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ABSTRACT 
 

 

The purpose of this thesis is to implement the CAF-Map method of geolocation in 

MATLAB®.  This method is a modification to the traditional Cross Ambiguity Function 

(CAF) based TDOA, FDOA geolocation where TDOA and FDOA are determined by 

locating the peak in the CAF plane and then the peak’s information is fed to a Least 

Squares like geolocation tool to determine the emitters geolocation.  This method omits 

the step in which the geolocation is determined with the “post processed” CAF peak 

information and instead maps the CAF surface directly to the earths surface. 

In this thesis, the traditional CAF based geolocation is explained and the 

limitations are discussed.  After this, the development of the CAF-Map method is 

explained and the algorithm is presented.  This thesis explores the use of the CAF-Map 

method as a geolocation alternative to the traditional TDOA, FDOA methods and 

demonstrates its ability to geolocate co-channel emitters. 
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EXECUTIVE SUMMARY 
 
 

The task of geolocating radio frequency emitters has many uses.  One of the most 

popular methods of geolocation is a combined Time Difference of Arrival (TDOA) and 

Frequency Difference of Arrival (FDOA) method utilizing the Cross Ambiguity Function 

(CAF) to generate the TDOA and FDOA values.  This method does not have a direct 

solution and requires that a numerical estimation method be employed to determine the 

emitter’s geolocation.  The method studied in this thesis eliminates the numerical 

estimation required by the traditional method and instead uses an alternative method that 

maps the TDOA and FDOA values generated by the CAF function directly to an X, Y 

coordinate value.  This method is called the CAF-Map method and was first explored by 

Mr. Al Buczek of the Naval Research Laboratory in Washington DC [1].   

The CAF-Map technique relies on the fundamental principle that primary 

correlation peaks for stationary emitters will be perfectly consistent for all CAF surfaces.  

In effect, all available CAF surfaces are mapped and combined in a common geographic 

frame which results in an image analogous to radio imaging.  The apparent position of 

spurious artifacts, secondary side lobes, and the left-right images will lack the 

consistency of the true peaks due to the varied geometry and dynamics of the collection 

platforms.  

In this method, the entire geographic coverage area’s TDOA(s) and FDOA(s) are 

computed to form a lookup table for each snapshot.  Then, each snapshot’s CAF is 

computed over the range of the expected TDOA(s) and FDOA(s).  Once the CAF(s) are 

computed for each snapshot, a geographic MAP can be formed using the lookup tables to 

“map” the CAF to the ground.  Summing each “map” over a common geographic area 

yields a RF energy map of the area for the collected frequency.  This method produces a 

geographic “image” of the geolocated energy rather than a traditional map showing an 

error ellipse for the emitter’s estimated location. Figure 1 shows the resulting image using 

the CAF-Map method of geolocation. 
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Figure 1: Example of the CAF-Map geolocation of two emitters 
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I. INTRODUCTION 

A. BACKGROUND 
 The topic of emitter geolocation is critical for both military and commercial 

applications.  To date, this work has been limited primarily on single emitters that are 

isolated or those that are dominant in the processing bandwidth.  Most military systems 

have focused on pulsed emitter geolocation using Time Difference Of Arrival (TDOA) 

techniques to determine the emitter’s location.  However, as RADAR systems become 

more advanced, the use of Continuous Wave (CW) waveforms is increasingly more 

prevalent.  This means that the traditional TDOA methods that rely on determining the 

pulses Time Of Arrival (TOA) are failing to satisfy user requirements.  To geolocate both 

modern CW RADAR systems as well as communications signals, different geolocation 

methods are required.  Most commonly, the geolocation of these CW emitters is 

performed using the combination of Time Difference Of Arrival (TDOA) and Frequency 

Difference Of Arrival (FDOA) measurements derived from the Cross Ambiguity 

Function (CAF).  The CAF requires the processing of simultaneous Pre-Detection (Pre-

D) collected signals of a single emitter from spatially separated collection positions to 

determine the TDOA and FDOA.   These TDOA and FDOA measurements are used to 

determine the emitter’s geolocation.   

 Difficulties arise in standard TDOA/FDOA geolocation processing when faced 

with the problem of separating emitters that are co-channel (occupying the same 

frequency) and geographically close to one another.  This problem can be best addressed 

as a problem of geo-spatial resolution rather than as a geolocation accuracy problem. 

B. OBJECTIVE 

 The main topic of this thesis is to study a technique put forth by Mr. Al Buczek of 

the Naval Research Laboratory during the early 1990’s that could improve the co-channel 

geo-spatial resolution of the CAF process.  This technique was never fully explored at the 

time due to the computational power required and other higher priority research topics.  

This method is called the CAF-MAP [1] where the CAF surface is mapped directly to the 

Earth’s surface.  This thesis will study this technique and produce MATLAB® 
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simulations that validate the technique as an alternative to the traditional TDOA/FDOA 

geolocation methods.  It is not the objective of this thesis to compare the results for these 

two techniques but only to illustrate the functionality of the CAF-Map method.   

C. RELATED WORK 
 There exist numerous papers, thesis, and dissertations on the topic of radio 

frequency emitter geolocation.   Most of works in common with this thesis are on the 

topic of the CAF technique. Stein’s paper [2] is considered to be the paramount paper on 

the subject of computing the CAF surface.  Other papers [4], [5], and [6] relate to the 

traditional method of TDOA and FDOA geolocation techniques.   

D. THESIS ORGANIZATION 
 This thesis is organized into six chapters.  Chapter II provides a short description 

of the Cross Ambiguity Function (CAF) with discussions on the performance of the 

TDOA and FDOA measurements and the error behavior of the measurements.  Chapter II 

also discusses the effects of the collectors’ geometry on the TDOA and FDOA generated 

by the CAF process.  Chapter III discusses the traditional TDOA and FDOA geolocation 

method including the Newton-Raphson method of estimation, the derivation of the 

Weighted Least Squares method, and a discussion of the 95% confidence ellipse.   The 

CAF-Map method is described in Chapter IV.  This chapter includes a description of the 

MATLAB® CAF-Map function and the generation of the TDOA and FDOA lookup 

tables.  Chapter IV also includes discussions on the computation of the CAF surface, the 

mapping of the CAF surface to the X, Y coordinate system, and a description of the 

resulting surface.  This chapter includes the generation of the test signals as well.  

Chapter V shows several examples of the CAF-Map method geolocating simulated 

signals using different collection geometries and number of co-channel emitters.  And 

finally Chapter VI summarizes the results of the thesis and discusses possible follow on 

work based on this thesis. 
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II. THE CROSS AMBIGUITY FUNCTION 

A. A SHORT EXPLANATION OF THE CAF 
 The Cross Ambiguity Function (CAF), sometimes known as the Complex 

Ambiguity Function (CAF), is simply the correlation of two signal waveforms over a 

range of time and frequency offsets. The most common expression for the CAF is shown 

in Equation (2-1) and was derived by Stein [2].  

 
  
A(τ , f ) = s1(t)s2

*

0

T

∫ (t + τ )e(− j2π ft )dt  (2-1) 

where 

s1  received analytic signal from collector 1 

s2  received analytic signal from collector 2 

each with independent additive noise  

 τ  time lag parameters to be searched 

 f  frequency offset parameters to be searched 

 

 Each point in the CAF plane represents the magnitude of the correlation at a 

specific time and frequency offset.  The highest degree of correlation occurs when 

coherent signal components are precisely aligned in both time and frequency.  The values 

of the time and frequency offsets that maximize this function yield the “best” estimate of 

the signal’s TDOA and FDOA.  Hence, the CAF is a three-dimensional surface with the 

coordinates of TDOA, FDOA, and magnitude.  The peaks in the surface result from the 

correlation of coherent signal energy.  Figure 2-1 shows a typical CAF result.  
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Figure 2-1: Example of a typical CAF result 

 
 The performance for the standard CAF algorithm is presented by Stein [2] and 

modified in Ulman and Geraniots [3].  This thesis presents only the results of their 

analysis.  The standard deviation of the TDOA and FDOA measurements are given by 

Equations 2-2 and 2-3:  

 σTDOA =
1
βs

1
BnTγ

 (2-2) 

 

 σ FDOA =
0.55
T

1
BnTγ

 (2-3) 

 
where 

 Bn noise bandwidth common to the two receivers 

 T integration time of the signal 

 βs “rms Bandwidth” in the received signal spectrum 

 γ  signal-to-noise ratio (SNR) given by (2-5) 
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βs = 2π
f 2Ws ( f )df

−∞

∞

∫

Ws( f )df
−∞

∞

∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

1
2

 (2-4) 

 

 1
γ
=

1
2

1
γ 1

+
1
γ 2

+
2

γ 1γ 2

⎡

⎣
⎢

⎤

⎦
⎥  (2-5) 

 
Ws is the signal’s power spectral density and γ i is the SNR of the ith receiver in the 

receiver’s noise bandwidth.  For a signal with a constant envelope, such as a PSK signal, 

a good rule of thumb according to Stein [2] is βs ≈  1.8 Bs as shown below: 

 

 βs =
π
3

Bs  (2-6) 

 

where Bs is the signal RF bandwidth.  

B. CAF MEASUREMENT PERFORMANCE  
 The CAF has been widely used in radar to illustrate the range and Doppler 

resolution properties of a radar waveform.  These principles apply similarly to the CAF in 

terms of differential range and differential Doppler.  There are two main signal factors 

that drive the performance of the CAF function; the signal bandwidth and the integration 

time of the signal.  TDOA accuracy is most affected by the signal’s bandwidth and 

FDOA accuracy is most effect by the integration time of the signal. 

1. Effects of Signal Bandwidth on TDOA Measurement 
 As seen in Equation 2-2, the standard deviation is inversely proportional to the 

bandwidth of the signal.  A large standard deviation implies low accuracy in estimating 

the position of the TDOA peak in the CAF surface, which in turn results from a wide 

TDOA peak in the CAF surfaces shown in Figures 2-2 and 2-3. 
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Figure 2-2: CAF peak with a narrow bandwidth signal 

 

 
Figure 2-3: CAF peak with a wide bandwidth signal 

 
 
 In Figures 2-2 & 2-3, the sharpness of the primary peak along the TDOA axis is 

directly proportional to the bandwidth of the signal.  Very narrow bandwidth signals, 



 7

such as a CW tone, will have nearly constant amplitude along the TDOA axis in the CAF 

plane as seen in Figure 2-2, while a very wide signal will have a single narrow peak 

shown in Figure 2-3. 

2. Effects of Integration Time on FDOA Measurement  
 The effect on the FDOA estimation accuracy is clearly seen in the CAF surfaces 

shown in Figures 2-4 & 2-5.  As noted in Equation 2-3, the standard deviation for FDOA 

is inversely proportional to time.  Short duration signals will have nearly constant 

amplitude along the FDOA axis in the CAF plane as seen in Figure 2-4.  In Figure 2-5, a 

signal that was present for the entire snapshot gives a well-defined peak.  For constant 

envelope signals, the correlation shape in the FDOA cross-section is a sin(x)/x shape with 

the width of the main lobe inversely proportional to the signal integration time.   

 

 
Figure 2-4: CAF peak with a short duration signal 
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Figure 2-5: CAF peak with the signal duration as long as the snapshot 
 

3. The Effects Caused by the FFT  

 The CAF is computed efficiently using the FFT.  With this process, the basic 

increments of the time shifts are equal to the data sample period
1
Fs

⎛
⎝⎜

⎞
⎠⎟

.  Computed FDOA 

increments are the reciprocal of the processing time window which may be extended 

beyond the actual data length of the snapshot for a finer representation of the surface.  

The 
sin(x)

x
 shape is a result of the FFT processing used to compute the CAF and it 

depends on the window used for the smoothing of the transform.  For example, if a 

rectangular window were used, the 3 dB width of the main lobe would be 0.89
2π
N

⎛
⎝⎜

⎞
⎠⎟

 

where N is the number of samples, and the first side lobe is only 13 dB below the main 

lobe.  Different windows can be used to trade between the width of the main lobe and the 

height of the side lobes. 

 The discussions on the FFT effects are of particular significance for the real world 

case of multiple co-channel interference.  In practical cases, signals that share common 
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spectra will be spatially separated.  Spatial separation usually implies a corresponding 

separation in TDOA, FDOA or both.  Thus, the basic limit to spatial resolution of 

multiple emitters is related directly to the TDOA and FDOA resolution of the signals in 

the ambiguity surfaces.  This basic resolution is degraded by the presence of correlation 

side-lobes of a strong emitter over-shadowing the primary peak of a weaker emitter.  

Even disregarding the effects of the side-lobes, emitter separation over a great distance 

may not be resolved in a single CAF surface due to the left-right ambiguity inherent in a 

CAF based system.   

 As stated earlier, the TDOA measurement accuracy with conventional CAF 

processing is limited by the signal’s bandwidth and, therefore, is not influenced by 

available collection parameters.  FDOA measurement accuracy can be increased by 

longer collection duration up to the limit at which the excessive Doppler smearing and 

decorrelation due to higher order TDOA and FDOA derivatives and propagation effects 

become significant.  

4. Collector Geometry Effects on TDOA and FDOA 

 The collector’s geometry has a great effect on the TDOA and FDOA results.  In 

general, it is best to place the collectors as far apart as possible within the limit that 

requires that both collectors have sufficient Signal to Noise Ratio (SNR) to process the 

CAF. Also, higher velocity vectors introduce more Doppler; therefore causing an 

increased FDOA.   But, this may require reduced snapshot durations to keep Doppler 

smearing to a minimum.   It is important to realize that the TDOA is affected most by the 

separation of the collection platforms and the FDOA is most affected by the velocity 

vector of the platforms.   

 Figures 2-7 & 2-8 show the possible TDOA and FDOA results for a given 

geometry of two aircraft spaced 2 km apart in the x direction flying at an altitude of 6.7 

km at 30 m/s velocity in the x direction.  The signal is transmitted at 1 GHz in this 

example.  The geometry is shown in Figure 2-6. 
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Figure 2-6: Collection geometry for Figures 2-7 and 2-8 

 

 
Figure 2-7: Possible TDOA isochrones values based on flight along x axis 
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Figure 2-8: Possible FDOA isodops values based on flight along x axis 

 
 Figures 2-10 & 2-11 show a similar geometry with the same signal, but the 

aircraft are flying in the y direction at 30 m/s with the aircraft still separated by 2 km in 

the x direction.  Figure 2-9 shows the geometry for this example. 

 
Figure 2-9: Collection geometry for Figurers 2-10 and 2-11 
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Figure 2-10: Possible TDOA isochrones values based on flight along y axis 

 

 
Figure 2-11: Possible FDOA isodops values based on flight along y axis 

 

 Note that the velocity vector does not change the TDOA isochrones.  TDOA 

isochrones are dependent only on the sensor separation not on the signal’s frequency or 
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the platform’s velocity vector.  Therefore, the TDOA method can be used from stationary 

platforms if enough platforms with the correct geometry are used.  Note that the FDOA 

isodops are dependent on the velocity vector and are not produced from a stationary 

platform. 
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III. TRADITIONAL TDOA/FDOA GEOLOCATION 

 Traditionally, a CAF is preformed on each Pre-D snapshot pair and the TDOA 

and FDOA are estimated by determining the peak or peaks in the CAF plane as shown in 

Figure 3-1.  To determine the location estimate in n dimensions, n measurements are 

required.  However, it is always useful to have an over-constrained problem to improve 

the accuracy of the solution.  Once estimates are made of the FDOA and TDOA for a 

number of independent snapshots, the location can be determined.  One of the most 

common methods used as the geolcation engine to solve this over-constrained problem is 

the Newton-Raphson method.  

 

 
Figure 3-1: Traditional TDOA/FDOA Geolocation 

 
A.  NEWTON-RAPHSON METHOD 

 The Newton-Raphson method is a numerical approximation method to find the 

root of an equation.  This iterative process follows a set guideline to approximate one or 

two roots, considering the functions, its derivative, and an initial x-value and y value.  In 

the paper “Where is it?” [4] and the Stoner Memo: 129 “Dry Gulch Jake and the Goddess 

of the Desert” [5] both by Dr. J. Stoner as well as in Dr. H. Loomis’s paper “Geolocation 

of Electromagnetic Emitters” [6] the Newton-Raphson method is discussed for the 
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location estimates from TDOA measurements.   This method can be used with combined 

TDOA and FDOA measurements including their error sources such as the random and 

bias errors terms as well, but this simpler TDOA example is used to illustrate the method. 

   

 As a 2-dimensional example let’s assume a pair of collection systems measure a 

TDOA m from an emitter at 
  
p =

x
y
⎡

⎣
⎢
⎤

⎦
⎥  at time tj.  m is a function of  position  p  and time t. 

 

 mj = f (p,t j )  (3-1) 
 
In vector form for multiple k collections this becomes: 

 

 m = f (p,t)  (3-2) 
 
The problem is that we have  m  and we want p .  We have k observations giving us an 

over constrained set of equations to solve for p .  This seems like a straightforward least 

squares problem where we can invert this relationship and easily solve for  p , but f (:,t)  

is non-linear and hence non invertible.  This is where the Newton-Raphson method is 

used to estimate the location.  The first step is to linearize f (:,t)  by using the first few 

terms of the Taylor series approximation of the function f (:,t)  in the vicinity of a 

suspected root  p  based on the value of m  at a estimate of the position  p , call it   p0 .         

 

 ( )
0

0 0( , ) ff t δ
δ

= + ⋅ −m p p p
p p

+ higher order terms (3-3) 

 
So, now 0m  can be calculated based on the guess of 0p , and the higher order terms can be 

dropped leaving:   

 

 
}

{

}

0

0 0

guesscalculated

estimated

δ
δ

⎛ ⎞
⎜ ⎟− ≈ ⋅ −
⎜ ⎟
⎝ ⎠p

fm m p p
p

 (3-4) 
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or 

 { {{
1 2 2 1kx kx x

δ δ=m A p  (3-5) 

 

where A is a non-invertible matrix of the partials with respect to x and y of the function 

( , )tf p .   

 The best way to determine the partials contained in A is to work in the vector 

space and take the gradient of TDOA function.   

 

 ∇f = δ f
δx

x + δ f
δ y

y  (3-6) 

 
The positions and the velocities of the platforms are denoted by 1, 2p p  ∈ RR2 and 1, 2v v  ∈ 

RR2, respectively.  The unknown location is p and it is assumed that its velocity is zero.  

The unit vectors from the unknown emitter’s location to the two platforms are given by 

 

 i
i

i

−
=

−
p pu
p p

 (3-7) 

 

The TDOA ( )τ p  and FDOA ( )υ p  are given by Equations 3-8 and 3-9: 

 

 ( )2 1
1( )
c

τ = − − −p p p p p  (3-8) 

 

 0
2 2 1 1( ) T Tf

c
υ ⎡ ⎤= −⎣ ⎦p v u v u  (3-9) 

 

where c is the speed of light and f0 is the emitters center frequency.  Their gradients are  

 

 ( )2 1
1( )
c

τ∇ = − −p u u  (3-10) 
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 2 2 2 1 1 10

2 1

( )
T Tf

c
υ

⎛ ⎞⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦⎜ ⎟∇ = −
⎜ ⎟− −⎝ ⎠

I u u v I u u v
p

p p p p
 (3-11) 

 

From the gradients of the TDOA and FDOA equations, a combined TDOA/FDOA partial 

derivative matrix A can be built. 

 

 i

x y

x y

δτ δτ
δ δ
δυ δυ
δ δ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

A  i =1..k (3-12) 

 
or 

 

 
( )
( )i

τ
υ

∇⎡ ⎤
= ⎢ ⎥∇⎣ ⎦

p
A

p
 (3-13) 

 

 Now, let’s return to the TDOA-only example.  Again, we have the problem of not 

being able to invert A.  We could use the least-squares method and use the pseudo-

inverse of A by calculating ( ) 1T T−
A A A  or we can use a conditioning matrix W to 

calculate a weighted pseudo-inverse of A.  If we know that the system has different error 

sources for the TDOA and FDOA measurements, the best approach is to use the weighted 

pseudo-inverse of A.  This approach is called the weighted least squares (WLS) solution.  

By using the WLS method we can account for variations in the measurement quality.  Dr. 

Michael Price gives an excellent refresher in his memos “Covariance and Information 

Matrices: A Primer” [7] and “Least Squares Geolocation Data Combining – a Summary” 

[8].  The pseudo inverse of A is also known as the parameter covariance matrix V given 

by Equation (3-14) 

 

 1( )T −=V A WA  (3-14) 
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Inserting this into Equation 3-5 and solving for δp , the WLS estimate for ˆδp  is given 

by Equation 3-15.  

 

 1ˆ ( )T Tδ δ−=p A WA A W m  (3-15) 
 

1. The Weighting Matrix 
 The weighting or conditioning matrix W is chosen to account for the differences 

in quality of the observations and is the inverse of the covariance matrix R. 

 

 1−=W R  (3-16) 
 

where R is 

 

 

2
0

2
1

2
1

0 0
0 0

0 k

σ
σ

σ −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

R

K

M O M

K

 (3-17) 

 

In this simple two-dimensional example we can use Equation 3-18 for the weighting 

matrix W. 

 

 
2
1

2
2

1 0

10

σ

σ

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

W  (3-18) 

 
where σ1

2 and σ2
2 are the timing error variances and are, to the first approximation, the 

root sum square (RSS) of the random and bias errors.  Now we have everything we need 

to bring an algorithm together to make successively better estimates of the emitter’s 

location 0p .   

 The algorithm shown is the one that Dr. H. Loomis used in his paper 

“Geolocation of Electromagnetic Emitters” [6]. 
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Algorithm 

 1.  Make an estimate of the emitter location 0p .  

 2.  i←0 

 3.  Compute ( )i i=m f p  

 4. ( )1 1i i i iδ δ+ += − = ⋅ − =m m m A p p A p  where ( )i−m m  are the residuals. 

 4a.  Exit if residuals are small enough. 

 5. 
1

1
T T

i i iδ δ
−

+ ⎡ ⎤ ⎡ ⎤= − = ⎣ ⎦ ⎣ ⎦p p p A WA A A m  

 6.  Calculate 1i i iδ+ = +p p p  

 7.  i←i+1 

 8.  → 3 

 

B. THE CONFIDENCE ELLIPSE 
 After calculating the estimate for the emitter’s position and the variances that are 

associated with the estimate, the confidence ellipse can be calculated.  Calculating the 

95% confidence ellipse is a standard technique and has been explained by Clark [9] and 

Daniels [10].  Only the results will be summarized here.  If we look at the parameter 

covariance matrix V where: 

 

 1( )T −=V A WA  (3-19) 
 

  from Equation (3-14), it can now be written in the form: 

 

 
2

2
x x y

x y y

σ ρσ σ
ρσ σ σ
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎣ ⎦

V  (3-20) 

 

The diagonal terms, σx
2 and σy

2, are the variances and ρ is the correlation coefficient for 

the parameters x and y.  The off-diagonal term, ρσxσy, is the covariance for x and y.  

These terms are now used in the calculation of the semi-major (a) and semi-minor (b) 

axes and orientation (θ) of the confidence ellipse.    
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(σ a + σ b )2 = σ x

2 + σ y
2 + 2σ xσ y (1− ρ2 )  (3-21) 

 
 (σ a − σ b )2 = σ x

2 + σ y
2 − 2σ xσ y (1− ρ2 )  (3-22) 

 

where σa
2 and σb

2 are the variances of the contour error ellipse semi-major and semi-

minor axes respectively.  Since we have assumed that the errors are normally distributed, 

have zero means, and are independent, the axes’ solution can be written as a sum of 

squares of two stochastically independent variables and their result is a chi-square 

distribution as found in Papoulis [11].  Therefore, we can write 

 

 a
σ a

⎛

⎝⎜
⎞

⎠⎟

2

+
b
σ b

⎛

⎝⎜
⎞

⎠⎟

2

= χ 2  (3-23) 

 
The quantity χ2 can be found in statistical tables for the chi-square distribution.  For a 

95% contour ellipse, the result is χ2 = 5.991 so 

 

 a
σ a

⎛

⎝⎜
⎞

⎠⎟

2

+
b
σ b

⎛

⎝⎜
⎞

⎠⎟

2

= 5.991 (3-24) 

 

Rearranging and solving explicitly for a and b we get Equations 3-25 and 3-26:  

 

 a = 2.448σ a  (3-25) 
 
 b = 2.448σ b  (3-26) 
 
The ellipse orientation is given by equation 3-27: 

 

 θ =
1
2

tan−1
2ρσ xσ y

σ x
2 − σ y

2

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 (3-27) 
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Figure 3-2: Illustration of the confidence ellipse. 
 
 The traditional geolocation method discussed in this chapter is well understood 

and has been used for many years.  The major draw back of this method is that it depends 

on the accuracy of the peak determination in the CAF surface.  If the CAF is computed 

for a co-channel environment where there are multiple peaks in the CAF surface, it is 

impossible to determine the correct peak from among the multiple peaks caused by signal 

mixing within the correlation process.  In the next Chapter, the CAF-Map method is 

discussed; this method skips the part of the traditional geolocation process where the 

peak in the CAF surface is determined and only the value of the TDOA and FDOA are 

passed to the geolocation engine.  Instead, the entire CAF surface is “mapped” to the 

Earth’s surface, thus eliminating one of the major error sources in the traditional method.  

γ1

γ2ζ 2 ζ 1

θ

ba
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IV. THE CAF-MAP METHOD 

 The task of geolocation of multiple simultaneous co-channel emitters consists 

primarily of identifying and associating primary correlation peaks across multiple CAF 

surfaces and across multiple independent collections.  Multiple primary peaks are often 

indistinguishable from the secondary correlation side lobes and cross-modulation artifacts 

of a single strong emitter.  

 The processing technique proposed in this thesis relies on the fundamental 

principle that primary-correlation peaks for stationary emitters will be perfectly 

consistent for all CAF surfaces.  In effect, all available CAF surfaces are mapped and 

combined in a common geographic frame which results an image analogous to radio 

imaging.  The apparent position of spurious artifacts, secondary side lobes, and the left-

right images will lack the consistency of the true peaks due to the varied geometry and 

dynamics of the collection platforms.   This method eliminates the step were the TDOA 

and FDOA values from several snapshots are converted to an estimate of the location 

using the Newton Raphson method.  The CAF-Map method simply maps the TDOA and 

FDOA values in the CAF surface directly to an X, Y coordinate system.   Figure 4-1 

shows the steps of the CAF-Map method. 

 
Figure 4-1: The CAF-Map method 
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The method used in this approach follows: 

1. Calculate the theoretical TDOA and FDOA offsets for points on the X, Y grid 

for the current snapshot’s geographic coverage to create a lookup table of 

FDOA(s) and TDOA(s).  

2. Calculate the normal CAF surface for current snapshot. 

3. Use the lookup table in step A to “map” the amplitude of the CAF in step B to 

a new X, Y surface. 

4. Repeat 1 though 3 and sum maps over a number of snapshots. 

 This is the method, called the CAF-MAP method [1], which was proposed by Mr. 

Al Buczek of the Naval Research Laboratory in the early 1990’s.  In this method, the 

entire geographic coverage area’s TDOA(s) and FDOA(s) are computed to form a lookup 

table for each snapshot.  Then, each snapshot’s CAF is computed over the range of the 

expected TDOA(s) and FDOA(s).  Once the CAF(s) are computed for each snapshot, a 

geographic MAP can be formed using the lookup tables to “map” the CAF to the ground.  

Then each “map” is summed over a common geographic area to provide a RF energy 

map of the area for the collected frequency.  This method produces a geographic “image” 

of the geolocated energy instead of the traditional map with an error ellipse.  The master 

script that calls the functions required for this method is called the “caf_map.m” function.   

 The function “caf_map.m,” listed in Appendix A, is a function written in 

MATLAB® that computes the CAF and the associated CAF-Map based upon the input 

signals and geographic area.  The function is invoked on the command line of the form: 

[map,PtempX,PtempY]=caf_map(S2,S1,Fo,Fs,dm,Pe1,Pe2,Pc1,Vc1,Pc2,Vc2); 
 

The input arguments S2 and S1 are the collected analytic signal snapshots from each of 

the two platforms.  The input arguments Fo and Fs are the carrier frequency of the 

intercepted signal and the sampling rate in Hz of the receivers’ digitizer respectively.  

The input argument dm is the desired x and y resolution of the CAF-Map image. The 

input arguments Pe1 and Pe2 describe the area to calculate CAF-Map image.  These 

arguments are two dimensional [x, y] in meters. The north-south direction is the y 

argument while the east-west is the x argument.  It is assumed that the grid points are on 

the surface of a flat earth and that the altitude is zero meters; however, with small 
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changes to this function, Digital Terrain Elevation Data (DTED) could be used to 

improve results. The input arguments Pc1, Vc1, Pc2 and Vc2 describe the collector’s 

position and velocity vectors at the middle of the snapshot.  Pc1 and Pc2 are each three 

dimensional entries and are in [x, y, z] form. The collector’s altitude is in the z direction.  

All three arguments are in meters.  Vc1 and Vc2 are each three dimensional entries and 

are in [Vx, Vy, Vz] form. These describe each collector’s velocity vector and are in 

meters/seconds.   

 This function calls three other functions written in MATLAB®, 

tdoa_fdoa_grid3D.m, CAF_peak.m, and map_tdoa_fdoa.m. The function 

tdoa_fdoa_grid3D.m calculates the expected TDOAs and FDOAs for a geographic area.  

CAF_peak.m calculates the CAF plane, and map_tdoa_fdoa.m maps the TDOA’s and 

FDOA’s amplitude and phase found in the CAF plane to an x, y location on the map.   

Keeping the amplitude and phase information allowed experimenting with coherently 

combining the snapshots.  This proved to be unsatisfactory and as seen in section E of 

this chapter, the magnitude of each snap-shot was used in combining the snapshots to 

form the energy maps.   

 These functions produce two plots one shows the CAF plane and the other shows 

the CAF-Map for the two input signals and collector geometry.  Figures 4-2 and 4-3 show 

examples of the CAF plane and the CAF-Map. 
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Figure 4-2: Example of a CAF plane generated by the ‘caf_map.m’ function 

 
Figure 4-3: Example of a CAF-Map generated by the ‘caf_map.m’ function 
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A. TDOA & FDOA LOOKUP TABLES 
 For each snapshot, the lookup tables are computed for the theoretical TDOA(s) 

and FDOA(s) over a common geographic area.  Figure 4-4 shows an example of a two 

dimensional Emitter-Collector geometry.  To create the lookup tables the theoretical 

TDOA and FDOA are calculated for each grid point.  The positions xE  and yE  for the 

grid location are changed to fill out the table.  The MATLAB® function that calculates 

the TDOA and FDOA look up tables is called “tdoa_fdoa_grid3D.m”.   

 The function “tdoa_fdoa_grid3D.m,” listed in Appendix A, is a function written 

in MATLAB® that computes the theoretical TDOA and FDOA for each grid point in a 

user defined area.  The function is called from the main program called “caf_map.m” or it 

is invoked on the command line of the form: 

 

[tdoa_grid, fdoa_grid, indexX, indexY] = 

tdoa_fdoa_grid3D(Pc1,Vc1,Pc2,Vc2,Pe1,Pe2,f0,dm); 

 

The input arguments Pc1, Vc1, Pc2 and Vc2 describe the collector’s position and velocity 

vectors at the middle of the snapshot.  Pc1 and Pc2 are each three dimensional entries 

and are in [x, y, z] form.  The north-south direction is the y argument with east-west being 

the x argument.  The collector’s altitude is in the z direction.  All three arguments are in 

meters.  Vc1 and Vc2 are each three dimensional entries and are in [Vx, Vy, Vz] form. 

These describe each collector’s velocity vector and are in meter/seconds.  The input 

arguments Pe1 and Pe2 describe the area to calculate the TDOA(s) and FDOA(s).  These 

arguments are each two dimensional [x, y] in meters.  It is assumed that the grid points 

are on the surface of a flat earth and that the altitude is zero meters.  The input argument 

f0 is the carrier frequency of the intercepted signal in Hz.  The last input argument is dm.  

This argument controls the resolution of the grid points in meters.   

The output variables tdoa_grid and fdoa_grid are matrices that contain the 

TDOA(s) and FDOA(s) calculated for each grid point.  The output variables indexX and 

indexY are the indices for the two matrices tdoa_grid and fdoa_grid.             
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Figure 4-4: 2-D Emitter-Collector Geometry 

 
 In Figure 4-4, C1, C2, and E represent collector one, collector two, and the emitter 

(grid point) while r1 and r2 represent the position vectors from collectors to the emitter.  

The velocities vectors for each collector are represented by v1 and v2.   

1. Calculating Theoretical TDOA(s) 
 The Time Difference of Arrival (TDOA) is simply the difference in time for the 

signal to propagate to one collector vice the other taken with respect to the second 

collector of a two-collector system. Equation (4-1) is the basic TDOA equation.   

 

 2 1TDOA
c
−

=
r r

 (4-1) 

 

where c is equal to the speed of light.  

 

The vectors 1r  and 2r  are the differences between the x and y coordinates of the emitter 

or grid point for our function and the collectors.  The three dimensional versions are 

shown in Equation (4-2): 

 

x 

y 

C1 
C2 

E (grid point) 

v1 
v2 

r1 r2 
dm 
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The distance, or norm, of the vectors r1  and r2  are determined by using the Pythagorean 

Theorem.  This gives us the familiar form for the TDOA equation in three dimensions 

shown below: 
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1
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⎤
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⎥

 (4-3) 

 

The MATLAB® code to calculate this is: 

 

tdoa_grid(i,j) = (norm(gridP - Pc2) - norm(gridP - Pc1)) / c; 

 

where gridP is the grid point that the TDOA is being computed.  Pc1 and Pc2 are the 

positions of the collectors.  The MATLAB® code is similar to Equation (4-1).  A 

graphical example of a TDOA lookup table is shown in Figure 4-5, the z-axis represents 

the TDOA value for each grid point. 
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Figure 4-5: Example of a TDOA lookup table 

 
2. Calculating Theoretical FDOA(s) 

 The FDOA between two collectors is simply the differences between the Doppler 

shifts that each collector intercepts.  Using the geometry shown in Figure 4-4, the 

Doppler shift between one of the collectors and the emitter (grid point) is: 

 

 fd =
f0

c
v  (4-4) 

 

where f0 is the emitter’s carrier frequency, c is the speed of light, and v is the velocity of 

closure between the collector and the emitter.   This can be found by dividing the dot 

product between the vectors v  and r , by the norm of r  as shown in Equation (4-5). 

 

 v •
=

v r
r

 (4-5) 
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The vector v  describes the relative velocity components in the x, y, and z directions 

shown in Equation (4-6).  

 

 
x x

y y

z z
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v v

v v

v v
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v  (4-6) 

 
Because we are calculating the FDOA for a grid point, it is assumed that the velocity of 

the emitter is zero.  This reduces Equation 4-6 to the following: 
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Substituting Equation (4-7) and (4-2) into (4-4) and a little simplification gives us the 

following for the Doppler equation: 
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The MATLAB® code to calculate the Doppler for each platform is: 

        doppler1(i,j) = f0/c * dot(-Vc1, gridP-Pc1) / norm(gridP - Pc1); 

        doppler2(i,j) = f0/c * dot(-Vc2, gridP-Pc2) / norm(gridP - Pc2); 

where Vc1 and Vc2 are the velocity vectors for the collecting platforms, Pc1 and Pc1 are 

the collector’s positions.  Note that this is very similar to Equation (4-5).  

 

FDOA is the difference in Doppler.  Once the Doppler is calculated for each collector the 

difference is taken. 

 FDOA = fd 2 − fd1  (4-9) 
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or 

 

fdoa_grid(i,j) = doppler1(i,j) - doppler2(i,j); 

in MATLAB®. 

 
Figure 4-6: Example of a FDOA lookup table 

 
 Figure 4-6 shows an example of a graphical FDOA lookup table; in this figure the 

z axis shows the theoretical FDOA value for each grid point.  

B. CALCULATE THE CAF PLANE 
 From the lookup table, the minimum and maximum of the expected TDOA(s) and 

FDOA(s) for the geographic region covered by the CAF-MAP are fed into the CAF 

processor along with the collected-signal snapshots.  The CAF engine that is used for this 

thesis is a slightly modified version of one that was developed by LCDR Joe J. Johnson 

for his Masters Thesis at the Naval Postgraduate School completed Sept. 2001[12].  His 

engine’s MATLAB® function is called “CAF_peak.m” but the CAF-Map technique is not 
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limited to this particular CAF engine.  This engine was chosen due to its ease of use and 

since it allowed the input TDOA and FDOA range to be controlled.  However, this 

function did require some modifications to improve resolution and add additional output 

arguments needed to demonstrate the CAF-Map method.   

 The function CAF_peak.m, listed in Appendix A, is a function written in 

MATLAB® that computes the CAF surface by calculating the cross correlation between 

two signals in both time and frequency offsets. The function is called from the main 

program called “caf_map.m” or it is invoked on the command line of the form: 

 
[TDOA, FDOA, MaxAmb, Amb, TauValues,FreqValues] = 

CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, Fs, intp) 
 

The input arguments S1 and S2 are the two input signal vectors in analytic signal format.  

The arguments Tau_Lo, and Tau_Hi represent the lowest and highest value of TDOA 

expected over the coverage area expressed as discrete time delays in samples for which to 

compute the CAF surface.  Likewise, Freq_Lo, and Freq_Hi represent the lowest and 

highest FDOA expected for the coverage area expressed as digital frequencies.  The input 

argument Fs is the sampling frequency of the input arguments S1 and S2.   The last input 

argument is intp, this argument controls the interpolation of the CAF plane.  A value of 

‘0’ turns off the interpolation and a value of intp other than ‘0’ turns on the interpolation.  

The value of intp other than ‘0’ controls the number of points that the CAF plane is 

interpolated by.  During this thesis, a value of 10 was sufficient for the intp value.   The 

output arguments TDOA and FDOA are the TDOA and FDOA calculated for the input 

data.  The output arguments MaxAmb and Amb return the magnitude of the CAF plane’s 

peak and the matrix of complex values for the CAF plane.  The output arguments 

TauValues and FreqValues are the ranges of TDOA and FDOA values computed over the 

CAF plane.  This function also produces a CAF plane plot as seen in Figure 4-1.    

 The CAF_peak.m function uses the FFT method as described in Stein [2].  This 

method takes advantage of the fact that Equation 2-1 closely resembles the Fourier 

transform of the cross correlation of s1(t) and s2(t).   In its discrete time form letting 
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t = nTs  and f =
kfs

N
, where Ts is the sample period, fs =

1
Ts

is the sampling frequency, n 

represents the individual sample numbers, and N is the total number of samples in the 

snapshot.  Once these are inserted back into Equation 2-1, we get Equation 4-10: 

 

 
  
CAF(τ ,k) = [s1(n) ⋅ s2

∗

n=o

N −1

∑ (n − τ )]e
− j2π kn

N  (4-10) 

 

where s1 and s2 are the sampled signals in analytic format, τ is the time delay in samples, 

and 
k
N

 is the frequency difference in digital frequency, or faction of the sample 

frequency.  Note the similarity with the Discrete Fourier Transform (DFT) in Equation 4-

11. 

 

 X (k) = x(n)e
− j2π kn

N

n=0

N −1

∑  (4-11) 

 

Now replace x(n) with [s1(n)s2
*(n − τ )]  and we get the discrete form of the CAF equation 

noted in Equation 4-10.  This is the basis on which the function CAF_peak.m operates.  

While this function operates well for generating the CAF surface, the resolution is 

limited.   The TDOA resolution is limited to 0.5 samples or 0.5Ts seconds.  The FDOA 

resolution is 
0.5
N

 (digital frequency), or 
0.5
N

fs  Hertz.  To improve the resolution enough 

to use in demonstrating the CAF-Map method the CAF surface was interpolated using a 

2-D “cubic” interpolation in MATLAB®.   

 It should be noted that additional efficiencies could be taken advantage of by the 

realization that the correlation between s1 and s2 is computed efficiently using the FFT 

and the inverse FFT methods.  This was demonstrated as a class project for SIGINT 

Systems I, “MATLAB Implementation of the Complex Ambiguity Function,” by 

Hartwell and Jordan [13] at the Naval Postgraduate School.  
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C. MAPPING THE CAF SURFACE TO THE GROUND 
 Many methods were explored during this thesis to determine the most 

straightforward method of mapping the CAF plane to the surface of an area.  This 

problem is very similar to the radio astronomy work in synthesis imaging explained in 

[14] and [15].  This effort is also similar to work that’s been done in the field of Synthetic 

Aperture Radiometer (SAR) imaging [16], [17], and [18].   

 While it is easy to see how these methods are applicable to this problem, the 

method proposed by Mr. Al Buczek [1] was chosen due to its simplicity and ease of 

implementation.  Some of these methods show promise and should be explored further, 

but are beyond the scope of this thesis.   The function that implements the method put 

forth by Buczek is called the map_tdoa_fdoa.m function.  

 The function map_tdoa_fdoa.m, listed in Appendix A, is a function written in 

MATLAB® that maps the amplitude of the CAF surface to a 2-dimenstional x, y 

geographic map by matching the TDOA and FDOA values found in CAF surface to the 

TDOA and FDOA values in the lookup tables.  These match the TDOA and FDOA 

values to an x, y coordinate.  Once the coordinates are matched the amplitude information 

from each TDOA, FDOA pair in the CAF surface is mapped to the appropriate x and y 

coordinate to form the CAF-Map.  The function is called from the main program called 

“caf_map.m” or it is invoked on the command line of the form: 

[map,PtempX,PtempY]=map_tdoa_fdoa(tdoa_grid,fdoa_grid,Amb,dm,Fs,TauValues,Fre
qValues,Pe1,Pe2); 

  
The input arguments tdoa_grid and fdoa_grid are the lookup tables for the TDOA and 

FDOA values computed in the function tdoa_fdoa_grid3D.m. The input argument Amd is 

the CAF surface produced by the CAF_peak.m function. The input argument dm is the 

desired x and y resolution of the CAF-Map image.  The input argument Fs is the 

sampling rate in Hz of the receivers’ digitizer. The input arguments TauValues and 

FreqValues are range of TDOA and FDOA values computed over the CAF plane and are 

the axes of the CAF surface.  The input arguments Pe1 and Pe2 describe the area to 

calculate CAF-Map image.  These arguments are two dimensional [x, y] in meters. The 

north-south direction is the y argument while the east-west is the x argument.  It is 
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assumed that the grid points are on the surface of a flat earth and that the altitude is zero 

meters.   The output argument map is the complex map image of the CAF-Map.  The 

output arguments PtempX, and PtempY are the x, and y, axes of the CAF-Map. 

 At the heart of the function is a simple algorithm where the TDOA and FDOA 

values are looked up for each x, y coordinate in TDOA and FDOA lookup tables and the 

amplitude from TDOA, FDOA coordinates of the CAF plane are mapped to the CAF-

Map.   

for x = 1:m 
    for y = 1:n 
        t = tdoa_grid(x,y); 
        f = fdoa_grid(x,y); 
        j = findnearest(TauValues,(t*Fs),0); 
        i = findnearest(FreqValues,(f/Fs),0); 
        map(x,y)=G(i,j); 
    end 
end 
 
D. THE CAF-MAP SURFACE 
 The surface of each snapshot CAF-Map shows the TDOA and FDOA mapped to 

a flat earth.  The structure of this surface is very similar to the one described in Dr. 

Michael Price’s paper “Mathematics of Geolocation”[19].   Figure 4-7 shows a drawing 

of the surface described in Dr. Price’s paper.   The TDOA seems to modulate the surface 

of the FDOA surface, i.e. the amplitude of the FDOA surface depends on the TDOA.  

Figures 4-8 and 4-9 show a CAF-Map of a single snapshot.   The CAF surface from 

which these maps were generated is shown in Figure 4-10.   
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Figure 4-7: Surface explained by Price 

 

 
Figure 4-8: CAF-Map of a single snapshot 

FDOA 
modulated by 

the TDOA 
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Figure 4-9: CAF-Map of a single snapshot 

 
Figure 4-10:  CAF surface used to generate Figures 4-8 and 4-9 

 
E. COMBINING THE CAF-MAPS 
 A simple averaging method is used to combine several snapshot maps into the 

final map.  Because the snapshots were collected in a non-coherent manner, the absolute 
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values of the snapshot maps are averaged.  It is also noted that the interpolation of the 

CAF plane may corrupt the phase information making the coherent combination of the 

maps non-optimal.  When viewing each map of a sequence it is interesting to note how 

all of the surfaces have energy at the geolocation of the target in common on each map.   

Figures 4-12 through 4-16 show a sequence of snapshots illustrating how the energy of 

the surface rotates around the emitter’s location.   The Power Spectrum Density (PSD) of 

one of the collection channel’s snapshots is shown is Figure 4-11.  The collection pair 

was moving in the x direction, the lead followed by the trail separated by 20 km, 

traveling at 150 m/s, roughly 292 knots.  Both of the platforms altitudes were 7.5 km or 

about 24,600 ft.  The resolution of this example is 1 km.   

 
Figure 4-11: PSD of the collected signal 
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Figure 4-12: CAF-Map from collection pair at P1 = [10e3,0], P2 = [30e3,0] meters 

 
Figure 4-13: CAF-Map from collection pair at P1 = [13e3,0],  P2 = [33e3,0] meters 

Emitter Location 
X = 50,000 
Y = 50,000 

Emitter Location 
X = 50,000 
Y = 50,000 
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Figure 4-14: CAF-Map from collection pair at P1 = [16e3,0],  P2 = [36e3,0] meters 

 
Figure 4-15: CAF-Map from collection pair at P1 = [19e3,0],  P2 = [39e3,0] meters 

Emitter Location 
X = 50,000 
Y = 50,000 

Emitter Location 
X = 50,000 
Y = 50,000 
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Figure 4-16: CAF-Map from collection pair at P1 = [21e3,0], P2 = [41e3,0] meters 

 
Figure 4-17: CAF-Map of the combined maps from Figures 4-11-4-15 

Emitter Location 
X = 50,000 
Y = 50,000 

Emitter Location 
X = 50,000 
Y = 50,000 
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Figure 4-18: CAF-Map of the combined maps from Figures 4-12-4-16 

 
 From the combined CAF-Map shown in Figures 4-17 and 4-18, it is clear that the 

left-right ambiguity is still a problem.  Peaks equal in magnitude were found at two 

locations, the first at the expected location of X = 50,000 & Y = 50,000 and at the 

mirrored location of X = 50,000 & Y = -50,000.  The Collector’s snapshot setup for this 

series of snapshots follows: 

 

 Carrier Frequency:  1000.025 MHz 

 Sampling Frequency:  100 kHz 

 Modulation Rate:  10 kbauds/sec 

 Modulation:   BPSK 

 Snap-duration:   32768 samples or 0.32768 seconds 

 Signal to Noise Ratio:  10 dB for each signal 

 

Emitter Location 
X = 50,000 
Y = 50,000 
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Figures 4-19, 4-20, and 4-21 show the zoomed in peak of this CAF-Map.  Note that the 

CAF interpolation was turned off for this series of Maps and the CAF-Map resolution 

was set to 1 km. 

 

 
Figure 4-19: Zoomed X-Y plot of the peak at 50e3 by 50e3 

 
Figure 4-20: Zoomed X-Z plot of the peak at 50e3 by 50e3 



 45

 
Figure 4-21: Zoomed Y-Z plot of the peak at 50e3 by 50e3 

 

F. SIGNAL GENERATION 
 In order to test the CAF-Map method, signal pairs from known emitters with 

known TDOAs and FDOAs were required.  To evaluate this method the program 

Sig_gen.m was used to generate known emitter signals with correct TDOA and FDOA 

based on the geometry of a pair of collection platforms.  LCDR Joe J. Johnson wrote this 

program to test his implementation of a CAF tool in MATLAB [12].  This program was 

modified slightly to include the location of the collection platforms at the center of the 

snapshot.   

 This program Sig_gen.m, as listed in Appendix A, is a program written in 

MATLAB® that generates a pair of BPSK signals according to user-defined signal 

parameters and collector-emitter geometries as described in Chapter IV, Section A.  The 

function is invoked in the command line of the form: 

[Sa1,Sa2,S1,S2,Pcc1,Pcc2] = sig_gen; 

This program has no input arguments since the user is queried for all required parameters.  

Four of the six output arguments are returned as signal vectors.  Sa1 and Sa2 are the two 

generated signals in analytic format.  S1 and S2 are the real valued signals generated.  
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Both sets of signal vectors are time domain vectors.  The two output arguments Pcc1 and 

Pcc2 describe each of the collector’s positions in the middle of the collection snapshot.  

The format of the position vectors are each three dimensional entries and are in [x, y, z] 

form in meters.  The north-south direction is the y argument with east-west being the x 

argument.  The collector’s altitude is in the z direction.      

 The user is asked a series of questions to gather the information to generate the 

signals.  The user is first asked to input the position and velocity vector information of 

the two collectors at “time 0.”  All position and velocity information are entered in [x, y, 

z] form.  The north-south direction is the y argument with east-west being the x 

argument.  The collector’s altitude is in the z direction.  All three arguments are in 

meters.  The velocity vectors are each three dimensional entries and are in [Vx, Vy, Vz] 

form. These describe each collector’s velocity vector and are in meters/seconds.  With the 

geometry entries complete the user is asked for information on the collected signal.  The 

user is asked for the carrier frequency and sample rate both in Hz.   Note that the program 

will alias the carrier frequency so the user must choose a frequency that will alias nicely 

into the Nyquest bandwidth.  The user is then asked for the symbol rate of the BPSK 

signal.  Again the user must be careful to choose signals whose bandwidth remains within 

the Nyquist bandwidth.  The user is then asked for the numbers of samples in the 

snapshot and then is asked for each signal’s Signal-to-Noise Ratio SNR.  After this entry 

the program will generate the output arguments.  The program will also print on the 

screen a TDOA and FDOA values for the beginning and end of the snapshot.      

 Chapter V shows several examples of the CAF-Map method in uses.  It also 

shows the importance of the collector geometry and separation in emitter location and in 

eliminating the left-right ambiguity problem.  The last two examples demonstrate that 

this method works well by geolocating several co-channel emitters.  

 
 



 47

V. EXAMPLES 

 Several simulations with different geometry were used to demonstrate the effects 

of collector separation and geometry on the CAF-Map results.  Additional simulations 

were generated to include a co-channel interfering signal.  

A.  SCENARIO #1 
 In the first simulation, there is an emitter at location x = 10 km y = 10 km.  The 

collection platforms were separated by 2 km and are flying in a lead trail configuration.  

Figure 5-1 shows the geometry of this scenario.  The CAF-Map resolution for this 

scenario was set to 100 meters.   

 

 
Figure 5-1: Collector Geometry for Scenario 1 

 



 48

The platforms were at an altitude of 7.5 km and are flying at 100 m/s. A snapshot was 

taken every twenty seconds.  The collectors moved 2 km between each snapshot along 

the x-axis.  The Collector’s snapshot setup for this series of snapshots follows: 

 Carrier Frequency:   1000.025 MHz 

 Sampling Frequency:   100 kHz 

 Modulation Rate:   10 kbauds/sec 

 Modulation:    BPSK 

 Snap-duration:    32768 samples or 0.32768 seconds 

 Signal to Noise Ratio:   10 dB for each signal 

 Duration between snapshots:  20 seconds 

Each CAF-Map illustrated will have the collector’s position in x and y coordinates in the 

title of the figures.    

 
Figure 5-2: CAF surface with the collectors at P1 = [0,0],  P2 = [2e3,0] 

 
Illustrated in Figure 5-2 is the CAF of the first snapshot.  This surface shows a good 

correlation in both time and frequency and should produce good geolocation results.   

Figures 5-3 through 5-12 show individual CAF-Maps for each snapshot.  Again note how 
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the surfaces revolve around the emitter location at 10 km and 10 km.  These figures also 

show the left-right ambiguity problem.    

 
Figure 5-3: CAF-Map from collection pair at P1 = [0,0],  P2 = [2e3,0] meters 

 
Figure 5-4: CAF-Map from collection pair at P1 = [2e3,0],  P2 = [4e3,0] meters 
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Figure 5-5: CAF-Map from collection pair at P1 = [4e3,0],  P2 = [6e3,0] meters 

 
Figure 5-6: CAF-Map from collection pair at P1 = [6e3,0],  P2 = [8e3,0] meters 
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Figure 5-7: CAF-Map from collection pair at P1 = [8e3,0], P2 = [10e3,0] meters 

 
Figure 5-8: CAF-Map from collection pair at P1 = [10e3,0],  P2 = [12e3,0] meters 
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Figure 5-9: CAF-Map from collection pair at P1 = [12e3,0],  P2 = [14e3,0] meters 

 
Figure 5-10: CAF-Map from collection pair at P1 = [14e3,0],  P2 = [16e3,0] meters 
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Figure 5-11: CAF-Map from collection pair at P1 = [16e3,0],  P2 = [18e3,0] meters 

 
Figure 5-12: CAF-Map from collection pair at P1 = [18e3,0],  P2 = [20e3,0] meters 
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The combined CAF-Map is shown in Figures 5-13 and 5-14.  While not providing the 

peak in the correct location,  the true location is within the top 10 % of the energy of the 

peak.   

 
Figure 5-13: X-Y CAF-Map of the combined Maps 

 
Figure 5-14: CAF-Map of the combined Maps 
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As noted before, the CAF map still has a left-right ambiguity problem in using this 

geometry.  Figures 5-15 and 5-16 show details of the peak detected in the combine CAF-

Map. 

 
Figure 5-15: X-Z CAF-Map 

 
Figure 5-16: Y-Z CAF-Map 
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The result of scenario 1 showed an encouraging miss distance of only 565.7 meters.  

Again the CAF-Map resolution was set to 100 meters for this scenario.   

B.  SCENARIO #2 
 As in the first simulation the emitter is located at x = 10 km y = 10 km.  However, 

this time to combat the left-right ambiguity problem the collection platforms were 

separated by 2.8284 km and instead of flying in a lead trail configuration collector 2 is 

offset in the y direction by 2 km.  The CAF-Map resolution for this scenario was set to 

100 meters.  Figure 5-17 shows the geometry of this scenario.   

 
Figure 5-17: Collector geometry for Scenario 2 

 

As before, the platforms were at an altitude of 7.5 km and are flying at 100 m/s. A 

snapshot was taken every twenty seconds.  The collectors moved 2 km between each 

snapshot along the x-axis.  The Collector’s snapshot setup for this series of snapshots 

follows: 
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• Carrier Frequency:   1000.025 MHz 

• Sampling Frequency:   100 kHz 

• Modulation Rate:   10 kbauds/sec 

• Modulation:    BPSK 

• Snap-duration:    32768 samples or 0.32768 seconds 

• Signal to Noise Ratio:   10 dB for each signal 

• Duration between snapshots:  20 seconds 

Figures 5-18 through 5-27 show individual CAF-Maps for each snapshot of Scenario 2.  

Again note how the surfaces revolve around the emitter location at 10 km and 10 km.   

 
Figure 5-18: CAF-Map from collection pair at P1 = [0,0], P2 = [2e3,2e3] meters 

 

In Figure 5-18 note the lack of symmetry along the ground track (x-direction).  By 

offsetting the collection platforms in the ground track the FDOA surface has rotated to 

match the geometry.  This is important to note because the TDOA is not affected by this 

change as discussed in Section II, B, 4.   In the remainder of the CAF-Maps for this 

scenario note the rotation about the emitter. 
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Figure 5-19: CAF-Map from collection pair at P1 = [2e3,0],  P2 = [4e3,2e3] meters 

 
Figure 5-20: CAF-Map from collection pair at P1 = [4e3,0],  P2 = [6e3,2e3] meters 

 



 59

 
Figure 5-21: CAF-Map from collection pair at P1 = [6e3,0],  P2 = [8e3,2e3] meters 

 
Figure 5-22: CAF-Map from collection pair at P1 = [8e3,0], P2 = [10e3,2e3] meters 
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Figure 5-23: CAF-Map from collection pair at P1 = [10e3,0],  P2 = [12e3,2e3] 

meters 

 
Figure 5-24: CAF-Map from collection pair at P1 = [12e3,0],  P2 = [14e3,2e3] 

meters 
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Figure 5-25: CAF-Map from collection pair at P1 = [14e3,0],  P2 = [16e3,2e3] 

meters 

 
Figure 5-26: CAF-Map from collection pair at P1 = [16e3,0],  P2 = [18e3,2e3] 

meters 
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Figure 5-27: CAF-Map from collection pair at P1 = [18e3,0],  P2 = [20e3,2e3] 

meters 

 
Figure 5-28: X-Y CAF-Map of combined Maps 
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Figure 5-29: Combined CAF-Map surface 

 

 In Figures 5-28 and 5-29 the rotation around the emitter is clearly seen.  Figures 

5-30 and 5-31 show the details about the peak detected in the CAF-Map.  In this scenario, 

the miss distance was only 141.4 meters and there were no left-right ambiguity problems.  

This showed very encouraging results considering the resolution for the CAF-Map was 

set to 100 meters.  This scenario showed the effects of small changes in the geometry of 

the collection platforms.    
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Figure 5-30: X-Z CAF-Map 

 
Figure 5-31: Y-Z CAF-Map 
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C.  SCENARIO #3 
 This scenario was developed to demonstrate the co-channel capability of the 

CAF-Map method.  In this scenario, two emitters were located in the mapped area. The 

first emitter was located at x = 30 km, y = 70 km, and the second emitter was located at x 

= 50 km, y = 50 km.  As in Scenario 2, to combat the left-right ambiguity problem the 

collection platforms were separated along the cross-track by 5 km as well as along the 

ground-track by 10 km.  The straight line separation was 11,180 meters.  The CAF-Map 

resolution for this scenario was set to 1000 meters and the CAF interpolation was turned 

off.  Figure 5-32 shows the geometry of this scenario.   

 
Figure 5-32: Collector Geometry for Scenario 3 

 

The platforms were at an altitude of 7.5 km and are flying at 150 m/s. A snapshot 

was taken every one hundred seconds.  The collectors moved 15 km between each 

snapshot along the x-axis.  The Collector’s snapshot setup for this series of snapshots 

follows: 

 Carrier Frequency:   1000.025 MHz 
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 Sampling Frequency:   100 kHz 

 Modulation Rate:   20 kbauds/sec 

 Modulation:    BPSK 

 Snap-duration:    65536 samples or 0.65536 seconds 

 Signal to Noise Ratio:   10 dB for each signal 

 Duration between snapshots:  100 seconds 

These same settings were used to generate the signals from both emitters.  Because the 

offset in the cross-track eliminates the left-right ambiguity only the positive portion of the 

area was mapped.   

 
Figure 5-33: CAF of the First Snapshot 

 
 The CAF plane for the first snapshot shows not two peaks as expected but four.  

In Figure 5-33 it appears to have only two peaks but upon closer inspection in Figure 5-

34 four FDOA peaks were noted.  This is due to the seed generating the co-channel signal 

information is the same as the one that generated the original signal. This is a harder 

problem of two emitters that are not only co-channel but are also sending the same 
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information.  This means that the two emitters will be correlated at some time and 

frequency offset producing multiple peaks in the CAF surface.  

 
Figure 5-34: FDOA from the First Sanpshot 

 
 
This produced three FDOA curves in the CAF-Map as illustrated in Figure 5-35.  As the 

scenario continued these curves become clearer as the FDOAs began to separate. 
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Figure 5-35: CAF-Map from collection pair at P1 = [5e3,0],  P2 = [15e3,5e3] meters 
 

 
Figure 5-36: CAF-Map from collection pair at P1 = [20e3,0],  P2 = [30e3,5e3] 

meters 
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Figure 5-37: CAF-Map from collection pair at P1 = [35e3,0],  P2 = [45e3,5e3] 

meters 
 

 
Figure 5-38: CAF-Map from collection pair at P1 = [50e3,0], P2 = [60e3,5e3] 

meters 
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Figure 5-39: CAF Plane from Map shown in Figure 5-38 

 
Note in Figure 5-39 that the snapshot while the collection pair was at P1 = [50e3,0] and 

P2 = [60e3,5e3] meters clearly shows the four peaks and Figure 5-40 shows the FDOAs. 

 
Figure 5-40: FDOAs of collection pair at P1 = [50e3,0],  P2 = [60e3,5e3] meters 
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Figure 5-41: CAF-Map from collection pair at P1 = [65e3,0],  P2 = [75e3,5e3] 

meters 

 
Figure 5-42: CAF-Map from collection pair at P1 = [80e3,0],  P2 = [90e3,5e3] 

meters 
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Figure 5-43: CAF-Map of the combined Maps 

 

 
Figure 5-44: CAF-Map of the combined Maps 
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Figure 5-45: X-Y CAF-Map of the combined Maps 

  
Figure 5-46: X-Z CAF-Map of the combined Maps 
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Figure 5-47: Y-Z CAF-Map of the combined Maps 

 
 As shown in Figures 5-43 through 5-47, the CAF-Map performed very well.  

Even with the CAF-Map resolution setting at 1000 meters and the interpolation turned 

off, the CAF-Map routine correctly located both emitters and had a miss distance of zero 

meters for each.  Considering the emitters were correlated and co-channel, these results 

were remarkable.    

D.  SCENARIO #4 
 This scenario was developed to demonstrate the additional co-channel capability 

of the CAF-Map method.  This scenario is an expansion of Scenario 3; it uses the same 

collection geometry and adds an additional target to the two that were used in Scenario 3. 

The first emitter was located at x = 30 km, y = 70 km, the second emitter was located at x 

= 50 km, y = 50 km, and the third emitter was located at x = 60 km, y = 70 km in the 

scene.  As in Scenario 3, to combat the left-right ambiguity problem the collection 

platforms were separated along the cross-track by 5 km as well as along the ground-track 

by 10 km.  The straight-line separation was 11,180 meters.  The CAF-Map resolution for 

this scenario was set to 1000 meters and the CAF interpolation was turned off.  Figure 5-
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48 shows the geometry of this scenario.   All three emitters are identical in modulation, 

SNR, modulation rate, and information being transmitted. 

 
Figure 5-48: Collector Geometry for Scenario 4  

 
Figure 5-49: CAF-Map of the combined Maps 
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Figures 5-49, 5-50, 5-51, and 5-52 show the resulting CAF-Map images of the combined 

images 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5-50: X-Y CAF-Map of the combined Maps 

 
Figure 5-51: X-Z CAF-Map of the combined Maps 
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Figure 5-52: Y-Z CAF-Map of the combined Maps 

 
The individual maps are not shown for this scenario because they are very similar to 

Scenario 3.  The miss distances for all three targets were zero meters.  However, at 1000-

meter resolution, the peak of target 1 and target 3 are elongated in one direction to cover 

2 grid points.  Also note the added noise to the “floor” of the map.  This is due to the 

multiple FDOA lines in the map that do not add to a point.   
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VI. CONCLUSIONS 

A.  SUMMARY OF FINDINGS 

 The goal of this thesis was to implement the CAF-Map method in MATLAB® and 

demonstrate this method’s ability to geolocate emitters as an alternative to the traditional 

TDOA and FDOA geolocation methods.  The advantage of this method lies in its ability 

to geolocate several co-channel emitters where traditional methods would have simply 

chosen the largest peak in the CAF surface or geolocated not only the true emitter 

location, but, several false locations by geolocating all the peaks in the CAF plane.  

 The main finding in this thesis is that the CAF-Map method can successfully 

geolocate up to three co-channel emitters. This thesis also reinforced the importance of 

the collector geometry asymmetry and its role in eliminating the left-right ambiguity 

effect.  

B.  FUTURE WORK 
 There are several ways that future work could build upon this thesis.  The most 

obvious area would be to use a Digital Terrain Elevation Data (DTED) to generate the 

TDOA and FDOA look-up tables, providing a three-dimensional ground surface to 

improve the mapping of the TDOA and FDOA value to the ground.  Additional 

resolution could be obtained by using a high resolution CAF function.   

 An active area of research is to apply super resolution methods to the CAF plane 

to increase the resolution.  These super resolution methods could also improve the 

resolution of the CAF-Map image.   

 Additionally, work is still required to derive the geolocation error equations for 

this method.   

 An alternative method to the CAF-Map processes could be envisioned where the 

variables τ and f in the CAF equation are substituted with functions in latitude and 

longitude for a region that will allow a continuous time-like approach eliminating the 

requirement of breaking the collection into snapshots.  This would allow a true coherent 

process that has not been possible while working with snapshot signals.        
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 Additionally, the CAF-Map approach could also be applied to other geolocation 

methods such as phase interferometery, FDOA only, TDOA only, or Doppler geolocation 

techniques.      
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APPENDIX  

 This Appendix contains all the MATLAB® functions and scripts used in this 
thesis. MATLAB® Version 7, R14 was used in this thesis.   
 

A. “CAF_MAP.M” 
function [map,PtempX,PtempY]=caf_map(S1,S2,Fo,Fs,dm,Pe1,Pe2,Pc1,Vc1,Pc2,Vc2);  
%********************************************************************** 
%  [map,PtempX,PtempY]=caf_map(S1,S2,Fo,Fs,dm,Pe1,Pe2,Pc1,Vc1,Pc2,Vc2) 
%  This function will calculate a CAF surface based upon input signals  
%  S1 & S2 and map the caf to the 2 dimensional plane given by Pe1 and Pe2 
%  Inputs: 
%  S1           Signal from collector 1 
%  S2           Signal from collector 2  
%  Fo           Carrier Frequency of signal 
%  Fs           Sampling Rate  
%  dm           resolution in meters  
%               Note: this depends on sample rate  
%               and duration of the snapshot 
%  Pe1          Start of grid for Emitter's Position [X,Y] in meters 
%  Pe2          End of grid for Emitter’s Position {X,Y] 
%  Pc1          Position of collector 1 and beginning of snapshot [X,Y,Z] 
%  Vc1          Velocity Vector of collector 1 [x,y,z] 
%  Pc2          Position of collector 2 and beginning of snapshot [X,Y,Z] 
%  Vc2          Velocity Vector of collector 2 [x,y,z] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
% 
% Written by:  Glenn Hartwell 
% Last modified:  14 Dec. 2004 
% ********************************************************************* 
  
  
%   First calculate tdoa and fdoa grids 
[tdoa_grid, fdoa_grid, PtempX,PtempY] = 
tdoa_fdoa_grid3D(Pc1,Vc1,Pc2,Vc2,Pe1,Pe2,Fo,dm); 
  
%   Calculate min & max tdoa & fdoa 
  
Tau_Lo = round(min(min(tdoa_grid))*Fs)-10; 
Tau_Hi = round(max(max(tdoa_grid))*Fs)+10; 
Freq_Lo = (min(min(fdoa_grid))/Fs)-.001; 
Freq_Hi = (max(max(fdoa_grid))/Fs)+.001; 
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%   Calculate CAF... Using a modified version of LCDR Joe J. Johnson's caf_peak 
function 
[TDOA, FDOA, MaxAmb, Amb, TauValues,FreqValues] = ... 
    CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, Fs, 0); %use 10 for intpr 0 if 
no interp needed 
  
%   Map CAF to X,Y Coordinates 
[map,PtempX,PtempY] = 
map_tdoa_fdoa(tdoa_grid,fdoa_grid,Amb,dm,Fs,TauValues,FreqValues,Pe1,Pe2); 
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B. “TDOA_FDOA_GRID3D.M” 
function [tdoa_grid, fdoa_grid, indexX,indexY] = 
tdoa_fdoa_grid3D(Pc1,Vc1,Pc2,Vc2,Pe1,Pe2,f0,dm); 
% ********************************************************************* 
% [tdoa_grid,fdoa_grid,indexX,indexY]= 
tdoa_fdoa_grid3D(Pc1,Vc1,Pc2,Vc2,Pe1,Pe2,f0,dm) 
%  Outputs:  
%  tdoa_grid    Time Difference of arrival matrix for each grid  
%  fdoa_grid    Frequency Difference of arrival matrix for each grid 
%  indexX       X dimension index 
%  indexY       Y Dimension index 
%  Inputs: 
%  Pc1      Collector one's Position [X,Y,Z] in meters 
%  Vc1      Collector one's Velocity Vector [Vx,Vy,Vz] in meters/sec 
%  Pc2      Collector two's Position {X,Y,Z] in meters 
%  Vc2      Collector two's Velocity Vector [Vx,Vy,Vz] in meters/sec 
%  Pe1      Start of grid for Emitter's Position [X,Y] in meters 
%  Pe2      End of grid for Emitter’s Position {X,Y] 
%  f0       Emitter's frequency in Hz 
%  dm       resolution in meters 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%           this function generates tdoa and fdoa pairs based upon 
%            Emitter frequency and Cartesian emitter-collector geometries. 
%            The function returns two matrices: 
%            tdoa & fdoa.  
%            
% Written by:  Glenn Hartwell 
% Last modified:  21 Mar. 2004 
% ********************************************************************* 
  
c = 2.997925e8; % Speed of light in m/s 
Ve = 0; %assume grid point has zero velocity 
% Builds the position vectors for the Emitter's Position   
% Note this assumes a flat earth and the emitter is a 0 alt 
indexX = Pe1(1):dm:Pe2(1);  % X grid points 
indexY = Pe1(2):dm:Pe2(2);  % Y grid points 
  
Nx = length(indexX); 
Ny = length(indexY); 
  
for i = 1:Nx 
    for j = 1:Ny 
        % The next two lines calculate the Doppler shifts between the grid points 
        % and Collector 1 & Collector 2, respectively for each point on the emitter grid 
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        gridP = [indexX(i),indexY(j),0];   % adds the 3rd dimensions at 0 meters in altitude 
               
        doppler1(i,j) = f0/c * dot(Ve-Vc1, gridP-Pc1) / norm(gridP - Pc1); 
        doppler2(i,j) = f0/c * dot(Ve-Vc2, gridP-Pc2) / norm(gridP - Pc2); 
  
        % Calculates the FDOA  
  
        fdoa_grid(i,j) = doppler1(i,j) - doppler2(i,j); 
  
  
        % Calculates the TDOA  
         
        tdoa_grid(i,j) = -(norm(gridP - Pc2) - norm(gridP - Pc1)) / c; 
    end 
         
end 
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C. “CAF_PEAK.M” 
function [TDOA, FDOA, MaxAmb, Amb, TauValues,FreqValues] = ... 
                CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, fs, intp); 
  
% ********************************************************************* 
% CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, Fs, intp) takes as input:  
%     two signals (S1, S2) that are row or column vectors; a range of  
%     time delays (in samples) to search (Tau_Lo, Tau_Hi must be  
%     integers between -N & +N); a range of digital frequencies (in  
%     fractions of sampling frequency) to search (Freq_Lo, Freq_Hi must  
%     be between -1/2 and 1/2, or -(N/2)/N and (N/2)/N, where N is the  
%     length of the longer of the two signal vectors); and the sampling 
%     frequency, fs. 
%       [TDOA, FDOA, MaxAmb, Amb] = ... 
%                   CAF_peak(S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi, fs); 
%     The function computes the Cross Ambiguity Function of the two  
%     signals. Four plots are produced which represent four different  
%     views of the Cross Ambiguity Function magnitude versus the input 
%     Tau and Frequency Offset ranges. 
% 
%     The function returns the scalars TDOA, FDOA, and MaxAmb, where  
%     TDOA & FDOA are the values of Time Delay and Frequency Offset  
%     that cause the Cross Ambiguity Function to peak at a magnitude  
%     of MaxAmb.  Amb is the matrix of values representing the CAF 
%     surface. 
  
% Written by:  LCDR Joe J. Johnson, USN  
% Modified by Glenn Hartwell 
% 14 Dec. 2004 
% ********************************************************************* 
  
  
% Ensures that the user enters all SIX required arguments. 
if (nargin < 6)  
   error... 
   ('6 arguments required: S1, S2, Tau_Lo, Tau_Hi, Freq_Lo, Freq_Hi'); 
end 
  
% Ensures that both S1 & S2 are row- or column-wise vectors. 
if ((size(S1,1)~=1)&(size(S1,2)~=1)) | ((size(S2,1)~=1)&... 
                                                 (size(S2,2)~=1)) 
   error('S1 and S2 must be row or column vectors.'); 
end 
  
N1 = length(S1); 
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N2 = length(S2); 
S1 = reshape(S1,N1,1);      % S1 & S2 are reshaped into column-wise 
S2 = reshape(S2,N2,1);      % vectors since MATLAB is more efficient 
                                    % when manipulating columns. 
  
S1 = [S1;zeros(N2-N1,1)];   % Ensure that S1 & S2 are the same size,  
S2 = [S2;zeros(N1-N2,1)];   % padding the smaller one w/ 0s as needed. 
  
  
% This WHILE loop simply ensures that the length of S1 & S2 is a power 
% of two.  If not, the vectors are padded with 0s until their length  
% is a power of two.  This is not required, but it takes advantage of  
% the fact that MATLAB's FFT computation is significantly faster for  
% lengths which are powers of two! 
while log(length(S1))/log(2) ~= round(log(length(S1))/log(2)) 
   S1(length(S1)+1) = 0; 
   S2(length(S2)+1) = 0; 
end 
    
N = length(S1); 
  
% Ensures that the Tau values entered are in the valid range. 
if abs(Tau_Lo)>N | abs(Tau_Hi)>N 
   error('Tau_Lo and Tau_Hi must be in the range -N to +N.'); 
end 
  
% Ensures that Tau values entered by the user are integers. 
if (Tau_Lo ~= round(Tau_Lo)) | (Tau_Hi ~= round(Tau_Hi)) 
   error('Tau_Lo and Tau_Hi must be integers.') 
end 
  
% Ensures that the Frequency values entered are in the valid range. 
if abs(Freq_Lo)>1/2 | abs(Freq_Hi)>1/2 
   error('Freq_Lo and Freq_Hi must be in the range -.5 to +.5'); 
end 
  
% Ensures that the lower bounds are less than the upper bounds. 
if (Tau_Lo > Tau_Hi) | (Freq_Lo > Freq_Hi) 
   error('Lower bounds must be less than upper bounds.') 
end 
  
% Freq values converted into integers for processing. 
Freq_Lo = round(Freq_Lo*N); 
Freq_Hi = round(Freq_Hi*N); 
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% Creates vectors for the Tau & Freq values entered by the user. Used  
% for plotting... 
TauValues = [Tau_Lo:Tau_Hi];  
FreqValues = [Freq_Lo:Freq_Hi]/N; 
  
% The IF statement calculates the indices required to isolate the  
% user-defined frequencies from the FFT calculations below. 
if Freq_Lo < 0 & Freq_Hi < 0 
   Neg_Freq = (N+Freq_Lo+1:N+Freq_Hi+1); 
   Pos_Freq = []; 
elseif Freq_Lo < 0 & Freq_Hi >= 0 
   Neg_Freq = (N+Freq_Lo+1:N); 
   Pos_Freq = (1:Freq_Hi+1); 
else 
   Neg_Freq = []; 
   Pos_Freq = (Freq_Lo+1:Freq_Hi+1); 
end 
  
  
% This FOR loop actually calculates the Cross Ambiguity Function for  
% the given range of Taus and Frequencies.  Note that an FFT is  
% performed for each Tau value and then the frequencies of interest  
% are isolated using the Neg_Freq and Pos_Freq vectors obtained above. 
% For each value of Tau, the vector S2 is shifted Tau samples using a 
% call to the separate function "SHIFTUD".  Samples shifted out are  
% deleted and zeros fill in on the opposite end. 
  
% Initializing Amb with 0s makes computations much faster. 
Amb=zeros(length(Neg_Freq)+length(Pos_Freq),length(TauValues)); 
for t = 1:length(TauValues)  
   temp = fft((S1).*conj(shiftud(S2,TauValues(t),0))); 
   Amb(:,t) = [temp(Neg_Freq);temp(Pos_Freq)];           
end 
 
  
 if intp~=0 
    interp = 1/intp; 
    [xa,ya]=meshgrid(Tau_Lo:1:Tau_Hi,Freq_Lo:1:Freq_Hi); 
    [xp,yp]=meshgrid(Tau_Lo:interp:Tau_Hi,Freq_Lo:interp:Freq_Hi); 
    Zp = interp2(xa,ya,Amb,xp,yp,'cubic'); 
    TauValues = [Tau_Lo:interp:Tau_Hi];  
    FreqValues = [Freq_Lo:interp:Freq_Hi]/N; 
    figure 
    mesh(TauValues/fs,FreqValues*fs,abs(Zp)); 
    xlabel('TDOA (Seconds)');ylabel('FDOA (Hertz)'); 
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    zlabel('Magnitude'); 
    title('Cross Ambiguity Function'); 
    axis tight 
    Amb = Zp; 
else 
    figure      % This one is the 3-D view 
    mesh(TauValues/fs,FreqValues*fs,abs(Amb)); 
    xlabel('TDOA (Seconds)');ylabel('FDOA (Hertz)'); 
    zlabel('Magnitude'); 
    title('Cross Ambiguity Function'); 
    axis tight 
     
end 
% Only interested in the Magnitude of the Cross Ambiguity Function. 
abs_Amb = abs(Amb);  
  
    
% Finds the indices of the peak value. 
[DFO, DTO] = find(Amb==max(max(abs_Amb)));       
  
TDOA = TauValues(DTO);  % Finds the actual value of the TDOA. 
FDOA = FreqValues(DFO); % Finds the actual value of the FDOA. 
MaxAmb = max(max(abs_Amb)); % Finds the actual Magnitude of the peak. 
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D. “MAP_TDOA_FDOA.M” 
function [map,PtempX,PtempY] = 
map_tdoa_fdoa(tdoa_grid,fdoa_grid,G,dm,Fs,TauValues,FreqValues,Pe1,Pe2); 
% ********************************************************************* 
% [map]= map_tdoa_fdoa(tdoa_grid,fdoa_grid,G,dm,blocksize,fftsize,Pe1,pe2) 
%  Outputs:  
%  map           map of the tdoa and fdoa mapped to the ground(x,y) 
%  Inputs: 
%  tdoa_grid   tdoas of each x,y 
%  fdoa_grid   fdoa of each x,y 
%  G             Caf in tdoa and fdoa plane 
%  dm            resolution in meters for fdao and tdoa grid 
%  Fs             Sample freq 
%  Pe1           Start of grid for Emitter's Position [X,Y] in meters 
%  Pe2           End of grid for Emitter’s Position {X,Y] 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 
%           this function generates a caf mapped to the x,y plane using 
%           the outputs of tdoa_fdoa_grid3D and CAF functions 
%           This function includes the function findnearest by By Tom Benson (2002) 
%           of University College London 
% 
% Written by:  Glenn Hartwell 
% Last modified:  14 Dec. 2004 
% ********************************************************************* 
  
[m,n] = size(tdoa_grid); 
%fdoa and tdoa grid are the same size 
[u,v] = size(G); 
  
for x = 1:m 
    for y = 1:n 
        t = tdoa_grid(x,y); 
        f = fdoa_grid(x,y); 
        j = findnearest(TauValues,(t*Fs),0); 
        i = findnearest(FreqValues,(f/Fs),0); 
        map(x,y)=G(i,j); 
    end 
end 
  
% Mesh result 
PtempX = Pe1(1):dm:Pe2(1);  % X grid points 
PtempY = Pe1(2):dm:Pe2(2);  % Y grid points 
figure 
f=mesh((abs(map'))); 



 90

set(f,'XData',PtempX); 
set(f,'YData',PtempY); 
xlabel('X meters'); 
ylabel('Y meters'); 
zlabel('power'); 
axis tight 
title('CAF Map'); 
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E. “FINDNEAREST.M” 
function [r,c,V] = findnearest(srchvalue,srcharray,bias) 
  
% Usage: 
% Find the nearest numerical value in an array to a search value 
% All occurances are returned as array subscripts 
% 
% Output: 
% 
% For 2D matrix subscripts (r,c) use: 
% 
%       [r,c] = findnearest(srchvalue,srcharray,gt_or_lt) 
% 
% 
% To also output the found value (V) use: 
% 
%       [r,c,V] = findnearest(srchvalue,srcharray,gt_or_lt) 
% 
% 
% For single subscript (i) use: 
% 
%         i   = findnearest(srchvalue,srcharray,gt_or_lt) 
%  
% 
% Inputs: 
% 
%    srchvalue = a numerical search value 
%    srcharray = the array to be searched 
%    bias      = 0 (default) for no bias 
%                -1 to bias the output to lower values 
%                 1 to bias the search to higher values 
%                (in the latter cases if no values are found 
%                 an empty array is ouput) 
% 
% 
% By Tom Benson (2002) 
% University College London 
% t.benson@ucl.ac.uk 
  
if nargin<2 
    error('Need two inputs: Search value and search array') 
elseif nargin<3 
    bias = 0; 
end 
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% find the differences 
srcharray = srcharray-srchvalue; 
  
if bias == -1   % only choose values <= to the search value 
     
    srcharray(srcharray>0) =inf; 
         
elseif bias == 1  % only choose values >= to the search value 
     
    srcharray(srcharray<0) =inf; 
         
end 
  
% give the correct output 
if nargout==1 | nargout==0 
     
    if all(isinf(srcharray(:))) 
        r = []; 
    else 
        r = find(abs(srcharray)==min(abs(srcharray(:)))); 
    end  
         
elseif nargout>1 
    if all(isinf(srcharray(:))) 
        r = [];c=[]; 
    else 
        [r,c] = find(abs(srcharray)==min(abs(srcharray(:)))); 
    end 
     
    if nargout==3 
        V = srcharray(r,c)+srchvalue; 
    end 
end 
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F. “SIG_GEN.M” 
 function [Sa1, Sa2, S1, S2, Pcc1, Pcc2] = sig_gen; 
  
% ********************************************************************* 
% [Sa1, Sa2, S1, S2, Pc1, Pc2]] = sig_gen; 
% SIG_GEN generates BPSK signal pairs based upon user-defined param- 
%            eters and Cartesian emitter-collector geometries.  There are 
%            no input arguments, since the function queries the user for 
%            all required inputs.  The function returns four vectors: 
%            Sa1, Sa2, S1 & S2.  These are the Analytic Signal represen- 
%            tations of the two generated signals, and the Real represen- 
%            tations of the two signals, respectively. 
% 
% Written by:  LCDR Joe J. Johnson, USN 
% Last modified:  28 June 2005 By Glenn D. Hartwell 
% Modified for 3D simulations and export collectors positions 
% ********************************************************************* 
  
clc; 
disp(' '); 
disp('All positions and velocites must be entered in vector format,'); 
disp('e.g., [X Y Z] or [X, Y, Z] (including the brackets).'); 
disp(' '); 
  
Pc1(1,:) = input... 
        ('Collector 1''s POSITION Vector at time 0 (in meters)?  '); 
Vc1 = input('Collector 1''s VELOCITY Vector (in m/s)?  '); disp(' '); 
  
Pc2(1,:) = input... 
        ('Collector 2''s POSITION Vector at time 0 (in meters)?  '); 
Vc2 = input('Collector 2''s VELOCITY Vector (in m/s)?  '); disp(' '); 
  
Pe(1,:) = input... 
             ('Emitter''s POSITION Vector at time 0 (in meters)?  '); 
Ve = input('Emitter''s VELOCITY Vector (in m/s)?  '); disp(' '); 
  
% f0 and fs are the same for BOTH collectors! 
f0 = input('Carrier Frequency (in Hz)?  '); 
fs = input('Sampling Frequency (in Hz)?  '); 
Ts = 1/fs;      % Calculates Sample Period 
  
Rsym = input('Symbol Rate (in symbols/s)?  '); disp(' '); 
Tsym = 1/Rsym;                      % Calculates Symbol Period 
  
N = input('How many samples?  '); disp(' '); 
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Es_No1 = input('Desired Es/No at Collector 1 (in dB)?  '); 
Es_No1 = 10^(Es_No1/10);            % Converts from dB to ratio 
  
Es_No2 = input('Desired Es/No at Collector 2 (in dB)?  ');  
disp(' '); 
Es_No2 = 10^(Es_No2/10);            % Converts from dB to ratio 
  
  
Pc1 = [Pc1; zeros(N-1, 3)];     % Initializing all the matrices makes 
Pe1 = zeros(N, 3);                  % later computations much faster. 
Pc2 = [Pc2; zeros(N-1, 3)]; 
Pe2 = zeros(N, 3); 
t1 = zeros(1, N); 
t2 = zeros(1, N); 
S1 = zeros(1, N); 
S2 = zeros(1, N); 
  
A = 1;                  % Amplitude of Signal 
c = 2.997925e8; % Speed of light in m/s 
Ps = (A^2)/2;       % Power of Signal 
  
sigma1 = sqrt(Ps*Tsym/Es_No1);  % Calculate Noise Amplification fac- 
sigma2 = sqrt(Ps*Tsym/Es_No2);  % tors using Es/No = Ps*Tsym/sigma^2 
  
Noise1 = sigma1.*randn(N, 1);       % Random Noise values for Signal 1 
Noise2 = sigma2.*randn(N, 1);       % Random Noise values for Signal 2 
  
  
% Builds the position vectors for the two collectors 
for index = 2 : N                    
   Pc1(index,:) = Pc1(index - 1,:) + Ts*Vc1; 
   Pc2(index,:) = Pc2(index - 1,:) + Ts*Vc2; 
end 
  
  
% While loop determines first elements of Pe1 and t1.  t1(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 1!  Pe1(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 1. 
  
temp = inf;         % Ensures while loop executes at least once 
t1(1) = 0; 
tempPe = Pe(1,:); 
while abs(temp - t1(1)) > 1/f0       
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   temp = t1(1); 
   t1(1) = -norm(Pc1(1,:) - tempPe) / c;     
   tempPe = Pe(1,:) + t1(1)*Ve;              
end                                                  
Pe1(1,:) = tempPe;       
  
  
% While loop determines first elements of Pe2 and t2.  t2(1) is the 
% time AT THE EMITTER that produces the 1st sample received at 
% collector 2!  Pe2(1,:) is the position of the emitter when it 
% produces the 1st sample received by collector 2. 
  
temp = inf;         % Ensures while loop executes at least once 
t2(1) = 0; 
tempPe = Pe(1,:); 
while abs(temp - t2(1)) > 1/f0       
   temp = t2(1); 
   t2(1) = -norm(Pc2(1,:) - tempPe) / c;     
   tempPe = Pe(1,:) + t2(1)*Ve;              
end                                                  
Pe2(1,:) = tempPe;       
  
% Platform positions at middle of snapshot 
Pcc1=(Pc1(N/2,:)); 
Pcc2=(Pc2(N/2,:)); 
% Determines the earliest time at the emitter for this pair of signals. 
StartPoint = min(t1(1), t2(1));      
  
  
% Next 2 lines determine offsets needed for signals 1 & 2 to enter the 
% phase vector (P).  This simply ensures proper line up so that bit  
% changes occur at the right times. 
SymbolIndex1 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t1(1)>t2(1));       
SymbolIndex2 = 1 + floor(abs(t1(1) - t2(1))/Tsym) * (t2(1)>t1(1)); 
  
  
for index = 2 : N                   % Builds the Pe1 and t1 vectors 
   temp = inf;           
   t1(index) = 0; 
    
   % 1st guess is that emitter will advance exactly Ts seconds. 
   tempPe = Pe1(1,:) + (t1(index -1) + Ts)*Ve;   
    
   % While loop iteratively determines actual time & position for  
   % emitter, based on instantaneous geometry. 
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   while abs(temp - t1(index)) > 1/f0                
      temp = t1(index);                              
      t1(index) = (index - 1)*Ts - norm(Pc1(index,:) - tempPe) / c; 
       
      % Due to negative times, must multiply Ve by ELAPSED time! 
    tempPe = Pe1(1,:) + abs(t1(1)-t1(index))*Ve;         
   end                                                               
   Pe1(index,:) = tempPe; 
end 
  
  
for index = 2 : N                   %Builds the Pe2 and t2 vectors 
   temp = inf;           
   t2(index) = 0; 
    
   % 1st guess is that emitter will advance exactly Ts seconds. 
   tempPe = Pe2(1,:) + (t2(index -1) + Ts)*Ve;   
    
    % While loop iteratively determines actual time & position for  
   % emitter, based on instantaneous geometry. 
   while abs(temp - t2(index)) > 1/f0                
      temp = t2(index);                                  
    t2(index) = (index - 1)*Ts - norm(Pc2(index,:) - tempPe) / c; 
       
      % Due to negative times, must multiply Ve by ELAPSED time! 
      tempPe = Pe2(1,:) + abs(t2(1)-t2(index))*Ve;        
   end 
   Pe2(index,:) = tempPe; 
end 
  
  
% Could change this seed to whatever you want; or could have user  
% define it as an input.  This just ensures, for simulation purposes 
% that every time the program is run, the BPSK signals created will 
% have the same random set of data bits. 
rand('seed',5);                  
                   
% Create enough random #'s to figure phase shift (data bits) 
r = rand(N,1);    
P = (r > 0.5)*0 + (r <= 0.5)*1;     % Since BPSK, random # determines 
                                                % if phase is 0 or pi  
                                     
                                     
% Building Xmitted Signal #1 vector...  These represent the pieces of 
% the signal that were transmitted by the emitter to arrive at  
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% Collector 1 at its sample intervals. 
                                     
S1(1) = A*cos(2*pi*f0*t1(1) + P(SymbolIndex1)*pi) + Noise1(1); 
  
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
   if t1(index) - StartPoint >= (SymbolIndex1) * Tsym     
      SymbolIndex1 = SymbolIndex1 + 1; 
   end 
   S1(index) = A*cos(2*pi*f0*t1(index) + P(SymbolIndex1)*pi) + ... 
                Noise1(index); 
end 
  
Sa1 = hilbert(S1);  % Calculates the ANALYTIC SIGNAL of S1.  To  
                            % compute the COMPLEX ENVELOPE, multiply Sa1 
                            % by .*exp(-j*2*pi*f0.*t1); 
  
  
% Building Xmitted Signal #2 vector...  These represent the pieces of 
% the signal that were transmitted by the emitter to arrive at  
% Collector 2 at its sample intervals. 
  
S2(1) = A*cos(2*pi*f0*t2(1) + P(SymbolIndex2)*pi) + Noise2(1); 
  
% The if statement inside the loop changes the data bit if the time 
% has advanced into the next symbol period. 
for index = 2 : N 
   if t2(index) - StartPoint >= (SymbolIndex2) * Tsym  
      SymbolIndex2 = SymbolIndex2 + 1; 
   end 
   S2(index) = A*cos(2*pi*f0*t2(index) + P(SymbolIndex2)*pi) + ... 
                Noise2(index); 
end 
  
Sa2 = hilbert(S2);  % Calculates the ANALYTIC SIGNAL of S2.  To  
                            % compute the COMPLEX ENVELOPE, multiply Sa2 
                            % by .*exp(-j*2*pi*f0.*t2); 
  
  
% This function call simply calculates and displays the expected TDOAs 
% and FDOAs at the Beginning and End of the collection time. 
  
tdoa_fdoa(f0,Pe1(1,:),Pe1(N,:),Pe2(1,:),Pe2(N,:),Ve,Pc1(1,:),... 
         Pc1(N,:),Vc1,Pc2(1,:),Pc2(N,:),Vc 
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