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Spacecraft Trajectory Estimation
Using a Sampled-Data Extended Kalman Filter
with Range-Only Measurements

R. Scott Erwin and Dennis S. Bernstein

Abstract— Determining the trajectory of a body orbitng an extraordinarily broad range of disciplines, from motor
the Earth is a fundamental task in astrodynamics. In this control to weather forecasting [8, 9].
paper we use a sampled-data extended Kalman filter 0 Ajhough the extended Kalman filter was originally
estimate the trajectory of a target satellite when only rang . o . .
measurements are available from a constellation of orbitig conc_elved within a _StOChaSt'_c s_ettlng, recent research has
spacecraft. We consider the ability of the filter to acquire Provided a foundation for viewing the extended Kalman
the target satellite under time-sparse measurements, andot filter as a deterministic observer [10-12]. The idea is to
estimate the eccentricity and inclination of the target satllite’s  adopt or modify the formalisms of the extended Kalman
orbit. Our goal is to quantify tradeoffs among acquisition ime,  giia \while determining conditions that ensure stabilityda

tracking accuracy, and measurement sample rate. In additio, o .
when the orbits of the observing spacecraft are all equatos, convergence. Although the sufficient conditions are often

it is found that inclination maneuvers of the target satellie ~ conservative for specific applications, these results ipeov
are unobservable. an intellectual rationalization for the extended Kalmatefil

formalism
1. INTRODUCTION The second approach to approximate nonlinear state

The problem of estimating the full state of a dynamica@stimation foregoes an explicit update of the state estimat
system based on limited measurements is of extreme imp@&fror covariance in favor of a collection of filters whose
tance in many applications. For the case of a linear systeffisponse is used to approximate the state estimate error
with known dynamics, the classical Kalman filter providegovariance. These statistical approaches include thieleart
an optimal solution [1,2]. However, state estimation fornscented, and ensemble Kalman filters [13-15].
nonlinear systems remains a problem of intense researchThe present paper is concerned with state estimation for
interest. satellite trajectory estimation, which, for unforced nootj

Besides their value in estimating the state of a systefi €quivalent to orbit determination [16]. Since orbital
with nonlinear dynamics, nonlinear estimators can also g&/namics are nonlinear, nonlinear estimation techniques a
used to estimate constant states that represent parameté@gded. A wide variety of problems can be considered
Consequently, nonlinear filters are useful for system idefased on the type of data that are available, including angle
tification [3]. One of the key issues that arises in thidazimuth and elevation), range, and range rate. The use of
application is parameter bias, a longstanding problem [4]angle-only data is considered in [17], which develops a

Optimal nonlinear filters have been studied [5], but arépecialized filter to exploit the monotonicity of angles in
often infinite dimensional and thus are difficult to imple-Orbital motion. Issues that arise in the use of range-rate
ment. Within a deterministic setting, nonlinear observerédoppler) measurements are discussed in [18, 19].
have been developed for systems of special structure [6,Orbit estimation with measurements provided by a con-
7]. Consequently, except for systems of special structurétellation of satellites is considered in [20,21]. One sce-
approximate filters are usually implemented in practice. hario (TDRSS) considers the use of observing satellites in

There are two main approaches to approximate nonlinegifcular, equatorial, geosynchronous orbits to tracklbe
filtering. The first approach is based on a linearization dft 1ow-Earth orbit, while another scenario (GPS) involves
the nonlinear dynamics and measurement mapping. File use of a constellation of satellltes_wnh pseudo-range
example, the extended Kalman filter uses the nonlinegi€asurements (range_measurements with clock error biases)
dynamics to propagate the state estimate while using ti@ determine the location of the user. _
linearized dynamics and linearized output map to propagate!n the present paper we consider the use of a constellation
the pseudo-error covariance. The extended Kalman filter @ satellites in low-Earth orbit to track a satellite in ggos

often highly effective, and documented applications covefronous orbit. Since the observing satellites have much
smaller period than the target satellite in geosynchronous
R. Scott Erwin is with the Air Force Research Lab, Space Vekic Orbit, we must account for blockage by the Earth, and
Dlrectorate, Kirtland A_|r F_orce_Base, NM, richard.erwini@land.af.mil thus the number of available measurements varies with
Dennis S. Bernstein is with the Department of Aerospace -Engi,. We icularly i d in th bili f th
neering, The University of Michigan, Ann Arbor, Ml 4810941, ds- time. We are particularly interested in the ability of the

baero@umich.edu observing satellites to acquire and track the target #atell



when measurements are available at low frequency, that is,Resolvingr, v, andw in | according to
with a large sample interval.

Unlike the study in [20, 21], which considers either angle 7‘ — Z ol = Z"E ol = Z”B
. . Y Yy ) Yy 9

(two observations per satellite), angle and range (three I . I v, I w,
observations per satellite), and angle, range, and rarge r _ .
(four observations per satellite), we consider the case ﬁ]]e equations of motion (3) become
which only range measurements are available (one obser- z Vg
vation per satellite). In addition, the sample rate in [2@kw Y Uy
chosen to be 33 Hz, while we are interested in the ability z | Uz )
to track under time-sparse measurements, available on a Uy —(u/r¥)r+wy |
scale of only minutes or perhaps hours. This constraint is Uy —(u/r3)y + wy
motivated by the need for satellites to simultaneouslykirac 0, —(p/r%)z +w,

a large number of objects. Ny
As in [20, 21], we employ the sampled-data (continuous- Note thatr =/ +y* + =%. We can rewrite (4) as
discrete) extended Kalman filter [2, p. 188]. This extended X =f(X)+W, (5)
Kalman filter involves continuous-time propagation of thgynere

state estimate as well as the pseudo-error covariance be-

. . 0
tween measurements and data updates. In practice, the 2 0
continuous-time state and covariance propagation can be Al N Uy N 0
implemented online with high-resolution integration to ac X = " (X)) = —( /Zr3>x W = w
curately follow the nonlinear dynamics. * K 3 i
vy —(u/m)y wy
o —(u/73)2 w,

2. EQUATIONS OFMOTION (6)
We consider a single body, called tharget, orbiting The vector X provides a complete representation of

the Earth. Throughout this study we assume that the Earfie target's state, which is characterized by the position
is spherical and uniform with an ideal gravitational field.and velocity. When the satellite is moving along an orbi,
Except for possible thrusting by the target itself, we ignorsuch as a circle, ellipse, parabola, or hyperbola, it isrofte
all perturbing forces such as drag. The position vectarf ~ Useful to represent the satellite motion in terms of the 6

the target with respect to the center of the Earth satisfiesorbital parameters given by the perigee distamge the
eccentricity e, the right ascension of the ascending node

? _ Ky T 1) Q, the inclinations, the argument of periapsis, and the
3 ) i ;
7 true anomaly . The orbital elements, ande fix the shape
of the orbit, while the angle®, i, andw comprise 3,1, 3)
wherer £ |7 ‘| is the distance from the satellite to the centegequence of Euler rotations that transform the inertiahéra
of the Earthuw denotes forces due to thrusting per unit masg the inertially fixed frame. The true anomaift) is a
acting on the target, ar‘;d 398,600 km3/s? is the Earth’s time-dependent parameter that keeps track of the position
gravitational parameter. The specific thrusts zero unless of the satellite along its orbit. The nonlinear transforiors
the target is actively maneuvering. Introducing the vejoci that convert position and velocity into orbital elementsl an

vector v 2 7, we can rewrite (1) as vice versa are given in [22].
. 3. MEASUREMENTMODEL
r=79, () For trajectory estimation, we assume that range measure-
j _ Ky W ©) ments are available from satellites at times = kh, where
3 k=1,2,.... Letting x;, y;, z; denote the inertial coordi-

ates of theith satellite, assumed to be known accurately,
e measuremerit = Y (kh) € RP? is given by (omitting
the argumenkh on the right-hand side)

To cast the dynamics (3) in terms of coordinates, w
introduce an inertial reference frame I. It is traditional t
choose the inertial reference frame so thatXhaxis points
toward the Sun on the first day of spring (the vernal equinox di(x,y,2,71,91,21)
line), the Z-axis points through the North pole of the Earth Y (kh) = : + 0, 7)
along the axis of rotation, and thé-axis completes a right- d(z,y, > 'x %)
handed coordinate system. This description is approximate A8 Y 2 T Y Zp
since the Earth’s rotational axis is not fixed inertially angvhere, fori =1,....p,
since the stars move inertially as well [22, pp. 150-153]. di(

i\T, Y, 2, Tis Yiy Zi
However, such details do not play a role in the subsequent Y Y 3 ) 21172
analysis. [z —2:)"+ (y—v:)” + (2 — 2)7] (8)

2



is the distance from th&h satellite to the target, ande R? Equations (9) and (11) are numerically integrated in real
denotes measurement noise. time. Since there is no data injection during the time irdérv
The measurement; is assumed to be unavailable when[(k — 1)h, kh], variable-step integration can be used for
the line-of-sight path between thith satellite and the target efficiency and accuracy. Lef'(kh—) and P(kh—) denote
is blocked by the Earth. To determine blockage, we note thétte values ofX and P at the right-hand endpoint of the
the Earth’s surface blocks the path from ttle satellite to interval [(k — 1)h, kh]. At the start of the next interval
the target if and only if there exists € [0,1] such that [kh, (k+ 1)h], the initial valuesX (kh+) and P(kh+) are
D;(a) < Rg, where Rg 2 6378 km is the radius of the determined by the data update step. The overall system can

Earth and be viewed as a sampled-data system in which continuous-
A time dynamics are interrupted by instantaneous state jumps
Di(@) = /(i +ax)? + (yi + ay)? + (2 + az)?. [23].
The smallest value oD;(«) as attained for = o;, where 45 pata Update Step
o 2 _TiT Yy + ziz For the data update step, the linearized measurement map
z? +y? + 22 is given by
Hence, we computey;, ascertain whethew; lies in the . A
interval [0,1], and then check the blockage condition~* = ) )
Dz(az) < REg. #(kh=)—z1(kh)  g(kh—)—yi(kh)  2(kh—)—z1(kh) 01x3

di (k) di (k) di (k)
4. SAMPLED-DATA EXTENDED KALMAN FILTER : : : : ,
Since the equations of motion (1) are nonlinear, we| Z(kh—)—zp(kh)  §(kh—)—yp(kh)  Z(kh—)—zp(kh)
consider an extended Kalman filter. In addition, since we dp (k) dp (k) dp (k)
assume that measuremefitsare available with a specified where, fori =1,...,p,
sample interval ofh sec, we consider a sampled-data. A . A
extended Kalman filter with data update performed at eachi(F) = di(&(kh=),§(kh—), 2(kh=), zi(kh), yi(kh), zi(kh)).
time ¢t = kh. The_ sarr_lpleq-dat_a (“continuous—discrete”),:urthermore, the data update gdif, is given by
extended Kalman filter is given in [2, p. 188]. We use *“- o )
" and “+” to denote state estimates before and after data K = P(kh—)C} [C,.P(kh—)C + R] ™", (12)
updates, respectively.

01x3

while the state-estimate data update is given by
4.1. Forecast Step 5 5

X (kh+) = X (kh—) + Ki[Y (kh) — d(k)], (13)
The forecast (data-free) step of the sampled-data ex-
tended Kalman filter consists of the state-estimate prop#here

gation o d1 (k)

X N d(k) =

X(t) = f(X(®), tel(k—1)hkh] ©) ;

dy (k)

where Finally, )

XE2[& 9 2 0 0, 0.]", (10) P(kh+) = (I — KxCy)P(kh—).
as well as the pseudo-error covariance propagation The vaIuesX(kth) and P(kh+) are used to initialize (9),
Plt) = AP + POAT®) + Q. te [(k—1)h, khl, (11) in the next intervalkh, (k + 1)h].

(12) 5. NUMERICAL EXAMPLES

We consider the case in which satellites in low-Earth
orbit (LEO) at a radius of 6600 km are observing a target
satellite in an equatorial geosynchronous orbit at a ragfius

on | O3xz I3 42,164 km. We assume that the LEO satellites are spaced
() = [ Ao(t) O3x3 } uniformly around the Earth in an equatorial orbit. With
-~ this arrangement, 4 is the smallest number of satellites for
where (omitting the argumer) which at least 2 satellites are always able to simultangousl

whereA(t) 2 F(X(t))is the Jacobian of evaluated along
the trajectory of (9). The Jacobiaf(t) is given by

37352 -5 ?;j”—Sy 32z view the target. Target tracking with as few as 2 satellites
Ao(t) A 389 32 1 332 separated by a true anomaly of less than 180 degrees is
0 H 5 [ 75 ’ also possible as long as measurements are guaranteed to
3;{)2 % 3552 _ TLB be available when the target is in the field of view of
N both satellites. However, for simplicity, we assume the
wherer = /32 + 2 + 22. availability of 4 uniformly spaced LEO satellites with rang



measurements available (subject to blocking by the Eatth) a
a fixed sample interval of sec. All satellite measurements
(blocked or not) are assumed to occur simultaneously.
Assuming perfect knowledge of the initial condition and
assuming that the target is not maneuvering, it is possible
to track the target with arbitrary accuracy without the use S % % = & 7 8 s 1o
of measurements. In practice, perturbing forces such as mein see
drag must also be estimated; however, these forces are s
not considered in this study. When the initial state is
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are needed to track the target. We consider these cases!
separately.
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6. TARGET ACQUISITION time in sec
) ) . Fig. 1. Target position- and velocity-estimate errors witftial
We first consider the ability of the sampled-data Kalman true anomaly errors of 1 degree and 110 degrees. The range dat

filter to acquire the target, that is, to locate the targepides @€ measured with a sample interval = 1 sec from 4 LEO
satellites, and perfect (nonnoisy) measurements are asswith

initial position errors. In all cases we s@t= [ 7. ], and R = 0.011 in the filter gain expression (12). In both cases the
Py =0. estimator accurately locates the target within about 50 sec

First, we set the sample interval to he= 1 sec, and we
consider initial estimates that are erroneous by 1 degrée an
110 degrees. We assume perfect (nonnoisy) measurement:z
and setR = 0.017 in (12). Figure 1 compares the perfor-
mance of the filter for both initial estimates. The ultimate
tracking accuracy in both cases is determined by numerical
resolution in computing the state estimates. Convergehce o Ldogoiniaona ) 0\
the filter is not global; in fact, the filter fails to converger f o 10 = w4 @ e 0 & S0 100
initial true anomaly errors greater than about 120 degrees.

Next, we introduce gaussian measurement noise with a _
standard deviation of.1 km, which corresponds t& =
0.017 in (12). For initial estimates that are erroneous by 1
degree and 110 degrees, Figure 2 shows that the position-
estimate error reaches a level that is consistent with the
measurement accuracy. -2 L w w

For an initial true anomaly estimate that is erroneous by
110 degrees, the position estimates are shown in Figure 3.Fig. 2. Target position- and velocity-estimate errors viftfial
The estimator approaches the vicinity of the target within g?ee ,ilgr:ﬂgdemf ? ga%e?re? ang o degrees. The range dat

ple interval = 1 sec from 4 LEO
about 10 sec. satellites, and with gaussian measurement noise whosdasthn

Next we consider the ability of the filter to acquire the deviation is0.1 km and thus with/z = 0.011 in the filter gain

. . xpression (12). In both cases the estimator accuracy spumels
target under time-sparse measurements with a measuremen(e0 the measurement error level.
standard deviation of.1 km. For an initial true anomaly
error of 10 degrees, Figure 4 shows the position-estimate
errors forh = 1,10, 50, 100 sec. In each case, the estimator
acquires the target in about 10 data assimilation steph, wit
ultimate accuracy independent of the sample interval. We now consider the case in which the target performs

an unknown thrust maneuver that changes the eccentricity

of its orbit. The initial true anomaly error in all cases is 10
degrees. In particular, the target is initially in a cirauabit
Next, we assess the ability of the filter to track the targeds in the previous examples. At time= 100 sec, the target
along its orbit. To see how the position estimate degradeerforms a 1-second burn that produces a specific thrust
between data updates, we consider an initial true anomaly = [0 .5 0]T km/s*, and, at timet = 200 sec, the target
error of 10 degrees and a sample interval of 50 sec witherforms a 1-second burn that produces a specific thrust
measurement noise having a standard deviation of 0.1 km.= [0 .3 0]T km/s?. With an initial eccentricity ofe = 0,
Figure 5 shows the growth of the position error betweenorresponding to the initial circular orbit, the eccerntyic
measurements as well as the position-error reduction thafter the first burn i ~ .35, while the eccentricity after
occurs due to data injection. the second burn ig ~ .59. Assuming measurement noise
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. * B Fig. 4. Target position-estimate error for sample intexval=
1,20,50,100 with range data measured from 4 LEO satellites
with a standard deviation di.1 km. In each case, the estimator
-5, o o I p 3 7 5 acquires the target in about 10 data assimilation stepk,ultimate
km < 10° accuracy independent of the sample interval.

Fig. 3. Target position estimates” with an initial true anomaly
error of 110 degrees. The initial location of the target iS&X0. 5
The range data are measured with a sample intdivat 1 sec
from 4 LEO satellites (whose tracks are shown), and with gjans
measurement noise whose standard deviatiod.iskm and thus
with R = 0.011 in the filter gain expression (12). The estimator
approaches the vicinity of the target within about 10 se@ Ehrth
and all orbit locations are drawn to scale.

with a standard deviation 0§.01 km and measurements
available with a sample interval &f = 1 sec, the estimated
eccentricity based on the data update estimates is shown in
Figure 6. The same scenario is repeated vitmcreased

to 10 sec, with the results shown in Figure 7. 2

log10 position error (km/s)
-

9. INCLINATION ESTIMATION % 200 400 600 80 1000 1200 1400 1600 1800 2000

time in sec

We now consider the case in which the ta_rge_t pgrfor_ms Fig. 5. Target position-estimate error with an initial trarromaly
an unknown thrust maneuver that changes its inclination. error of 10 degrees, a sample interval bf= 50 sec, and a
The initial true anomaly error in all cases except where measurement noise standard deviationaf km. The growth of
noted s 30 degrees. In partcular, the target s iniialy | [he PoSton et hetueen measuremeni can be seer, aasie
a circular equatorial orbit as in the previous examples. At
time ¢t = 100 sec, the target performs a 1-second burn that
produces a specific thrust = [0 0 .5]T km/€, and, at
time ¢t = 200 sec, the target performs a 1-second burn that Next, we slightly change the orbit of the first observing
produces a specific thrust = [0 0 — .2]T km/s*. With an  satellite by giving it an inclination of-0.1 rad. Figure
initial inclination of i = 0 rad, corresponding to the initial 9 shows a strong transient that prevents the filter from
equatorial orbit, the inclination after the first burniisc ~ estimating the initiab rad inclination despite the fact that
0.16 rad, while the inclination after the second burniis  the initial inclination estimate is correct, followed by aisy
0.097 rad. Assuming measurement noise with a standa@ptimate of the inclination after the first burn, followed,
deviation of0.01 km, the estimated inclination based onfinally, by a biased estimate of the inclination after the
the data update estimates is shown in Figure 8. second burn.

Figure 8 shows that, after a transient, the filter correctly Next, we also change the orbit of the second observing
converges to the target’s inclination ofrad. However, the satellite by giving it an inclination-0.2 rad. After an initial
filter fails to detect the changes in inclination due to thdransient, Figure 10 shows an improved ability to estimate
target’s maneuvers. This failure suggests that the outepla the true inclination.
maneuver is due to a lack of observability by the observing Finally, we increase the sample interval io= 10 sec.
satellites. In fact, the numerical rank of the observapilitIn this case, the filter diverges. However, for an initialetru
matrix formed from(/l(k;h—), C‘k) is found to be 4. anomaly error of 5 degrees, it can be seen from Figure 11
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Fig. 6. Estimated eccentricity. The target performs unkmow Fig. 8. Estimated inclination. Although the filter corrgction-

1-second burns at = 100 sec andt = 200 sec. The initial
eccentricity ise = 0, corresponding to the initial circular orbit,
while the eccentricity after the first burn is &~ .35, and the
eccentricity after the second burndss .59. Assuming a 1-second

verges to the target's initial inclination @f rad, the filter fails to

detect the changes in inclination due to the target's masrsuv
Numerical tests suggest a lack of observability by the olisgr

satellites.

measurement interval and measurement noise with a standard
deviation of0.01 km, the estimated eccentricity follows the true
eccentricity. The apparent bias for the initial eccertlyiei = 0 is

an artifact of the constraint > 0. The full extent of the initial 05
estimate transient is not shown.
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Fig. 9. Estimated inclination. In this case, the orbit of the
first observing satellite by given an inclination ef0.1 rad. A
strong transient prevents the filter from estimating théahd rad
inclination despite the fact that the initial inclinatiorstienate is
correct. The estimate of the inclination after the first mavee is
noisy, while the estimate of the inclination after the setdurn

is biased.

L L L L
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-0.5 L
0

Fig. 7. Estimated eccentricity. This simulation is analagdo
Figure 6, where now the sample intervalhis= 10 sec. Again, the
full extent of the initial estimate transient is not shown.

that the filter can detect changes in the target’s inclimatio

surements by considering range measurements alone and by
nsidering the effects of infrequent measurements.

10. CONCLUDING REMARKS

Under idealized assumptions on the astrodynamics &P
bodies orbiting the Earth, we developed a sampled-dataA surprising discovery of our study is the apparent
Kalman filter for range-only observations provided by dnability of a constellation of 4 LEO satellites to track
constellation of 4 low-Earth orbiting satellites in cirayl a maneuvering target satellite that changes its inclinatio
equatorial, geosynchronous orbits. We studied the abilitMaive numerical tests based on linear time-invariant no-
of the filter to acquire and track a target satellite irtions suggest that the dynamics of the target satellite are
geosynchronous orbit as a function of the sample intervalnobservable using the available measurements. Therefore
initial true anomaly error, and measurement noise standafuture research will seek to apply nonlinear observability
deviation. tests [24—-26] to better understand how observability of the

This study complements previous studies that have cotarget's dynamics depends on the geometry of the observing
sidered combinations of angle, range, and range-rate meanstellation and the types of available measurements.
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