of background attacks, which are still intémgsfor the analyst. Second,
there are real false positives, which are not a part of theahetttack scenario or the
background attacks.

All the tables for the results follow the following notation

AS:Attack Steps This represents the high level attack steps like probinpiination
gathering), actual exploit, backdoor access, or data ratfdn.

AH: Attack-related Hosts This includes all hosts related to the attack scenario dhclu
ing external scanners, external attackers, internal lsostsned by the attackers for
information and the eventual victims which get compromised

BA:Background Attack Related Hosts This involves all hosts related to the background
attacks in the traffic as attackers or victims.

FP : False Positives This counts all hosts that are not related to the actuallatee-
nario or to the background attacks but are wrongly detecgemlibframework.

4.3 Detailed Analysis: Skaion Scenario - 3s6
We present our detailed analysis on one of the bank shokattamarios. The scenario

we evaluated (called 3s6) had 122,331 connections in tfiefiavolving 4516 unique
IPs, on which there were 6974 Snort alerts.

External Hosts

05 =
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~. Primary Target Hosts
) (BPRD)

Secondary Internal Hosts

Fig. 2. Different steps and hosts involved in the attack scenario 3s6
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Table 1.Results for anchor point identification on bank-shot scenario 3s6

| Config |AH]FP]
Snort 96169

02 5|5

Top k%-anomalie®.5 8 | 67
1.0/ 50114

Snort + 0293 0

0.5 95| 39

Top k%-anomaliegl.0f 98 | 83

Table 2. Results for context extraction on bank-shot scenario 3s6

| Config |#iteration$ AS |[AH|BA|FP|
y Snort | 2 [5(A1,45,A4,A5,A6)] 24] 3 [75]
0.2 2 5(A1,42,A4,A5,A6)| 24| 3 |43

Top k%-anomalies (0.5 2 5(A1,A2,A4,A5,46)| 24| 3 |58
1.0 2 5(A1,42,A4,A5,A6)| 24| 3 |93

02] 2 [5(A1,A3,A4,45,4)| 24] 3|45

Snort + Topk%-anomalie®.5 2 5(A1,A2,A4,A5,46)| 24| 3 |47
1.0 2 5(A1,42,A4,A5,A6)| 24| 3 |47

The attack graph for the scenario 3s6 is shown in figure 2. @heus steps involved
(in chronological order) are :

— A; 101 (74.205.114.158) scans 92 ho@86 flows)nside the BPRD network.

— As 1 O5 (42.152.69.166) attacks internal servér,(100.10.20.4) four timesl{y
flowg and fails each time.

— Asz:035(168.225.9.78) port sca$8 flows)secondary internal host; (100.20.20.15
alias 100.20.1.3).

— Ay 1 O4 (91.13.103.83) attacks; (78 flows)using Apache OpenSSL SSLv2 Ex-
ploit [3] and succeeds.

— As: S portscans 6 servers in the BPRD netw(885 flows)ncluding the eventual
victim, 75 (100.10.20.8).

— Ag 1 S7 launches attacks ofy usingllS IDA-IDQ exploit[2] and succeeds. It also
browses through the files @§ (4 flows)

The attackers try to confuse the analyst by first scanninguaisdccessfully attempt-
ing to attack the internal network (Steds and A,). Most of the attack related Snort
alerts are on this traffic. Another attacker then attacks#e®ndary network and com-
promises an internal hosf{). This host is then used to scan the BPRD network and
launches an attack oRy. Since this traffic is internal, it is not detected by SnotieT
results of context extraction in Table 2 show that the fraorévgucceeds in capturing

a large portion of the attack scenario (5 out of 6 attack 3tde context also captures
some background attacks present in the traffic. The falsmalarise because of follow-
ing reasons - IMislabeled Flows These arise because of errors in the data converting
component due to which initiating flows might be labeled gdies and vice versa. 2)
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False alarms from Our Profiler Host/service profiler has an associated false alarm rate
due to which some non-attack related flows are added to thexdon

All configurations for anchor points result in detecting atjpm of the scanning
activity by O; as anchor points in Table 1. From these anchor points, thensta
activity A; is added to the context. Sinde is scanned by),, its traffic is analyzed.
This results in adding the failed attack attemptsto the contextls is also scanned by
01. Sincel; is attacked bys1, this attack stepls, is added to the context. On analyzing
the traffic to and fron®:, the scanning activityl; is added to the context. Similarly the
attack stepA4 on S, is also added to the context. The attack stgpis not captured
since it involves probing of; on ports on which it is a server. However, we capture all
those attack steps from which we can construct the corekagtamario.

We observe from Table 1 that if we use a correlation of Anonl@iector and Snort
we get less number of false positives as anchor points. Asla& the constraints in
Anchor Point Identification step, we detect more attackeel&osts, but the number of
false positives also increases. However, from the contara&ion results in Table 2
we observe that we still detect the major portion of the &tsenario even if we start
with a less number of anchor points. Moreover, the presefiiedse positives in anchor
points results in a high false positive rate for contextation.

4.4 Results for Other Scenarios

The results of our analysis on other scenarios are sumndariZEable 3. The configu-
ration used for Anchor Point Identification was the comborabf Snort Alerts and top
0.5% of MINDS Anomaly Detector Output. From the table we otsehat our imple-
mentation is able to capture all important steps of eacltlaiaenario except for the
scenario Five by Five(In this case, the volume of traffic related to the victim hoat
not enough to be profiled, thereby that host was not addedetodhtext). The attack
steps which were missed in all cases involved failed attéehrgts or probes before
attacks. Our implementation captured all the importamicktevents, such as the actual
exploit, data exfiltration for all but one scenario from whithe core attack scenario
can be generated. From the results we can observe that hy stsict thresholds for
Anchor Point Identification, we are able to detect some kftalated events (as anchor
points) while keeping the number of false positives very. logaing these anchor points,
we successfully detect the core attack scenario in all batsaenario along with some
background attack activity. Since the number of non attatkted anchor points are
low, the false positives in the context extraction step ése eery few.

A brief description of our results on each scenario is givelol:

Naive Attacker All attack related steps are detected. The 7 attack-relaist$ that are
not detected are the hosts inside BPRD which are scannecttatticker as part
of the probe, but do not reply back. Thus they do not supplyiaioymation to the
external attackers.

Simple Ten All attack related steps are detected. The 240 attackectlabsts not de-
tected are again the scanned hosts which do not reply back.

Five by Five We fail to detect any attack steps or any attack related hivsthis sce-
nario, the victim host inside the network was not involveaiy traffic with exter-
nal world apart from the attacks launched by outside attadkere was no profile
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Table 3. Summary of results for different Skaion scenarios

. Ground Truth Anchor PointgContext Extraction

SCenano [ on# Hosts# AlertSAS[AHJAH] FP||AS|AH|BA| FP

Naive | 1739] 581 | 27 [4[10[[2] 0 [4[3]0] O

Simple Ten|| 12040] 2616 | 114 |4 246/ 4| 0 |4[6|0] 1

Five by Five| 7853 | 2101 | 177 | 3|13 5| 45 |[0|0|0]| 5

Ten by Ten|| 9459 | 1435| 54 |4[16][5| 11 | 4|5|0] 1

: s9 4833 472 | 53 (3|2 2| 3 |[3[2]|0] 0
Single Stage—515 74792 582 | 58 |4|3 2| 6 [[3]2[0] O
s14 |[8915| 1210] 95 |3| 22| 9 | 3[2|12] 4

s16 || 5711] 368 | 1372 |43 |[2| 4 |[3[2]2] 3

s24 || 4334] 699 | 452 (6|10 2| 4 |4[4[1] 3

3s10 |[47490[ 3084 | 3150 | 3|6 [5| 2L |[3|6[1]| &

s1  |[45161[12292[10896| 6| 7 || 4| 32 | 6|7 [11] 3

Bankshot —g37123970] 1517 | 767165 4| 18 ||6]4|0] 0
Misdirection| s29 |[10926] 627 | 451 |76 5| 1 | 7[6|0] 4

generated for this host and hence the attacks could not beglished from nor-
mal traffic. The attack would have been detected if there wasigh traffic which
would meet the thresholds related to profiling of internavees.

Ten by Ten All attack related steps are detected. 11 attack-relatstshoot detected
include 6 scanned hosts which do not reply back and 5 extecaahers who never
get a reply back from the hosts which they scan. Thus effelgtithese external
scanners never get any information about the internal n&tand hence do not
contribute to the actual attack scenario.

s9 All attack related steps and attack related hosts are @eteathout any false posi-
tives.

s10 One attack step is missed in this scenario. The missed sadpiled attack launched
by one external attacker on an internal host which is not teateial victim. Thus
this step is not an important part of the whole attack scenari

sl4 All attack related steps and attack related hosts are @etedfe also detect some
of the background attacks in the traffic. The false positiletected in this scenario
arise due to mislabelled connections (replies labellechamting connections).
This occurs during the conversion of tcpdump data to netftomét.

s16 One attack step is missed in this scenario. The reason fisteame as in scenario
s1Q We also detect two background attacks as a part of the doritbr false
positives arise because of two outside hosts involved ffidi@ random high ports
with internal servers which does not conform to the normafiler of those internal
servers.

s24 In this scenario three external attackers did a distribstethning of the internal
network. One of the scanners got a reply back from the evewittam while the
other two did not get any replies from the hosts which theynsed. These two
scanning steps which did not contribute any informationenmissed. The false
positives occurred because of the same reason as in scehério
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3s10 All attack related steps and attack related hosts are @etedte also detect some
of the background attacks in the traffic. The false positidetected in this scenario
arise due to mislabelled connections (replies labelledidiating connections) or
due to outside hosts accessing internal servers on randginpbits.

sl All attack related steps and attack related hosts are @ekeie also detect some
of the background attacks in the traffic. The false positiletected in this scenario
arise because of external hosts accessing internal senveamdom high ports.

s37 In this scenario, one of the attackers port scans two intseraers but gets reply
only from one which is eventually attacked. The other sedgsrs not supply any
information back to the attacker. Only this server is noedtdd while all other
involved hosts and attack steps are detected.

s29 All attack steps except for one initial probe, which did net gny replies, were
detected. The false alarms occur for the same reason asiargrsl

5 Discussion

In Section 2 we described the main design goals for our syskamfirst goal was that
the analysis framework should address the inherent trldetwfeen false positives and
false negatives. We address this issue in the design of amnefivork by decomposing
the problem into two steps. In the first, we focus on the redoaif false positives, by
selecting network events in such a way that gives us highdende that the events are
part of an attack. This was achieved in our simple implentamtathrough the use of
Snort alerts combined with the MINDS anomaly detector. &dgwe fill in the missed
attack steps by extracting the context from the set of anphints. By requiring that
the anchor points be of high quality (low false positives) aa@ relax the restrictions
on what we add to the context if they are connected to the arpaints. This was also
achieved by our simple Context Extraction module, in thitieely few false positives
were added to the context when the anchor points contaimethfse positives.

The second goal was to detect the majority of attack stepiserattack scenario.
Evaluating this is not completely straightforward, sincg all attack steps would be
considered equal, and thus a measure such as a straighhtpge®f attack-related
connections would not be sufficient. This is due to the faat tiot all attack steps are
of the same importance. For example, in the scenario destitbSection 4.3, if we
had detected all of the scans and nothing else, we would reteetdd the vast major-
ity of network connections that were relevant to the att®384), but this information
would be useless to the analyst. A better measure would re@afing the connections
together into steps (using techniques such as those pipof® 36]), and measuring
the number of attack steps that were detected. In this expati however, we man-
aged to detect all major attack steps (including attackeyrial stepping stones, and
data exfiltration) and many connections in the scannings ™ achieved the goal of
detecting the majority of the attack steps.

The third goal set forth in Section 2 was high coverage ofcaftaln the Skaion
scenarios, however, only one attack was present in eachrsgenhus, while not fully
tested, this goal was initially achieved in the fact that werevable to detect the main
attack in each scenario, except for the one with insuffigieotfiling information.

35



The final goal was to make the system modular by design. Thigdeoal was
achieved as seen in Section 2. First, the two componentg iinasnework are indepen-
dent of each other. Thus the implementation of one can begelbwithout affecting
the other. Context Extraction does not depend on how thecainints are found, as
long as they are of high quality. Also, Anchor Point Identfion is not concerned with
how the anchor points are used, and thus any algorithm casdseto implement the
Context Extraction. Also, the system is not tied to any lewel IDS system. None of
the design of our framework hinges on the types of alertdaai For example, in
our implementation Snort alerts were used. However, argratignature-based system
could replace it. The only restriction is that the inforrmatneeded by the particular im-
plementation of the later stages needs to be present in ssmelh addition, we could
incorporate other types of information that could be usedetect intrusions, such as
system logs [14, 15] and host based IDS alerts [8, 17, 20].

5.1 Limitations and Improvements

This leads us to consider the limitations of our frameworke biggest limitation is
that it has greater storage requirements than most IDSst, $moexample, examines
traffic in real time, and creates alerts based on what it fiAl$hat needs to be stored
are the alerts. However, our system needs storage of botovhievel IDS alerts as
well as the actual network traffic (in some form). The moreded the data and longer
time frame for which the data is stored, the better our systéhperform. Also, de-
tecting sophisticated attacks may require the captureafffdtbetween internal hosts.
Capturing the traffic between every host within the netwoduls be difficult, and in
many cases infeasible. This storage requirement can b#ygmrgtigated by storing the
data in the net-flow format, where only header informatioaggregated and kept. In
the University of Minnesota campus network, 1 year of net+fioformation can be
stored in 0.5 TB, whereas 1 week of tcpdump data requires B-8fBtorage. On the
other hand, if complete forensic analysis is to be perforritedould be very desirable
for the tcpdump data to be present, and thus our frameworlkdymse no extra stor-
age requirement. A operational system designed to stareardi raw network data for
forensic analysis is described in [21].

One last important point to discuss is the effect of a franatigck, that is, how an
attacker can attack the analysis framework itself. If aackier knows the rules used by
Anchor Point Identification, then he would be able to gemespiurious anchor points.
However, the amount of anchor points he can generate degeealty upon the rules
used by Anchor Point Identification. If Snort alerts alongevesed, then the attacker
could easily generate an arbitrary amount of anchor pomusiving every internal
machine [13, 22]. This would basically reduce our framewvtor& low-level IDS system
with a low threshold, flagging much of the traffic as part of tiack. If the rules used for
Anchor Point Identification were Snort combined with the NSl anomaly detector,
which was shown to be effective in our experiments, then tieetthat the attacker can
impose on the anchor points is more limited. Again the atackn send packets that
cause Snort alerts to all the hosts in the network, but to bgdéldas anchor points, each
of these flows must also be in the top tier of anomalies. By #faition of anomaly,
all of these packets would have to be unique with respecteoattributes used by
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the anomaly detector to rank the network connections. Ehesdifficult thing to do,
since the attacker would have to know a priori what will besidared anomalous for
the time period that will be examined. Also the attacker widwdve to be careful not to
send too many packets with certain similarities, since evtiey may be abnormal when
compared to the rest of the traffic, they may form their owrstduand be considered
normal with respect to themselves. Also, if too much abndrnadfic is sent, there
could be enough abnormal traffic that the abnormal traffiobess the “norm”, making
it very hard to predict what will be flagged as abnormal. Faregle, if the attacker sent
large packets to cause the anomalies, after too many sukbtpalarge packets will be
considered normal. In addition, for the Snort and MINDS coration, there is an upper
limit on the number of anomalies that will be used for selegtnchor points (due to
the cutoff threshold). Thus, the Anchor Point Identificat&tep can, through careful
design and implementation, provide some measure of rasistagainst this type of
attack. Another useful aspect of Anchor Point Identifigati® that it is dynamically
configurable (depending on the available data sourced)itggenerates too many false
positives, it can be run again with a different set of anchwnfpselection criteria. This
opens up two lines of future work on this component. Firstples to investigate and
design better approaches to combine the data sources intorglelect anchor points.
Second, we plan to test the designs against these typesickatob better understand
the effects that they can have on the results of our system.

Context Extraction is less resistant to this framing att@dpecially when using a
port profiling technique, as it is difficult to cause a machimact outside of its profile,
without actually compromising it (to do this effectiveliaet attacker would need some
insider knowledge of the port usage of the internal machisesh as ports on which
the internal machines actually offered service but had Ioeugh volume so as to not
be profiled). However, Context Extraction would be affedtgdhe false anchor points
generated by attacks on the Anchor Point Identification. step

6 Related Work

The most related area of research to this work is IDS alentegdgion and correlation.
Alert aggregation has to do with taking alerts from multiptssors and merging them
into one higher level alert. Generally this is done on sirelents that trigger alerts
across multiple sensors. For example, if a subnetwork isfgsuch that traffic going
between it and the outside internet would pass through tweotSensors, then an attack
that triggers a Snort alert would trigger two such alertanifanalyst is looking at these
alerts, it is more efficient if the analyst only looks at thertlonce. This gets more
difficult when the sensors are not the same type of sensorepudtrdifferent sets of
information, and often a probabilistic approach must bend86].

Correlation has two main aspects to it. One is the fusionftérdint alerts that refer
to different events in an attack but are highly related. B@mgple, if there is a DOS
attack, and each probe sets off an alert, there will be maysdrom a certain source
IP to a certain destination IP. Thus all of these alerts cbeldnerged into one higher
level “DOS” alert. This type of fusion can be achieved by tdusg alerts based on
specific fields in the alert containing matching informatj28].
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The second area of correlation is in the realm of relatingstegether that fit into
an attack scenario. This is the most closely related worloiretation to our approach.
Much of the work done in this area has been done in matchingguésites and con-
sequences of alerts [5, 9, 23-26]. In this approach, theg/sindefines the set of actions
that must take place before a given alert can occur (its guésiees), and then once
an alert has happened what actions can subsequently tale(jtlaconsequences). By
placing this information with each alert, a system can m#teim together (along with
extra information such as IP addresses or time-stamps)mo $equences of attacks,
or attack scenarios. One limitation of this approach is thaquires extensive expert
domain knowledge to determine exactly what is required foaetion to take place
and what its consequences can be. In addition to prereggigsitd consequences, there
have also been probabilistic matching approaches prog@gezhd matching detected
events against attack models [4].

There have been many other approaches proposed to comgeddgits, and many of
these have been incorporated in the comprehensive sys{@Tin

7 Conclusion and Future Work

We have shown how the multi-step analysis approach can befibiah in analyzing
network traffic and IDS alerts to discover multi-step, sefibated attacks. One of the
most important directions for future work is to utilize thatput of the context ex-
traction module in a way that allows for easy analysis. Thithe task of the Attack
Characterization step, which was ignored in the descrippifathe framework. Even if
the output of the context extraction is 100% accurate, itilisas(potentially large) col-
lection of raw network traffic data. Presenting this infotima to the analyst in a easy
to use format, perhaps using visualization techniques)dvoe beneficial to the anal-
ysis, and could help to reduce the effect of false positivemfthe Context Extraction.
Thus, we intend to investigate mechanisms to infer semam@ning from these con-
nections to determine the full scope of the attack. One wagctmmplish this is to use
alert aggregation techniques [9, 36]. A second mechaniatrctiuld be useful is attack
graphs [31], which are possible paths of attack and are gwtbased on vulnera-
bility assessment and network connectivity informatiormtéhing the detected context
against full attack graphs could provide more informationhe Attack Characteriza-
tion step. The final way that we are investigating is the usésofalization techniques to
be able to “see” the data, from which an analyst can infer tteela scenario. Another
area of future research is to create better and more sagatesti components for the
individual steps in the analysis framework. Our approachke well with the simple
components, and improving them will improve the overalltes
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ABSTRACT

Recent spates of cyber-attacks and frequent emergence of
applications affecting Internet traffic dynamics have made
it imperative to develop effective techniques that can ex-
tract, and make sense of, significant communication pat-
terns from Internet traffic data for use in network operations
and security management. In this paper, we present a gen-
eral methodology for building comprehensive behavior pro-
files of Internet backbone traffic in terms of communication
patterns of end-hosts and services. Relying on data min-
ing and information-theoretic techniques, the methodology
consists of significant cluster extraction, automatic behav-
ior classification and structural modeling for in-depth inter-
pretive analyses. We validate the methodology using data
sets from the core of the Internet. The results demonstrate
that it indeed can identify common traffic profiles as well as
anomalous behavior patterns that are of interest to network
operators and security analysts.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations— Network monitoring

General Terms

Algorithms, Measurement, Performance, Security

Keywords

Behavior profiles, Traffic measurement, Network monitoring

1. INTRODUCTION

As the Internet continues to grow in size and complex-
ity, the challenge of effectively provisioning, managing and
securing it has become inextricably linked to a deep under-
standing of Internet traffic. Although there has been sig-
nificant progress in instrumenting data collection systems
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for high-speed networks at the core of the Internet, devel-
oping a comprehensive understanding of the collected data
remains a daunting task. This is due to the vast quantities
of data, and the wide diversity of end-hosts, applications
and services found in Internet traffic. While there exists an
extensive body of prior work on traffic characterization on
IP backbones — especially in terms of statistical properties
(e.g., heavy-tail, self-similarity) for the purpose of network
performance engineering, there has been very little attempt
to build general profiles in terms of behaviors, i.e., commu-
nication patterns of end-hosts and services. The latter has
become increasingly imperative and urgent in light of wide
spread cyber attacks and the frequent emergence of disrup-
tive applications that often rapidly alter the dynamics of
network traffic, and sometimes bring down valuable Inter-
net services. There is a pressing need for techniques that
can extract underlying structures and significant communi-
cation patterns from Internet traffic data for use in network
operations and security management.

The goal of this paper is to develop a general methodol-
ogy for profiling Internet backbone traffic that i) not only
automatically discovers significant behaviors of interest from
massive traffic data, ii) but also provides a plausible in-
terpretation of these behaviors to aid network operators
in understanding and quickly identifying anomalous events
of significance. This second aspect of our methodology is
both important and necessary due to voluminous interest-
ing events and limited human resources. For these purposes,
we employ a combination of data mining and information-
theoretic techniques to automatically cull useful informa-
tion from largely unstructured data, and classify and build
structural models to characterize host/service behaviors of
similar patterns.

In our study we use packet header traces collected on In-
ternet backbone links in a tier-1 ISP, which are aggregated
into flows based on the well-known five-tuple - the source IP
address (srcIP), destination IP address (dstIP), source port
(srcPrt), destination port (dstPrt), and protocol fields.
Since our goal is to profile traffic in terms of communication
patterns, we start with the essential four-dimensional fea-
ture space consisting of srcIP, dstIP, srcPrt and dstPrt.
Using this four-dimensional feature space, we extract clus-
ters of significance along each dimension, where each cluster
consists of flows with the same feature value (referred to as
cluster key) in the said dimension. This leads to four collec-
tions of interesting clusters — srcIP clusters, dstIP clusters,
srcPrt clusters, and dstPrt clusters. The first two represent



a collection of host behaviors while the last two represent
a collection of service behaviors. In extracting clusters of
significance, instead of using a fixed threshold based on vol-
ume, we adopt an information-theoretic approach that culls
interesting clusters based on the underlying feature value
distribution (or entropy) in the fixed dimension. Intuitively,
clusters with feature values (cluster keys) that are distinct
in terms of distribution are considered significant and ex-
tracted; this process is repeated until the remaining clus-
ters appear indistinguishable from each other. This yields
a cluster extraction algorithm that automatically adapts to
the traffic mix and the feature in consideration.

Given the extracted clusters along each dimension of the
feature space, the second stage of our methodology is to
discover “structures” among the clusters, and build com-
mon behavior models for traffic profiling. For this purpose,
we first develop a behavior classification scheme based on
observed similarities/dissimilarities in communication pat-
terns (e.g., does a given source communicate with a single
destination or with a multitude of destinations?). For ev-
ery cluster, we compute an information-theoretic measure of
the variability or uncertainty of each dimension except the
(fixed) cluster key dimension, and use the resulting metrics
to create behavior classes. We study the characteristics of
these behavior classes over time as well as the dynamics of
individual clusters, and demonstrate that the proposed clas-
sification scheme is robust and provides a natural basis for
grouping together clusters of similar behavior patterns.

In the next step, we adopt ideas from structural modeling
to develop the dominant state analysis technique for mod-
eling and characterizing the interaction of features within
a cluster. This leads to a compact “structural model” for
each cluster based on dominant states that capture the most
common or significant feature values and their interaction.
The dominant state analysis serves two important purposes.
First, it provides support for our behavior classification —
we find that clusters within a behavior class have nearly
identical forms of structural models. Second, it yields com-
pact summaries of cluster information which provides inter-
pretive value to network operators for explaining observed
behavior, and may help in narrowing down the scope of a
deeper investigation into specific clusters. In addition, we
investigate additional features such as average flow sizes of
clusters (in terms of both packet and byte counts) and their
variabilities, and use them to further characterize similar-
ities/dissimilarities among behavior classes and individual
clusters.

We validate our approach using traffic data collected from
a variety of links at the core of the Internet, and find that our
approach indeed provides a robust and meaningful way of
characterizing and interpreting cluster behavior. We show
that several popular services and applications, as well as
certain types of malicious activities, exhibit stable and dis-
tinctive behavior patterns in terms of the measures we for-
mulate. The existence of such “typical” behavior patterns
in traffic makes it possible to separate out a relatively small
set of “atypical” clusters for further investigation. To this
end, we present case studies highlighting a number of clus-
ters with unusual characteristics that are identified by our
profiling techniques, and demonstrate that these clusters ex-
hibit malicious or unknown activities that are worth inves-
tigating further. Thus our technique can become a powerful
tool for network operators and security analysts with ap-

plications to critical problems such as detecting anomalies
or the spread of hitherto unknown security exploits, profil-
ing unwanted traffic, tracking the growth of new services or
applications, and so forth.

The contributions of this paper are summarized as follows:

e We present a novel adaptive threshold-based clustering
approach for extracting significant clusters of interest
based on the underlying traffic patterns.

e We introduce an information-theoretic behavior classi-
fication scheme that automatically groups clusters into
classes with distinct behavior patterns.

e We develop structural modeling techniques for inter-
pretive analyses of cluster behaviors.

e Applying our methodology to Internet backbone traf-
fic, we identify canonical behavior profiles for captur-
ing typical and common communication patterns, and
demonstrate how they can be used to detect interest-
ing, anomalous or atypical behaviors.

The remainder of the paper is organized as follows. Sec-
tion 1.1 briefly discusses the related work, and Section 2
provides some background. The adaptive-threshold cluster-
ing algorithm is presented in Section 3. In Section 4 we
introduce the behavior classification and study its tempo-
ral characteristics. We present the dominant state analysis
and additional feature exploration in Section 5, and apply
our methodology for traffic profiling in Section 6. Section 7
concludes the paper.

1.1 Related Work

Most of the prior work has analyzed specific aspects of
traffic or applied metrics that are deemed interesting a pri-
ori to identify significant network events of interest. For
example, [1, 2] focus on efficient techniques for identifying
“heavy-hitters” in one or several dimensions, and [3, 4] focus
on identifying port scans. [5] studies the behavior of flash
crowds, while [6, 7, 8] focus on analyzing worm and other
exploit activities on the Internet. Research in [9, 10, 11]
applies signal processing and statistical inference techniques
for identifying traffic anomalies, mostly from the perspective
of link-level traffic aggregate. Signature-based intrusion de-
tection systems such as SNORT [12] or Bro [13] look for well-
known signatures or patterns in network traffic, while several
behavior-based anomaly detection systems (see, e.g., [14, 15]
and references therein) have been developed using data min-
ing techniques. In [16], information-theoretic measures are
proposed for evaluating anomaly detection schemes.

Closer to our work, [17] focuses on resource consumption
in network traffic, and develops a clustering algorithm that
automatically discovers significant traffic patterns along one
or multiple dimensions using fixed volume thresholds. The
studies in [18, 19] focus on communication patterns or pro-
files of applications instead of broader network traffic. Con-
current with our work, [20, 21] are most similar in spirit,
and in a sense are complementary, to ours. In [20], the au-
thors study the “host behaviors” (communication patterns)
at three levels, with the objective to classify traffic flows us-
ing packet header information only. Arguably, our entropy-
based behavior classification and dominant state analysis
provide a formal framework to analyze host behaviors at
functional and application levels. As an extension to their
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early work [9, 10], the authors in [21] also use entropy to
characterize traffic feature distributions, with emphasis on
detecting network-wide traffic anomalies at PoP-level OD
(origin-destination) flows: the PCA-based subspace method
is used to separate “anomalies” from “normal” traffic. In
contrast, our objective is to build behavior profiles at host
and service levels using traffic communication patterns with-
out any presumption on what is normal or anomalous.

2. BACKGROUND AND DATASETS

Information essentially quantifies “the amount of uncer-
tainty” contained in data [22]. Consider a random variable
X that may take Nx discrete values. Suppose we randomly
sample or observe X for m times, which induces an empir-
ical probability distribution® on X, p(x;) = m;/m,z; € X,
where m; is the frequency or number of times we observe X
taking the value z;. The (empirical) entropy of X is then
defined as

H(X):=— ) pla;)logp(w:) (1)

z;e€X

where by convention 0log0 = 0.

Entropy measures the “observational variety” in the ob-
served values of X [23]. Note that unobserved possibili-
ties (due to 0log0 = 0) do not enter the measure, and
0 < H(X) € Hpnaz(X) 1= logmin{Nx,m}. Hpmaz(X) is
often referred to as the mazimum entropy of (sampled) X,
as 28maz(X) ig the maximum number of possible unique val-
ues (i.e., “maximum uncertainty”) that the observed X can
take in m observations. Clearly H(X) is a function of the
support size Nx and sample size m. Assuming that m > 2
and Nx > 2 (otherwise there is no “observational variety”
to speak of), we define the standardized entropy below — re-
ferred to as relative uncertainty (RU) in this paper, as it
provides an index of variety or uniformity regardless of the
support or sample size:

HX) _ HX) o
Hpoo (X))  logmin{Nx,m}’

Clearly, if RU(X) = 0, then all observations of X are of
the same kind, i.e., p(x) = 1 for some = € X; thus obser-
vational variety is completely absent. More generally, let A
denote the (sub)set of observed values in X, i.e., p(z;) > 0
for x; € A. Suppose m < Nx. Then RU(X) =1 if and only
if |A| = m and p(x;) = 1/m for each x; € A. In other words,
all observed values of X are different or unique, thus the ob-
servations have the highest degree of variety or uncertainty.
Hence when m < Nx, RU(X) provides a measure of “ran-
domness” or “uniqueness” of the values that the observed
X may take — this is what is mostly used in this paper, as
in general m < Nx.

In the case of m > Nx, RU(X) = 1 if and only if
m; = m/Nx, thus p(z;) = 1/Nx for z; € A = X, ie.,
the observed values are uniformly distributed over X. In
this case, RU(X) measures the degree of uniformity in the
observed values of X. As a general measure of unifor-
mity in the observed values of X, we consider the condi-
tional entropy H(X|A) and conditional relative uncertainty
RU(X|A) by conditioning X based on A. Then we have
H(X|A) = H(X), Hnaz(X|A) = log || and RU(X|A) =

RU(X) :=

"With m — oo, the induced empirical distribution ap-
proaches the true distribution of X.

Table 1: Multiple links used in our analysis.

Link | Time Util. Duration | Packets | Trace size

Ly 01/28/2004 | 78 Mbps 24 hours 1.60 G 95 GB

Lo 01/28/2004 | 86 Mbps 24 hours 1.65 G 98 GB

L3 02/06/2004 | 40 Mbps 3 hours 203 M 12 GB

Ly 02/06/2004 | 52 Mbps 3 hours 191 M 11 GB

Ls 04/07/2003 | 207 Mbps | 3 hours 518 M 28 GB

H(X)/log|A|. Hence RU(X|A) = 1 if and only if p(z;) =
1/]A] for every x; € A. In general, RU(X|A) =~ 1 means that
the observed values of X are closer to being uniformly dis-
tributed, thus less distinguishable from each other, whereas
RU(X|A) < 1indicates that the distribution is more skewed,
with a few values more frequently observed. This measure
of uniformity is used in Section 3 for defining “significant
clusters of interest”.

We conclude this section by providing a quick descrip-
tion of the datasets used in our study. The datasets consist
of packet header (the first 44 bytes of each packet) traces
collected from multiple links in a large ISP network at the
core of the Internet (Table 1). For every 5-minute time slot,
we aggregate packet header traces into flows, which is de-
fined based on the well-known 5-tuple (i.e., the source IP
address, destination IP address, source port number, desti-
nation port number, and protocol) with a timeout value of
60 seconds [24]. The 5-minute time slot is used as a trade-
off between timeliness of traffic behavior profiling and the
amount of data to be processed in each slot.

3. EXTRACTING SIGNIFICANT CLUSTERS

We start by focusing on each dimension of the four-feature
space, stcIP, dstIP, srcPrt, or dstPrt, and extract “sig-
nificant clusters of interest” along this dimension. The ex-
tracted srcIP and dstIP clusters yield a set of “interesting”
host behaviors (communication patterns), while the srcPrt
and dstPrt clusters yield a set of “interesting” service/port
behaviors, reflecting the aggregate behaviors of individual
hosts on the corresponding ports. In the following we intro-
duce our definition of significance/interestingness using the
(conditional) relative uncertainty measure.

Given one feature dimension X and a time interval T', let
m be the total number of flows observed during the time
interval, and A = {a1,...,an}, n > 2, be the set of dis-
tinct values (e.g., srcIP’s) in X that the observed flows
take. Then the (induced) probability distribution Pa on
X is given by p; := Pa(as) = m;/m, where m; is the num-
ber of flows that take the value a; (e.g., having the srcIP
a;). Then the (conditional) relative uncertainty, RU(Pa) :=
RU(X|A), measures the degree of uniformity in the ob-
served features A. If RU(P4) is close to 1, say, > 8 = 0.9,
then the observed values are close to being uniformly dis-
tributed, and thus nearly indistinguishable. Otherwise, there
are likely feature values in A that “stand out” from the
rest. We say a subset S of A contains the most significant
(thus “interesting”) values of A if S is the smallest subset
of A such that i) the probability of any value in S is larger
than those of the remaining values; and ii) the (conditional)
probability distribution on the set of the remaining values,
R := A — S, is close to being uniformly distributed, i.e.,
RU(Pr) := RU(X|R) > (. Intuitively, S contains the most
significant feature values in A, while the remaining values
are nearly indistinguishable from each other.
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Figure 1: The total number of distinct values and significant clusters extracted from four feature dimensions of L; over a one-

day period (top row). The corresponding final cut-off threshold obtained by the information-based significant cluster extraction

algorithm (bottom row).

To see what S contains, order the feature values of A based
on their probabilities: let a1, as, ... ,a, be such as Pa(a1) >
PA(&Z) > .- 'PA(&H). Then S = {&17&2, e ,&kfl} and
R =A-S = {ak,Gk+1,... ,an} where k is the smallest
integer such that RU(Pgr) > (. Let a* = ar—1. Then o*
is the largest “cut-off” threshold such that the (conditional)
probability distribution on the set of remaining values R is
close to being uniformly distributed.

Algorithm 1 Entropy-based Significant Cluster Extraction

1: Parameters: a := ap; 8:=0.9; S := 0;

2: Initialization: S :=0; R:= A; k :=0;

3: compute prob. dist. Pgr and its RU 0 := RU(PR);
4: while 0 < 3 do

5 a=ax27F k44

6: for each a; € R do

T if Pa(a;) > a then

8: S:=SU{ai}; R:=R—{a;};

9: end if
10:  end for
11:  compute (cond.) prob. dist. Pr and 0 := RU(PR);
12: end while

Algorithm 1 presents an efficient approzimation algorithm?
(in pseudo-code) for extracting the significant clusters in S
from A (thereby, the clusters of flows associated with the
significant feature values). The algorithm starts with an ap-
propriate initial value ag (e.g., ap = 2%), and searches for
the optimal cut-off threshold a* from above via “exponential
approximation” (reducing the threshold « by an exponen-
tially decreasing factor 1/2F at the kth step). As long as
the relative uncertainty of the (conditional) probability dis-

2An efficient algorithm using binary search is also devised,
but not used here.

tribution Pr on the (remaining) feature set R is less than
0B, the algorithm examines each feature value in R and in-
cludes those whose probabilities exceed the threshold a into
the set S of significant feature values. The algorithm stops
when the probability distribution of the remaining feature
values is close to being uniformly distributed (> 8 = 0.9).
Let &* be the final cut-off threshold (an approximation to
o) obtained by the algorithm.

Our algorithm adaptively adjusts the “cut-off” threshold
&* based on the underlying feature value distributions to ex-
tract significant clusters. Fig. 1 presents the results we ob-
tain by applying the algorithm to the 24-hour packet trace
collected on L, where the significant clusters are extracted
in every 5-minute time slot along each of the four feature
dimensions. In the top row we plot both the total number
of distinct feature values as well as the number of signifi-
cant clusters extracted in each 5-minute slot over 24 hours
for the four feature dimensions (note that the y-axis is in log
scale). In the bottom row, we plot the corresponding final
cut-off threshold obtained by the algorithm. We see that
while the total number of distinct values along a given di-
mension may not fluctuate very much, the number of signif-
icant feature values (clusters) may vary dramatically, due to
changes in the underlying feature value distributions. These
changes result in different cut-off thresholds being used in
extracting the significant feature values (clusters). In fact,
the dramatic changes in the number of significant clusters
(or equivalently, the cut-off threshold) also signifies major
changes in the underlying traffic patterns.

To provide some specific numbers, consider the 15th time
slot. There are a total of 89261 distinct srcIP’s, 79660
distinct dstIP’s, 49511 srcPrt’s and 50602 dstPrt’s. Our
adaptive-threshold algorithm extracts 117 significant srcIP
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clusters, 273 dstIP clusters, 8 srcPrt clusters and 12 dstPrt
clusters, with the resulting cut-off threshold being 0.0625%,
0.03125%, 0.25% and 1%, respectively. We see that the num-
ber of significant clusters is far smaller than the number of
feature values n, and that the cut-off thresholds &* for the
different feature dimensions also differ. This shows that no
single fized threshold would be adequate in the definition of
“significant” behavior clusters.

4. CLUSTERBEHAVIORCLASSIFICATION

In this section we introduce an information-theoretic ap-
proach to characterize the “behavior” of the significant clus-
ters extracted using the algorithm in the previous section.
We show that this leads to a natural behavior classification
scheme that groups the clusters into classes with distinct
behavior patterns.

4.1 Behavior Class Definition

Consider the set of, say, srcIP, clusters extracted from
flows observed in a given time slot. The flows in each clus-
ter share the same cluster key, i.e., the same srcIP address,
while they can take any possible value along the other three
“free” feature dimensions. Hence the flows in a cluster in-
duce a probability distribution on each of the three “free”
dimensions, and thus a relative uncertainty measure can be
defined. For each cluster extracted along a fixed dimension,
we use X, Y and Z to denote its three “free” dimensions,
using the convention listed in Table 2. Hence for a srcIP
cluster, X, Y, and Z denote the srcPrt, dstPrt and dstIP
dimensions, respectively. This cluster can be characterized
by an RU vector [RUx, RUy, RUz].

Table 2: Convention of free dimension denotations.

Cluster key Free dimensions

X Y Z
srcIP srcPrt | dstPrt | dstIP
dstIP srcPrt | dstPrt | srcIP
srcPrt dstPrt srcIP dstIP
dstPrt srcPrt srcIP dstIP

In Fig. 2(a) we represent the RU vector of each srcIP
cluster extracted in each 5-minute time slot over a 1-hour
period from L; as a point in a unit-length cube. We see
that most points are “clustered” (in particular, along the
axises), suggesting that there are certain common “behavior
patterns” among them. Fig. 3 shows similar results using
the srcIP clusters on four other links. This “clustering”
effect can be explained by the “multi-modal” distribution of
the relative uncertainty metrics along each of the three free
dimensions of the clusters, as shown in Figs. 2(b), (c) and
(d) where we plot the histogram (with a bin size of 0.1) of
RUx, RUy and RUyz of all the clusters on links L; to Ls
respectively. For each free dimension, the RU distribution
of the clusters is multi-modal, with two strong modes (in
particular, in the case of srcPrt and dstPrt) residing near
the two ends, 0 and 1. Similar observations also hold for
dstIP, srcPrt and dstPrt clusters extracted on these links.

As a convenient way to group together clusters of similar
behaviors, we divide each RU dimension into three cate-
gories (assigned with a label): 0 (low), 1 (medium) and 2

(high), using the following criteria:

0(low), if 0 <ru<eg,
L(ru) = < 1(medium), ife<ru<1—e¢, (3)
2(high), ifl—e<ru<i,

where for the srcPrt and dstPrt dimensions, we choose
e = 0.2, while for the srcIP and dstIP dimensions, € =
0.3. This labelling process classifies clusters into 27 possible
behavior classes (BC'in short), each represented by a (label)
vector [L(RUx), L(RUy), L(RUz)] € {0,1,2}>. TFor ease
of reference, we also treat [L(RUx),L(RUy),L(RUz)] as
an integer (in tierary representation) id = L(RUx) - 3% +
L(RUy) -3+ L(RUz) € {0,1,2,...,26}, and refer to it
as BC;q. Hence srcIP BCs = [0,2,0], which intuitively
characterizes the communicating behavior of a host using a
single or a few srcPrt’s to talk with a single or a few dstIP’s
on a larger number of dstPrt’s. We remark here that for
clusters extracted using other fized feature dimensions (e.g.,
srcPrt, dstPrt or dstIP), the BC labels and id’s have a
different meaning and interpretation, as the free dimensions
are different (see Table 2). We will explicitly refer to the
BCs defined along each dimension as srcIP BCs, dstIP BCs,
srcPrt BCs and dstPrt BCs. However, when there is no
confusion, we will drop the prefix.

4.2 Temporal Propertiesof Behavior Classes

We now study the temporal properties of the behavior
classes. We introduce three metrics to capture three differ-
ent aspects of the characteristics of the BC’s over time: i)
popularity: which is the number of times we observe a par-
ticular BC appearing (i.e., at least one cluster belonging to
the BC is observed); ii) (average) size: which is the average
number of clusters belonging to a given BC, whenever it is
observed; and iii) (membership) volatility: which measures
whether a given BC tends to contain the same clusters over
time (i.e., the member clusters re-appear over time), or new
clusters.

Formally, consider an observation period of T' time slots.
For each BCj, let Cj; be the number of observed clusters
that belong to BC; in the time slot 7, 7 = 1,2,...,T,
O; the number of time slots that BC; is observed, i.e.,
0; = |[{Ci; : Cs; > 0}|, and U; be the number of unique
clusters belonging to BC; over the entire observation pe-
riod. Then the popularity of BC; is defined as II; = O; /T
its average size X; = erzl Ci;/0;; and its (membership)
volatility ¥; = U;/ E;‘Ll Csj = Ui /(11;05). If a BC contains
the same clusters in all time slots, i.e., U; = Cj;, for every
j such that C;; > 0, then ¥; = 0. In general, the closer ¥;
is to 0, the less volatile the BC is. Note that the member-
ship volatility metric is defined only for BC’s with relatively
high frequency, e.g., IT > 0.2, as otherwise it contains too
few “samples” to be meaningful.

In Figs. 4(a), (b) and (c) we plot II;, ¥; and ¥; of the
srcIP BC’s for the srcIP clusters extracted using link L,
over a 24-hour period, where each time slot is a 5-minute
interval (i.e., T = 288). From Fig. 4(a) we see that 7 BC’s,
BC> [0,0,2], BCs [0,2,0], BC7 [0,2,1], BCs [0,2,2], BCis
[2,0,0], BC1g [2,0,1] and BC% [2,0,2], are most popular, oc-
curring more than half of the time; while BC11 [2,0,2] and
BCi2 [2,1,0] and BC54 [2,2,1] have moderate popularity, oc-
curring about one-third of the time. The remaining BC’s
are either rare or not observed at all. Fig. 4(b) shows that
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Figure 2: The distribution of relative uncertainty on free dimensions for srcIP clusters from L; during a 1-hour period.
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Figure 3: The distribution of relative uncertainty on free dimensions for srcIP clusters from L3 34,5 during a 1-hour period.

the five popular BC’s, BC2, BCs, BC7, BCis, and BCso,
have the largest (average) size, each having around 10 or
more clusters; while the other two popular BC’s, BCs and
BCh9, have four or fewer BC’s on the average. The less
popular BC’s are all small, having at most one or two clus-
ters on the average when they are observed. From Fig. 4(c),
we see that the two popular BC> and BCsy (and the less
popular BC11, BC12 and BCb4) are most volatile, while the
other five popular BC’s, BCs, BC7, BCs, BC1s and BCig
are much less volatile. To better illustrate the difference in
the membership volatility of the 7 popular BC’s, in Fig. 4(d)
we plot U; as a function of time, i.e., U;(¢) is the total num-
ber of unique clusters belonging to BC; up to time slot t. We
see that for BC> and BCso, new clusters show up in nearly
every time slot, while for BC7, BCs and BC\g, the same
clusters re-appear again and again. For BCs and BCis,
new clusters show up gradually over time and they tend to
re-occur, as evidenced by the tapering off of the curves and
the large average size of these two BC’s.

4.3 Behavior Dynamicsof Individual Clusters

We now investigate the behavior characteristics of indi-
vidual clusters over time. In particular, we are interested in
understanding i) the relation between the frequency of a clus-
ter (i.e., how often it is observed) and the behavior class(es)
it appears in; and ii) the behavior stability of a cluster if it
appears multiple times, namely, whether a cluster tends to
re-appear in the same BC or different BC’s?

We use the set of srcIP clusters extracted on links with
the longest duration, L; and L2, over a 24-hour period as
two representative examples to illustrate our findings. Fig.5
shows the frequency distribution of clusters in log-log scale,

where the x-axis is the cluster id ordered based on its fre-
quency (the most frequent cluster first). The distribution is
“heavy-tailed”: for example more than 90.3% (and 89.6%)
clusters in Ly (and Ls) occur fewer than 10 times, of which
47.1% (and 55.5%) occur only once; 0.6% (and 1.2%) oc-
cur more than 100 times. Moreover, the most frequent
clusters all fall into the five popular but non-volatile BC’s,
BCs, BC7, BCs, BC1s and BC1g, while a predominant ma-
jority of the least frequent clusters belong to BC2 and BCag.
The medium-frequency clusters belong to a variety of BCs,
with BCy and BC20 again dominant.

Frequency

SN

o
10f
10°

Clusters

Figure 5: Frequencies of all srcIP clusters on L; and L.

Next, for those clusters that appear at least twice (2443
and 4639 srcIP clusters from link Ly and Lo, respectively),
we investigate whether they tend to re-appear in the same
BC or different BC’s. We find that a predominant majority
(nearly 95% on L; and 96% on L3) stay in the same BC
when they re-appear. Only a few (117 clusters on L; and
337 on L) appear in more than 1 BC. For instance, out
of the 117 clusters on Li, 104 appear in 2 BC’s, 11 in 3
BC’s and 1 in 5 BC’s. We refer to these clusters as “multi-
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Figure 4: Temporal properties of srcIP BCs using srcIP clusters on L; over a 24-hour period.

BC” clusters. We have performed an in-depth analysis on
the “behavior transitions” of these “multi-BC” clusters in
terms of their RU vectors (RUVs), the detail of which can be
found in [25]. We find that most of the behavior transitions
(i.e., a cluster from one BC to another BC) are between
“neighboring” or “akin” BC’s (e.g., from BC7 to BCs), more
a consequence of the choice of € in Eq.(3), rather than any
significant behavioral changes. Only a very few (e.g., only
28 out of the 117 “multi-BC” clusters on L) exhibit large
“deviant” behavior transitions (e.g., from a BC to a “non-
akin” BC) that are due to significant traffic pattern changes,
and thus can be regarded as unstable clusters.

We conclude this section by commenting that our obser-
vations and results regarding the temporal properties of be-
havior classes and behavior dynamics of individual clusters
hold not only for the srcIP clusters extracted on L; but
also on other dimensions and links we studied. Such results
are included in [25]. In summary, our results demonstrate
that the behavior classes defined by our RU-based behavior
classification scheme manifest distinct temporal characteris-
tics, as captured by the frequency, populousness and volatil-
ity metrics. In addition, clusters (especially those frequent
ones) in general evince consistent behaviors over time, with
only a very few occasionally displaying unstable behaviors.
In a nutshell, our RU-based behavior classification scheme
inherently captures certain behavior similarity among (sig-
nificant) clusters. This similarity is in essence measured by
how varied (e.g., random or deterministic) the flows in a
cluster assume feature values in the other three free dimen-
sions. The resulting behavior classification is consistent and
robust over time, capturing clusters with similar temporal
characteristics.

5. STRUCTURAL MODELS

In this section we introduce the dominant state analysis
technique for modeling and characterizing the interaction
of features within a cluster. We also investigate additional
features, such as average flow sizes of clusters and their vari-
abilities for further characterizing similarities/dissimilarities
among behavior classes and individual clusters. The dom-
inant state analysis and additional feature inspection to-
gether provide plausible interpretation of cluster behavior.

5.1 Dominant State Analysis

Our dominant state analysis borrows ideas from struc-
tural modeling or reconstructability analysis in system the-

ory ([26, 27, 28]) as well as more recent graphical models
in statistical learning theory [29]. The intuition behind our
dominant state analysis is described below. Given a cluster,
say a srcIP cluster, all flows in the cluster can be repre-
sented as a 4-tuple (ignoring the protocol field) (u, zi, yi, z:),
where the srcIP has a fixed value u, while the srcPrt (X
dimension), dsrPrt (Y dimension) and dstIP (Z dimension)
may take any legitimate values. Hence each flow in the clus-
ter imposes a “constraint” on the three “free” dimensions
X,Y and Z. Treating each dimension as a random variable,
the flows in the cluster constrain how the random variables
X, Y and Z “interact” or “depend” on each other, via the
(induced) joint probability distribution P(X,Y, Z). The ob-
jective of dominant state analysis is to explore the interac-
tion or dependence among the free dimensions by identifying
“simpler” subsets of values or constraints (called structural
models in the literature [26]) to represent or approximate the
original data in their probability distribution. We refer to
these subsets as dominant states of a cluster. Hence given
the information about the dominant states, we can repro-
duce the original distribution with reasonable accuracy.

We use some examples to illustrate the basic ideas and
usefulness of dominant state analysis. Suppose we have a
srcIP cluster consisting mostly of scans (with a fixed srcPrt
220) to a large number of random destinations on dstPrt
6129. Then the values in the srcPrt, dstPrt and dstIP
dimensions these flows take are of the form (220,6129, ),
where * (wildcard) indicates random or arbitrary values.
Clearly this cluster belongs to srcIP BC5 [0,0,2], and the
cluster is dominated by the flows of the form (220, 6129, ).
Hence the dominant state of the cluster is (220,6129, %),
which approximately represents the nature of the flows in
the cluster, even though there might be a small fraction of
flows with other states.

For want of space, in this paper we do not provide a formal
treatment of the dominant state analysis. Instead in Fig. 6
we depict the general procedure we use to extract dominant
states from a cluster. Let {4, B, C} be a re-ordering of the
three free dimensions X, Y, Z of the cluster based on their
RU values: A is the free dimension with the lowest RU,
B the second lowest, and C' the highest; in case of a tie,
X always precedes Y or Z, and Y precedes Z. The dom-
inant state analysis procedure starts by finding substantial
values in the dimension A (step 1). A specific value a in
the dimension A is substantial if the marginal probability
p(a) =, > .p(a,b,c) > 0, where ¢ is a threshold for se-
lecting substantial values. If no such substantial value exists,
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Table 3: Dominant states for srcIP clusters on L; in a 1-hour period: § = 0.2.

srcIP No. of Structural Models Range of Range of Range of Range of Brief Comments
BC’s Clusters pn(PKT) CV(PKT) n(BT) CV (BT)
BCy 119 SrePrt(-) —dstPrt(-) —dstIP (*) small Tow small Tow mostly ICMP
[0,0,2] or scanning traffic
114 STcPrt(0) —dstPri(0) —dstiP () [>99%] [1.2] [0,1.6] [72,02] [0,8.9] TCMP traffic
1 srcPrt(1026) —dstPrt(137) —dstIP (*)[100%) 1 0 78 0 137: NetBIOS
1 srcPrt(1153) —dstPrt(1434) —dstIP (*)[>98%)] 1 0 404 0 1434: MS SQL
3 srcPrt(220) —dstPrt(6129) —dstIP (*)[100%)] [1,2] [0, 1.2] [40,80] [0,2.6] 6129: Dameware
BCg 16 STCPTt(-) —>dstIP(- - - ) —dstPrt(*) Targe high Targe high server replying
[0, 2,0] to a few hosts
2 STCPrt(25) —>dstiP(- - - ) —dstPre(*) [10,15] [1041,2217] [120,750] [36,102] 25: Email
5 srcPrt(53) —dstIP(- - - ) —dstPrt(*) [1,5] [8.6,78] [160,380] [111,328] 53: DNS
7 srcPrt(80) —dstIP(- - - ) —dstPrt(*) [3,31] [460,1.2 = 104] [195,1.2 = 105] [16,1612] 80: Web
2 srcPrt(443) —>dstIP(- - - ) —dstPrt(*) [3,12] [320,1.5 * 10%] [2166,1.1 = 10°] [29,872] 443: https
BCr 19 srcPrt(-) —dstIP(- - - )— dstPrt(*) large high large high server replying
[0,2,1] to many hosts
2 srcPrt(25) —dstIP —dstPrt (%) [14,35] [1129,1381]] [2498,3167]] [190,640] 25: Email
17 srcPrt(80) —dstIP—dstPrt(*) [4,26] [210,9146] [671,1.0  10%] [29,3210] 80: Web
BCg 7 srcPrt(.) — (dstPrt(*),dstIP(*)) large high large high server replying to
[0,2,2] large # of hosts
srcPrt(80) — (dstPrt(*),dstIP(¥)) [4,27] [1282,1.1  107] [740, 1.5 = 10%] [72, 598] 80: Web
BCig 10 dstPrt(-)— (-)dstIP —srcPrt(*) medium high medium high host talking to
[2,0,0] a server on fixed dstPrt
3 dstPrt(53)—dstIP—srcPrt(¥) [2,5] [32,1.5 * 10°] [120,325] [82,878] 53: DNS
7 dstPrt(80) —dstIP—srcPrt(*) [3,18] [26,6869] [189,1728] [87,5086] 80: Web
BC1g 6 dstPrt(-) —dstlP (*) —srcPrt(*) medium high medium high host talking to multiple
[2,0,1] hosts on fixed dstPrt
2 dstPrt(53) —dstlP (¥) —srcPro(¥) [2,6] [28,875] [116,380] [112,456] 53: DNS
3 dstPrt(80) —dstIP (*) —srcPrt(*) [4,16] [72.3356] [220,2145] [122,2124] | 80: Web
1 dstPrt(7070) —dstIP (*) —srcPrt(*) 3 462 288 261 7070: RealAudio
BCaq 58 dstPrt(-)— (srcPrt(*),dstIP(*)) small low small low host talking to large
[2,0,2] # hosts on fixed dstPrt
ge) IstPTE(135) = (srcPrt(¥),dstIP (%)) T1,2] 10,1.6] [48,96] 10,2.7] 135: Microsoft RPC
1 dstPrt(137) — (srcPrt(*),dstIP(*)) 1 0 78 0 137: NETBIOS
2 dstPrt(139) — (srcPrt(*),dstIP(*)) 3 0 144 0 139: NETBIOS
2 dstPrt(445) — (srcPrt(*),dstIP(*)) [1,3] [0,2.2] [48,144] [0,3.6] 445: Microsoft-DS
1 dstPrt(593) — (srcPrt(*),dstIP (*)) 1 0 48 0 593: http RPC
2 dstPrt(901) — (srcPrt(*),dstIP (*)) [1,2] [0,1.6] [48,96] [0,3.9] 901: SMPNAMERES
3 dstPrt(3127) — (srcPrt(*),dstIP (*)) [1,3] [0,1.8] [48,144] [0,2.9] 3127: myDoom worm
1 dstPrt(6129) — (srcPrt(*),dstIP (*)) 1 0 40 0 6129: Dameware
1 dstPrt(17300)— (stcPrt(*),dstIP(¥)) 1 0 48 0 17300: unknown
1 dstPrt(34816) — (srcPrt(*),dstIP(*)) 1 0.2 64 0.5 34816: unknown
BCoy 1 dstIP(.) —srcPrt(*) —dstPrt(*) - - - - two hosts chatting
[2,2,0] on random ports
! dstIP(.) —stcPrt (%) —dstPri(¥) T 0 889 0 vertical scan

we stop. Otherwise, we proceed to step 2 and explore the
“dependence” between the dimension A and dimension B by
computing the conditional (marginal) probability of observ-
ing a value b; in the dimension B given a; in the dimension
A: p(bjlai) == >, p(ai, bj,c)/p(a;). We find those substan-
tial b;’s such that p(bj|a;) > §. If no substantial value exists,
the procedure stops. Otherwise, we proceed to step 3 com-
pute the conditional probability, p(ck|as, b;), for each a;, b;
and find those substantial ¢;’s, such that p(cklas,b;) > 6.
The dominant state analysis procedure produces a set of
dominate states of the following forms: (x, *, %) (i.e., no dom-
inant states), or a; — (x,%) (by step 1), a; — b; — * (by
step 2), or a; — b; — ci (by step 3). The set of domi-
nate states is an approximate summary of the flows in the
cluster, and in a sense captures the “most information” of
the cluster. In other words, the set of dominant states of a
cluster provides a compact representation of the cluster.

Step 2: Find substantial
values in B given each a

Step 3: Find substantial

values in C given each ab
Figure 6: General procedure for dominant state analysis.

Step 1: Find substantial
values in A

We apply the dominant state analysis to the clusters of

four feature dimensions extracted on all links with varying
0 in [0.1,0.3]. The results with various § are very similar,
since the data is amenable to compact dominant state mod-
els. Table 3 (ignoring columns 4-7 for the moment, which we
will discuss in the next subsection) shows dominant states of
srcIP clusters extracted from link L; over a 1-hour period
using § = 0.2. For each BC, the first row gives the total
number of clusters belonging to the BC during the 1-hour
period (column 2) and the general or prevailing form of the
structural models (column 3) for the clusters. The subse-
quent rows detail the specific structural models shared by
subsets of clusters and their respective numbers. The no-
tations dstIP(-), srcPrt(---), etc., indicate a specific value
and multiple values (e.g., in dstIP) that are omitted for clar-
ity, and [> 90%] denotes that the structural model captures
at least 90% of the flows in the cluster (to avoid too much
clutter in the table, this information is only shown for clus-
ters in BC2). The last column provides brief comments on
the likely nature of the flows the clusters contain, which will
be analyzed in more depth in Section 6.

The results in the table demonstrate two main points.
First, clusters within a BC have (nearly) identical forms of
structural models; they differ only in specific values they
take. For example, BC> and BCy consist mostly of hosts
engaging in various scanning or worm activities using known
exploits, while srcIP clusters in BCs, BC7 and BCy are
servers providing well-known services. They further sup-
port our assertion that our RU-based behavior classification
scheme automatically groups together clusters with simi-
lar behavior patterns, despite that the classification is done
oblivious of specific feature values that flows in the clusters
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take. Second, the structural model of a cluster presents a
compact summary of its constituent flows by revealing the
essential information about the cluster (substance feature
values and interaction among the free dimensions). It in it-
self is useful, as it provides interpretive value to network op-
erators for understanding the cluster behavior. These points
also hold for clusters extracted from other dimensions [25].

5.2 Exploring Additional Cluster Features

We now investigate whether additional features (beyond
the four basic features, srcIP, dstIP, srcPrt and dstPrt)
can i) provide further affirmation of similarities among clus-
ters within a BC, and in case of wide diversity, ii) be used to
distinguish sub-classes of behaviors within a BC. Examples
of additional features we consider are cluster sizes (defined
in total flow, packet and byte counts), average packet/byte
count per flow within a cluster and their variability, etc. In
the following we illustrate the results of additional feature
exploration using the average flow sizes per cluster and their
variability.

For each flow f;, 1 < i < m, in a cluster, let PKT; and
BT, denote the number of packets and bytes respectively
in the flow. Compute the average number of packets and
bytes for the cluster, u(PKT) = Y, PKT;/m, u(BT) =
>, BTi/m. We also measure the flow size variability in
packets and bytes using coefficient of variance, CV(PKT) =
o(PKT)/u(PKT) and CV(BT) = o(BT)/u(BT), where
o(PKT) and o(BT) are the standard deviation of PKT;
and BT;.

In Table 3, columns 4-7, we present the ranges of u(PKT),
CV(PKT), u(BT) and CV(BT) of subsets of clusters with
the similar dominant states, using the 1-hour srcIP clusters
on L;. Columns 4-7 in the top row of each BC are high-level
summaries for clusters within a BC (if it contains more than
one cluster): small, medium or large average packet/byte
count, and low or high variability. We see that for clusters
within BCs, BC7, BCs and BChs, BC19, the average flow
size in packets and bytes are at least 5 packets and 320 bytes,
and their variabilities (CV (PKT) and CV(BT)) are fairly
high. In contrast, clusters in BC2 and BC2o have small
average flow size with low variability, suggesting most of the
flows contain a singleton packet with a small payload. The
same can be said of most of the less popular and rare BCs.

Finally, Figs. 7(a)(b)(c)(d) show the average cluster sizes?
in flow, packet and byte counts for all the unique clusters
from the dataset Ly within four different groups of BC’s (the
reason for the grouping will be clear in the next section):
{BC’@7 BCy, BC’g}7 {Bclg, B019}7 {BCQ7 BCQO}, and the
fourth group containing the remaining less popular BC’s.
Clearly, the characteristics of the cluster sizes of the first
two BC groups are quite different from those of the second
two BC groups. We will touch on these differences further
in the next section. To conclude, our results demonstrate
that BC’s with distinct behaviors (e.g., non-akin BC’s) of-
ten also manifest dissimilarities in other features. Clusters
within a BC may also exhibit some diversity in additional
features, but in general the intra-BC differences are much
less pronounced than inter-BC differences.

3We compute the average cluster size for clusters appearing
twice or more.

6. APPLICATIONS

We apply our methodology to obtain general profiles of
the Internet backbone traffic based on the datasets listed
in Table 1. We find that a large majority of the (signif-
icant) clusters fall into three “canonical” profiles: typical
server/service behavior (mostly providing well-known ser-
vices), typical “heavy-hitter” host behavior (predominantly
associated with well-known services) and typical scan/ezploit
behavior (frequently manifested by hosts infected with known
worms). The canonical behavior profiles are characterized
along the following four key aspects: (i) BCs they belong to
and their properties, (ii) temporal characteristics (frequency
and stability) of individual clusters, (iii) dominant states,
and (iv) additional attributes such as average flow size in
terms of packet and byte counts and their variabilities.

Clusters with behaviors that differ in one or more aspects
of the three canonical profiles automatically present them-
selves as more interesting, thus warrant closer examination.
Generally speaking, there are two types of interesting or
anomalous behaviors we find using our behavior profiling
methodology: i) novel or unknown behaviors that match
the typical server/service profile, heavy-hitter host profile,
or scan/exploit profile, but exhibit unusual feature values,
as revealed by analyses of their dominant states; and ii) de-
viant or abnormal behaviors that deviate significantly from
the canonical profiles in terms of BCs (e.g., clusters belong-
ing to rare BCs), temporal instability (e.g., unstable clusters
that jump between different BCs), or additional features.

6.1 Server/Service Behavior Profile

Table 4: Three canonical behavior profiles.

| Profile | Dimension | BCs | Examples
Servers srcIP BCs 7.8 web, DNS, email
or dstIP 3018,19,20
Services srcPrt BCs3 aggregate service
dstPrt BCss traffic
Heavy [ srcIp [ BCis.10 [ NAT boxes
Hitter Hosts | dstIP | BCs.7 | web proxies, crawlers
Scans srcIP BCs3 20 scanners, exploits
or dstIP BCs g scan targets
Exploits dstPrt BC5 520,23 | aggregate exploit traffic

As shown in Table 4, a typical server providing a well-
known service shows up in either the popular, large and
non-volatile srcIP BCs [0,2,0], BC7 [0,2,1] and BCs [0,2,2],
or dstIP BCis [2,0,0], BCiy [2,0,1] and BC4 [2,0,2] (note
the symmetry between the srcIP and dstIP BCs, with the
first two labels (srcPrt and dstPrt) swapped). These BCs
represent the behavior patterns of a server communicating
with a few, many or a large number of hosts. In terms of
their temporal characteristics, the individual clusters asso-
ciated with servers/well-known services tend to have a rel-
atively high frequency, and almost all of them are stable,
re-appearing in the same or akin BCs. The average flow size
(in both packet and byte counts) of the clusters shows high
variability, namely, each cluster typically consists of flows of
different sizes.

Looking from the srcPrt and dstPrt perspectives, the
clusters associated with the well-known service ports almost
always belong to the same BC’s, e.g., either srcPrt BCas
[2,1,2] or dstPrt BCas [2,2,1], representing the aggregate
behavior of a (relatively smaller) number of servers commu-
nicating with a much larger number of clients on a specific
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Figure 7: Average cluster size (in flow, packet and byte count) distributions for clusters within four groups of BC’s for srcIP

clusters on L;. Note that in (c) and (d), the lines of flow count and packet count are indistinguishable, since most flows in the

clusters contain a singleton packet.

well-know service port. For example, Fig. 8(a) plots the
cluster sizes (in flow, packet and byte counts) of the dstPrt
TCP 80 cluster (representing aggregate behavior of all web
servers) over the 24-hour period, whereas in Fig. 8(b) we
plOt the corresponding RUST‘CP’PtyRUST‘CIP and RUdstIP of
its three free dimensions over time. We see that the dstPrt
TCP port 80 cluster is highly persistent, observed in ev-
ery time slot over the 24-hour period, with the number of
srcIP’s (web servers) fairly stable over time. The cluster
size over time shows a diurnal pattern, but otherwise does
not fluctuate dramatically. In addition, the packet and byte
counts of the cluster are considerably larger than the total
number of flows, indicating that on the average each flow
contains at least several packets and a few hundred bytes.
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Figure 8: Cluster sizes (in flow, packet and byte
counts) and RU measures of the dstPrt 80 cluster
(aggregate web traffic) on L, over time.

An overwhelming majority of the srcIP clusters in BCg 78
are corresponding to Web, DNS or Email servers. They
share very similar behavior characteristics, belonging to the
same BC’s, stable with relatively high frequency, and con-
taining flows with diverse packet/byte counts. Among the
remaining clusters, most are associated with http-alternative
services (e.g., 8080), https(443), real audio/video servers
(7070), IRC servers (6667), and peer-to-peer (P2P) servers
(4662). Most interestingly, we find three srcIP clusters with
service ports 56192, 56193 and 60638. They share similar
characteristics with web servers, having a frequency of 12,
9 and 22 respectively, and with diverse flow sizes both in
packet and byte counts. These observations suggest that

they are likely servers running on unusual high ports. Hence,
these cases represent examples of “novel” service behaviors
that our profiling methodology is able to uncover.

6.2 Heavy Hitter Host Behavior Profile

The second canonical behavior profile is what we call the
heavy-hitter host profile, which represents hosts (typically
clients) that send a large number of flows to a single or a few
other hosts (typically servers) in a short period of time (e.g.,
a 5-minute period). They belong to either the popular and
non-volatile srcIP BCis [2,0,0] or BCig [2,0,1], or the dstIP
BCs [0,2,0] and BC7 [0,2,1]. The frequency of individual
clusters is varied, with a majority of them having medium
frequency, and almost all of them are stable. These heavy-
hitter clusters are typically associated with well-known ser-
vice ports (as revealed by the dominant state analysis), and
contain flows with highly diverse packet and byte counts.
Many of the heavy-hitter hosts are corresponding to NAT
boxes (many clients behind a NAT box making requests to a
few popular web sites, making the NAT box a heavy hitter),
web proxies, cache servers or web crawlers.

For example, we find that 392 and 429 unique srcIP clus-
ters from datasets L1 and L2 belong to BChs and BChg.
Nearly 80% of these heavy hitters occur in at least 5 time
slots, exhibiting consistent behavior over time. The most
frequent ports used by these hosts are TCP port 80 (70%),
UDP port 53 (15%), TCP port 443 (10%), and TCP port
1080(3%). However, there are heavy-hitters associated with
other rarer ports. In one case, we found one srcIP clus-
ter from a large corporation talking to one dstIP on TCP
port 7070 (RealAudio) generating flows of varied packet and
byte counts. It also has a frequency of 11. Deeper inspec-
tion reveals this is a legitimate proxy, talking to an Audio
server. In another case, we found one srcIP cluster talking
to many dstIP hosts on TCP port 6346 (Gnutella P2P file
sharing port), with flows of diverse packet and byte counts.
This host is thus likely a heavy file downloader. These re-
sults suggest that the profiles for heavy-hitter hosts could
be used to identify these unusual heavy-hitters.

6.3 Scan/Exploit Profile

Behaviors of hosts performing scans or attempting to spread
worms or other exploits constitute the third canonical pro-
file. Two telling signs of typical scan/exploit behavior [30]
are i) the clusters tend to be highly volatile, appearing and
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disappearing quickly, and ii) most flows in the clusters con-
tain one or two packets with fixed size, albeit occasionally
they may contain three or more packets (e.g., when per-
forming OS fingerprinting or other reconnaissance activi-
ties). For example, we observe that most of the flows using
TCP protocol in these clusters are failed TCP connections
on well-known exploit ports. In addition, most flows using
UDP protocol or ICMP protocol have a fixed packet size
that matches widely known signature of exploit activities,
e.g., UDP packets with 376 bytes to destination port 1434
(Slammer Worm), ICMP packets with 92 bytes (ICMP ping
probes). These findings provide additional evidence to con-
firm that such clusters are likely associated with scanning
or exploit activities.

A disproportionately large majority of extracted clusters
fall into this category, many of which are among the top
in terms of flow counts (but in general not in byte counts,
cf. Fig. 7). Such prevalent behavior signifies the sever-
ity of worm/exploit spread and the magnitude of infected
hosts (cf. [7, 8]). On the plus side, however, these hosts
manifest distinct behavior that is clearly separable from
the server/service or heavy hitter host profiles: the srcIP
clusters (a large majority) belong to BC5 [0,0,2] and BCag
[2,0,2], corresponding to hosts performing scan or spreading
exploits to random dstIP hosts on a fixed dstPrt using ei-
ther fixed or random srcPrt’s; the dstIP clusters (a smaller
number) belong to BC> [0,0,2] and BCs [0,2,2], reflecting
hosts (victims of a large number of scanners or attacks) re-
sponding to probes on a targeted srcPrt. Using specific
dstPrt’s that are targets of known exploits, e.g., 1434 (used
by SQL Slammer), the aggregate traffic behavior of exploits
is also evidently different from that of normal service traffic
behavior (e.g., web): the dstPrt clusters typically belong
to BC5s [2,1,2], but sometimes to BC> [0,0,2], BCs [0,1,2],
or BCy [2,0,2], representing a relatively smaller number of
srcIP hosts probing a larger number of dstIP hosts on the
target dstPrt using either fixed or random srcPrt’s. This is
in stark contrast with normal service traffic aggregate such
as web (i.e., dstPrt 80 cluster), where a much larger num-
ber of clients (srcIP’s) talk to a relatively smaller number of
servers (dstIP’s) using randomly generated srcPrt’s, thus
belonging to dstPrt BChs [2,2,1].

In addition to those dstPrt’s that are known to have
exploits, we also find several (srcIP) clusters that mani-
fest typical scan/exploit behavior, but are associated with
dstPrt’s that we do not know to have known exploits. For
example, we find that in one time slot a srcIP cluster is
probing a large number of destinations on UDP port 12827,
with a single UDP packet. This host could simply engage
in some harmless scanning on UDP port 12827, but it could
also be a new form of RATs (remote access trojans) or even
a precursor of something more malicious. Further inspec-
tion is clearly needed. Nonetheless it illustrates that our
profiling technique is capable of automatically picking out
clusters that fit the scan/exploit behavior profile but with
unknown feature values. This will enable network opera-
tors/security analysts to examine novel, hitherto unknown,
or "zero-day” exploits.

6.4 Deviant or Rare Behaviors

We have demonstrated how we are able to identify novel or
anomalous behaviors that fit the canonical profiles but con-
tain unknown feature values (as revealed by the dominant

state analysis). We now illustrate how rare behaviors or de-
viant behaviors are also indicators of anomalies, and thus
worthy of deeper inspection. In the following, we present a
number of case studies, each of which is selected to highlight
a certain type of anomalous behavior. Our goal here is not
to exhaustively enumerate all possible deviant behavioral
patterns, but to demonstrate that building a comprehensive
traffic profile can lead to the identification of such patterns.

Clusters in rare behavior classes. The clusters in the
rare behavior classes by definition represent atypical behav-
ioral patterns. For example, we find three dstPrt clusters
(TCP ports 6667, 113 and 8083) suddenly appear in the
rare dstPrt BCi5 [1,2,0] in several different time slots, and
quickly vanish within one or two time slots. Close examina-
tion reveals that more than 94% of the flows in the clusters
are destined to a single dstIP from random srcIP’s. The
flows to the dstIP have the same packet and byte counts.
This evidence suggests that these dstIP’s are likely experi-
encing a DDoS attack.

Behavioral changes for clusters. Clusters that exhibit
unstable behaviors such as suddenly jumping between BCs
(especially when a frequent cluster jumps from its usual BC
to a different BC) often signify anomalies. In one case,
we observe that one srcIP cluster (a Yahoo web server) on
L1 makes a sudden transition from BCs to B(s, and then
moves back to BCs. Before the transition, the server is
talking to a large number of clients with diverse flow sizes.
After the behavior transition to BCs, a single dstIP ac-
counts for more than 87% of the flows, and these flows all
have the same packet and byte counts. The behavior of the
particular client is suspicious. This example illustrates how
fundamental shifts in communication patterns can point a
network security analyst to genuinely suspicious activities.

Unusual profiles for popular service ports. Clusters
associated with common service ports that exhibit behaviors
that do not fit their canonical profiles are of particular con-
cern, since these ports are typically not blocked by firewalls.
For example, we have found quite a few srcIP clusters in
BCs> and BCy that perform scans on dstPrt 25, 53, 80,
etc. Similar to the clusters with known exploit ports, these
srcIP clusters have small packet and byte counts with very
low variability. Note that these common service ports are
generally used by a very large number of clients, thereby
making it impossible to examine the behavior of each client
individually. Owur profiling technique, however, can auto-
matically separate out a handful of potentially suspicious
clients that use these ports for malicious activities.

7. CONCLUSIONS

Extracting significant or interesting events from vast masses
of Internet traffic has assumed critical importance in light
of recent cyber attacks and the emergence of new and dis-
ruptive applications. In this paper, we have used data-
mining and information-theoretic techniques to automati-
cally discover significant behavior patterns from link-level
traffic data, and to provide plausible interpretation for the
observed behaviors. We have demonstrated the applicabil-
ity of our profiling approach to the problem of detecting
unwanted traffic and anomalies. We are currently in the pro-
cess of implementing an on-line anomaly detection system
based on our profiling methodology, and carefully evaluat-
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ing false positives and false negatives of this methodology
using trace-driven traffic simulations. In addition, we are
looking into the problems of correlating anomalies on multi-
ple links, handling changes in traffic patterns due to routing
updates, and addressing “stealthy” attacks that attempt to
mask their malicious activities with seemingly benign traf-
fic. Finally, we also would like to understand the implica-
tions and potential benefits of extending our profiling ap-
proach beyond flow-level header information to application-
level payload carried in IP packets.
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Reducing Unwanted Traffic in a Backbone Network
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Abstract

This paper studies the techniques a backbone ISP can
employ to reduce unwanted traffic on its network. For
this purpose, we extract likely sources of exploit (thus
unwanted) traffic from packet traces collected on back-
bone links using an Internet traffic behavior profiling
methodology we developed earlier. We first study the
characteristics of exploit traffic from several aspects,
such as network origins and severity. Based on these
characteristics, we propose several heuristic rules that an
ISP may pursue for reducing unwanted traffic, and eval-
uate their cost and performance. Using packet traces col-
lected from backbone links, we demonstrate that simple
blocking strategies could potentially reduce substantial
exploit traffic in a backbone network.

1 Introduction

Recently we have seen a tremendous increase in un-
wanted or exploit traffic [1] [2] — malicious or unproduc-
tive traffic that attempts to compromise vulnerable hosts,
propagate malware, spread spam or deny valuable ser-
vices. A significant portion of this traffic is due to self-
propagating worms, viruses or other malware; this leads
to a vicious cycle as new hosts are infected, generat-
ing more unwanted traffic and infecting other vulnerable
hosts. In addition to self-propagating malware, new vari-
ants of old malware or new exploits emerge faster than
ever, producing yet more unwanted traffic. Current mea-
sures in stopping or reducing unwanted or exploit traffic’
rely on various firewalls or similar devices deployed on
the end hosts or at stub networks (i.e., networks such as
enterprise or campus networks that do not provide rransi
services) to block such traffic. In this paper we are inter-
ested in the feasibility and effectiveness of stopping or
reducing unwanted traffic from the perspective of transit
networks or ISPs (Internet Service Providers), in partic-
ular that of a backbone ISP.
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As a prerequisite to stop or reduce unwanted traffic at
an ISP, we first need an effective and efficient mecha-
nism to identify such traffic and its sources, especially
using packet header information of one-way traffic only.
In a recent work [3], we have developed a backbone
traffic profiling methodology — using a combination of
information-theoretical and data mining techniques — to
automatically discover and classify interesting and sig-
nificant communication patterns from largely unstruc-
tured traffic data. Using packet header traces of one-
way traffic collected on Sprint backbone links, we have
demonstrated that our methodology is capable of identi-
fying canonical behavior patterns for well-known servers
such as the HTTP, SMTP, and DNS, as well as for traffic
generated by known or unknown exploits. In addition,
our methodology also uncovers “unusual” behavior pat-
terns that deviate from the canonical profiles and thus
warrant further investigation by security analysts.

Given the exploit traffic thus identified, in this paper
we consider blocking strategies an ISP may pursue to re-
duce unwanted traffic, by installing access control lists
(ACLs) on routers at entry points of an ISP. Although
most of exploit traffic is associated with a relatively small
set of (destination) ports, simply blocking these ports
from any source is, in general, infeasible for a backbone
[SP. This is because many ports that are vulnerable to at-
tacks such as port 1434 (Microsoft SQL server) [4] or
port 139 (Common Internet File System for Windows)
are also used by legitimate applications run by an ISP’s
customers. An alternate approach is to block the spe-
cific offending sources (and the exploit destination ports)
of exploit traffic. However, these sources can number
in tens or hundreds of thousands for a large backbone
network; hence there is a significant scalability problem
(primarily due to overheads incurred in backbone routers
for filtering traffic using ACLs) in attempting to block
each and every one of these sources. Hence this ap-
proach is likely to be most cost-effective when used to
block the top offending sources that send a majority of



self-propagating exploit traffic, in particular, in the early
stage of a malware outbreak, to hinder their spread.

The contributions of this paper are i) characterizing
unwanted traffic in a backbone network in terms of their
sources, severity and sequential activities; ii) devising
and evaluating possible blocking strategies for reducing
unwanted traffic in a backbone network.

The remainder of the paper is structured as follows.
In section 2 we provide a short overview of the back-
bone traffic behavior methodology we have developed,
and apply it to identify individual sources that generate a
significant amount of exploit traffic in any 5-minute time
period. In section 3 we study the characteristics of ex-
tracted exploit traffic from several aspects. In section 4
we propose several heuristic blocking rules for reducing
exploit traffic and evaluate their efficacy and trade-offs.
In section 5 we summarize our findings and outline the
future work.

2 Profiling Behavior of Exploit Traffic

We provide a short overview of the backbone traf-
fic behavior profiling methodology we have developed
in [3]. By using a combination of information-theoretical
and data mining techniques, the profiling methodology
can identify several “canonical™ behavior profiles such
as “normal traffic” associated with typical servers and
heavy-hitter client hosts, “unwanted” or exploit traffic,
as well as rare or anomalous behavior patterns. The
methodology is extensively evaluated and validated us-
ing packet header traces collected on backbone ISP links.

The behavior profiling works by examining commu-
nication patterns of end hosts (source and destination IP
addresses) or ports (source and destination port numbers)
that account for a significant number of flows in a time
period (5-minute is used in this and our earlier studies).
For example, for a given source IP address (srcIP) a,
the profiling process includes i) extracting the 5-tuple
flows whose srcIP is ¢ in the S-minute time period into
to a cluster, C,, referred to as the srclP cluster (associ-
ated with a); ii) characterizing the communication pat-
terns (i.e., behavior) of ¢ using information-theoretical
measures on the remaining three feature dimensions of
the flows, i.e., source port (srcPrt), destination port
(dstPrt) and destination IP address (dstIP). Note
that the profiling process also works for dstIP, sr-
cPrt ordstPrt,

We introduce an information-theoretic measure — rela-
tive uncertainty® (RUx ) — to provide an index of variety
or uniformity on each of the three feature dimensions,
X = {srcPrt, dstPrt, dstIP}. Based on this
measure, we define an RU vector [RUspeprts BUdsipre
and RU ;1 p] to characterize the uncertainty of the three
dimensions for each srcIP cluster. Hence each sr-
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cIP cluster can be represented as a single point in a
3-dimensional space of the RU vectors. This leads to
a behavior classification scheme which classifies all sr-
cIPs into various behavior classes based on their similar-
ity/dissimilarity in the RU vector space. In particular,
we identify three canonical behavior profiles, namely,
server profile, heavy hitter profile, and exploit profile, to
which most of srcIP clusters belong. We have applied
the framework on a diverse set of backbone links and
demonstrated the applicability of the profiling methodol-
ogy to the problem of classifying distinct behavior pat-
terns. For example, using the packet traces collected
from an OC48 backbone link during a 24-hour period,
we identified 418, 466 and 3728 distinct srcIPs with
server, heavy hitter and exploit behavior profiles, respec-
tively. Due to a lack of space, we will only show the
results for this link, L, in this paper. The results for other
links are presented in [5].

As an example to illustrate the distinct behaviors of
normal vs. exploir traffic profiles, Figs. 1[a] and [b]
plot the points in the RU vector space corresponding
to the srcIPs belonging to the three canonical traffic
profiles®. The points are clustered in three clearly separa-
ble groups. The points on the left side of Fig, 1[a] belong
to the server profile, where they share a strong similarity
in RUgpcprt (low uncertainty) and RUyg;pre (high un-
certainty): a server typically talks to many clients using
the same service srcPrt and randomly selected dst -
Prt’s. The cluster on the right side of Fig. 1[a] belong to
the heavy hitter profile, where they share a strong similar-
ity in RUgpeprt (highuncertainty), RUgs: pre (low uncer-
tainty), and have low-to-mediwm uncertainty in RU 7 p:
a heavy-hitter client host tends to talk to a limited num-
ber of servers using randomly selected srcPrt’s but the
same dstPrt. Closer inspection reveals that the sr-
cPrt’s in the server profile almost exclusively are the
well-known service ports (e.g., TCP port 80); whereas
the majority of the dstPrt’s in the heavy-hitter profile
are the well-known service ports, but they also include
some popular peer-to-peer ports (e.g., TCP port 6346).

In contrast, the points in the exploit traffic profile
(Fig. 1[b]) all have high uncertainty in RU 4 7p and low
uncertainty in R4 prq, and fall into two categories in
terms of RUgcpre. Closer inspection ? reveals that the
ds tPrtsinclude various known exploit ports (e.g., TCP
ports 135, 137, 138, 445, UDP ports 1026-28) as well
as a few high ports with unknown vulnerabilities. They
also include some well-known service ports (e.g., TCP
80) as well as ICMP traffic (“port™ 0). Fig. 2 plots the
popularity of the exploit ports in L in the decreasing
order, where the popularity of an exploit port is mea-
sured by the number of sources that have an exploit pro-
file associated with the port. Clearly, a large majority
of these ports are associated with known vulnerabilities
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Figure 1: The RU vector distribution of the canonical behavior profiles for significant srcIP’sin L during a 24-hour

period.

and widely used by worms or viruses, e.g., TCP port 135
(W32/Blaster worm), TCP port 3127 (MyDoom worm).
Several well-known service ports (e.g., TCP port 80,
UDP port 53, TCP port 25) are also scanned/exploited
by a few sources. Most sources target a single exploit,
however, a small number of sources generate exploit traf-
fic on multiple ports concurrently. In most cases, these
ports are associated with the same vulnerability, for in-
stance, the port combination {TCP port 139, TCP port
445} associated with MS Window common Internet file
systems (CIFS), and {UDP ports 1026-1028} associated
with MS Window messenger pop-up spams.

Popularity

Figure 2: Port popularity of exploits traffic in L during a
24-hour period

It is worth noting that our focus is on significant end
hosts or services, so the sources we built behavior pro-
files are far less than the total number of sources seen
in backbone links. Thus, it is not surprising that our be-
havior profiling framework identifies a subset of sources
that send exploit traffic. However, these sources often
account for a large percentage of exploit traffic. For ex-
ample, Fig. 3[a] shows the total number of sources that
send at least one flow on the most popular exploit port,
port 135, as well as the number of significant sources
extracted by our clustering technique that targeted port
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135. As illustrated in Fig. 3[b], the percentage of such
significant sources ranges from 0% to 26%. However, as
shown in Fig. 3[c], these significant sources account for
80% traffic on TCP port 135 for most intervals. This ob-
servation suggests that our profiling framework is effec-
tive to extract most exploit traffic sent by a small number
of aggressive sources.

3 Characteristics of Exploit Traffic

We study the characteristics of the exploit traffic from the
sources profiled as exploits in section 2 in terms of net-
work origins, their frequency, intensity and target foot-
prints in the IP space. Our objective is to shed light on
effective strategies we can explore for reducing such un-
wanted traffic.

3.1 Origins of Exploit Traffic

We first examine where the sources of exploit traffic are
from, in terms of their origin ASes (autonomous sys-
tems) and geographical locations. Among the 3728 sr -
cIPsin L during a 24-hour period, 57 are from the pri-
vate RFC1918 space [6]. These source IP addresses are
likely leaked from NAT boxes or spoofed. For the re-
maining srcIP’s, we search its network prefix using the
longest prefix match in a snapshot of the BGP routing ta-
ble of the same day from Route-Views [7], and obtain the
AS that originates the prefix. These 3671 srcIP’s are
from 468 different ASes. Fig. 4 shows the distribution of
the exploit sources among these ASes. The top 10 ASes
account for nearly 50% of the sources, and 9 out of them
are from Asia or Europe.
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srclP counts

Figure 4: Distribution of srcIP counts across all ASes for
3728 sources of exploit in L during a 24-hour period.

3.2 Severity of Exploit Traffic

We introduce several metrics to study the temporal and
spatial characteristics of exploit traffic. The frequency,
T, measures the number of 5-minute time periods (over
the course of 24 hours) in which a source is profiled
by our methodology as having an exploit profile. The
persistence, T, measures (in percentage) the number of
consecutive 5-minute periods over the total number of
periods that a source sends significant amount of exploit
traffic. It is only defined for sources with T > 2. Hence
T, = 100(%) means that the source continuously sends
significant amount of exploit traffic in all the time slots it
is observed. We use the spread, F, of the target footprint
(i.e., destination IP address) to measure the number of
/24 TP address blocks that a source touches in a 5-minute
time period, and the density of the target footprint, Fy,
to measure the (average) number of IP addresses within
each /24 block that a source touches in the period. Fi-
nally, we use the infensity, I, to relate both the temporal
and spatial aspects of exploit traffic: it measures the (av-
erage) number of distinct target IP addresses per minute
that a source touches in each 5-minute period. Thus it is
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an indicator how fast or aggressive a source attempts to
spread the exploit.

Figs. 5(a)(b)(c)(d) show the distributions of the fre-
quency vs. persistence, a scatter plot of the spread vs.
density of target footprint, the distribution of intensity,
and the distributions of frequency vs. intensity for the
3728 exploit sources, respectively. From Fig. 5(a) we
observe that frequency follows a power-law like distribu-
tion: only 17.2% sources have a frequency of 5 or more,
while 82.8% sources have a frequency of less than 5. In
particular, over 70% of them have frequency of 1 or 2.
Furthermore, those 17.2% frequent (Ty > 5) sources ac-
count for 64.7%, 61.1% and 65.5% of the total flows,
packets, and bytes of exploit traffic. The persistence
varies for sources with similar frequency, but nearly 60%
of the sources (Ty = 2) have a persistence of 100 (%):
these sources continuously send exploit traffic over time
and then disappear.

From Fig. 5(b) we see the exploit sources have quite
diverse target footprints. In nearly 60% cases, exploit
sources touch at least ten different /24 blocks with a den-
sity of above 20. In other words, these sources probe an
average of more than 20 addresses in each block. How-
ever, in about 1.6% cases, the sources have a density of
less than 5, but a spread of more than 60. In a sense,
these sources are smart in selecting the targets as they
have a low density in each block. As the rate of ex-
ploit seen from each destination network is slow [8], they
may evade port scan detection mechanisms used, e.g., in
SNORT [9], Bro [10] or [11]. Upon close examination
we find that these sources employ two main strategies
for target selections. One is to randomly generate tar-
gets (or to use a hit-list). The other is to choose targets
like a.b.z.d or a.z.c.d, instead of a.b.c.z, where x ranges
from 1 to 255, and a, b, ¢, d take constant values.

The exploit intensity (Fig. 5(c)) also follows a power-
law like distribution. The maximum intensity is 21K tar-



Density

o

Frequency/Persisience

Intensity

107 - e i
3000 4000 10 10° 10 10

000
Source of explait Spread

(a) Frequency (T'y) and per-
sistence (1)

(b) Footprint (Fs vs. Fy)

10’

10° 10
Source of exploit

(c) Intensity (/) (d) Frequency (Ty) and in-

tensity ()

Figure 5: Temporal and spatial aspects of exploit traffic for the sources with exploit profiles in the backbone link
during a 24-hour period. Note that (a) and (d) have the same index in z axis.

gets per minute, while the minimum is 40 targets per
minute. There are only 12.9% sources with an inten-
sity of over 500 targets per minute, while nearly 81.1%
sources have an intensity of less than 500 targets per
minute. Those 12.9% aggressive (I > 500) sources ac-
count for 50.5%, 53.3%, and 45.2% of the total flows,
packets, and bytes of exploit traffic. However, as evi-
dent in Fig. 5(d), there is no clear correlation between
frequency and intensity of exploit traffic: the intensity
of exploit activities varies across sources of similar fre-
quency.

In summary, we see that there is a relatively small
number of sources that frequently, persistently or ag-
gressively generate exploit traffic. They are candidates
for blocking actions. Whereas a small percentage of
sources are also quite smart in their exploit activities:
they tend to come and go quickly, performing less inten-
sive probing with wide-spread, low-density target foot-
print. These sources may be operated by malicious at-
tackers as opposed to innocent hosts infected with mal-
ware that attempt to self-propagate. These sources need
to be watched for more carefully.

4 Initial Assessment of Blocking Strategies

In this section, we propose several heuristic rules of
blocking strategies based on characteristics of exploit ac-
tivities and then evaluate their efficacy in reducing un-
wanted traffic.

In order to determine which sources to block traffic
from, we use the behavior profiling technique outlined in
section 2. For every five minute interval, we profile all
sources and identify those that exhibit the exploit traf-
fic profile. We then devise simple rules to select some
or all of these sources as candidates for blocking. In-
stead of blocking all traffic from the selected sources, we
consider blocking traffic on only the ports that a source
seek to exploit. This is because exploit hosts may in-
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deed be sending a mixture of legitimate and exploit traf-
fic. For example, if an infected host behind a NAT box is
sending exploit traffic, then we may observe a mixture of
legitimate and exploit traffic coming from the single TP
address corresponding to the NAT box.

For our evaluation, we start with the following bench-
mark rule. If a source is profiled as an exploit source
during any five minute interval, then all traffic from
this source on vulnerable ports is blocked from then
on. Fig. 6[a][b] illustrates the total blocked flows from
sources of exploit every 5-minute interval in L, and
the percentage of such flows over all traffic from these
sources, respectively. Overall, the benchmark rule could
block about 80% traffic from the sources of exploit. In
other words, this rule may still not block all traffic from
the source due to two reasons. First, the source might al-
ready have been sending traffic, perhaps legitimate, prior
to the time-slot in which it exhibited the exploit profile.
Second, as explained above, only ports on which we see
exploit traffic are considered to be blocked.

While this benchmark rule is very aggressive in select-
ing sources for blocking, the candidate set of source/port
pairs to be added to the ACLs of routers may grow to
be very large across all links in a network. Therefore,
we consider other blocking rules that embody additional
(and more restrictive) criteria that an exploit source must
satisfy in order to be selected for blocking.

® Rule 2: an ACL entry is created if and only if the
source has been profiled with an exploit behavior
on a port for n consecutive intervals. This rule is to
block traffic from persistent sources;

e Rule 3: an ACL entry is created if and only if the
source has an average intensity of at least m flows
per minute. This rule is to block aggressive sources;

e Rule 4: an ACL entry is created if and only if the
source is exploit one of the top & popular ports. This



x10°

50 100 150

Time

200 250

(a) Blocked flows

300

Percentage of blocked flows
o o o
o =2} (=)

&
o

=2

50 100 150

Time

200 250 300

(b) Percentage

Figure 6: a) blocked flows using the benchmark rule on 7, over a 24-hour period; b) percentage of blocked flows over

the total flows from sources of exploit.

rule is to block exploit traffic of the popular ports;

® Rule 5: Rule 2 plus Rule 3.

We introduce three metrics, cost, effectiveness, and
wastage to evaluate the efficacy of these rules. The cost
refers to the overhead incurred in a router to store and
lookup the ACLs of blocked sources/ports. For simplic-
ity, we use the total number of sources/ports as an index
of the overhead for a blocking rule. The effectiveness
measures the reduction of unwanted traffic in terms of
flow, packet and byte counts compared with the bench-
mark rule. The resource wastage refers to the number of
entries in ACLs that are never used after creations.

Table 1 summarizes these rules of blocking strategies
and their efficacy. The benchmark rule achieves the op-
timal performance, but has the largest cost, i.e., 3756
blocking entries®. Rule 2 with n = 2 obtains 60% re-
ductions of the benchmark rule with 1585 ACL entries,
while Rule 2 with n = 3 obtains less than 40% reduc-
tions with 671 entries. Rule 3, with m = 100 or . = 300
achieves more than 70% reductions with 2636 or 1789
entries. Rule 4 has a similar performance as the bench-
mark rule, but its cost is also very high. The Rule 5, a
combination of Rule 2 and Rule 3 has a small cost, but
obtains about 40% reductions compared with the bench-
mark rule.

We observe that the simple rules, Rule 3 with m = 100
or m 300 and Rule 2 with n = 2, are most cost-
effective when used to block the aggressive or frequent
sources that send a majority of self-propagating exploit
traffic, in particular, in the early stage of a malware out-
break, to hinder their spread.
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5 Conclusions and Ongoing Work

This paper studied the characteristics of exploit traffic
using packet-level traffic traces collected from backbone
links. Based on the insights obtained, we then investi-
gated possible countermeasure strategies that a backbone
ISP may pursue for reducing unwanted traffic. We pro-
posed several heuristic rules for blocking most offend-
ing sources of exploit traffic and evaluated their efficacy
and performance trade-offs in reducing unwanted traffic.
Our results demonstrate that blocking the most offending
sources 1s reasonably cost-effective, and can potentially
stop self-propagating malware in their early stage of out-
burst. We are currently performing more in-depth anal-
ysis of exploit traffic, and correlating exploit activities
from multiple links. Ultimately we plan to incorporate
these mechanisms in a comprehensive security monitor-
ing and defense system for backbone ISPs.
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1Strictly speaking, in this paper we will use the term exploit traffic
to mean traffic that is generated with the explicit intention to exploit
certain vulnerabilities in target systems - a large subset of unwanred
traffic, although frequently we do use the two terms interchangeably.

ZSuppose the size of C is m and X may take Ny discrete val-
ues. Moreover, P(X) denotes a probability distribution, and p(z;) =
mi/m,z; € X, where m; is the frequency or number of times
we observe X taking the value x;. Then, the RU of X for C, is

defined as RU(X) := #ﬁ)}\’) = H(X)/logmin{Nx,m},
where H(X) is the (empirical) entropy of X defined as H(X) =
=D e, ex Pl@i) log pl:).

3For clarity of presentation, points belonging to the rare behavior
classes, i.e., those falling outside the three canonical behavior profiles,
are excluded in both plots. These rare behavior classes tend to also
contain anomalous or suspicious activities. See [3] for more details.

4Our profiling approach reveals the dominant activity of a given
source, and not all activities. For example, an infect host, which sends
a large number of exploit traffic, could also send legitimate web traffic.

5The cost exceeds the total number of unique sources of exploit
since a few sources have exploit profiles on multiple destination ports.
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Abstract

In many classification problems such as spam detection
and network intrusion, a large number of unlabeled test
instances are predicted negative by the classifier. How-
ever, the high costs as well as time constraints on an ex-
pert’s time prevent further analysis of the “predicted false”
class instances in order to segregate the false negatives from
the true negatives. A systematic method is thus required
to obtain an estimate of the number of false negatives. A
capture-recapture based method can be used to obtain an
ML-estimate of false negatives when two or more indepen-
dent classifiers are available. In the case for which inde-
pendence does not hold, we can apply log-linear models to
obtain an estimate of false negatives. However, as shown
in this paper, lesser the dependencies among the classifiers,
better is the estimate obtained for false negatives. Thus, ide-
ally independent classifiers should be used to estimate the
false negatives in an unlabeled dataset. Experimental re-
sults on the spam dataset from the UCI Machine Learning
Repository are presented.

1 Introduction

Detecting intrusions in a computer network can be con-
sidered as a 2-class classification problem. The task is to
analyze each network flow and label it as ‘suspicious’ or
‘normal’. ! There are some unique characteristics of this
problem. First, the rate of data generation is very high, e.g.
200,000-300,000 connections per minute. Second, the oc-
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'Data mining is suitable for detecting novel, i.e. previously unseen,
attacks. In such a case, automated techniques can only identify unusual or
suspicious behavior. An expert analyst must then examine it to determine
if it is truly an intrusion.
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currence of ‘intrusions’ is much rarer than the occurrence
of ‘normal’ traffic. For such a dataset, a classifier will la-
bel relatively very few instances as positive as compared to
those labeled negative. The predicted positive instances can
be given to an expert who can further analyze them in or-
der to separate the true positives from the false positives.
However, the negatively classified instances, being much
larger in number, would require an unacceptable amount
of time to separate the false negatives from the true nega-
tives. Thus, getting a complete picture of classifier accu-
racy, e.g. ROC curves, is infeasible. However, since the
cost of a false negative may be much higher than of a false
positive, e.g. an actual attack being missed, obtaining at
least an estimate of false negatives predicted by the clas-
sifier is required. This, for example, can be used to es-
timate false negatives detected by two intrusion detection
systems (say SNORT — http://www.snort.org/ and MINDS —
http://www.cs.umn.edu/research/minds/MINDS.htm) for an
unlabeled dataset, and then comparing their performance.

In the commercial domain, an example of this problem
is the estimation of missed opportunities during the sales
opportunity analysis process (Vayghan et al. [11]). Here,
once a sales opportunity has been classified as negative (not
promising) by a human expert (e.g. a business manager),
there is no further analysis of that opportunity in order to
verify whether it was actually unprofitable or there was a
judgment error. A method for estimating the number of
false negatives predicted by the decision maker would be
useful to estimate the accuracy of the human expert w.r.t. the
ground truth (actual outcome). Furthermore, for an individ-
ual decision maker, it will help identify strengths and weak-
ness in different domains of opportunities, e.g. the ability to
identify ‘hardware-selling opportunities’ vs. the ability to
identify ‘software-services opportunities’.

The examples above motivate the need for estimating
false negatives for a classifier on an unlabeled dataset. In
this paper we present a methodology for obtaining such an
estimate for false negatives based on the classical capture-
recapture method for parameter estimation in statistics. In
addition, we also illustrate a number of important issues



that need to be explored in making the application of this
method practicable. The remainder of this paper is orga-
nized as follows: section 2 provides a brief overview of the
approach and related work, section 3 presents experimental
results, and section 4 concludes future research directions.

2 General approach and related work

Hook and Regal [8] present a survey on false negative
estimation in epidemiology using two or more detection
methods (classifiers) and the capture-recapture method [4].
Goldberg and Wittes [6] present a generalized approach to
false estimation for the multi-class classification problem,
which is illustrated using the 2-class case. Consider a la-
beled dataset which is classified by a {True, False}-class
classifier, whose confusion matrix for the classifier is shown
in the Table 1.

Here, TP, FP,

Actual class

True | False | Total | FN and TN rep-

Predicted | True TP FP PP resent the num-
class False | FN TN PN bers of true pos-
Total | AP | AN | N itives, false pos-

itives, false neg-
atives and ftrue
negatives respectively. Also, AP, AN, PP and PN are the
numbers of actual positives, actual negatives, predicted
positives and predicted negatives instances, while N is the
total number of instances in the dataset. Actual positives
are the instances in the dataset whose actual (real) class is
True. The performance of the classifier can be determined
using this confusion matrix.

However, for a skewed-class distribution classifier with
a very high data volume, e.g. network intrusion detection,
for a given unlabeled dataset only the predicted positive in-
stances are manually classified into true positives and false
positives. The predicted negative instances, being very large
in number, are not analyzed further by the human expert.
Thus, the confusion table for the classifier for the dataset
will look as shown in Table 2.

Table 1: Confusion matrix for a classifier

The
used in Table 2 is

Actual class notation

True | False
Predicted | True | TP FP identical to that in
class False | FN+TN Table 1. Here, only

the total (TP+FN)
can be obtained.
Now, if AP in the
dataset is known, then, from the Table 1, FN can be deter-
mined. (This is because TP+FN=AP) Thus, the method for
estimation of FN is based on the estimation of AP in the
dataset.

The main idea behind the method for estimating actual
positives using the capture-recapture method can be ex-
plained using the following example problem.

Table 2: Confusion matrix for a rare-
class, large-dataset classifier.
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Problem: Estimate the number of fish in a pond.
Estimation Method: A two step method, called the ‘cap-
ture’ and ‘recapture’ steps, is used for this. In step one (cap-
ture), let f1 be the number of fish caught, which are then
marked (presumably with an indelible ink) and released in
the lake. In the second step (recapture), let fo be the num-
ber of fish that are caught (presumably after sufficient time
to allow the fishes to mix, but not mate and produce more
fishes, or even die). Let fi5 be the number of fish caught
in second step, which are found to be marked. Under the
stated assumptions, f1o will follow a hyper-geometric dis-
tribution, since the process is equivalent to ‘selection with
replacement’. Thus, the estimate for the total number of the
fish in the lake is (%) Now, if the actual positive in-
stances in the dataset are compared to fish in the lake, then
the capture-recapture methodology can be used to estimate
the number of actual positives in the dataset, given that the
two steps (samplings) are independent of each other. Thus,
for applying this technique, there is a need for at least two
independent classifiers (detection methods). It should be
noted that this method can be extended to the case where
more than two independent samplings are available. ]
We now explain the method for estimating the number of

actual positives using the capture-recapture method and the
classifiers in detail.

APs detected Suppose
by classifier 1 that two
Yes | No | Total independent
APs detected | Yes | n11 n12 N classifiers
by classifier 2 | No | nop Na22 ng classify the
Total | nq ns n
two-class
dataset. Let

Table 3: Contingency table of actual positives

for the case of two classifiers n1 and ng be

the number
of true positive instances detected by the first and second
classifiers, respectively. Let nj; be the number of true
positives detected by both classifiers. Also, as shown in
Table 3, let ni2 be the actual positive instances classified
as True by only the first classifier and let ny; be the
actual positive instances classified as True by only the
second classifier. The value moo, the number of actual
positive instances not detected (i.e. classified False) by
both classifiers, is unknown and needs to be estimated. The
sum n of the values in all the cells of the Table 3 is equal
to the number of actual positives in the dataset. If the two
classifiers are independent, then the ML-estimate for the
unknown value ny9, as shown by Goldberg and Wittes [6],
is : Noo = (%)

Wittes et al. [14, 13] discuss the problems arising from
decision making in the capture and recapture steps being
dependent. If so, i.e. when independence does not hold
between the variables in the contingency table, log-linear
models (Knoke and Burke [9]) must be used for the con-



tingency table. Fienberg [5] describes a method for con-
structing log-linear models for the contingency table in such
cases and obtaining the best-fitting model. In this approach,
the conditional relationship between two or
more discrete categorical variables (here,
the class labels assigned by the classi-
fiers are discrete categorical variables) is
analyzed by taking the natural logarithm
of the cell frequencies within a contin-
gency table. For example, for the con-
tingency Table 3, the following model
is used to represent the expected fre-
quency of each cell (i,j) in the table —
Ln(Fjj) = p+ A + AP + M5B

where, Ln(Fj;) is the log of the expected
cell frequency of the instances in the cell
(i,j) in the contingency table; u is the over-
all mean of the natural log of the expected frequencies; A
and B are the variables (APs detected by each classifier); i,j
refer to the categories within the variables; )\iA is the main
effect of the variable A on the cell frequency; AP is the main
effect of the variable B on the cell frequency; and /\{J-*B is the
interaction effect of variables A and B on cell frequency.

The basic strategy involves fitting a set of such models
to the observed frequencies in all cells of the table. In fit-
ting these models, no distinction is made between indepen-
dent and dependent variables, i.e. log-linear models demon-
strate the general association between variables. Different
sets of models depending upon various possible dependen-
cies among the variables are fitted to the table. A log-linear
model for the entire table can thus be represented as a set
of expected frequencies (which may or may not represent
the observed frequencies). Such a model is described in
terms of the marginals it fits and the dependencies that are
assumed to be present in the data. Iterative computation
methods for fitting such a model to a table are described in
Christensen [2]. Using deviance measures, e.g. the likeli-
hood ratio or x? measure, as a measure of the goodness-of-
fit for a model, the best-fitting, parsimonious (least number
of dependencies) model for the table is determined. This
model is then used to estimate of the unknown value n95.
The purpose of log-linear modeling is thus to choose min-
imum dependencies in a model for the given cells, while
achieving a good goodness-of-fit. This method requires is
computationally intensive since models corresponding to all
possible dependencies among the variables need to be com-
puted. The disadvantage of this method is that a sufficiently
large amount of data (cell values) is required for obtaining a
good estimation of the contingency table model. Also, high
degrees of association among the variables makes it difficult
to comprehend the model. 2

DATA

2The capture-recapture method for false estimation thus requires mod-
eling of concepts for independent, quasi-independent and dependent con-
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The Figure 1 illustrates the method of estimating actual
positives (and hence false negatives) using m classifiers.
Given m different classifiers and a dataset, the number of

Figure 1: Method for estimation of false negatives.

Classifier 1
FP

One cell with unknown value

/
/

B 5,
EERIE"4

m dimensional
CONTINGENCY TABLE

(The sum of all cells in the

true positives detected by each of the m classifiers is de-
termined and cross-tabulated in a contingency table. One
cell in the contingency table will be unknown, which cor-
responds to the number of actual positives not detected by
all m classifiers. Using ML-estimation technique or log-
linear model (depending upon whether independence does
or does not hold), an estimate for the unknown cell is ob-
tained. Thus, the total number of actual positives is esti-
mated. The assumption to be noted is that the classifiers
used in the capture-recapture method do a good job of keep-
ing the number of false positives low. This helps to keep the
number of instances to be manually classified by experts
low. Once an estimate of the number of actual positives,
ZI\D in dataset has been obtained, the same dataset is clas-
sified using a classifier whose performance (accuracy) is to
be evaluated. The instances predicted True by the classi-
fier are analyzed manually to separate TP and FP. Next the
estimate AP is used to estimate the false negatives (FN )
and true negatives (TN ) detected by the classifier. Using
these estimates, the performance (accuracy) of the classifier
is evaluated.

3 Experimental work

For experimental work, a two-class classification prob-
lem using the SPAM email dataset [1] was used. Goldberg
and Wittes [6] defined independence of two classifiers as
disjoint feature sets. Instead of using disjoint condition as
the only criterion for independence, we quantified indepen-
dence in terms of independence of feature sets, using mu-
tual information [3]. Three disjoint subsets for the dataset
were obtained and three different decision tree classifiers
A, B and C were trained (using WEKA [12]). As all the
features were continuous and due to the limited amount of

tingency tables which are summarized by Goodman [7].

contingency table is equal to
the number of APs in the data.)



Figure 2: Pair-wise mutual information given class ‘True’ for fea-
tures used by the classifiers

(a) Classifiers A and B

(b) Classifiers A and C

training data, it was not possible to decide the independence
of two feature subsets (in terms of mutual information). In
other words, it was not possible to estimate the exact mutual
information between two feature subsets, each having suffi-
ciently large number of continuous features. This is an ef-
fect of the curse of dimensionality. To overcome this, we in-
stead computed the pair-wise mutual information (MI) [10]
between the individual features pairs for each pair of clas-
sifiers. The plots of MI for two pairs of classifers, namely
(A,B) and (A,C), are shown in Figure 2. 3 1t was noted that
the feature pairs for the classifiers A and B were on average
more pair-wise dependent than feature pairs of classifiers A
and C.

The classifiers A, B and C were used to classify the test
dataset and the numbers of TPs detected by each classifier
were determined. The TPs for each pair of classifiers were
cross-tabulated into a contingency table and then the num-
ber of APs not detected by all classifiers was estimated us-
ing log-linear models. Since the test dataset used was la-
beled, the number of APs actually missed by all the classi-
fiers was also determined. The results were summarized in
the Table 4. The classifiers A, B and C had an approximate

4 Conclusions

In this paper, a capture-recapture based method for the
estimation of false negatives has been presented. The need
for having independent classifiers for the method of esti-
mation of false negatives was illustrated using a real-world
dataset. Furthermore, it was shown that if the pair-wise MI
between the features of a pair of classifiers is low — even if
that pair of classifiers has relatively lower accuracy than an-
other pair of classifiers — it may be possible to obtain a better
estimate of missed APs using the former pair. Thus, a better
estimate for total number of APs, and hence for false nega-
tives, is obtained using independent classifiers. Our current
research will address the issues in obtaining sufficiently ac-
curate and independent classifiers for a given dataset.
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ABSTRACT General Terms
Data mining is increasingly being applied in environmerdsihg Algorithms, Measurement.

very high rate of data generation like network intrusionedébn

[7], where routers generate about 300,000 — 500,000 cdonect Keywords
every minute. In such rare class data domains, the cost sfngia
rare-class instance is much higher than that of other dassaw-
ever, the high cost for manual labeling of instances, thé hige
at which data is collected as well as real-time responseti@nts
do not always allow one to determine the actual classes éocdh
lected unlabeled datasets. In our previous work [9], thablam 1. INTRODUCTION

false negative, capture-recapture method, conditioa@pendence
of classifiers given class label, conditional independerféeatures
given class label, conditional mutual information.

of missed false negatives was explained in context of twiemift In many data mining or machine learning domains, the distri-
domains — “network intrusion detection” and “business opputy bution of the data instances (or just instances) over ciassex-
classification”. In such cases, an estimate for the numbsudc tremely skewed in addition to a high rate of data generatkur.
missed high-cost, rare instances will aid in the evaluatbthe example, data mining is being applied to the problem of netwo
performance of the modeling technique (e.g. classificatirsed. intrusion detection (Lazarevic et al. [7]), where routeengrate
A capture-recapture method was used for estimating falga-ne  about 300,000 — 500,000 connections every minute. Classic
tives, using two or more learning methods (i.e. classifief®)is (and/or anomaly detection) techniques are used to deterihim
paper focuses on the dependence between the class laligteedss  given network connection belongs to class ‘intrusion’ assl ‘nor-
by such learners. We define the conditional independencelder mal’. A normal security analyst may not be able to examineemor
sifiers given a class label and show its relation to the caomdit than about 10 reported events per minute. The manual lapefin
independence of the features sets (used by the classifiees) g the remaining connections is constrained by both the costedis
class label. The later is a computationally expensive prmkand as time requirements. Hence, in this domain, only instapeces
hence, a heuristic algorithm is proposed for obtaining d@hlly dicted as “intrusions” (rarer class — also lesser numbensibinces
independent (or less dependent) feature sets for the fodassini- are predicted as intrusions) are usually analysed to chéeither
tial results of this algorithm on synthetic datasets arensmg and they are actually intrusions or not. However, there is noeoy Vit-
further research is being pursued. tle analysis to determine whether there are any intrusiosismay

have been missed by the intrusion detection system. A method
. . . false negative estimation was illustrated for such analysiour
Categories and Subject Descriptors previous work (Mane et al. [9]). The method also allows toa@bt

H.2.8 [Database managemeijt Database Applications-data min- an estimate of the distribution of classes in an unlabeledsea
ing; G.3 [Probability and statistics]: Contingency table analysis; ~ through much less effort of manual labeling.

H.1.1 Models and principleg: Systems and infomation theory— The method of false negative estimation makes use of model-
information theory ing the data in a contingency table, which is obtained by scros

tabulating the number of true positives detected by sewiaaki-
fiers. However, since the number of true positives detecyezhbh

lSSS._I\gggg’zs(ﬁn(i%DS:\gsatﬁtv %gov(\ggrzk(\;\éa%sgffg r'fr(]jdbg glg\lrgr'l:t ?rggt classifier is small, the modeling technique used for theingahcy
IBM. S.-Y. HWang’s work was supported by a |’:ulbright scholar table may not be able to capture the dependencies betwddrecel
ship. quencies. This motivated us to study and to show that indigree

(or to be more practical, low dependence) between the fikrssi
used in this method will aid in reducing the error in the estien A
fundamental question that remains open is “how to trairsdiass
that are independent ?” In this paper, we address this guesti

Permission to make digital or hard copies of all or part o twork for . . . i .
9 P P First, we show the relationship between the conditionaépeh-

personal or classroom use is granted without fee providaticbpies are

not made or distributed for profit or commercial advantage that copies dence of models and the feature sets used by the models.ayhis |
bear this notice and the full citation on the first page. Toyauiherwise, to the theoretical groundwork for our filter-based “featurbsmt se-
republish, to post on servers or to redistribute to listguies prior specific lection algorithm” to obtain less dependent models. Noge thur
permission and/or a fee. approach can be extended to use techniques like anomabtidate

KDD'05, August 21-24, 2005, Chicago, lllinois, USA.

Copyright 2005 ACM 1-59593-135-X/05/0008%5.00. and semi-supervised learning.
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The remainder of this paper is organized
as follows — the section 2 explains false
negative estimation problem using capture-
recapture method and then defines the
problem addressed in this paper. Section
3 provides theoretical background. Section
4 shows a practical approach. Section 5 ex-
plains some experimental results. Section 6
draws conclusions and identifies future re-
search directions.

2. BACKGROUND

The main idea behind the method of es-
timation of false negatives (Goldberg and
Wittes [5], Hook and Regal [6]) is to first
estimate the number of actual positives
(APs) in the unlabeled dataset. Using this
estimate for actual positives, an estimate
for false negatives is obtained. The capture-recapturbodgDar-
roch [3]) is used for such estimation of the number of actusip
tives in the unlabeled dataset using two or more differeadsifica-
tions' of the dataset. The rare class is treated as positive class an
the remaining class(es) is(are) treated as negative eiss{his
keeps the number of predicted positive classes low and hbege
can be manually segregated into true positives and faldeévass

The Figure 1 illus- APs detected
trates the overall method- by classifier 1

DATA

Filter based feature
subsets selection

ology for estimating ac- Yes| No
tual positives in anun-  APs detected| Yes | ni n10
labeled dataset using two by classifier 2| No | nox 00

classifiers. Given two

different classifiers and Taple 1: Contingency table of actual

an unlabeled dataset, thgositives in an unlabeled dataset.
number of true positives

detected by each of the two classifiers is determined ane #res
then cross-tabulated in a contingency table, as shown itatite 1.
The sum of all the cells in this

Actual class
contingency table equals the num- True _False
ber of actual positives in the dataset. pregicted 7rue | 7P | FP
Only one cell in the contingency |
table will be unknownoo), which class  False | FN | TN
corresponds to the number of ac- P

tual positives not detected by both L
classifiers. If independence holds12P!e 2: Application of es-
between the cell frequencies of thefimate _Of actual _posmves:
contingency table, then ML- esti- ConfL_J_smn matrix for a
mation techniques can be used tdassifier.

estimate the unknown valu@&dp, = %ﬁ”“). In case indepen-
dence does not hold between the cell frequencies, logrlimedels
can be used to estimate the unknown cgl). Thus, an estimate
for total number of actual positives in the dataset is ole@inAn
implicit assumption made here is that the classifiers usetthén
capture-recapture method do a good job of keeping the nuofber
false positives low (i.e. they have sufficiently good accyjaThis
helps to keep the number of instances to be manually clasiie
experts low.

Once an estimate for the missing cell, and hence the totat num
ber of actual positives, is made (izﬁ’ for the dataset has been ob-
tained), the same dataset is then classified using a clasgifese
performance (accuracy) is to be evaluated. As shown in &ttt
instances predicte@rue by the classifier are analyzed manually to
separate true positives from false positives. The estifoate

Lcalled “views” by Blum and Mitchell [1]
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One cell with unknown valu¢

/

qst

classifier ) /!
2n /
classifiel Yes: No

Yes

EXPERT

No

FP
False FP
CONTINGENCY TABLE
(The sum of all cells in the
contingency table is equal to
the number of APs in the data.’

Figure 1: Estimating actual positives in an unlabeled datast.

AP is used to obtain an estimate for false negati@)(and true
negatives TN) detected by a classifier. Using these estimates, the
performance (accuracy) of the classifier is evaluated.

2.1 Example illustrating the need for condi-
tional independence of classifiers:

Before we proceed further, we present an example to illtestra
the effect of independence of cell frequencies on the errdhe
estimate obtained faiog. We consider the same setting (two-class
problem using two classifiers), as used previously in table 1

APs detected Pr(ni1) | (Prein)+Pr@uor)) Moo Error
ni1 | no1 | mio | Mmoo * (Pr(n11)+Pr(nao)) | ML-estimate | [noo=fool
6 0 0 4 0.6 0.36 0 100%
5 1 1 3 0.5 0.36 1 67.7%
4 2 2 2 0.4 0.36 1 50%
3 3 3 1 0.3 0.36 3 200%

2 4 4 0 0.2 0.36 8 x

Table 3: Lesser is the dependence among cells in contingency
table, better is the estimatenoo.

The table 3 illustrates the need for independence of classifi
using a synthetic two-class example for estimating actasitpes
using two classifiers. Let us assume that each classifier bas-a
stant accuracy = 60 % for the positive rare class and the elgddb
dataset has 10 actual positive instances (for ease of aafila,
we have used small numbers). Then, the rows in table 3 regrese
all the possible scenarios for actual positives detectethdylas-
sifiers (with accuracy condition met). The probabilitieghe fifth
and sixth column are conditioned on the actual positivescl&sr
example, for the first row, Prf1) = (n11/Total number of actual
positives)= 6/10 = 0.6 . The fourth column{oo) represents
the actual number of missed actual positives while the sbtast
column (o) represents ML-estimate for the fourth column (ob-
tained using the first three columns). From the table, it teth¢hat
with accuracy remaining the same, as the classifiers becamne m
(positively or negatively) dependent on each other, witipeet to
the number of true positives identified by each classifier,etror
in the predicted estimate for the number of actual positmesed
by both classifiers increases. This can be noted from theddst
umn of the table 3. This example thus demonstrates the need fo
independence of classifiers.

To best of the authors’ knowledge, little research has been ¢
ried out related to independence of classifiers. Kunchewah ¢8]
have demonstrated that, opposite to the common notion timega
dependence may be an asset for classifier fusion. They Hase il
trated this using a table similar to table 3 for a synthetiasit.



However, their work does not address the issue of how to mbtai
independent or dependent classifiers. Blum and MitchekpEak
about the conditional independence of features of classifigen

a label. There is some similarity between this paper and thaik

as regards of this definition. However, this paper is lessictise
about the probability distributio® of instances over the features
than their work, as will be illustrated later on.

2.2 Problem definition

An important assumption in the method using ML-estimates is
that two or more feature sets are available for a dataset thath
the classifiers trained using those feature sets are indepenin
case of the estimates using log-linear model, lesser is ¢perd
dency between the variables (class labels), better wilhbeesti-
mate for actual positives obtained using log-linear moddiis is
because lesser are dependencies between variables innti@ co
gency table, lesser will be the number of parameters that beus
estimated for the log-linear model. Another important obaon
for a rare class problem is that the data (i.e number of tregipes
detected by each classifier) available for the contingealiet(Ta-
ble 1) is small. Thus, lesser are the dependencies betweables
in the contingency table, better is the estimate obtain@jube
available small frequencies in cells of the contingencyetab

This motivates us to define the main problem addressed in this

paper —
“Given a labeled dataset with a set of features, what is arinopt
way to train independent (or less dependent) classifierstiibbe
used in the capture-recapture based method for estimatitgah
positives in other unlabeled datasets?”

3. THEORETICAL FOUNDATION

3.1 Terminology and basic definitions

This work will continue using a two clas$ = { True, False}
problem of estimating the actual positives using two cfassi.
Other notations used in this paper are — a bold upper caseatymb
represents a set of features, bold lower case symbol reypsess-
ues of the set of features for an instance, normal upper gatecs
represents a single feature while normal lower case synepoér
sents the value that a single feature can take. Also, a syinatvoig
calligraphic style font is used to represent a set of valeitiser for
a single feature or for a set of features.

3.2 Conditional independence of classifiers
given class label

The table 1 motivates us to begin by formally defining what is
conditional independence of classifiers given a class label

DEFINITION 1. Consider a 2-class{ True, False}, classifica-
tion problem. Lep be an instance whose actual clasgigsue. Let
C1 be the class assigned by th& classifier to the instancg and
Cs be the class assigned by th& classifier to the same instance
p . Then the two classifiers are “conditionally independentegi
classC. = True” (i.e. conditionally independent for given class
label) if and only if the following condition holds for eacltaal
positive —

Pr(Cy
PI‘(Cl

True, Co = True|Ca = True)
True|Ca = True) x Pr(Ce = True|Ca = True)
@)

|
Figure 2 illustrates the definition 1. It should be noted that
are interested that equation 1 hold only for all actual passtand
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Actual class = True | Actual class = Fals

ffffffffff il

Probability that an instance is Probability that an instance is
classified True by first classifierclassified True by second classifier

LEGEND

Probability that a true positiv
is detected by first classifier E

Probability that a true positivi
is detected by second classit

([T

Figure 2: Venn diagram of predicted class labels for two clas
classification.

not all instances in the dataset. In the method of estimatiat-

tual positives in an unlabeled dataset, definition 1 shoold For

the true positives detected by the two classifiers in ordeinide-

pendence to hold among the cells in table 1. Since the class
(dependent variable) assigned by a classifier is a functideas

tures (independent variables), this motivates us to stheyirtflu-

ence of conditional independence relationship betwednrfeaets
of classifiers on the conditional independence of classifiaren a
class label.

a

3.3 Conditional independence of feature
sets given class label

For a two-clas€ = { True, False} dataset, leF= {F;} be the
feature set. Choose disjoint subskts, F2 C F and build classi-
fiersPr(C:|F1), Pr(Cz|F2), whereC; andC; are the class labels
assigned to an instance by the two respective classifiershevieat-
ically, it can be stated that the first classifier will prediatinstance
having feature vectoF; = f; as belonging to a specific class if
the probability of that instance belonging to that classasimum.
Hence, the condition under which the first classifier willgiot an
instance withF; = f1 as belonging tdlrue class is,

Pr(Ca = True|F1

f1)

f1) = max Pr(Ca = c|F1 @)
where, C, is the actual class of the instance.
Thus, for instances havirl§, = f; for which eq. 2 holds,

F1 = f1 = Cl = True.

For an instance with a value &/ for which the eq.2 does not
hold, the classifier will assign clagslse i.e. a class different
than theTrue, to the instance. Similar equations also hold for the
second classifier trained using featureBet

We are interested in actual positives detected correcty t(ue
positives detected) by each classifier and the independentaeen
number of actual positives detected (i.e. true positivgseéch
classifier. Since, as illustrated above, the fact wheth&rwe in-
stance is predicted &8rue by a classifier depends on the values
that an instance has for the features (e.or F'2), we define con-
ditional independence between features of classifiersmgilass
label.

DEFINITION 2. For two classifiers trained with feature sdfs
and F'; respectively, the two classifiers are said to have “condi-
tionally independent feature sets given class labeke True” iff



V Fy1 = f1,F2 = f> of actual positives

PI‘(Fl = f1,F2 = f2|Ca = TT‘U@) =

Pr(Fy = £1|Ca = True) X Pr(Fz = £2|Ca = True)  (3)

|
This definition of conditional independence of feature ggten
a class label is similar to the conditional independencergithe
label defined by Blum and Mitchell [1]. In their work, the pab
bility distribution D of instances over the featurBs= F1 x Faz is
defined, wher&'; andF'; are two subsets of features (which give
different “views” or classifications of the instance.) Ouor dif-
fers from their work since we relax the conditional indepemzk of
features given a class label to hold only for the rare classdlass
label of interest). Also, in our workD can have non-zero proba-
bility for an instance witlF, = f; andFs = f2, where classifiers
usingF, andF'; give different class label from each other and/or
from the combined classifier.

In definition 2, we are interested whether equation 3 holdg on
for all those value¥'; = f1, F> = f> of actual instances that have
non-zero probability over the probability distributi@n A classi-
fier (like a decision tree) built using feature &t may, at some
decision node (leaf node), use only a subset of featfifes” F1
to classify an instance aBrue. Thus, a more strict condition for
eq.3 in definition 2 is ¥ F} C F1, F, C F2, the following con-
dition holds,

Pr(Fy = f1,Fy = £5|C, = True)

_ [ _ I el _ (4)
= Pr(Fy = £1|Ca = True) x Pr(Fy = £5|Ca = True)

The Apriori (anti-monotonic) property does not hold forshi
stricter definition eq.4. Hence, to reduce the computatioosts,
we consider only eq.3 in definition 2. The theorem 1 explaes t
relationship between conditional independence of featgieen
class label and conditional independence of classifieengilass
label. This theorem will hold in case of the stricter equatieq.4)
for definition 2.

THEOREM 1. Fortwo classifiers built using feature sdts and
F. respectively, the two feature sets are independent givasscl
label if and only if the two classifiers are independent gickss
label i.e. eq.3==> eq.1 holds. A

Proof: Let D be the probability distribution of instances with
featuresF'1,F2 over class label§ = { True, False}, as shown in
figure 3. For the two feature subséts, F2 C F, letX = {x1, x2,
X3, X4, Xs + be the set of all possible values B for actual posi-
tives and lefy = {y1,y2,ys,ya} be the set of all possible values
of F'2 for actual positives. Note, there may be valueFeof= {xs,
x7,...+andFz = {ys, ys, .. .} which may not be included in the
table shown in figure 3 since those values have zero prohyabilD
for actual positives. The proof will not be affected by suelues.

We use a prob-
abilistic framework
wherein the classi-
fier assigns a prob-
ability that an in-
stance belongs to a
particular class la-
bel. The probabil-
ity True class is as-

. ) e signed by a classifier
Figure 3: Probability distribution D to an instance with

of (F1,F2) overC. Fy £, will be
equal to the probability of rue class oveD, i.e.

Pr(C,=True ,@ =True,g =True)
Fy

R X1y X
%

True class
X3

False class

Xg Xs | X3 Xp X3 X4 Xg

Ya
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Pr(Ci = True|Fy = f1) = Pr(Ca = True|F1 =f1)  (5)

where,C, is the actual class label for an instance vlith = f;.
Similarly, the probability thatl’rue is assigned by a classifier to
an instance witle = f2 will be

Pr(C2 = True|Fz = f2) = Pr(Ca = True|Fz = f2) (6)

The probability thatTrue class is assigned by a combined clas-
sifier to an instance with'y = f; andF2 = f2 will be

Pr(Cy = True,Cy = True|F1 = f1,F2 = f2)

7
=Pr(Ca, = True|F1 =f1,F2 =f2) 0
We have, from eq.7,
Pr(Cy = True,Cy = True|F1 = f1,F2 = f2)
=Pr(Ca = True|F1 = f1,F2 = f2)
Pr(F1 =f1,F2 = £2|Ca = True) x Pr(Ca = True)
- Pr(F1 =1f1,F2 =1f3)
2. Pr(Ci = True,Ce = True,F1 = £1,F2 = f2) ®)

=Pr(F1 = f1,F2 = £2|Ca = True) x Pr(Ca = True)

Consider an actual positive with feature value&'; = f; and
F2 = f2, wheref; € X andfz € ). Sincef; andf, are features of
the same instance, there is only one probability value facnal
positivep in the figure 3 which corresponds to
PI‘(C1 = True, Cz = True,Fl = fl,Fz = fz)
which forp is,

Pr(Cy1 = True, C2 = True, Ca = True)

This is the highlighted cell in figure 3 fdh = x; andfz = y1.
Notice that this probability is the probability from persgiee of
AP p. Thus, we have, for AR,

PI‘(C1 = True, Cz = True,Fl = f17F2 = fz)

9
=Pr(Cy, = True, C2 = True, Ca = True) ©)
Thus, using eq.8 and eq.9
Pr(Cy = True,Cz = True,Ca = True)
= Pr(F1 =f1,F2 = £2|Ca = True) x Pr(Ca = True)
~ Pr(C1 = True,Ca = True, Ca = True)
. Pr(Ca = True)
= Pr(F1 =1f1,F2 = £2|Ca = True)
. Pr(Cy1 = True,C2 = True|Ca = True)
(10)

= PI‘(Fl = fl,Fz = f2|Ca = True)

Similarly, we can prove that,

Pr(Ci = True|Ca = True) = Pr(F1 = £1|Ca = True) (11)

Pr(Cz = True|Ca = True) = Pr(F2 = £2|Ca = True) (12)
Sufficient condition:
Assume that eq.3 holds for all actual positives. Hence gusq10,
eg.11 and eq.12, we have,

Pr(Cy = True, C2 = True|Ca = True)
Pr(F1 =f1,F2 = £2|Ca = True)
Pr(Fy = f1|Ca = True) x Pr(Fz = £2|Ca = True)
Pr(Ci = True|Ca = True) x Pr(Cy = True|Ca = True)

Thus, the sufficient condition is proved.
Necessary condition:
Assume that eq.1 holds for all actual positives. Hence gusin10,




eq.11 and eq.12, we have,

PI‘(Fl = f1,F2 = f2\Ca = True)

= Pr(Ci = True,Ce = True|Ca = True)

Pr(Ci = True|Ca = True) x Pr(Cz = True|Ca = True)
Pr(F1 = f1|Ca = True) X Pr(F2 = f2|Ca = True)

Thus, the necessary condition is proved. X

4. A PRACTICAL APPROACH

4.1 Measure of independence of features
given class label

Given a dataset with a
set of features, we want
to choose subsets of fea-
tures such that classi-
fiers trained using these
n feature subsets satisfy
N definition 2. For real-
Y2 world datasets, the def-
inition 2 may not hold
for any of all possi-
ble splits of F into two
subsets. Hence, there
is a need for a mea-
sure to quantify the con-
ditional dependence be-
tween any two feature
subsetsF1,F2 C F.
We use the information-
theoretic measure ofiu-
tual information(Cover and Thomas [2]) between two random vari-
ables since it gives a measure of independence betweenrndoma
variables. Important properties of mutual information afidom
variables U and V are:

@ 1(U,V) > 0 with equality iff U and V are independent, and
(i) 1(U,V) =I(V,U) , i.e. mutual information is a symmetrimea-
sure.

The joint probability distribution oF'y andF2 given class label
True for the actual positive instances will be as shown in the &gur
4. The shaded cells in figure 4 represent the probabilitiesuef
positives detected by the two classifiers (i.e. these argrtbiea-
bilities conditioned orC, = True). Using figure 4 and the same
notations forX and) as used previously in the proof of theorem
1, we define —

APs classified True |
by first classifier

T
-

X1 %0 X X

APs classified True -
by second classifier>

Figure 4: Cross-tabulation of
probability distribution of actual

positives detected asTrue using
FiandF.

DEFINITION 3. The “conditional mutual information given class
label C, = True” between two discrete feature sdfg andF2, is
defined as,

I(Fl;Fz‘Ca = True) =

PP

(PI‘(Fl = fl,Fz = f2|Ca = TTUG) *
fiex faey

PI‘(Fl = f17F2 = f2|Ca = True) ]
= £1|Ca = True)Pr(F2 = £2|Ca = True) u

log [Pr(Fl

4.2 Search space for splitting a feature set:
The previous sections 3.3 and 4.1 discussed about the mondit

Algorithm 1 Feature subset selection algorithm

Input:
e Set of labeled instances with feature Bet
e aclass labellrue
e auser-specified threshaldor maximum conditional mutual
information
e a user-specified minimum sizefor the subsets.

Output:
e Two subsets of featurds; , Fa.

Pseudo-code:

1. Choose instances belongingToue class.

2. Obtain “pairwise-conditional mutual information” miatfor
all features values df* of actual positives

3. Apply block diagonalization algorithm on the pairwise-
conditional mutual information matrix to obtain blocksyst
ters) of feature subsets.

4. Discard the subsets having size less than user specified
thresholdk.

5. Evaluate conditional mutual information between the re-
maining feature subsets.

6. Choose two best subs@s, F2 having least conditional mu-
tual information and having conditional mutual informatio
less thary.

possible to search for two feature subge{sF. C F such that the
classifiers, obtained by training using each feature subseteast
dependent and they have a minimum threshold accuracy ? Such a
required dependence relationship between subsets of adesst

F does not have Apriori property. This problem is analogous to
global optimization problem with constraints, since we ty&ng

to find a pair of classifiers with best accuracies (globalroptn)
subject to a non-convex constraint that the two featureasetson-
ditionally independent given class label.

4.3 Feature subset selection algorithm

We used a heuristic approach to solve this computation$iten
search problem. The algorithm 1 is based on the equatioa.4lte
more strict form of definition 2) — which requires that for tfea-
ture subset¥'; andF'2 to be conditionally independent given class
label, the equation 3 must hold for each of the individuatdess
also, i.eVF; € Fy andF; € Fz, I(F1,F3|Cy = True) =0

The algorithm proceeds as follows. Using the values of the fe
tures of actual positives, the conditional mutual inforioatfor
each pair of features is computed and cross-tabulated &noat
pairwise- conditional mutual information matrix. A blockad-
onalization techniquereverse CutHill-McKee algorithnfGeorge
and Liu [4]), is then used to cluster the features with mimmu
inter-subset pairwise-conditional mutual informationheTcondi-
tional mutual information between each pair of the clusidea-
ture subsets is determined. Feature subsets having coraithu-
tual information less than a user-specified threshold dexteel.
Assuming that each feature provides equal amount of infooma
about the class for an instance (i.e. each feature has erpgditp
tive power), the algorithm 1 also uses a user-specified bminin-
imum number of features required in each subset. This gtesan
a minimum accuracy for each classifier.

for solving the problem. The main issue that now needs to be ad 5. EXPERIMENTAL RESULTS

dressed is — given a labeled dataset with a set of fealyés it

To evaluate the performance of algorithm 1, we used noise¢d
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Dataset| # of Using algorithm 1 Using random split
No. APs Avg. classifier accuracy| Avg. conditional| Estimate for # of Avg. classifier accuracy| Avg. conditional | Estimate for # of
in test for True class mutual missed APs| actual missed for True class mutual missed APs| actual missed
data || Classifier 1] Classifier 2 information 00 APs Classifier 1| Classifier 2 information Moo APs
1. 409 75.72 74.64 4.19 21 32 74.55 75.38 4.38 19 36
(1.67) (2.91) (0.02) (2.88) (5.09) (2.53) (1.16) (0.02) (1.41) (8.90)
2. 395 91.07 75.8 3.61 8 13 91.22 89.49 3.71 2 23
(2.69) (2.74) (0.02) (4.92) (5.72) (2.47) (1.48) (0.02) (0.84) (7.68)
3. 406 85.84 85.1 5.97 7 15 83.57 83.13 5.95 11 15
(1.16) (3.41) (0.01) (1.92) (4.87) (2.19) (3.62) (0.01) (2.70) (2.59)
4. 385 56.09 32.52 7.1 113 115 61.55 51.98 6.66 44 87
(1.74) (2.38) (0.01) (15.94) (10.35) (1.76) (1.94) (0.02) (8.64) (5.59)
5. 419 86.72 73.72 7.24 16 13 78.26 70.33 7.32 40 15
(1.64) (2.61) (0.01) (2.92) (5.02) (1.50) (4.99) (0.01) (6.90) (3.03)

Table 4: Performance of feature subset selection algorithmas. a random split.

synthetic datasets generated using “data generator”:/(iatgpw.
datgen.com). One of the reasons for this was that it was dliffic

obtain largdabeleddatasets for training. Sufficiently large datasets

(each with 100,000 instances) were generated, each witlkemod
ate number (20-24) of attributes, and a skewed class digitsib—
approximately 2%True class instances with remaining 98% be-

longing to False class. Each dataset was divided into a training

set (80%) and a test set (20%), keeping the class distribatime
in the training and test data as in the original data. Therdfgo
1 was applied to the feature set of actual positives in thaitrg
dataset withk = 5 andé = 10. A decision tree (WEKA [10])
was trained on the training data using each of the featursessib
For the test dataset, the true positives detected by eablctassi-
fier were determined, then cross-tabulated into a contmgtable
(similar to table 1), and finally an estimate for missed agboai-
tives (go) was obtained.

The table 4 shows the summarized results for algorithm 1 for

different synthetic datasets. The values within parerthespre-
sent the standard deviations. The columns “average clksaift
curacy forTrue class” represent the classifier accuraciesToue
class instances only, i.e. it represents what fraction tfed@osi-
tives were correctly identified a&rue by a classifier. For datasets
‘4’ and ‘5’, the conditional mutual information between s&ifiers
is nearly same but dataset ‘5’ has more accurate classifiars t
dataset ‘4. The accuracy of estimate is better for dataS¢{113-
115 /115) than that for dataset ‘5/(6-13/13). Thus, dependence
among classifiers plays a more important role in improviregab-
curacy of the estimate when the accuracies of the classHiers
low. The results for estimate of actual positives using aloam
split of feature set for same synthetic datasets are alsershAs
seen from the table 4, the algorithm 1 provides a bettertisyjit
method for the feature set. The first dataset in the tableidtitites
that with the accuracy of the classifiers remaining apprexaty
constant, if the conditional mutual information betweea fisature
subsets increases, then the error (e.g. the absoluteediferbe-

tweenngo and the number of actual positives actually missed) in
the estimatéiqo increases. The second dataset illustrates that even

though accuracies of the classifiers increase, the increasadi-
tional mutual information more than negates that effeatltig in
more error in the estimate. The third dataset illustratas ¢éwen
though the accuracies of the classifiers decrease, sinamtitk-
tional mutual information also decreases for random siplifives
a better (closer) estimate. The last two datasets illestheait the al-
gorithm 1 does a good job at keeping the estimate for missedlac
positives closer to the actual number of missed actualigesit

Similar experiments done using Naive Bayes classifier shaiv t
decision trees performed better, which asserts that thetestcon-
dition of definition 2 is more useful for decision trees.

6. CONCLUSIONS

The main aim of this paper was to study the relationship of the
conditional independence of classifiers given a class lab#éhe
conditional independence of the feature sets (used to ttassi-
fiers) given a class label. The problem of obtaining such ieond
tionally independent subsets of features for a given daisisem-
putationally expensive. A heuristic approach for obtagnieature
subsets was proposed and the results of application of lips a
rithm to synthetic datasets were shown. Application of tigo-
rithm to compare the performance of two network intrusiotede
tion systems using a real world dataset will be demonstiiatedr
future work. An important observation made from the experits
was that, in addition to independent classifiers, more ateware
the classifiers for a given class, better is the estimateirata
Thus, the future research directions involve developifigient al-
gorithms for obtaining the right balance between the caorti
accuracies of classifiers and the conditional dependenivecbr
classifiers given class.
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ABSTRACT

Link Analysis has been a popular and widely used Web mining
technique, especially in the area of Web search. Various ranking
schemes based on link analysis have been proposed, of which the
PageRank metric has gained the most popularity with the success
of Google. Over the last few years, there has been significant
work in improving the relevance model of PageRank to address
issues such as personalization and topic relevance. In addition, a
variety of ideas have been proposed to address the computational
aspects of PageRank, both in terms of efficient I/O computations
and matrix computations involved in computing the PageRank
score. The key challenge has been to perform computation on
very large Web graphs. In this paper, we propose a method to
incrementally compute PageRank for a large graph that is
evolving. We note that although the Web graph evolves over
time, its rate of change is rather slow. When compared to its size.
We exploit the underlying principle of first order markov model
on which PageRank is based, to incrementally compute PageRank
for the evolving Web graph. Our experimental results show
significant speed up in computational cost, the computation
involves only the (small) portion of Web graph that has
undergone change. Our approach is quite general, and can be used
to incrementally compute (on evolving graphs) any metric that
satisfies the first order Markov property.

Keywords
Link Analysis, Web Search, PageRank, Incremental Algorithms

1. INTRODUCTION

The importance of link analysis on the Web graph has gained
significant prominence after the advent of Google [1]. The key
observation is that a hyperlink from a source page to a destination
page serves as an endorsement of the destination page by the
(author of the) source page on some topic. This idea has been
exploited by various researchers and has resulted in a variety of
hyperlink based ranking metrics for ranking of Web Pages.
Kleinberg’s Hubs and Authority [2] and Google’s Pagerank [3]
are the most popular among such metrics. A variety of
modifications and improvements to these approaches have been
developed in recent years[6,7,8,9,10].

Link analysis techniques have adopted different knowledge
models for the measures developed for various applications on the
Web [15]. Kleinberg’s Hubs and Authority is based on the
observation that the Web graph has a number of bipartite cores
[2], while Google’s PageRank is based on the observation that a

Copyright is held by the author/owner(s).
WWW 2005, May 10--14, 2005, Chiba, Japan.
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user’s browsing of the Web can be approximated as a first order
markov model [3]. Giles, et al [5] have used network flow models
to identify web communities. Thus, a variety of models have been
used to measure different properties of the Web Graph at a given
time instance. Success of Google has signified the importance of
Pagerank as a ranking metric. This has also led to a variety of
modifications and improvisations of the basic PageRank metric.
These have either focused on changing the underlying model or
on reducing the computation cost.

Another important dimension of Web mining is the evolution of
the Web graph [4]. The Web is changing over time, and so is the
users’ interaction on (and with) the Web, suggesting the need to
study and develop models for the evolving Web Content, Web
Structure and Web Usage. The study of such evolution of the
Web would require computing the various existing measures for
the Web graph at different time instances. A straightforward
approach would be to compute these measures for the whole Web
Graph at each time instance. However, given the size of the Web
graph, this is becoming increasingly infeasible. Furthermore,, if
the percent of nodes that change during a typical time interval
when the Web is crawled by search engines is not high, a large
portion of the computation cost may be wasted on re-computing
the scores for the unchanged portion. Hence, there is a need for
computing metrics incrementally, to save on the computation
costs.

Techniques for incremental computations, to study changes in
graph structure over time, would depend on the underlying
knowledge model that defines a metric [15]. For example, the
computation of hub and authority scores is based on mutual
reinforcement of nodes, and hence a change in the indegree or
outdegree of a node may affect its score. Mutual reinforcement
makes hub and authority scores a second order model. However,
for PageRank whose random surfer model is based on the first
order markov property, the change in out degree of the node does
not affect the score of the node. Hence, the level of penetration of
change in scores due to a change in the degree of a node is not as
high in PageRank as in hub and authority scores.

In this paper, we describe an approach to compute PageRank in
an incremental fashion. We exploit the underlying first order
markov model' property of the metric, to partition the graph

' The property that the PageRank score of a page depends only on the
PageRank scores of the pages pointing to it.



into two portions such one of them is unchanged since the last
computation, and it has only outgoing edges to the other partition.
Since there are no coming edges from the other partition, the
distribution of PageRank values of the nodes in this partition will
not be affected by the nodes in the other partition. The other
partition is the rest of the graph, which has undergone changes
since the last time the metric was computed. Figure 1 gives an
overview of our approach and explains the difference between
related work and the work in this paper. This paper is organized

as follows. In Section 2, we give an introduction to the basic
PageRank metric and the various issues involved in its
computation. Section 3 gives an overview of our approach to
incrementally compute PageRank for evolving Web graphs. We
describe the Incremental PageRank Algorithm in Section 4 and
present our experimental results in Section 6. Section 7 discusses
the related work and places our work in context. Finally, in
Section 8 we conclude the and provide directions for future work.

Dif(G,,G,)

Incremental Approach (this paper)

Figure 1. Overview of the Proposed Approach.

2. PAGERANK

PageRank is a metric for ranking hypertext documents that
determines their quality. It was originally developed by Page et
al. [3] for the popular search engine, Google [1]. The key idea is
that a page has high rank if it is pointed to by many highly ranked
pages. Thus, the rank of a page depends upon the ranks of the
pages pointing to it. The rank of a page p can thus be written as:

_ PR
PR(p)= Y/ +(1-d)- ¥ (q)/outDegreE(q)

(q.0EG

(M

Here, n is the number of nodes in the graph and OutDegree(q) is
the number of hyperlinks on page q. Intuitively, the approach can
be viewed as a stochastic analysis of a random walk on the Web
graph. The first term in the right hand side of the equation
corresponds to the probability that a random Web surfer arrives at
a page p from somewhere, i.e. (s)he could arrive at the page by
typing the URL or from a bookmark, or may have a particular
page as his/her homepage. d would then be the probability that a
random surfer chooses a URL directly — i.e. typing it, using the
bookmark list, or by default — rather than traversing a link.
Finally, 1/n is the uniform probability that a person chooses page
p from the complete set of n pages on the Web. The second term
in the right hand side of the equation corresponds to a factor
contributed by arriving at a page by traversing a link. 1- d is the
probability that a person arrives at the page p by traversing a link.
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The summation corresponds to the sum of the rank contributions
made by all the pages that point to the page p. The rank
contribution is the PageRank of the page multiplied by the
probability that a particular link on the page is traversed. So for
any page q pointing to page p, the probability that the link
pointing to page p is traversed would be 1/OutDegree(q),
assuming all links on the page is chosen with uniform probability.
Figure 2 illustrates an example of computing PageRank of a page
P from the pages, P1, P2, P3 pointing to it.

There are other computational challenges that arise in PageRank.
Apart from the issue of scalability, the other important
computational issues are the convergence of PageRank iteration
and the handling of dangling nodes. The convergence of
PageRank is guaranteed only if the Web graph is strongly
connected and is aperiodic. To ensure the condition of strong
connectedness, the dampening factor is introduced, which assigns
a uniform probability to jumping to any page. In a graph theoretic
sense it is equivalent of adding an edge between every pair of
vertices with a transition probability of d/n. The aperiodic
property is also guaranteed for the Web graph.

Another important issue in computation of PageRank is the
handling of dangling nodes. Dangling nodes are nodes with no
outgoing edge. These nodes tend to act as rank sink, as there is no
way for rank to be distributed among the other nodes. The
suggestion made initially to address this problem, was to
iteratively remove all the nodes that have an outdegree of zero,



and compute the PageRank on the remaining nodes [3]. The
reasoning here was that dangling nodes do not affect the
PageRank of other nodes. Another suggested approach was to
remove the dangling nodes while computation initially and add
them back during the final iterations of the computation [7]. Other
popular approaches to handling dangling nodes, is to add self
loops to dangling nodes[11,20] and to add links to all nodes in the
graph, G from each of the dangling node to distribute the
PageRank of the dangling node uniformly among all nodes[3].

d/N

/ OutDeg(P1)

1

P2 OutDeg(P2)

~

Prag

PR(P)=d/N+(1—d)( PR(P) . PR(P2) . PR(P3) J

OutDeg(Pl) OutDeg(P2) OutDeg(P3)

Figure 2. Illustrative example of PageRank.

3. PROPOSED APPROACH

In the proposed approach, we exploit the underlying first order
Markov Model on which the computation of PageRank is based.
It should be noted that PageRank of a page depends only on the
pages that point to it and is independent of the outdegree of the
page. The principle idea of our approach is to find a partition such
that there are no incoming links from a partition, Q (includes all
changed nodes) to a partition, P. In such a case the PageRank of
the partition, Q is computed separately and later scaled and
merged with the rest of the graph to get the actual PageRanks of
vertices in Q. The scaling is done with respect to the number of
vertices in partition, P-'n(P) to the total number of nodes in the
whole graph, G —n(P UQ)=V. The PageRank of the partition Q is
computed, taking the border vertices that belong to the partition P
and have edges pointing to the vertices in partition Q. The
PageRank values of partition P are obtained by simple scaling.

This basic idea of partitioning the Web graph, and computing the
PageRanks for individual partitions and merging works extremely
well when incrementally computing PageRank for a Web graph
that has evolved over time. Given, the Web graphs at two
consecutive time instances, we first determine the portion of the
graph that has changed. A vertex is declared to be changed when
a new edge added or deleted between the vertex and any other
vertex belonging to the graph or if the weight of a node or an edge
weight adjoined to that node has changed. Once the changed
portion is defined, for each page we determine iteratively all the
pages that will be affected by its PageRank. In this process, we
include pages that remain unchanged but whose; PageRank gets
affected due to the pages that have changed. in partition Q. The
rest of the unchanged graph is in partition P.

The whole concept is illustrated in Figure 3. Let the graph at the
new time be G(V,E), and

% b = Vertex on the border of the left partition from which there

are only outgoing edges to the right partition.

v, = vertexon the left partition which remains unchanged

The set of unchanged vertices can be represented as,

Vo = iv ,Vv € V} where v is a vertex which has not
u u u u

changed.

v = Vertex on the right partition which remains unchanged,
ur

but whose PageRank is affected by vertices in the changed
component.

v = Vertex on the right partition which has changed, or has
cr

been a new addition.

Therefore, the set of changed vertices can be represented as,
Vo= J[V ,Vv € V}
c cr cr

In order to compute PageRank incrementally, for every vertex

inV , which is a set of changed vertices, perform a BFS to find
c

out all vertices reachable from this set. The PageRank of these

vertices will be affected by vertices in /. These set of vertices
cr

can be denoted by the set,
v o= v ev]
ur ur ur

Similarly, the set of vertices v b can be denoted as,

v, =l W, eV}

Hence the set of vertices whose PageRank has to be computed in
the incremental approach corresponds to the partition Q described
above, and can be denoted as,

VQ:VCUVurUVb

Let an edge set, EQ , be defined as set of edges,

represents a directed

E = | x,ye V [, where e
0 iex,y Qj X,y

edge from vertex x to vertex y.

The set of partitioning edges can be defined as,

E :{g V_, V }
Part x,y'xE PyE 0
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Vertices whose edges have‘\

not changed \

not changed

Vertices whose edges have

/

O Vv Vertex on left partition, which
ul .
remains unchanged
Vertex on the border of left
partition from which there are
outgoing edges to the right
partition

Vertex on right partition, which
remains unchanged but whose

O VW‘

PageRank gets affected by
vertices in changed partition

The distribution of The distribution of

PageRanks of the vertices in
the left remains unchanged,
since their structure has not
changed and there are no

incoming links from the right partition.

PageRanks of the vertices
changes and also depends
on the PageRanks of the
border nodes of the left

Vertex on right partition, which
has changed or has been added.

. Ver

partition.

Partition

Figure 3. Incremental Computation of PageRank.

The vertices in partition P can be defined as,

V =V-V _+V

P 0O b
And the edges that correspond to this partition can be defined as,
EP = iex,y |x,y€e VP i, where ex’ y represents a directed

edge from vertex x to vertex y.

Thus, the given graph G(V, E ) can be partitioned into two

)and GQ(VQ,EQJ .

LE p ) has remained

graphs namely, GP (VP , EP

Now, si k that th h G_\V
oW, SInce we Know tha € grap P( P

unchanged from the previous time instance and the PageRank of
vertices in this partition is not affected by the partition,

G |V _,E _|. Now a change in a node induces a change in
Q[ Q Qj

the distribution of PageRank values for all its children and since
all the nodes that are influenced by changes are already separated
in the partition Q. The distribution of PageRank values for the
nodes in partition Gp is going to be the same as it was for the
corresponding nodes in the previous time instance G’. Thus the
PageRank of the vertices in partition P could be calculated by
simply scaling the scores from the previous time instance. And
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the scaling factor will be n(G)/n( G)’ where G’ is the graph at

the previous time instance. And the PageRank for the partition,

G (V L E ) can be computed using the regular PageRank
o\ Q9 0

Algorithm and scaled for the size of the graph, G. Since the
percent change in the structure of the Web is not high, the
computation of the changed portion will be a smaller graph
compared to the whole Web. And the existence of such partitions
is also suggested by the bow-tie model of the Web [12], where
about 27% of Web contributes to the influx. It should also be
noted that while computing PageRanks for the changed portion, in
order to maintain the stochastic property of the incremental
matrix, we have to scale the PageRanks of nodes in V,, such that
they correspond to the number of nodes for which the PageRank
is actually computed. Also taken into account is the outdegree of
these border nodes that have edges in partition P, since the way
they distribute their PageRanks to nodes in partition Q, will
depend on their outdegree.

4. INCREMENTAL ALORITHM

In this section, we will describe the incremental algorithm to
compute PageRank. The initial step is to read the graph at a new
instance and determine the vertices that have changed. This does
not require additional time as it can be computed as we read the
new graph. Thus, after reading the graph, we can assume that we
are given two sets of vertices — one containing the vertices which



have changed from a previous time instance and the other
containing vertices that have remain unchanged. Hence, the input
to the algorithm is the graph G, and the two lists V. and V. The
outline of the algorithm is shown in Figure 3. We will describe
each step briefly:

Step 1 - Initialize a list V

Step 2 - A change in a vertex induces a change in the PageRank
distribution of all its children. All such changed vertices are in the
queue V.. In this step, the list of “changed vertices” is extended to
a partition to include all descendents of the initial list of “changed
vertices”. All these vertices are pushed into the list Q2.

Step 3 — For the remaining vertices are there is no change in their
PageRank distribution. The New PageRank is simply obtained by
scaling the previous PageRank scores. The scaling factor is
simply:

n(G)/n( G)=Order of graph at previous time instance/Order of

the graph at the present time instance.

Also all those vertices from this set of unchanged vertices that
point to a changed vertex, will influence the PageRank value of
that changed vertex, hence these too must be included in the list
V, as their PageRank scores will be required for computing the
PageRank scores for the changed vertices.

Step 4 — Now original PageRank computation algorithm along
with steps taken to ensure stochastic property of transition matrix
is performed on the nodes that are in Q2 and colored violet (i.e.
nodes which have changed) to get the new PageRank values for
these changed nodes.

Thus, we end up localizing the changed partition to a certain sub-
graph of the web which consists of all changed nodes and then
basic PageRank algorithm is performed only on this changed sub-
graph. The PageRank value for the rest of the nodes is simply a
matter of scaling the previous values.

IPR(G,V V) :-
Step 1 — Initialize the list V,
Step 2 — Pop a Vertex N from V,
2.1 For all the children of N
if children of Ne list V,
remove them from V),
push them in V,
2.2. Push N in ¥, and repeat step 2 till
queue V, is empty
Step 3 — For each element in list V/,

3.1 Take the element and scale the
previous pagerank value to get new
pagerank value.

children, of the

to VQ, if so remove this

3.2 Look up whether any of the
element of ¥V, belong
element of V,, copy itin V.
Step 4 — Scale Border Nodes in V, for stochastic
property
Perform Original PageRank(V, ur,)

Figure 4. Incremental PageRank Algorithm.
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Step 2 has a cost of E’, where E” = E,-E

of edges in the partition Q. Now the PageRank values for the
partition P are obtained by scaling the PageRank values with
respect to ranks in the previous time instance. This step requires a
cost of V’’, where V’’ is number of vertices in partition P. Now
using these scaled values and the naive approach PageRank for
the vertices in partition Q is calculated. This step (including that
required to scale the border nodes) requires a cost of nE + E* +V,
where n is number of iterations required for PageRank values to
converge and E’ is again number of edges in partition Q. Thus,
the total cost for incremental PageRank can be summed up to be
OQ2E’+V”’+nE+Vy).

5. EXPERIMENTAL RESULTS

To test our theoretical approach on real datasets, we needed
graphs at two different time instances to compute the incremental
version. We performed the experiments on two different web
sites- the Computer Science website and the Institute of
Technology website at the University of Minnesota. We
performed the experiments at different time intervals to study the
change and effect of the incremental computation. For the
Computer Science website our analysis was done at a time
interval of two days, eight days and ten days. We also performed
the analysis for a time interval of two days for the Institute of
technology web site.

In our experiments we also simulated the focused crawling, by not
considering the Web pages that have very low PageRank into our
graph construction and PageRank Computation. This was to
emulate the real world scenario where not all pages are crawled.
We wanted to analyze, how the incremental approach performs
when pages with low PageRank are not crawled.

We used the following approximate measure to compare the
computational costs of our method versus the naive method.

Number of Times Faster = Num of Iterations(PR)/(1 + (fraction
of changed portion) *Number of iterations(IPR))

The intuition behind the measure was how fast the convergence
threshold will be reached computing PageRank incrementally
versus computing PageRank in a naive method for the whole
graph. The convergence threshold that was chosen on our
experiments was 1x10°

The experimental results are presented in Figure 5. These results
are from actual experiments conducted on the Computer Science
and Institute of Technology websites. For the Computer Science
website, in the first time interval of eight days, there seemed to be
a significant change in the structure of the Website — about 60%
of the pages had changed their link structure. We found out such a
sea change occurred because a whole subgraph that contained the
documentation for Matlab help was removed. The incremental
approach still however, performed 1.86 as much faster as the
naive PageRank. Similarly, for a period of ten days the
incremental approach performed around 1.75 times faster. For a
period of two days the improvement was 8.65 times faster. These
results are for the case of an unfocussed crawl. The results for
focused crawl for the CS Website were better. In the first case,
when the time interval was eight days, the improvement was 1.9
times and when the time interval was 10 days, the improvement
was 1.76 times. For a period of two days the improvement with



focused crawling was 9.88 times. Thus, it suggests that focused
crawling can also improve the computational costs of the

Computer Science Website
Focussed Crawl

incremental algorithm.

July19 vs July 27th

percentage of change = 53.1429%

L1 -norm : 4.38609e-05

NumTimes faster=| 1.900538

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.25071%

L1-norm : 1.60988e-07

NumTimes faster=| 9.885481

6 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July19th vs 29th

percentage of change = 58.3493%

L1-norm : 4.38692e-05

NumTimes faster=| 1.755669

10 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

Unfocussed Crawl

July19 vs July 27th

percentage of change = 60.2997%

norm : 1.70552e-07

NumTimes faster=| 1.867123

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

July 27th vs July 29th

percentage of change = 5.56966%

norm : 1.51747e-07

NumTimes faster=| 8.659162

9 iteration(s) for inc_pagerank

13 iteration(s) for actual pagerank

July 19th vs July 29th

percentage of change = 65.0586%

norm : 1.60377e-07

NumTimes faster=| 1.749526

9 iteration(s) for inc_pagerank

12 iteration(s) for actual pagerank

(a)
Institute of Technology Website

Unfocussed/Focussed Crawl

July 30th vs Aug 1st

percentage of change = 0%

norm : 8.15708e-07

NumTimes faster= 11

0 iteration(s) for inc_pagerank

11 iteration(s) for actual pagerank

(b)

Figure 5. Comparison of results for Incremental PageRank Algorithm versus Naive PageRank Algorithm for the following

departments at the University: (a) Computer Science Website, (b) Institute of Technology Website.

The Institute of technology website typically represented a
website that doesn’t change too often. The change over a period
of two days in the Web Structure was none. Since there was no
change detected, there was no necessity to compute the PageRank
for the graph at the new time instance. And by our measure, it was
11 times faster. Since, there was no change in the graph structure,
the improvements for the case of focused crawling and
unfocussed crawling remain the same.
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6. RELATED WORK

Determining the quality of a page has been the primary focus of
Web mining research community and various measures and
metrics have been developed for the same for different
applications. PageRank [3] was developed by Google founders,
for ranking hypertext documents. The overall idea is described in
detail in Section 2. The other popular metric based on link
analysis is hub and authority scores. From a graph theoretic point



of view, hubs and authorities can be interpreted as ‘fans’ and
‘centers’ in a bipartite core of a Web graph. The hub and
authority scores computed for each Web page indicate the extent
to which the Web page serves as a ‘hub’ pointing to good
‘authority’ pages or the extent to which the Web page serves as an
‘authority’ on a topic pointed to by good hubs. The hub and
authority scores for a page are not based on a formula for a single
page, but are computed for a set of pages related to a topic using
an iterative procedure, namely HITS algorithm [2]. A detail study
of link analysis techniques can be found in [13, 14, 15, 21, 22].

There have been a number of extensions of the basic PageRank
that have been proposed, such as including the topic information
of page to determine the topic relevance. One approach [17] was
to precalculate different PageRank vectors for a given number of
terms, focusing on the subset of pages that contain the term of
interest. The search results for a query would be ranked according
to scores that were precalculated for the collection of terms that
contain the query words. Another approach for introducing topic
relevance was addressed by Haveliwala et al [9]. In the approach,
PageRank is calculated for all pages according to each category of
the Open directory project. The pages that belong to a particular
category have higher scores for the PageRank values computed
for that category. Ranking of results of a search query is done
according to scores of the category in which the query terms
belong to. Oztekin et al [16], proposed Usage Aware PageRank.
Their modified PageRank metric incorporates usage information.
Weights are assigned to a link based on number of traversals on
that link, and thus modifying the probability that a user traverses a
particular link. Also the probability to arrive at a page directly is
computed using the usage statistics.

There has been a variety of work on improving on the PageRank
computation. I/O efficient techniques for computing PageRank
has been addressed by Haveliwala et al [8] and Yen Yu Chen[10].
The basic of their approach is to partition the link file of the
whole graph into partitions such that destination vector of each
partition fits into the main memory. Kamvar et al in [6] have
suggested quadratic extrapolation techniques to accelerate the
convergence of PageRank. In a different paper [7], they have also
suggested a way of exploiting the block-structure of the Web to
compute Block Ranks for different domains and compute local
PageRanks. Chein et al [19] have also exploited the idea of
evolving graph to compute PageRank. However, their idea is to
collapse the unchanged portion to a single node and compute the
PageRank for the new graph. This leads to approximate PageRank
values.

In out paper, we provide an approach to incrementally compute
PageRanks. We do so by exploiting the underlying first order
Markov model on which PageRank is based and partition the
graph in such a manner so that we compute the exact PageRank
values for a graph at a new time instance. Incremental
computations are very useful to study the evolution of graphs. The
significance of to study the temporal behavior of graph is
addressed in our earlier paper [4].

7. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have provided an approach to compute PageRank
incrementally for evolving graphs. The key observation is that
evolution of the Web graph is slow, with large parts of it
remaining unchanged. By carefully delineating the changed and
unchanged portions, and the dependence across them, it is

possible to develop efficient algorithms for computing the
PageRank metric incrementally. We follow a generic approach
that can be applied to any algorithm that has been developed for
efficient computation of the PageRank metric. Experimental
results show significant speed up in computation of PageRank
using our approach as compared to naive approach. Also, in the
incremental approach, if the partitioned sub-graph that has
changed is small, the whole PageRank computation might perhaps
be performed in main memory.

Many issues remain to be investigated. In this paper we have
proposed an incremental approach that applies to graph metrics
based on first order Markov model, such as PageRank. An area to
explore is for similar incremental approaches for other link based
metrics. We have provided a method for an efficient incremental
computation of relevance metric for a single node level. However,
to study graph evolution, we would need measures and metrics
defined at the level of a subgraph and a whole graph, and efficient
methods to incrementally compute them

8. ACKNOWLEDGMENTS

We would like to thank Data Mining Research group at the
Department of Computer Science for providing valuable
suggestions. This work was been partially supported by the
ARDA Agency under contract F30602-03-C-0243 and Army
High Performance Computing Research Center contract number
DAAD19-01-2-0014. The content of the work does not
necessarily reflect the position or policy of the government and no
official endorsement should be inferred. Access to computing
facilities was provided by the AHPCRC and the Minnesota
Supercomputing Institute.

9. REFERENCES
[1] http://www.google.com

[2] J.M. Kleinberg, “Authoritative Sources in Hyperlinked
Environment”, 9" Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 668-667, 1998

[3] L. Page, S. Brin, R. Motwani and T. Winograd “The
PageRank Citation Ranking: Bringing Order to the
Web” Stanford Digital Library Technologies, January
1998.

[4] P. Desikan and J. Srivastava, "Mining Temporally
Evolving Graphs", WebKDD Workshop, Seattle
(2004).

[5] Gary William Flake, Steve Lawrence, C. Lee Giles .
Efficient Identification of Web Communities. Sixth
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. August 2000,
pp- 150-160.

[6] Sepandar D. Kamvar, Taher H. Haveliwala,
Christopher D. Manning, and Gene H. Golub,
"Extrapolation Methods for Accelerating PageRank
Computations." In Proceedings of the Twelfih

76



International World Wide Web Conference, May,
2003.

[7] Sepandar D. Kamvar, Taher H. Haveliwala,
Christopher D. Manning, and Gene H. Golub,
"Exploiting the Block Structure of the Web for
Computing PageRank." Preprint, March, 2003

[8] Taher Haveliwala. "Efficient Computation of
PageRank," Stanford University Technical Report,
September 1999.

[9] Taher Haveliwala. "Topic-Sensitive PageRank," In
Proceedings of the Eleventh International World Wide
Web Conference, May 2002

[10]Y. Chen, Q. Gan, and T. Suel. I/O-efficient techniques
for computing pagerank. In Proc. of the 11th
International Conf. on Information and Knowledge
Management, pages 549--557, November 2002.

[11]1G. Jeh and J. Widom. Scaling personalized web
search. In 12th Int. World Wide Web Conference,
2003.

[12]R. Kumar, P. Raghavan, S. Rajagopalan, D.
Sivakumar, A. Tomkins, and E. Upfal. The Web as a
graph. In  ACM  SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, pages
1-10, 2000.

[13]Kemal Efe, Vijay Raghavan, C. Henry Chu, Adrienne
L. Broadwater, Levent Bolelli, Seyda Ertekin (2000),
The Shape of the Web and Its Implications for
Searching the Web, International Conference on
Advances in Infrastructure for Electronic Business,
Science, and Education on the Internet- Proceedings at
http://www.ssgrr.it/en/ssgrr2000/proceedings.htm,
Rome. Italy, Jul.-Aug. 2000.

[14]Monika Henzinger, Link Analysis in Web Information
Retrieval, ICDE Bulletin Sept 2000, Vol 23. No.3.

[15]P. Desikan, J. Srivastava, V. Kumar, P.-N. Tan,
“Hyperlink Analysis — Techniques & Applications”,
Army High Performance Computing Center Technical
Report, 2002.

[16]B.U. Oztekin, L. Ertoz and V. Kumar, “Usage Aware
PageRank”, World Wide Web Conference, 2003.

[17]M. Richardson and P. Domingos. The intelligent
surfer: Probabilistic combination of link and content
information in pagerank. In Advances in Neural
Information Processing Systems, 2002.

[18]J. Srivastava, P.Desikan and V.Kumar. "Web Mining -
Concepts, Applications and Research Directions."
Book Chapter in Data Mining: Next Generation
Challenges and Future Directions, MIT/AAAI 2004.

[19]S. Chien, C. Dwork, S. Kumar, and D. Sivakumar.
Towards exploiting link evolution. Unpublished
manuscript, 2001.

[20]Eiron, N., McCurley, K., Tomlin, J.: Ranking the Web
frontier. In: Proc. 13th conference on World Wide
Web, ACM Press (2004) 309—318

[21]S.Acharyya and J.Ghosh, “A Maximum Entropy
Framework for Link Analysis on Directed Graphs”, in
LinkKDD2003, pp 3-13, Washington DC, USA, 2003

[22]C. Ding, H. Zha, X. He, P. Husbands and H.D. Simon,
“Link Analysis: Hubs and Authorities on the World
Wide Web” May 2001. LBNL Tech Report 47847.

77



10. APPENDIX: PROOF OF ALGORITHM’S
SCALABILITY
Let order of graph G be 1

Let weight of anode V; be W,, v vV, € V

n
Also, Z w; = W , sum of the weights of all nodes.
i=1

PageRank score calculation is analogous to the convergence of a
first order Markov chain.

For calculation of PageRank we perform the operation,
T™,=M,,

over a number of iterations. Here, T is the transition matrix and

M ; s the PageRank score vector at the end of i™ iteration.

We also have initial PageRank score vector,

o ]
w, /W

M, =
Lw, /7 |

For a node s we have,

PR(s) = df(w%V) + (1-d))) PRG) Out deg ree(x;,)

il=1

where, d ’ is the dampening factor.

Xy Vil :1,2,..., k1 are all those nodes that have at
least one outgoing edge to §
For the sake of representation let us assume that all those nodes

that have outgoing edge(s) to a node X, are represented as
Xi(m+1) -

Now, if [ iterations are required for convergence towards the
PageRank score vector then we have,

S PR(x,
PR(s) = d_f(w%y) + (1- df)ilzz:, (x'%ut deg ree(x,,)

ot (e d )i{d/(w‘/V)Jr(lid');{";(w%f~Outdegree(x,,))"}/Ouldergee(x’z))
s5)= y +(1- =
! W f “~

Out degree(x;)

Notice that the term W can be taken out as common. Thus, we
have,

k2 oy,
. o (dw, +(1-d, )Z{.,Z(n%mdegree(x”))..}/Outdegree(x,z)}
PR(s):W[d,-#(l—d/)z EE R

QOut degree(x;) !

- PR(s) = %
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Consider a Graph G(V, E)

where,
a =

k2 Kl e
o tdw, +(1-d, )Z {4.27(‘ %m deg ree(xd))u}/Out degree(x,,)}
[d/ +(1_d/)z i2=1 _il=1
il=1

Out deg ree(x,,) ]

Now, suppose graph G(V, E) changes to G' (V' , E)

However the changes that occur are such that there is no change
in the structure and weight of the of the node S as well as no
change in the in the structure and weight of all the ancestors of the
node § [condition (1)].

Now following along the lines of the previous graph we have, for

the new graph G
, a

PR (s) = —
(s) W

The terms & and & , depend mainly only on the structure of the

graph and the weights of, node s and its ancestors, from
condition(1) we can see that both of them are identical in the

graphs G and G for the node S, assuming that the same
dampening factor is used for both the pagerank calculations.
Thus, & = &

W-PR(s)=W -PR(s)

= PR'(s)= (%)PR(S) ............. result(1)

Thus, the new pagerank score of any node X in G s simply
obtained by scaling the pagerank of score of the same node X in

G by a factor of (W/ W) provided that condition(1) holds
for the node X and the same dampening factors are used for both
pagerank calculations.

In most cases all nodes of a graph are equally likely here we have,
w=w, =w, =...=w, =1
W =n(G),

where n(G) is the order of the graph G .

When this graph changes to a graph G we have result(1); in
this case as,
, n(G
PR (x)= ( ,)
n(G)
From the above result it is also trivial to deduce that a change in a
node influences the pagerank values of all its descendents.

PR(x)
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Abstract

E-Mail spam detection is a key problem in Cyber
Security; and has evoked great interest to the research
community. Various classification based and signature
based systems have been proposed for filtering spam and
detecting viruses that cause spam. However, most of these
techniques require content of an email or user profiles,
thus involving in high privacy intrusiveness. In this paper,
we address the problem of detecting machines that
behave as sending spam. Our approach involves very low
privacy intrusion as we look at only the border network
flow data. We propose two kinds of techniques for
detecting anomalous behavior. The first technique is
applicable for single instance network flow graph. The
second technique involves analyzing the evolving graph
structures over a period of time. We have run our
experiments on University of Minnesota border network
flow. Our results on this real data set show that the
techniques applied have been effective and also point to
new directions of research in this area.

KEYWORDS: E-Mail Spam Detection, Privacy and
Security

1. Introduction

Cyber Security has emerged as one of the key areas of
research interest with increase in information stored
online and the vulnerability to attacks of such an
information infrastructure. Over the years, the
dependency on information infrastructure has increased,
and so has their sophistication and potency. There have
been intelligent and automated tools that exploit
vulnerabilities in the infrastructure that arise due to flaws
in protocol design and implementation, complex software
code, mis-configured systems, and inattentiveness in
system operations and management. The most common
exploit seen is the buffer-overflow attack [4].

Technological advancements on the Internet have
contributed very significantly in making information
exchange very easy across the globe. E-Mail is the most
popular medium for individuals to communicate with
each other. However, such an effective communication
medium is being increasingly abused. According to a
recent survey, the number of spam mails has increased
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from 8% in 2001 and 50% in 2004 [8]. This alarming
increase in the rate of spam mails is of concern for
operational as well as security reasons. The total
estimated cost incurred due to spamming was around
$10B/yr in US (2002) [8]. To the cyber-security
community, this is of concern, especially when machines
inside a sensitive network are sending spam or huge
amounts of information to the outside. Also, of interest
are machines from outside the network that try to scan to
use the exploits in the machines inside the network. It is
very critical to differentiate such machines from those
that are sending mail normally.

In this paper, we address the issue of identifying the
machines that are sending spam, or machines that have
been compromised and are being used as a spam relay.
Note that our focus is not on identifying individual users
who send spam, or filtering an e-mail as spam based on
its content. There has been work in such areas which is
not directly related to ours [10, 11, 15]. Recent work on
detection of spam trojans suggests the use of signature
and behavior based techniques [12]. However, using
signatures will fail to detect novel attacks at an early stage
and require looking into message content. Dealing with
such problems would require availability of data that
would be sensitive with respect to security and privacy
which limits the applicability of these techniques. We
have implemented our techniques as a part of the MINDS
project [7].

In section 2 we describe the various kinds of data that
can be analyzed from e-mail traffic, and the levels of
privacy involved. Section 3 gives a brief overview of link
analysis techniques that can be applied for network
security. Our approaches are explained in detail in
Sections 4, 5. Results of experimental evaluation of our
approaches are presented in Section 6. Section 7 discusses
other works that are related to this topic. Finally, we
conclude in Section 8 and point to future directions.

2. E-Mail Architecture and Privacy Issues

Electronic Mail is technically a file transfer from one
machine to another and is initiated by the sender. The
architecture of this service is illustrated in Figure 1. The
Mail Client is responsible for creating the message files
and sending and receiving them at the host level.
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Figure 1. Architecture of Electronic Mail

The Mail Client handles the part of transferring a file
to or from a mail server. The Mail Server handles the
message files received from various mail clients within its
network, and transfers them to the Internet where other
mail transfer agents transfer the files to the mail servers of
respective destinations. A receiving Mail Server is
responsible for putting the received message files in
mailboxes of the respective users. The Mail Client at the
recipient end can retrieve the message files from the Mail
Server. The transfer of messages between a mail server
and other mail transfer agents within the Internet takes
place via a TCP connection using the SMTP protocol.
The transfer between a client and the local mail server
uses protocols such as POP or IMAP. It should be noted
that all emails do not necessarily pass through the mail
server and a client can open a connection on a different
port and communicate directly to another machine'. The
border router collects all information about the network
connections made in and out of the network.

It can be seen that with this architecture, data can be
collected at different points. Data collected at such point
reveals different kinds of information and with different

! However, such email is the rare exception rather than
norm

granularity and privacy levels. We now discuss the kinds
of information that can be extracted, and the respective
levels of privacy intrusion. The darkness of the shaded
boxes indicates the level of privacy intrusion in Figure 1.
Mail Client Data: The data that can be collected at this
level is primarily the files that have been transferred and
received. These files contain information about all the
people the user sent mail to or received mail from, the
date and time of such transfer. Mail clients also contain
meta data such as the folders in which these files are
stored, the mails that been replied to, forwarding, and
more recently introduced concept of ‘conversations’.
Other interesting information that can be obtained at a
meta level is the contact information from the address
book. Such data has high level of privacy intrusiveness.
Mail Server Data: The data that can be obtained at this
level is the set of all files that have been transferred.
These files can reveal who communicated with whom,
when and about what topic. The level of granularity is
fine, as we know everything that has been exchanged
between the sender and receiver of email. The main
difference between the data at the Mail Server level
versus the Mail Client Level is the meta-data for each
user discussed earlier. The level of privacy intrusion still
remains high, as all information about the content of the
file exchanged is available.
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Network Level Data: These include data that can be
collected at the network interface levels. The two main
kinds of such data are the Tcpdump data and Netflow
data. Tecpdump data contains a log of all the packets that
passed the network sensor, including the packet content.
Thus, the data provides a fine level of information
granularity, which can lead to high level of privacy
intrusiveness, though analyst may not be able to figure
out the exact conversation if secure protocols such as SSL
are used. Netflow data on the other hand is collected from
routers (e.g. Cisco, Juniper). Each flow is a summary of
traffic traveling in one direction in a session. When the
router tears down a flow, a flow record is created. This
flow record contains basic information about the
connection, such as source/destination IP/ports, number
of packets/bytes transferred, protocol wused, and
cumulative OR of TCP flags. However, flow records do
not contain payload information. An email service
connection that uses the SMTP protocol typically has the
destination port as 25. The Netflow data has medium
granularity of information and the privacy intrusiveness is
at a much lower level as compared to the data obtained at
the client level or the server level.

3. Link Analysis Techniques for Network
Security

An interesting kind of information infrastructure that
can be constructed from the types of data discussed
previously is a ‘link graph’. Link graphs can be used to
represent information from a single source of data or from
multiple sources. Interaction between different systems
can be understood better by modeling them as link
graphs. The key idea to modeling a given data as a link
graph is to represent an agent of information or a given
state as a node and the link as the connection or transition
between them. For example, nodes can be IP addresses,
ports, usernames or routers and the links the different
connections between them. Once a link graph is
generated, link analysis techniques can then be used to
identify all interaction based behavioral patterns that are
causes of possible threats.

Link analysis techniques have been popular in various
domains and the significance and emergence of these
techniques has been discussed by Barabasi in his book
[1]. Link analysis has been successfully applied to mine
information in domains like web [5], social networks [10]
and computer security [15]. In our earlier work we have
surveyed the existing link analysis techniques to the web
domain and introduced taxonomy for research in this area
[4]. A consequence of this was to develop a methodology
to adopt link analysis techniques to different applications.

Link analysis can be thus been viewed as primarily
used for two purposes namely, integration of different
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data sources, and profiling the system or user interactions.
Accordingly, the kind of analysis performed varies
depending on the data available. For example, Netflow
data gives traffic flowing in one direction and hence a
directed graph can be built at the level of an IP address or
port. If we use TCP dump data, additional information
about the content will be available and we can weigh the
nodes and links accordingly to get a better picture of
actual traffic. The traffic data will help in building graphs
that reflect system interactions. Link analysis can then be
used to find ‘communities’ of systems that have similar
interactive behavior patterns. At the host level, syslogs
can be used to model the sequence of commands (or the
applications executed one after other can be connected by
a link) as a graph and profile the host based on the
command-command graphs. A mapping between the user
(or a machine) and the list of commands issued
(executed) will enable the profiling of users (machines)
that execute these commands (run the applications)
frequently. For example, analysis of a bipartite structure,
with users ( machines) as one set and the commands
(applications) as the other set, would identify a group of
users (machines) with similar behavior patterns.
Information from server logs such as the web server or
the database server can also be integrated. Link analysis
techniques can be applied BGP router information to
identify communities of networks that have similar usage
pattern, and also key router locations that need to be
monitored. The trade-off in privacy for the various kind
of data was discussed in the earlier section.

Most techniques in link analysis have so far
concentrated on identifying prominent normal behavior
[9]. Other techniques such as attack graphs[16] have
modeled possible plans based on a formal logic approach
and have an underlying assumption that all events are
observable. This makes them incapable of detecting novel
attacks. Hence, there is a need to define measures for
anomalous behavior in the link graph terminology to help
detect attacks. Furthermore, most techniques developed
so far have been related to static graphs. However, the
network topology keeps changing and so do user patterns,
and hence there is a need to develop robust techniques for
evolving graphs. For long-term analysis, historical data of
attacks or anomalous behavior can be collected and used
to identify nodes that have been prominent ‘perpetrators’
and nodes that have been most ‘vulnerable’. In summary
Link Analysis Techniques for Network Security can be
used to:

e Identify nodes (machines) and  edges

(connections) that are anomalous in behavior.

e Identify nodes highly likely to be possible sources

of attack or are vulnerable over a period of time.

e Identify ‘communities’ of machines involved in

‘normal’ as well as ‘anomalous’ connections.



e Study the changing behavior of connections by
analyzing temporal behavior of graphs.

4. Our Approach

E-mail servers traditionally send and receive mails
from other e-mail servers. Thus, e-mail servers among
themselves form a community due to interactions with
each other. More precisely, they form among themselves
a dense bipartite graph. We utilize this behavior of e-mail
servers to profile normal versus anomalous behavior. In
the following sub-section, we describe an existing
approach to identify such bipartite graphs that has been
used in other domains such as the web. We will then
describe a way to utilize this to detect anomalous
behavior of e-mail servers.

Hubs
Authorities

Bipartite Core

Figure 2. Hubs and Authorities
4.1 Hubs and Authorities

Identifying bipartite cores has been of interest in Web
Mining domain. A bipartite core (i, j) is defined as a
complete directed bipartite sub-graph with at least i nodes
from one set of nodes to at least j nodes from another set
of nodes. Figure 2 illustrates this concept.

With reference to the Web graph, i pages that contain
the links are referred to as ‘hubs’ and j pages that are
referenced are the ‘authorities’. For a set of pages related
to a topic, a bipartite core can be found that represents the
Hubs and Authorities for the topic can be found using
HITS algorithm [9]. Hubs and Authorities are important
since they serve as good sources of information for the
topic in question. In the domain of e-mail traffic flow,
‘hubs’ are equivalent to machines that send mails and
‘authorities’ are machines that receive mails and together
they form a bipartite core. Such a behavior is typical of e-
mail servers that send and receive mails from other
servers. E-mail servers serve as both good hubs and good
authorities. Hence, a bipartite graph captures the behavior
of machines that are typically E-Mail Servers.

We will briefly describe the idea behind HITS
algorithm. Let A be an adjacency matrix such that if there
exists at least one connection from machine i to machine
j, then Ai, j = 1, else Ai, j = 0. Kleinberg’s algorithm,
popularly known as the HITS algorithm [9], is described
in Figure 3. This is a recursive algorithm where each node
is assigned an authority score and a hub score. Hence we
see that hub scores will be higher if it points to many
nodes or nodes with high authority. Conversely, authority
scores will be higher if it is pointed to by many nodes or
pointed by good hubs.

The recursive nature of the iterations in the matrix
computation will result in the convergence of authority
and hub score vectors to the principal eigen-vectors of
ATA and AAT respectively.

HITS ALGORITHM

Let a is the vector of authority scores and 4 be
the vector of hub scores
a=[1,1,...1], h=[1,1,.....1];
do
a=A"h;
h=Aa;
Normalize a and h;

while @ and 7 do not converge(reach a
convergence threshold)

a'=a;

h' =h;

return a*, h'

The vectors a* and h*represent the authority and
hub weights

Figure 3. HITS Algorithm
4.2 Identifying Potential Perpetrators

Existing link analysis techniques fail to detect
machines that send spam or are used to relay spam. Most
techniques are used to mine for behavior that is normal
and dense within a community, as opposed to anomalous
or rare behavior. To detect e-mail spamming machines we
need to differentiate their behavior from those of the e-
mail servers. Both of them will tend to have high
outgoing traffic. However, an e-mail server tends to send
e-mails to only other e-mail servers whereas a spamming
machine sends mail to all machines. We make use of this
behavioral aspect to detect the potential perpetrators.

We follow the following sequence of steps:

1. Pre-process the netflow data and construct the

graph for e-mail connections.
» Graphs can be constructed for patterns that
represent other kind of services like fip.
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»Node can be an IP or AS or port or any
combination depending on the problem. We do
our analysis at an IP Level.

2. Perform the HITS Algorithm on the generated
graph.

» The nodes with top hub and authority scores
represent typical e-mail servers

3. Remove edges between top £% of hubs to top k%
authorities.

»These top k % connections correspond to
normal e-mail traffic between regular mail
servers that have high hub and authority score.

4. Perform the HITS algorithm on the resultant graph.

»A simple outdegree also works fine on the
resultant graph.

5. The new scores are the Perpetrator Scores.

»Spamming  machines obtain  high rank
compared to other e-mail servers.

It can be seen that our approach is two-fold. Firstly, it
identifies connections between regular mail servers. Such
connections form a dense bipartite graph between servers,
assigning them high hub and authority scores. All such
connections that contribute to normal e-mail traffic are
then removed. Note, only the edges are deleted and not
the nodes. This eliminates normal e-mail server behavior.
The second step identifies machines that behave like
servers and have high traffic that does not correspond to
regular e-mail connections. These machines are most
likely spamming, since they send mails to a lot of other
machines that do not take part in regular e-mail
connections. Since no node is deleted, such an approach
also helps to identify e-mail servers that are affected and
sending spam. Figure 4 illustrates this concept clearly.

Top Hub and Authority Nodes

O Mail Server
@® Spamming
Machine

------ > Connection between Top
Hub and Top Authority
_— Connection between

o o
O O
o o

Top Hub and Authority Nodes
Spamming Machine is a top hub

Spamming machine and
non-Authority

Figure 4: Identifying spamming machines

5. Temporal Evolution of Graphs

Link Analysis techniques have primarily focused
on analyzing a graphs at a single time instance.
However, graphs evolve over time, and much
information can be gained by understanding their
evolution. In earlier work, we have shown the
significance of mining information from such evolving
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graphs in the web domain [5]. Graphs such as network
graphs based on e-mail connections change rapidly, and
there is a need to define properties that need to be
measured and develop techniques capture the changing
behavior. The sequence of steps for such an analysis is
described below:

e Decide the Scope of Analysis: Single Node,

Subgraph, Whole Graph.



e Develop Time Aware Models (e.g. Graph
Models + Time Series Models).

¢ Define Time Aware Measures and Metrics.

e Design Efficient Algorithms (Incremental and
Parallel) for computing metrics for all graphs.

In the following subsection we will describe the
three levels of scope of analysis in detail. Figure 5
illustrates an example of an evolving graph. G1, G2,
G3, G4 represent the snapshots of the graph taken at the
end of consecutive time periods. The different
subgraphs in each snapshot are represented as gl, g2,
g3, g4. Each time period is of length, At. The start and
end time instances of each time period are represented
from tl to t5. The order and size of graph are
represented as |v| and |E|.

5.1 Analysis Scope

The models and techniques developed will also
depend on the scope of analysis. The temporal behavior
of the Web graph can be analyzed at three levels:

e Single Node: Studying the behavior of a single
node across different time periods. Over a period
of time, inherent properties of a node, such as
machine configuration, can change, signifying the
change in functionality of the node. Also, structural
changes of a node over a time period can be
analyzed by

studying the wvariation of properties. Typical
examples of properties based on link structure are
indegree, outdegree, authority score, hub score and
PageRank score. Such behavior will also serve as
useful feedback to a network analyst. Finally, study
of usage data of a single node across a time period,
will reflect the activity of a node during the given
time period. The temporal dimension will helps to
identify current trends and helps in the prediction of
active machines.

Sub-graphs: At the next hierarchical level,
changing sub-graph patterns evoke interest. These
sub-graphs may represent different communities or
connection patterns, representing services like e-
mail, ftp, p2p, etc. that evolve over time. The idea
of mining frequent sub-graphs has been applied
with a large graph, or a set of small graphs, as input
[16]. However, with addition of a temporal
dimension, we look at an evolving graph, which
may have different sets of sub-graphs at different
time instances. Figure 5 illustrates an example of an
evolving graph, and the sequential patterns that can
be mined. In the example it is seen that if a
subgraph pattern, g1, occurs during a time interval,
the probability that a subgraph, g2, will occur in the
next time period is higher than any other sequence
of subgraphs over adjacent time periods. It can be
seen that mining of sequential patterns of sub-
graphs might provide useful information in
profiling the changing behavior. Sequence mining
may also help in predicting an emerging trend or
predict an abnormal behavior in network traffic.

"o
A

e
7

At

K

v

v

G1 G2 G3 G4
Sequential Patterns:
(t1,t3] (t2,t4] (t3,t5]

g1->g2 g2->g1 g1>g3 G1 G2 G3 G4

g2->g3 g2->g4 g1->g2 |v[=n(G1)=5 |v|=n(G2)=7 |v|=n(G3)=8 |v|=n(G4)=8

g1>g3 g3->g1 94593 [E|=e(G)=4 | |E|=e(G2)=4 | |E|=e(G)=7 | |E|=e(G4)=5
g3->g4 # of Cpts= 2 #of Cpts=3 | #of Cpts=2 # of Cpts= 3

e.g: g1->9g2 is frequent (compared to others)

Subgraph Analysis

Wholegraph Analysis

Figure 5: Analysis of evolving graphs
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¢  Whole graph: While analysis of single nodes and
sub-graphs tends to give specific information,
analysis at the level of the whole graph will reveal
higher level concepts. For each graph at a given
time instance, a vector of features consisting of
basic properties and derived properties can be built.
Choosing the appropriate components of such a
vector and its variation in time is an interesting area
of research. Figure 3 illustrates the concept of the
graph evolving and how the different graph
properties change with time. Modeling such an
evolving vector space and analyzing its behavior
over time poses interesting challenges.

5.2 Rank Evolution

We analyze the evolution of the network graph at a
single node level. For each node, we determine its rank
based on its Perpetrator Score(PScore) and call it
Perpetrator Rank. We then define another metric based
on its Perpetrator Rank(PR) called Perpetrator Height.
The height is a measure of ‘how far’ a node is from an
infinitely low ranked node. For a node i at a time ¢, its
Perpetrator Height can be expressed as:

PHeight,=log,(1+1/PR)

Here we note that for a top ranked node, PR=1 and
its PHeight=1. For a node with almost infinite rank,
PR=00 and its PHeight would be zero. We then study
rate of change in the rank of a node over time. The
change for a time period 4 ¢ can be defined as:

v = A PHeight/A t

Since we are interested only in the change and not in
a negative or a positive change in the rank (for the
present work), we take the square of v for our analysis
of how the node behaves. We also weigh the node
according to the perpetrator score, PScore. We do this
since a small change in a highly ranked node or a big
change in a low ranked node is more interesting than a
small or moderate change in a low ranked node. We can
now define a quantity Rank Energy of a node as:

Rank Energy = Weight* v’

This measure would be a good indicator of any rapid
changes in the network behavior of machines. Such a
rapid change would be of particular interest to the
security analyst as it may indicate machines suddenly
spamming or a mail server going down. Also, though
we presently use PScore to weigh the node, the node
can be weighed on other factors such as inside the
network versus outside the network. The weight factor
can be a vector of properties inherent to the node. The
strength of the approach lies in its ability to detect
anomalous behavior at an early stage.
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6. Experimental Evaluation

Experiments were performed to evaluate two kinds
of analyses. Firstly, we focused on identifying potential
perpetrators given netflow data for a 10 minute time
window. Second, we observed at a 3 hour time period
and analyzed the rank evolution of each node. We
discuss the details in the following subsections.

6.1 Analysis at a Single Time Instance

The first dataset was netflow data for the University
for a 10 minute window from 07:10 to 07:20 hrs on
June 17", 2004. The total number of flows during this
time period was 856470, with 228276 distinct IPs. Of
these the number of connections that used SMTP
protocol for E-Mail was 10368, with 1633 distinct IPs.

Using our approach described in section 4, we
ranked the nodes according to their perpetrator scores. It
was found that all main email servers were ranked low.
Among those that were ranked on the top were, small e-
mail severs that did not have traffic to the scale of the
main e-mail servers. Most importantly, we were able to
detect a machine, at address 134.84.S.44, that was
known to be sending spam during that time period. This
particular machine was ranked 2™ when ordered
according to Perpetrator Score. We also noticed that
once we remove the edges between the top hub and top
authorities, a simple outdegree of the resultant graph
also gave a fair measure of anomalous behavior. The
rank of this machine according to authority scores was
1563, indicating that it was sending mails and not
receiving them. The results are shown in Figure 6.

6.2 Analysis of Rank Evolution

The second dataset was netflow data for the
University for a three hour time period from 7am to
10am on July 21*. We constructed graphs for each ten
minute period, to obtain a set of eighteen graphs for this
time period. The results are depicted in Figure 7.

We first generated Perpetrator Scores for each time
instance and determined the rank of each node for that
time period. The shading is a reflection of node rank.
The top ranked node has a darker shade. Each column
indicates one time period, and each row is an IP. For an
IP not present in a time period we assign a default score
of zero. Thus, the picture on the left indicates the
variation of rank of the nodes. The last column is
ranking of the node for the aggregated time period.



Total Flows: 856470 At this time, 134.84.5.44 was known to be sending spam. All

Email Flows: 10368 of the other hosts were known, good email servers that were

Distinct IPs (Total): 228276 sending email

Distinct IPs (Email): 1633
Sorted by Hub Score | Sorted by Outdegree |
IP Address Authority |Hub Score IP Address Indegree Outdegree

Score

128.101.X.109 0 0.728289 128.101.X.109 0 363
134.84.5.44 0 0.033964 160.94.X.36 1 176
160.94.X.36 0 0.02685 134.84.S.44 0 147
160.94.X.35 0 0.02016 160.94.X.35 1 112
160.94.X.35 0 0.016173 160.94.X.36 1 106
160.94.X.36 0 0.014935 160.94.X.36 1 103
160.94.X.36 0 0.014778 128.101.X.119 0 99
128.101.X.119 0 0.013571 160.94.X.35 1 92
160.94.X.67 0 0.011118 160.94.X.35 1 60
160.94.X.33 0 0.010552 160.94.X.33 0 45
160.94.X.35 0 0.007896 160.94.X.33 0 45
160.94.X.33 0 0.006688 160.94.X.33 0 36
134.84.X.117 0 0.006529 128.101.X.10 0 33
128.101.X.10 0 0.005942 134.84.X.4 0 28
134.84.X.172 0 0.005282 134.84.X.2 0 26
134.84.X.4 0 0.005127 128.101.X.2 0 26
128.101.X.21 0 0.005016 134.84.X.172 0 25
128.101.X.1 0 0.004601 160.94.X.11 0 24
160.94.X.33 0 0.004492 160.94.X.34 0 22
160.94.X.100 0 0.004374 128.101.X.104 0 21

Figure 6. Identifying Perpetrators

Mail Server possibly sending news letters

Height Metric Energy Metric

>

|

Machine found to be affected and sending spam during the time period 7am to 10am on July 21st in the CS network
Ranked #1 according to the height metric for the aggregate time period.
Ranked #3 according to the energy metric

Figure 7. Analysis of Rank Evolution
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It can be seen that the sudden changes in the node ranks,
for certain machines (such as mail server sending
newsletters as shown in Figure 7), can be eclipsed by
high change in one node, when computed for an
aggregated time period.

In the second part, we computed the Rank Energy of
each node by computing the change in the rank across
consecutive time periods. This measure helps in
eliminating most noise occurring due to changes in
lesser important nodes in terms of anomaly behavior.
The picture on the right depicts the energy of the nodes
across the three hour time period.

7. Related Work

E-Mail Spamming has been a prominent area of
research and different approaches have been taken to
solve this problem. The two main class of problems
studied have been ‘spam email filtering’ and ‘detection
and prevention of virus/worm intrusion and spreading’.
Spam analysis can be broadly classified into content
based techniques and flow statistics based techniques.
There are commercial products that use signatures
developed by analyzing the content [2,13].
Collaborative filtering approaches have also been
developed by analyzing the content [3]. Classification
based approaches that use heuristics or rules such as
SpamAssasin [14] are also popular. MSNS§[11] uses
Bayesian based approaches to classify e-mails as spam.
However, all these techniques have high privacy
intrusiveness as they analyze the e-mail content.

Behavior based techniques such as the E-Mail
Mining Toolkit [15] use user profiles to construct user
cliques and analyze the e-mail attachment statistics for
detection of e-mail worms or viruses. However, such
techniques also need to obtain data at least at the mail
server level and have a medium level of privacy
intrusiveness. Sandvine Incorporated [12] suggests the
use of behavior based techniques coupled with signature
based techniques for detection of spam trojans.
However, signature based methods fail to detect novel
attacks at an early stage and such an approach would
require looking into message content, raising privacy
concerns. Also, the technical details of behavior based
approach in the work are not clearly described.

Our goal in this work is not to identify individual
users sending spam or classifying an individual email as
a spam. Instead, we focus on detecting machines that are
sending spam and we capture e-mail traffic that does not
necessarily pass through an e-mail server or use a
particular user id or a mail client. Compared to ‘receiver
based’ approaches such as content filtering, and ‘sender
based’ approaches such as IP blocking; our approach is
in the complementary area of ‘transport based’
approaches where the e-mail is suppressed by stopping

the mis-behaving mail system machine. In addition to
being less privacy intensive, we believe this is also a
new and complementary approach to spam reduction.

8. Conclusions

We have presented in this paper the different levels
of privacy involved in analyzing e-mail behavior. We
have proposed an approach to detect anomalous
behavior in E-Mail traffic at the network level, with low
privacy intrusiveness. Finally, we have presented a
framework for studying evolving graphs and how it can
be applied to network traffic for early detection
suspicious behavior. We have restricted our work to a
level of single node for the present work.

Further research in this area would be to develop
models and measures to mine information from
evolving graphs at the level of subgraphs and whole
graphs.
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1 Introduction

As the threat of attacks by network intruders increases, it is important to correctly
identify and detect these attacks. However, network attacks are frequently composed of
multiple steps, and it is desirable to detect all of these steps together, as it 1) gives more
confidence to the analyst that the detected attack is real, 2) enables the analyst to more
fully determine the effects of the attack, and 3) enables the analyst to be better able to
determine the appropriate action that needs to be taken. Traditional IDSs face a major
problem in dealing with these multi-step attacks, in that they are designed to detect single
events contained within the attack, and are unable to determine relationships between
these events.

Many alert correlation techniques have been proposed to address this issue by
determining higher level attack scenarios. However, if the data that is being protected by
the network is highly valuable, an attacker can spend more time, money, and effort to
make his attacks more sophisticated in order to bypass the security measures and avoid
detection. Attackers, then, may use techniques to prevent their attacks from being
reconstructed, such as making their attacks highly distributed; avoiding standard pre-
defined attack patterns; using cover traffic or “"noisy" attacks to distract analysts and
draw attention away from the true attack; and attempting to avoid detection by signature-
based schemes through the use of novel attacks or mutation engines. In these more
sophisticated attacks, many of these correlation techniques face certain difficulties.

In the case of matching against attack models or analysis of prerequisites/consequences,
attackers can (and often do) perform unexpected or novel attacks to confuse the
analysis. In addition, the information for these schemes must be specified ahead of time,
and thus the analyst must be careful to specify complete information and not miss any
possible situation. Furthermore, these correlation approaches, as well as traditional IDS
techniques, suffer from a fundamental problem, in that they try to achieve both a low
false positive rate and a low false negative rate simultaneously. These goals, however,
are inherently conflicting. If the mechanism used is set to be too restrictive then there
will be many false negatives, yet if the mechanism is set to be less restrictive, many false
positives will be introduced. Also, if signature-based systems, such as Snort, are used
with many rules, too much time will be spent processing each packet, resulting in a high
rate of dropping packets. If these dropped packets contain attacks, then they will be
missed. While some of the approaches have techniques to deal with missed attack steps,
they cannot handle the absence of many of the steps in the attack.

In this document, we describe an analysis framework that addresses this tradeoff
between false positives and negatives by decomposing the analysis into two steps. In the
first step, the analysis is performed in a highly restrictive fashion, which selects events
that have a very low false positive rate. In the second step, these events are expanded
into a complete attack scenario by using a less restrictive analysis, with the condition that
the events added are related somehow to the events detected in the first step. We
describe how this framework is suitable for this problem as it addresses the tradeoff
between false positives and false negatives. In addition, our framework is 1) flexible, as
it allows the analyst to exercise control over the results of the analysis, 2) designed to be
modular and extensible, and thus makes it easy to improve the individual components of
the analysis and incorporate new sources of data. We also implemented and evaluated our

91



framework on a dataset that contained several attack scenarios, and we were able to
successfully detect the majority of the steps within those scenarios.

2 Design Overview

The goals for our analysis framework are as follows: First, the system should address the
inherent tradeoff between false positives and false negatives. Second, the system should
be able to detect the majority of the steps contained within an attack and make
connections between these steps to form the attack scenario. For this we assume that at
least one step in the attack is visible (if none of the attack steps are visible to any lower
level IDS, and thus the attack is perfectly stealthy, then we will be unable to detect the
attack). Third, our analysis framework should provide high coverage of attacks (meaning
that most or all of the attacks are detected). Finally, the system should be modular by
design, thus making it simple to incrementally improve our approach.

.
l ' Human Analyst

\ 4

Threshold Search size, Labeling/
Configuration Depth, Scoring Rules
time frame

A Attack \ 4
Data Anchor Point Context Context Attack Attack
IDS Preprocessing Identification Extraction Characterization cenario
Sensor
Data

A

7

— Data Format ——Behavior Anomaly — Profile based — Temporal
Converter Analysis chaining analysis sequencing
— Flow Merge/Match ~ [—Correlation/fusion of ~ [ Domain specific -

; guided search Knowledge based
multiple sensor data event labeling

— Watchlist/Blacklist —  Attack pattern

matching

Fiaure 1. The different phases of the analysis framework

The main challenge faced in designing this kind of system is balancing false positives and
false negatives. To address this problem, our analysis framework is composed of two
main steps. The first step, Anchor Point Identification, is focused on detecting a set of
events (anchor points) in a very restrictive fashion, such that the set contains very few
false positives. However, this will inevitably result in a large number of missed attack
steps. To deal with this, the second step, Context Extraction, relaxes the restrictions
conditionally; for a (potential) attack step to be examined in this step, it must meet the
lower requirements as set by the detection mechanism, and it must also be connected in
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some way to an event captured in the first step. The overall framework is shown in Figure
1. Note that in Figure 1 there are three steps, where the third step, Attack
Characterization, is concerned with giving semantic meaning to the steps in the overall
attack scenario, as detected by the first two steps. This step is not addressed in the
description of our framework. In addition, the analysis scheme incorporates domain
specific knowledge to further refine the results, which it does by keeping a human analyst
in the loop. The analyst can control the output of Anchor Point Identification and Context
Extraction by specifying the sensitivity of the tools which they utilize or applying domain
knowledge in the rules that are used.

In addition, the analyst can control his view, in that he can specify the events that he is
interested in seeing. For example, if the analyst is securing a specific machine that
contains important data, he can set that machine to be the anchor point and search for
relevant context that is related to that machine; or if the analyst knows about a certain
activity that occurred on the network, or has a list of known bad hosts in a blacklist, he
can specify the hosts involved in that activity.

2.1 Anchor Point Identification

The first phase of the multi-step analysis involves the identification of starting points
(anchor points) for analysis. This is done by taking a set of low-level IDS alerts from one
or more (preferably independent) sources and selecting from this set a number of anchor
points, such that we have high confidence that the set contains very few false positives.
This can be done in many ways.

One way is to use single IDS configured to operate in a very restrictive manner, resulting
in a high confidence yet incomplete set of attack events. Another way of doing this is
through correlation techniques. It is well known that if an alert can be correlated with
many other alerts, we can be more confident that this alert corresponds to a true positive.
Thus, in this manner, alerts from multiple sources can be combined together, where only
the alerts which have high confidence are selected. However, there is a difference
between the goal of this step and the goal of traditional alert correlation techniques. The
difference is that we are not trying to balance false positives versus false negatives.
Instead, Anchor Point Identification attempts to aggressively reduce false positives while
maintaining high coverage of attack scenarios (where an attack scenario is
considered “covered” if at least one attack event in the scenario is selected in this step).
The low false positive requirement is needed to ensure that the subsequent context
extraction starts from a highly trusted base thus can focus on reducing false negatives.
Because high attack coverage can accommodate high false negatives, this challenge is a
relaxation of the more stringent requirement on traditional techniques that require low
false positives and low false negatives simultaneously.

2.2 Context Extraction

The anchor points generated in the previous step are comprised of events in which there
is high confidence that they are part of an attack. The Context Extraction step generates a
suspicious context around these anchor points, both temporally and spatially. This step
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detects events related to the anchor points which are also anomalous or suspicious, but
not enough so to be detected by the previous step. The goal of this phase is to add to the
context only those activities that are part of the attack, thus filling in the attack steps
missed by the previous step, while keeping the low false positive rate achieved by the
Anchor Point Identification. This is done by relaxing the restrictions conditionally, i.e.
“lowering the bar”, but only for those events that are connected somehow to an anchor
point.

The major requirement for this step is some type of ranking for each network connection.
One way this is accomplished is by an anomaly detection system. In this type of system,
all connections are ranked according to how anomalous they are as compared to all other
network connections, and this is typically done using data mining techniques. This can
also be done by building historical behavior profiles for each host, determining which
machines are servers and clients for particular services. When using historical behavior
profiles, connections would be added to the context if they deviated from the historical
behavior profiles for the hosts that they involved, for example if a web server started
initiating connections, which it had never done before. This must be done carefully,
however, for example in the case of peer-to-peer connections, which can be difficult to
profile. If this type of traffic is not carefully profiled then the context can expand rapidly,
effectively invalidating the result. One way to deal with this is to use peer-to-peer
detection techniques and ignore the peer-to-peer traffic when profiling.

This step also makes use of domain knowledge in the form of rules. Certain behavior
patterns are known to be signs of malicious activity. For example, attackers often scan a
network on a particular port to look for vulnerable machines. These scans most often
result in failed connection attempts, as most machines will not have a service on that port.
Thus, these machines will not respond (or will reject the connection attempt), and
therefore are not vulnerable to being attacked on this port. This can be captured in a rule
which states that all scans that do not result in a full connection (no successful reply from
the scanned host) should be ignored, and all scans which do receive a successful response
should be included.

3 Description of each component

3.1 Data Preprocessing

The primary goal of the data preprocessing module is to reconstruct sessions. The format
converter converts the supported data flow formats to a common format and the merge
and match module approximates the sessions.

3.1.1 Data Format Converter
The format converter module transforms the currently supported network data flow
formats into a common format that contains all information about the bi-directional
sessions in a single data structure called ‘mm_record’.

The currently supported data formats are Cisco NetFlows v. 5 and TCP Dump. The
conversion from Cisco NetFlow format to merge-match-record (MMR) (a stream of
mm_records) is facilitated by the ‘nf2mmrecord’ utility.

3.1.2 Flow Merge and Match
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Some of the data formats (i.e. NetFlows) supported by the MINDS system are
unidirectional: the inherently bi-directional flows of packets are broken into two (or more)
unidirectional flows when recorded by the router. Based on information encoded in the
header, the merge and match Module attempts to reconstruct the original session.

The reconstruction is carried out in two steps. First, in the merge step, same 5-tuple
(sources IP, destination IP, source port, destination port, and protocol) unidirectional
flows are joined into a single unidirectional flow. Next, sessions are formed by matching
the appropriate merged, unidirectional flows.

Merge. The router under ideal conditions would form flows of packets that are sent by
the same sources to the same destinations in a single session. Due to limitations, some of
these flows get recorded as multiple, sometimes even overlapping flows. The primary
concern in the Merge Step is to compensate for this kind of error. In particular, flows
with identical protocol, source IP and port, destination IP and port with no more than
MERGE_WINDOW seconds elapsing between the last packet of the earlier flow and the
first packet of the latter flow, are merged together.

Match. As described earlier, the goal of the Match Step is to approximate the original
sessions based on information encoded in the unidirectional flow headers. Specifically,
flows between the same sources and destinations in opposite directions (that is the source
of one flows is the destination of the other) with no more than MATCH_WINDOW
seconds displacement in time are considered a session.

3.2 Level | Primitive Modules

3.2.1 Scan Detector
The Scan Detector is a practical heuristic-based level-1 sensor for identifying and labeling
flows that are suspected to pertain to scanning activity.

In this context, we consider a source IP a scanner, if it requests a certain service from
multiple hosts that do not exist, do not offer the service or they offer the service but are
very infrequently requested under normal usage and no additional evidence points
towards the legitimacy of the use of the service. The Scan Detector assigns a scan score
to every source that attempted a connection such that this score is reflective of the
likelihood of this source being involved in scanning activity. For each source, the system
keeps track of the source’s history and the scan score — initially 0 — is increased for every
distinct host that the source initiates a connection to. The score increase is reflective of
the system’s belief of this connection attempt being part of a scanning activity: the score
is maximal for blocked ports, non-existent destination IPs or hosts that do not offer the
requested service. When there is no evidence of the service not existing, the increase in
the scan score is inverse-logarithmically proportional to the frequency of requests for the
service in question as observed by the sensor.

3.2.2 P2P Detector

This component is designed to detect connections that are made by P2P programs. Much
of the analysis done in later stages can be greatly hindered by P2P traffic. Thus itis
necessary to detect which connections are of this type, so that they can either be ignored
in later analysis, or special processing can be done for these connections. Also, it is more
important for the P2P detection mechanism to have few false positives than to have few
false negatives, since the result of a false positive might be the exclusion of a true attack
connection in later analysis, whereas a false negative would result in the inclusion of a
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P2P connection. Thus the module should detect as much P2P traffic as possible, while
minimizing the false detection rate.

Design of the Component

The code uses three main heuristics. The first is a simple one that flags connections
on well known p2p ports. The second and third are based on ideas in the paper entitled
"Transport Layer ldentification of P2P Traffic" by Thomas Karagiannis, et al. (In
Proceedings of the ACM SIGCOMM/USENIX Internet Measurement Conference (IMC
2004), Italy, October, 2004).

The second heuristic simply checks if two IPs are making connections on both TCP
and UDP. Certain P2P systems frequently exhibit this type of behavior, and this will flag
all connections between these two IPs as P2P. Since this type of behavior can also be
exhibited by certain benign programs, there is a white list of ports (that is set in the
configuration file) and if the two IPs that are communicating on both TCP and UDP also
make a connection using one of these white listed ports, then none of the connections
between the two IPs will be flagged as P2P.

The third heuristic relies on the following characteristic of P2P systems. Frequently,
in making a P2P connection, a peer will connect to another peer only once, for example
to download a file. If the peer downloads another file, it will most likely be from a
different peer. This type of behavior is quite different from other applications, for
example web traffic. In web traffic it is common to make many connections from one
client to one web server. For each connection the client will select a different source port.
Thus, if we look at a particular destination I1P/port pair, and count the number of unique
IPs that connect to it, and count the number of unique source ports used to connect to it,
the two counts should be close if the destination is P2P, and the port count should be
much higher in other applications, such as P2P. This heuristic categorizes connections
into 3 categories: unknown, p2p, non-p2p. All connections start in the unknown category.
If the difference in the counts for a particular IP/port pair is less than 10 (and the port is
not a well known p2p port), then the connection is marked as a p2p connection. If the
difference in counts is greater than 20, then the connection is marked as non-p2p. If the
port in question happens to be a well known p2p port, then the difference must be less
than 2 to be marked as p2p and the difference must be greater than 10 to be marked as
non-p2p. Also, in order for this check to be applied the count for the number of distinct
IPs that connect to this IP/port pair must be greater than some threshold (which can be set
through the configuration file, with a default value of 20).

For this heuristic, there are many "counter™ heuristics to mitigate the false alarms. The
first of these is the "DNS" heuristic, which determines connections to be non-P2P if the
source port and the destination port of a connection are the same and both of the ports are
less than 501. The second false positive reduction heuristic is as follows: if the
connection is to a well known p2p port AND either the number of distinct byte counts for
connections to this IP/port is 1 or the number of distinct average packet sizes for
connections to this IP/port pair is less than 3 AND either the port is less than 501 or the
port is a well known malware port or the number of distinct IPs that made connections to
this IP/port pair is greater than 5, then mark this IP/port as non-p2p. The third false
positive reduction heuristic is as follows: if there are at least a lower threshold number of
connections made by a particular IP (which can be set in the configuration file and
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defaults to 10) and if the difference between the number of distinct ports this IP made
connections on and the number of those ports which were made to "good™ ports is
(strictly) less than some threshold (which can be set in the configuration file and defaults
to 1) then mark this IP as non-p2p. (The idea being that if most - or all - of the
connections were made the well known ports, such as 80, 21, 53, etc, then this IP is
probably not p2p.)

Finally for the third heuristic, the ends of the connections have been marked as
unknown, p2p, or non-p2p. For each connection, if neither source nor destination was
marked as non-p2p, and at least one end was marked as p2p, then the connection is
flagged as p2p. At the end of the p2p detection routine, the connections have been
flagged with the logical OR of the following flags (in order to indicate which heuristic
flagged it): KNOWN_P2P_PORT (1), TCP_UDP (2), and IP_PORT_COUNT (4).

Configuration Options

print_p2p_details: This option defaults to 1 and if set to one it will print the
flows that were flagged as p2p into an output file.

p2p_success_threshold: This option is not used.

p2p_wellknown_threshold: This option (which defaults to 1) is the threshold
used in the third false positive reduction technique, and is the limit of the
number of connections that can be made to non-"good" ports. This limit is not
inclusive, and thus a value of 1 means that all connections must be made to
the good ports.

p2p_minflow_threshold: This option (which defaults to 10) is used in the third
false positive reduction heuristic, and is the minimum number of flows
required before this test will be applied. This limit is inclusive and so a value
of 10 means that at least 10 connections must have been made by this IP.
p2p_min_connected_ips: This option (which defaults to 20) is the lower limit
on the number of IPs connected to a particular IP/port in order for the third
heuristic to be applied. This limit is not inclusive and so a value of 20 means
that more than 20 IPs must connect for this heuristic to be applied.
malware_port: This option is used in the second false positive reduction
technique as a list of known malware ports. To specify multiple ports, this
option should be repeated, with one port per entry.

good_tcp_udp: This option is used for the white list in the second heuristic.
Multiple ports are specified as in the malware_port option.

good_port: This option is used in the third false positive reduction technique,
and specifies the "good" ports. This list should include ports such as
20,21,53,80,¢etc (i.e. ports that are known to be used frquently for benign
traffic). Multiple ports are specified as in the malware_port option.

3.2.3 Historical Behavior Profiler
Hosts repeatedly show the same session® behaviors as servers or clients. For example, a
web server will have many inbound sessions® going to port 80 or 443 from many clients

! We define a session as a pair of a service request flow and the corresponding response flow.
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and the web server does not open sessions to other hosts unless it is a proxy server. In
addition a server serving several services generally does not behave as a client unless it is
a P2P server. Furthermore a host that behaves as a client generally does not provide any
services. Therefore if we can correctly profile services that a server provides or a client
uses, we can easily identify abnormal services going to the server or coming from the
client.

Design of the Component

Services are recognized through service ports. Therefore service can be profiled with
service ports through which servers provide services and clients make connections. We
profile normal flows that have matching flows (e.g., flows that have corresponding
service request or reply flows.) Flow merging is preceded before finding matching flows
in Netflow data. A flow in Netflow is defined by 7-tuple such as source IP, destination IP,
source port, destination port, protocol, ToS, and incoming interface. We are interested in
only end-to-end communications. Therefore we can ignore ToS and incoming interface
attributes from each flow and merge flows that have the same 5-tuple (e.g., source IP,
destination IP, source port, destination port, and protocol). We use only matched UDP
and TCP flows for service profiling. Time window scheme is used to find UDP matching
flows. If a corresponding response or request flow appears within time t, we match the
flows (e.g., service request and response flows). However there is no corresponding flow
within time T, we regard the flow as an unmatching flow. We currently use 3 minutes as
T and this time window should be adjustable. Matching flows must overlapped in TCP
flows and only normal TCP flag flows (e.g., flows with SYN, ACK and FIN flag) are
considered in service profiling. We define a pair of matching flows as a session. The
session is identified by unique 5-tuple (source IP, destination IP, source port, destination
port, protocol). We profile only inside hosts that reside in our interesting network. We
also separately profile services such as inbound/outbound service sessions in
intranet/extranet communications. Inbound service session means that a local host is a
server and remote hosts initiate a session to the local host. Outbound service session is a
session that is initiated by a local host. In this case the local host acts as a client. We
define inbound sessions as server sessions and outbound sessions as client sessions.
Intranet communications occur between hosts in our interesting local network. Extranet
communications include communications between one local host and one remote host.

Implementation Details
We use several configuration parameters for service profiling like below.
* Number of sessions related to a service: if the number of sessions that uses the
service is smaller than a threshold we ignore the service in a host
* Usage ratio of service: if the usage ratio of a service (e.g., sessions that use a
service over total number of sessions going to/coming from to a host) is smaller
than a threshold we do not profile the service.

We assign anomaly scores in terms of deviations for each session based on profiled
services. The anomaly score will be a real number between 0 (i.e., normal sessions) and 1

2 Inbound session to host A: sessions initiated from another host to host A while outbound sessions are
initiated by host A.
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(i.e., most highly anomalous sessions). The higher anomaly score a session has, the more
anomalous the session is. Anomaly score is assigned as follows. Figure 2 shows the flow
chart of assigning anomaly score to each server session as an example.

e If a host provides services without connection initiation to other hosts (e.g., the
host will have only inbound session profiles; host could be a server) and a session
is initiated by the host, we assign 1(i.e., most highly anomalous) as an anomaly
score of profile deviation to the initiated session.

e |If a host does not provide any services (e.g., the host does not any inbound
sessions; host could be a client) and an inbound session to the host appears, we
assign 1 as anomaly score of profiled deviation to the inbound session.

e If a host has a profiled port (e.g., p) and its usage ratio is o, we assign (1-a) to
anomaly score of a flow that uses port p.

e If a host has a profiled ports but new session’s port does not exist in profiled port,
we set anomaly score as 1

Server Session with
service port p
Has Profiled ) Yes
Is p profiled Port |An0ma|y score=(1-a) |
No No
Anomaly Score = 1L

Has Profiled Yes
Client Port [ Anomaly score=1_|

| No Add Server Session
and
Anomaly score=0

* o is port usage ratio of p

Figure 2. Assigning Anomaly Score to Server session

Input:
Matched Netflow data after merging flow

Output:
Port list and session ratio which a host provides service through or a host uses service

through
e Output file (i.e., server/client port list file) format
IP address
Direction #sessions port_1 port_1 session_ratio port_2 port_2_session_ratio ---
o IP address: 32-bit unsigned integer or dotted decimal IP address

o direction
= 0: inbound sessions from remote domain hosts to local domain
hosts
= 1: outbound sessions from local domain hosts to remote domain
hosts

= 2:inbound sessions between local domain hosts

99



= 3: outbound sessions between local domain hosts
O #sessions: total number of sessions going to the IP address or coming from
the IP address
0 port_n: port number
O port_n_session_ratio: (#sessions going to port_n)/(total number of
inbound or outbound sessions)

Configuration File(profiler.config) Attributes:

e inside: Inside host network ID and network prefix length: it is used for
identifying inside hosts

e multihome: Multi-homing IP addresses: multi-homed host can be dealt as one IP
host

e serverthreshold: Inbound (i.e., server) session threshold. If the total number of
sessions going to an inside host is below this threshold, we do not profile this
inside host for server sessions.

e serverportthreshold: Inbound (i.e., server) port session threshold. If a session
ratio going to a port in an inside host is below a server port session threshold,
we do not profile this port session.

e clientthreshold: outbound(i.e., client) session threshold. If the total number of
outbound sessions from an inside host is below this threshold, we do not profile
this inside host for client sessions.

e clientportthreshold: outbound(i.e., client) port session threshold. It is the same
as sportthreshold except that it is effect to client sessions.

e portthreshold: profiled port threshold. We profile ports whose sum of usage
ratio is smaller than or equal to this portthreshold.

e absolutesession: threshold of absolute number of sessions going to a port. If the
number of sessions going to a port is less than this absolutesession threshold, we
do not profile the port.

3.2.4 MINDS Anomaly Detector

The anomaly detector is a component of MINDS (Minnesota Intrusion Detection System).
The anomaly detector analyses a network's data and builds models of normal behavior. It
then assigns an anomaly score to each connection based on its deviation from this normal
model. The anomaly detector is based on the principle of local outlier factor.

Configuration Parameters

minds.config
This file contains the configuration parameters which can be set by the user to run the
anomaly detector. The various parameters and their explanations are given below
* inside: The IP and mask for the inside network which is being analyzed by
the anomaly detector. The user can specify multiple inside networks one in
each line preceding with “inside”
e session: This specifies what kind of communication is used for anomaly
detection. 0 — all flows, 1 — sessions and 2 — initiating flows only
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train: The size of the training set. The anomaly detector picks up a random
sample from the flow file and trains on that.

test: The size of the test set. The anomaly detector takes all connections if the
value is 0.

time window: length of the time window(in milliseconds) used for feature
extraction

connection window: length of the connection window used for feature
extraction

TIMEOUT: Time(in seconds) after which a connection can be ignored
(usually set for a day)

nn: Number of near neighbours for the LOF algorithm

weights: These are the weights assigned to each of the eighteen features
which are used by the LOF algorithm while calculating distance between two
connections.

minds.rules
This file allows a user to specify a subset of the input data on which the anomaly
detection algorithm has to be run. A typical rule file looks like as follows.

ruleset all active

select all

subset tcp active all

select protocol ==

How Does the Anomaly Detector Work?

The anomaly detector works with the netflow data collected from the router of an
organization's network. The anomaly detector first extracts features from the flow data.
Ten of these features are obtained directly from the flows:

Source IP address

Source Port

Destination IP address
Destination Port

Protocol

Duration

Number of packets received
Number of bytes received
Number of packets sent as reply
Number of bytes sent as reply

There are eight extracted features as follows.
Time based features

Number of unique connections made by the same source IP as the current one
in last < time f; window > secs.

Number of unique connections made from to the same source Port as the
current one in last < time f; window > secs.

Number of unigue connections made to the same destination IP as the current
one in last < time f; window > secs.
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* Number of unique connections made to the same source Port as the current

one in last < time f; window > secs.
Connection based features

*  Number of unique connections made by the same source IP as the current one
from among last < connection f; window > connections.

* Number of unique connections made from to the same source Port as the
current one from among last < connection f; window > connections.

*  Number of unique connections made to the same destination IP as the current
one from among last < connection f; window > connections.

e Number of unique connections made to the same source Port as the current
one from among last < connection f; window > connections.

The code randomly chooses a training set from the entire input. The size of the train and
test sets is specified separately in a config file which will be explained later. The code
considers each test connection and finds its distance from its neighbors according to the
LOF algorithm. Based on this distance and the distance of the neighbors their neighbors
an anomaly score is assigned. Thus if a connection is an outlier its anomaly score would
be higher than a connection which is close to its neighbors. After calculating the anomaly
scores, the code finds the contribution of each feature towards the score. The scores,
connection details and the contributions are printed out to an output file.

Building and Running the anomaly detector code

The anomaly detector code is available as a gzipped tarred file - minds.tar.gz
To unzip

% tar -zxvf minds.tar.gz

Inside the minds directory the Makefile needs to be modified as follows
FTLIB should point to the lib directory of the flow-tools.

FTINC1 should point to the lib directory of the flow-tools.

FTINC2 should point to the source directory of the flow-tools.

To build

% make

Torun

% cat flow-file | minds minds.config minds.rules output file method

The output file is the prefix appended to the output files generated by the anomaly
detector.

Output of Anomaly Detector
The output of the anomaly detector is sorted based on the anomaly score of the
communication. Each line corresponds to one connection. The fields for each connection
are as follows:

e Anomaly Score for the connection

e Start time for the connection

e Duration of the connection

* Source AS

e Source IP

* Source Port
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e Destination AS

e Destination IP

e Destination Port

* Protocol

* TCP Flags

*  Number of Packets

*  Number of Octets
The next 18 fields correspond to the contribution of each of the above mentioned 18
features in calculating the anomaly score.

System Requirements

The distribution of the anomaly detector contains a number of files written entirely in
C++, and is portable on most UNIX systems that have a GNU GCC compiler. It also
requires the flow tools which are available at http://www.splintered.net/sw/flow-tools/.

3.3 Level 2 Analysis Modules

3.3.1 Anchor Point Identification
The anchor point identification (API) process takes the outputs of multiple alert sensors
(e.g. Snort, MINDS scan detection and MINDS anomaly detection) as evidences, and
produces the set of events involved in attacks with higher confidence than relying on any
single level 1 IDS tool. Though API could be generally categorized as one type of alerts
correlation, we draw the distinction from traditional correlation systems that this
approach incurs unique requirements such as APl does not need to catch all or most of
the steps of an attack as the rest of the attack can be picked up by the attack context
extraction phase. The key requirements for APl are summarized below:
* API must have low false positives while maintaining high coverage of attacks.
An attack is considered “covered” if at least one attack event in this attack is
picked up by API. The Low false positive requirement is needed to ensure that
the subsequent context extraction starts from a highly trusted base thus can focus
on reducing low false negatives. Because high attack coverage can accommodate
high false negative, this challenge is a relaxation of the conventional more
stringent requirement that requires low false positives and low false negatives
simultaneously. This requirement gives hope for API to achieve extremely low
false positives.
* APl must be fast given that the network events and alerts can be very high in
volume.
e APl must be easy to configure to support a variety of rules.

Design of the component
In order to address the above requirements, the API design went through the following 4
steps:

1. Select the right set of level-1 IDS outputs for correlation

2. Select an group of effective methods for correlation to support

3. Build a mechanism to support flexible configurations (i.e. correlation

specifications)
4. Data structures and algorithms are used / designed such that required times of
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scanning the input alerts especially the annotated minds flows is minimized.

To address the high coverage of attacks requirement, level-1 IDS inputs are selected such
that they provide orthogonal information. We found that Snort and MINDS anomaly
detection are good candidates since Snort is a signature-based system with knowledge of
known suspicious patterns while MINDS looks at the network behavior and has the
capability of detecting novel attacks using data mining techniques such as clustering.
Experiments with SKAION data has shown that they indeed provide a good combination
for coverage.

The low false positive requirement can be achieved through aggressive alert reduction
and setting stringent threshold. Our experiments with SKAION data revealed that using
the intersection of Snort and MINDS with anomaly rank threshold of 0.5% yielded very
low false positives while covered all attacks. Our preliminary experience with UMN
network traffic showed that inside scanners, blacklists and host behavior anomaly might
also be effective. Thus the current version of API supports all of the above methods. An
intuitive predicate-based rule configuration is used in API to specify the correlation
methods and corresponding parameters. Std::Map’s are extensively used to reduce the
sequential scan of alerts.

Implementation details

API takes four arguments specifying the configuration file, snort alert file, blacklist file
and the annotated MINDS output file. API first loads in the configuration files and builds
a set of rules. Then blacklisted IP’s or subnets are loaded in and stored in a vector.
Finally the MINDS output — annotated flows are read in. While being stored in a vector,
all snort alerts are ranked based the highest rank of the flows that either the source ip or
the destination ip of the snort alert gets involved in. The blacklisted flows are also built
up in this pass.

After loading the data and the initial processing, the rules are evaluated against their data
set one by one to build the anchor point lists. Note that current rule configuration allows
uses to build a “select” set and an “ignore” set. The final anchor point list is (the “select”
set — “ignore” set). Finally the anchor point list is compressed according to (source ip,
destination ip). Redundant (source ip, destination ip) pairs are suppressed and a count of
number of occurrence is provided for each pair.

Input/output formats

e The format of annotated flows from MINDS is same as the MINDS output as
specified in section X.x.X.X.

* The format of the snort alert conforms to the one used in SKAION dataset as
illustrated in sample file api.snort.

e The formats of blacklist file start with keyword inside and followed by the subnet
address and network mask. Note an individual IP is specified by making the
network mask 32. All three fields are space separated.

* The format of configuration file starts with keyword select or ignore, specifying
the destination buckets. Then data source is specififed. Right now, thress data
sources are supported, i.e. blacklist / snort / minds_flows. Following each data
source are a set of the operators and operands (i.e. predicates) logically AND-ed
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together. The sample configuration file api.config illustrates how to construct the
common rules.

e The output of the API is a list of anchor points identified by the (SrcIP, DestIP)
pair and supplemented with information such as the highest rank, the index of the
associated flow the timestamp of the flow and how many anchor points of the
same pair are suppressed. The exact order of these attributes follows: “Rank”
“Index” “Timestamp” “SrcIP” “DstIP” *“# of alerts”.

Sample usage
The following is a sample usage of the API.

api api.config api.snort api.blacklist minds.flows

Executing this command line generates a file anchors.API. All the sample files
(api.config api.snort api.blacklist minds.flows, anchors.API) are provided with this
document in directory.

3.3.2 Context Extraction

In the Attack Context Extraction stage, entities (hosts, flows, etc) relevant to the attacks
represented by the anchor points are identified. Specifically, this stage uses the anchor
points and finds other network events related to them, in time, IP space, or other
attributes. Viewing individual events as nodes of a graph, and relationships between them
as (directed) edges, this is essentially a graph expansion stage. Precise behavior profiling
plays a crucial role in this stage since failing to limit the expansion to truly anomalous
entities will cause the expansion to cover a large number of entities irrelevant to attacks,
thus reducing the fidelity of the analysis. The main objective of the context extraction
step is to use the anchor points detected in the previous step and provide a complete set of
attack-related events which can be used in further analysis, either by an analyst or an
automated process.

This analysis is done recursively on the new events added to the context. This step
enhances the output of the anchor point identification step by adding any attack related
information which could be missed in the earlier step. As described in the previous
section, the anchor point identification strives to minimize the false positives while
leaving a margin for missing some attack events. Context extraction aims at capturing
these missed events while preserving the low false positive rate. If the context is not
refined properly, it could soon grow to cover the entire network. This is the main
challenge for the context extraction step. The context refinement is done by using
“normal” profiles for hosts to ignore the normal traffic related to an anchor point and
using certain “attack” profiles to add similar traffic to the context.

Design of the Component

The algorithm currently goes through a series of "lterations”. At the beginning of each
iteration, there is a list of all the IPs contained within the context. During the iteration,
the flows are each processed. If one of the IPs involved in the flow in contained within
the context already, and if the flow passes the specified rules (and the flow is not already
in the context) then the flow is added to the context (and any IPs not already contained
within the context will be added. The iterations continue until a pre-specified limit is
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reached - either the maximum number of iterations is reached, or the maximum number
of nodes has been added, or no more nodes were added (the transitive closure was
obtained). Currently the rules are as follows:

Ignore P2P

Ignore Scans without replies

Ignore non-tcp traffic

Ignore flows which are flagged as normal by the host profiling module (this rule
is ignored if the flow is a scan with a reply).

The first 3 rules can be turned off via the configuration file. The thresholds for what is
defined as normal can also be defined through the configuration file.

Input/Output Format
For input, this component takes the following files (the formats have been described
earlier):
e Annotated Flow file as output from MINDS anomaly detection
e Anchor point list as output from the APID module
e Configuration file
The output of this stage is in the same format as the MINDS annotated flow file (with
the addition of one field at the end of each line to identify the iteration in which this flow
was added). This file contains a subset of all the flows in the annotated flow file,
specifically those flows that were found to be within the context.

Configuration File Attributes

The format of the configuration file is as follows: each option is on a line by itself,
with the option name followed by a space and then the value for that option. Comments
can be inserted by making the first character of the line a ‘#’ symbol.

e num_nodes: Maximum number of nodes to be added to the context. 0 means no
limit. (This limit is checked at the end of each iteration, so more nodes may be
added than this limit, but no more after an iteration.)

e num_iterations: The maximum number of iterations for which to run the context
extraction. 0 means no limit.

e normal_threshold: The threshold for what defines normal as flagged by the host
profiling module. Completely normal is defined as 0 and completely abnormal is
defined as 1.

e attenutation_factor: After each iteration the normal_treshold is multiplied by this
value, to allow for an ever increasing (or decreasing) definition of normal. This
allows for the functionality of increasing the threshold to only add flows and
nodes in later iterations that are more abnormal. Set to 1 for the threshold to
remain constant, >1 to increase (later flows must be more abnormal), or <1 to
decrease (later nodes can be less abnormal). <1 is not recommended.

e ignore_scan_no_reply: This allows the user to turn off the rule to ignore scans
with no replies. Set to 1 to enable, O to disable.

e ignore_p2p: Same as above, but for p2p traffic. It is recommended to set this to 1
for public type traffic and O for IC type traffic (where p2p would be expected to
be non existant).
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e only use_tcp: This allows the user to ignore all non-tcp traffic or to consider all
types of traffic. Set to 1 to only look at tcp and 0 to look at all types.

e ignore_conns_with_no_reply: This allows the user to turn off the rule of ignoring
failed connection attempts. This rule prevents the context from blowing up too
much by not adding IPs for which there was no successful connection (no bytes in
response). 1 turns the rule on, 0 turns the rule off (so that failed connections will
be added to the context).

4 Case Studies: SKAION data

We evaluated our proposed framework using datasets generated by SKAION
Corporation . These datasets are simulated to be statistically similar to the traffic found in
Intelligence Community. This dataset has several scenarios with attacks injected that
follow different patterns. In the following sections we first describe the nature of the
SKAION dataset, then discuss methods we used to evaluate our framework, and finally
we show our results. As can be seen in the following results, even though our approach
currently uses only simple implementations for each component, our overall analysis
captures the major attack steps successfully.

4.1 SKAION Dataset

As part of the ARDA P2INGS research project, the SKAION Corporation has released
several sets of simulated network traffic data. This data includes various scenarios of
multi-step sophisticated attacks on resources within a protected network. The scenarios
for which they have generated data include single stage attacks (a simple scan or exploit
or data exfiltration scenario), bank shot attacks (where an internal host is compromised
and used to attack another internal host), and misdirection attacks (where a “noisy” attack
is staged on one part of the network while the true attack takes place in a more stealthy
manner in another part of the network). In addition to the main attack, there are other
background attacks (none of which are successful) and scans. To date, they have released
3 datasets to date, including many instances of these scenarios. However, for the sake of
space, we will describe our results on one scenario in detail and present a summary of our
results on other scenarios. The network topology in these scenarios is comprised of the
following four domains: (i) the target protected domain, BPRD (Bureau of Paranormal
Research and Defense) comprising of various servers which are the typical targets for
attacks; (ii) a secondary internal domain which is not as protected as the protected
domain and comprises of servers as well as clients. The hosts inside this domain have
additional privileges to access the protected domain, BPRD; (iii) a set of external hosts
which consists of attackers as well as normal users and (iv) a trusted domain which
consists of remote users access the protected network with additional privileges over a
dialup or a VPN connection. All traffic entering and leaving the entire internal network is
captured by tcpdump. Snort alerts are collected for traffic exchanged between the
external network and entire internal network.
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4.1.1 Single Stage Attacks

These scenarios are compromised of a simple attack made up of four steps. First,
scanning is used to determine the IP addresses in the target network that are actually
associated with live hosts. Typically in these scenarios, this is done by an attacker
performing reverse DNS lookups to see which IPs have domain names associated with
them. The next step consists of an attacker (or multiple attackers) probing these live hosts
to determine certain properties, such as which OS and version is running on the host.
Then one of these hosts is attacked (possibly by a host that was not involved in any
previous steps) and compromised. Finally, a backdoor is opened, to which the attacker
connects, and performs various malicious activities, such as data exfiltration or the
downloading and installation of attack tools.

4.1.2 Bank-Shot Attacks

These attacks are aimed at avoiding detection by using an “insider” host to launch the
actual attack. In this scenario, initial scanning is done, and then an attack is launched
against a host in the BPRD network. This attack fails, and the attacker then scans and
compromises a host in the secondary internal domain. From this server, the attacker scans
and launches attacks on hosts in the protected BPRD network. A host is then
compromised, from which data is exfiltrated.

4.1.3 Misdirection Attacks

The attacker attempts to draw the attention of the analyst away from the real attack. He
does this by launching a noisy attack (one which sets off many IDS alerts) on a particular
set of hosts in the protected network. Then using a previously compromised host in the
trusted domain, he attacks and compromises another host in the BPRD network, from
which he exfiltrates data.

4.2 Evaluation Methodology

Before discussing the results of our experiments, we first describe how we performed the
experiments and the methods we used to evaluate our framework. For a given scenario,
we first ran all low-level IDS tools to generate the alerts, anomaly scores, etc. For
profiling, we used ten and five connections for Ts and T, respectively. This means that a
host was profiled as a server only if it had more than 10 inbound connections. Similarly, a
host was profiled as a client only if it had more than 5 outbound connections. In addition
we only profiled ports with more than two connections. We then ran Anchor Point
Identification using multiple rules for detecting the anchor points in order to compare the
performance and sensitivity of each set of rules. First, we used Snort alone, where each
Snort alert was selected as an anchor point. Next, we used the MINDS anomaly detector
alone, where the connections that ranked in the top k% of anomalies were selected as
anchor points. Finally, we combined Snort and MINDS in the method described in
Section 3.3.1. The anchor points selected were those Snort alerts in which at least one of
the IPs was involved in a highly ranked anomaly (ranked within the top k% of MINDS
Anomaly Detector output). The evaluation criterion for the anchor points is twofold: first,
whether it covers the attack (i.e. did it have any true positives), and second, whether it has
low false positives (the lower the better). The Anchor Point Identification step generates a
set of events (anchor points) which represents a connection between two hosts.
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An anchor point is related to the attack scenario if the connection it represents is a part of
some attack step. In our results section, the results of this step are represented by the
number of attack related hosts detected (true positives) and number of non-attack related
hosts detected (false positives). A host is counted as attack related if it is present in an
attack related anchor point (in this case we call it covered, as introduced in section 3.3.1).
If a host is present only in non-attack related anchor points, it is counted as a false
positive.

Following the Anchor Point Identification step, Context Extraction was run with each set
of anchor points found by different rules utilized by Anchor Point Identification. No other
parameters were varied for this step, since the parameters mainly consist of limiting the
expansion, and for our experiments this step was run until no more contexts were added.
The goal for this step is to detect all attack related steps (with emphasis on the more
important steps, e.g. initial scanning is less important then exploits or backdoor accesses)
while reducing the number of non-attack related steps. Note that there are two types of
non-attack related hosts that could be added to the context. First, they could be part of
background attacks, which are still interesting for the analyst. Second, there are real false
positives, which are not a part of the actual attack scenario or the background attacks.

All the tables for the results follow the following notation:

* AS:Attack Steps This represents the high level attack steps like probing
(information gathering), actual exploit, backdoor access, or data exfiltration.

* AH:Attack-related Hosts This includes all hosts related to the attack scenario
including external scanners, external attackers, internal hosts scanned by the
attackers for information and the eventual victims which get compromised.

* BA:Background Attack Related Hosts This involves all hosts related to the
background attacks in the traffic as attackers or victims.

* FP : False Positives This counts all hosts that are not related to the actual attack
scenario or to the background attacks but are wrongly detected by our
framework.

4.3 Detailed Analysis: SKAION Scenario - 3s6

We present our detailed analysis on one of the bank shot attack scenarios. The scenario
we evaluated (called 3s6) had 122,331 connections in the traffic, involving 4516 unique
IPs, on which there were 6974 Snort alerts.
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Figure 3. Different steps and hosts involved in attack scenario 3s6

The attack graph for the scenario 3s6 is shown in Figure 3. The various steps involved
(in chronological order) are :

A;: O (74.205.114.158) scans 92 hosts (936 flows) inside the BPRD network.
Ay O, (42.152.69.166) attacks internal server, 1; (100.10.20.4) four times (17
flows) and fails each time.

Asz: O; (168.225.9.78) port scans (18 flows) secondary internal host, S;
(100.20.20.15 alias 100.20.1.3).

Ay O4 (91.13.103.83) attacks S; (78 flows) using Apache OpenSSL SSLv2
Exploit and succeeds.

As: S; port scans 6 servers in the BPRD network (895 flows) including the
eventual victim, I, (100.10.20.8).

A6: S; launches attacks on I, using IS IDA-IDQ exploit and succeeds. It also
browses through the files of I, (4 flows).

The attackers try to confuse the analyst by first scanning and unsuccessfully attempting to
attack the internal network (Steps A; and Ay). Most of the attack related Snort alerts are
on this traffic. Another attacker then attacks the secondary network and compromises an
internal host (S;). This host is then used to scan the BPRD network and launches an
attack on I,. Since this traffic is internal, it is not detected by Snort.
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Config AH | FP

Snort 96 | 169
0.2 5 5
Top k% anomalies | 0.5 8 67

1.0 50| 114
0.2 93 0
05 |95 39
1.0 |98 83

Table 1: Results for Anchor Point Identification on Bank-Shot Scenario 3s6

Snort +
Top k% anomalies

Config # lterations AS AH BA FP
Snort 2 5(A1, Az, Ay, As, Ag) 24 3 75
0.2 2 5(A1, Az, Ay, As, Ag) | 24 3 43
Top k% anomalies 0.5 2 5(A1, Az, As, As, Ag) 24 3 58
1.0 2 5(A1, Az, As, As, Ag) 24 3 93
e [0t | SAAAAALL B
H . 1 23 4y 5y 6,
Top k% anomalies " 2 5(As A Ay A A) | 24 | 3 | 47

Table 2: Results of Context Extraction on Bank-Shot Scenario 3s6

The results of context extraction in Table 2 show that the framework succeeds in
capturing a large portion of the attack scenario (5 out of 6 attack steps). The context also
captures some background attacks present in the traffic. The false alarms arise because of
following reasons - 1) Mislabeled Flows - These arise because of errors in the data
converting component due to which initiating flows might be labeled as replies and vice
versa. 2) False alarms from Our Profiler - Host/service profiler has an associated false
alarm rate due to which some non-attack related flows are added to the context.

All configurations for anchor points result in detecting a portion of the scanning activity
by O as anchor points in Table 1. From these anchor points, the scanning activity A; is
added to the context. Since 11 is scanned by Oq, its traffic is analyzed. This results in
adding the failed attack attempts, A, to the context. I, is also scanned by O;. Since I, is
attacked by S, this attack step As, is added to the context. On analyzing the traffic to and
from S;, the scanning activity As is added to the context. Similarly the attack step, A4 on
S, is also added to the context. The attack step As, is not captured since it involves
probing of S; on ports on which it is a server. However, we capture all those attack steps
from which we can construct the core attack scenario.

We observe from Table 1 that if we use a correlation of Anomaly Detector and Snort we
get less number of false positives as anchor points. As we relax the constraints in Anchor
Point Identification step, we detect more attack related hosts, but the number of false
positives also increases. However, from the context extraction results in Table 2 we
observe that we still detect the major portion of the attack scenario even if we start with a
less number of anchor points. Moreover, the presence of false positives in anchor points
results in a high false positive rate for context extraction.
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4.4 Results for Other Scenarios

The results of our analysis on other scenarios are summarized in Table 3. The
configuration used for Anchor Point Identification was the combination of Snort Alerts
and top 0.5% of MINDS Anomaly Detector Output. From the table we observe that our
implementation is able to capture all important steps of each attack scenario except for
the scenario - Five by Five (In this case, the volume of traffic related to the victim host
was not enough to be profiled, thereby that host was not added to the context). The attack
steps which were missed in all cases involved failed attack attempts or probes before
attacks. Our implementation captured all the important attack events, such as the actual
exploit, data exfiltration for all but one scenario from which the core attack scenario can
be generated. From the results we can observe that by using strict thresholds for Anchor
Point Identification, we are able to detect some attack related events (as anchor points)
while keeping the number of false positives very low. Using these anchor points, we
successfully detect the core attack scenario in all but one scenario along with some
background attack activity. Since the number of non attack related anchor points are low,
the false positives in the context extraction step are also very few.

. Ground Truth Anghor Context Extraction

Scenario Point
# Conn # Hosts # Alerts AS | AH AH FP AS | AH BA FP
Naive 1739 581 27 4 10 2 0 4 3 0 0
Simple Ten | 12040 2616 114 4 246 4 0 4 6 0 1
Five by 7853 2101 177 3 13 5 45 0 0 0 5

Five

Ten by Ten 9459 1435 54 4 16 5 11 4 5 0 1
Single Stage S9 4833 472 53 3 2 2 3 3 2 0 0
S10 4792 582 58 4 3 2 6 3 2 0 0
S14 8915 1210 95 3 2 2 9 3 2 12 4
S16 5711 368 1372 4 3 2 4 3 2 2 3
S24 4334 699 452 6 10 2 4 4 4 1 3
3s10 47490 3084 3150 3 6 5 21 3 6 1 5
Bank shot sl 45161 12292 10896 6 7 4 32 6 7 11 3
s37 23970 1517 7671 6 5 4 18 6 4 0 0
Misdirection s29 10926 627 451 7 6 5 1 7 6 0 4

Table 3: Summary of results for different SKAION scenarios

A brief description of our results on each scenario is given below:

e Naive Attacker All attack related steps are detected. The 7 attack-related hosts
that are not detected are the hosts inside BPRD which are scanned by the attacker
as part of the probe, but do not reply back. Thus they do not supply any
information to the external attackers.

e Simple Ten All attack related steps are detected. The 240 attack-related hosts not
detected are again the scanned hosts which do not reply back.

e Five by Five We fail to detect any attack steps or any attack related hosts. In this
scenario, the victim host inside the network was not involved in any traffic with
external world apart from the attacks launched by outside attacker. There was no
profile generated for this host and hence the attacks could not be distinguished
from normal traffic. The attack would have been detected if there was enough
traffic which would meet the thresholds related to profiling of internal servers.
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e Ten by Ten AIll attack related steps are detected. 11 attack-related hosts not
detected include 6 scanned hosts which do not reply back and 5 external scanners
who never get a reply back from the hosts which they scan. Thus effectively,
these external scanners never get any information about the internal network and
hence do not contribute to the actual attack scenario.

e 59 All attack related steps and attack related hosts are detected without any false
positives.

e 510 One attack step is missed in this scenario. The missed step is a failed attack
launched by one external attacker on an internal host which is not the eventual
victim. Thus this step is not an important part of the whole attack scenario.

e 514 All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise due to mislabeled connections (replies labeled as initiating
connections). This occurs during the conversion of tcpdump data to netflow
format.

e 516 One attack step is missed in this scenario. The reason for this is same as in
scenario s10. We also detect two background attacks as a part of the context. The
false positives arise because of two outside hosts involved in traffic on random
high ports with internal servers which does not conform to the normal profile of
those internal servers.

e 524 In this scenario three external attackers did a distributed scanning of the
internal network. One of the scanners got a reply back from the eventual victim
while the other two did not get any replies from the hosts which they scanned.
These two scanning steps which did not contribute any information were missed.
The false positives occurred because of the same reason as in scenario s16.

e 3510 All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise due to mislabeled connections (replies labeled as initiating
connections) or due to outside hosts accessing internal servers on random high
ports.

e sl All attack related steps and attack related hosts are detected. We also detect
some of the background attacks in the traffic. The false positives detected in this
scenario arise because of external hosts accessing internal servers on random high
ports.

e 537 In this scenario, one of the attackers port scans two internal servers but gets
reply only from one which is eventually attacked. The other server does not
supply any information back to the attacker. Only this server is not detected while
all other involved hosts and attack steps are detected.

e 529 All attack steps except for one initial probe, which did not get any replies,
were detected. The false alarms occur for the same reason as in scenario s1.

5 Conclusion

We have shown an analysis framework and the results of case studies through SKAION
data. Our main contributions are to address the tradeoff between false positive and false
negative by decomposing the analysis into two steps. In the first step, anchor point
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identification analyzes highly restrictive fashion, which selects the events that have a low
false positive rate. In the second step, these events are expanded into a complete attack
scenario by using a less restrictive analysis, with the condition that the events added are
related somehow to the events detected in the first step. We have shown two-step analysis
approach can be beneficial in analyzing network traffic and IDS alerts to discover multi-
step, sophisticated attacks. Our two-step approach worked well with the simple
components.
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1 Introduction to MINDS 2.0

MINDS level II analysis system (or MINDS 2.0) captures attack scenarios from net-
work traffic using a two-step methodology. The first step involves detecting highly
suspicious attack related events using a combination of several intrusion detection com-
ponents. The second step recursively builds a context around these suspicious events
to capture the other less suspicous attack related events. Refer to the design document
for detailed architecture of the whole system.

2 System Requirements

MINDS 2.0 is written in GNU C++ and Perl and tested extensively on Linux and
FreeBSD. Currently the distribution is available in binary format which can run on
ix86 architectures.

3 Download and Installation

The installation requires two external libraries.

1. libpcap - This library is a system-independent interface for user-level packet
capture and is required by the tcpdump converter module. The library can be
downloaded from -
http://www.tcpdump.org/release/libpcap-0.8.3.tar.gz
To unzip
$ tar -zxvf libpcap-0.8.3.1ar.gz

2. flow-tools - Flow-tools is a software package for collecting and processing Net-
Flow data from Cisco and Juniper routers and is required by the flow-converter
module. The package can be downloaded from -
ftp://ftp.eng.oar.net/pub/flow-tools/flow-tools-0.66.tar.gz
To unzip
$ tar -zxvf flow-tools-0.66.tar.gz

Note that above two libraries need to be built before installing the MINDS 2.0 software.
See the documentation provided with these packages for build instructions.

To install the software first copy the files from the CDROM to a local directory -
$local-home.
To install
$ cd $local-homeinstall $ .install During installation the location of the above two
libraries will be asked.
The executables and the configuration files are installed in $local-homebin
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4 Description of Input Data

The MINDS 2.0 converts the input network data into its own internal format. Refer
to the design document for the structure of this format. Currently, the system supports
conversion of Cisco Netflow Format and TCPDump data to the internal format. The
TCPDump data is first converted to an intermediate flow format using the collector
utility. Adding support for any other format would require writing filter for that format
and plugging it into the system. For more details regarding format conversion refer to
section 7.1.

S Executing MINDS 2.0 - Basic Usage

MINDS 2.0 can be executed from the command line as follows

$ cd $local-homebin $ minds2 <flow-file> <flow-format> <output-file>> The first
parameter specifies the location of the network traffic flow file and the second parame-
ter specifies the format of the flows. Currently the system supports two flow formats.

o flow-format = 1, if the flows are of CISCO Netflow format.
o flow-format = 2, if the flows are of TCPDump intermediate flow format.

The output-file contains the final output of the system which includes the highly sus-
picious flows captured from the input traffic. The details about the output format are
provided in section 6.

5.1 Setting Configuration Parameters

As mentioned earlier, the MINDS 2.0 system involves multiple execution steps. The
output of each step can be controlled by specifying several threshold and other control
parameters through configuration files. The description of the configuration files for
each of the section are given below.

5.1.1 Historical Profiling

The configuration file used is named - serverDetection.config. The various parameters
that can be set in this file are:

e inside: Inside host network ID and network prefix length. It is used for identify-
ing inside hosts

e serverthreshold: Inbound (i.e., server) session threshold. If the total number of
sessions going to a local host is below serverthreshold, we do not profile this
local host for server sessions.

e serverportthreshold: Inbound (i.e., server) port session threshold. If a session
ratio going to a port in a local host is below a serverportthreshold, we do not
profile this port session(s).
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e clientthreshold: outbound(i.e., client) session threshold. If the total number of
outbound sessions from a local host is below clientthreshold, we do not profile
this local host for client sessions.

e clientportthreshold: outbound(i.e., client) port session threshold. If a session
ratio going to a port in a remote host is below a clientportthreshold, we do not
profile this port session(s).

e portthreshold: profiled port threshold. We profile ports belong to first n largest
port usage ratio. In this case the sum of usage ratio of the n ports should smaller
than or equal to this portthreshold in a host.

e absolutesession: threshold of absolute number of sessions going to a port. If the
number of sessions going to a port is less than this absolutesession, we do not
profile the port.

e format: it tells if the input trace is tcpdump intermediate flows (1) or CISCO
netflows (0)

A sample configuration file is shown in figure 1.

Serviceprofiler.config
inside 100.0.0.0 8

serverthreshold 10
serverportthreshold 0.2
clientthreshold 5
clientportthreshold 0.1
portthreshold 0.8
absolutesession 2

Figure 1: A sample configuration file for Behavioral Profiling Component

5.1.2 Anomaly Detector

The MINDS Anomaly Detector requires a configuration file - minds.config and a ruleset
file - minds.rules.

minds.config This file contains the configuration parameters which can be set by the

user to run the anomaly detector. The various parameters and their explanations are:

e inside: The IP and mask for the inside network which is being analyzed by the
anomaly detector. The user can specify multiple inside networks one in each line
preceding with “inside”.

e session: This specifies what kind of communication is used for anomaly detec-
tion. O - all flows, 1 - sessions and 2 - initiating flows only.
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e train: The size of the training set. The anomaly detector picks up a random
sample from the flow file and trains on that.

o test: The size of the test set. The anomaly detector takes all connections if the
value is 0.

o time window: length of the time window(in milliseconds) used for feature ex-
traction

e connection window: length of the connection window used for feature extraction

e TIMEOUT: Time(in seconds) after which a connection can be ignored (usually
set for a day)

e nn: Number of near neighbours for the LOF algorithm

e weights: These are the weights assigned to each of the eighteen features which
are used by the LOF algorithm while calculating distance between two connec-
tions.

Figure 2 shows a sample configuration file for Anomaly Detector Component.

minds.rules This file describes how the rule files can be used to filter the data.

o Ruleset keyword can be used to combine multiple runs in one shot. Anomaly
detection is run for every subset of flows corresponding to each ruleset.

e After a Ruleset keyword, rules can be typed in. There are two types of rules:
select and ignore. The default action of a ruleset is ignore all, i.e. if no select
rule applies for a given record, it’s ignored. Not all the rules have to be executed
for every single flow record. The action suggested by the rule (select / ignore) is
applied right away when a rule matches the record, i.e. if a select rule matches
the record, it’s added to the subset even if a later ignore rule matches the record
too. The precedence of the rules is from top to bottom; if the first rule doesn’t
apply, only then the second will be applied.

e After a select / ignore keyword, one of the following keywords can be used.
srcip, dstip, srcport, dstport, protocol, packets, octets or all. The operations
that can be specified on these fields are: >=, >, ==, |=, <=, <, inside, outside,
net_equal, net_not_equal.

e The operations should be followed by values of appropriate type. Multiple rules
on one line will be interpreted as AND’ed together. “inside” and “outside” can
be used provided that the boundaries of the network should be specified in the
config file.

In the case of ’all’, the rule will match anything and the action suggested by the rule
will be executed right away. Figure 3 shows some sample rules.
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5.1.3 P2P Detector

The various configuration parameters for P2P Detector are specified as follows.

e print_p2p_details: Flag to print detailed information about the connections flagged
as p2p
e p2p_success_threshold: Not used

e p2p_port: ports that are known to have p2p traffic on them (this option can be
repeated as many times as necessary - one for each port)

e malware_port: ports that are known to have malware traffic on them (this option
can be repeated as many times as necessary - one for each port)

e good_tcp_udp: ports that are known to have traffic that uses both tcp and udp on
them (this option can be repeated as many times as necessary - one for each port)

e good_port: well known commonly used ports (this option can be repeated as
many times as necessary - one for each port)

o p2p_wellknown_threshold: the (non-inclusive) upper limit on the difference be-
tween the number of connections and the number of connections to ports labeled
as ”good_port”

o p2p_minflow_threshold: for the above condition to be applied (p2p-wellknown_threshold),
there must be at least this many connections for a given host (inclusive)

e p2p_min_connected_ips: only consider for labeling as p2p, if this ip/port pair has
communicated with at least this many distinct ips(non-inclusive)

A sample configuration file for P2P Detector is shown in figure 4.

5.1.4 Anchor Point Identification

This component requires following configuration and other input files.

e api.snort - This contains the SNORT alerts used for anchor point identification.
A sample entry looks like
11/30-14:38:18.829992 [**] [119:4:1] (http_inspect) BARE BYTE UNICODE ENCOD-
ING [**] TCP 192.168.222.2:46490 -> 100.5.55.100:80

o api.blacklist - This contains the list of blacklisted hosts. The format of blacklist
file starts with keyword inside” and followed by the subnet address and network
mask. Note an individual IP is specified by making the network mask 32. All
three fields are space separated. A sample entry looks like:
inside 100.5.111.0 24

e api.config - This contains the rules used to select anchor points. Currently, three
data sources are supported, i.e. blacklist / snort / minds_flows. Following each
data source are a set of the operators and operands (i.e. predicates) logically
AND-ed together. #” is used for comments. ”&” is used to specify the logical
AND of two predicates within one rule.
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Figure 5 shows sample Anchor Point Identification rules.

5.1.5

Context Extraction

The different configuration parameters used for context extraction are listed below.

num_nodes: Maximum number of nodes to be added to the context. 0 means no
limit. (This limit is checked at the end of each iteration, so more nodes may be
added than this limit, but no more after an iteration.)

num_iterations: The maximum number of iterations for which to run the context
extraction. 0 means no limit.

normal_threshold: The threshold for what defines normal as flagged by the host
profiling module. Completely normal is defined as 0 and completely abnormal
is defined as 1.

attenutation_factor: After each iteration the normal_treshold is multiplied by this
value, to allow for an ever increasing (or decreasing) definition of normal. This
allows for the functionality of increasing the threshold to only add flows and
nodes in later iterations that are more abnormal. Set to 1 for the threshold to
remain constant, ;1 to increase (later flows must be more abnormal), or ;1 to
decrease (later nodes can be less abnormal). {1 is not recommended.

ignore_scan_no_reply: This allows the user to turn off the rule to ignore scans
with no replies. Set to 1 to enable, O to disable.

ignore_p2p: Same as above, but for p2p traffic. It is recommended to set this to
1 for public type traffic and O for IC type traffic (where p2p would be expected
to be non existent).

only_use_tcp: This allows the user to ingore all non-tcp traffic or to consider all
types of traffic. Set to 1 to only look at tcp and O to look at all types.

ignore_conns_with_no_reply: This allows te user to turn off the rule of ignoring
failed connection attempts. This rule prevents the context from blowing up too
much by not adding IPs for which there was no successful connection (no bytes
in response). 1 turns the rule on, O turns the rule off (so that failed connections
will be added to the context).

Figure 6 shows a sample configuration file for context extraction.

6 Output Format

The output file of MINDS 2.0 is a text file with each line corresponding to suspicious
connection. Each line has 40 attributes. The labels and description of these attributes
is given in table 1.
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[ Column [

Label

Description

1 Connection ID ID of the Connection
2 Anomaly Score Score assigned by Anomaly Detector
3 Time Stamp Time at which the connection starts
4 duration Duration in seconds for which the connection lasted
5 Src IP/ Src Port Source IP and the Source Port in the connection
6 Dst IP/ Dst Port Destination IP and the Destination Port in the connection
7 Protocol Protocol - tcp, udp, icmp, arp etc.
8 ttl Time to live - Defined for TCP connections
9 TCP Flags Defined for TCP Connections
10 window size Defined for TCP Connections
11 packets sent Number of packets sent from src to dst
12 bytes sent Number of bytes sent from src to dst
13 packets received Number of packets sent from dst to src
14 bytes received Number of bytes sent from dst to src
15 p2p bit 0 - normal connection, 1 - p2p connection
16 scan bit 0 - normal connection 1- scan 2 - scan with a reply
17 inside bit 0 - dst ip inside network 1 - src ip inside network
18 host anomaly Profile Anomaly for the src IP (client)
19 server anomaly Profile Anomaly for the dst IP (server)
20-39 Contribution Vector Assigned by the Anomaly Detector
40 Iteration # Iteration of the Context Extraction when connection was detected

Table 1: Description of each column in the final output of MINDS 2.0

7 Step-by-step Execution of MINDS2.0 - Advanced Us-

age

7.1 Format conversion

Currently the system supports two input formats.

1. TCPDump Data - To convert a TCPDump file to the intermediate flow format

$ collector <tcpdump-file> tmp-file
$ e2mmrecord —if tmp-file —of <output-file>

2. Netflows Data - To convert a network flow file to the intermediate flow format

$ nf2mmrecord —if <netflow-file> —of <output-file>

7.2 Historical Profiling - Description of Historical Profiles

The profiler takes as input the connections in the intermediate format and outputs the

historical profile for the hosts inside the network.
To run profiling from command line:

$ perl batch-server-detection.pl —file <input-file > The input file should be in
the intermediate flow format. The program assumes configuration file - serverDetec-
tion.config in the current working directory. Description of the configuration file has
been provided in section 5.1.1. The program writes out two output files - svrport.txt
and svrport_ HUMAN.txt. The second file is a human readable format of the first file.
The description of the output file is given below.
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7.3 Level-1 analysis

This phase involves following programs

1. $ scan-detect —if <input-file > —of <output-file > —pr <profile >

This program takes as input the connections in the intermediate flow format and
performs following operations on the connections

(a) Merge and Match - Merges flows into sessions (connections).

(b) Profile based anomaly detection - Assigns client or server anomalies to
each connection based on the profile file provided as the input.

(c) Scan Detection - Detects if a connection is a scan or not.

2. $ minds <minds.config> <minds.rules> <output-file-prefix> <input-file > <training-
file-prefix > <number-of-threads > <p2p.config>

This program takes as input the output of the scan-detect program and performs
following operations on the connections

(a) P2P Detection - Detects if a connection is a p2p connection. This is done
in the same code as the anomaly detection.

(b) Anomaly Detection - Assigns an anomaly score to each connection based
on its lof score.

This program writes out a text file with the prefix as <output-file-prefix> fol-
lowed by the name of the ruleset specified in <minds.rules>. The output text
file has one line for each connection. Each line has 39 fields which are exactly
same as the first 39 fields of the output of the context extraction as described in
section 6.

7.4 Anchor Point Identification

This phase can be executed as follows

$ api <config-file> <snort-alerts> <blacklist-files> <annotated flows>

This program takes as input the configuration file whose structure is described in
section 5.1.4. It also requires a valid snort alert file or a list of blacklist hosts or the out-
put of the previous program based on the rules used in the configuration file. The output
of the API is a list of anchor points in text format identified by the (SrcIP, DestIP) pair
and supplemented with information such as the highest rank, the index of the associ-
ated flow the timestamp of the flow and how many anchor points of the same pair are
suppressed. The exact order of these attributes follows: “Rank” “Index” ”Timestamp”
”SrcIP” ”DstIP” "# of alerts”. A sample anchor point file is listed below in figure 7.
For example, the first entry specifies an anchor point (100.1.22.37, 58.78.162.142). Its
associated highest rank is 2, as identified a flow with index 4346 in the MINDS output.
The flow start time is 11/30-14:40:44.462282. There is only one occurence for this
anchor point.
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7.5 Context Extraction

This phase can be executed as follows
$ context <config file> <anchor point file> <annotated_flows> <output filename>
This program takes the anchor points as input from the previous program and builds
a context around them using the annotated output of the level I phase. The description
of configuration parameters is discussed in section 5.1.5. The output of this program is
in text format and is also described in the same section.
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minds.config

# Copyright 2002, Regents of the University of Minnesota

#

# Permission to use, copy, modify, distribute, and sell this software

# and its documentation, in whole or in part, for any

# purpose is hereby granted without fee, provided that

# the above copyright notice and this permission notice appear in all

# copies of the software and related documentation.

# Notices of copyright and/or attribution which appear at the beginning of
# any file included in this distribution must remain intact.

# The software is provided “as-is”” and without warranty of any kind, express, implied or otherwise.

# specify Local IP addresses (IP, mask)
inside 100.0.0.0 8

# parameters for the anomaly detector

# If anomaly detection is to be done on flows or sessions. 0 - flows, 1 - sessions, 2 - initiating flows
session 1

# number of connections to pick for train
train 5000

# number of connections to test (O for all)
test 0

# time_window in microseconds
time_window 1000000

conn_window 256

# number of near neighbors for algorithms
nn 15

# weights
srcIP 1.0
dstIP 1.0
srcPort 1.0
dstPort 1.0
proto 1.0
scan 0.000001
p2p 0.000001

duration 0.1
octets 0.01
packets 0.001
soctets 0.01
spackets 0.001

unique_inside_src_rate 0.1
same_src_port_rate 0.1
unique_inside_dst_rate 0.1
same_dst_port_rate 0.1
unique_inside_src_count 0.1
same_src_port_count 0.1
unique_inside_dst_count 0.1
same_dst_port_count 0.1

Figure 2: A sample configuration file for Anomaly Detection Component. The lines
beginning with # are comments.
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(a)
ruleset example
ignore srclP inside dstIP inside
ignore srclIP outside dstIP outside
select srcport > 1024 dstport > 1024 protocol == 6
ignore protocol == 17
select srcip >=1.1.1.0 srcip <= 1.1.1.255
select srcip net_equal 1.1.1.0 24
select srcip net_equal 1.1.1.0 255.255.255.0

(b)
ruleset all
select all

Figure 3: Two sample rulesets for MINDS Anomaly Detection Component. The last
three lines of ruleset example are equivalent.
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p2p.config

# print the details of the p2p detection output to a file
print_p2p_details 1

# not used

p2p-success_threshold 50

# well known p2p ports
p2p-port 4661
p2p-port 4662
p2p-port 4665

# well known ports that have malware
malware_port 3127
malware_port 3128
malware_port 1433
malware_port 2745

# ports that commonly have tcp and udp communications
good_tcp_udp 135
good_tcp_udp 137

# well known, commonly used ports
good_port 20

good_port 21

good_port 80

good_port 443

#the following options should not be modified

# the (non-inclusive) upper limit on the difference between the number
# of connections and the number of connections to ports labeled as ’good_port”
p2p-wellknown_threshold 1

# for the above condition to be applied (p2p-wellknown_threshold),
# there must be at least this many connections for a given host (inclusive)
p2p-minflow_threshold 10

# only consider for labeling as p2p, if this ip/port pair has communicated
# with at least this many distinct ips (non-inclusive)
p2p-min_connected_ips 20

Figure 4: A sample configuration file for P2P Detector Component.
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api.config

#anchor points are selected as the top 0.5% of the (srcIP, desIP) pairs, ranked by MINDS,
#which has corresponding snort alerts

select snort rank r <=4

#this rule picks the anchor points with ranks between top 0.5% and top 1 %
#this type of rules can be used for threshold sensitivity studies

select snort rank_r > 4

ignore snort rank r <=9

#This rule picks the (srcIP, desIP) pairs from the top 3 entries out of the ranked snort alerts
select snort pos j=2

#this rule enables selecting anchor points based on communicating with blacklisted IPs
select blacklist

#This rule constructs anchor points directly from MINDS output by picking inside scanners
#which are not involved in p2p traffic

select minds_flows scan !=0

& minds_flows insidebit ==

& minds_flows p2p ==

#This rule simply picks the top 10 flows in the sorted MINDs output
select minds_flows rank < 10

# This rule simply picks the flows in MINDS output if their host anomaly score is greater
# than 0.01
select minds_flows host_anom > 1

# This rule simply picks the flows in MINDS output if their server anomaly score is greater
# than 0.01
select minds_flows server_anom > 1

Figure 5: A sample configuration file for Anchor Point Identification Component
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context.config

# max limits

num_nodes 1000

num_iterations 1000

# “abnormal” sessions will be ignored (with host anom score above this threshold
normal_threshold 0.50

# threshold can be "aged”, increased or decreased for each iteration
attenuation_factor 1

# ignore scans with no replies: 1

ignore_scan_no_reply 1

# ignore p2p traffic: 1

ignore_p2p 1

#ignore non-tcp? 1 means ignore non-tcp, 0 means look at all protocols
only_use_tcp 1

# ignore connections with no replies (so the context doesn’t blow up for failed connection attempts)
ignore_conns_with_no_reply 1

Figure 6: A sample configuration file for Context Extraction Component

Rank Index Timestamp SrcIP DstIP # of Alerts

24346 11/30-14:40:44.462282 100.1.22.37 58.78.162.142 1
24346 11/30-14:40:04.452454 100.1.22.37 82.185.190.71 1
24346 11/30-14:40:15.685069 100.1.22.37 158.78.180.18 1

Figure 7: A sample output of the api program
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Abstract

Given its importance, the problem of scan detection has
been given a lot of attention by a large amount of re-

but not to scan detectiohin this paper, we present a method
for transforming network traffic data into a feature space
that successfully encodes the accumulated expert knowl-

searchers in the network security community. Despite theedge' We show that.an off-the-shelf class'|f|er, R|pper[3],
vast amount of expert knowledge spent on these method<an achieve outstanding performance_both in terms of miss-
they suffer from high percentage of false alarms and low ra- Ing only very few scanners and also in terms of very low
tio of scan detection. In this paper, we formalize the prob- false alarm rate.

lem of scan detection_ as a data mining problem. We_ showq 1 contributions

how the network traffic data sets can be converted into a
data set that is appropriate for running off-the-shelf dias
fiers on and we propose a set of powerful features that en-
code the expert knowledge accumulated over the years. Our ¢ We formalize the problem of scan detection as a data
method successfully demonstrates that data mining models ~ mining problem and present a method for transforming
can encapsulate expert knowledge to create an adaptable network traffic data into a data set that classifiers are
algorithm that can substantially outperform state of the ar directly applicable to. Specifically, we formulate a set

methods for scan detection in both coverage and precision. ~ of features that encode expert knowledge relevant to
scan detection.

This paper has the following key contributions:

e We construct carefully labeled data sets to be used for
training and test from real network traffic data at the
University of Minnesota and demonstrate that Ripper
can build a high-quality predictive model for scan de-
tection. We show that our method is capable of very

1 Introduction

A precursor to many attacks on networks is often a re-
connaissance operation, more commonly referred to as a

scan. Identifying what attackers are scanning for can alert
a system administrator or security analyst to what services
or type of computers are being targeted. Knowing what ser-
vices are being targeted before an attack allows an adminis-
trator to take preventative measures to protect the ressurc
e.g. installing patches, firewalling services from the s

or removing services on machines which do not need to be
running them.

early detection (as early as the first connection attempt
on the specific port) without compromising the preci-
sion of the detection.

The proposed method has substantially better perfor-
mance than the state of the art methods both in terms
of coverage and precision.

Given its importance, the problem of scan detection hasz' Related Works

been given a lot of attention by a large amount of re-

searchers in the network security community. Despite the
vast amount of expert knowledge spent on these methods
they suffer from high percentage of false alarms and low
ratio of scan detection. A recently developed scheme by
Jung [5] has better performance than earlier methods, but it

Until recently, scan detection has been thought of as the
process of counting the distinct destination IPs talkedyto b
each source on a given port in a certain time window [12].
This approach is straightforward to evade by decreasing the
frequency of scanning. With a sufficiently low threshold (to

requires that scanners attempt connections to severa host

1scans were part of the set of attacks used in the KDD Cup '9841g

before they can be detected. set generated from the DARPA '98/'99 data sets. Nearly athese scans
L. . . were of the obvious kind that could be detected by the simpiesshold-
Data mining techniques have been successfully appliedpased schemes that simply look at the number of hosts toucheuirical

to the generic network intrusion detection problem[8, 2, 10 of time or connection window.
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allow capturing slow scanners), the false alarm rate can be-Reducing the required connection attempts to 1 will result
come high enough to render the algorithm useless. On then an unacceptably high rate of false alarms. This renders
other hand, higher thresholds can leave slow and stealthyTRW unable to reliably detect scans that only make one
scanners undetected. A number of more sophisticated metheonnection attempt within the observation period.
ods[9, 13, 11, 5, 4] have been developed to address the lim- o o
itations of the basic method. 3. Definitions and Method Description

Robertson [11] assigns an anomaly score to a source IP

based on the failed " ft it h de. Thi In the course of scanning, the attacker aims to map the
ased on the lailed connection attempts 1t has made. 1NiS;qicag offered by the target network. There are two gen-

Sﬁheme IS t_more z_accurate than t?e gntes thali S'fm_‘l)hé CounEeral types of scans (Horizontal scans where the attacker
all connections since scanners tend 1o make failed con-p,,q 5, exploit at his disposal and aims to find hosts that are

nE:”cnons moreﬂ fr%quent(lj)_/. Howiver, t:]he ticanrr]nrllg .resmttsexploitable by checking many hosts for a small set of ser-
st vary greatly depending on how the threshold 1S SeL. ;.5 (2) |n avertical scan the attacker is interested in

Lickie [9] uses a statistical approach to determine the like compromising a specific computer or a small set of specific

lihood of a con_nectlon beln_g norm_al VErsus be_mg part of a computers. They often scan for dozens or hundreds of ser-
scan. The main flaw of this algorithm is that it generates vices

too many fal;e a}larms when access probabilitie; are highly Source IP, destination port pairs (SIDPs) are the basic
skewed (which is often the case.) SPICE [13] is another units of scan detection; they are the potential scanners. As

statistical-anomaly based system which sums the nega’[iveSume that a user is browsing the Web (destination port 80)

log-likelihood of dst IP/port pairs until it reaches a given from a computer with a source I®. Further assume that
:Erigtho!ﬁl.dOr:e of the malnt_protblebms kel th'_s a;lnp[)oach 'S is infected and is simultaneously scanning for port 445. Our
atitwill declare a connection 1o be a scan SImply beCauSe yqinition of scan allows us to correctly distinguish betwee

It 'S_I_ti? a destlrlat;o? th?f[rl]s mf:e}quently 3cies?ed._ Thresh the user surfing the Web (whose SIEBPS, 80 > is not a
€ current state of the art for scan detection 1S 11hres “scanner) from the SIDR S, 445 > which is scanning.

old Random Walk (TRW) proposed by Jung et al. [5]. It
traces the source’s connection history performing sequen- , , i
tial hypothesis testing. The hypothesis testing is coethu  Scan Detection Problem Given a set of network traffic
until enough evidence is gathered to declare the source ei{"eWOrk trace data) records each containing the following
ther scanner or normal. Assuming that the source touchednformation about a session (source IP, source port, desti-

k distinct hosts, the test statistics (the likelihood rafiche ~ nation IP, destination port, protocol, number of bytes and
source being scanner or normal) is computed as follows: packets exchanged and whether the destination port was
blocked), scan detection is a classification problem in tvhic

~o  if the first connection to each SIDP, whose source IP is outside our network, is la-
A= H host i succeeded beled asscanner if it was found scanningnor mal if it
=1l L ow., was found not scanning, @ont know if there is insuffi-

" cient information to declare it either way.

where~, and~; are constants. The source is declared a  The key challenge in designing a data mining method for
scanner, ifA is greater than a postive threshold; normal, a concrete application is the necessity to integrate the ex-
if A is less than a negative threshold. The thresholds arepert knowledge into the method. Not only is the integration
computed from the nominal significance level of the tests. of expert knowledge beneficial through improved quality of
TRW has high precision at the recommended thresholdresults but it also gives us confidence that good results are
corresponding to 99% significance level and has better re-rooted in knowledge accumulated in the given application

call than most prior methods in practical settings. domain.
It is worth pointing out that in a logarithmic space, if the This knowledge is incorporated in the form of features
first-connection attempt to all hosts failed aliog v, = 1, listed in Table 1.

log A is the number of distinct hosts. Therefore, when  The first featurendst i ps is the most basic feature.
logvo = 1, the log threshold can be interpreted as the It keeps track of the number of different IPs touched by a
number of first-connection failures required for a source source IP on the specific port being considered.
to be declared as scanner — provided that none of the first- The next six featuresb( ocked, ndark, nser-
connections succeeded. vice, rservice, avgbytes and avgpackets)
Even though TRW can achieve high precision at 99% have only recently been applied. These features make it
significance level, it requires at least 4 (and on average 5)possible to distinguish normal connections from suspiiou
connection attempts to reach a decision. Reducing the conconnections that may be destined to blocked ports, non-
fidence level will naturally reduce the required number of existent (“dark”™) IPs, destination IPs that do not offer the
connection attempts — at the cost of deteriorating pretisio requested service or suspiciously low amount of traffic.
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Destination port and protocol together define the ser-
vice. This allows for the identification of certain traffiQP Table 2. Characteristics of Experimental Data
ident, traceroute, that can be very similar to scanningictaf __ [number of SIDPs]

The remaining four featuresiDPpSI , r DPDI pSI , Data Set dontknow normal scanner Total
nDPpSI SP and nDPDI pSI SP) are not frequently used. 03/10.13:40 20,962 97,117 14,549 133,228
These features describe aggregated behaviors, namely t /10.14:00 18,660 10,3834 13,729 136,223

. e L /20.14:00 1,023 10,2697 23,905 127,625
behaviors of the source IP, or specific behaviors, such &as
the behavior of the source IP, source port pair. These fea- . .
ture have the ability to distinguish among vertical scasner 4. Experimental Evaluation
backscatter and horizontal scanners.

Experimental Data Setd-or our experiments, we used
real-world network trace data collected at the University

Table 1. Features used for scan detection of Minnesota. The data was collected on 03/10/2005
Name | Description 13:40pm-14:00pm, 03/10/2005 14:00pm-14:20pm and
Describing the SIDR{r c_i p, dst _port) 05/02/2005 14:00pm-14:20pm. (These data sets will
ndsti ps Number of distinct IPs touched. be referred to a®3/ 10. 13: 40, 03/ 10. 14: 00 and
bl ocked Is the service blocked by the firewall? 05/ 02. 14: 00, respectively.) Table 2 describes the main
ndar k Number of distinct IPs touch that have no hosts.  characteristics of these data sets:
nservice Number of distinct IPs that offer the requested We ran the experiments on a Free-BSD box with 1GB
_ ?g‘s"gf\-/i ce of main memory. Due to our memory limitation, we used
rservice Tndstips the first 4 million flows of each time period, which covered
avgbyt es more than 80% of the connections in each period.
avgpckt Indicative of the traffic volume. We used03/ 10. 13: 40 as the training data set and
prot ocol _ _ the remaining two sets as test sets. Due to the close
dst por t Defines the service scanned for. temporal proximity with the training set, we expect that
ADPDS DeSNCJ'nE';Srt:fi;gt‘i'ngtgr:giigsuche - 03/10. 14: 00 will have a similar distribution of scan-
) . ners (in terms of what service they scan for), so this time
[Read: (n)umber of (D)st(P)ort (p)er (S)rc(1)P] . . .
r DPDI pSI Avg number of dst ports touched on each dst IP. period can be used to verify how well .Rlpper learned the
[(natio of (D)st(P)rt to (D)st()P per SrcIP] rules. The05/ 02. 1_4: 00 f[est set — being one and a half
Describing thesr ¢ i p, src_por t of each SIDP month removed in time — will help us assess how generic the
nDPpSI SP Number of destination ports touched. rules are and how well the system can adapt to the changing
[number of DstPrt per SrclP-SrcPort] scanning behavior.

r DPDI pSI SP | Avg number of dst ports touched on each dst IP.

Labeling the data sets. Inthe labeling process, we assign
the labelscanner (nor mal ) to a source IP, destination
port pair (SIDP) that was conclusively found to be scan-
ning (not scanning). As a policy, SIDPs with insufficient
evidence for a conclusive decision using our heuristics are
labeleddont know.

d Themainideais to first label SIDPs with obviously scan-
ning or normal behavior on the 20-min data. SIDPs that
receive adont know label based on their behavior during

Choice of classifier. Our understanding of data mining
classifier algorithms guided us towards choosing Ripper.
We chose Ripper, because (a) the data is not linearly sep
arable, (b) most of the attributes are continuous, (c) the
data has multiple modes and (d) the data has unbalance
class distribution. Ripper can handle all of these proeerti

quite well. Furthermore, it produces a relatively easily in X
terpretable model in the form of rules allowing us to assess € 20 minutes are observed for 3 days and then are labeled

whether the model reflects reality well or if it is merely coin ~ P@sed on their aggregate behavior over the 3 days. Observ-
cidental. An additional benefit is that classification is com N9 SIDPs over 3 days is very resource-consuming and can
putationally inexpensivd. The drawback of Ripper is its "0t be carried out for all SIDPs — that is why we do this
greedy optimization algorithm and the fact that it requires 2n&lysis only for the sources that cannot be labeled conclu-
a minimal set of attributes: giving a larger than necessary SiVely by analyzing their behaviors during 20 minutes.

set of attributes are more likely to trap it in a local sub- A SIDP is conclusivelyior mal | if

optimum. (a) it is involved in P2P traffft{makes connection attempts
2Building the model is computationally expensive, but it canpee- 3Peer-To-Peer systems were made popular by file-sharing sybkems

formed off-line. It is the actual classification that needbéaarried out in Kazaa. These are distributed system with no central conffoties indi-

real-time. vidually maintain a list of hosts that that they exchangedrimfation with
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to a P2P port)2p],
(b) it is involved in backscatter traffiit made connection

Table 3. Breakdown of the rules applied to labeling

attempts to 200 different destinations from the same sroucethe SIDPs

IP and srouce port and the destination IPs and ports are unit

formly distributed over the entire range of IPs and ports)
[backscatted,

(c) it is performing tracerout¢identified by the destination
port) [traceroute],

(d) it is performingi dent (destination port 113/tcp)
[ident],

(e) 100 % of its connections were successfully established
and these connections were destined for at least 2 distinc
destinationsguccess100OR

(f) at least 90% of its connection attempts were successful
and it established at least two connectiosiscicess9P

A SIDP is conclusivelyscanner , if
(a) it is a vertical scanner (it touched at least 10 different
ports and never less than 3 ports on a single hwst}ifal],
(b)it made at least two connection attempts to hosts that d

Rule 03/10 03/10 05/02
13:40 14:00 14:00
Normal
p2p 1681 1807 893
backscatten 17240 17731 4567
traceroute 393 410 320
ident 158 133 181
servicel00| 12684 13588 1429¢
I service90 7 11 7
3-day 65554 70154 82438
Scanner
vertical 3848 2941 742
blocked 1624 1453 1624
dark 103 114 93
noservice 84 107 76
3-day 8890 9114 2137

not offer the service, no more than 10% of the hosts offered

the service and at least one attempt was to a blocked port

[blocked],

(c) it made at least two connection attempts to hosts that do

not offer the service, no more than 10% of the hosts offered
the service and one of the destination IPs was daak],

OR

(d) it made at least two connection attempts to hosts that
do not offer the service and no more than 10% of the hosts
offered the service.noservicq.

Rules (f) to (e) fornor mal (and (d) through (b) for
scanner) subsume each other [i.e. evargr nal cov-
ered by (f) is also covered by (e)] reflecting our decreas-
ing confidence in the labels. Although we say 'decreasing
confidence’, even rule (d) or (f) correspond to TRW with
a threshold of at least®d To give the readers a view as to
how reliable the labeling is, Table 3 denotes the number of

in the near past. Upon connecting to the P2P network, thetotsget up
connections with hosts on this list. At the time of the conioecattempts,
many of the hosts on the list may not be offering P2P (e.g. dyn#rii@s
changed or the computer is temporarily turned off by its owrrexhce the
host trying to establish connections with multiple hostsomItst unsuc-
cessfully appear to be scanning[7, 6].

4Denial of Service (DoS) attack is an attack where a serveoisiéid
with packets with forged (randomly chosesv)c_i p, src_port. The
server will diligently send packets back to the (forged) B&D which
on the receiving end will appear as multiple packets from thmes
<src.l P, src_port > (the server under attack) to mostly non-existent
(randomly chosen) destinations.

STraceroute is a service for tracing the route that a pacKewed
to get to its destination. The destination sends packetsatsdurce with
time-to-live (TTL) increasing from 1 by 1. At every hop towatrithe source
TTL is decreased. Once it reaches 0, the packet is discardkitha source
is notified about it. The route can be reconstructed from ti#ications.
(See the man page for acer out e for more details.).

6Authors’ recommendation is 5
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SIDPs that were labeled by each of the rules. We refer to
the rules by their mnemonics in bold in square brackets.

The procedure for labeling is as follows:

(i) Label the data set representing the 20-min period in-ques
tion. Try to apply thenor mal rules from (a) to (f) first and
then thescanner rules from (a) to (d). Label a SIDP by
the first rule that applies.

(ii) For thedont knows, repeat the labeling using the above
definitions, except that observe their behavior over 3 days
(as opposed to 20 mins). The SIDPs labled based on their
3-day behaviors are denoted '3-day’ in Table 3.

(iii) SIDPs, that we still have insufficient evidence for are
left labeleddont know.

The labeling procedure and the set of rules is a joint ef-
fort with our security expert and is a result of many caregfull
repeated refinements. Also, samples of the labeled output
has been manually verified by our expert.

In order to further verify that the labeling is correct, we
followed all of the SIDPs labeled for 3 days looking for
signs of behavior that is the opposite of the label. Notd, tha
in case oflabeling we looked the behavior of the SIDP on
a macro level, namely aggregated over the 3 days, while in
case ofverification we look at it on a micro level, namely
for each 20-min time period. During verification, we try
to answer the question: even though this SIDP exhibited
scanning behavior over the 3 days, is there a 20-min period,
where it appeared normal? Table 4 shows the number of
SIDPs who could have been labeled differently if we looked
at only a specific (for that SIDRJjngle20-min time window
during the 3 days.

The results indicate, that SIDPs who exhibited an aggre-
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recall and a three-fold improvement in terms of precision
and on05/ 02. 14: 00, a five-fold improvement in terms
of recall and 25 % improvment in terms of precision.

Table 4. Number of SIDPs exhibiting behavior that
is the opposite of their label

Label 03/10 03/10 05/2(¢ Note, that the poor performance of Ripper ftont -
13:30 14:00 14:00Q knows on05/ 02. 14: 00is due to the very low number
scanner 6 3 9 of dont know instances (less than 1%). A vast majority
nor mal 203 201 89 of the SIDPs make connection attempts to only one host.

TRW classifies all of these SIDPs dent knows hence
their high recall and poor precision.

The performance advantage of our method stems from
two factors. First, Ripper is capable of detecting scanners
even if they attempt only one connection to our network,

Table 5. Performance of the proposed approach
on the two test data sets

Proposed Method TRW [threshold=2] while TRW — even at a threshold of 2 — is still unable to
Label Recall Precision Recall _Precision  jgentify them. Second, for SIDPs that attempt connections
03/10. 14: 00 to more than 2 hosts on our network, the use of Ripper is
scanner 84.95 91.52| 12.33 37.41 advantageous because it managed to learn the common ex-
nor mal 95.09 95.27| 13.10 99.71 ceptions: P2P, backscatter, traceroute, etc.
dont know | 74.33 69.93| 99.38 15.71
05/ 02. 14: 00 Analysis of Single-Host Scanners In this section we iso-
scanner 57.69 89.83| 10.52 69.49 late the performance of our approach on scanners (i.e.
nor mal 76.01 97.36| 13.93 99.72 source IP, desination port pairs) that only attempted conne
dont know | 53.96 172 92.77 0.87 tions to a single host on our networkirigle-host scanneys

and scanners that made connection attempts to at least two
gated scanning behavior were consistent with this behavior distinct hostsnulti-host scanners
because only less than 1% of them were found to have the

opposite behavior in any 20-min interval. This result is in 8000

accordance with the observation of bimodal behavior made 7000} I 0320.13:40

in [5] namely that a sharp distinction exists between SIDPs [ Jo310.14:00

that exhibit normal behavior and SIDPs that scan. 6000 I 05/02.14:00
5000

Evaluation measure. We evaluated the SIDPs using pre-
cision and recall. For example, with regards to the label
scanner,

Number of scanners
w I
o o
o o
o o

classified as classified as so00l
scanner notscanner
actualscanner TP FN 1000} ]
actual notscanner FP TN o e I
4 5 6 7 8 9 10+
TP 1 TP Number of destinatons touched
reC = ————— recall = ————.
P TP + FP’ TP + FN

Figure 2. The number of TCP scanners who at-
tempted connectionto 1, 2, 3, ..., 9, 10 or more

Table 5 shows a direct comparison of the performance of distinct destinations on the U of MN network dur-
the proposed approach with TRW in terms of precision and N9 the three time periods.
recall. The threshold of 2 was chosen for TRW because it Recognizing single-touch scanners is of paramount im-
seems to provide the most optimal tradeoff between preci-portance. Not only do most of the SIDPs (117,327 out of
sion and recall for our data sets. At higher thresholds (e.g.136,223 or03/ 10. 14: 00) make connection attempts to
4 as recommended in [5]), recall drops dramatically. only one host on our network, as Figure 2 shows, almost
Our proposed approach achieved reasonably high precihalf of the TCP SIDPs scanning our network attempted
sion and recall percentages on both test sets for all classednly one connection during the examined 20-minute period.
Overall, this result is substantially better than for TRWr F Hence an algorithm unable to detect single-touch scanners
classifyingscanner s, on03/ 10. 14: 00, our approach is doomed to have a recall less than 50%.
achieved a seven-fold improvement over TRW in terms of  Since the threshold for TRW can be interpreted as the

4.1. Comparative Evaluation
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Figure 1. Performance comparison of the proposed approach t o0 TRW in terms of precision and recall on
the two test data sets

Table 6. Analysis of SIDPs that made connection
attempts only to a certain host. FC=F denotes
SIDPs whose first connection failed and FC=S de-
notes SIDPs whose first connection succeeded.

accumulated. We show that the rules are reflective of
scanning behavior and we also show that Ripper explicitly
learned exceptions.

The feature that distinguishes scanning from non-

FC [ dontknow normal scanner | Total scanning behavior varies between SIDPs that made con-
03/10. 13: 40 nection attempts to only a single host (single-host SIDP)
F 8434 40044 10777 59255 and SIDPs that made connection attempts to multiple hosts
S 12353 41945 1737 56035 (multi-host SIDPs). In the case of single-host SIDPs, the
03/10. 14: 00 scan detector needs to look at the aggregate behavior of the
F 7593 42710 9564 59867 SIDP IP, while in case of multi-host SIDPs, features per-
S 10880 44148 2432 57460 taining to the behavior of the SIDP in question are expected
05/ 02. 14: 00 to be more descriptive. In order to verify that this distinc-
F 427 22967 21121 44515 tion can be found in the Ripper-generated models, we built
S 412 63844 232 64488 separate models for single-host and multi-host SIDPs.

Table 7. Performance of the separate model clas-

number of consecutive “mistakes given SIDP has to sification on the single-host and multi-host SIDPs

make in order to get declared ssanner , setting a lower

threshold enables TRW to detect single-touch scanners 03/10. 14: 00 05/02. 14: OO

However, Table 6 indicates, that even setting the threshol Label Recall Precision Recall Precision
to 1 will not help. Or03/ 10. 14: 00, setting the threshold | Single-host Sources |
to 1 will cause TRW to declare the 42,766r mal SIDPs scanner 73.67 92.34| 46.14 86.35
scanner s, while only discovering 9,564 trigcanner s. nor mal 95.92 91.93| 72.86 93.42
Accordingly, Figure 1 shows, that the threshold is a param-| dont know | 68.77 74.15| 61.03 1.71
eter that balances between precision and recall. Granted Multi-host Sources |

that on03/ 10. 14: 00, TRW can achieve 80% recall at
the threshold of 1, its precision at the same time is less tha
20 %. Meanwhile, the data mining based approach yields
precision and recall that are both in excess of 8§fbul-
taneously Similar discussion applies @5/ 02. 14: 00, Table 7 shows the precision and recall for the two mod-
too. els. As expected, the predictor performance is much better
) ) for multi-host SIDPs, but the performance for single-host
4.2. Separate Models for Single-Host and Multi-  gipps is also quite reasonable. We show all the rules dis-
Host Scanners covered by Ripper for these two cases in Table 8.
In this section we demonstrate that the rules Ripper The rule set verifies our expectations: cvery one of the
learned indeed encode the knowledge that security experts14 rul_e_s extracted for smglg-scanr_]er starts with a feature
describing aggregate behavior, while only one rule for the
"failed first-connection attempts multi-host scanners starts with an aggregate feature. That

scanner 98.27 98.10| 98.12 95.68
nor mal 99.84 99.58| 99.22 99.36
dont know | 72.73 97.84| 63.04 81.69
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one rule detects vertical scanners, which is impossible tosets contain the scanners that required 3 days’ observation
achieve without looking at the aggregate behavior. to label correctly. Table 9 shows the numbessofanner ,
The rules are interpretable and acceptable as correct froormor mal anddont know SIDPs in the non-trivial test sets

a network security standpoint. The first rule for example and it also shows how many of those attempted connections
describes vertical scanning behavior. While our heuristic- to only a single destination (single-host SIDPS).

based labeler required connection attempts to only 3 ports
per destination IP on average from a source IP, Ripper re-
quires 10. The second rule also describes vertical scan

Table 9. Distribution of scanning, normal and
dont know traffic in the non-trivial test sets

: ) >~ '] Test Set| dontknow nornal scanner | Total |
ners. Rule 2 captures the scanning behavior of more intel- Al nontrvial sour
ligent scanning tools. This behavior is making connection onfrivial sources
it ts t inale IP add If this IP add is dark. it 03/10 18,660 83,753 9,221 111,634
attempts to a single IP address. is IP address is dark, it o5, 1,023 96.741 21.446 119 210
moves onto the next IP; if it succeeds — i.e. it is not a dark -
Single-host sources
IP — the tool then proceeds to scan a few hundred ports. S
Ri decl SIDPs with litt] 1.5 destinati ¢ 03/10 18,473 69,675 9,072 97,220
ipper declares s with as little as 1.5 destinationsport | /05 839 82,036 21,330 104,205

per IP scanned. The fact that they touched dark IPs explains
the low average and the requirement of 187 ports touched Table 10. Performance of Ripper and TRW on non-

on a host provides sufficient evidence. trivial scanners

The rule set also demonstrates that Ripper did learn ex- Label Ripper TRW
ceptions: in rule 4, th®PpSI SP <= 18 condition dis- Recall Prec| Recall Prec
tinguishes vertical scanners from backscatter trafficnor i 03/ 10. 14: 00
rule 10, thedst port >= 6350 condition distinguishes scanner 7898 8780 1.19 44.18
the horizontal scanners from P2Moreover, the high fre- nor mal 94.02 94.16| 16.24 99.71
guency of the servi ce <= smal | _val ue conditions dont know | 74.33 7036/ 9938 18.97

gives additional credibility to the method: both [11] andl [5
point out that the existence of a server at the destintgn
highly discriminating between scanners and non-scanners.| -~ o 7458 9719 1478 9972
Some of the rules generated by Ripper are fairly obvious dontknow | 53.96 1.72| 92.77 0091
and easily understandable, while others are rather comple . : : :
and do not lend themselves to be easily constructed by a Considering that Ripper only traced these SIDPs for 20-

03/ 10. 14: 00
scanner 53.02 88.27| 0.37 37.80

human expert. mins (while our heuristic-based labeling scheme required
. . . 3 days’ observation to reach a conclusive decision about
4.3. Discovering Non-Trivial Scanners these scanners), the 79% and 53% recall with 88 % pre-

We have demonstrated that our approach is capable ofcision is remarkable. The reSL_JIts in_dicate that the Ripper-
detecting scanners who have only made one connection atdenerated model has indeed identified key aspects of the
tempt to our network. We have also shown that our method S¢aMNing behavior. On the other hand, the high percent-
is capable of learning exceptions. On the other hand, as ou2d€ Of single-host scanners (versus all scanners) — which
labeling method best indicates, many of these scanners ard RW €&n not recognize — explains why TRW performed so

trivial to detect and the exceptions are straightforward to poorly in terms of recall. The reIativer low prgcisior_l is?du
remove. So what does data mining offer to us? to DNS false alarms, and some P2P-like traffic, which is by

The strength of data mining lies in its ability to recognize @nd large successful over 3 days, but not during our 20-min

patterns. As long as scanning behavior can be described b€/ 0d-
a number of high-level patterns, describable by the feature 5 S :
- . ummary and Conclusion
we selected, data mining algorithms should be able to ex-
tract these patterns and classify SIDPs reasonably well eve | this paper we have introduced a method for formal-
on non-trivial cases. izing the scan detection problem as a classification prob-
In the following experiment we built a model on the com-  |em solvable with data mining techniques. We proposed a
plete03/ 10. 13: 40 set and tested the model on the two method for transforming network trace data into data sets
test sets with the trivial exceptions and scanners removedihat off-the-self classifiers can be run on. We selected Rip-
Trivial exceptions are P2P, backscatter, ident, tracerout per, a fast, rule-based classifier, because it is partigmar
and trivial scanners are vertical scanners, scanners-touchcapable of learning rules from multi-modal data sets and it
ing dark IPs or blocked ports; essentially the nontriviatte  provides results that are easy to interpret.
8There is a range of popular P2P ports between 6346 and 6349 We found that by using our method of transforming the
9success of the first-connection in TRW terminology data set (including the use of our proposed features) we
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Table 8. Rules built of single-host and multi-host scanners

ID Instances Rule

covered
Rules for Single-host Scanners
1 5542 rDPDI pSI >= 9.5 proto = TCP
2 184 rDPDI pSI >= 1.4615 ndark >= 1 DPpSI >= 187
3 236 rDPDIpSI >= 1.4615 bl ocked = Y dstport <= 445
4 313 rDPDI pSI >= 3.0625 DPpSI >= 10 DPpSI SP <= 18 avgpacktes >= 3 proto = TCP
5 36 rDPDIpSI >= 1.4615 bl ocked = Y rDPDI pSI >= 4
6 37 rDPDIpSI >= 1.4615 ndark >= 1 bl ocked = Y DPpSI >= 3
7 49 rDPDI pSI >= 1.4615 rDPDI pSI >= 9.5 dstport >= 33510
8 50 rDPDIpSI >= 1.4615 ndark >= 1 dstport <= 1025 DPpSlI >= 4
9 18 rDPDI pSI >= 1.4615 bl ocked = Y rDPDI pSI SP <= 1.4615 ndark <= 0
10 42 rDPDI pSI <= 0.75 rDPDI pSI <= 0.3529 dstport >= 6350 avghytes <= 188
11 25 DPpSlI >= 2 blocked = Y rDPDI pSI <= 0.75
12 8 rDPDl pSI >= 1.4615 bl ocked = Y DPpSI SP <= 2 dstport >= 1433 avgbytes <= 96 ...
13 51 rDPDlpSI >= 2.8 DPpSI >= 10 DPpSlI <= 19 DPpSI SP <= 14 dstport <= 23127
14 9 DPpSlI >= 2 DPpSISP <= 1 bl ocked = Y dstport >= 3127
Rules for Multi-host Scanners
15 1730 blocked = Y rservice <= 0.5
16 189 rDPDIpSI >= 33 nservice <=1
17 54 rservice <= 0.25 dstport <= 443 dstport <= 80
18 22 rservice <= 0.18421 avgbytes >= 138.89 dstport <= 6256 avgbytes >= 432
19 34 rservice <= 0.18667 avgpacktes >= 2.33 dstport <= 6280 DPpSI >= 2 DPpSlI <= 3
20 29 dstport >= 7304 DPpSI <= 2 proto = TCP nservice <=1
21 3 dstport >= 37852 DPpSI <=1
22 5 rservice <= 0.18667 rDPDI pSI <= 0.0133
23 3 dstport >= 6711 DPpSI <= 2 avgbytes <= 79.5 dstport <= 11371
24 3 nservice <= 0 proto = UDP dstport <= 6112 dstport >= 4110

achieved a substantial improvement in coverage, a factor [6] T. Karagiannis, A. Broido, N. Brownlee, and kc claffy. Is
of 5, and more than 25% improvement in precision over the p2p dying or just hiding? IEEE Globecom 2004 "Emerg-
state-of-the-art heuristic-based scan detector, TRW. ing Technologies Applications and Service2004.

We demonstrated that the gain stems from the classifier's [/} T- Karagiannis, A. Broido, M. Faloutsos, and kc claffy.

. Transport layer identification of p2p traffic. International
ability to accurately detect scanners that only attempied o Measurement Conference (IMC004.

cppnectlon to our network on 'specmc ports at a high pre- [8] W. Lee, S. J. Stolfo, and K. W. Mok. Mining audit data to
cision and recall. We also pointed out that another factor build intrusion detection models. KDD, 1998.

that enabled this improvement was the classifier's abitity t  [9] C. Lickie and R. Kotagiri. A probabilistic approach to de-
automatically learn exceptions and thereby avoid misclas- tecting network scans. IBighth IEEE Network Operations
sifying common exceptions such as P2P, DNS, backscatter, and Managemen2002.

etc. [10] M. V. Mahoney and P. K. Chan. Learning rules for anomaly

s : : detection of hostile network traffic. l€DM, 2003.
Classifiers like Ripper that learn from examples need '
bp P [11] S. Robertson, E. V. Siegel, M. Miller, and S. J. Stolfo.
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