
 1

Exploiting Parallelism in Geometry Processing with General Purpose Processors and
Floating-Point SIMD Instructions

 Abstract

Three dimensional (3D) graphics applications have become very important workloads
running on today’s computer systems. A cost-effective graphics solution is to perform
geometry processing of 3D graphics on the host CPU and have specialized hardware
handle the rendering task. In this paper, we analyze microarchitecture and SIMD in-
struction set enhancements to a RISC superscalar processor for exploiting parallelism
in geometry processing for 3D computer graphics.
Our results show that 3D geometry processing has inherent parallelism. Adding SIMD
operations improves performance from 8% to 28% on a 4-issue dynamically scheduled
processor that can issue at most 2 floating-point operations. In comparison, an 8-issue
processor, ignoring cycle time effects, can achieve 20% to 60% performance improve-
ment over a 4-issue. If processor cycle time scales with the number of ports to the regis-
ter file, then doubling only the floating-point issue width of a 4-issue processor with
SIMD instructions gives the best performance among the architectural configurations
that we examine (the most aggressive configuration is an 8-issue processor with SIMD
instructions).

Index terms: 3D graphics, geometry pipeline, superscalar processors, SIMD instructions, paired-

single instructions

 Chia-Lin Yang,1 Barton Sano,2 and Alvin R. Lebeck1

 1Department of Computer Science 2Western Research Lab
 Duke University Compaq Computer Corporation
 Durham, North Carolina 27708 USA sano@pa.dec.com
 {yangc, alvy}@cs.duke.edu

This work supported in part by NSF CAREER Award MIP-97-02547, DARPA Grant DABT63-98-1-0001, NSF Grants
CDA-97-2637 and CDA-95-12356, Duke University, and an equipment donation through Intel corporation's Technology
for Education 2000 Program. The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the U.S. Gov-
ernment

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Exploiting Parallelism in Geometry Processing with General Purpose
Processors and Floating-Point SIMD Instructions

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

1 Introduction
The increasing number of multi-media applications produces a commensurate increase in demand

for cost-effective multi-media processing [11]. Traditionally, media processing was implemented in

expensive custom hardware specialized for specific applications (e.g., speech, video, and graphics).

Advances in conventional microprocessor design now permit offloading some functionality to a gen-

eral-purpose processor, possibly sacrificing performance in return for reduced cost. The key is to

minimize this performance degradation, potentially by adding architectural support for media process-

ing.

Many current microprocessors have Single Instruction Multiple Data (SIMD) type instructions to

accelerate audio, video and 2D image processing, such as Intel MMX [16], Sun UltraSPARC VIS [10]

and HP PA-RISC [8]. This type of SIMD instruction operates only on integer data. Today, several

processor vendors, such MIPS Technology Inc. [15], Cyrix, IDT, AMD [2], Intel [7], and Motorola

[19] are in various stages of incorporating floating-point SIMD instructions to speedup geometry proc-

essing for three dimensional (3D) graphics.

Typically, 3D graphics processing is a 3-stage pipeline [5]: 1) database traversal, 2) geometry com-

putation, and 3) rasterization. Display models representing graphics scenes are generally stored in a

database that must be traversed (stage 1) to extract the appropriate information for display, such as the

drawing primitive (e.g., line or triangle), lighting models, etc. The information is then passed to the

geometry subsystem (stage 2), which is responsible for transforming 3D coordinates to 2D coordi-

nates. Finally, the rasterization stage (stage 3) converts transformed primitives into pixel values and

stores them in the frame buffer for display.

In high-end graphics systems [17][18], the host CPU is only responsible for database traversal, and

custom hardware is used for geometry processing and rasterization. The cost of building these high-

 3

end systems is generally too high for the mass market. To reduce cost, the host CPU could execute

some, or all, of the graphics pipeline. This paper focuses specifically on host CPU execution of

geometry computation using a single dynamically scheduled superscalar microprocessor.

Geometry computation is floating-point intensive. Vertex coordinates, color and transformation ma-

trices are stored in single-precision floating-point format. Previous studies [1] have shown that 90

floating-point arithmetic operations are required to process a single vertex. Current superscalar proces-

sors can issue 2 floating-point operations per cycle. The above analysis implies that a 500 MHz proc-

essor could theoretically process 11 million vertices per second. This value is close to the computing

capability of today’s specialized hardware [18]. However, because of instruction scheduling and re-

source limitations, a general purpose processor is unlikely to achieve this theoretical rate. The goal of

this paper is to examine the performance of geometry processing on a general purpose processor and

evaluate the benefits of recently proposed instruction set enhancements.

Geometry processing is an inherently parallel task, since each object vertex can be processed inde-

pendently. Dynamically scheduled processors can exploit this parallelism by looking ahead in the in-

struction stream to identify and execute the operations associated with different vertices. Recall that

vertex computations require only 32-bit floating-point values. Since most modern microprocessors

have 64-bit floating-point registers, geometry calculations using 32-bit operands are utilizing only half

the floating -point datapath (registers, functional units, and busses). Another way to exploit this paral-

lelism is using SIMD type instructions to perform operations on multiple vertices in one instruc-

tion called paired-single instructions. Paired-single instructions fully utilize the 64-bit datapath by

performing two independent 32-bit operations, each using half the datapath.

As mentioned above, most processor vendors are incorporating paired-single instructions. AMD’s

3DNow! Technology [2] is currently available. However, we are unaware of any published quantita-

 4

tive evaluation of their performance using full graphics applications. Parthasarathy et al. performs de-

tailed performance evaluation for Sun VIS instruction set but they focus only on image and video

processing applications [23]. In this paper, we simulate Viewperf [20], an industry standard bench-

mark suite, on an out-of-order superscalar processor both with and without paired-single instructions.

We modified the geometry computation routines in MESA [13] (a public domain implementation of

OpenGL [24]) to utilize paired-single instructions. We first analyze the effects of increasing the re-

sources available in a conventional processor. This is followed by a comparison to paired-single exe-

cution, both with and without clock cycle time effects.

The contributions of this paper are as follows:

1. Although geometry processing presents substantial parallelism, we discover that certain aspects of

application implementations can significantly impact the available parallelism that can be ex-

ploited by a superscalar processor. In the best case, an 8-way issue processor can achieve 60%

performance improvement over a 4-way with a 64-entry dispatch queue and 128 registers, but for

certain benchmarks, the performance only increases by 20%. Furthermore, if the CPU cycle time

scales with the number of ports to the register file, the performance improvement is less than 5%

for all the benchmarks.

2. We analyze the effect of adding paired-single instructions on a set of industry standard 3D graph-

ics benchmarks instead of small kernels. We found that the performance improvement from pair-

ing up single-precision floating-point operations ranges from 8% to 28% on a 4-way issue proces-

sor that can issue at most 2 floating-point operations per cycle.

3. We quantify the benefits of paired-single instructions over increasing only the floating-point issue

width in superscalar processors. Our results indicate that adding paired-single instructions to 4-

issue processor performs within 7% of doubling the floating-point issue width. For certain bench-

 5

marks, the former even outperforms the latter. The performance advantage of paired-single instruc-

tions increases when considering the clock cycle time effect.

The remainder of this paper is organized as follows. Section 2 provides background information on

geometry computation, and presents benchmark characteristics. We review paired-single instructions

in Section 3. Section 4 presents our simulation infrastructure, and Section 5 presents our simulation

results. In Section 6, we compare the performance achieved by a general processor v.s. a high-end

graphics system. Finally, Section 7 concludes the paper.

2 Background
To understand the architectural aspects of geometry processing, we first describe the six stages of

the 3D geometry pipeline. Then we characterize a set of OpenGL performance evaluation benchmarks

(Viewperf [20]).

2.1 The Geometry Pipeline
3D applications usually use polygonal primitives (e.g., triangles) to represent objects in an applica-

tion database. These primitives are represented in their own coordinate space. How those objects are

displayed on the screen is determined by the following factors: the positions and orientations of ob-

jects in the scene, the viewpoint, the surface properties of objects, and the light sources. Geometry

processing transforms primitives from the object coordinates to the screen coordinates, and calculates

the color for each vertex according to the object surface and light properties. Geometry processing

only operates on vertices. The rasterization stage takes those transformed vertices and fills in the inte-

riors of polygons.

Similar to the overall 3D computation, geometry processing can be divided into a set of pipeline

stages. In a typical geometry pipeline, there are six stages as shown in Figure 1:

 6

View and model transformation: graphics primitives (e.g., line, triangle or polygon) are trans-

formed to the viewer’s frame of reference. Transformations involve vector matrix multiplication on

either 1×4, 4×4 or 1×3, 3×3 vector and matrix sizes.

Lighting: the light position, color and material properties are used to calculate the object color.

Projection transformation: this stage determines how objects are projected to the screen. This

again requires multiplication of a 1×4 vector and a 4×4 matrix.

Clipping: objects are clipped to the viewable area to avoid unnecessary rendering.

Division by w: the x, y, z components of each vertex are divided by its w component. Geometry

processing usually works in the homogenous coordinate system, where all the vertices are represented

with four coordinates (x, y, z, w). With coordinate positions expressed in the homogenous form, the

transformations (i.e., viewing, modeling and projection transformation) can be simplified and per-

formed as matrix multiplications [6]. The w component is initially set to one. After applying the pro-

jection transformation, it may not equal to one. We then perform the division to get (x/w, y/w, z/w),

which are the Cartesian coordinates of the homogeneous point.

Mapping vertex coordinates to screen coordinates: vertices are mapped to the screen coordinates.

Note that lighting (stage 2) is optional. For those applications that only perform wireframe render-

ing or implement a global illumination algorithm (i.e., the color of each vertex is precomputed), the

lighting stage is unnecessary. However, the other 5 stages are mandatory.

. The remainder of this section begins this investigation by characterizing a set of 3D applications.

 Viewing &

Modeling
Transform

Lighting Projection
Transform

Clipping Division
by w

Figure 1: 3D geometry pipeline.

Mapping
Vertex

 7

2.2 Benchmark Characterization
To characterize the architectural aspects of 3D applications, we used ATOM’s pixie tool [3] to ana-

lyze the Viewperf OpenGL performance evaluation benchmarks [20]. OpenGL is an API for graphics

hardware initially defined by Silicon Graphics [26]. We use Mesa [13], a public-domain software im-

plementation of the OpenGL specification, in this study. Mesa contains a complete software imple-

mentation of the rendering pipeline, allowing OpenGL applications to execute on machines without

specialized graphics hardware.

The Viewperf suite contains five different graphic model sets including CAID (Computer Aided In-

dustrial Design) and digital content creation models. Each set has seven to ten tests using different

OpenGL primitives, lighting models and rendering parameters. In this section, we characterize three

different aspects of the Viewperf benchmark set: 1) the dynamic instruction distribution, 2) the aver-

age number of vertices per glBegin/glEnd pair and 3) the amount of execution time spent in the vari-

ous geometry pipeline stages.

Dynamic Instruction Distribution

The dynamic instruction distribution of the Viewperf benchmarks (average over the five different

benchmarks) indicates that 42.5% of all of the instructions executed by the geometry routines involve

single-precision floating- point instructions. A significant amount of integer instructions are needed for

executing mode changes (e.g. using different texture file or changing the lighting model). The four

most frequently executed instructions are load (13.4%), multiply (12.2%), add (9.7%) and store (6.8%)

for single-precision floating-point data. Most of the load instructions come from loading the transform

matrices and vertices. Similarly, the store instructions are used to save the processed vertices back to

memory. The multiply and add instructions are primarily from the transform and lighting operations.

 8

Average Number of Vertices per glBegin/glEnd Pair

OpenGL implements ten drawing primitives (e.g., GL_LINES, GL_TRIANGLES and

GL_POLYGON). To draw an object, a set of vertices are bracketed between a call to glBegin() and

glEnd(). The argument passed to glBegin() determines which geometric primitive is constructed from

the vertices. 3D surfaces are usually broken down into triangles. The most efficient way for drawing a

series of triangles that are connected to each other is using the GL_TRIANGLE_STRIP primitive (as

shown in Figure 2). However, some 3D content creation applications do not store objects in a format

amenable to this drawing method. In this case, the OpenGL viewing applications may have to invoke

a drawing primitive for each triangle. Thus, the number of vertices per glBegin/glEnd will be small.

Profiling results show that the average number of vertices per glBegin/glEnd pair varies across the

Viewperf benchmark. Awadvs uses the GL_POLYGON primitive and has only 3.4 vertices on aver-

age, while some of the CDRS tests use the GL_TRIANGLE_STRIP primitive and have up to 400 ver-

tices per glBegin/glEnd pair.

glBegin (GL_TRIANGLE_STRIP)
 glVertex3fv(x0,y0,z0); /* coordinates for vertex v0*/
 glVertex3fv(x1,y1,z1); /* coordinates for vertex v1*/
 glVertex3fv(x2,y2,z2); /* coordinates for vertex v2*/
 glVertex3fv(x3,y3,z3); /* coordinates for vertex v3*/
 glVertex3fv(x4,y4,z4); /* coordinates for vertex v4*/

glEnd();

Figure 2: Example of using GL_TRIANGLE_STRIP primitive.

v0 v2 v4

v1 v3

 9

There are four ways to exploit parallelism in geometry computation: 1) processing individual com-

ponents of a vertex (e.g., coordinate (x, y, z, w) or color (R, G, B, A)), 2) processing multiple vertices

of each primitive within the same pipeline stage, 3) processing vertices of each primitive in different

pipeline stages and 4) processing different primitives. In the MESA implementation, the computations

for vertices of each primitive (i.e., those vertices bracketed by glBegin/glEnd) in the same pipeline

stage are performed in loops. Several internal library routines are executed before starting the next

stage or a new set of geometry drawings.

A superscalar processor that can only exploit ILP from instructions stored in the dispatch queue is

more likely to exploit the parallelism in the first two scenarios. A small number of vertices between

glBegin/glEnd indicates that fewer independent floating-point instructions can be issued close in time.

Thus, we do not expect benchmarks with very small number of vertices on average per glBegin/glEnd

pair to achieve IPC as high as benchmarks with a large number of vertices, unless a very large dispatch

queue is used.

Execution Time Distribution of the Geometry Pipeline

We divide the execution time for the geometry pipeline into five portions:

 Light (gl_color_shade_vertices):1 This portion corresponds to the lighting stage, which calculates

the color for each vertex.

XformV (gl_xform_normals_4fv): This portion includes the vertex transformation of both the

viewing/modeling and projection transform stages. It performs multiplication of a matrix by a vector.

XformN (gl_xform_normals_3fv): This portion includes the normal vector transformation in the

viewing/modeling transform stages.

1 The corresponding routine name in the Mesa implementation is listed in parenthesis.

 10

Div by w/Map (gl_transform_vb_part2): This portion includes the computation of div by w and

mapping vertex stages. It selects the appropriate lighting routine (e.g. line, polygon, and type of shad-

ing) and calls the fog, texture, and clipping routines before finally projecting the primitives to screen

coordinates.

Other: This portion includes the clipping stage and the library routines executed between different

pipeline stages and drawing primitives.

As shown in Figure 3, Light and XformV are the two portions where geometry processing spends

the most time. Note that the Light benchmark gets its name because each vertex color is pre-computed

using a global illumination algorithm, therefore, it does not actually execute the lighting functions.

Awadvs spends almost 15% of the execution time in the routines executed between different pipeline

stages and drawing primitives as indicated by Other in Figure 3. This is significantly higher than the

Figure 3– Execution time distribution in the MESA geometry pipeline.

0

2 5

5 0

7 5

1 0 0

D X D V R L i g h t C D R S A W

B e n c h m a r k

%
 E

xe
cu

tio
n

Ti
m

e
O t h e r

Xfo rm N

P ro jec t /M a p

Xfo rm V

L i g h t

 11

other benchmarks. Awadvs has very small average number of vertices (3.4) per glBegin/glEnd pair,

which implies that switching between pipeline stages and glBegin/glEnd pairs occurs more frequently.

3 SIMD Instruction Extensions
From the benchmark profiling discussed in the previous section, we observe that most of the arith-

metic floating-point instructions are multiply and add, and these operations are all performed on sin-

gle-precision values (32-bit). Thus, the SIMD type instructions that perform multiply or add opera-

tions on two single-precision floating -point values could fully utilize the 64-bit floating point registers

in current superscalar processors and potentially eliminate a significant number of instructions. The

MIPS V ISA Extension [14] proposes adding a new data type called paired-single, which packs two

 A B C D

 x x

 A x C B x D

Figure 4: Operation of paired-single multiply.

Instruction Format Latency(cycle)
LDPS dest, index(base) 2
STPS src, index(base) 2
PMUL src1, src2, dest 4
PADD src1, src2, dest 4
PSUB src1, src2, dest 4
CVT.S.PL/U src, dest 1
CVT.PS.S src1,src2,dest 1
ADD_HL src, dest 4
LDS_HL dest index(base) 2

 Table 1: Instruction format and latency. All instructions are fully pipelined.

 12

single precision floating-point values into one 64-bit floating-point register. The multiply and addition

operations are performed on the paired-single data in the manner illustrated in Figure 4.

The SIMD instruction extensions that we consider in this paper are based on the MIPS V ISA Ex-

tensions [15]. The instruction formats and latency assumptions are summarized in Table 1. The LDPS

and STPS instructions load/store a paired-single value (64 bits) from memory ignoring alignment. The

PMUL (PADD/PSUB) instruction performs multiplication (addition/subtraction) of paired-single val-

ues. These paired-single instructions have 4 cycle latency and are fully pipelined. CVT.S.PL

(CVT.S.PU) is used to extract the lower(higher) part of a paired-single value, and CVT.PS.S is used to

create a paired-single value from two single-precision values.

The ADD_HL and LDS_HL instructions are not present in the MIPS V instruction extensions.

ADD_HL adds the higher and lower parts of a paired-single value together. One example to show the

usefulness of the ADD_HL instructions is the inner product operation commonly seen in the lighting

stage. The inner product of two vectors (x1, y1, z1) and (x2, y2, z2) is x1*x2 + y1*y2 + z1*z2. The

first two multiplication operations can be paired up. But the results must be added together. Without

the ADD_HL instruction, we need to use the CVT.S.PU or CVT.S.PL instruction to extract the higher

or lower half to a separate register before performing the addition.

 The LDS_HL instruction duplicates a single-precision value to form a paired-single value. We use

the computation of transforming normal vectors (multiplication of a 1x3 vector and 3x3 matrix) to il-

lustrate the use of this instruction. The pseudo C codes are as follows (u and m represent an array of

vertex coordinates and the transformation matrix respectively):

 13

To exploit the parallelism across two vertices, we unroll the loops once and reorder instructions

such that the independent floating-point operations can be easily paired up. The modified version is

listed below:

To perform the paired-single multiplication over vertices i and i+1, we need to form paired-single

values for each element of the transformation matrix (i.e., (m[0,0],m[0,0]), (m[1,0],m[1,0])… ..). The

instruction LDS_HL is used for this purpose. Without the LDS_HL instruction, it will require one load

and CVT.PS.S instruction to form each pair.

4 Experimental Methodology
In this section, we describe the simulation environment and processor models considered in this pa-

per.

4.1 Simulation Framework

for (i=0;i< number of vertices;i=i+2)
{
 q[i][0] = u[i][0] * m[0,0] + u[i][1] * m[1,0] + u[i][2] * m[2,0];
 q[i+1][0] = u[i+1][0] * m[0,0] + u[i+1][1] * m[1,0] + u[i+1][2] * m[2,0];
 q[i][0] = u[i][0] * m[0,1] + u[i][1] * m[1,1] + u[i][2] * m[2,1];
 q[i+1][0] = u[i+1][0] * m[0,1] + u[i+1][1] * m[1,1] + u[i+1][2] * m[2,1];
 q[i][0] = u[i][0] * m[0,2] + u[i][1] * m[1,2] + u[i][2] * m[2,2];
 q[i+1][0] = u[i+1][0] * m[0,2] + u[i+1][1] * m[1,2] + u[i+1][2] * m[2,2];
}

for (i=0;i< number of vertices;i++)
{ q[i][0] =u[i][0] * m[0,0]+u[i][1] * m[1,0]+u[i][2] * m[2,0];
 q[i][1] =u[i][0] * m[0,1]+u[i][1] * m[1,1]+u[i][2] * m[2,1];
 q[i][2] =u[i][0] * m[0,2]+u[i][1] * m[1,2]+u[i][2] * m[2,2];
}

 14

Our simulation environment (shown in Figure 5) uses ATOM [25] to perform execution-driven

simulation. This simulation framework consists of two components. The first component is MESA, a

software implementation of the OpenGL specification. A shared library that contains all of the rou-

tines associated with geometry computation is separated from the complete MESA implementation.

ATOM allows us to instrument only this geometry library and the application itself. In this way, we

can simulate the environment where the host CPU is responsible for database traversal and geometry

processing, while specialized hardware is used to process the remaining tasks in the graphics pipeline.

We modified four routines, which account for 75% to 90% of the total execution time for all the

benchmarks we ran, to incorporate paired-single instructions. These routines correspond to the Light,

XformV, XformN and Div by w/Map as described in Section 2.2.

The second component of our simulation framework is an ATOM-based simulator that models an

out-of-order superscalar processor with speculative execution [4], whose instruction set is based on the

DEC Alpha processor [24].

Figure 5: Simulation framework.
libGEOM.so is a shared library including all the routines associated with the geometry
processing. We only instrument code in the highlighted boxes.

Data Sets: CDRS, Awadvs, DX

 OpenGL (MESA-2.2)

SuperScalar Simu-
lator

Simulation Re-
sults

libGEOM.so : Two versions: Pair vs. Non_Pair

Viewperf

 15

To simulate the new instructions, we place innocuous (but unique) “marker” instructions where we

want to replace the original code with new instructions. The operands of the marker instructions indi-

cate different instruction types (e.g., LDPS, MULPS, etc). The appropriate operands of the new in-

structions are passed through the next 2 or 3 marker instructions, depending on the number of the op-

erands required. In this way, instruction dependencies are accurately maintained. The simulator de-

codes each instruction and takes appropriate actions to simulate the paired-single execution when it

encounters the marker instruction.

4.2 Processor Models
The baseline processor model studied in this paper is a 4-way, out-of-order issue superscalar proc-

essor. The issue rules and the functional unit latencies are summarized in Table 2 and Table 3. The

maximum number of instructions that can be inserted into the dispatch queue or committed is equal to

the issue width. When an instruction is inserted into the dispatch queue, its destination register is

mapped to a physical register and a reorder buffer entry is allocated. Once an instruction is issued, it is

removed from the dispatch queue, but the register mapping remains active until this instruction com-

mits in program order from the reorder buffer [5]. Note, the reorder buffer size is determined by the

number of physical registers. We implement a precise exception model, so an instruction can only

commit when all the instructions preceding it in program order have completed. We assume a perfect

 # of Integer Functional Units # of Floating-Point Functional Units Processor
Model

 Total
 Issue Width Issue

Limit
loads&
stores

Control
flow

other Issue
Limit

mul div sqrt other

Base 4 4 2 2 4 2 1 1 1 1
2xBase 8 8 4 4 8 4 2 1 1 2
4xBase 16 16 8 8 16 8 4 1 1 4
2xFP 6 4 2 2 4 4 2 1 1 2
4xFP 10 4 2 2 4 8 4 1 1 4

 Table 2: Instruction issue rules (ready instructions are issued in fetch order).

 16

memory system (i.e., every memory reference and instruction fetch hit in the L1 cache)2, a unified dis-

patch queue and separate register files for the integer and floating-point functional units. Speculative

execution is enabled by implementing the branch prediction scheme proposed by McFarling [11] and

precise exceptions are imposed.

To investigate the effect of a wider issue superscalar processor on the performance of geometry

processing, we examine the following 4 models: 2xBase, 4xBase, 2xFP and 4xFP as listed in Table 2.

The 2xBase and 4xBase models are 8-way and 16-way issue processors respectively. The issue rules

are similar to the Base model. However, for most instruction types, two or four times the number can

be issued in one cycle. The exceptions are division and square root, which remain the same as the

baseline model. The reason for not doubling these two functional units is for a fair performance com-

parison between 2xFP and a baseline processor with the paired-single instruction since the paired-

single operations are not implemented for division and square root. For the 2xFP (4xFP) configura-

tions, we double (quadruple) only the floating-point functional units and issue width. The number of

2 The miss rates for a 64-K, 2-way set associative D-cache and 8-K direct-mapped I-cache are both less than 2% for most
of the benchmarks. Thus, we assume a perfect memory system to reduce simulation time.

Instruction Type latency pipeline
multiplication 6 yes
load 2 yes
store 1 yes
control flow 1 yes

Integer

other 1 yes
32-bit div 8 no
64-bit div 16 no
square root 33 no

Floating-
point

other 4 yes

 Table 3: Instruction latencies.

 17

the integer functional units remains the same as the baseline processor. Then total issue width be-

comes 6 and 10 for 2xFP and 4xFP respectively.

5 Simulation Results
We use CDRS, Awadvs and DX from Viewperf as our benchmarks due to lengthy simulation time.

Each of these benchmarks is composed of several tests. For space reasons, we only present test1 from

each benchmark. These three tests are chosen because they are representative of all the tests (the com-

plete simulation results can be found in [27]). CDRS test1 is a wireframe rendering application and

both DX and Awadvs have at least one light source. Awadvs has only 3.4 vertices on average per

glBegin/glEnd, while CDRS and DX test1 have 30 and 96 vertices respectively.

We present our simulation results in three parts. First, we investigate how well conventional super-

scalar processors exploit the parallelism in geometry processing. Then we present the performance of

paired-single execution on different processor models. Finally, we compare the relative performance

of different processors with and without paired-single instructions accounting for potential increases in

CPU clock cycle time.

5.1 Scaling a Conventional Design
The dispatch queue and register file sizes have significant impact on how much ILP can be ex-

ploited in a superscalar processor. A wider issue machine usually requires a larger dispatch queue and

register file. In order to evaluate the potential performance improvement achieved by increasing the

issue width, the superscalar simulator is first configured with 2048 floating-point and 2048 integer reg-

isters. With such a large register file, the CPU never stalls due to a lack of free registers. We then vary

 18

the dispatch queue size from 64 to 256. The commit IPC3 for the various processor models is shown in

Figure 6.

CDRS test1 has the highest IPC for all the configurations among all the benchmarks we ran. With

the largest dispatch queue (256), the commit IPC of 2xBase (8-way issue) is 6.5, almost twice that of

Base (3.4). Doubling only the floating-point issue width (2xFP) achieves 36% performance improve-

ment. However, quadrupling only the floating-point issue width (4xFP) does not perform any better

than the 2xFP because the loads that read the source operands for the floating-point operations become

the bottleneck. The commit IPC of the 4xBase processor (16-way issue) is 9.7, about 2.7 times that of

Base.

CDRS

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
om

m
it

IP
C

Figure 6: The commit IPC of various processor
models with varying dispatch queue size.
(4xBase* represents the issue IPC of the 4xBase processor)

Awadvs

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
om

m
it

IP
C

Base
2xBase
4xBase
4xBase*
2xFP
4xFP

DX

0.00

2.00

4.00

6.00

8.00

10.00

12.00

32 64 128 256
Dispatch Queue Size

C
om

m
it

IP
C

 19

The continuous growth of commit IPC as the issue width increases indicates that a lot of parallelism

does exist in geometry processing for this benchmark. Note that the commit IPC grows with larger

dispatch queue size, but the degree of improvement diminishes after a certain size. This point occurs

around a dispatch queue size of 32 for the Base model, 64 for both the 2xBase and 2xFP, and 128 for

4xBase.

For DX test1, the commit IPC of the processor models smaller than 4xBase are comparable to

CDRS test1, except for 2xFP, which only achieves 13% performance improvement. The ratio of float-

ing-point arithmetic operations to load instructions is 1:1 for DX test1 and 2:1 for CDRS test1. Thus,

increasing the floating-point issue width alone does not improve the performance of DX as much as

that of CDRS. For DX test1, the commit IPC of 4xBase is 8.48, lower than CDRS test1 (9.7). The

lower commit IPC is due to more mispredicted branches. The issue IPC for 4xBase is plotted in Figure

6 to illustrate this scenario. Issued instructions can not commit if a preceding branch in the program

order was mispredicted. DX test1 has a larger difference between the issue and commit IPC than

CDRS test1. This is because the lighting computation has more conditional branches than the trans-

form, thus the performance of a light-intensive applications like DX test1, is more subject to branch

prediction accuracy than a wireframe rendering application like CDRS test1.

 Awadvs test1 has the lowest IPC, primarily because of its small number of vertices (3.4) per

glBegin/glEnd. Observe that the commit IPC increases linearly with the dispatch queue size, hence, for

this benchmark, the dispatch queue is still the bottleneck even when it has 256 entries. Because the

4xFP processor performs equal to 2xFP for all the benchmarks we ran, we no longer consider this con-

figuration in the following analysis.

3 The commit IPC is the ratio of the number of instructions that commit to the total execution cycles.

 20

To evaluate how the register file size affects performance, we keep the dispatch queue size constant

(64 entries for Base, 2xFP and 2xBase and 128 entries for 4xBase) while varying the register file size

from 64 to 256. The results are shown in Figure 7. The 2048 entry register file size is shown as a refer-

ence point. Using more than 128 registers for Base, 2xFP and 2xBase and 256 registers for 4xBase

does not improve performance significantly.

In the next section, we analyze the benefit of the paired-single execution on the Base, 2xFP and

2xBase processors. 4xBase is a 16-way issue machine and requires a 128-entry dispatch queue and

256 registers. This configuration is too large to achieve a practical implementation by simply scaling

CDRS

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048
Register File Size

C
om

m
it

IP
C

DX

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048
Register File Size

C
om

m
it

IP
C

Figure 7: The commit IPC for various processor
models with varying register file size.

Awadvs

0.00

2.00

4.00

6.00

8.00

10.00

64 128 256 2048
Register File Size

C
om

m
it

IP
C

Base

2xFP

2xBase

4xBase

 21

 CDRS AW
 Inst count Inst count Inst

type Orig Pair
Reduction
% Orig Pair

Reduction
%

add 7645898 3965927 48 18884890 11315926 40
sub 5141 5141 0 2195114 2073434 6
mul 10760847 5666089 47 29192094 18531619 37
ld 8052969 7625453 5 43112841 36494561 15
sts 3936594 2521807 36 16402547 12928214 21
cvt.s.pl/u 0 0 - 0 65905 -
cvt.ps.s 0 0 - 0 1111734 -
other 31413092 31413092 0 139816628 139816628 0
total 61809400 51192400 17 247409000 220068000 11
 DX

 Inst count Inst
type Orig Pair

Reduction
%

add 7577899 4293152 43
sub 4879 4879 0
mul 11572039 7058061 39
ld 21965717 19932776 9
sts 10809407 9211454 15
cvt.s.pl/u 0 93461 -
cvt.ps.s 0 80171 -
other 109218938 109218938 0
total 161144000 149823000 7

the Base configuration, hence we do not consider it further.

5.2 The Performance Improvement of Paired-Single Execution
Adding paired-single instructions not only reduces the number of single-precision floating-point add

subtraction, and multiply instructions, it can also eliminate load/store instructions if the LDPS instruc-

tion can be used to load two single-precision floating-point values together. Table 4 shows the instruc-

tion distribution for both non-paired and paired-single execution. The number of multiply and add in-

structions is reduced by approximately 50% for CDRS test1, 40% for DX and Awadvs test1. The

number of load and store instructions are reduced by 5% to 15% and 15% to 36%, respectively. Recall

that paired-execution requires extra instructions (CVT.S.PL/U and CVT.PS.S) to create a paired-single

value or extract the lower (higher) part of a paired-single value. However, for the benchmarks we

tested, they are negligible. They account for less than 1% of all instructions for DX and Awadvs test1,

and CDRS test1 does not use these instructions. All paired-single values are created using the LDPS

Table 4: Instruction distribution for non-
paired and paired-single execution

 22

instruction. After taking into account these extra instructions, the overall instruction reduction is 17%

for CDRS, 11% for Awadvs and 7% for DX.

 Reducing the number of instructions has two potential advantages. First, combining two floating-

point operations together effectively enables the CPU to look further ahead to find independent in-

structions to issue. In other words, adding paired-single instructions could achieve the same effect as

increasing the dispatch queue size. Second, it can improve the instruction cache performance. We did

not analyze this due to the low instruction cache miss rate for the benchmarks we ran. We can expect

higher performance impact on an embedded system, which is usually configured with a smaller in-

struction cache.

We evaluate the performance improvement of paired-single execution on the Base, 2xFP and

2xBase models. The simulation results are shown in Figure 8. The y-axis shows the speedup of paired-

single over non-paired execution. CDRS test1 has the best performance improvement, 28% on the

Base model, 13% on the 2FP and 20% on the 2xBase. DX test1 has the smallest performance im-

provement since it only reduces the number of instructions by 7%. Note that our speedups may not be

Figure 8: Performance improvement of paired-execution.

1.00

1.10

1.20

1.30

Base 2xFP 2xBase

Processor models

S
pe

ed
up

CDRS

Awadvs

DX

 23

optimal. First, there are some routines required for geometry processing that we have not converted to

use paired-single instructions. However the impact on performance of these procedures should not be

substantial. Second, we have not optimized the instruction schedule of the paired-single sequence.

Different computation sequences incur different register allocation and instruction scheduling, and

analyzing these effects requires further research.

5.3 Paired-Single vs. Wider Issue
In this section, we discuss the relative performance of various processor models with and without

the paired-single instruction set. First, we compare relative performance assuming that CPU cycle time

remains the same for all processor models. Then, we investigate how changes in cycle time affect

overall performance. All the processor models are configured with a 64-entry dispatch queue and 128

registers. These numbers are chosen such that the performance of an 8-way issue (2xBase) processor

is not constrained too much by the dispatch queue and register file and the processor configuration is

within a reasonable range.

The simulation results, assuming no changes in CPU cycle time, are shown in Figure 9. The y-axis

is the speedup of the various processor models over the Base configuration. Adding paired-single in-

Figure 9: Relative speedup of various processor models over the
Base with a dispatch queue of 64 entries and 128 registers.

1 .0 0
1 .1 0
1 .2 0
1 .3 0
1 .4 0
1 .5 0
1 .6 0
1 .7 0
1 .8 0
1 .9 0
2 .0 0

C D R S A w a d vs D X
B e n c h m a r k

S
pe

ed
up

B a s e + Pa ir
2 x F P
2 x F P + P a ir
2 x B a s e
2 x B a s e + Pa ir

 24

structions effectively doubles the floating-point issue width so a Base processor with the paired-single

instruction extension can potentially achieve the same floating-point processing capability as 2xFP.

Our results show that Base+Pair performs within 7% of 2xFP for CDRS and DX and it even outper-

forms 2xFP for Awadvs test1. Besides the advantage of doubling floating-point processing rate, add-

ing paired-single instructions can better utilize the dispatch queue, as mentioned in the previous sec-

tion. For an application where the dispatch queue is the performance bottleneck, like Awadvs test1,

Base+Pair has a performance advantage over 2xFP. An 8-way issue processor using paired-single in-

structions (2xBase+Pair) can achieve 1.9 speedup over Base for CDRS test1.

5.3.1 Effects on Clock Cycle Time

Previous studies have shown that increasing issue width has significant impact on the processor cy-

cle time [4][21]. Palacharla et al. [21] studies how the instruction dispatch, issue logic and data bypass

delay varies with different issue width. Their results show that the issue logic determines the critical

path delay in a 0.35um technology for both 4-way and 8-way issue processors (not considering cache

and register files) and the wakeup logic delay (part of issue logic) grows linearly with the issue width.

Farkas et al. [4] shows that the issue width determines the number of read/write ports to a register file,

and thus can have significant impact on the cycle time.

 25

The percentage increase of issue logic delay and register file access time over the Base model are

summarized in Table 5. We use a modified version of CACTI [8] developed by K. Farkas in [4] to

generate the register file access time. Note that the floating-point register file of 2xFP has the same

number of read/write ports as the integer register file of Base. Thus, the register file access time of

2xFP is equal to the Base access time. The 2xBase model increases the register file cycle time by 50%

in a 0.35mu technology. We use the data provided in [22] to derive the issue logic delay. Linear ex-

trapolation is used to obtain the data for configurations not studied in that paper. The 2xFP model in-

creases the issue logic delay by 7%, and 2xBase by 14%.

We present simulation results in two sets. The first set assumes that issue logic (wakeup+selection)

determines the critical path delay (Figure 10) and the second set assumes that register file access does

(Figure 11). The y-axis is the speedup of the various processor models over the Base configuration. If

the issue logic determines critical path delay, Base+Pair outperforms 2xFP for all the benchmarks. The

performance difference is most substantial for Awadvs test1. The 2xBase+Pair processor model

achieves 1.6 speedup for CDRS test1. However, if the CPU cycle time is determined by the register

file access, increasing the issue width up to 8-way (2xBase) has negative impact on the performance

Figure 10: Relative performance of various
processor models assuming that the window
issue logic determines processor cycle time.

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

CDRS Awadvs DX
Benchmark

S
pe

ed
up

Base+Pair
2xFP
2xFP+Pair
2xBase
2xBase+Pair Processor

Model
Register File Ac-
cess Time(%)

Issue Logic
Delay (%)

2xFP 0 7%
2xBase 50% 14%

Table 5: Cycle time increase over the Base
model assuming 0.35um technology.

 26

for Awadvs and DX test1 as shown in Figure 11. Thus, 2FP+Pair becomes the best design choice,

achieving 1.5 speedup over the Base processor model for CDRS and 1.2 for both Awadvs and DX.

6 Performance Comparison: General Processors v.s. High-End Systems
To get an idea how well a general processor can execute the geometry pipeline, we compare the per-

formance of a general processor with high-end graphics systems in terms of number of frames per sec-

ond (the high end performance numbers are obtained from [19]). Note that the general processor per-

formance shown here is optimistic because we do not take into account some system components such

as TLB, instruction cache, CPU cycle time effects, etc. nor do we scale the technology for the custom

systems. Nonetheless, this comparison provides a general idea of the relative performance. This com-

parison is shown in Figure 12 for test1 from CDRS, Awadvs, and DX. We look at three general proc-

essor models, Base, Base+Pair and 2xBase+Pair assuming the same CPU clock cycle time. The high-

end systems that we compared to are HP Visualize fx6 for CDRS and SGI Infinite Reality for Awadvs

and DX. These two systems achieve the highest benchmark results.

Figure 11: Relative performance of various processor models as-
suming that the register file access delay determines processor
cycle time.

0 .6 0

0 .7 0

0 .8 0

0 .9 0

1 .0 0

1 .1 0

1 .2 0

1 .3 0

1 .4 0

1 .5 0

1 .6 0

C D R S A w a d vs D X

B e n c h m a r k

S
pe

ed
up

B a s e + P a ir
2 x F P
2 x F P + P a ir
2 x B a s e
2 x B a s e + P a ir

 27

Assuming a 500MHZ CPU clock rate, adding paired-single instructions on a 4-way issue processor

(Base+Pair) achieves performance close to the high-end system for CDRS test1 (250 v.s. 290 frames

per second). On an 8-way issue processor with paired-single instructions (2xBase+Pair), a general

processor can even outperform the high-end system. However, a general processor performs less

effectively for lighting-intensive applications like DX and Awadvs. For these two benchmarks, a

2xBase+Pair processor performs within 60% to 70% of the high-end system if CPU clock rate is

Awadvs Test1

0

10

20

30

40

50

60

 500MHZ 600MHZ 700MHZ 800MHZ

CPU Clock Rate

of

 fr
am

es
 p

er
 s

ec

SGI
Infinity
Reality

DX test1

0

10

20

30

40

50

 500MHZ 600MHZ 700MHZ 800MHZ

CPU Clock Rate

of

 fr
am

es
 p

er
 s

ec

SGI
Infinity
Reality

CDRS test1

0
50

100
150
200
250
300
350
400
450
500
550

 500MHZ 600MHZ 700MHZ 800MHZ

CPU Clock Rate

of

 fr
am

es
 p

er
 s

ec

2xBase+pair

Base+pair

Base

HP Visualize fx6

Figure 12: Performance comparison: general
processor v.s. high-end graphics systems

 28

500MHZ. To predict the future general processor performance as the process technology progresses,

we look at different CPU clock rates. For Awadvs test1, a 700MHZ, 2xBase+Pair processor can

achieve performance similar to the current high-end system. For DX test1, a 2xBase+Pair processor

still performs slightly lower than the current high-end system even the CPU clock rate reaches

800MHZ.

7 Conclusion
The widespread use of multi-media applications presents new design challenges for system design-

ers. In this paper, we examine the performance of geometry computation in three dimensional graph-

ics applications on future superscalar processors. Geometry computation is single-precision (32-bit)

floating-point intensive. We investigate the performance of recently proposed instructions that per-

form two independent 32-bit operations by packing the operands in 64-bit registers and exploiting the

existing 64-bit datapath. We use simulation to compare the performance of these new instructions,

called paired-single to that achieved by increasing a conventional out-of-order processor's issue-width.

From our simulation results, we found that paired-single instructions improve performance by up to

28% on a 4-issue processor and 20% on an 8-issue. These improvements are comparable to those

achieved by doubling only the floating-point issue width (2xFP). Our results reveal that 4xFP per-

forms equal to 2xFP because load instructions that read source operands of floating-point operations

become the bottleneck, and hence require a commensurate increase in the integer issue width.

We also found that the average number of vertices processed in each stage of the geometry pipeline

(i.e., vertices per glBegin/glEnd) is the primary factor determining performance on superscalar proces-

sors. For benchmarks that have a large number of vertices per glBegin/glEnd, the speedup of an 8-way

issue processor over a 4-way is 1.6 with a 64-entry dispatch queue and 128 registers. However, for

benchmarks that have a small average number of vertices per glBegin/glEnd, the speedup is only 1.2.

 29

Considering the impact of the issue width on the CPU cycle time, we looked at two pipeline stages

that can be on the critical timing path. One is the register file access and the other is the issue logic. If

the issue logic is on the critical path, an 8-way issue processor with paired-single instructions provides

20% to 65% performance improvement over a 4-way issue. However, if the register file access is on

the critical path, the processor cycle time increases by almost 50% going from 4-way to 8-way. Thus

doubling only the floating-point issue width of a 4-issue processor (2xFP) with paired-single instruc-

tions becomes the best design choice. The improvement over a 4-way issue processor ranges from

20% to 50%.

References
[1] K. Akeley, and T. Jermoluk. High-Performance Polygon Rendering. Computer Graphics, Volume 22, pages

239-249, August 1988.

[2] AMD 3DNow! Technology. http://www.amd.com/product/cpg/k623d/inside3d.html

[3] Digital Unix V4.0 Programmer’s Guide, pages 8-13.

[4] K. Farkas. Memory-system Design Considerations for Dynamically-scheduled Microprocessors. Ph.D. the-
sis, Department of Electrical and Computer Engineering, University of Toronto, January 1997.

[5] K. Farkas. N. Jouppi, and P. Chow. Register File Design Considerations in Dynamically Scheduled Proces-
sors. In Proceedings of the Second International Symposium on High Performance Computer Architecture,
pages, 1997.

[6] J. Foley, A. van Dam, S. Feiner, and J. Hughes. Computer Graphics – Principles and Practice. Addison-
Wesley, 1996.

[7] Intel MMX2. http://developer.intel.com/drg/news/katmai.html.

[8] N. Jouppi and S. Wilson. An enhanced access and cycle time model for on-chip caches. Technical Report
93.5, DEC Western Research Laboratory, July 1994.

[9] G. Kane. PA-RISC 2.0 Architecture. Prentice Hall PTR, 1996.

[10] L. Kohn, G. Maturana, M, Tremblay, A. Prabhu, and G. Zyner. Visual Instruction Set (VIS) in UltraS-
PARC™ . In Proceedings of COMPCON’95, pages 462-469, March 1995.

[11] R. Lee and M. Smith. Media Processing: A New Design Target. IEEE Micro, pages 6-9, August 1996.

[12] S. McFarling. Combing Branch Predictors. Digital Equipment Corporation Western Research Lab Techni-
cal Note TN-36, 1993

[13] MESA library. http://www.ssec.wisc.edu/~brianp/Mesa.html

[14] Microprocessor Forum, October 1997.

[15] MIPS V ISA Extension. http://www.sgi.com/MIPS/arch/ISA5/

 30

[16] MMX™ Technology. Intel Architecture MMX Technology Programmer’s Reference Manual. Intel Corpo-
ration, March 1996

[17] S. Molnar, J. Eyles, and J. Poulton. PixelFlow: High-Speed Rendering Using Image Composition. In Pro-
ceedings of SIGGRAPH ’92, pages 231-240, August 1992.

[18] J. Montrym, D. Baum, D. Dignam, and C. Migdal. InfiniteReality: A Real-Time Graphics System. In
Proceedings of SIGGRAPH ’97, pages 293-302, August 1997.

[19] Motorola AltiVec Technology. http://www.mot.com/SPS/PowerPC/AltiVec

[20] OpenGL Performance Benchmark – Viewperf. http://www.specbench.org/gpc/opc.static/vp50.html

[21] S. Palacharla, N. Jouppi, and J. Smith. Complexity –Effective SuperScalar Processors. In Proceedings of
the 24th Annual International Symposium on Computer Architecture, pages 206-218, 1997.

[22] S. Palacharla, N. Jouppi, and J. Smith. Quantifying the Complexity of Superscalar Processors. Technical
Report CS-TR-96-1328, University of Wisconsin-Madison, November 1996.

[23] P. Ranganathan, S. Adve, and N. Jouppi. Performance of Image and Video Processing with General-
Purpose Processors and Media ISA Extensions. In Proceedgins of the 26th Annual International Symposium
on Computer Architecture, pages 124-135, 1999.

[24] R. Sites. Alpha Architecture Reference Manual. Digital Press, 1992.

[25] A. Srivastava and A. Eustace. ATOM: A system for building customized program analysis tools. In Pro-
ceedings of the ACM SIGPLAN ’94 Conference on Programming Languages, March 1994.

[26] M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide. Addison-Wesley, 1997.

[27] C. Yang, B. Sano, and A. Lebeck. Exploiting Instruction Level Parallelism in Geometry Processing for
Three Dimensional Graphics Applications. Technical Report CS-1998-14, Computer Science Department,
Duke University, September 1998.

