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Abstract

This paper presents a framework to address new data management challenges introduced by data-intensive, perva-

sive computing environments. These challenges include a spatio-temporal variation of data and data source availability,

lack of a global catalog and schema, and no guarantee of reconnection among peers due to the serendipitous nature

of the environment. An important aspect of our solution is totreat devices as semi-autonomous peers guided in their

interactions by profiles and context. The profiles are grounded in a semantically rich language and represent informa-

tion about users, devices and data described in terms of “beliefs”, “desires”, and “intentions”. We present a prototype

implementation of this framework over combined Bluetooth and Ad-Hoc 802.11 networks, and present experimental

and simulation results that validate our approach and measure system performance.

Keywords

Mobile Data Management, Pervasive Computing Environments, Data and Knowledge Representation, Profile-

Driven Caching Algorithm, Profile Driven Data Management, Data-Centric Routing Algorithm

I. INTRODUCTION

Data-intensivepervasive computing environments introduce significantlynew challenges not

addressed by traditional mobile data management solutions. In this paper, we motivate the prob-

lem of data management in these environments and identify its challenges. We address these

challenges by articulating the requirements for, and presenting an implementation prototype of, a

robust framework enabling serendipitous querying and profile-driven data management. We also

present simulation results in order to show the efficacy of our solution.

The paradigm of pervasive computing has already begun to influence our lives. We interact,

daily, with tens of computationally enabled devices. We carry cellular phones allowing us to

interact with other people and to connect to the Internet infrastructure anytime from anywhere. We

use personal digital assistants to remind us of our scheduled appointments and for storing personal

contacts. We use watches, which, in addition to displaying time, monitor our heartbeat or even
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take photographs of our surroundings. We use transportation passes with embedded processors

that automatically open gates upon entering a subway station or going through a highway toll-

booth. Furthermore, we drive in cars equipped with on-boardcomputers providing navigational

assistance and that monitor the engine, fluid levels and the environmental systems. These examples

represent only a small subset of devices we interact on a daily basis but they serve as a starting

point for predicting what the future holds.

As manufacturers are able to develop increasingly powerfuldevices while simultaneously de-

creasing their size and cost, this trend will only continue to grow. The hardware developments

coupled with the widespread deployment of wireless short-range ad-hoc networking technologies,

such as Bluetooth [3] and UWB [36], will truly realize the vision of pervasive computing. Ad-hoc

networking technologies are natural successors of wireless communication systems, including cel-

lular telephone networks, low earth orbiting satellites and wireless local-area networks (WLAN),

e.g., IEEE 802.11 a, b and g standards [18]. WLAN can operate both in infrastructure-based and

ad-hoc modes. In the former case, wireless devices interactwith an access point. Access points

control traffic on wireless subnets and act as bridges to a wired network. In an ad-hoc mode, all

wireless devices communicate directly with others in theirvicinity.

The deployment of wireless communication technologies hasled to significant research in the

area of mobile data management. The research is dominated bythe client-proxy-server model.

In this model, mobile devices are able to connect to the Internet and serve as client end-points,

initiating actions and receiving information from serverson the network. The primary focus of

existing research is on the development of protocols and techniques that deal with disconnection

management, low bandwidth and device resource constraints. The aim is to allow applications

built for the wired world (e.g., World Wide Web and databases) to run in wireless domains using
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proxy based approaches ([2], [22]). In systems based on the cellular infrastructure or WLANs,

the traditional client-proxy-server interaction is perhaps an appropriate model where the “client”

database can be extremely lightweight [4], has a (partial) replica of the main database on the wired

side [19], [34] or where selected data is continuously broadcasted into the environment [1], [16].

With the widespread use of short-range ad-hoc networking technologies, alternative data man-

agement mechanisms are necessary in order to enable devicesto spontaneously interact with others

in their vicinity. In this approach, all mobile devices can be both sources and consumers of informa-

tion and must be able to cooperate with other devices in theirvicinity in order to pursue individual

and collective tasks. This will allow mobile devices, including handhelds, wearables, computers in

vehicles, computers embedded in the physical infrastructure, and (nano)sensors to become more

autonomous, dynamic and adaptive with respect to their environment. For instance, a car run-

ning low on gas can query those traveling in the opposite direction if they know of a gas station

within ten miles, or directly get this information from an electronic highway sign. Of course, this

could be done by the car relaying its GPS coordinates to some centralized server over a cellular

infrastructure-supported wireless network. This approach is, however, likely to be inefficient. The

large number of requests generated by all cars present on thehighways may lead to congestion in

the wireless networks and a bottleneck on the yellow page hardware. The congestion may in turn

result in a higher response latency of the information than already introduced by wireless networks.

Additionally, the congestion will cause a high risk of system failure.

Such highly dynamic environments, consisting of spontaneously networked computationally

enabled devices in a vicinity that are both producers and consumers of information, represent

something very different from traditional mobile computing. They have recently been described as

data-intensivepervasive computing environments [26]. These environments introduce additional
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challenges on top of issues related to data management in traditional mobile environments: (i) As

we increasingly rely on the use of information in electronicform, we expect and require instant

and complete access to any information at anytime, anywhere. Thus, devices and their applications

must cope with highly dynamic environments where both data and source availability vary over

location and time. As such, devices must adapt to currently available sources and constraints.

(ii) The pervasive computing environment inverts the traditional sense of data management in

distributed databases, which was based on the idea of “passive databases” and “active users” [33].

There data is stored in a database in one or some well known locations and queries/users would

“come and go”. We can instead model the new environment as a scenario where data objects

resident on mobile devices that actively move throughout the system and each device is continually

processing a vast amount of incoming data while looking for information of interest to its user.

An important aspect of our framework is a cross-layer interaction between a data management

layer and an underlying networking layer. Our framework, MoGATU, treats all devices as equal

semi-autonomous peers guided in their interactions by profiles and context. We assume that peers

can communicate in a half-duplex mode using Bluetooth or Ad-Hoc 802.11 technologies. The

framework abstracts all devices in the environment in termsof Information Providers, Information

Consumers, and Information Managers: (i) Information Providers represent data sources present

on devices. Each Information Provider holds a partial set ofheterogeneous data, afragment, avail-

able in the whole environment and annotated in a semantic language. (ii) Information Consumers

represent entities that can query and update data. These entities can represent humans as well as

autonomous software agents. (iii) Lastly, an instance of anInformation Manager (InforMa) must

be present on every device. Information Managers are responsible for the underlying network

communication and for most of the data management functions. Each InforMa maintains infor-
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mation about peers in its vicinity. This information includes the types of devices and the types of

information they can provide. Each InforMa also maintains adata cache for storing data obtained

from other mobile devices and by its local Providers. Additionally, each InforMa may include a

user profile reflecting some of the user’s beliefs, desires, and intentions, a model that has been

explored in multi-agent interactions [5]. The InforMa usesthe profile to adapt its caching strate-

gies and to initiate a collaboration with peers in order to obtain desired information. Additionally,

MoGATU uses profiles to describe content of data objects, their ownership information and both

access preconditions and postconditions.

The remainder of the paper is structured as follows: We illustrate the need for a data management

infrastructure in pervasive computing environments in Section II. We define the new fundamental

data management challenges and briefly describe traditional issues of mobile data management in

Section III. We present the design and implementation of ourinfrastructure for addressing these

challenges in Section IV. We measure the performance of our implementation in Section V. We

present related work in Section VI and conclude with SectionVII.

II. M OTIVATING EXAMPLE

To illustrate the research focus and motivate the need for our framework consider the follow-

ing example. It is an excerpt from Bob’s daily activities used for experiments in Section V. It

represents an ideal environment that our framework should provide:

It is 5:40 in the afternoon and Bob’s work day is just ending. As he is getting ready to leave the

office his phone rings. It is Alice asking him to meet her at thelocal shopping mall. Bob agrees

to meet her and notifies his mobile device about the appointment. While he is walking through the

building toward the parking lot, his device is able to connect to the office network infrastructure

using a WLAN and fetch the directions through an informationbroker [7]. In the car, the mobile
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device sends directions to the on-board computer that displays them on the area map. While en-

route, Bob feels that the traffic is not moving fast enough andwould like to get to his destination

via some quicker route. He instructs his device, which can now connect to cars around him, to ask

these if they know of a faster route. The device contacts its neighbors and returns with an alternate

map. Although the suggested route is longer it circumvents afternoon traffic jam building up on

the original route. Bob takes the different roads and arrives at the mall’s entrance twenty minutes

earlier. He decides to use the extra time by checking out local stores for a bargain on some small

gift for Alice. His mobile device finds out from the mall directory server about stores that sell such

gifts, contacts them to find out possible gifts within a $25 and presents ideas to Bob. Similar, the

mobile devices has awish listof other garments Bob wishes to purchase and proactively searches

for these bargains as well. Upon Alice’s arrival, Bob asks his mobile device to suggest available

restaurants (the device cached such information during themall exploration) and lets Alice pick

one. She chooses the closest Italian restaurant that indicates it has an available table with no waiting

period [30]. Thus, they are seated immediately and spend several hours eating and chatting.

The developments in networking and hardware have reached a point making this scenario tech-

nically possible. Cars are being equipped with desktop-like computers and wireless connectivity.

Moreover, handheld mobile devices, such as HP iPAQ H5455, include 400MHz Intel processors

with 64MB SDRAM and integrated Bluetooth and 802.11b wireless technologies. This provides

even handheld devices with relatively large computing and networking resources enabling them to

process and exchange data among peers. The related data management challenges, however, still

need to be thoroughly addressed. Ideally, Bob’s mobile device adapts its interaction mode with its

environment based on theknowledgeencoded in Bob’s profile and the currentcontext. The device

must be able to describe and reason over Bob’s preferences. The device must be able to utilize
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locally available resources,i.e., the device must posses the means to discover and interact with the

resources in its vicinity. For example, while Bob walks through the mall, the device should cache

local restaurant advertisements in anticipation of Bob’s future query since hiscalendarcalls for

dinner at a restaurant within the next hour.

III. D ATA MANAGEMENT CHALLENGES IN PERVASIVE COMPUTING ENVIRONMENTS

The pervasive computing environment is a special type of mobile distributed database system;

however, it is a far more complex than the conventional client-proxy-server model. We can illus-

trate how they are related by classifying the pervasive model along four orthogonal axes represent-

ing autonomy, distribution, heterogeneity and mobility ofmobile databases [13]. The pervasive

model is highly autonomous since there is no centralized control of the individual client databases.

It is heterogeneous as we only assume that entities canspeakto each other in some neutral format.

The model is clearly distributed as parts of data objects mayreside on different devices and there

is replication as entities cache data and their respective metadata. Mobility is of course given – in

ad-hoc networking environments devices can change their locations and no fixed set of entities is

alwaysaccessible to a given device. The last point is perhaps the most important in distinguish-

ing pervasive environments from traditional mobile information access. It is also the main reason

why a direct use of solutions developed for mobile information access is inappropriate. In mobile

distributed systems disconnections of mobile devices fromthe network are viewed only as tempo-

rary events. Additionally, these systems often assume thatall datamanagersare located at fixed

positions in the wired network and that their locations are known by every client a priori [6], [24],

[25]. Finally, an additional limitation is the naming schema for defining data and for locating both

data and devices in the traditional system. Here each clientmust know the precise server location

as well as its corresponding database schema in order to utilize the data properly.
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Additionally, the pervasive environment imposes the following issues that are primarily related

to the randomness of every device’s neighborhood at any instance of time. The neighborhood,

also referred to as vicinity, consists of all reachable devices that a particular (mobile) device can

communicate with and all available data that is accessible at that time.

• Spatio-temporal variation of data and data source availability. As devices move, their vicinity

changes dynamically affecting data and data source availability. For example, depending on the

specific location and time Bob asks for an alternate route hisdevice may obtain different answers

or none at all. Additionally, current wireless networking technologies cannot support stable con-

nections under high mobility. In our framework, we address this issue by enabling mobile devices

to proactively gather and cache data and by employing a data-based routing protocol.

• Lack of a global catalog and schema.As the neighborhood changes dynamically, a mobile

device has no prior knowledge of the current set of availabledata. For example, while en-route,

Bob’s device does not know ahead of time which car to query fora different route. There is no

global catalog that it may contact and ask for a location of a given data item. In our framework,

we address this issue by requiring each device to describe and optionally advertise its capabilities

to its neighbors using heterogeneous ontologies, defined via a common vocabulary encoded in a

Semantic Web language. This allows every device to dynamically construct a subset of the local

catalog. At the same time, each data source may have its own ontology that in our framework can

be addresses by providing a translation service present on some devices in the vicinity.

• No guarantee of reconnection.When a device moves away from a current neighborhood it may

affect any ongoing interaction among other devices of that neighborhood. As there is no guarantee

that the mobile devices will ever again be able to communicate among themselves, this may cause

an inconsistent global state. For example, when Bob’s device is querying local restaurants it may be
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unable to make a reservation. We address this issue by relying on proactively cached information,

a data-based routing algorithm and by providing best-effort service only.

• No guarantee of collaboration.The issues of privacy and trust are very important for a perva-

sive environment where random devices interact in random transactions [35]. A device may have

reliable information but refuses to make it available to others. A device may be willing to share

information; however that information is unreliable. Lastly, when a device makes information

available to other devices questions regarding protectionof future changes and sharing of that data

arise. For example, Bob’s device is not guaranteed that the alternate route in fact reaches the mall.

Currently, we do not address this issue and only assume a best-effort service. In related efforts,

[23] provides a work on trust management for mobile environments.

One consequence of these challenges is that query answeringwill be highly serendipitous. The

answer obtained will depend on information sources accessible in the current vicinity. Our data

management system avoids such a situation and strives to provide answers to user queries. Con-

sequently, each device in our framework should gather information proactively and much of the

interaction among devices should happen in the background,without an explicit human interven-

tion [14]. This requires that devices adapt themselves to the needs and preferences of their users

and the current context. For example, Bob’s device should start caching bargain offers matching

Bob’s interests when he is inside or near a shopping mall. Accordingly, Bob’s preferences and

needs, modulated by context as well as battery power and storage space, should allow the mobile

device to determine what data to obtain proactively and its relative worth.

IV. M OGATU: DESIGN AND IMPLEMENTATION

In an effort to address the challenges above we have designedand implemented a framework

for handling data management in pervasive computing environment. We call the implementation
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Fig. 1. Entity Details and Interaction in the MoGATU Framework

prototypeMoGATU. Our framework treats all devices as equal semi-autonomouspeers. It can be

classified aschainedarchitecture withrandomreplication and localincrementalpolicy [37]. The

framework abstracts devices in terms of Information Providers, Information Consumers and Infor-

mation Managers (InforMas). Additionally, the framework employs Communication Interfaces for

supporting multiple networking technologies and Profiles for enabling a proactive device behavior.

Figure 1 depicts an overview of the framework and the integration among various devices and their

resources. In our framework, we address the challenges fromSection III in the following manner:

• Autonomy.We treat all devices as independent entities acting autonomously from others.

• Mobility. We do not pose any restriction on the mobility patterns of devices.

• Heterogeneity.Pervasive computing environments are highly heterogeneous in terms of devices,

data resources and networking technologies. We address this by abstracting each device with

an InforMa. Each resource of stored or dynamically generated information is abstracted by an

Information Provider. Lastly, networking technology is abstracted by a Communication Interface

allowing peer InforMas to interact regardless of the underlying network.
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• Distribution. Mobile devices may have multiple Information Providers, each holding a subset of

the global data repository. We allow devices to advertise, solicit, exchange and modify such data

with their peers. Thus, our framework is highly distributed.

• Lack of a global catalog and schema.We do not depend on any global catalog or schema. In-

stead, we use a semantically rich language for defining base ontologies – a set of common vocab-

ularies. These ontologies enable us to describe information provided by any Information Provider.

These ontologies are also used to advertise, discover and query such information among devices.

• No guarantee of reconnection.To remedy the effects of reconnection, our framework operates

on a best-effort basis and relies on proactively cached information. We also employ a data-based

routing algorithm allowingcloserdevices to provide answers to queries placed by their peers.

• Spatio-temporal variation of data and data source availability. We address this issue by enabling

devices to proactively gather information without a human interaction. We employ a user profile

also annotated in a semantically rich language. Each InforMa uses the profile to adapt its caching

behavior and to proactively query its vicinity.

A. Information Providers

Every device may hold one or more Information Providers. An Information Provider manages

and provides an interface to a subset of the global data repository. The data can be stored on the

device or generated on-demand. The managed subset may be inconsistent with othercopieson

other devices as there is no guarantee that these devices caninteract and the subset may even be

empty. In our framework, any entity is an Information Provider if it is able to accept a query

and generate a response. For example, Bob’s device has at least two Providers: one representing

current time and another for Bob’s calendar. Accordingly, the response of each Provider is based

on the query, stored data and mechanisms, including reference rules, for generating new data.
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Each Information Provider describes its capabilities in terms of ontologies defined in a seman-

tically rich language. For our implementation we use DAML+OIL [11]. Moreover, we base our

design on the DAML-S standard [10] that attempts to comprehensively describe services for the

WWW. We do not use DAML-S directly as it has not been finalized yet. Using this approach,

however, each Provider can describe itself by defining the service model it implements, the pro-

cess model that provides the information, and the input (query) restrictions/requirements [10].

We use a semantically rich language for describing Information Providers and data they can

provide in order to overcome the heterogeneous nature of thepervasive computing environment

and the lack of global schema. It enables devices in our framework to interact among themselves

as they are only required tospeakusing a common set of vocabularies. Each device wishing

to interact must only be able to process,i.e., parse, the information annotated in the language at a

syntactic level. Moreover, the language supports more efficient discovery and matching approaches

required for locating Information Providers (or cached answers) for answering queries [7]. Lastly,

the use of DAML+OIL allows mobile devices to also use resources available on the Semantic Web.

Upon start-up, each Information Provider registers itselfwith the local InforMa by sending a

registration message including the service models, process modelsp and input restrictionsI:

reg = (s, p, I, t, a)

Each Provider also specifies the lifetimet it will be available and if it is willing to process

queries for remote devices, denoted asa. Each Provider, however, communicates only with its

local InforMa, which routes messages between the Provider and other devices in the vicinity. The

InforMa adds this Provider into its cache of local providersand discards the entry once thelifetime

expired and the Provider has not renewed its registration. Additionally, InforMa may advertise the



14

Provider to other devices in the vicinity if the Provider is willing to process queries for remote

devices. The advertisement frequency is a tunable parameter for each InforMa.

B. Information Consumers

Information Consumers represent entities that can query and update the data. In the current

design, Information Consumers primarily represent human users that ask their mobile devices

for context-sensitive information but may also represent autonomous software agents. Similar to

Information Providers, Consumers register with local InforMa; however, they are not advertised

to remote devices. Each Consumer sends queries to its InforMa, which routes them to appropriate

local Information Providers or those on remote peer devicesfor processing, and awaits a response.

C. Information Manager (InforMa)

An InforMa is responsible for most of data management functions and for an underlying net-

work communication. From the data management perspective,InforMa must be able to discover

available sources, construct dynamic indexes and catalogs, support queries, and provide caching

mechanisms for addressing the dynamic nature of the environments. From the networking per-

spective, InforMa must be able to discover devices, interact with them and route messages.

Each InforMa maintains information about Providers and Consumers present on the same device

as the InforMa. This information includes thelifetime of each Provider and its service model,

process models and query restrictions. Each InforMa also maintains information about peers in its

vicinity. This information includes the ID of devices and types of information they can provide,i.e.,

Provider advertisements. Lastly, InforMa maintains a datacache for storing information obtained

from other mobile devices as well as the information provided by its local Providers,i.e., answers

to previous queries. Additionally, each InforMa may include a user profile reflecting the user’s
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preferences and needs. The InforMa uses the profile to adapt its caching strategies and to initiate a

collaboration with peers for obtaining the desired information.

Since every device in the environment, ranging from sensorsto laptops, must implement an in-

stance of InforMa, the framework does not enforce that each device implements all functionalities

for its InforMa. In the simplest case, type 0, InforMa can maintain only one local Provider. It does

not cache any remote information and it does not possess any reasoning or parsing mechanisms.

This InforMa only periodicallybroadcastsdata sent to it by the Provider. This type of InforMa is

well-suited for resource limited devices, such as gas station beacons. On the other hand, devices

wishing to interact in more intelligent manner and those that possess more resources must imple-

ment an InforMa that is able to maintain information about multiple local andremoteProviders.

These types of InforMa must also be able to parse messages, route message to other peer devices

and proactively query peers. Moreover, we can differentiate among additional four types of In-

forMa based on the collaboration level: (1) InforMa does notcache any remote advertisements or

answers to queries, (2) InforMa caches remote advertisements only for thelifetimespecified in the

message or until replaced by another entry, (3) InforMa caches both advertisements and answers,

and (4) InforMa also caches all advertisements/answers andmakes them available to other peers.

The type 4, hence, can serve as a temporary sub-global catalog for peers in the current vicinity.

C.1 Query Processing

One of main objectives of InforMa is to provide querying capabilities. An Information Con-

sumer sends a query annotated in DAML+OIL. Similar to Provider advertisements, a query speci-

fies the required service models and the input valuesi:

query = (s, i)
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Algorithm 1 InforMa ProcessQuery(src, query)

(sq, iq)← parsequery(query)
for eacha← cachedanswerdo

(sa, ia)← parseanswer(a)
if sq ' sa andiq = ia then

return a
end if

end for
for eachp← local providerdo

(sp, Ip)← parseprovider(p)
if sq ' sp andiq ∈restriction Ip then

return ask provider(p, query)
end if

end for
if src is local Consumerthen

for eachp← remoteproviderdo
(sp, Ip)← parseprovider(p)
if sq ' sp andiq ∈restriction Ip then

dst← provider location(p)
return InforMa RouteQuery(src, dst, query, 0, donot intercept)

end if
end for

end if
return error

An InforMa matches the query against entries in its cache. Algorithm 1 shows the pseudo-code.

Each entry in the cache represents an unexpired answer to a previous query (otherwise it would be

removed), or an advertisement for some local or remote Provider. The InforMa parses the query

and each entry according to DAML+OIL rules and relationships specified in the employed ontolo-

gies. The InforMa compares service models and validates thequery against inputs restrictions. For

cached answers, the InforMa matches input values of the query against those in the cached answer.

Our approach is equivalent to DAML-S using traditional forward chaining method also used by

other DATALOG / Prolog based query processing techniques [15], [17]. The InforMa first tries

to find and return a cached answer. Otherwise, the InforMa tries to find a local or some remote

Provider.
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C.2 Caching

Each InforMa stores query answers together with advertisements and registrations of local and

remote Providers in a cache. In order to provide answers to, at least the expected, user queries,

i.e., to overcome the spatio-temporal variation of data and datasource availability, an InforMa

must utilize the cache in the most effective manner. Our framework supports the traditional LRU

and MRU replacement algorithms; however, as shown in Section V, an InforMa must use the user

profile in order to improve cacheeffectiveness– the percentage of successfully answered queries:

effectiveness=
1

n

n
∑

i=1

hit(queryi)

We model a profile in terms of beliefs, desires, and intentions, a model that has been explored

in multi-agent interactions [5]. Each InforMa treats all user beliefsas query restrictions that are

assignedutility andreliability functions,e.g., one of Bob’s restrictions is that he prefers Chinese

restaurants. Theutility andreliability functions use current time, location and other informationin

the profile as inputs to calculateimportancevalue for comparing against other entries in the cache.

Each InforMa then uses anintentionto represent a standing query. The query is assigned a start-

ing point and time period during which the InforMa attempts to obtain and cache an answer. The

standing query also has theutility andreliability functions in order to prioritize the InforMa’s ac-

tivity. Lastly, the InforMa usesdesiresto represent user’s wishes that cannot be directly converted

into standing queries but instead require additional user-provided rules.

Similar to queries and descriptions of Providers, we annotate profiles in DAML+OIL. An In-

forMa employs a DAML+OIL based forward-chaining reasoningengine defined in CLIPS [32].

The reasoning engine parses the profile according to DAML+OIL and our profile DAML-S like

relationships. Additionally, we have developed sample rules for converting beliefs and intentions
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into query restrictions and standing queries, respectively. We use these rules for experiments in

Section V,e.g., one rule creates a standing query to search for gas stationswhile a person is driv-

ing in a car low on gas. The InforMa’s reasoning engine uses these rules together with the current

time, location and the profile to create standing queries andto adapt the caching strategy.

For caching, the InforMa uses the profile in two ways: (i) to preallocate space for specific data

type and (ii) to assign utility value to each entry. In the first case, the InforMa uses the profile

to determine types of standing queries. The InforMa uses these types to reserve portions of the

cache for the related data types,e.g., traffic. We use the first heuristic to create hybrid LRU+P

and MRU+P algorithms. These algorithms find a cache victim entry ei for new entryn of typeD

(given allocated cacheED of maximum sizemaxD) according to following:

v =











ei ei = Ø
ei cache full∧ |ED| ≥ maxD ∧ ei = LRU(∀e | e ∈ ED)
ei cache full∧ |ED| < maxD ∧ ei = LRU(∀e | e ∈ EC ∧ C 6= D∧ |EC | > maxC)

Additionally, we implement a simple semantic cache algorithm S+P employing both heuristics.

The algorithm also enforces space allocation for differentdata. The algorithm then uses theutility

functionU to replace cache entries instead of a simple timestamp-based approach. The functions

are defined by a user in her profile for each query restriction and standing query:

v =



























ei ei = Ø
ei full ∧ |ED| ≥ maxD ∧ ei ∈ ED ∧ U(ei) = Umin(∀e | e ∈ ED) ∧ U(n) > U(ei)
ei full ∧ |ED| < maxD ∧ ei /∈ ED ∧

U(ei) = Umin(∀e | e ∈ EC ∧ C 6= D∧ |EC | > maxC) ∧ U(n) > U(ei)
Ø otherwise

C.3 Discovery and Routing in Multi-Hop Networks

An important aspect of the framework is to discover local andremote Providers. The discovery

allows each InforMa to construct a temporary catalog representing current data and data sources in

the vicinity. Our framework supports both push and pull based approaches,i.e., each InforMa can
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Algorithm 2 InforMa RouteQuery(src, dst, query, r, h, i)

if dst is local Providerthen
a← find cachedanswer(query)
if a = Ø then

a← ask provider(dst, query);
end if
if a 6= Ø then

return a
end if

else {dst is remote Provider}
if src is local Consumerthen

r ← calculateroute(dst)
end if
if i = interceptqueriesthen

a← find cachedanswer(query)
if a 6= Ø then

return a
end if

end if
h = h + 1
if willing to forward andh ≤ max hopsthen

n← next hop or short cut(dst, r)
if n = Ø andsrc is local Consumerthen

n← broadcast
end if
if n 6= Ø then

forward to(n, src, dst, query, r, h)
return

end if
end if

end if
return error

advertise its capabilities or solicit capabilities of other peers. We study the impact of different fre-

quencies in Section V. In order to restrict the number of messages in the environment, solicitation

and advertisements are, however, limited to onlyone-hopneighbors.

We employ a hybrid mechanism combining discovery and routing for routing queries (i.e., data

discovery) among peer InforMas in multi-hop networks. The algorithm uses a source-initiated

approach similar to AODV [28] and DSR [21]. The algorithm works on a best-effort basis. It
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attempts to rebuild disconnected routes; however, it does not guarantee message delivery. The

pseudo-code is shown in Algorithm 2. Indata-intensiveenvironments the answer can often be

provided by more than one device,e.g. cached by InforMas or available by local Providers. The

querying source may not be interested in who it interacts with as long as it receives a correct

answer. We modify the AODV approach to intercept routed query/discovery messages and process

them when possible. Additionally, each InforMa interceptsall messages it receives or routes in

order to provideshortcutsfor cached routes. Here each InforMa maintains a route entryfor one-

hop peers. The InforMa also maintains a route entry for peers more than one hop away if those

peers are used in on-going interactions or the InforMa is caching advertisements for those peers.

D. Communication Interfaces

To support multiple types of networking interfaces and to abstract these types from an InforMa,

each device implements at least one Communication Interface. A Communication Interface pro-

vides a common set of interfaces for discovering neighboring devices and for communicating with

them. Every Communication Interface registers its capabilities with InforMa. Accordingly, an

InforMa is still network awareas it can infer the network constraints and requirements from the

information contained in the registered capabilities.

The current implementation prototype of the framework supports two types of Communication

Interfaces: (i) Bluetooth and (ii) Ad-Hoc 802.11. We use theBluetooth protocol stack developed

by Axis Communications Inc. [20] and Bluetooth modules developed by Ericsson. For the Ad-Hoc

802.11 network we use off-the-shelf wireless cards and a standard Linux communication stack.

Our design requires every device be capable of broadcastingmessages, which is not supported

by Bluetooth. Broadcasting in Bluetooth is restricted to messages used for device discovery. In

order to exchange application level messages, a device mustfirst establish a link level connec-



21

tion with its peers. Additionally, every communicating device must be either amasteror aslave.

Thus, simultaneous link level connections cannot be established between a pair of devices. To

solve this problem we use the connect-transmit-disconnectprocedure, a half-duplex communica-

tion. Accordingly, each device connects to a peer, sends a message and disconnects. For sending

responses, the peer device follows the same protocol.

V. PERFORMANCE EXPERIMENTS

In this section, we show the improvement of the system performance of the MoGATU frame-

work when using the semantic cache replacement algorithm S+P defined in Section IV-C.2: (i) We

measure how close a cache reflects user needs using this cachereplacement algorithm. (ii) We

measure itseffectivenessin answering user queries. We compare the S+P algorithm withtradi-

tional timestamp-based LRU and MRU approaches and with the extended LRU+P and MRU+P

algorithms defined in Section IV-C.2. Additionally, in thissection we examine the practicality of

MoGATU: (iii) We measure the average response time for peer interaction over both Bluetooth and

Ad-Hoc 802.11 networks and provide a preliminary validation of the data-based routing protocol

defined in Section IV-C.3.

We have implemented the MoGATU framework using C language. The code runs on Linux-

based Pentium II and III laptops. We provide the connectivity support for MoGATU via Bluetooth

using Ericsson cards connected on serial ports on the laptops and IEEE 802.11 PCMCIA cards

operating in an Ad-Hoc mode. Additionally, as future work weare developing the MoGATU

framework to function as a part of the GloMoSim simulator [38] in order to enable simulations and

measurements on a larger scale than currently supported by our hardware resources.

For the experiments, we either vary or measure the followingparameters:

• Query Frequency– This represents a rate at which a user asks her mobile devicean identical
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question. We use the frequency to simulate a scenario where auser repeatedly asks the same

question during the current activity,e.g., while on the road Bob is asking for traffic conditions.

For our experiments, we use two frequencies: (i)unlimited and (ii) 5 minutes. The unlimited

frequency represents a scenario where a query is randomly placed just once during an activity.

We call this scenarioSingle Queries. The second scenario allows multiple questions to be asked

depending on the duration length of a particular activity. This represents a less serendipitous case

since each algorithm has more chances of satisfying each distinct query. We refer to this scenario

asRepeating Queries. We use the period of 5 minutes as the shortest activity in oursimulation

lasted 15 minutes.

• Cache Size– In our experiments the Cache Size allows an InforMa to storeup to 64 differ-

ent information entries. These entries represent non-expired advertisements for local and remote

Providers and answers to previously issued queries. As described in Section IV, the lifetime for

each entry is specified by a Provider and InforMa removes eachentry after its lifetime elapses.

• Cache Replacement Algorithm– We use the five different cache replacement algorithms de-

scribed in Section IV-C.2. These include the traditional timestamp-based LRU and MRU replace-

ment policies, profile-based LRU+P and MRU+P and the semantic S+P algorithm.

• Cache Allocation– In our experiments we distinguish among eight informationtypes: merchan-

dise, gas, dining, directions, subway, parking, traffic andothers. We measure the Cache Allocation

for each type throughout the simulation in order to compare S+P algorithm with the other four

approaches. For that we measure the ideal cache allocation that answers all queries a user asks.

This omniscientscenario assumes that an InforMa has a complete prior knowledge of every step

of its user. We compare the results obtained for each algorithm a to this omniscient caseo using

a cosine similarityA. We define the similarity using the following formula where vectorat andot
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represent the allocation for each information type for a specific time of the dayt:

Ao(a) =
a · o

‖a‖‖o‖
=

n
∑

i=1

aioi

√

√

√

√

n
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√

√
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• Cache Hit Success Rate– The Average Cache Hit Success Rate represents a fraction ofqueries

that an InforMa is able to answer using its cache – the cacheeffectiveness. Initially, every InforMa

has an empty cache. The InforMa can obtain data by either accepting bulk advertisements from

other mobile devices in the vicinity or by explicitly querying them. We measure the rate using the

formula defined in Section IV-C.2.

• Cache Update Period– The Cache Update Period represents a frequency at which each InforMa

is willing to update its cache. This period represents the mobile device’s preferred refresh rate in

order to prolong its battery life. Additionally, this period can be used to represent a rate at which

remote sources appear and disappear. We vary the period from1 to 128 minutes.

• Peer Query Response Time– The Peer Query Response Time represents a period it takes for one

device to query another and obtain an answer. We measure the average response time in seconds

for devices querying over Bluetooth and 802.11 networks.

We use the results of these metrics to measure the implementation performance, namely we

measure the effects of:

1. Cache Replacement Algorithms vs. Cache Allocation (Section V-B)

2. Cache Update Rate vs. Cache Hit Success Rate for Single Queries (Section V-C)

3. Cache Update Rate vs. Cache Hit Success Rate for RepeatingQueries (Section V-D)

4. Networking Technology vs. System Performance (Section V-E)
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A. Experimental Setup

To measure the effectiveness of the various cache replacement policies, we extend the motiva-

tion example from Section II. Here we simulate a twelve-hourperiod in which Bob, equipped with

his mobile device, travels between three distinct cities toattend meetings. In our experimental sce-

nario, Bob begins the day at 8AM by driving from one city to another while attending meetings.

Some of the meetings are scheduled a priori and recorded on Bob’s mobile device in a calendar

application. Other meetings/activities are scheduled as the day progresses,e.g, dinner with Alice

or finding an alternate route. Additionally, the mobile device has Bob’s profile that can be con-

verted into query restrictions and standing queries for theeight different types of information listed

above. We distribute information providers with differenttypes of information along the traveled

path. These providers simulate cars, electronic lights on office buildings, gas stations, subway in-

frastructure and other people’s mobile devices. Some of these providers hold data closely related

to Bob’s current activity while other providers haveless usefuldata.

B. Cache Replacement Algorithms vs. Cache Allocation

In the first experiment, we measure how profile knowledge affects the cache allocation for the

eight different data types defined above. We use eight types of information as opposed to smaller

values because it allows us to better analyze the cache behavior for different replacement algo-

rithms. As we show in the next two experiments, a cache preallocation plays an important role in

improving cache hit success rate for both single and repeating queries.

We measure the cache allocation during the twelve-hour period for the standard timestamp-based

LRU algorithm and the semantic S+P algorithm defined in Section IV-C.2. We obtain the measure-

ments by recording a snapshot at one minute intervals. For the LRU algorithm we use numbers

reflecting actual data in the cache while for the S+P algorithm we use numbers inferred by the In-
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Fig. 2. Effects of Cache Replacement Algorithms on Cache Allocation

forMa. Each snapshot is described by an eight-dimensional vector representing number of entries

allocated for each specific data. Accordingly, we obtain a set of 720 vectors for each algorithm.

We also measure the optimal cache allocation from theomniscientscenario. We use the optimal

allocation as a base for comparing the LRU profile-less and S+P profile-based algorithms. For that

we use the cosine similarity formula. We do not measure cachepreallocation for approaches that

use profiles with static utility values [8]. These profiles donot change with context. Hence, their

initial cache preallocation remains the same from the startuntil the end of a simulation.

Figure 2 shows the results. The semantic S+P cache replacement algorithm is, on average,

89.5% similar to the optimal allocation, while the traditional LRU algorithm is only 67.1% similar.

The positive results of S+P based cache allocation are partly due to the fact that the mobile device

knows or will learn throughout the simulation about most of the meetings/activities. The allocation

for the LRU algorithm is, on the other hand, in many cases quite different from the optimal case,

sometimes only 29.9% similar. Moreover, the LRU algorithm frequently fluctuates its cache allo-

cation. This is due to the fact that the LRU approach ignores the information types. Instead it is

based on timestamping only. This way the LRU-related allocation depends on the order of received
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information as well as the expiration time of each entry. This may cause an important information,

which is later needed, to be removed from the cache prematurely. Consequently, this will cause a

cache miss. Hence, to overcome the cache-allocation serendipity, it is necessary to utilize context

and profile knowledge in order to narrow the content of a cacheat each point of time.

C. Cache Update Rate vs. Cache Hit Success Rate for Single Queries

In the next experiment, we measure the cacheeffectivenessin answering user single queries. We

vary the period at which each mobile device can update its cache from 1 to 128 minutes. This

period represents the device’s preferred refresh rate in order to prolong battery life. Additionally,

the period indirectly represents how much work each mobile device must perform. During the

simulation period, we assume that the person asks at most four distinct single queries during each

activity. This results in 54 unique queries that Bob asks during the twelve-hour period. To improve

chances of answering these queries we, however, pose a restriction that a query can be asked only

when the device has previously received a valid answer and, if cached, the answer has not expired.

This way we guarantee that with an optimal performance each query can be satisfied. Figure 3

illustrates the performance for caches employing the traditional LRU and MRU approaches, the

hybrid LRU+P and MRU+P approaches, and the semantic S+P approach.

As shown in Figure 3, the S+P algorithm always outperforms other techniques. This is expected

since the algorithm uses the context and user-profile knowledge to preallocate cache space and to

assign utility values for each entry. This way the algorithmis able to, for example, allocate enough

cache space for traffic-related information while the person is driving. Moreover, the algorithm

assigns different values to each traffic update and caches only the most valuable ones, resulting in

a higher success hit rate. We see that its performance degrades with larger update periods. This is

also expected since here the activity changes more frequently than the cache can reflect.
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Fig. 3. Effects of Cache Update Rate on Cache Hit Success Ratefor Single Queries

Additionally, the timestamp-based LRU algorithm outperforms the MRU approach. At its peak,

at 2 minute cache update intervals, the LRU is able to satisfy51.9% of user queries. By extending

it to utilize the profile knowledge,i.e., by using LRU+P approach, the cache would, however,

improve its performance by 12.9%. Moreover, a cache using S+P algorithm is 87.0% successful

for the same update period – an improvement of 45.1%. Moreover, we see a stable performance

for most cache replacement policies for update intervals between 4 and 16 minute. Consequently,

a mobile device can prolong its battery life by using a largerupdate interval and still maintain a

performance level equivalent to 4-minute update periods.

D. Cache Update Rate vs. Cache Hit Success Rate for RepeatingQueries

In this experiment, we also measure the cacheeffectivenessin answering user queries. We,

however, extend the previous experiment by asking repeating queries instead of single queries.

This experiment represents a less serendipitous case whereeach algorithm has more chances of

satisfying each distinct query. A repeating query is a distinct query asked more than once per

activity. We use a query frequency equivalent to 5 minutes inorder to guarantee that each query
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Fig. 4. Effects of Cache Update Rate on Cache Hit Success Ratefor Repeating Queries (5 min interval)

is asked at least three times given an activity, and the shortest activity in our simulation lasted 15

minutes. We show the measured cache hit success rates for each algorithm in Figure 4.

Similar to the previous experiment, the semantic-based S+Palgorithm has the best performance.

It has on average 1.5 times larger success rate than the LRU algorithm, which is the bestprofile-

lessapproach. Each profile-based cache replacement algorithm,in fact, outperforms the traditional

timestamp-based techniques. This is expected since the profile-based algorithms use context and

user-profile knowledge to preallocate cache space and S+P uses the knowledge to even assign

utility values for each entry.

E. Networking Technology vs. System Performance

In the last set of experiments, we test the effects of hardware on the framework and its perfor-

mance in real world experiments. We are primarily interested if the implementation is feasible us-

ing the current hardware technology. Accordingly, in theseexperiments we examine the interaction

between peer laptops over Bluetooth and 802.11 networks in Ad-Hoc modes. To provide similar

conditions for both technologies, we assume a half-duplex interaction employing the connect-send-



29

disconnect mode. Additionally, each exchanged message hasan average size of 1.0KB.

Our first set of real-fielded experiments simply validate theworking of the system, namely we

test the routing among devices. The test consists of four laptops interacting over a period of 100

minutes. In this experiment, deviceA is able to communicate with deviceB that, in turn, is in range

of devicesC andD. DeviceA provides weather information and deviceD has information about

locations and prices of nearby gas stations. We evaluate thesystem by randomly selecting a query

and assigning it to one of the four devices and monitoring information present at each cache. For

example, when deviceA asked for the closest gas station, it was able to deduce thatD contains

the required information and that the query should be routedthroughB. Moreover, upon receiving

the queryB was able to immediately return a cached answer instead of first routing the request

to device D. In this experiment, we did not perform any scalability measurements because of the

limited number of available hardware. As future work we are,however, converting the MoGATU

framework to function as a part of the GloMoSim simulator [38] in order to enable simulations and

measurements on a larger scale than currently supported by our hardware resources. Moreover,

for our future work we will also develop additional mobilitymodels to better represent devices

moving in a city-like environment,e.g., cars and people.

Next, we study the impact on performance for reasoning over the cache entries by each InforMa

in comparison to transmission time. In the current implementation an InforMa linearly scans the

cache to find a matching DAML+OIL structure,i.e., a Provider advertisement or a cached answer.

For a 30K cache, however, the processing time was on average 5ms per query after 100 runs. On

the other hand, the measured network transmission completely dominates this time. In Bluetooth

environments it takes 4.56s to transfer a 1.0KB “query” and to send a response. This is partly due

to the delay it takes to establish a connection between two peers and subsequently to disconnect.
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For the much faster 802.11 devices, the time needed to send the query and receive the answer over

the network was on average 27ms. This is, however, still five times longer than an InforMa spends

on reasoning over its cache. Therefore, at this moment the cache reasoning does not impose a

bottleneck on the system performance; however, the networking does. From the measured results

it appears that the Bluetooth technology cannot be used for serendipitous querying in environments

reflecting a high mobility, such as cars in a city environmenttraveling at 25mph. This is due to

the fact that such mobility prevents peer devices from establishing a communication link before

they are out of range for both querying and routing purposes.At the same time, the Bluetooth

technology is fast enough to allow exchanges and interactions in relatively stable environments,

e.g.people in a mall or cars traveling in the same direction.

VI. RELATED WORK

The problem of data management in a distributed environmenthas been well researched, both in

terms of wired infrastructure and infrastructure-based wireless networks. The work on distributed

and federated databases is also well-known [27]. Accordingly, we present work related to data

management in wireless networks and a short discussion of related work on user profiles.

Data Management in Wireless Networks:The problem of data management in wireless networks

has drawn a significant degree of attention. The proposed solutions primarily address problems

imposed by the underlying networking technology, such as low bandwidth and high probability

of disconnection. They also address the issues related to the retrieval of location dependent in-

formation. Existing solutions often rely on the support of afixed, wired infrastructure. These

solutions place primary data on servers located within the wired infrastructure and treat mobile

devices solely as clients. Chrysanthiset al [25] consider disconnected operations within mobile

databases by presenting a mechanism, referred to as a “view holder” that maintains versions of
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views required by a particular mobile unit. They also propose an extension to SQL that enables the

profile- and capability-based programming of the view holders. Kottkamp and Zukunft [24] present

optimization techniques for query processing in mobile database systems that include location in-

formation. They present a cost model and different strategies for query optimization incorporating

mobility specific factors like energy and connectivity. Bukhreset al [6] propose an enhancement to

the infrastructure-based mobile network model of Mobile Hosts (MHs) connected over a wireless

virtual subnet and Mobile Support Stations (MSSs) connected to a wired static network. They rec-

ommend the addition of a mailbox serving as a central repository for the MHs that is maintained

by the cellular provider and duplicated in all the MSSs. Pitoura [29] presents a replication schema

based on augmenting a mobile database interface with operations with weaker consistency guar-

antees. Demerset al [12] present the Bayou architecture, which is a platform of replicated, highly

available, variable-consistency, mobile databases for building collaborative applications.

In contrary to these approaches, our work assumes no supportfrom the fixed infrastructure.

When a mobile device requires instantaneous information (e.g. traffic updates or bad weather

warnings), it may be more easily, or only accessible, from other “local” mobile devices and not

from a fixed node. Moreover, a mobile device in our work is always in nomadic mode [6] and [24].

User Profiles:The data management community of late has been advocating the use ofprofiles,

especially when dealing with pervasive systems and stream data. Ren and Dunham [31] represent a

profile as a collection of continuous location dependent data queries. The location dependent data

is described in terms of tuples in a single-relational database,e.g.all hotels and restaurants in a city.

A user specifies her preferences by constructing several SQLqueries based on the database schema.

In a seminal work, Cherniaket al [8], [9] explore the use of profiles in the area of client/server

based data recharging for mobile devices. They discuss the requirements for a successful profile as
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well as describe the need for a formal language that enables expressing such profiles. Their profile

consists of two sections: (i) adomainresponsible for the data description and (ii) autility, which

is a numerical function denoting the data importance with respect to other information. The utility

function is, however, immune to the current context.

While a step in the right direction, we argue that a profile explicitly enumerating data and its

utility is not sufficient. As described in Section IV-C.2, weextend the profile in terms ofbeliefs,

desires, and intentions. Here the notion of “domain” and “utility” is subsumed by thenotion

of “beliefs”. Domains of interest, and their utility, are thus inferred from beliefs, desires, and

intentions, as modulated by the current context. The domains, as well as their utilities, vary over

time and context. This allows us to better adapt to the dynamic nature of the environment, such as

constructing standing queries or changing cache replacement policies. Our model also allows us

to better predict the future actions of the user and does framework can be more proactive.

VII. CONCLUSIONS

The constant enhancements in capabilities of palmtop, embedded and wearable devices, to-

gether with the advent of pervasive connectivity, present anew paradigm for the way we think

about interaction among devices. These devices will becomeboth sources and consumers of infor-

mation, and will be able to cooperate with other devices in their vicinity in order to pursue their

individual and collective tasks. The emerging data-intensive pervasive computing environment,

however, challenges the traditional data management models that were proposed for wired and

wireless infrastructure-based networks. In addition to issues addressed by mobile distributed data

management systems, the data and data source availability is no longer fixed. Instead it varies

with location and time. Other issues include lack of a globalcatalog and schema, no guarantee of

reconnection among peers, no guarantee of collaboration among peers, and the issues of commits
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and aborts due to the serendipitous nature of the environment.

We have designed a data management framework that is applicable to thedata-intensiveper-

vasive computing environments. The framework treats all devices as peers and operates on a

best-effort basis. The framework is network-agnostic as itcan operate over any wireless or wired

technology. In our current implementation prototype, the framework supports both 802.11 and

Bluetooth networks. Additionally, the framework attemptsto utilize as much of available infor-

mation as possible to enhance the mobile device’s functionality. It uses both static information,

such as user’s preferences and information about data sources, and dynamic information, such as

current context description, to allow each device to behaveproactively.

We have measured and compared the effectiveness of various cache replacement policies that

can be used by each mobile device to cache currently available information. We have also shown

that the implementation of the framework is feasible using current hardware technologies by im-

plementing it on laptop computers equipped with IEEE 802.11and Bluetooth networks. Moreover

we have tested the networking aspect of the system by measuring the communication delays for the

802.11 and Bluetooth networks, and by verifying our simple query-based routing algorithm. We

have, however, not performed any routing scalability measurements because of our limited number

of available hardware.

For future work, we will convert the MoGATU framework to function as a part of the GloMoSim

simulator [38] in order to enable simulations on a larger scale. As part of the GloMoSim-based

simulator we will develop novel mobility behaviors to better represent devices moving in a city-like

environment. Additionally, we will use the simulator to explore the related aspects of transactions,

joins and more advanced data-centric routing approaches. We will also investigate the problem of

expressing profiles and context information, which are an integral part of our system.
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