Title and Subtitle:
Retrieval of Mesospheric and Lower Thermospheric Kinetic Temperature From Measurements of CO$_2$ 15 μm Earth Limb Emission under non-LTE Conditions

Authors:
Christopher J. Mertens, Martin G. Mlynczak, Manuel Lopez-Puertas, Peter P. Wintersteiner, R.H. Picard, Jeremy R. Winick, Larry L. Gordley, and James M. Russell

Abstract:
We present a new algorithm for the retrieval of kinetic temperature in the terrestrial mesosphere and lower thermosphere from measurements of CO$_2$ 15 μm earth limb emission. Non-local-thermodynamic-equilibrium (non-LTE) processes are rigorously included in the new algorithm, necessitated by the prospect of satellite-based limb radiance measurements to be made from the TIMED/SABER platform in the near future between 15 km and 120 km tangent altitude. The algorithm requires 20 seconds to retrieve temperature to better than 3 K accuracy on a desktop computer, easily enabling its use in operational processing of satellite data. We conclude this letter with a study of the sensitivity of the retrieved temperatures to parameters used in the non-LTE models, including sensitivity to the rate constant for physical quenching of CO$_2$ bending mode vibrations by atomic oxygen.

Subject Terms:
Earth limb, CO$_2$ 15 μm earth limb emission

Security Classification:
UNCLASSIFIED

DISTRIBUTION / AVAILABILITY STATEMENT:
Approved for Public Release; Distribution Unlimited.
Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO$_2$ 15 μm Earth limb emission under non-LTE conditions

Christopher J. Mertens, Martin G. Mlynczak, Manuel López-Puertas, Peter P. Wintersteiner, R. H. Picard, Jeremy R. Winick, Larry L. Gordley, and James M. Russell III

Abstract. We present a new algorithm for the retrieval of kinetic temperature in the terrestrial mesosphere and lower thermosphere from measurements of CO$_2$ 15 μm earth limb emission. Non-local-thermodynamic-equilibrium (non-LTE) processes are rigorously included in the new algorithm, necessitated by the prospect of satellite-based limb radiance measurements to be made from the TIMED/SABER platform in the near future between 15 km and 120 km tangent altitude. The algorithm requires 20 seconds to retrieve temperature to better than 3 K accuracy on a desktop computer, easily enabling its use in operational processing of satellite data. We conclude this letter with a study of the sensitivity of the retrieved temperatures to parameters used in the non-LTE models, including sensitivity to the rate constant for physical quenching of CO$_2$ bending mode vibrations by atomic oxygen.

Introduction

Techniques to retrieve temperature profiles from broadband measurements of CO$_2$ 15 μm earth limb emission from the middle atmosphere were developed more than 30 years ago (e.g., [Gille and House, 1971]). In these techniques a basic assumption was that carbon dioxide (CO$_2$) was well mixed and its volume mixing ratio (vmr) was well known. Another key assumption was that the observed CO$_2$ transitions were in LTE. These assumptions were sufficient for previous sensors whose sensitivity did not permit limb radiance measurements much above 70 km tangent height.

In the very near future, NASA will launch and commence operations of the Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) mission whose primary goals are to measure the thermal structure and to quantify the energy budget of the 60-180 km region. One TIMED instrument, SABER (Sounding of the Atmosphere using Broadband Emission Radiometry), will measure CO$_2$ limb emission in the 15 μm spectral interval to approximately 120 km in altitude for the purpose of determining kinetic temperature (T_k). SABER is a broadband radiometer with 10 spectral channels ranging from 1.27 μm to 16 μm. To analyze the SABER limb radiance data in terms of T_k, new retrieval approaches must be developed to deal effectively with the occurrence of non-LTE in the observed vibration-rotation bands of CO$_2$ as well as variability in the CO$_2$ vmr. The purpose of this letter is to present the algorithm for retrieving T_k from non-LTE emission measurements and to present the sensitivity of the retrievals to parameters in the non-LTE model.

Temperature retrieval approach

Kinetic temperature is retrieved using SABER measured radiance from two CO$_2$ 15 μm channels, a narrow bandpass channel (650-695 cm$^{-1}$) and a wide bandpass channel (580-760 cm$^{-1}$). The two CO$_2$ channels are used to register pressure with altitude in the stratosphere and infer T_k assuming LTE conditions. This approach is similar to the two-color technique of Gille and House [1971]. The LTE assumption breaks down in the mesosphere for the CO$_2$ 15 μm bands. The non-LTE retrieval algorithm is then employed to infer T_k in the mesosphere and lower thermosphere (MLT) using measured radiance from the CO$_2$ narrow channel.

The LTE-retrieved T_k and pressure described in the preceding paragraph provide the lower boundary conditions for the non-LTE T_k retrieval. The lower boundary altitude is nominally taken to be 50 km.

The non-LTE T_k retrieval model is comprised of two main components: (1) the forward radiance model and (2) the inversion model. Moreover, the forward radiance
model itself is composed of two parts: (1) the vibrational temperature \((T_v) \) model and (2) the limb radiance model. Limb radiance is calculated using BANDPAK [Marshall et al., 1994], now expanded for applications to non-LTE calculations. There are seventeen 15 \(\mu \)m bands that contribute to the limb radiance in the \(\text{CO}_2 \) narrow channel spectral bandpass. Vibrational temperatures for these seventeen bands are the non-LTE inputs into the limb radiance model. The non-LTE formulation in BANDPAK is a broadband extension of the line-by-line approach described by Edwards et al. [1993] and demonstrated by Mylnsak et al. [1994]. The vibrational temperatures are calculated from the operational \(\text{CO}_2 \) \(T_v \) model, which is a formulation of the Modified Curtis Matrix approach of López-Puertas et al. [1998a] that uses BANDPAK to perform all the radiation transfer calculations.

A number of techniques are used in the inversion model of the retrieval algorithm. There are two primary relaxation loops. In the inner loop a \(T_k \) profile is retrieved using the onion-peel approach while pressure and the \(T_v \)'s are fixed. The onion-peel technique is characterized by first matching the emission of the outer atmospheric layer to the measured radiance, then successively matching the next inward layer. Kinetic temperature is retrieved at each tangent height by adjusting the local \(T_k \) until the modeled radiance matches the measured radiance within the convergence criterion. The temperature is adjusted using Newtonian iteration and the optimal estimation algorithm [Rodgers, 1976]. The inner loop convergence criterion is a requirement that the modeled radiance match the measured radiance within a user-specified fraction of the solution error (standard deviation).

The onion-peel approach is critical to retrievals in the mesosphere from the \(\text{CO}_2 \) 15 \(\mu \)m bands since the limb radiance for mesospheric tangent heights is dominated by emission from higher altitude layers [Wintersteiner et al., 1992]. The onion-peel technique ensures that the modeled emission matches the measured radiance from the upper altitude layers, even though the retrieved temperature-pressure combination may be incorrect at intermediate steps in the relaxation process. For a particular limb path, the effect is greater sensitivity to the local \(T_k \) at the sought-after tangent altitude.

Operationally, the a priori temperature profile for a particular measurement will be the retrieved temperature profile from the previous measurement. However, the a priori error variance is specified such that the solution error variance is dominated by measurement error (noise) over the range of altitudes where the signal-to-noise ratio is 10 or more. In effect, the weighting of a priori data is small over the altitude region where one can reasonably expect an accurate and precise retrieval from a direct measurement, and large enough outside of this altitude region to ensure a stable solution.

In the outer relaxation loop, the pressure profile is rebuilt from the lower boundary using the onion-peel retrieved \(T_k \) profile and the barometric pressure law. The vibrational temperatures are updated using the \(\text{CO}_2 \) 15 \(\mu \)m \(T_v \) model with the previously retrieved \(T_k \) and pressure profiles as input. The onion-peel retrieval (inner) loop is repeated until the entire inferred \(T_k \) profile relaxes within the convergence criterion, which is a requirement that the retrieved temperature profile differences between two successive onion-peel retrieval iterations be smaller than a user-specified fraction (same as above) of the solution error at a user-specified altitude. The user-specified altitude is chosen such that the signal-to-noise ratio is roughly 10 (typically, 110 to 115 km).

The top of the atmosphere (TOA) is nominally taken to be 140 km. This choice of TOA eliminates upper boundary effects on retrieved temperatures at altitudes where one can reasonably expect quality retrievals.

The non-LTE retrieval algorithm typically requires no more than five iterations in either (inner/outer) loop of the relaxation scheme. The algorithm can retrieve \(T_k \) at 51 tangent altitudes in 20 seconds on a desktop (500 Mhz Pentium) computer.

Results and Discussion

We now present retrieved temperature profiles from simulated SABER measurements and give estimates of the accuracy and sensitivity of the retrieved temperatures to parameters in the non-LTE model. The retrieval simulations were done on a 2 km grid, consistent with SABER's effective field-of-view. Shown in Figure 1 is a retrieval for a realistic temperature profile with two mesospheric inversion layers. This profile was derived from lidar measurements taken during the ALOHA 93 campaign [Dao et al., 1995]. The first guess profile used to initialize the retrieval was an MSIS temperature profile, also shown in Figure 1. For the ALOHA case, the temperature profile is retrieved mostly within 3 K accuracy.
Table 1. Determinations of k_o from laboratory measurements and as inferred from atmospheric observations

<table>
<thead>
<tr>
<th>Ratea</th>
<th>Temperatureb</th>
<th>Reference</th>
<th>Ratea</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4×10^{-12}</td>
<td>300</td>
<td>Shved et al. [1991]</td>
<td>6.0×10^{-12}</td>
<td>Sharma and Wintersteiner [1990]</td>
</tr>
<tr>
<td>1.2×10^{-12}</td>
<td>300</td>
<td>Pollack et al. [1993]</td>
<td>3.6×10^{-12}</td>
<td>López-Puertas et al. [1992]</td>
</tr>
<tr>
<td>0.5×10^{-12}</td>
<td>301</td>
<td>Lilenfeld [1994]</td>
<td>1.5×10^{-12}</td>
<td>Vollman et al. [1997]</td>
</tr>
</tbody>
</table>

aUnit is cm$^{-3}$ s$^{-1}$

bUnit is Kelvin

racy below 105 km, with the exceptions of a 5 K error at 88 and 96 km and a 4 K error at 80 and 100 km. Note also in Figure 1 the initial guess MSIS temperature profile has no small-scale atmospheric structure and differs from the lidar ("true") temperature profile by more than 35 K at some altitudes.

In the retrieval simulations presented above, the only sources of uncertainty included are simulated random instrument noise and calibration errors. There are other uncertainties to consider in a retrieval under non-LTE conditions. Specifically, CO$_2$ is apparently not well mixed above 75 km [López-Puertas et al., 1998b]. Uncertainties in CO$_2$ will manifest themselves as uncertainties in the retrieved mesospheric temperature. In addition, uncertainties in the kinetic and spectroscopic parameters used in the computation of CO$_2$ T_v's will also contribute to uncertainties in the retrieved T_k. Certainly the most important of these parameters is the rate of physical quenching of CO$_2$ vibrations by collisions with atomic oxygen through the process

$$\text{CO}_2(01^10) + \text{O} \rightarrow \text{CO}_2(00^00) + \text{O} + 667 \text{ cm}^{-1}. \quad (1)$$

This process is critical to determining the T_v of the CO$_2$ v_2 fundamental band in the upper mesosphere and lower thermosphere. The retrieved temperature profile depends on knowing the rate coefficient for this process (which we will call k_o) and the atomic oxygen concentration. There have been several determinations of k_o from which the rate has been inferred. The reported rate coefficients span the range from 0.5×10^{-12} cm3s$^{-1}$ at 301 K determined by Lilenfeld [1994] to 6×10^{-12} cm3s$^{-1}$ at 300 K inferred by Sharma and Wintersteiner [1990].

Table 1 lists the published values of the determinations of k_o. The temperature dependence of k_o is not known from laboratory measurement.

For the following sensitivity studies, we assume a 50% uncertainty in atomic oxygen and in k_o. We note that the SABER experiment will simultaneously measure the CO$_2$ abundance and that a number of techniques will be used to infer the atomic oxygen concentration (e.g.,

Table 2. Uncertainties in retrieved kinetic temperature (K) due to the specified uncertainty in the rate of physical quenching (k_o) of CO$_2$ vibrations by atomic oxygen (or equivalently, to uncertainty in atomic oxygen concentration) and due to the uncertainty in the CO$_2$ concentration (as described in the text). The uncertainty due to random instrument noise is in the column labeled “Noise”. The column labeled “Cal” denotes the radiometric calibration error. The column “Total” is the root-sum-square of the uncertainty due to the previous 5 columns.

<table>
<thead>
<tr>
<th>Retrieval Uncertainty (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(km)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>110.0</td>
</tr>
<tr>
<td>108.0</td>
</tr>
<tr>
<td>106.0</td>
</tr>
<tr>
<td>104.0</td>
</tr>
<tr>
<td>102.0</td>
</tr>
<tr>
<td>100.0</td>
</tr>
<tr>
<td>98.0</td>
</tr>
<tr>
<td>96.0</td>
</tr>
<tr>
<td>94.0</td>
</tr>
<tr>
<td>92.0</td>
</tr>
<tr>
<td>90.0</td>
</tr>
<tr>
<td>88.0</td>
</tr>
<tr>
<td>86.0</td>
</tr>
<tr>
<td>84.0</td>
</tr>
<tr>
<td>82.0</td>
</tr>
<tr>
<td>80.0</td>
</tr>
</tbody>
</table>
The uncertainty in CO$_2$ is represented using two different CO$_2$ vmr profiles. The "true" CO$_2$ profile is assumed to be the profile taken from a rocket measurement described by Wintersteiner et al. [1992]. Temperature was retrieved using a CO$_2$ profile derived from ISAMS measurements [López-Puertas et al., 1998b]. The two CO$_2$ profiles differ from one another between 70 and 110 km, with a maximum difference of ~15% at 95 km. Shown in Table 2 are the results of this sensitivity study for a smoothed version of the US Standard Atmosphere. A goal of the SABER experiment from the outset has been to retrieve temperature to better than 3 K below 100 km in order to compute accurately the energy balance and dynamics of the mesosphere. Uncertainty in CO$_2$ dominates the error in retrieved temperature below 100 km. However, if the CO$_2$ abundance is simultaneously retrieved with sufficient accuracy, then uncertainties in atomic oxygen and k_0 on the order of 50% or greater start to affect our ability to meet the SABER retrieval-uncertainty goal above about 90 km. In contrast, recall the order-of-magnitude range in the reported values for k_0. This goal can be achieved if the instrument performs on orbit as calibrated in the laboratory and if the non-LTE model and atmospheric parameters are known to accuracies better than indicated in Table 2.

Summary

We have presented an overview of a new algorithm for the rapid and accurate retrieval of T_k from measurements of CO$_2$ 15 μm earth limb emission under non-LTE conditions. The algorithm faithfully recovers atmospheric temperature to better than 3 K accuracy for realistic atmospheres and runs in approximately 20 seconds on desktop computer hardware.

We note that in order to realize the potential of this algorithm (and hence, the SABER experiment) the range of uncertainty in k_0 must be significantly reduced. We recommend a critical evaluation of the extent determinations by the chemical kinetics community. It would also seem prudent to quantify the dependence of this rate coefficient on temperature over the range commonly encountered in the MLT.

Acknowledgments. M.L-P. has been partially supported by CICYT under contracts ESP97-1798 and ESP97-1773-C03-01. RHP and JRW are grateful to Kent Miller and to Paul Bellaire of the Air Force Office of Scientific Research for partial support of this work. The work of PW was carried out under contract to Air Force Research Laboratories under contract F19628-95-C-0048. All authors acknowledge support from NASA Langley under its SABER project.

References

C. J. Mertens, NASA Langley Research Center, Atmospheric Sciences Competency, 21 Langley Boulevard, Mail Stop 401B, Hampton VA 23681-2199. (email: cjmertens@larc.nasa.gov)

(Received August 9, 2000; revised December 13, 2000; accepted December 14, 2000.)