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Abstract

This paper presents a framework to address new data manapgm#enges introduced by data-intensive, perva-
sive computing environments. These challenges includatéosemporal variation of data and data source avaitabili
lack of a global catalog and schema, and no guarantee ofmectian among peers due to the serendipitous nature
of the environment. An important aspect of our solution isréat devices as semi-autonomous peers guided in their
interactions by profiles and context. The profiles are gredrid a semantically rich language and represent informa-
tion about users, devices and data described in terms aéfstl“desires”, and “intentions”. We present a prototype
implementation of this framework over combined Bluetoatld &d-Hoc 802.11 networks, and present experimental

and simulation results that validate our approach and measgstem performance.
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. INTRODUCTION

Data-intensivepervasive computing environments introduce significanty challenges not
addressed by traditional mobile data management solutiorntis paper, we motivate the prob-
lem of data management in these environments and idensgifghidllenges. We address these
challenges by articulating the requirements for, and prtasg an implementation prototype of, a
robust framework enabling serendipitous querying and lprdfiven data management. We also
present simulation results in order to show the efficacy ofsolution.

The paradigm of pervasive computing has already begun taeinde our lives. We interact,
daily, with tens of computationally enabled devices. Wencaellular phones allowing us to
interact with other people and to connect to the Interneastfucture anytime from anywhere. We
use personal digital assistants to remind us of our scheé@ppointments and for storing personal

contacts. We use watches, which, in addition to displayimg t monitor our heartbeat or even
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take photographs of our surroundings. We use transpanta@ésses with embedded processors
that automatically open gates upon entering a subway statigoing through a highway toll-
booth. Furthermore, we drive in cars equipped with on-b@amputers providing navigational
assistance and that monitor the engine, fluid levels andthieommental systems. These examples
represent only a small subset of devices we interact on & Hasis but they serve as a starting
point for predicting what the future holds.

As manufacturers are able to develop increasingly powelduices while simultaneously de-
creasing their size and cost, this trend will only continogytow. The hardware developments
coupled with the widespread deployment of wireless shatie ad-hoc networking technologies,
such as Bluetooth [3] and UWB [36], will truly realize the M of pervasive computing. Ad-hoc
networking technologies are natural successors of wg@esimunication systems, including cel-
lular telephone networks, low earth orbiting satellited anreless local-area networks (WLAN),
e.g, IEEE 802.11 a, b and g standards [18]. WLAN can operate boihfiastructure-based and
ad-hoc modes. In the former case, wireless devices intes#ittan access point. Access points
control traffic on wireless subnets and act as bridges to edwietwork. In an ad-hoc mode, all
wireless devices communicate directly with others in th@mnity.

The deployment of wireless communication technologieslé@dso significant research in the
area of mobile data management. The research is dominatdtelglient-proxy-server model.
In this model, mobile devices are able to connect to the meteand serve as client end-points,
initiating actions and receiving information from servers the network. The primary focus of
existing research is on the development of protocols artthtques that deal with disconnection
management, low bandwidth and device resource constraiifte aim is to allow applications

built for the wired world é.g, World Wide Web and databases) to run in wireless domaimgusi
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proxy based approaches ([2], [22]). In systems based ondihdar infrastructure or WLANS,
the traditional client-proxy-server interaction is pgshan appropriate model where the “client”
database can be extremely lightweight [4], has a (pargg@ljca of the main database on the wired
side [19], [34] or where selected data is continuously becaatkd into the environment [1], [16].

With the widespread use of short-range ad-hoc networkidign@ogies, alternative data man-
agement mechanisms are necessary in order to enable devepEmtaneously interact with others
in their vicinity. In this approach, all mobile devices canlinth sources and consumers of informa-
tion and must be able to cooperate with other devices in taitity in order to pursue individual
and collective tasks. This will allow mobile devices, intilnig handhelds, wearables, computers in
vehicles, computers embedded in the physical infrastrecaand (nano)sensors to become more
autonomous, dynamic and adaptive with respect to their@mwrient. For instance, a car run-
ning low on gas can query those traveling in the oppositectior if they know of a gas station
within ten miles, or directly get this information from areetronic highway sign. Of course, this
could be done by the car relaying its GPS coordinates to s@miatized server over a cellular
infrastructure-supported wireless network. This appnaachowever, likely to be inefficient. The
large number of requests generated by all cars present dngheays may lead to congestion in
the wireless networks and a bottleneck on the yellow pagdware. The congestion may in turn
resultin a higher response latency of the information thiaady introduced by wireless networks.
Additionally, the congestion will cause a high risk of systtilure.

Such highly dynamic environments, consisting of spontasigonetworked computationally
enabled devices in a vicinity that are both producers andwoers of information, represent
something very different from traditional mobile compufiiThey have recently been described as

data-intensivepervasive computing environments [26]. These environmeritoduce additional



5
challenges on top of issues related to data managementitidreal mobile environments: (i) As
we increasingly rely on the use of information in electrofaiomn, we expect and require instant
and complete access to any information at anytime, anywhénes, devices and their applications
must cope with highly dynamic environments where both dathsource availability vary over
location and time. As such, devices must adapt to currentylable sources and constraints.
(i) The pervasive computing environment inverts the tiadal sense of data management in
distributed databases, which was based on the idea of Ygadatabases” and “active users” [33].
There data is stored in a database in one or some well knovatidos and queries/users would
“come and go”. We can instead model the new environment agmago where data objects
resident on mobile devices that actively move throughaoaisilstem and each device is continually
processing a vast amount of incoming data while lookingrié@rimation of interest to its user.

An important aspect of our framework is a cross-layer irdéoa between a data management
layer and an underlying networking layer. Our framework,@AJ U, treats all devices as equal
semi-autonomous peers guided in their interactions bylpsofind context. We assume that peers
can communicate in a half-duplex mode using Bluetooth orHdd-802.11 technologies. The
framework abstracts all devices in the environment in tesfdsformation Providers, Information
Consumers, and Information Managers: (i) Information Rfers represent data sources present
on devices. Each Information Provider holds a partial séetérogeneous datafragment avail-
able in the whole environment and annotated in a semantyubge. (ii) Information Consumers
represent entities that can query and update data. Thaesoan represent humans as well as
autonomous software agents. (iii) Lastly, an instance dh&srmation Manager (InforMa) must
be present on every device. Information Managers are regigerfor the underlying network

communication and for most of the data management functi&@ash InforMa maintains infor-
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mation about peers in its vicinity. This information inckgithe types of devices and the types of
information they can provide. Each InforMa also maintaimta cache for storing data obtained
from other mobile devices and by its local Providers. Adudhitlly, each InforMa may include a
user profile reflecting some of the user’s beliefs, desired,iatentions, a model that has been
explored in multi-agent interactions [5]. The InforMa usles profile to adapt its caching strate-
gies and to initiate a collaboration with peers in order ttaobdesired information. Additionally,
MoGATU uses profiles to describe content of data objectst tvenership information and both
access preconditions and postconditions.

The remainder of the paper is structured as follows: Wetiihis the need for a data management
infrastructure in pervasive computing environments inti®adl. We define the new fundamental
data management challenges and briefly describe traditgswes of mobile data management in
Section Ill. We present the design and implementation ofimiwastructure for addressing these
challenges in Section IV. We measure the performance ofroptementation in Section V. We

present related work in Section VI and conclude with Sectitin

II. MOTIVATING EXAMPLE

To illustrate the research focus and motivate the need foframework consider the follow-
ing example. It is an excerpt from Bob’s daily activities dder experiments in Section V. It
represents an ideal environment that our framework shawldgte:

It is 5:40 in the afternoon and Bob’s work day is just ending.h& is getting ready to leave the
office his phone rings. It is Alice asking him to meet her atltiwal shopping mall. Bob agrees
to meet her and notifies his mobile device about the appomitnvéhile he is walking through the
building toward the parking lot, his device is able to corirtecdhe office network infrastructure

using a WLAN and fetch the directions through an informatiooker [7]. In the car, the mobile
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device sends directions to the on-board computer thatalisghem on the area map. While en-
route, Bob feels that the traffic is not moving fast enoughwandld like to get to his destination
via some quicker route. He instructs his device, which cam ecannect to cars around him, to ask
these if they know of a faster route. The device contactsitghbors and returns with an alternate
map. Although the suggested route is longer it circumveftiesreoon traffic jam building up on
the original route. Bob takes the different roads and asratethe mall’s entrance twenty minutes
earlier. He decides to use the extra time by checking out kioges for a bargain on some small
gift for Alice. His mobile device finds out from the mall diriecy server about stores that sell such
gifts, contacts them to find out possible gifts within a $28 aresents ideas to Bob. Similar, the
mobile devices haswaish listof other garments Bob wishes to purchase and proactivetglses
for these bargains as well. Upon Alice’s arrival, Bob aslsrbbile device to suggest available
restaurants (the device cached such information duringniddéexploration) and lets Alice pick
one. She chooses the closest Italian restaurant that teditéas an available table with no waiting
period [30]. Thus, they are seated immediately and speretadwurs eating and chatting.

The developments in networking and hardware have reachethtmaking this scenario tech-
nically possible. Cars are being equipped with desktop-d@mputers and wireless connectivity.
Moreover, handheld mobile devices, such as HP iPAQ H54%%h)de 400MHz Intel processors
with 64MB SDRAM and integrated Bluetooth and 802.11b wissléechnologies. This provides
even handheld devices with relatively large computing agtdarking resources enabling them to
process and exchange data among peers. The related datgemema challenges, however, still
need to be thoroughly addressed. Ideally, Bob’s mobileadeadapts its interaction mode with its
environment based on tlk@owledgeencoded in Bob’s profile and the curremintext The device

must be able to describe and reason over Bob’s preferendes ddvice must be able to utilize
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locally available resourcese., the device must posses the means to discover and intetadhei
resources in its vicinity. For example, while Bob walks tngb the mall, the device should cache
local restaurant advertisements in anticipation of Bobtsife query since hisalendarcalls for

dinner at a restaurant within the next hour.

[1l. DATA MANAGEMENT CHALLENGES IN PERVASIVE COMPUTING ENVIRONMENTS

The pervasive computing environment is a special type ofilaalistributed database system,;
however, it is a far more complex than the conventional tigoxy-server model. We can illus-
trate how they are related by classifying the pervasive rradag four orthogonal axes represent-
ing autonomy, distribution, heterogeneity and mobilitynobbile databases [13]. The pervasive
model is highly autonomous since there is no centralizettobaof the individual client databases.
It is heterogeneous as we only assume that entitiespaakio each other in some neutral format.
The model is clearly distributed as parts of data objects rasigle on different devices and there
is replication as entities cache data and their respectatadata. Mobility is of course given —in
ad-hoc networking environments devices can change theatitms and no fixed set of entities is
alwaysaccessible to a given device. The last point is perhaps tret imgortant in distinguish-
ing pervasive environments from traditional mobile infatinon access. It is also the main reason
why a direct use of solutions developed for mobile informathccess is inappropriate. In mobile
distributed systems disconnections of mobile devices filttametwork are viewed only as tempo-
rary events. Additionally, these systems often assumealhdatamanagersare located at fixed
positions in the wired network and that their locations arevkn by every client a priori [6], [24],
[25]. Finally, an additional limitation is the naming schemor defining data and for locating both
data and devices in the traditional system. Here each cheist know the precise server location

as well as its corresponding database schema in order izeutie data properly.
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Additionally, the pervasive environment imposes the fwlltg issues that are primarily related
to the randomness of every device’s neighborhood at angnostof time. The neighborhood,
also referred to as vicinity, consists of all reachable dewvithat a particular (mobile) device can
communicate with and all available data that is accesstlileaatime.
« Spatio-temporal variation of data and data source availi&pi As devices move, their vicinity
changes dynamically affecting data and data source avaitalb-or example, depending on the
specific location and time Bob asks for an alternate routeléngce may obtain different answers
or none at all. Additionally, current wireless networkirgghnologies cannot support stable con-
nections under high mobility. In our framework, we addréss issue by enabling mobile devices
to proactively gather and cache data and by employing alzkdad routing protocol.
« Lack of a global catalog and schemaAs the neighborhood changes dynamically, a mobile
device has no prior knowledge of the current set of availdata. For example, while en-route,
Bob’s device does not know ahead of time which car to quenafdifferent route. There is no
global catalog that it may contact and ask for a location oifvargdata item. In our framework,
we address this issue by requiring each device to describetionally advertise its capabilities
to its neighbors using heterogeneous ontologies, defireed eommon vocabulary encoded in a
Semantic Web language. This allows every device to dyndiyicanstruct a subset of the local
catalog. At the same time, each data source may have its owlogy that in our framework can
be addresses by providing a translation service preserdror devices in the vicinity.
« No guarantee of reconnectiolVhen a device moves away from a current neighborhood it may
affect any ongoing interaction among other devices of teaghborhood. As there is no guarantee
that the mobile devices will ever again be able to commuaiaatong themselves, this may cause

an inconsistent global state. For example, when Bob’s dasgiguerying local restaurants it may be
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unable to make a reservation. We address this issue by gatyiproactively cached information,
a data-based routing algorithm and by providing best-effervice only.

« No guarantee of collaborationThe issues of privacy and trust are very important for a perva
sive environment where random devices interact in randanstctions [35]. A device may have
reliable information but refuses to make it available toepth A device may be willing to share
information; however that information is unreliable. Ugswhen a device makes information
available to other devices questions regarding protectiduture changes and sharing of that data
arise. For example, Bob’s device is not guaranteed thatitbenate route in fact reaches the mall.
Currently, we do not address this issue and only assume &fiedtservice. In related efforts,
[23] provides a work on trust management for mobile envirents.

One consequence of these challenges is that query answeliibg highly serendipitous. The
answer obtained will depend on information sources adokessi the current vicinity. Our data
management system avoids such a situation and strives vapranswers to user queries. Con-
sequently, each device in our framework should gather inédion proactively and much of the
interaction among devices should happen in the backgroumititiput an explicit human interven-
tion [14]. This requires that devices adapt themselvesémtreds and preferences of their users
and the current context. For example, Bob’s device shouald saching bargain offers matching
Bob’s interests when he is inside or near a shopping mall.oAtingly, Bob’s preferences and
needs, modulated by context as well as battery power andga@pace, should allow the mobile

device to determine what data to obtain proactively anckitgtive worth.

IV. MOGATU: DESIGN AND IMPLEMENTATION

In an effort to address the challenges above we have desaednplemented a framework

for handling data management in pervasive computing emmenmt. We call the implementation
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Fig. 1. Entity Details and Interaction in the MOGATU Frameto

prototypeMoGATU Our framework treats all devices as equal semi-autonorpeess. It can be
classified aghainedarchitecture witirandomreplication and locaincrementalpolicy [37]. The
framework abstracts devices in terms of Information Pressdinformation Consumers and Infor-
mation Managers (InforMas). Additionally, the frameworkgoys Communication Interfaces for
supporting multiple networking technologies and Profilassnabling a proactive device behavior.
Figure 1 depicts an overview of the framework and the intiggnamong various devices and their
resources. In our framework, we address the challenges3extion Il in the following manner:

« AutonomyWe treat all devices as independent entities acting autonsiy from others.

« Mobility. We do not pose any restriction on the mobility patterns ofcks

« HeterogeneityPervasive computing environments are highly heterogeieaierms of devices,
data resources and networking technologies. We addresdyhabstracting each device with
an InforMa. Each resource of stored or dynamically gendrateormation is abstracted by an
Information Provider. Lastly, networking technology issétacted by a Communication Interface

allowing peer InforMas to interact regardless of the undeg network.
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« Distribution. Mobile devices may have multiple Information Providersleholding a subset of
the global data repository. We allow devices to advertiskcis, exchange and modify such data
with their peers. Thus, our framework is highly distributed
« Lack of a global catalog and schem#/e do not depend on any global catalog or schema. In-
stead, we use a semantically rich language for defining batsdogies — a set of common vocab-
ularies. These ontologies enable us to describe informatiovided by any Information Provider.
These ontologies are also used to advertise, discover argl guch information among devices.
« No guarantee of reconnectiofo remedy the effects of reconnection, our framework opsrat
on a best-effort basis and relies on proactively cachednmdition. We also employ a data-based
routing algorithm allowingloserdevices to provide answers to queries placed by their peers.
« Spatio-temporal variation of data and data source availi&piWe address this issue by enabling
devices to proactively gather information without a humateraction. We employ a user profile
also annotated in a semantically rich language. Each Indoubts the profile to adapt its caching

behavior and to proactively query its vicinity.

A. Information Providers

Every device may hold one or more Information Providers. Afoimation Provider manages
and provides an interface to a subset of the global data iteppsThe data can be stored on the
device or generated on-demand. The managed subset maydmsistent with othecopieson
other devices as there is no guarantee that these devicastesact and the subset may even be
empty. In our framework, any entity is an Information Praaidf it is able to accept a query
and generate a response. For example, Bob’s device hasatieaProviders: one representing
current time and another for Bob’s calendar. Accordindig tesponse of each Provider is based

on the query, stored data and mechanisms, including refenertes, for generating new data.
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Each Information Provider describes its capabilities i of ontologies defined in a seman-
tically rich language. For our implementation we use DAMUEQL1]. Moreover, we base our
design on the DAML-S standard [10] that attempts to compisively describe services for the
WWW. We do not use DAML-S directly as it has not been finalized. yUsing this approach,
however, each Provider can describe itself by defining thdcemodel it implements, the pro-
cess model that provides the information, and the inputrgquestrictions/requirements [10].

We use a semantically rich language for describing InfolonaProviders and data they can
provide in order to overcome the heterogeneous nature gfeheasive computing environment
and the lack of global schema. It enables devices in our fnarieto interact among themselves
as they are only required tgpeakusing a common set of vocabularies. Each device wishing
to interact must only be able to process,, parse, the information annotated in the language at a
syntactic level. Moreover, the language supports moreefiicliscovery and matching approaches
required for locating Information Providers (or cachedveers) for answering queries [7]. Lastly,
the use of DAML+OIL allows mobile devices to also use resesravailable on the Semantic Web.

Upon start-up, each Information Provider registers itegth the local InforMa by sending a

registration message including the service magerocess modelg and input restrictions:

reg = (s,p,I,t,a)

Each Provider also specifies the lifetimeat will be available and if it is willing to process
gueries for remote devices, denotedesasEach Provider, however, communicates only with its
local InforMa, which routes messages between the Proviukogher devices in the vicinity. The
InforMa adds this Provider into its cache of local providensl discards the entry once tlifetime

expired and the Provider has not renewed its registratialditionally, InforMa may advertise the
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Provider to other devices in the vicinity if the Provider idlling to process queries for remote

devices. The advertisement frequency is a tunable parafetach InforMa.

B. Information Consumers

Information Consumers represent entities that can quedyugalate the data. In the current
design, Information Consumers primarily represent humsersithat ask their mobile devices
for context-sensitive information but may also represemd@omous software agents. Similar to
Information Providers, Consumers register with local iMa; however, they are not advertised
to remote devices. Each Consumer sends queries to its lafosMich routes them to appropriate

local Information Providers or those on remote peer devimegrocessing, and awaits a response.

C. Information Manager (InforMa)

An InforMa is responsible for most of data management femsiand for an underlying net-
work communication. From the data management perspedttif@Ma must be able to discover
available sources, construct dynamic indexes and catasog@ort queries, and provide caching
mechanisms for addressing the dynamic nature of the emaeats. From the networking per-
spective, InforMa must be able to discover devices, intaxét them and route messages.

Each InforMa maintains information about Providers and<Cmners present on the same device
as the InforMa. This information includes thiétime of each Provider and its service model,
process models and query restrictions. Each InforMa alsotaias information about peers in its
vicinity. This information includes the ID of devices anggs of information they can provideg.,
Provider advertisements. Lastly, InNforMa maintains a @atzhe for storing information obtained
from other mobile devices as well as the information proglidg its local Providers,e., answers

to previous queries. Additionally, each InforMa may inaua user profile reflecting the user’s
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preferences and needs. The InforMa uses the profile to adagatdhing strategies and to initiate a
collaboration with peers for obtaining the desired infotiora

Since every device in the environment, ranging from sensdiEptops, must implement an in-
stance of InforMa, the framework does not enforce that eagitd implements all functionalities
for its InforMa. In the simplest case, type 0, InforMa can mtain only one local Provider. It does
not cache any remote information and it does not possesseasspming or parsing mechanisms.
This InforMa only periodicallyproadcastsiata sent to it by the Provider. This type of InforMa is
well-suited for resource limited devices, such as gasmstdieacons. On the other hand, devices
wishing to interact in more intelligent manner and thosé gugsess more resources must imple-
ment an InforMa that is able to maintain information abouttiple local andremoteProviders.
These types of InforMa must also be able to parse messages,message to other peer devices
and proactively query peers. Moreover, we can differeamtéahong additional four types of In-
forMa based on the collaboration level: (1) InforMa doescaithe any remote advertisements or
answers to queries, (2) InforMa caches remote advertiseoaly for thelifetime specified in the
message or until replaced by another entry, (3) InforMa eadioth advertisements and answers,
and (4) InforMa also caches all advertisements/answersrakes them available to other peers.

The type 4, hence, can serve as a temporary sub-global gételpeers in the current vicinity.

C.1 Query Processing

One of main objectives of InforMa is to provide querying daipes. An Information Con-
sumer sends a query annotated in DAML+OIL. Similar to Previgdvertisements, a query speci-

fies the required service modeand the input values

query = (s, 1)
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Algorithm 1 InforMa_ProcesQuery(sre, query)
(s4,14) < parsequeryquery)
for eacha <+ cachedanswerdo
(8q,14) «— parseanswerq)
if s, ~ s, andi, = i, then
return a
end if
end for
for eachp < local providerdo
(sp, I,) < parseproviderp)
if s, >~ s, andi, E,cstriction I, then
return askproviderfp, query)
end if
end for
if srcislocal Consumethen
for eachp <— remoteproviderdo
(sp, I,) < parseproviderp)
if s, >~ s, andi, E,cstriction I, then
dst <« providerlocationf)
return InforMa_RouteQuery(re, dst, query, 0, danotintercept)
end if
end for
end if
return error

An InforMa matches the query against entries in its cachgoAithm 1 shows the pseudo-code.
Each entry in the cache represents an unexpired answer ¢éviays query (otherwise it would be
removed), or an advertisement for some local or remote BeoviThe InforMa parses the query
and each entry according to DAML+OIL rules and relationstgpecified in the employed ontolo-
gies. The InforMa compares service models and validatesu@ry against inputs restrictions. For
cached answers, the InforMa matches input values of the@gainst those in the cached answer.
Our approach is equivalent to DAML-S using traditional fardl chaining method also used by
other DATALOG / Prolog based query processing techniqu8§ [17]. The InforMa first tries
to find and return a cached answer. Otherwise, the InforMas to find a local or some remote

Provider.
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C.2 Caching

Each InforMa stores query answers together with advergsesrand registrations of local and
remote Providers in a cache. In order to provide answerst teaat the expected, user queries,
i.e,, to overcome the spatio-temporal variation of data and datace availability, an InforMa
must utilize the cache in the most effective manner. Our &&ork supports the traditional LRU
and MRU replacement algorithms; however, as shown in Se&tj@an InforMa must use the user
profile in order to improve cacheffectiveness the percentage of successfully answered queries:

effectiveness- % zn: hit(query;)
i=1

We model a profile in terms of beliefs, desires, and interstiaamodel that has been explored
in multi-agent interactions [5]. Each InforMa treats aleubeliefsas query restrictions that are
assignedutility andreliability functions,e.g, one of Bob’s restrictions is that he prefers Chinese
restaurants. Thetility andreliability functions use current time, location and other informaiion
the profile as inputs to calculat@portancevalue for comparing against other entries in the cache.
Each InforMa then uses antentionto represent a standing query. The query is assigned a start-
ing point and time period during which the InforMa attemmt®btain and cache an answer. The
standing query also has thélity andreliability functions in order to prioritize the InforMa’s ac-
tivity. Lastly, the InforMa useslesiresto represent user’s wishes that cannot be directly cortverte
into standing queries but instead require additional psevided rules.

Similar to queries and descriptions of Providers, we artegieofiles in DAML+OIL. An In-
forMa employs a DAML+OIL based forward-chaining reasonemgine defined in CLIPS [32].
The reasoning engine parses the profile according to DAML+&Id our profile DAML-S like

relationships. Additionally, we have developed samplesubr converting beliefs and intentions
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into query restrictions and standing queries, respegtivdle use these rules for experiments in
Section V,e.g, one rule creates a standing query to search for gas statiniesa person is driv-
ing in a car low on gas. The InforMa’s reasoning engine usesetihules together with the current
time, location and the profile to create standing queriesamadapt the caching strategy.

For caching, the InforMa uses the profile in two ways: (i) tegllocate space for specific data
type and (ii) to assign utility value to each entry. In thetfease, the InforMa uses the profile
to determine types of standing queries. The InforMa usesettypes to reserve portions of the
cache for the related data typesg, traffic. We use the first heuristic to create hybrid LRU+P
and MRU+P algorithms. These algorithms find a cache victitryen; for new entryn of type D
(given allocated cachg&, of maximum sizenaxp) according to following:

e =0

v=1< e cachefull\ |Ep| > maxp Ae; =LRU(Ve | e € Ep)

e; cache fulln |[Ep| < mazp A e; =LRUVe | e € Ec AC # DA |Ec| > maxc)

Additionally, we implement a simple semantic cache algponitS+P employing both heuristics.
The algorithm also enforces space allocation for diffedata. The algorithm then uses tidity
functionU to replace cache entries instead of a simple timestampdtzag®oach. The functions

are defined by a user in her profile for each query restrictnthsdanding query:

€ € = @
e; full A|Ep|>maxp ANe; € Ep ANU(e;) = Upnin(Ve | e € Ep) ANU(n) > Ule;)
v=< ¢ full AN|Ep|<maxp ANe; ¢ Ep A
U(e;) = Upin(Ve | e € Ec NC # DA |Ec| > mazc) ANU(n) > Ule;)
@ otherwise

C.3 Discovery and Routing in Multi-Hop Networks

An important aspect of the framework is to discover local eardote Providers. The discovery
allows each InforMa to construct a temporary catalog reprsg current data and data sources in

the vicinity. Our framework supports both push and pull lblessgproaches,e., each InforMa can
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Algorithm 2 InforMa_RouteQuery(src, dst, query,r, h, i)

if dst is local Providetthen
a + find_cachedanswerguery)
if a = O then
a — askprovider(st, query);
end if
if a # O then
return a
end if
else {dst is remote Provider
if srcislocal Consumethen
r « calculateroute(lst)
end if
if ¢ = interceptqueriesthen
a < find_cachedanswerfuery)
if a # O then
return a
end if
end if
h=h+1
if willing _to_forward andh < maxhopsthen
n <« nexthop.or_shortcut(dst, r)
if n = @ andsrcis local Consumethen
n <« broadcast
end if
if n # O then
forward.to(n, src, dst, query, r, h)
return
end if
end if
end if
return error

advertise its capabilities or solicit capabilities of atpeers. We study the impact of different fre-
guencies in Section V. In order to restrict the number of ragss in the environment, solicitation
and advertisements are, however, limited to ang-hopneighbors.

We employ a hybrid mechanism combining discovery and rgutn routing queriesi(e., data
discovery) among peer InforMas in multi-hop networks. Thgoathm uses a source-initiated

approach similar to AODV [28] and DSR [21]. The algorithm w®ron a best-effort basis. It
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attempts to rebuild disconnected routes; however, it do¢ggnarantee message delivery. The
pseudo-code is shown in Algorithm 2. #ata-intensiveenvironments the answer can often be
provided by more than one deviag. cached by InforMas or available by local Providers. The
guerying source may not be interested in who it interacté &g long as it receives a correct
answer. We modify the AODV approach to intercept routed yfidéscovery messages and process
them when possible. Additionally, each InforMa intercegitsmessages it receives or routes in
order to provideshortcutsfor cached routes. Here each InforMa maintains a route éotrgne-
hop peers. The InforMa also maintains a route entry for peersertittan one hop away if those

peers are used in on-going interactions or the InforMa ificacadvertisements for those peers.

D. Communication Interfaces

To support multiple types of networking interfaces and tstedrt these types from an InforMa,
each device implements at least one Communication IneerfAcCommunication Interface pro-
vides a common set of interfaces for discovering neighlgadevices and for communicating with
them. Every Communication Interface registers its capgaslwith InforMa. Accordingly, an
InforMa is still network awareas it can infer the network constraints and requirements fitte
information contained in the registered capabilities.

The current implementation prototype of the framework sufstwo types of Communication
Interfaces: (i) Bluetooth and (ii) Ad-Hoc 802.11. We use Bleetooth protocol stack developed
by Axis Communications Inc. [20] and Bluetooth modules deped by Ericsson. For the Ad-Hoc
802.11 network we use off-the-shelf wireless cards andradata Linux communication stack.

Our design requires every device be capable of broadcasiasgages, which is not supported
by Bluetooth. Broadcasting in Bluetooth is restricted tosesges used for device discovery. In

order to exchange application level messages, a device fimsts¢stablish a link level connec-
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tion with its peers. Additionally, every communicating d=/must be either enasteror aslave
Thus, simultaneous link level connections cannot be dastaal between a pair of devices. To
solve this problem we use the connect-transmit-disconprectedure, a half-duplex communica-
tion. Accordingly, each device connects to a peer, sendssaage and disconnects. For sending

responses, the peer device follows the same protocol.

V. PERFORMANCE EXPERIMENTS

In this section, we show the improvement of the system perdoice of the MoGATU frame-
work when using the semantic cache replacement algorithiPndgfined in Section IV-C.2: (i) We
measure how close a cache reflects user needs using thisreptheement algorithm. (ii) We
measure iteffectiveness answering user queries. We compare the S+P algorithm tvath-
tional timestamp-based LRU and MRU approaches and with xtended LRU+P and MRU+P
algorithms defined in Section IV-C.2. Additionally, in théection we examine the practicality of
MoGATU: (iii) We measure the average response time for pgeraction over both Bluetooth and
Ad-Hoc 802.11 networks and provide a preliminary validatid the data-based routing protocol
defined in Section IV-C.3.

We have implemented the MoGATU framework using C languagee dode runs on Linux-
based Pentium Il and Il laptops. We provide the connegtstifpport for MOGATU via Bluetooth
using Ericsson cards connected on serial ports on the ls@og IEEE 802.11 PCMCIA cards
operating in an Ad-Hoc mode. Additionally, as future work @ developing the MoGATU
framework to function as a part of the GloMoSim simulator][B8order to enable simulations and
measurements on a larger scale than currently supportedrthyaodware resources.

For the experiments, we either vary or measure the followergmeters:

« Query Frequency- This represents a rate at which a user asks her mobile denicdentical
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guestion. We use the frequency to simulate a scenario whaserarepeatedly asks the same
guestion during the current activitg,g, while on the road Bob is asking for traffic conditions.
For our experiments, we use two frequencies:u@)imitedand (ii)) 5 minutes. The unlimited
frequency represents a scenario where a query is randomtggljust once during an activity.
We call this scenari®ingle Queries The second scenario allows multiple questions to be asked
depending on the duration length of a particular activitigisTrepresents a less serendipitous case
since each algorithm has more chances of satisfying eathaliguery. We refer to this scenario
asRepeating QueriesWe use the period of 5 minutes as the shortest activity insouulation
lasted 15 minutes.

« Cache Size- In our experiments the Cache Size allows an InforMa to stigréo 64 differ-
ent information entries. These entries represent norrex@dvertisements for local and remote
Providers and answers to previously issued queries. Agitleddn Section IV, the lifetime for
each entry is specified by a Provider and InforMa removes eatrly after its lifetime elapses.

« Cache Replacement AlgorithmWe use the five different cache replacement algorithms de-
scribed in Section IV-C.2. These include the traditionaldstamp-based LRU and MRU replace-
ment policies, profile-based LRU+P and MRU+P and the sem&atiP algorithm.

« Cache Allocatiorn- In our experiments we distinguish among eight informatyges: merchan-
dise, gas, dining, directions, subway, parking, traffic atigers. We measure the Cache Allocation
for each type throughout the simulation in order to compafB Slgorithm with the other four
approaches. For that we measure the ideal cache allochiwanswers all queries a user asks.
This omniscientscenario assumes that an InforMa has a complete prior kdgelef every step
of its user. We compare the results obtained for each algo®tto this omniscient case using

a cosine similarityA. We define the similarity using the following formula wherectora, ando,
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represent the allocation for each information type for a#jgetime of the dayt:

Ajfa) = P = =

~Alallllel [

« Cache Hit Success RateThe Average Cache Hit Success Rate represents a fractoredes
that an InforMa is able to answer using its cache — the caffeetivenesdnitially, every InforMa
has an empty cache. The InforMa can obtain data by eitheptangédulk advertisements from
other mobile devices in the vicinity or by explicitly queng them. We measure the rate using the
formula defined in Section IV-C.2.
« Cache Update Period The Cache Update Period represents a frequency at whibHrdacMa
is willing to update its cache. This period represents theilaalevice’s preferred refresh rate in
order to prolong its battery life. Additionally, this ped@an be used to represent a rate at which
remote sources appear and disappear. We vary the periodlftorhi28 minutes.
« Peer Query Response Timd he Peer Query Response Time represents a period it takesgo
device to query another and obtain an answer. We measurgdhega response time in seconds
for devices querying over Bluetooth and 802.11 networks.

We use the results of these metrics to measure the impletitentserformance, namely we
measure the effects of:

1. Cache Replacement Algorithms vs. Cache Allocation {8edt-B)

2. Cache Update Rate vs. Cache Hit Success Rate for Single®(®8ection V-C)

3. Cache Update Rate vs. Cache Hit Success Rate for Rep€aterges (Section V-D)

4. Networking Technology vs. System Performance (Sectid) V



24

A. Experimental Setup

To measure the effectiveness of the various cache repladtgrokcies, we extend the motiva-
tion example from Section Il. Here we simulate a twelve-hmeniod in which Bob, equipped with
his mobile device, travels between three distinct citiesttend meetings. In our experimental sce-
nario, Bob begins the day at 8AM by driving from one city to #Hres while attending meetings.
Some of the meetings are scheduled a priori and recorded bis Bwbile device in a calendar
application. Other meetings/activities are scheduledhaglay progresses,g dinner with Alice
or finding an alternate route. Additionally, the mobile asvhas Bob’s profile that can be con-
verted into query restrictions and standing queries foetght different types of information listed
above. We distribute information providers with differéypgpes of information along the traveled
path. These providers simulate cars, electronic lightsfiicedbuildings, gas stations, subway in-
frastructure and other people’s mobile devices. Some aktipeoviders hold data closely related

to Bob’s current activity while other providers haess usefutlata.

B. Cache Replacement Algorithms vs. Cache Allocation

In the first experiment, we measure how profile knowledgectdfehe cache allocation for the
eight different data types defined above. We use eight typedasmation as opposed to smaller
values because it allows us to better analyze the cache ibetiar different replacement algo-
rithms. As we show in the next two experiments, a cache mreation plays an important role in
improving cache hit success rate for both single and repggtieries.

We measure the cache allocation during the twelve-houog@éor the standard timestamp-based
LRU algorithm and the semantic S+P algorithm defined in $adi-C.2. We obtain the measure-
ments by recording a snapshot at one minute intervals. FEoLRU algorithm we use numbers

reflecting actual data in the cache while for the S+P algaritye use numbers inferred by the In-
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Fig. 2. Effects of Cache Replacement Algorithms on Cacheaaliion

forMa. Each snapshot is described by an eight-dimensiawiby representing number of entries
allocated for each specific data. Accordingly, we obtaintao&20 vectors for each algorithm.

We also measure the optimal cache allocation fromatin@iscientscenario. We use the optimal

allocation as a base for comparing the LRU profile-less arfel @#file-based algorithms. For that
we use the cosine similarity formula. We do not measure cpobalocation for approaches that
use profiles with static utility values [8]. These profilesrdut change with context. Hence, their
initial cache preallocation remains the same from the stait the end of a simulation.

Figure 2 shows the results. The semantic S+P cache replateigerithm is, on average,
89.5% similar to the optimal allocation, while the traditéd LRU algorithm is only 67.1% similar.
The positive results of S+P based cache allocation areyghrd to the fact that the mobile device
knows or will learn throughout the simulation about mosta meetings/activities. The allocation
for the LRU algorithm is, on the other hand, in many caseseqifferent from the optimal case,
sometimes only 29.9% similar. Moreover, the LRU algorithregiently fluctuates its cache allo-
cation. This is due to the fact that the LRU approach igndnesriformation types. Instead it is

based on timestamping only. This way the LRU-related atloonadepends on the order of received
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information as well as the expiration time of each entry.sThay cause an important information,
which is later needed, to be removed from the cache prentat@ensequently, this will cause a
cache miss. Hence, to overcome the cache-allocation spignd is necessary to utilize context

and profile knowledge in order to narrow the content of a catleach point of time.

C. Cache Update Rate vs. Cache Hit Success Rate for SinghkeQue

In the next experiment, we measure the caeffiectiveness answering user single queries. We
vary the period at which each mobile device can update iteecom 1 to 128 minutes. This
period represents the device’s preferred refresh ratederdo prolong battery life. Additionally,
the period indirectly represents how much work each mol#ag must perform. During the
simulation period, we assume that the person asks at mastliftinct single queries during each
activity. This results in 54 unique queries that Bob asksduthe twelve-hour period. To improve
chances of answering these queries we, however, pose iatiestthat a query can be asked only
when the device has previously received a valid answer aod¢hed, the answer has not expired.
This way we guarantee that with an optimal performance eaehygcan be satisfied. Figure 3
illustrates the performance for caches employing the ticadil LRU and MRU approaches, the
hybrid LRU+P and MRU+P approaches, and the semantic S+Ragipr

As shown in Figure 3, the S+P algorithm always outperforrheiotechniques. This is expected
since the algorithm uses the context and user-profile krayee¢o preallocate cache space and to
assign utility values for each entry. This way the algoritisrable to, for example, allocate enough
cache space for traffic-related information while the persodriving. Moreover, the algorithm
assigns different values to each traffic update and cachgshenmost valuable ones, resulting in
a higher success hit rate. We see that its performance depvath larger update periods. This is

also expected since here the activity changes more frelguban the cache can reflect.
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Additionally, the timestamp-based LRU algorithm outperis the MRU approach. At its peak,
at 2 minute cache update intervals, the LRU is able to s&bisf§% of user queries. By extending
it to utilize the profile knowledgei.e., by using LRU+P approach, the cache would, however,
improve its performance by 12.9%. Moreover, a cache usirg &gorithm is 87.0% successful
for the same update period — an improvement of 45.1%. Moreagesee a stable performance
for most cache replacement policies for update intervalwdxen 4 and 16 minute. Consequently,
a mobile device can prolong its battery life by using a langedate interval and still maintain a

performance level equivalent to 4-minute update periods.

D. Cache Update Rate vs. Cache Hit Success Rate for Repéatienes

In this experiment, we also measure the caeffectivenesé answering user queries. We,
however, extend the previous experiment by asking repepatireries instead of single queries.
This experiment represents a less serendipitous case whehealgorithm has more chances of
satisfying each distinct query. A repeating query is a dgtguery asked more than once per

activity. We use a query frequency equivalent to 5 minutesrder to guarantee that each query
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is asked at least three times given an activity, and the e$ioattivity in our simulation lasted 15
minutes. We show the measured cache hit success rates foalgacithm in Figure 4.

Similar to the previous experiment, the semantic-basedafgd?ithm has the best performance.
It has on average 1.5 times larger success rate than the LdRldthim, which is the begtrofile-
lessapproach. Each profile-based cache replacement algorittiact, outperforms the traditional
timestamp-based techniques. This is expected since tlieegrased algorithms use context and
user-profile knowledge to preallocate cache space and Se#the knowledge to even assign

utility values for each entry.

E. Networking Technology vs. System Performance

In the last set of experiments, we test the effects of harelwarthe framework and its perfor-
mance in real world experiments. We are primarily inter@gtéhe implementation is feasible us-
ing the current hardware technology. Accordingly, in theggeriments we examine the interaction
between peer laptops over Bluetooth and 802.11 networkslihldc modes. To provide similar

conditions for both technologies, we assume a half-dupltexaction employing the connect-send-
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disconnect mode. Additionally, each exchanged messagahagerage size of 1.0KB.

Ouir first set of real-fielded experiments simply validatewoeking of the system, namely we
test the routing among devices. The test consists of fouopepinteracting over a period of 100
minutes. In this experiment, deviéds able to communicate with devi&that, in turn, is in range
of devicesC andD. DeviceA provides weather information and devibehas information about
locations and prices of nearby gas stations. We evaluat®ygtem by randomly selecting a query
and assigning it to one of the four devices and monitoringrmfation present at each cache. For
example, when devicA asked for the closest gas station, it was able to deducebtitaintains
the required information and that the query should be rotitemlighB. Moreover, upon receiving
the queryB was able to immediately return a cached answer instead bfdiusing the request
to device D. In this experiment, we did not perform any sdéitghmeasurements because of the
limited number of available hardware. As future work we d@yever, converting the MoGATU
framework to function as a part of the GloMoSim simulator][B8order to enable simulations and
measurements on a larger scale than currently supportedrlyandware resources. Moreover,
for our future work we will also develop additional mobilitgodels to better represent devices
moving in a city-like environmeng.g, cars and people.

Next, we study the impact on performance for reasoning dnvecache entries by each InforMa
in comparison to transmission time. In the current impletagon an InforMa linearly scans the
cache to find a matching DAML+OIL structures., a Provider advertisement or a cached answer.
For a 30K cache, however, the processing time was on averagér query after 100 runs. On
the other hand, the measured network transmission corptiaeinates this time. In Bluetooth
environments it takes 4.56s to transfer a 1.0KB “query” ansend a response. This is partly due

to the delay it takes to establish a connection between twospnd subsequently to disconnect.
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For the much faster 802.11 devices, the time needed to semlidry and receive the answer over
the network was on average 27ms. This is, however, still fimes longer than an InforMa spends
on reasoning over its cache. Therefore, at this moment tbleeceeasoning does not impose a
bottleneck on the system performance; however, the netagpdoes. From the measured results
it appears that the Bluetooth technology cannot be use@fendipitous querying in environments
reflecting a high mobility, such as cars in a city environnteaneling at 25mph. This is due to
the fact that such mobility prevents peer devices from distabg a communication link before
they are out of range for both querying and routing purpogesthe same time, the Bluetooth
technology is fast enough to allow exchanges and interatio relatively stable environments,

e.g.people in a mall or cars traveling in the same direction.

VI. RELATED WORK

The problem of data management in a distributed environimenbeen well researched, both in
terms of wired infrastructure and infrastructure-baseethss networks. The work on distributed
and federated databases is also well-known [27]. Accolginge present work related to data
management in wireless networks and a short discussiotaedédavork on user profiles.

Data Management in Wireless NetworKse problem of data management in wireless networks
has drawn a significant degree of attention. The proposedison$ primarily address problems
imposed by the underlying networking technology, such asbandwidth and high probability
of disconnection. They also address the issues relatecetoethieval of location dependent in-
formation. Existing solutions often rely on the support diix@d, wired infrastructure. These
solutions place primary data on servers located within tivedrvinfrastructure and treat mobile
devices solely as clients. Chrysantbisal [25] consider disconnected operations within mobile

databases by presenting a mechanism, referred to as a “alklerhthat maintains versions of
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views required by a particular mobile unit. They also prapas extension to SQL that enables the
profile- and capability-based programming of the view hedd&ottkamp and Zukunft [24] present
optimization techniques for query processing in mobil@dase systems that include location in-
formation. They present a cost model and different stratefgir query optimization incorporating
mobility specific factors like energy and connectivity. Bu&set al[6] propose an enhancement to
the infrastructure-based mobile network model of Mobilestdd MHs) connected over a wireless
virtual subnet and Mobile Support Stations (MSSs) conrmkiie wired static network. They rec-
ommend the addition of a mailbox serving as a central repgsfor the MHs that is maintained
by the cellular provider and duplicated in all the MSSs. Bi&[29] presents a replication schema
based on augmenting a mobile database interface with ogesawvith weaker consistency guar-
antees. Demerst al [12] present the Bayou architecture, which is a platformeplicated, highly
available, variable-consistency, mobile databases fitldihg collaborative applications.

In contrary to these approaches, our work assumes no sujpportthe fixed infrastructure.
When a mobile device requires instantaneous informatgog. (traffic updates or bad weather
warnings), it may be more easily, or only accessible, froheotlocal” mobile devices and not
from a fixed node. Moreover, a mobile device in our work is aisviem nomadic mode [6] and [24].

User Profiles:The data management community of late has been advocaéngsthofprofiles
especially when dealing with pervasive systems and streda Ben and Dunham [31] represent a
profile as a collection of continuous location dependera daeries. The location dependent data
is described in terms of tuples in a single-relational dasal@.g.all hotels and restaurants in a city.
A user specifies her preferences by constructing severakfsi@ties based on the database schema.
In a seminal work, Cherniakt al [8], [9] explore the use of profiles in the area of client/sgrv

based data recharging for mobile devices. They discusetherements for a successful profile as
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well as describe the need for a formal language that enakpesssing such profiles. Their profile
consists of two sections: (i) @mainresponsible for the data description and (itdity, which
is a numerical function denoting the data importance wisipeet to other information. The utility
function is, however, immune to the current context.

While a step in the right direction, we argue that a profileliedfy enumerating data and its
utility is not sufficient. As described in Section IV-C.2, wgtend the profile in terms dfeliefs
desires andintentions Here the notion of “domain” and “utility” is subsumed by thetion
of “beliefs”. Domains of interest, and their utility, areuth inferred from beliefs, desires, and
intentions, as modulated by the current context. The dosnais well as their utilities, vary over
time and context. This allows us to better adapt to the dyoamature of the environment, such as
constructing standing queries or changing cache replatepaodicies. Our model also allows us

to better predict the future actions of the user and doesdwark can be more proactive.

VIlI. CONCLUSIONS

The constant enhancements in capabilities of palmtop, dddueand wearable devices, to-
gether with the advent of pervasive connectivity, presenéw paradigm for the way we think
about interaction among devices. These devices will bedmottesources and consumers of infor-
mation, and will be able to cooperate with other devices @irthicinity in order to pursue their
individual and collective tasks. The emerging data-intenpervasive computing environment,
however, challenges the traditional data management madkat were proposed for wired and
wireless infrastructure-based networks. In addition $oés addressed by mobile distributed data
management systems, the data and data source availability longer fixed. Instead it varies
with location and time. Other issues include lack of a glalzéalog and schema, no guarantee of

reconnection among peers, no guarantee of collaboratiemgupeers, and the issues of commits
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and aborts due to the serendipitous nature of the environmen

We have designed a data management framework that is dpplimathedata-intensiveper-
vasive computing environments. The framework treats alic#s as peers and operates on a
best-effort basis. The framework is network-agnostic asiit operate over any wireless or wired
technology. In our current implementation prototype, tre@rfework supports both 802.11 and
Bluetooth networks. Additionally, the framework attempisutilize as much of available infor-
mation as possible to enhance the mobile device’s funditgndt uses both static information,
such as user’s preferences and information about dataeyuand dynamic information, such as
current context description, to allow each device to belpawactively.

We have measured and compared the effectiveness of vaiaghe ceplacement policies that
can be used by each mobile device to cache currently availatdrmation. We have also shown
that the implementation of the framework is feasible usingent hardware technologies by im-
plementing it on laptop computers equipped with IEEE 802uid Bluetooth networks. Moreover
we have tested the networking aspect of the system by magghge communication delays for the
802.11 and Bluetooth networks, and by verifying our simplerg-based routing algorithm. We
have, however, not performed any routing scalability messents because of our limited number
of available hardware.

For future work, we will convert the MoGATU framework to fulhan as a part of the GloMoSim
simulator [38] in order to enable simulations on a largelescAs part of the GloMoSim-based
simulator we will develop novel mobility behaviors to bettepresent devices moving in a city-like
environment. Additionally, we will use the simulator to éoue the related aspects of transactions,
joins and more advanced data-centric routing approachesviiMalso investigate the problem of

expressing profiles and context information, which are &egiral part of our system.
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