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Abstract

We present an asymptotically derived boundary element method for the Helmholtz equation in
exterior domains, in which the basis functions are asymptotically derived. Each basis function is the
product of a smooth amplitude and an oscillatory phase factor, like the asymptotic solution. The phase
factor is determined a-priori by using arguments from geometrical optics and the geometrical theory of
diffraction, while the smooth amplitude is represented by high order splines. Our approach accounts
for all the components of the scattered field namely the reflected, shadow forming and diffracted fields,
and we demonstrate that it is substantially more accurate than an approach which accounts for the
reflected field only. Two types of diffracted basis functions are presented: the first accounts for the
dominant oscillatory behavior in the shadow region while the second also accounts for the decay of the
amplitude there. Although the method is applicable to a variety of scatterers, we focus our attention
here on scattering from smooth convex bodies in two dimensions. Our computations with a conducting
circular cylinder demonstrate that the number of unknowns necessary to achieve a given accuracy with
this new basis is virtually independent of the wave-number.

1 Introduction

The numerical solution of scattering problems modeled by the Helmholtz equation in exterior domains,
is exceedingly difficult if not computationally intractable by standard computational schemes, for fre-
quencies in the mid and high regime. Indeed, for three dimensional problems the number of unknowns in
both the finite difference and the finite element methods scales like the cube of ka, where k is the wave
number and a is a typical dimension of the scatterer, while in a boundary integral method it scales like
the square of ka. In recent years various researchers [1-10] have developed special variants of the finite
element and the boundary integral equation methods which reduce the computational complexity of the
problem. The common feature among these algorithms is the use of a-priori knowledge regarding the
oscillatory nature of the solution in the design of the numerical scheme.

In this paper we develop a boundary element collocation method for the integral formulation of the
Helmholtz equation, in which the basis functions are asymptotically derived. Each basis function is
the product of a smooth amplitude and a highly oscillatory phase factor, like the asymptotic solution.
The phase factor is determined a-priori by geometrical optics (GO) and the the geometrical theory
of diffraction (GTD) [11], while the smooth amplitude is a high order spline. Each basis function is
associated with a field: reflected, shadow forming, diffracted, multiply diffracted etc... and we use
GO and GTD to determine which fields are present. The method is applicable to a variety of scattering
problems, but in this paper we focus on smooth convex scatterers in two dimensions, and we demonstrate
the method on a conducting circular cylinder.

Our method is analogous to the finite element method which we developed for the Helmholtz equation
in [8], in which GO and GTD where used to determine the components of the scattered field, and the
oscillatory phase factor of the associated basis functions. It extends the approach taken in [1,4, 10]
for the integral equation, in that our basis functions account for all the fields present, including the
diffracted fields. This greatly improves the accuracy of the computed results, and enables the method
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to be extended to problems where the previous approaches are not effective. Our method is also similar
to those presented in [2,3,9] for discretizing the boundary integral equation, with basis functions which
are the product of polynomials and plane waves. The latter approach [9] draws it’s roots in the partition
of unity finite element method [5,12] for the partial differential equation, and it makes use of a multiple
number of plane waves on each element, in directions which uniformly cover the unit circle. In our
approach, both the number of basis functions and their associated phase factors are determined by GO
and GTD. Hence, the phase factors are not necessarily plane waves, and each basis function is very
effective at representing at least one component of the scattered wave.

2 Problem formulation and discretization

2.1 Problem formulation

We consider scattering by a convex curve I', of a time harmonic plane wave of unit amplitude, exp(ik - x),
where k is a vector of magnitude k, and x = (z,y). Hence we seek a solution to

Au+ k*u =0, (1)
in the unbounded domain exterior to I'. We seek u of the form
u = kX + v, (2)

where exp(ik - x) and u® are the incident and scattered fields, respectively. Here we impose on u a
Dirichlet condition and on u® the Sommerfeld radiation condition

u(x,y) = 0, (l',’y) er, (3)
and Bug®
m /2 (9% ) —
rlLIgoT (Br zku) = 0. (4)

The computational problem which we wish to solve is (1) for u®, subject to the conditions
u® = — exp(ik : X), (w,y) erl, (5)
and (4). We derive an integral equation for this problem in a standard fashion (see: [13]),

ou’®(x 0G(x xp(ik -
%G(x,é)dx = —/exp(z’k-x) (g)n’ 3) dx + ° p(z2 6), (6)
r T

where the free space Green’s function G(x,&) = (i/4)Hg (k||z — z;||), and H} is the Hankel function of
the first kind. For the purpose of demonstrating the accuracy of this approach, it was not necessary
to consider more stable formulations such as the combined fields approach [14]. Indeed, for the wave
numbers considered here the accuracy is excellent as we shall see.

2.2 Discretization by a boundary element method

We shall approximate du®/0n with a boundary element method. Hence, we introduce basis functions
Nj(x), j=0,...,N —1 defined on I' and look for an approximation of the form

~ ) ciNj(x). (7)
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In order to obtain a system of equations for the coefficients c; in (7) we substitute the right side of (7) for
Ou®/dn into (6), and evaluate the terms in this equation at N distinct collocation points &g, ...,E{n—1-
This yields the system of equations

A7:7,

iy = / Ni()Gx&)dx, gi=— [ explitc -3 2008 gy P &3) (®)
T

where I'; is the support of N; on I'.
We assume here that the scatterer I' is parametrized by the mapping

['(s), a <s<b, I'(a) =T(d). (9)

Then, we define the standard basis functions and collocation points by first introducing the mesh points
$;4=0,...,N —1, in [a,b] and the associated B-splines M!(s) of polynomial degree I, centered at s;.
The standard basis functions Nil, and collocation points &; are defined on I' by

& = L(si), (10)
Nl(x) = M}(T"}(x)), where x €T. (11)

2.3 Asymptotically derived basis functions

The asymptotic theory for problem (1)-(4), based on GO and the GTD, is described in detail in [15,16].
Here, we review the essential elements of that theory necessary for the development of asymptotic basis
functions. Additional relevant details can be found in [8,17]. In the asymptotic theory, one seeks the
solution u® in (2) as a superposition of the form

L
us(xay) = ZAl(:an) exp(szl(x,y)) (12)
=1

Here L is the number of fields, and for a smooth convex scatterer there are four terms
' = o +ut Futt ol (13)

They are the reflected field u”, the shadow forming field u*/, and two diffracted fields u®**, w4~ which
are associated with special points of I'. Specifically, each incident ray which is tangent to the cylinder
gives rise to a surface diffracted ray which travels around I starting at the point of diffraction. When the
scatterer is a circular cylinder of radius 1 centered at (0,0) and k = (1,0) in (2), the points of tangency
are (0,1) and (0, —1), respectively. Moreover, u®/ satisfies u*f 4+ uf = 0 in the region z > 0, |y| < 1, so
u*f = — exp(ikx) there. In our formulations it contributes an additional term

/4 / cos 0 exp(ikx) Ho (k[[x — xi|)dx, 6 = arg(x),
I\T,

to g; in (8).
Each field in (13) has the form
A(z,y) exp(ikS(z,y)), (14)
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where the amplitude A is smooth and the phase S(z,y) can be determined by the ray method. Ounly the
reflected and shadow forming fields are non-zero on the surface of the scatterer but the normal derivative
of all fields is non-zero there. With I' the unit circle

I['(s) = (coss,sins), (15)
and k = (1,0) in (2) we have
S (z,y) =@, SY(z,y) ==, S =s"(xy), ST =s (my), shs >0 (16)

The functions sT and s~ are respectively the distances traveled around the cylinder by the surface
diffracted rays from the diffraction points (0,1) and (0, —1) in the clockwise and counterclockwise direc-
tions to the point (z,y). The functions s™, s~ are multivalued and unbounded because surface diffracted
rays travel an infinite number of times around the cylinder. This is easily overcome as explained in [8,17],
and s*, s~ in (16) are the shortest distances. Moreover, the quantities dud” /dn and du?” /On decay
exponentially by a damping factor D(s*) and D(s™), respectively (see: [16,17]) where

D(s) = exp(itok'/3s), and 7y = exp(in/3.0) (97/2)%/% /4.0. (17)

It follows that dud" /dn is exponentially smaller than du? /&n when s* > 7/2 and k — oo, and vice
versa when s~ > 7/2. However, both dud" /dn and du®” /&n will be non-negligible compared to each
other in the neighborhood of (z,y) = (1,0) where s* = s~ = 7/2.

This leads to a decomposition of I' into four zones

I, ={T(s)| /2 <s<3m/2}, Ty ={T(s)|a<s<m/2}, (18)
Ty ={T(s)|3nr/2<s<2r—a}, T,={I'(s)]—-a<s<a}l, (19)

with « a small positive scalar. In each zone we use basis functions of the form
Ni(j, 1, t, %, k) = le-(x) exp(ikS'(x)), for x €Ty te{dt,d",r}, (20)

where S° is defined in (16), N/(x) in (11) and T'; in (18) and (19). In the overlap region I', we use
basis functions associated with both I'j+ and I'y-. We also introduce the modified basis functions in
T4+, Ty4-, Ty, which include the decay (17)

Nz(j,l,t,x, k) = N;(x) exp(ikS'(x))D(S'(x)), for xe€T; te{d",d"}. (21)
In our calculations we shall compare the performance of the basis functions (20) and (21) with
Ns(j,1,%, k) = le-(x) exp(ikx), x €T, (22)

which are based on the GO ansatz used in [1,4,10].

2.4 Implementation details

Several issues need to be considered in a numerical implementation in order for the method to be effi-
cient and accurate, and they are presented in detail in [17]. The numerical integration of the oscillatory
integrals in (8) are computed by specialized quadrature rules, in time virtually independent of k. Precon-
ditioning of the system (8) by the norm of each column, when basis functions (21) are used, is required.
Improved efficiency can be achieved by mesh adaptivity, as discussed in [8], and the use of variable or-
der splines. Appropriate measures need to be taken to avoid dependence between basis function in the
overlap region for small values of k, as described in [8,17].
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3 Numerical calculations

We now compare the accuracy of the numerical approximation to W obtained with each of the
three families of basis functions (20), (21) and (22), in which N, Jl are B-splines of order [ = 5. The number
of discretization points is 250.

Figure 1 presents the absolute value of the real and imaginary parts of the exact and computed
solutions at the nodes of the grid in the shadow region, for £ = 750. In most of the shadow region bases
(20) and (21) yield excellent results while basis (22) provides an accurate solution in only half of that
region. Basis (21) is slightly better than (20). All three approximations agree to graphical accuracy in
the illuminated region which we do not show here. Basis (22) is accurate near the shadow boundary
because the phase of the diffrcated field, sT, is well approximated there by z, as indicated by the relation

+3
S
z =cos(m/2 —sT)=sT — e + O(s+5). (23)
10° ‘ 10° ‘
Exact Exact f
+ Basis (20) + Basis (20) K,
10' | * Basis (21) 10" | * Basis (21) £
x Basis (22) x Basis (22) Jf
%
0 0
L L % i
10 10 &
&
%
107 107 ® .
% ®
X
-2( 2| %& X x |
X X XX XXX X x
-3 XX *o( 3 X ><><>< >Z< X
107 x X -4 5 10°F X g % ]
X & X XX
X ® X N
4 &
-4 ® -4
10 F x % E 10k x # J
i &
" &
=50 &% | 5| P |
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+
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+% ;gé*++ i ] &
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Figure 1: The absolute value of the real and imaginary parts of the exact and computed values of
0 (us —ustf ) /On for k = 750, in the left and right panels respectively. The exact solution, and approxi-
mations with basis (20)-(22) are plotted with o, +, *, and X, respectively.
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o(u —us! .
Table 2 presents the error between exact and computed values of %, on the cylinder surface

over the range k = 10 — 5000, evaluated at the nodes of the grid. Both the maximum and median errors
are presented. The superiority of bases (20) and (21) over (22) is apparent. Basis (21) provides an order
of magnitude greater accuracy than basis (21).

2 |lerror|| oo Median |error]|
Basis (20) | Basis (21) | Basis (22) || Basis (20) | Basis (21) | Basis (22)
10 2.66e-07 4.82e-07 1.19e-08 3.45e-09 6.88e-09 5.52e-10
50 7.67e-04 9.88e-04 8.54e-06 6.02e-05 7.71e-05 5.30e-07
100 6.53e-04 5.61e-04 3.07e-04 3.47e-05 3.44e-05 3.20e-05
250 6.99e-05 3.82e-05 3.42e-02 3.91e-06 1.60e-06 4.26e-03
500 1.68e-05 1.73e-06 5.63e-02 6.96e-07 9.57e-08 5.83e-03
1000 1.09e-04 1.49e-05 5.41e-01 3.06e-06 6.27e-07 1.01e-01
2000 || 7.20e-04 1.34e-04 | 3.99e+400 1.49e-05 4.37e-06 9.29e-01
2500 || 1.33e-03 2.63e-04 | 1.16e+401 2.33e-05 9.81e-06 | 2.12e4-00
5000 || 8.99e-03 2.24e-03 | 2.31e+01 4.30e-04 7.13e-05 | 4.83e+00

Figure 2: The maximum and median error at the discretization points on the surface of the cylinder.

The increase in the error as a function of £ which can be seen in Table 2, is due to the fact that
a(us —usf )
on
the total field u* + u® in the exterior of the cylinder as indicated in Table 3. This table presents the
maximum and median relative error in |u’ + u®| for a set of points A in the illuminated region exterior

to the cylinder defined by

, 18 proportional to k£ in the illuminated region. This does not affect by much the error in

A={(r cos 0;,1; sinf;) [ri =1+ 56,0 =1,---,4, 6; = j2r/17} \ {(z,y) |z <0, |y| < 1} (24)

Here again we see that bases (20) and (21) are at least 4 orders of magnitude more accurate than the
basis (22). Tables 3 presents the maximum and median relative error in |u’ + u®| for a set of points B in
the shaded region exterior to the cylinder defined by

B = {(ricos0j,r;sinb;) |r; =1+ .5i,i =1,--- ,4, 6; = 520/17} N {(z,y) |z <3, |y| <1} (25)

We excluded from B points in the deep shadow close to the cylinder surface, as we did not expect basis
(22) to perform well there. However, we see that throughout the shadow region it performs quite poorly,
Basis (21) on the other hand is accurate to at least two significant figures even for ¥ = 5000. The
reduction in the number of significant digits in the shadow region as k increases is explained in [17].
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k

||relative error||oo

Median [relative error|

Basis (20) | Basis (21) | Basis (22) || Basis (20) | Basis (21) | Basis (22)

10 1.96e-10 4.02e-10 1.41e-11 7.99e-12 1.63e-11 1.18e-12

50 1.80e-06 2.48e-06 1.36e-08 6.73e-08 1.11e-07 1.40e-09

100 1.14e-06 1.11e-06 2.70e-06 1.22e-07 1.23e-07 4.16e-07
250 5.26e-08 2.94e-08 4.76e-05 6.26e-09 3.25e-09 5.98e-06
500 9.33e-09 1.18e-09 8.37e-05 9.08e-10 7.52e-11 5.21e-06
1000 || 2.06e-08 3.96e-09 5.49e-04 2.43e-09 5.24e-10 4.99e-05
2000 || 9.56e-08 1.31e-08 1.44e-03 2.27e-09 4.82e-10 1.87e-04
2500 1.91e-07 2.45e-08 1.95e-03 8.69e-09 1.89e-09 3.82e-04
5000 || 7.17e-07 8.29e-08 2.59e-03 1.87e-08 3.29e-09 4.33e-04

Figure 3:

The maximum and median relative error on the set A of points in the illuminated region.

k

||relative error||so

Median [relative error|

Basis (20) | Basis (21) | Basis (22) || Basis (20) | Basis (21) | Basis (22)

10 4.51e-10 9.13e-10 1.14e-11 2.13e-10 4.31e-10 4.46e-12

50 3.99e-06 4.56e-06 2.37e-08 1.40e-06 1.60e-06 9.68e-09

100 1.30e-05 1.68e-05 1.70e-05 2.24e-06 2.69e-06 3.00e-06
250 5.65e-06 3.05e-06 2.99e-03 8.03e-07 3.29e-07 3.93e-04
500 2.15e-07 3.05e-08 2.89e-02 4.99e-08 9.51e-09 2.77e-03
1000 || 8.21e-06 2.43e-06 4.55e-01 7.33e-07 1.77e-07 4.28e-02
2000 7.86e-04 1.37e-04 8.25e+00 4.50e-06 1.14e-06 2.57e-01
2500 || 4.01e-03 4.73e-04 7.98e+01 3.72e-05 9.03e-06 1.03e+00
5000 || 1.80e-01 1.61e-02 | 2.11e+02 4.44e-04 1.25e-04 | 3.28e+4-00

Figure 4: The maximum and median relative error on the set B of points in the shaded region.
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