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Abstract

Free electron laser theory is developed from the Maxwell and Lorentz force equations;
the properties and characteristics of the laser are reviewed. The wave equation is solved
for the fundamental Gaussian mode, and higher-order modes in Cartesian and cylindrical
coordinate spaces, yielding expressions for the complete and orthogonal basis sets of Hermite-
and Laguerre-Gaussian beams. Motivated by the evident inclusion of higher-order modes
in free electron laser simulations, a tool is developed for the higher-order (in particular
Laguerre-Gaussian) modal analysis of simulated free electron laser beams.
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Chapter I.

The Free Electron Laser

In 1971 Stanford University physicist John Madey proposed the development of a coherent
light source based on the radiation emitted by relativistic free electrons: a free electron
laser.1 In 1976, his team amplified a CO2 laser beam using relativistic free electrons from
the Stanford Superconducting Linear Accelerator. They later observed coherent infrared
radiation at a wavelength of 3 µm in an oscillator configuration. These achievements gave
birth to the contemporary free electron laser described below.

A. System

The two main components of a free electron laser are an accelerator which imparts kinetic
energy to a beam of free electrons, and an undulator also called a wiggler which extracts
energy from the beam in the form of coherent radiation. There are a variety of FEL designs;
all contain these two essential elements. Varying among individual configurations are the
methods by which the electron beam is created, transported, then dumped, and how the
radiation is amplified. Some FEL’s are amplifiers, some are oscillators. The oscillator

Accelerator

High Reflector

B field

Laser Light

Outcoupler

Electron Beam

Figure 1.1: Oscillator FEL

configuration is shown in Figure 1.1. Electromagnetic radiation is stored within a resonant
cavity, and the increased optical power is outcoupled through a partially-transmitting dielec-
tric. In the amplifier configuration (Figure 1.2), spontaneously emitted light or light from a
seed laser is amplified in a single pass through the undulating electron beam.

1J. M. J. Madey, “Stimulated Emission of Brehmsstrahlung in a Periodic Magnetic Field”, Journal of
Applied Physics, Vol. 42, No. 5, pp. 1906-1913, April 1971.
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Accelerator

Seed Laser

B field

Laser Light

Electron Beam

Figure 1.2: Amplifier FEL

The source of free electrons is usually a cathode within an electron gun. Whether con-
figured as an oscillator or amplifier, the electron beam itself may be either recirculated or
dumped after exiting the undulator. Recirculation allows the recovery of beam energy back
to the accelerator, enhancing overall system efficiency, with the added benefit of dumping
less energetic electrons, producing less background radiation. In the RF recovery configu-
ration, electrons return to the accelerator 180◦ out of phase with respect to those entering
from the beam source. Figure 1.3 shows the entire system for a recirculating free electron
laser oscillator.

Figure 1.3: Recirculating free electron laser oscillator.

Attributes
The free electron laser’s most striking difference from conventional lasers is also its chief

advantage. The absence of a vulnerable medium such as a crystal or fluid chemical matrix
means that an FEL can achieve extremely high intensity without damaging the laser itself.
High wall-plug efficiency (∼10%) is predicted for high power FELs with recirculating electron
beams. High reliability is also a characteristic: currently operating FELs run continuously
and reliably for weeks.

2



Free electron lasers are continuously tunable. The relativistic Lorentz factor γ of the
electron beam, the undulator period λ0, and undulator RMS magnetic field strength Brms

determine the laser wavelength λ according to the resonance condition2

λ =
λ0(1 +K2)

2γ2
, (1.1)

where the undulator parameter K is defined as

K =
eBrmsλ0

2πmc2
. (1.2)

Here e is the electron charge, m the mass of the electron, and c the speed of light in vacuum.
The relation (1.1) suggests that the undulator wavelength and magnetic field as well as the
energy of the electrons3 may be adjusted within an operating laser to yield light over a
range of wavelengths. Free electron lasers have been designed to produce radiation from
microwaves to X-rays, and they are continuously tunable over a smaller range within these
regimes. In addition, the short-pulse nature of the radiation may enhance propagation of
optical power through the atmosphere, making the laser particularly suited as a weapon.4,5

B. General Theory

Free electron laser theory addresses the motion of the oscillating electrons, the propagation
and diffraction of the resulting radiation (the optical mode), and the subsequent interaction
of that radiation with the electron beam itself. We forego a discussion of diffraction until
the next chapter, and proceed with a description of the electron motion, the optical mode,
and gain.

1. Electron Motion

The trajectory of a relativistic charged particle in external fields is governed by the Lorentz
force equation6

dUα

dT
=

q

mc
FαβUβ, (1.3)

2At resonance in an FEL, one wavelength of light passes over one electron in one undulator period.
3Tuning via electron beam energy is generally considered more difficult than via undulator geometry.

Indeed, significant changes in electron energy require adjustments to guiding and focusing magnets along
the entire length of the accelerator.

4P. Sprangle, J. R. Peñano and B. Hafizi, “Propagation of Intense Short Laser Pulses in the Atmosphere”,
Phys. Rev. E, 66, 046418, 2002.

5P. Sprangle, J. R. Peñano, A. Ting, B. Hafizi, and D. F. Gordon, “Propagation of Short, High-Intensity
Laser Pulses in Air”, J. Dir. Energy 1, 73, 2003.

6We shall use T for proper time; τ will be used for dimensionless time; cgs units are used throughout this
chapter.
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where Uα ≡ (γc, γu) is the four-velocity of the particle and

Fαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (1.4)

is the field-strength tensor, whose components are given by the periodic magnetic field of
the undulator and the electric and magnetic components of the radiation field. For the
propagation of a plane wave along the z-axis of a helical undulator,7 the undulator and
radiation fields are taken to be

Bu = B0(cos k0z, sin k0z, 0), (1.5a)

Er = E(cosψ,− sinψ, 0), (1.5b)

Br = E(sinψ, cosψ, 0), (1.5c)

where B0 and k0 = 2π/λ0 are the amplitude and wavenumber of the undulator field, E ≡
E(x, y, z, t) is the optical field amplitude, and the phase is ψ ≡ kz − ωt + φ(z, t), where
k = ω/c is the optical wavenumber, and φ(z, t) is the optical phase. The field-strength
tensor is then

Fαβ =


0 −E cosψ E sinψ 0

E cosψ 0 0 B0 sin k0z+E cosψ

−E sinψ 0 0 −B0 cos k0z−E sinψ

0 −B0 sin k0z−E cosψ B0 cos k0z+E sinψ 0

 . (1.6)

Inserting (1.6) into (1.3) gives the four coupled differential equations

dU0

dT
= − e

mc

(
U1E cosψ − U2E sinψ

)
, (1.7a)

dU1

dT
= − e

mc

[
U0E cosψ − U3 (B0 sin k0z + E cosψ)

]
, (1.7b)

dU2

dT
= − e

mc

[
−U0E sinψ − U3 (−B0 cos k0z − E sinψ)

]
, (1.7c)

dU3

dT
= − e

mc

[
−U1 (−B0 sin k0z − E cosψ)− U2 (B0 cos k0z + E sinψ)

]
. (1.7d)

Making the substitutions

ui = cβi, (1.8)

dT =
dt

γ
, (1.9)

7In a helical undulator, consecutive magnetic fields are rotated 90◦ from each other causing the electron
to follow a corkscrew path. The derivation for electron motion in a linear undulator is more complicated.
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where γ = (1− β · β)−1/2, we can rewrite (1.7) as

dγ

dt
= − e

mc
E (βx cosψ − βy sinψ) , (1.10a)

d

dt
(γβx) = − e

mc
[E cosψ − βz (B0 sin k0z + E cosψ)] , (1.10b)

d

dt
(γβy) = − e

mc
[−E sinψ − βz (−B0 cos k0z − E sinψ)] , (1.10c)

d

dt
(γβz) = − e

mc
[E (βx cosψ − βy sinψ) +B0 (βx sin k0z − βy cos k0z)] . (1.10d)

The magnetic field does no work, and indeed (1.10a) states that the electron’s energy is
affected only by the coupling of the radiation electric field to the electron’s transverse motion.
It is convenient to rewrite this equation as

γ̇ = − e

mc
β · E. (1.11)

By defining a transverse velocity β⊥ = βxx̂+βyŷ = (βx, βy, 0), we may combine (1.10b) and
(1.10c) into a single expression

d(γβ⊥)

dt
= − e

mc
[E (1− βz) (cosψ,− sinψ, 0) + βzB0 (− sin k0z, cos k0z, 0)] (1.12)

which for highly relativistic electrons (βz → 1) can be approximated by

d(γβ⊥)

dt
≈ − e

mc
[βzB0 (− sin k0z, cos k0z, 0)] . (1.13)

Equation (1.13) is readily integrated:∫
d(γβ⊥) = −eB0

mc

∫
βz(− sin k0z, cos k0z, 0)dt, (1.14)

γβ⊥ = − eB0

mc2

∫
dz

��dt
(− sin k0z, cos k0z, 0)��dt, (1.15)

β⊥ = − eB0

k0γmc2
(cos k0z, sin k0z, 0) + C

= − eB0λ0

2πγmc2
(cos k0z, sin k0z, 0) + C. (1.16)

We eliminate the constant of integration by assuming perfect injection, so that

β⊥(0) = − eB0λ0

2πγmc2
. (1.17)

Using (1.2) and the fact that for a helical undulator Brms = B0, we can write

β⊥ = −K
γ

(cos k0z, sin k0z, 0) (1.18)

5



or

βx = −K
γ

cos k0z, (1.19)

βy = −K
γ

sin k0z. (1.20)

Substituting (1.18) into (1.11), we have

γ̇ =
eKE

γmc
(cos k0z, sin k0z, 0) · (cosψ,− sinψ, 0)

=
eKE

γmc
(cos k0z cosψ − sin k0z sinψ)

=
eKE

γmc
cos(k0z + ψ). (1.21)

Meanwhile, substituting (1.19) and (1.20) into (1.10d) gives us

d

dt
(γβz) = − e

mc

[
E

(
−K
γ

cos k0z cosψ +
K

γ
sin k0z sinψ

)
+B0

(
−K
γ

cos k0z sin k0z +
K

γ
sin k0z cos k0z

)]
, (1.22)

γ̇βz + γβ̇z =
eK

γmc
[E (cos k0z cosψ − sin k0z sinψ)

−B0 (cos k0z sin k0z − sin k0z cos k0z)] , (1.23)

γβ̇z =
eKE

γmc
cos(k0z + ψ)− γ̇βz. (1.24)

Substituting (1.21) into (1.24), we have

γβ̇z =
eKE

γmc
cos(k0z + ψ)− eKE

γmc
cos(k0z + ψ)βz, (1.25)

γβ̇z = (1− βz)
eKE

γmc
cos(k0z + ψ), (1.26)

β̇z = (1− βz)
eKE

γ2mc
cos(k0z + ψ). (1.27)

It is useful at this point to collect the electron terms in k0z + ψ by identifying the electron
phase

ζ = (k + k0)z − ωt, (1.28)

referenced to the combined optical and undulator fields. This leads to

k0z + ψ = ζ + φ. (1.29)

and

ζ̇ = (k + k0)
dz

dt
− ω

= (k + k0)βzc− ω. (1.30)

6



Solving for βz gives

βz =
ζ̇ + ω

(k + k0)c
, (1.31)

β̇z =
ζ̈

(k + k0)c
. (1.32)

The expression for βz may be simplified as follows: for laser light we require

ω =
2πc

λ
∼ 1015 s−1. (1.33)

Meanwhile, the change in electron phase over the course of the undulator8 is

ζ̇ ∼ 2πc

λ0

∼ 109 s−1. (1.34)

In other words, since typically λ0 � λ, then ω � ζ̇ and (1.31) becomes

βz =
ω

(k + k0)c
. (1.35)

Using (1.29), (1.32), and (1.35), we may now rewrite (1.27) as

ζ̈

(k + k0)c
=

eKE

γ2mc

[
1− ω

(k + k0)c

]
cos(ζ + φ), (1.36)

ζ̈ =
eKE

γ2mc
[(k + k0)c− ω] cos(ζ + φ)

=
eKEk0

γ2m
cos(ζ + φ). (1.37)

We can normalize the evolution of the electron motion to the length of the undulator by

defining a dimensionless time τ = ct/L. We adopt the notation
◦
ζ ≡ dζ/dτ and we write

◦◦
ζ =

eKEk0L
2

γ2mc2
cos(ζ + φ)

=
2πeKEL2

γ2mc2λ0

cos(ζ + φ)

=
2πNeKEL

γ2mc2
cos(ζ + φ), (1.38)

where N = L/λ0 is the number of undulator periods. Defining the dimensionless optical
field

|a| ≡ 2πNeKEL

γ2mc2
, (1.39)

8To achieve gain, the electrons must “bunch” in phase as they traverse the undulator. This is discussed
further in the next two sections.
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we have the pendulum equation

◦◦
ζ= |a| cos(ζ + φ) . (1.40)

Figures 1.4 and 1.5 show the results of a simple simulation of an operating FEL. The electron
trajectories in phase space are indeed of a pendular nature: the paths are elliptical (closed
paths, as in Figure 1.4 - the pendulum swings back and forth), and there exists a separatrix,
a boundary outside of which change in electron phase ζ does not reverse sign (open paths,
as in Figure 1.5 - the pendulum goes “over the top”). These figures will be discussed more
in the following sections.

Figure 1.4: Electrons moving in phase space, within the separatrix (ν0 = 0).
Although there is some evolution of the optical phase, there is no significant
gain on resonance. (The shading of electrons darkens with increasing τ .)

Figure 1.5: Electrons moving outside the separatrix (ν0 = 2.6). There is gain
due to favorable bunching of the electrons in phase space.

8



2. Evolution of the Optical Mode

The fields generated by the oscillating electrons must satisfy the inhomogeneous Maxwell
equations

∂αR
αβ =

4π

c
Jβ, (1.41)

where

Rαβ =


0 −E cosψ E sinψ 0

E cosψ 0 0 E cosψ
−E sinψ 0 0 −E sinψ

0 −E cosψ E sinψ 0

 (1.42)

is the radiation part of (1.6), and Jα ≡ (cρ,J) is the electron beam 4-current. We seek a
4-vector potential Aα ≡ (Φ,A) satisfying

Rαβ = ∂αAβ − ∂βAα, (1.43)

and the Lorenz condition ∂αA
α = 0, for which (1.41) becomes the wave equation

∂α
(
∂αAβ − ∂βAα

)
=

4π

c
Jβ,

∂α∂
αAβ −�����

∂β∂αA
α =

4π

c
Jβ,

�Aα =
4π

c
Jα, (1.44)

where � ≡ ∂α∂
α is the d’Alembertian operator. A suitable choice9 is

Aα =



0

E

k
sinψ

E

k
cosψ

0


, (1.45)

which gives

∂αA
α =

∂

∂x

E

k
sinψ +

∂

∂y

E

k
cosψ = 0 (1.46)

9This choice is suitable because it corresponds to a helically polarized wave. A general expression for Aα

in terms of the electron 4-velocity is available in the form of the Liénard-Wiechert potentials (see pp. 661-665,
J. D. Jackson, Classical Electrodynamics, Wiley, New Jersey, 1999). Our choice is made with the benefit of
hindsight and is not unique.
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and, using ω = kc,

R00 =
∂A0

∂x0

− ∂A0

∂x0

= 0, (1.47a)

R01 =
∂A1

∂x0

− ∂A0

∂x1

=
E

kc

∂

∂t
sinψ = −E cosψ, (1.47b)

R02 =
∂A2

∂x0

− ∂A0

∂x2

=
E

kc

∂

∂t
cosψ = E sinψ, (1.47c)

...

satisfying (1.42). We now write (1.44) as two second-order partial differential equations

1

c2
∂2

∂t2
E

k
sinψ − ∂2

∂z2

E

k
sinψ =

4π

c
Jx , (1.48a)

1

c2
∂2

∂t2
E

k
cosψ − ∂2

∂z2

E

k
cosψ =

4π

c
Jy . (1.48b)

For E(z, t) and φ(z, t) slowly varying, that is∣∣∣∣∂2E

∂z2

∣∣∣∣� ∣∣∣∣k∂E∂z
∣∣∣∣ , ∣∣∣∣∂2E

∂t2

∣∣∣∣� ∣∣∣∣ω∂E∂t
∣∣∣∣ , ∣∣∣∣∂2φ

∂z2

∣∣∣∣� ∣∣∣∣k∂φ∂z
∣∣∣∣ , ∣∣∣∣∂2φ

∂t2

∣∣∣∣� ∣∣∣∣ω∂φ∂t
∣∣∣∣ , (1.49)

we keep only the boxed terms in

1

ωc

∂2E

∂t2
sinψ +

2

ωc

∂E∂φ

∂t2
cosψ −

2

c

∂E

∂t
cosψ +

E

ωc

∂2φ

∂t2
cosψ −

E

ωc

„
∂φ

∂t

«2

sinψ

+
2E

c

∂φ

∂t
sinψ −

ωE

c
sinψ −

c

ω

∂2E

∂z2
sinψ − 2

∂E

∂z
cosψ −

2c

ω

∂E∂φ

∂z2
cosψ

−
cE

ω

∂2E

∂z2
cosψ +

ωE

c
sinψ + 2E

∂φ

∂z
sinψ +

ωE

c

„
∂φ

∂z

«2

sinψ =
4π

c
Jx (1.50a)

and

1

ωc

∂2E

∂t2
cosψ −

2

ωc

∂E∂φ

∂t2
sinψ +

2

c

∂E

∂t
sinψ −

E

ωc

∂2φ

∂t2
sinψ −

E

ωc

„
∂φ

∂t

«2

cosψ

+
2E

c

∂φ

∂t
cosψ −

ωE

c
cosψ −

c

ω

∂2E

∂z2
cosψ + 2

∂E

∂z
sinψ +

2c

ω

∂E∂φ

∂z2
sinψ

+
cE

ω

∂2E

∂z2
sinψ +

ωE

c
cosψ + 2E

∂φ

∂z
cosψ +

ωE

c

„
∂φ

∂z

«2

cosψ =
4π

c
Jy , (1.50b)

leaving

2E

(
1

c

∂φ

∂t
+
∂φ

∂z

)
sinψ − 2

(
1

c

∂E

∂t
+
∂E

∂z

)
cosψ =

4π

c
Jx , (1.51a)

2E

(
1

c

∂φ

∂t
+
∂φ

∂z

)
cosψ + 2

(
1

c

∂E

∂t
+
∂E

∂z

)
sinψ =

4π

c
Jy . (1.51b)

Defining J⊥ ≡ (Jx, Jy, 0), this can be written

2
(

1
c

∂E

∂t
+
∂E

∂z

)
(− cosψ, sinψ, 0) + 2E

(
1
c

∂φ

∂t
+
∂φ

∂z

)
(sinψ, cosψ, 0) =

4π
c

J⊥ , (1.52)
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and identifying the orthogonal unit polarization vectors

ε̂1 ≡ (− cosψ, sinψ, 0) (1.53a)

ε̂2 ≡ (sinψ, cosψ, 0) (1.53b)

we can write (
∂E

∂t
+ c

∂E

∂z

)
= 2πJ⊥ · ε̂1 , (1.54a)

E

(
∂φ

∂t
+ c

∂φ

∂z

)
= 2πJ⊥ · ε̂2 . (1.54b)

The operator

∂

∂t
+ c

∂

∂z
=

∂

∂t
+
dz

dt

∂

∂z

=
d

dt
(1.55)

=
c

L

d

dτ

is the rate of change in coordinates traveling with the evolving light wave, and we write

dE

dτ
=

2πL

c
J⊥ · ε̂1 , (1.56a)

E
dφ

dτ
=

2πL

c
J⊥ · ε̂2 . (1.56b)

The transverse current is the sum of individual electron currents, that is

J⊥ = −ec
Ne∑
i=1

β⊥ δ(x− ri), (1.57)

or, using (1.18),

J⊥ =
Kec

γ

Ne∑
i=1

δ(x− ri)(cos k0z, sin k0z, 0). (1.58)

Equations (1.56) are then

dE

dτ
=

2πKeL

γ

Ne∑
i=1

δ(x− ri)(− cos k0z cosψ + sin k0z sinψ), (1.59a)

E
dφ

dτ
=

2πKeL

γ

Ne∑
i=1

δ(x− ri)(cos k0z sinψ + sin k0z cosψ), (1.59b)

which may be written

dE

dτ
= −2πKeLne

γ

∫ 2π

0

cos(ζ + φ)
dζ0
2π

, (1.60a)

E
dφ

dτ
=

2πKeLne
γ

∫ 2π

0

sin(ζ + φ)
dζ0
2π

, (1.60b)
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where ne is the electron number density, and individual electrons are identified by their
initial coordinates in phase space (ζ0, ν0). All electrons are assumed to have the same initial
energy ν0. These may be combined into

dE

dτ
+ iE

dφ

dτ
= −2πKeLne

γ

∫ 2π

0

[cos(ζ + φ)− i sin(ζ + φ)]
dζ0
2π

, (1.61)

= −2πKeLne
γ

∫ 2π

0

e−i(ζ+φ)dζ0
2π

. (1.62)

Multiplying both sides by eiφ gives

d

dτ
Eeiφ = −2πKeLne

γ

∫ 2π

0

e−iζ
dζ0
2π

. (1.63)

A compact form of this expression is found by identifying

a ≡ |a|eiφ, (1.64)

j ≡ 8π2K2e2L2Nne
γ3mc2

, (1.65)

where |a| is given by (1.39). Letting an overbar indicate averaging over all initial electron
phases, we have

◦
a = −j e−iζ . (1.66)

It is clear that there is no change in optical field (da/dτ = 0) for j = 0. For gain, the
integral further requires that the initial phase distribution of electrons average to less than
zero. Populations of electrons for which e−iζ 6= 0 are said to be bunched in phase, and
the manipulation of electron phase distributions to achieve favorable bunching is a critical
concept in FEL design.

3. Interaction and Gain

We now have expressions for the evolution of the electrons in the undulator (1.40) and
the light they create (1.66). To show how this light is amplified, we introduce a solution to
(1.40) for weak fields (|a| � π) and low current (j < π). It is an expansion in a0, namely10

ζ(τ) = ζ0 + ν0τ −
a0

ν2
0

[cos(ζ0 + ν0τ)− cos(ζ0) + ν0τ sin(ζ0)] + · · · , (1.67)

where ν ≡
◦
ζ, a0 is the initial optical field, and the initial phase is taken to be zero. Thus11

ν(τ) = ν0 +
a0

ν0

[sin(ζ0 + ν0τ)− sin(ζ0)]

+
a2

0

ν3
0

{
− 1

4
[cos(2ζ0 + 2ν0τ)− cos 2ζ0] (1.68)

+ cos ν0τ − 1− ν0τ sin ζ0 cos(ζ0 + ν0τ)

}
+ · · ·

10W. B. Colson, “Free Electron Laser Theory”, doctoral dissertation, Stanford University, 1977.
11Ibid.
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We can use (1.67) and (1.68) to plot the phase space portrait of populations of electrons over
their travel time through the undulator, but a more accurate picture is achieved numerically
using a computer simulation, such as the one used to generate Figures 1.4 and 1.5.

The amplification of the optical mode is proportional to the energy loss of the electron
beam. Leaving (1.68) behind for the moment, we can examine the change in individual
electron phase velocity ν by differentiating (1.28):

∂ζ

∂τ
= ν =

∂

∂τ
[(k + k0)z − ωt]

=
L

c

[
(k + k0)

dz

dt
− ω

]
= L[(k + k0)βz − k], (1.69)

which, assuming k � k0, may be approximated

ν = Lk(βz − 1), (1.70)

that is
∆ν = Lk∆βz. (1.71)

This is not a surprising expression: change in electron phase velocity is certainly propor-
tional to change in its longitudinal velocity, as the Lorentz force felt by the particle as it
passes over each magnet in the undulator depends on this velocity. Moreover, proximity to
the resonance condition—most certainly a function of longitudinal electron velocity!—will
ultimately determine the gain. Near resonance, we may write (see Equation 1.1):

k =
4πγ2

λ0(1 +K2)
, (1.72)

thus

∆ν =
4πLγ2∆βz
λ0(1 +K2)

=
4πNγ2∆βz

1 +K2
. (1.73)

To put this expression in terms of electron energy, we must re-examine the relationship
between βz and the relativistic γ. In our helical undulator, where (1.18) implies

β2
⊥ =

K2

γ2
, (1.74)

the definition

γ =
1√

1− β · β
(1.75)
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becomes

γ =
1√

1− β2
⊥ − β2

z

(1.76)

=
1√

1− K2

γ2
− β2

z

, (1.77)

which may be written

1− β2
z =

1 +K2

γ2
, (1.78)

and so, taking the differential of each side,

βz∆βz =
∆γ(1 +K2)

γ3
, (1.79)

or

∆βz =
∆γ(1 +K2)

βzγ3
. (1.80)

Plugging this into (1.73) we have

∆ν =
4πN∆γ

βzγ
. (1.81)

At this point we may return to our approximation βz → 1 for relativistic electrons, and we
write

∆ν = 4πN
∆γ

γ
. (1.82)

For an electron of energy Ee = γmc2, the energy change as a function of the change in
electron phase velocity is then

∆Ee =
γmc2

4πN
∆ν. (1.83)

Now, the number of electrons in a volume Vb of electron beam is neVb. The change in electron
beam energy ∆Eb corresponding to Vb is thus

∆Eb =
neγmc

2

4πN
∆νVb, (1.84)

where we have averaged the change in phase velocity for individual electrons. Meanwhile,
the optical mode energy Eo in a volume Vo is simply

Eo =
E2

4π
Vo, (1.85)

where E is the optical field strength. We now write the optical field gain as

G = −∆Eb
Eo

(1.86)

= −neγmc
2Vb

NE2Vo
∆ν

= −neγmc
2F

NE2
∆ν, (1.87)
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where the filling factor F specifies that fraction of the optical mode coincident with the
electron beam.12 Using our definitions for the optical amplitude (1.39) and beam current
(1.65), this can be simplified to

G = −2jF

a2
0

∆ν. (1.88)

To find an expression for ∆ν, we return to our weak field expansion of ν(τ) (1.68) and
integrate over all possible initial electron phases ζ0:

∆ν = ν − ν0

=
1

2π

∫ 2π

0

(ν − ν0) dζ0

=
1

2π

∫ 2π

0



a0

ν0

[
sin(ζ0 + ν0τ)− sin(ζ0)

]
+
a2

0

ν3
0

{
− 1

4

[
cos(2ζ0 + 2ν0τ)− cos 2ζ0

]
+ cos ν0τ − 1− ν0τ sin ζ0 cos(ζ0 + ν0τ)

}
+ · · ·


dζ0. (1.89)

Many of the terms average to zero, and so, to second-order in a0, we have

∆ν ≈ a2
0

[
2 cos ν0τ − 2 + ν0τ sin(ν0τ)

2ν3
0

]
. (1.90)

Plugging this into (1.88) and dividing through by jF , we have

G

jF
= −2 cos ν0τ − 2 + ν0τ sin(ν0τ)

ν3
0

, (1.91)

which describes the FEL gain along the undulator. The final FEL gain at τ = 1 (the end of
the undulator) is shown in Figure 1.6. The salient feature of this figure is its antisymmetry,
in particular its behavior close to ν0 = 0,13 which indicates that energy may be either
transferred from the electron beam to the optical mode (0 < ν0) or vice-versa (ν0 < 0).
Earlier (see p. 7), we remarked that electrons must bunch in phase space to transfer energy
to the optical mode. For a functioning, useful FEL, (1.91) narrows that requirement to a

12For electron beam and optical mode volumes both spanning a longitudinal length l, the filling factor is
defined as a ratio of cross sectional areas:

Vb

Vo
=
πr2b ��l

πr2o ��l
=
Ab

Ao
.

13It is interesting to examine why (1.91) does not blow up at ν0 = 0. After all, the presence of ν3
0 in the

denominator is certainly suggestive of singular behavior at the origin. The answer is found by expanding
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Figure 1.6: The FEL weak field gain curve plotted at the end of the undulator
(τ = 1). Energy is either gained by the optical mode or lost, depending on
initial phase velocity ν0.

population of electrons possessing an average phase velocity just to the positive side of the
G/jF axis in Figure 1.6.

To illustrate, we refer once again to Figures 1.4 and 1.5. These show the results of a
simple simulation of FEL gain for an electron beam with ν0 = 0 and ν0 > 0. In the first case
(Figure 1.4), nearly the same amount of energy gained by the optical mode from electrons
with decreasing phase velocity is simultaneously lost to electrons whose phase velocity is
increasing. In the second case (Figure 1.5), where ν0 > 0, electrons bunch in the desired
region of phase space: they are predominantly losing energy to the optical mode.

the numerator about ν0 = 0, where

2 cos ν0τ − 2 + ν0τ sin(ν0τ) ≈ 2− ν2
0τ

2 +
ν4
0τ

4

12
− 2 + ν0τ

(
ν0τ −

ν3
0τ

3

6

)
= −ν

4
0τ

4

12
.

In the vicinity of the origin, then, at τ = 0 (1.91) becomes

G

jF
=

1
12
ν0,

confirmed by the linear nature of the ν0 ≈ 0 region of Figure 1.6.
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The introduction of the gain equation completes our preliminary discussion of free elec-
tron lasers. For convenience, we review the important conclusions of this chapter: the two
principle equations of basic FEL theory, and an expression (derivable from the first) for gain
in weak fields.

Pendulum Equation

◦◦
ζ= |a| cos(ζ + φ) (1.40)

Wave Equation

◦
a = −j e−iζ (1.66)

Gain Equation
(weak fields)

G

jF
= −2 cos ν0τ − 2 + ν0τ sin(ν0τ)

ν3
0

(1.91)
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Chapter II.

Fundamental Mode Optics

The free electron laser is unique among high power lasers in that it operates primarily
in the fundamental mode. In contrast, high-power solid state and chemical lasers deliver a
beam comprised of many higher-order mode (HOM) components. Over a given propagation
range, these HOMs lead to more diffraction loss than, for example, a purely Gaussian beam.
While such a beam characterizes the ideal laser, we will show in the next chapter that
beams obtained from simulations of FELs appear to contain a few HOMs, and it is our goal
to construct a diagnostic tool to evaluate the mode content of a given laser beam whose
amplitude and phase are known at every point.

Such comprehensive knowledge of beam makeup is possible in the laboratory with much
effort, but a simulation provides all such information a priori and allows a comprehensive
understanding of the system, and the ability to alter that system, without the high cost
of a laboratory experiment. These types of simulations have been benchmarked against
actual experiment and have accurately predicted experimental results. Modal analysis, on
the other hand, has not been benchmarked, and this analysis provides a starting point for
such a comparison.

A. Propagation - Analytic Description

Although we intend to approach the FEL numerically, we are interested in an analytic
solution to the wave equation in order to understand the nature of an evolving wavefront
inside a laser cavity. For the moment, we consider the optical mode independently of its
interaction with the electron beam.

1. The Parabolic Wave Equation

The homogeneous part of (1.44) can be written(
∇2 − 1

c2
∂2

∂t2

)
A(x, t) = 0. (2.1)

Expressions solving this equation describe waves propagating in free space (or other homo-
geneous, sourceless media). Using the same vector potential as in the previous chapter, we
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have

A(x, t) = <
{
E(x, t)

k
eiαê

}
≡ E(x, t)

k
(sinψ, cosψ, 0), (2.2)

where ê = (−i, 1, 0) is the polarization vector, α = kz − ωt is the carrier wave phase, and
E(x, t) = E(x, t)eiφ(x,t) is comprised of an amplitude E and phase φ now with an explicit
transverse dependence (remember that before we used E ≡ E(z, t) and φ ≡ φ(z, t); see
page 10). To begin substituting this into the wave equation (2.1), we take two derivatives in
z and t:

∂A

∂z
= <

{
1

k

(
∂E
∂z

+ ikE
)
eiαê

}
, (2.3)

∂2A

∂z2
= <

{
1

k

(
∂2E
∂z2

+ 2ik
∂E
∂z

− k2E
)
eiαê

}
, (2.4)

∂A

∂t
= <

{
1

k

(
∂E
∂t
− iωE

)
eiαê

}
, (2.5)

∂2A

∂t2
= <

{
1

k

(
∂2E
∂t2

− 2iω
∂E
∂t
− ω2E

)
eiαê

}
. (2.6)

As before, for slowly-varying E(x, t) and φ(x, t), variations in amplitude and phase arising
from diffraction in the direction of propagation are small compared to those of the wave
itself, that is∣∣∣∣∂2E

∂z2

∣∣∣∣� ∣∣∣∣k∂E∂z
∣∣∣∣ , ∣∣∣∣∂2E

∂t2

∣∣∣∣� ∣∣∣∣ω∂E∂t
∣∣∣∣ , ∣∣∣∣∂2φ

∂z2

∣∣∣∣� ∣∣∣∣k∂φ∂z
∣∣∣∣ , ∣∣∣∣∂2φ

∂t2

∣∣∣∣� ∣∣∣∣ω∂φ∂t
∣∣∣∣ . (2.7)

These negligible terms comprise the second longitudinal space and time derivatives of E ,
which we eliminate to obtain

1

k

[
∂2E
∂x2

+
∂2E
∂y2

+

(
2ik

∂E
∂z

− k2E
)
− 1

c2

(
−2iω

∂E
∂t
− ω2E

)]
eiαê = 0. (2.8)

This simplifies to
1

k

[
∇2
⊥E + 2ik

(
∂E
∂z

+
1

c

∂E
∂t

)]
eiαê = 0, (2.9)

where we have used ω = kc and introduced the transverse Laplacian

∇2
⊥ ≡

∂2

∂x2
+

∂2

∂y2
. (2.10)

Multiplying by ωe−iα, the scalar equation is

c∇2
⊥E + 2ik

(
∂E
∂t

+ c
∂E
∂z

)
= 0, (2.11)

and we may once again use (1.55) to write this as(
1

2
∇2
⊥ +

ik

L

∂

∂τ

)
E = 0. (2.12)
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With propagation now expressed in terms of τ , we would like to make the diffraction term
dimensionless also. The 1/e radius w0 of the initial, fundamental mode of the laser is given
by

w2
0 =

z0λ

π
, (2.13)

where z0 is the Rayleigh length, or the characteristic distance over which the beam cross
section increases. Defining the dimensionless transverse coordinates as

x̃ = x

√
π

λL
, ỹ = y

√
π

λL
, (2.14)

so that
∂2

∂x2
=

k

2L

∂2

∂x̃2
,

∂2

∂y2
=

k

2L

∂2

∂ỹ2
, (2.15)

and adopting the dimensionless transverse Laplacian

∇̃2
⊥ =

∂2

∂x̃2
+

∂2

∂ỹ2
, (2.16)

we now write the dimensionless parabolic1 wave equation(
− i

4
∇̃2
⊥ +

∂

∂τ

)
E = 0 . (2.17)

2. Solving the Dimensionless Parabolic Wave Equation

To solve (2.17), we attempt a trial solution of the Gaussian form2

E(x̃, ỹ, τ) = E0 p(τ) exp

(
− x̃

2 + ỹ2

q(τ)

)
, (2.18)

where p(τ) and q(τ) are as yet undetermined complex functions describing the evolution of
amplitude and width over dimensionless time. We further impose the initial condition

E(x̃, ỹ, 0) = E0 exp

(
− x̃

2 + ỹ2

z̃0

)
, (2.19)

1The terms paraxial and parabolic may both be used to describe (2.17). It is paraxial in that it accurately
describes wave behavior close to the axis of propagation. It is parabolic in that it fits into a class of partial
differential equations of the general form

A
∂2u

∂x2
+ 2B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = R(x, y),

where ∣∣∣∣ A B
B C

∣∣∣∣ ≡ AC −B2 = 0.

This class of equations includes the Schrödinger equation, with which the parabolic wave equation shares
many properties. In contrast, the original wave equation is hyperbolic, that is AC −B2 < 0.

2A spherical wave is a known solution to the wave equation. A Gaussian wavefront may be described as
a paraxial spherical wave, an approximate solution to the wave equation. It is also, in fact, an exact solution
to the paraxial wave equation.
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where z̃0 ≡ w̃2
0 is the dimensionless Rayleigh length and the central field amplitude is E0 ≡

E(0, 0, 0). Substituting (2.18) into (2.17), we take the appropriate derivatives in x̃, ỹ, and τ
(letting r̃2 = x̃2 + ỹ2 and suppressing the argument τ):

∂2E
∂x̃2

=

(
4x̃2

q2
− 2

q

)
E0pe

−r̃2/q, (2.20)

∂2E
∂ỹ2

=

(
4ỹ2

q2
− 2

q

)
E0pe

−r̃2/q, (2.21)

∂E
∂τ

=

(
1

p

dp

dτ
+
r2

q2

dq

dτ

)
E0pe

−r̃2/q, (2.22)

and write(
4x̃2

q2
− 2

q

)
E0pe

−r̃2/q +

(
4ỹ2

q2
− 2

q

)
E0pe

−r̃2/q + 4i

(
1

p

dp

dτ
+
r̃2

q2

dq

dτ

)
E0pe

−r̃2/q = 0. (2.23)

Dividing through by 4E0pe
−r̃2/q and collecting terms, we have

r̃2

q2
− 1

q
+ i

(
1

p

dp

dτ
+
r̃2

q2

dq

dτ

)
= 0, (2.24)

which may be written3 (
dq

dτ
− i

)
r̃2 +

(
1

p

dp

dτ
+
i

q

)
q2 = 0. (2.25)

For this equation to hold for all r̃ (that is, for all x̃ and ỹ), the expressions in parentheses
must be identically zero, thus

dq

dτ
= i, (2.26)

dp

dτ
= −ip

q
. (2.27)

It is easy enough to solve (2.26) for q(τ):

q(τ) = q0 + iτ. (2.28)

We are not surprised to find that it is complex, as it must describe not only the evolution of
the transverse extent of the wave, but also the evolution of the phase, which must oscillate.
From our initial conditions, we find

q0 = z̃0, (2.29)

also anticipated. Using this result and substituting (2.28) into (2.27), we have,

dp

dτ
= − ip

z̃0 + iτ

=
p

iz̃0 − τ
, (2.30)

3To get from (2.24) to (2.25), multiply through by −iq2, then collect terms in r̃2 and q2.
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which we solve for p(τ):

ln p =

∫ τ

0

dτ ′

iz̃0 − τ ′

= ln(iz̃0 − τ ′)
∣∣∣0
τ

= ln(iz̃0)− ln(iz̃0 − τ)

= ln

 1

1 + i
τ

z̃0

 , (2.31)

thus

p(τ) =
1

1 + i
τ

z̃0

. (2.32)

What does it mean for p(τ) to be complex? Our solution to the parabolic wave equation is
now

E(x̃, ỹ, τ) =
E0

1 + i
τ

z̃0

exp

(
− x̃

2 + ỹ2

z̃0 + iτ

)
. (2.33)

Once again letting r̃2 = x̃2 + ỹ2, we elucidate this expression by making the following
definition:

z ≡ 1 + iµ, (2.34)

where
µ ≡ τ

z̃0

, (2.35)

and we write

E(x̃, ỹ, τ) =
E0

z
exp

(
− r̃2

z̃0z

)

=
E0

z
exp

(
− r̃

2

z̃0

z∗

zz∗

)

=
E0

z
exp

[
− (1− iµ)

r̃2

z̃0zz∗

]

=
E0

z
exp

(
− r̃2

z̃0zz∗
+ iµ

r̃2

z̃0zz∗

)

=
E0

z
exp

(
− r̃2

z̃0zz∗

)
exp

(
iµ

r̃2

z̃0zz∗

)
. (2.36)

Now, the complex number z has modulus

|z| =
√

1 + µ2, (2.37)
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and argument
arg z = arctanµ, (2.38)

so we may write
1

z
=
e−i arctanµ√

1 + µ2
, (2.39)

and (2.36) becomes

E(x̃, ỹ, τ) =
E0√

1 + µ2
exp

(
− r̃2

z̃0(1 + µ2)

)
exp

(
iµ

r̃2

z̃0(1 + µ2)

)
e−i arctanµ. (2.40)

Defining the dimensionless beam width

w̃ =
√
z̃0zz∗ =

√
z̃0 (1 + µ2) =

√
z̃0

(
1 +

τ 2

z̃2
0

)
, (2.41)

we arrive at

E(x̃, ỹ, τ) = E0
w̃0

w̃(τ)
exp

(
− r̃2

w̃2(τ)

)
exp

(
i
r̃2τ

z̃2
0 + τ 2

)
exp

(
−i arctan

τ

z̃0

)
, (2.42)

where
w̃0 ≡ w̃(0) =

√
z̃0. (2.43)

This is the solution for the dimensionless parabolic wave equation. Using

φ(r̃, τ) ≡ r̃2τ

z̃2
0 + τ 2

− arctan
τ

z̃0

, (2.44)

we write finally

E(x̃, ỹ, τ) = E0
w̃0

w̃(τ)
e−r̃

2/w̃2(τ)eiφ(r̃,τ) . (2.45)

B. Properties of the Gaussian Beam

We have identified a physical basis for each of the factors in (2.45); these are reviewed
in Table 2.1. Figure 2.1 illustrates a beam diffracting from a waist at τ = 0 in the ±τ
directions, identifying the important parameters used in the Gaussian beam expression. We
can study the behavior of the beam described by this expression by looking at its variables
in their limits. As we have required, at τ = 0,

E(x̃, ỹ, 0) = E0e
−r̃2/z̃0 . (2.46)

As τ increases, so does w̃: the beam expands. For a given r̃, the overall value on the right
hand side of (2.45) decreases with increasing τ : the field strength attenuates.

Figure 2.2 shows a Gaussian beam propagating through free space. The expansion and
attenuation of the beam are evident. Also evident is that the Gaussian beam retains its func-
tional form: there is a scaling of the overall structure, but the wavefront remains Gaussian
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Table 2.1: Symbols Used in the Dimensionless Parabolic Wave Equation

Symbol Definition Description (dimensionless)

x̃ x

√
π

λL
orthogonal transverse coordinate

ỹ y

√
π

λL
orthogonal transverse coordinate

r̃ r

√
π

λL
=

r

w̃L
transverse coordinate

τ
ct

L
time

w̃

√
z̃0

(
1 +

τ 2

z̃2
0

)
beam width

w̃0 w̃(0) =
√
z̃0 beam width at beam waist

z̃0
z0

L
Rayleigh length

after propagation. This behavior is unique to unmixed, individual component solutions of
the paraxial wave equation, but as we will show in Chapter IV., the equation allows solutions
beyond just the fundamental Gaussian. Moreover, we will show that an arbitrary laser (for
example, a laser with a top-hat or annular or just very “messy” cross-sectional wavefront
structure) experiences the inclusion of higher-order modes—that is, higher-order solutions
to the wave equation—as a loss mechanism4 during propagation.

The above claim demands to be addressed, but to further motivate our discussion of
higher-order modes, we first present the results of past research in the field of high-power
free electron lasers.

4This is not loss in the sense of absorption or scattering, but rather with respect to the amount of energy
intended to reach a target area.
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r̃

τ

w̃0
z̃0−z̃0

w̃(τ)

Figure 2.1: A diagram of the optical mode showing the relevant (dimension-
less) physical meanings of the symbols in Table 2.1.

Figure 2.2: The beam described in Figure 2.1 on the interval 0 ≤ τ ≤ 1.
The initial Gaussian wavefront (left) propagates through a uniform sourceless
medium (center), diffracting into a wider Gaussian of lower peak amplitude
(right).
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Chapter III.

Motivation: Free Electron Laser
Simulations

A computer simulation of laser beam propagation through a sourceless medium was used
to generate Figure 2.2. Such a simulation implements a relatively simple numerical method
for solving the parabolic wave equation. More relevant simulations (to wit: the inclusion of
the radiation source—the electron beam!) are the work of the Free Electron Laser Research
Group. Naval Postgraduate School FEL simulations have been in use for fifteen years and
have been useful tools in the construction of new, more powerful FELs. Recently, ever
increasing computing speed and power and advances in simulation technology (better codes)
have resulted in greater fidelity, and more robust analysis of the evolving FEL system. The
inclusion of expanding coordinates and methods of characterizing optical beam quality are
among the improvements found in the following work, completed over the last two years.

A. Multiple Modes

Under optimum conditions, the free electron laser operates in the fundamental mode. In
order to create the laser beam, the gain medium—a beam of free electrons—passes through
the undulator, and thus some portion of the optical cavity. The complicated boundary
conditions introduced by the presence of a region of swiftly moving charges within the re-
gion of propagation argue strongly for the use of numerical methods. But one might guess
that the simple evolution of an initially Gaussian wavefront like that in Figure 2.2 is made
more complicated by the presence of the electrons, and in fact simulations that include the
electron beam show that an initially Gaussian FEL beam wavefront can assume an other-
than-Gaussian transverse structure.

1. Multi-Mode Simulations of a Short-Rayleigh Length FEL

Simulations offer the ability to test variations in free electron laser design parameters
such as undulator length, electron bunch charge, and Rayleigh length, before such designs
are realized. For a weapon-class FEL, two main objectives are maximizing output power and
minimizing the possibility of damage to resonator optics. In 2003, the FEL Group simulated
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the performance of a proposed 1 µm high-power FEL with a Rayleigh length an order of
magnitude shorter than typical extant operating FELs.1 The three-dimensional simulation
(in x̃, ỹ, and τ) used self-consistent FEL pendulum (1.40) and wave (1.66) equations to
follow the evolution of weak optical fields to steady state, allowing for the development of
transverse structure in the wavefront. For simulations of this type, the value of interest is
the extraction η, defined as

η =
extracted optical power

initial electron beam power
. (3.1)

More specifically, there are two expressions for η in basic FEL theory:2 one for the low gain
regime (j . 1),

η ≈ 1

2N
, (3.2)

and one for high gain (j � 1),

η ≈
3
√
j/2

8N
. (3.3)

Both are approximate, as is the definition of the cut-off between high and low gain.
In the simulations, design parameters are independently varied to determine their opti-

mum values with η as a gauge. The simulations must determine the optimum resonance
parameter

ν0 = L[(k + k0)βz0 − k], (3.4)

where L is the undulator length, k is the optical wavenumber, k0 is the undulator wavenum-
ber, and βz0 is the initial electron velocity (see Chapter 1 for details of these parameters).
An actual FEL operates at the optimum ν0, finding it by automatically varying λ = 2π/k
until a fixed value of ν0 dominates by mode competition.

2. Results

Each individual simulation run results in output like that shown in Figure 3.1. A series
of runs are inspected to determine the optimum ν0 for a given parameter, say charge q per
electron bunch. The plot of extraction η versus q at each optimum ν0 shown in Figure 3.2 is
thus the result of more than one hundred simulation runs. Figure 3.2 demonstrates the steady
increase in extraction with increasing bunch charge. The simulation assumes a constant
longitudinal emittance

εl = ∆γlb, (3.5)

where ∆γ is the rms spread in the electron energies and lb is the rms electron bunch length.
In a real FEL (and in later simulations), emittance increases with bunch charge, reducing
extraction as the beam quality degrades. But the effect is estimated as small here.3

1W. B. Colson, et al, “Multi-mode Simulations of a Short-Rayleigh Length FEL”, Proceedings, 25th

International FEL Conference, Tsukuba, Japan, September 2003.
2W. B. Colson in W. B. Colson, C. Pellegrini, A. Renieri (Eds.), Laser Handbook, Vol. 6, North Holland,

Amsterdam, 1990.
3For a concise description of experimental FEL performance as it relates to particular phenomena, such

as electron beam emittance, see Chapter 3 of B. W. Williams, Jefferson Lab Free Electron Laser 10 kW
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Figure 3.1: Output from a 2003 simulation. Each output figure displays 8
panels showing, clockwise from top left: (1) a plot of the mode evolution over
many passes through the undulator, (2) a cross section of the laser beam, (3)
a list of input and calculated parameters, (4) a plot of output beam power
evolution, (5) a plot of gain evolution, (6) the final phase space portrait of the
electrons, (7) an historical plot of electron phase space evolution, and (8) a plot
of the mode evolution over the final pass through the undulator.

The results of the 2003 runs, which were presented at the International Free Electron Laser
Conference in Tsukuba, Japan, included determinations of optimum number of undulator
periods (N = 14, see Figure 3.3), optimum normalized beam waist radius (σ = 0.12, see
Figure 3.4), and constraints on normalized Rayleigh length (z̃0 < 0.06, versus the typical 0.5
in use at the time, see Figure 3.6) and mirror transmission losses (>50%) for the proposed
laser.

Figure 3.3 reflects two important FEL design concepts. The first is that too few undulator
periods result in a non-functioning FEL, indicated by the rapid drop off in extraction for
N < 10. This is evident from our definition of the dimensionless current density

j =
8π2K2e2L2Nne

γ3mc2

=
8π2K2e2λ2

0N
3ne

γ3mc2
. (3.6)

Since gain G is proportional to current j, we ultimately have

G ∝ j ∝ N3. (3.7)

Upgrade - Lessons Learned, Technical Report NPS-PH-05-001, Naval Postgraduate School, Monterey, May
2005.
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Figure 3.2: Plots of FEL performance as a function of individual design
parameters, in this case bunch charge q, are each the result of many simulation
runs.

Meanwhile, the dependence of extraction on number of undulator periods initially obeys
(3.2), that is

η ∝ 1

N
, (3.8)

countering the trend due to increasing gain. In the high gain regime, extraction appears to
have no dependence on N :

η ≈
3
√
j/2

8N

≈ 1

8��N

3

√
4π2K2e2λ2

0�
�N3ne

γ3mc2

≈ 3

√
π2K2e2λ2

0ne
128γ3mc2

, (3.9)

and indeed the curve levels off once maximum gain is achieved, around N = 15 for this laser.

Figure 3.4 illustrates the effects of two important FEL concepts: filling factor F and
(normalized) transverse emittance εn, given by

εn = γrbθb, (3.10)

where γ is the electron beam energy, rb is the rms beam radius, and θb is its rms angular
spread. In general, low emittance is desirable, and the value can only increase as the beam
travels around the FEL transport lattice. Considerable pains are taken to suppress emittance
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Figure 3.3: Plot of extraction η as a function of number of undulator periods
N . While the curve is relatively flat beyond N = 15, a guiding principal in
FEL design is using just enough undulator periods to get a working, efficient
laser.

growth, but it is never zero, as evidenced when the electron beam is focused at the center of
the undulator. Since εn must at least be conserved, the narrower the waist of the electron
beam, the greater the angular spread. Too narrow a waist, and some electrons fall outside
the optical mode at the ends of the undulator due to a large angular spread, as in the top of
Figure 3.5. On the other hand, the electrons in a wider beam interact with a lower average
optical field in the middle of the undulator, as in the bottom of the figure. Increasing F by
increasing Ab may result in some electrons falling outside the optical mode, as illustrated in
Figure 3.5. These electron still wiggle, but the radiation they produce is not reinforced by
the optical resonator.

The important result from Figure 3.6 is that for a small increase in extraction achieved
by increasing the Rayleigh length z̃0, there is a considerable increase in optical intensity on
the resonator mirrors. This is of particular concern at present. Since vulnerability of the
mirror limits the allowable power, material limitations make the value of mirror intensity a
limiting factor in the development of weapon-class free electron lasers.
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Figure 3.4: Plot of extraction η and optimum initial phase velocity ν0 as
a function of normalized electron beam waist radius σ for fixed transverse
emittance εn. There is an optimum overlap between the electron beam and the
optical mode.

Figure 3.5: The overlap of the electron beam and the optical mode. A nar-
rower electron beam means larger emittance εn and a lower number of inter-
acting electrons, yet a wider beam creates an interaction region with a lower
average optical field.
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Figure 3.6: Plot of extraction η and mirror intensity as a function of nor-
malized Rayleigh length z̃0. For longer Rayleigh lengths, a small increase in
extraction is accompanied by a large increase in (potentially harmful) optical
intensity on the resonator mirrors.
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B. Optical Mode Distortion

The simulation used in the 2003 runs was adequate to the task of determining the results
described in the previous section: scientists at Thomas Jefferson National Accelerator Fa-
cility (JLAB), where the proposed laser was being developed, made use of the information
provided, and the consideration of shorter Rayleigh length configurations was taken up as a
serious endeavor.4

For the following year’s runs, a number of improvements were made to the simulation code.
A faster fast Fourier transform (FFT) algorithm5 was employed resulting in a 10-fold speed
improvement. A more accurate propagation method involving next-nearest neighbors was
utilized, and an expanding coordinate system that follows the rapidly diffracting wavefront
made for greatly improved efficiency.

1. Optical Mode Distortion in a Short Rayleigh Length FEL

A proposed high power FEL has the parameters shown in Table 3.1. As before, the
simulation has the ability to follow multiple and arbitrary transverse optical modes, as they
interact with the electron beam and bounce back and forth in the optical cavity, including
mirror transmission and edge losses.6 Output from the improved simulation is shown in

Table 3.1: Parameters for a Proposed High-Power FEL

Parameter Symbol Value
electron beam energy Eb 80 MeV
bunch charge q 400 pC
bunch length lb 0.15 mm

peak current Î 800 A
normalized emittance εn 3 mm·mrad
beam radius rb 60 µm
undulator periods N 22
undulator wavelength λ0 2.36 cm
undulator length L 52 cm

peak magnetic field B̃ 0.7 T
undulator parameter K 1
optical cavity length S 18 m
Rayleigh length z0 6 cm
resonator quality factor Qn 4
optical wavelength λ 1 µm

4At this writing, an experiment is in place at JLAB involving a resonator configuration utilizing a Rayleigh
length on the order of z̃ = 0.2.

5M. Frigo and S. G. Johnson, “FFTW: An Adaptive Software Architecture for the FFT”, Proceedings,
1998 International Conference on Acoustics and Signal Processing, p. 1381, 1998.

6 J. Blau, et al, “Optical Mode Distortion in a Short Rayleigh Length Free Electron Laser”, Proceedings,
26th International Free Electron Laser Conference, Trieste, Italy, September, 2004.
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Figure 3.7. The displayed data (top center of the figure) clearly exhibits an other-than-
Gaussian wavefront for the particular parameters of that simulation run.

Figure 3.7: Output from a 2004 simulation. New visualizations of the optical
mode wavefront accompanied improved speed and diagnostics.
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2. Results

When the wavefront pictures provided by the simulation were included in the plots of the
parameters being varied to find optimum extraction (Figures 3.8 and 3.9), it became clear
that under certain configurations,7 a FEL operates in higher-order modes. It is interest-

Figure 3.8: Plot of extraction η as a function of dimensionless Rayleigh length
z̃0 and wavefront pictures generated by the simulation.

Figure 3.9: Plot of extraction η as a function of dimensionless mirror separa-
tion τmir and wavefront pictures generated by the simulation.

ing to note that while varying the Rayleigh length z0 (Figure 3.8) and mirror separation
τmir (Figure 3.9) evoke a relatively flat response from the FEL in terms of extraction, the
new boundary conditions imposed by these changes appear to lead to a change in modal
composition of the beam.

7For example, under certain Rayleigh lengths or distances between resonator mirrors. Remember that
we said the FEL automatically finds the optimum ν0, so each data point in Figures 3.8 and 3.9 represents
an operating FEL, with associated pictures indicating the shape of its optical wavefront.
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C. The Need for Higher-Order Mode Analysis

The radially symmetric, generally papilloid shape of the higher-order mode wavefronts
observed in the 2003 and 2004 simulation results is suggestive of the geometry of the FEL
resonator system and the boundary conditions imposed by an optical wave propagating along
and around a coaxial column of current (see Figure 3.10, below). Under the assumption that

Figure 3.10: Wavefront suggesting coincident reinforcement of the optical
mode by the electron beam. This is the general shape we see in many FEL
simulations, which display the beam structure at the high reflector end of the
resonator. The appearance of such structure demands a detailed analysis of
the modal content of the outcoupled beam.

the fundamental Gaussian mode is the ideal mode both for lasing efficiency and atmospheric
propagation, a simple index of beam quality8 would be sufficient. The observation from
simulations that higher-order modes occur within the resonator demands a more robust
characterization of beam quality. In other words, we wish to know more precisely which
modes comprise our beam.

8One such measure of beam quality frequently encountered in the literature is M2, given by

M2 =
(
d

d0

)2

,

where d is the observed beam diameter and

d0 = 2

√
z0λ

π

is the diameter of a theoretical diffraction-limited Gaussian beam arising from the same initial conditions.
For more on M2 see Safnett, and Siegman 1993.
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Chapter IV.

Higher-Order Modes

An approach to the resolution of a given laser beam into its component modes is a process
analogous to a Fourier decomposition of a function. In the same way that an arbitrary
function1 may be represented by a series of sines and/or cosines, an arbitrary laser beam
may be represented by a sum of orthogonal modes. Identifying the appropriate complete,
orthogonal basis set is the challenge, and is the topic of this chapter.

A. Hermite-Gaussian Beams

The trial solution we used to solve the parabolic wave equation in §1. can be further
generalized to allow for higher-order modes. We begin by noting that (2.45) can be expressed
as a product of identically dependent functions of each transverse coordinate, that is

E(x̃, ỹ, τ) = E0
w̃0

w̃
e−r̃

2/w̃2

eir̃
2τ/(z̃20+τ2)e−i arctan(τ/z̃0)

= E0
w̃0

w̃
e−x̃

2/w̃2

e−ỹ
2/w̃2

eix̃
2τ/(z̃20+τ2)eiỹ

2τ/(z̃20+τ2)e−i arctan(τ/z̃0)

=

√
E0
w̃0

w̃
e−i arctan(τ/z̃0)/2e−x̃

2/w̃2

eix̃
2τ/(z̃20+τ2) ×√

E0
w̃0

w̃
e−i arctan(τ/z̃0)/2e−ỹ

2/w̃2

eiỹ
2τ/(z̃20+τ2)

= Ex(x̃, τ)Ey(ỹ, τ). (4.1)

As such, we can simplify the process of finding higher-order solutions by examining only one
transverse dimension at a time. Writing the wave equation as(

− i
4

∂2

∂x̃2
+

∂

∂τ

)
Ex = 0, (4.2)

1The function must, of course, meet the Dirichlet conditions: on any finite interval, it must possess one
minimum, one maximum, and no discontinuities.
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and modifying our trial solution to give the complex amplitude function p an explicit trans-
verse dependence,

Ex(x̃, τ) = E0p(x̃, τ)e
−x̃2/q(τ), (4.3)

we begin taking derivatives:

∂2E
∂x̃2

=

[
∂2p

∂x̃2
− 4

q
x̃
∂p

∂x̃
+

(
4

q2
x̃2 − 2

q

)
p

]
E0e

−x̃2/q, (4.4)

∂E
∂τ

=

(
∂p

∂x̃
+

1

q2

dq

dτ
x̃2p

)
E0e

−x̃2/q, (4.5)

to give (
− i

4

∂2p

∂x̃2
+
i

q
x̃
∂p

∂x̃
− i

q2
x̃2p+

i

2q
p+

∂p

∂τ
+
x̃2

q2

∂q

∂τ
p

)
E0e

−x̃2/q = 0. (4.6)

Dividing through by − i
4
E0e

−x̃2/q and collecting terms in spatial derivatives of p gives

∂2p

∂x̃2
− 4

q
x̃
∂p

∂x̃
+

[(
1 + i

dq

dτ

)
4

q2
x̃2 − 2

q

]
p+ 4i

∂p

∂τ
= 0. (4.7)

It is the similarity of (4.7) to the well known Hermite differential equation

d2Hm

du2
− 2u

dHm

du
+ 2mHm = 0 (4.8)

that, after some algebra, leads to the following expression for the Hermite-Gaussian beam:2

E(x̃, τ) = E0
w̃0

w̃
Hm

(√
2x̃

w̃

)
e−x̃

2/z̃0eiφm0(x̃,τ), (4.9)

or in three dimensions

E(x̃, ỹ, τ) = E0
w̃0

w̃
Hm

(√
2x̃

w̃

)
Hn

(√
2ỹ

w̃

)
e−r̃

2/z̃0eiφmn(r̃,τ), (4.10)

where

φmn(r̃, τ) ≡
r̃2τ

z̃2
0 + τ 2

− (m+ n+ 1) arctan
τ

z̃0

, (4.11)

and Hm and Hn are mth- and nth-order solutions to (4.8). These so-called Hermite-Gaussian
solutions to the dimensionless parabolic wave equation constitute a complete set of orthog-
onal modes with which one may construct an arbitrary laser beam wavefront.

The properties of Hermite polynomials are well documented.3 The first ten polynomials
are listed in Table 4.1. Some examples of the effect of the functions Hm and Hn on the beam
wavefront is represented in Figure 4.1. These “burn patterns” illustrate the intensity E2 of
the beam in the transverse plane, but display nothing about the phase! To fully characterize
a beam, one must know both its amplitude and phase at every point, a challenge in a real
experiment, but a matter of course in a simulation.

2The (dimensional) functional forms of E(x̃, ỹ, τ) as well as a derivation of the higher-order solution are
available in A. E. Siegman, Lasers, University Science Books, Sausalito, 1986. We include the dimensionless
forms of the τ -dependent expressions for completeness.

3See, for example, pp. 367-9, V. Barcilon, “Special Functions” in C. E. Pearson, Ed., Handbook of Applied
Mathematics, Van Nostrand Reinhold, New York, 1983.
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Table 4.1: Hermite Polynomials - Solutions to
d2Hm

du2
− 2u

dHm

du
+ 2mHm = 0

H0(u) = 1
H1(u) = 2u
H2(u) = 4u2 − 2
H3(u) = 8u3 − 12u
H4(u) = 16u4 − 48u2 + 12
H5(u) = 32u5 − 160u3 + 120u
H6(u) = 64u6 − 480u4 + 720u2 − 120
H7(u) = 128u7 − 1344u5 + 3360u3 − 1680u
H8(u) = 256u8 − 3584u6 + 13440u4 − 13440u2 + 1680
H9(u) = 512u9 − 9216u7 + 48384u5 − 80640u3 + 30240u

Figure 4.1: Some Hermite-Gaussian modes. The transverse electromagnetic
mode (TEM) subscripts correspond to the values of m and n in the polynomials
Hm and Hn.

B. Laguerre-Gaussian Beams

In cylindrical coordinates, the dimensionless transverse Laplacian is

∇2
⊥ ≡

1

r̃

∂

∂r̃

(
r̃
∂

∂r̃

)
+

1

r̃2

∂2

∂θ̃2
, (4.12)

and (2.17) becomes
1

r̃

∂E
∂r̃

(
r̃
∂E
∂r̃

)
+

1

r̃2

∂2E
∂θ̃2

+
∂E
∂τ

= 0. (4.13)

We might guess that this coordinate system is more appropriate to the resonator geometry,
whose eigenmodes are certain to reflect the circular shape of the mirrors. Following the same
procedure as in the previous section, a generalized trial solution to (4.12) yields a differential
equation similar to Laguerre’s differential equation

u
d2Lp
du2

+ (m+ 1− r)
dLp
du

+ pLp = 0. (4.14)
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Like the Hermite polynomials, the polynomials that solve (4.14) also constitute a complete
set of orthogonal functions, the first ten of which are given in Table 4.2.

Table 4.2: Laguerre Polynomials - Solutions to u
d2Lp

du2
+ (1− u)

dLp

du
+ pLp = 0

L0(u) = 1

L1(u) = 1− u

L2(u) = 1− 2u+ 1
2
u2

L3(u) = 1− 3u+ 3
2
u2 − 1

6
u3

L4(u) = 1− 4u+ 3u2 − 2
3
u3 + 1

24
u4

L5(u) = 1− 5u+ 5u2 − 5
3
u3 + 5

24
u4 − 1

120
u5

L6(u) = 1− 6u+ 15
2
u2 − 10

3
u3 + 5

8
u4 − 1

20
u5 + 1

720
u6

L7(u) = 1− 7u+ 21
2
u2 − 35

6
u3 + 35

24
u4 − 7

40
u5 + 7

720
u6 − 1

5040
u7

L8(u) = 1− 8u+ 14u2 − 28
3
u3 + 35

12
u4 − 7

15
u5 + 7

180
u6 − 1

630
u7 + 1

40320
u8

L9(u) = 1− 9u+ 18u2 − 14u3 + 21
4
u4 − 21

20
u5 + 7

60
u6 − 1

140
u7 + 1

4480
u8 − 1

362880
u9

The Laguerre-Gaussian beam, given by

E(r̃, θ, τ) = E0
w̃0

w̃

(√
2r̃

w̃

)m

Lmp

(
2r̃2

w̃2

)
e−r̃

2/w̃2

eiφ
m
p (r̃,θ,τ), (4.15)

where

φmp (r̃, θ, τ) ≡ r̃2τ

z̃2
0 + τ 2

− (2p+m+ 1) arctan
τ

z̃0

+mθ, (4.16)

is a dimensionless solution to the parabolic wave equation in cylindrical coordinates.4 Beam
propagation is shown for the first ten Laguerre-Gaussian modes in Figure 4.2. Evidently, the
wavefronts retain their shape. Examining (4.15), we see there is no change in the number of
zeros as τ increases: there is no “crossing” of local maxima.

4The subscripts m and n are standard in the literature for the Hermite polynomials. Similarly, m and p
are often used for the Laguerre indices. At this point, we essentially leave behind our discussion of Hermite-
Gaussian beams, so from now on m will denote the angular mode of the Laguerre-Gaussian solution.
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Figure 4.2: The first ten Laguerre-Gaussian modes. Notice that L0
0 is simply

a Gaussian beam. Notice also that all modes retain their general shape—in par-
ticular the number of zeros—as they propagate through a sourceless medium.

The orthogonality of the generalized Laguerre polynomials is weighted by ume−u with the
normalization5 ∫ ∞

0

ume−uLmp (u)Lmq (u)du =
Γ(q +m+ 1)

q!
δpq, (4.17)

where

Γ(α) =

∫ ∞

0

e−uuα−1du. (4.18)

We shall only consider those Laguerre modes with no azimuthal dependence, that is m = 0.
For integers (which q + 1 surely is)

Γ(n) = (n− 1)!, (4.19)

and so, for our purposes, we shall write the orthogonality condition as∫ ∞

0

e−uLp(u)Lq(u)du = δpq. (4.20)

Now, finding the Laguerre-Gaussian (LG) “spectrum” of an arbitrary initial wavefront
E(r̃, 0) with azimuthal symmetry requires us to calculate the coefficients cp in the series

E(r̃, 0) =
∑
p

cpEp(r̃, 0) (4.21)

5See pp. 533-4 in D. Zwillinger, CRC Standard Mathematical Tables and Formulae, Chapman & Hall,
New York, 2003.
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where

Ep(r̃, 0) = E0Lp

(
2r̃2

z̃0

)
e−r̃

2/z̃0 (4.22)

solves (4.13) at τ = 0. Notice that the factor eiφ
m
p (r̃,θ,τ) in (4.15) becomes unity since

φ0
p(r̃, 0, 0) =

r̃2 × 0

z̃2
0 + 0

− (2p+ 0 + 1) arctan
0

z̃0

+ 0× 0

= 0. (4.23)

Expressing our arbitrary wavefront as a function of

% =
2r̃2

w̃2
(4.24)

and noting that6

%0 =
2r̃2

w̃2
0

=
2r̃2

z̃0

, (4.25)

we multiply both sides of (4.21) by an LG mode Eq(%0) and integrate over %0:∫ ∞

0

E(%0)Eq(%0)d%0 =

∫ ∞

0

∑
p

cpEp(%0)Eq(%0)d%0

= E2
0

∑
p

cp

∫ ∞

0

e−%0Lp(%0)Lq(%0)d%0

= E2
0

∑
p

cpδpq

= E2
0 cq, (4.26)

6For example, using this new coordinate the Gaussian beam becomes

E0e
−r̃2/z̃0 → E0e

−%0/2.
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where we have used (4.20). An arbitrary coefficient is then7

cq =
1

E2
0

∫ ∞

0

E(%0)Eq(%0)d%0

=
4

E0z̃0

∫ ∞

0

r̃e−r̃
2/z̃0Lq

(
2r̃2

z̃0

)
E(r̃)dr̃. (4.27)

Equation (4.27) is limited to τ = 0. Even as we assert the usefulness of a modal analysis
of the initial wavefront, we wish to analyze our beam at any point along its propagation,
that is for any τ . Beginning once again with (4.21), this time we make no assumptions about
the value of τ and thus w̃(τ) and the τ -dependent phase factor eiφ

m
p (r̃,θ,τ):

E(%, τ) =
∑
p

cpEp(%, τ) (4.28)

Implicit in this generalization is the possibility of a complex cp(τ). Here is why. Suppressing
the arguments % and τ , let us multiply both sides of (4.28) by arbitrary mode E∗q and

7We can normalize the quantity
∑

p cp to unity by setting E(r̃) to the fundamental and calculating

c0 =
4
E0z̃0

∫ ∞

0

r̃e−r̃2/z̃0e−r̃2/z̃0dr̃

=
4
E0z̃0

∫ ∞

0

r̃e−2r̃2/z̃0dr̃

=
4
E0z̃0

× z̃0
4

=
1
E0
,

where we have used ∫ ∞

0

xne−axp

dx =
Γ[(n+ 1)/p]
pa(n+1)/p

,

with n = 1, a = 2/z̃0, and p = 2 (see p. 451, Zwillinger). Having thus identified

1
E0

= 1,

and returning to our standard LG index p, a normalized Laguerre-Gaussian spectral coefficient is then

ĉp =
∫ ∞

0

e−r̃2/z̃0Lp

(
2r̃2

z̃0

)
E(r̃)dr̃,

with the carat indicating normalization. While this is a useful result, we ultimately intend to approach the
calculation of LG-spectrum coefficients numerically, and a self-consistent normalization will be included in
the computer program. The above is included for completeness.
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integrate: ∫ ∞

0

EE∗q d% =

∫ ∞

0

∑
p

cpEpE∗q d%

= E2
0

∑
p

cp

∫ ∞

0

ei(φp−φq)e−%Lp(%)Lq(%)d%

= E2
0

∑
p

cpe
2i(p−q) arctan(τ/z̃0)

∫ ∞

0

e−%Lp(%)Lq(%)d%

= E2
0

∑
p

cpe
2i(p−q) arctan(τ/z̃0)δpq

= E2
0 cq, (4.29)

and so, switching indices from q to our standard p,

cp =
1

E2
0

∫ ∞

0

EE∗pd% (4.30)

or explicitly

cp =
w̃0

E0w̃
ei(2p+1) arctan(τ/z̃0)

∫ ∞

0

e−z%/2Lp(%)E(%, τ)d%

=
4z̃0

E0w̃
ei(2p+1) arctan(τ/z̃0)

∫ ∞

0

r̃e−zr̃2/w̃2

Lp

(
2r̃2

w̃2

)
E(r̃, τ)dr̃, (4.31)

where once again

z = 1 + i
τ

z̃0

. (4.32)

We will attempt to solve (4.31) numerically, for two reasons: (1) while we may know the
amplitude and phase of a simulated FEL beam at every (finite) transverse point, we will not
generally have an analytic expression for the entire wavefront; and (2) even if we did know
the functional form of E(r̃, τ), the integral in (4.31) is difficult to perform for all but the
most ideal beams.

For a numerical analysis, we must first get the integral into a form the computer can
understand. Letting the subscripts r and i indicate the real and imaginary parts, we rewrite
(4.30) as

cp =
1

E2
0

∫ ∞

0

E∗pEd%

=
1

E2
0

∫ ∞

0

(Ep,r − iEp,i) (Er + iEi) d%

=
1

E2
0

∫ ∞

0

(Ep,rEr + iEp,rEi − iEp,iEr + Ep,iEi) d%

=
1

E2
0

∫ ∞

0

(Ep,rEr + Ep,iEi) d%+
i

E2
0

∫ ∞

0

(Ep,rEi − Ep,iEr) d% (4.33)
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We may now split cp into its real and imaginary parts, each of which may be integrated
separately:

cp,r ≡ <{cp} =
1

E2
0

∫ ∞

0

(Ep,rEr + Ep,iEi) d%, (4.34a)

cp,i ≡ ={cp} =
1

E2
0

∫ ∞

0

(Ep,rEi − Ep,iEr) d%. (4.34b)

The contribution to the LG spectrum of an arbitrary beam by an individual LG mode shall
be given by the modulus of that mode’s coefficient,

cp = |cp| =
√
c2p,r + c2p,i, (4.35)

and will be normalized to the sum of all basis set coefficients:

ĉp =
cp∑
q

cq
. (4.36)

C. Numerical Propagation of Higher-Order Modes

The diagnostic tool to be included in free electron laser simulations numerically integrates
(4.34) and reports cp for each of the first ten LG modes via (4.35). Figure 4.3 is a sample
output from bm.c, a self-contained code that resolves an input laser beam wavefront into
component LG modes and reports the normalized LG coefficients as a bar chart beneath
the wavefront picture both before and after propagation. In this case, the integration has
correctly identified the initial wavefront as an exclusively LG-2 beam: in the bar chart below
the initial wavefront intensity plot, only the bar in the third position is present and goes
to the top of the chart. To within a few percent error, the program has also determined
the final wavefront to be LG-2, as we expect. The text in the middle of the output reports
parameters used for that simulation as well as a “fractional energy on target” for a circular
target of fixed radius. This is discussed in the next section. The basis sets used to analyze
the input beam both before and after propagation are evaluated analytically and displayed
at the bottom of the output for reference.

The diagnostic is able to pick out multiple modes, as in Figure 4.4. In this case, we see for
the first time the “crossing” of zeros in the propagation of the laser beam. Remember that
“pure” LG modes do not exhibit this behavior: a given Laguerre-Gaussian mode possesses
the same number of zeros throughout its propagation (see again Figure 4.2). Single modes
also always exhibit a global maximum at r̃ = 0, not always observed in mixed modes.
This distinction between single- and mixed-mode higher-order beams immediately suggests
a useful application for our tool, and it leads us to consider one of the difficulties in the
experimental analysis of laser beam modes.

It is not possible to determine the modal composition of a beam (function) if only its
intensity (square) is known. As a simple illustration, let us consider the curves in Figure 4.5.
It is not possible to determine whether the curve on the right was arrived at by squaring the
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Figure 4.3: Output from the diagnostic tool bm.c. The basis set before and
after propagation (evaluated analytically) is included at the bottom of the
display for reference.

top left or bottom left function. An attempt to determine the modal composition of a laser
beam based on intensity information alone encounters the same problem. It is precisely the
phase information that is lost in the process of squaring.

Consequently, burn patterns can be misleading. Figure 4.6 shows the propagation of the
same laser beam as Figure 4.4, but takes the cross sectional amplitude (or burn pattern) of
the final wavefront earlier than before. Visually inspecting the initial and final wavefront
amplitude plots (enlarged in Figure 4.7), one might be hard-pressed to conclude (or even
guess!) that they were generated by the same laser beam. Yet the values of the LG coeffi-
cients, as reported in the bar charts beneath the initial and final wavefronts in Figure 4.6,
assure us that this is the case. Multiple modes interfere because each mode prescribes a
unique time dependence via the factor

eiφp(r̃,τ) ≡ exp

[
i
r̃2τ

z̃2
0 + τ 2

− i(2p+ 1) arctan
τ

z̃0

]
(4.37)

in (4.15). This evolving phase-front results in an evolving amplitude-front as modes cyclically
cancel and reinforce each other, as evident in the propagation plot.

The diagnostic tool performs well for even more complicated mixtures of higher-order
Laguerre-Gaussian modes. In Figure 4.8, bm.c has correctly identified the 3:5:2 mixture of
the LG-0, -3, and -6 modes comprising the simulated beam. Figure 4.9 shows the analysis
of a beam comprised of many LG modes. Once again, in both figures we observe the zero
crossings typical of mixed-mode beams, and the difference in the burn patterns before and
after propagation.
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Figure 4.4: A beam composed of two distinct Laguerre-Gaussian modes. The
slight error in the bar chart pertaining to the LG coefficients for the final
wavefront is a result of numerical integration error.

Figure 4.5: When squared, the two functions sinx (top left) and sin(x + π)
(bottom left) lead to an identical squared function (right).

D. Power on Target

Knowing which modes comprise our laser beam allows us to examine the relationship
between physical properties of the beam and its composition. An example of this is the
important consideration of power on target: how much of the beam’s initial energy is focused
onto a target at the propagation distance.

Choosing a circular target of an arbitrary radius such that almost all (93.5%) of the
outcoupled energy is delivered to its surface when the beam is in the fundamental, Figure 4.10
plots the energy delivered to the same target by beams in unmixed, higher-order Laguerre-
Gaussian modes.

Evidently, by themselves higher-order modes are not good choices for delivering power to
a target at the center of the beam. As p increases, more and more energy is relegated to the
“shoulders” of the central field (see Figure 4.11). Once in this outer region, light cannot cross
back into the center without a change in the number of local field maxima—not observed in
pure LG beams.

Certainly, real lasers are unlikely to be comprised solely of single higher-order Laguerre-
Gaussian modes, or even predictable mixtures. Figure 4.12 shows three theoretical lasers:
one a Gaussian, one an even mixture of the Gaussian and LG-1 modes, and one a beam with
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Figure 4.6: Each LG mode carries a different phase factor, causing periodic
interference when multiple modes are combined.

Figure 4.7: A combination of LG modes before (left) and after (right) prop-
agation over a finite distance (enlarged from Figure 4.6). While the two wave-
fronts are not necessarily identifiable by eye as manifestations of the same laser
beam, the diagnostic assures us this is so.

a “flat-top” cross section. The percentage of energy received by the centrally located target
is shown.

What the propagation of mixed modes such as the flat-top beam teaches us is that the
inclusion of higher-order in the laser does not necessarily spell doom for the propagation of
power to the target area. Certainly the trend in Figure 4.10 is not towards larger central field
amplitude for higher values of p. But mixed modes, as Figures 4.6, 4.8, and 4.9 demonstrate,
have the potential to get some of that power from the shoulders back into the center of the
beam. In fact, we may conclude that any non-fundamental beam delivering more power
to our test target than the L1-Gaussian is by definition comprised of multiple higher-order
modes. Particularly for use as a weapon, if a laser beam is not in the fundamental, it may
benefit from the mixing of higher-order modes.
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Figure 4.8: A beam comprised of three higher-order modes. The recipe is
three parts LG-0 (the fundamental Gaussian), five parts LG-3, and two parts
LG-6. Once again, the burn patterns before and after propagation are difficult
to reconcile visually.

Figure 4.9: A beam comprised of many higher-order modes.

Figure 4.10: E0 and E1 are the energy contained in the beam and the en-
ergy delivered to the target area, respectively. For unmixed Laguerre-Gaussian
modes, laser power on target drops off significantly for p > 0.
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Energy in the “shoulder” falls outside the target area.

Figure 4.11: A target just large enough to receive nearly 100% of the energy
in the fundamental will generally not receive energy from pure higher-order
modes beyond the first zero-point.

Figure 4.12: The propagation of (a) a Gaussian beam; (b) a beam comprised
of equal parts L0- and L1-Gaussian modes; (c) an initially “flat-top” beam,
defined by a step function at r̃ = w̃0 as determined by the fundamental Gaus-
sian in (a). Notice once again the crossing of local maxima in (c), not observed
for unmixed Laguerre-Gaussian modes. It is this crossing that has allowed the
beam to deliver more energy to the center of the target.
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E. Conclusion

Resolving arbitrary optical modes into higher-order mode spectra provides a useful tool
for the analysis of FEL simulations and a self-consistent index of beam quality. Future work
might include retaining the azimuthal index m in

E(r̃, θ, τ) = E0
w̃0

w̃

(√
2r̃

w̃

)m

Lmp

(
2r̃2

w̃2

)
e−r̃

2/w̃2

eiφ
m
p (r̃,θ,τ),

where

φmp (r̃, θ, τ) ≡ r̃2τ

z̃2
0 + τ 2

− (2p+m+ 1) arctan
τ

z̃0

+mθ,

during the analysis—such a basis set would be capable of generating any beam, even those
without radial symmetry. Free electron laser simulations have also demonstrated the poten-
tial usefulness of the Hermite-Gaussian modes as an appropriate basis set when studying
off-axis electron beams and/or resonator cavity mirror-tilt.

53



THIS PAGE INTENTIONALLY LEFT BLANK

54



Appendix: The Parabolic Wave
Equation

We present the parabolic wave equation in both dimensionless and dimensional form.

Cartesian coordinates.

The dimensionless parabolic wave equation is

∂E
∂τ

=
i

4
∇2
⊥E ,

where

τ =
z

L
,

∇2
⊥ ≡ ∂2

∂x̃2
+

∂2

∂ỹ2
,

for a propagation distance L. Using the dimensionless coordinates

x̃ ≡
√

π

Lλ
x,

we can transform to the dimensional paraxial wave equation as follows:

L
∂E
∂z

=
i

4

(
∂2E
∂x̃2

+
∂2E
∂ỹ2

)
,

��L
∂E
∂z

=
i��Lλ

4π

(
∂2E
∂x2

+
∂2E
∂y2

)
,

∂E
∂z

=
i

2k

(
∂2E
∂x2

+
∂2E
∂y2

)
,

and finally the familiar
∂2E
∂x2

+
∂2E
∂y2

+ 2ik
∂E
∂z

= 0.

Cylindrical coordinates.
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In cylindrical coordinates we use

∇2
⊥ ≡

1

r̃

∂

∂r̃

(
r̃
∂

∂r̃

)
+

1

r̃2

∂2

∂θ̃2
,

where r̃ ≡ r/wL and θ̃ = θ, and we have

L
∂E
∂z

=
i

4

[
1

r̃

∂

∂r̃

(
r̃
∂E
∂r̃

)
+

1

r̃2

∂a2

∂θ̃2

]
,

��L
∂E
∂z

=
i��Lλ

4π

[
1

r

∂

∂r

(
r
∂E
∂r

)
+

1

r2

∂E2

∂θ2

]
,

∂E
∂z

=
i

2k

[
1

r

∂

∂r

(
r
∂E
∂r

)
+

1

r2

∂E2

∂θ2

]
,

and finally
1

r

∂E
∂r

(
r
∂E
∂r

)
+

1

r2

∂E2

∂θ2
+ 2ik

∂E
∂z

= 0.
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