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A Framework for Mixed Estimation of Hidden Markov Models �

Subhrakanti Dey y Steven I. Marcus z

July 10, 1998

Abstract

In this paper, we present a framework for a mixed estimation scheme for hidden Markov models

(HMM). A robust estimation scheme is first presented using the minimax method that minimizes a worst

case cost for HMMs with bounded uncertainties. Then we present a mixed estimation scheme that

minimizes a risk-neutral cost with a constraint on the worst-case cost. Some simulation results are also

presented to compare these different estimation schemes in cases of uncertainties in the noise model.

1 Introduction

A hidden Markov model (HMM) is a stochastic process that usually consists of a state process that is a

finite-state Markov chain and an observation or measurement process that is a function of the state process

corrupted by noise. The observation process can be discrete-range or continuous-range. In this paper, we

will be interested in discrete-time homogeneous Markov chains taking values in a finite-dimensional state

space and observation processes that are continuous-range, i.e., they are observed in continuous-range

noise. Precise details about our signal model will be given in the next section. In short, we are interested

in developing a robust estimation algorithm for a class of HMMs with unknown but bounded uncertainties

and a “mixed” estimation problem that minimizes a quadratic cost with a constraint on a worst-case cost

for a class of HMMs with random disturbances. The background and motivation behind formulating and

solving such problems are given below.

HMMs are known to be good models of many random nonlinear physical processes and there are

many applications of HMM signal processing in diverse areas like speech recognition, communication

systems, biological signal processing, frequency tracking, fault detection etc. to name a few. In all

these applications, the basic algorithm involves estimation of the state and the parameters of the Markov

chain that describes the state process. State estimation of HMM is usually done by calculating the
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01-5-23422 and by the Lockheed Martin Chair in Systems Engineering.
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“forward variable” [1] which is essentially a conditional probability mass function of the state given

the observations, which can be calculated recursively given the initial state distribution, the transition

probability matrix of the Markov chain, the knowledge of the statistics of the measurement noise and the

observations. One can then define a suitable state estimate (e.g. the “MAP” estimate or the conditional

mean estimate) based on this conditional distribution of the state. This estimate is essentially a minimum-

variance or a “risk-neutral” state estimate in the sense that it is not sensitive to uncertainties in the model.

As opposed to this, a class of robust estimation algorithms, known as “risk-sensitive” estimation schemes,

following the ideas of risk-sensitive control [2] [3] [4] [5] were developed in [6] (for linear Gaussian

signal models) [7] (for a class of nonlinear signal models) and [8] (for hidden Markov models). Risk-

sensitive estimation essentially minimizes an exponential of a quadratic (or more general convex) cost

and thus penalizes the higher order moments of the estimation error energy to provide robustness against

model uncertainties. Recently, a more meaningful insight into the robustness offered by risk-sensitive

estimation has been given in [9].

However, the setting of risk-sensitive estimation schemes is stochastic in nature and in general, small

noise limit results show that risk-sensitive estimation algorithms can be connected to a deterministic worst-

case noise estimation problem given from a differential dynamic game [10] [5] [11] (H1 estimation for

linear Gaussian systems). Risk-sensitive output feedback control problems for HMMs have been treated

in [12] [13] [14] and relations have been drawn to robust control for finite-state machines. In particular,

in [12], a deterministic model for uncertainties is introduced leading to a dynamic game formulation of

the robust control problem. A random perturbation of the deterministic system is treated as an HMM and

the stochastic control problem for this HMM is shown to be related to the dynamic game problem for

the deterministic model using small noise limits. However, in the general framework of [12], no specific

choices of the cost functions associated with the disturbances are given. In addition, depending on the

nature of the disturbances (often a mixture of random and unknown but bounded disturbances [15]), it is

often necessary to introduce a trade-off between the risk-neutral and risk-sensitive or robust estimation

objectives. One way to do this is to introduce a “mixed” criterion where a risk-neutral cost is minimized

subject to a constraint on the worst-case cost. A mixed risk-neutral and minimax control problem is

solved for HMMs in [16].

In our paper, we formulate a robust estimation problem for a hidden Markov model with unknown but

bounded uncertainties. Following ideas similar to [12], we set up a dynamic game problem for the robust

estimation scheme with appropriate choices for the cost functions associated with the disturbances in the

state (reflected by bounded variations of the transition probability matrix) and the observation process

(reflected by the additive continuous-range independent bounded noise) and the initial distribution of

the state. The objective of the robust estimation problem is to obtain state estimates which minimize a

worst-case cost over a finite horizon when the estimates are constrained to the vector space of unit vectors.

Next, we extend the ideas of [16] to set up a “mixed” estimation problem that minimizes a risk-neutral

or quadratic cost subject to a constraint satisfied by the worst-case cost described before. Simulation

results show that in the event of bounded disturbances being present, minimax estimation outperforms



risk-neutral estimation and mixed estimation guarantees the worst case cost to be constrained where as

risk-neutral estimation does not. We also compare the performance of minimax estimation with that of

risk-sensitive estimation.

In Section 2, we describe the signal model, and give precise statements regarding the problem

objectives of robust (minimax) and mixed estimation. Section 3 and 4 detail the algorithms for the two

estimation problems using forward dynamic programming approach. Section 5 presents some simulation

results while concluding remarks are given in Section 6.

2 Signal Model

Consider a probability space (Ω;F ;P) whereXk is a discrete-time homogeneous Markov chain belong-

ing to a finite-discrete set. Define E 4
= fe1; e2; : : : ; eNg where ei = (0; : : : ; 0; 1; 0; : : : ; 0)0 2 IRN with

1 in the i-th position. Without loss of generality, we can assume that Xk 2 E . Denote the transition

probability matrix as A =
�
aij
�

where aij = P (Xk+1 = ei j Xk = ej). We assume that there exists an

� > 0 such that aij � �. Also,
PN

i=1 aij = 1; 8j.

We observe a process yk 2 IRp such that

yk = H(Xk) + vk (1)

where vk 2 IRp; k 2 IN is the disturbance in the measurement process that may be random with known

statistical information or unknown but bounded inL2 with probability one, depending on the nature of our

estimation problem. Define fYkg 4
= (y0; y1; : : : ; yk). In case the disturbances are purely random, one

can define fYkg to be the complete filtration generated by �fy0; y1; : : : ; ykg. In the following sections,

we will be using the notation fYkg with their appropriate definitions relative to the context, without

reiterating the definitions separately for each context.

Also, define �0 2 IRN to be the initial probability distribution of the Markov chain, such that

P (X0 = ei) = �0(i). We assume that there exists a � > 0 such that �0(i) � �; 8i. Obviously,PN

i=1 �0(i) = 1.

3 Minimax state estimation for bounded uncertainties

In this section, we assume that vk, defined in the previous section is unknown but bounded in L2 with

probability 1. Also, uncertainties in the A matrix and the initial probability distribution vector �o are

assumed to be such that the assumptions made earlier on the elements of A and �0 still hold.

Consider a specific state sequence X0 = ei0 ; X1 = ei1 ; : : : ; Xk = eik and an observation sequence

fylg; l = 0; 1; : : : ; k. Define Zk = LXk; L 2 IRN�N and our objective is to obtain an estimate

Ẑk = LX̂k (X̂k 2 E) of Zk as a Borel measurable function of fYkg; k � 0 such that the following

worst case cost is minimized:

max
i0;:::;ik

"
kX
l=0

�(eil ; X̂l)� �(ei0)�
1
�

(
k�1X
l=0

U(eil ; eil+1) +

kX
l=0

V (yl; eil)

#)
(2)



where � : E �E ! IR, U : E �E ! IR, � : E ! IR and V : IRp�E ! IR with the following properties,

�(eil ; X̂l) � 0; 8il; 8l, 1 > �(ei0) > 0; 8i0 2 f1; 2; : : : ; Ng, 1 > U(eil ; eil+1) > 0; 8il; il+1; 8l
and 1 > 
 � V (yl; eil) � 0; 8il; 8l. Also, � > 0. We also make the assumptions that the above

mentioned cost functions are infinite valued if any of their arguments do not belong to their respective

domain spaces.

In other words, we find fYkg-adapted X̂k, k � 0 such that

X̂k = argmin
�2E

max
i0;:::;ik

"
k�1X
l=0

�(eil ; X̂l) + �(eik ; �)� �(ei0)�
1
�

(
k�1X
l=0

U(eil ; eil+1) +
kX
l=0

V (yl; eil)

)#

(3)

Remark 3.1 Note above that at each time k, we only obtain X̂k, and do not obtain new values for

Xl; l < k. In other words, this is a strict filtering problem.

Now, we make specific choices of the cost functions �(:; :), �(:), U(:; :) and V (:; :). Denoting

Q = L0L, we make the following choices:

�(x; x̂) =
1
2
(x� x̂)0Q(x� x̂)

�(ej) = �ln(�0(j))

U(ei; ej) = �ln(aji)
V (yk; ej) = jjyk �H(ej)jj2 (4)

Here jj:jj denotes the Eucledian distance between two vectors. Also, note that the above cost functions

do satisfy the assumptions we made earlier.

With these specific choices, now we can define the following information state:

Definition 3.1 Define the information state sk(j); k � 1; j 2 f1; 2; : : : ; Ng as

sk(j) = max
i

�
sk�1(i) +

1
2
(ei � X̂k�1)

0Q(ei � X̂k�1)� 1
�
(�ln(aji) + jjyk�1 �H(ei)jj2)

�
s0(i) = ln(�0(i)); i 2 f1; 2; : : : ; Ng (5)

The minimax state estimate is given by the following theorem:

Theorem 3.1 Consider the HMM signal model defined in Section 2 and the minimax dynamic game

problem defined by (3) and (4). Then the minimax state estimate is given by

X̂0 = ei� ; i
� = argmin

l

max
i

�
s0(i) +

1
2
(ei � el)

0Q(ei � el)� 1
�
jjy0 �H(ei)jj2

�

X̂k = ej� ; j
� = argmin

l

max
i

�
sk(i) +

1
2
(ei � el)

0Q(ei � el)� 1
�
jjyk �H(ei)jj2

�
(6)

Proof The proof is straightforward once we use the method of forward dynamic programming and the

definition of the information state 3.1. Substituting this in (3), we can obtain (6). 2



Remark 3.2 Note that, in the case of minimax control as in [16], one needs to use a backward dynamic

programming and the concept of a value function, but the necessity of using such tools does not arise in

the strict filtering problem mentioned above.

4 Mixed estimation

In this section, we formulate a mixed estimation problem for the HMM defined in Section 2. We briefly

recapitulate the risk-neutral and the risk-sensitive state estimation algorithms. Then we present a solution

to the mixed estimation problem.

For the purpose of this section, we return to the usual stochastic framework of the HMM observation

model (1). We assume that fvkg is a sequence of i.i.d. random variables. In this paper, we assume that

vk � N(0;Σ); 8k. Recall from [1] that the risk-neutral estimate (which essentially is the conditional

mean estimate) for the state of the Markov chain is given by E[Xk j Yk ]. This is obtained from the

unnormalized measure (denoted by �k 2 IRN ) which can be computed recursively as follows:

�k(j) = E[< Xk; ej >j Yk] = bj(yk)

NX
i=1

aji�k�1(i); �0(i) = bi(y0)�0(i) (7)

Or, in matrix notation,

�k = B(yk)A�k�1; �0 = B(y0)�0 (8)

Here,B(yk) = diag(b1(yk); : : : ; bN(yk)), bi(yk) = 1p
(2� det Σ)p

exp
�� 1

2 (yk �H(ei))
0Σ�1(yk �H(ei))

	
.

The above unnormalized estimate can be normalized to yield

P (Xk = ej j Yk) = E[< Xk; ej >j Yk ] = �k(j)P
j �k(j)

(9)

Risk-sensitive estimation for HMMs

The risk-sensitive state estimate X̂rs
k of a hidden Markov model is discussed in detail in [8]. We quote

the main results here. The risk-sensitive cost for an HMM described in Section 2 is given by

X̂rs
k = argmin

�2E
E[exp(

�

2

(
k�1X
l=0

(Xl � X̂rs
l )0Q(Xl � X̂rs

l )

+(Xk � �)0Q(Xk � �)g) j Yk]; k � 0 (10)

Here, � > 0 plays a similar role as � in (2).

One then defines a new measure P̄ , under which fykg is a sequence of i.i.d. random variables with

density N(0;Σ). The corresponding Radon-Nikodym derivative is given by

dP

dP̄
= Λk =

kY
0

g(yk �H(Xk))

g(yk)

where g
4
= N(0;Σ). Denoting the expectation under P̄ as Ē, and

Ψ0;k =
1
2

k�1X
l=0

(Xl � X̂rs
l )0Q(Xl � X̂rs

l )



we can define the following unnormalized information state:

qk(j) = Ē[Λk�1 exp(�Ψ0;k�1) < Xk; ej >j Yk�1]; j 2 f1; 2; : : : ; Ng (11)

It can be shown that the information state obeys the following recursion

qk+1 = ADkB(yk)qk (12)

where

Dk = diag

�
exp

�
�

2
(e1 � X̂rs

k )0Q(e1 � X̂rs
k )

�
; : : : ; exp

�
�

2
(eN � X̂rs

k )0Q(eN � X̂rs
k )

��

and the optimal risk-sensitive state estimate is given by

X̂rs
k = em�

m� = argmin
m2f1;:::;Ng

NX
j=1

g(yk �H(ej))

g(yk)
exp

�
�

2
(ej � em)0Q(ej � em)

�
qk(j) (13)

With this brief recapitulation of risk-neutral and risk-sensitive estimation for HMMs, we now define

the mixed estimation problem.

The objective of the mixed estimation problem for the HMM described in Section 2. with vk in (1)

random as described in the beginning of this section, is to find

X̂mix
k = argmin

�2E
E[(Xk � �)0Q(Xk � �) j Yk]; k � 0 (14)

such that the following constraint is satisfied by the worst case cost:

max
i0;:::;ik

"
kX
l=0

�(eil ; X̂
mix
l )�

"
�(ei0) +

1
�

(
k�1X
l=0

U(eil ; eil+1) +

kX
l=0

V (yl; eil)

)##
� 0; k � 0 (15)

In the next subsection, we present the solution to the mixed estimation problem.

Solution to the mixed estimation problem for HMMs

Define Ek � E ; k � 0 to be fem : maxj
h
sk(j) +

1
2 (ej � em)0Q(ej � em)� 1

�
V (yk; ej)

i
� 0g.

where sk(j) is as defined in (5) and V (:; :) is as defined in (4).

Then, the state estimate X̂mix
k for the mixed estimation problem is given by the following theorem:

Theorem 4.1 Consider the HMM signal model defined in Section 2 and the mixed estimation objective

defined by (14), (15).Then the state estimate X̂mix
k for the mixed estimation problem is given by

X̂mix
k = argmin

�2Ek

NX
i=1

(ei � �)0Q(ei � �)�k(i) (16)

Proof The proof is rather straightforward once we note that Ek just denotes the admissible set for the

state estimates such that the constraint on the worst case cost (15) is satisfied. One then applies (9) to

obtain (16). 2



5 Simulation results

In this section, we present some simulation results to demonstrate the differences among these different

estimation methods, i.e., minimax, risk-sensitive and mixed estimation methods for a given HMM. The

HMM under investigation has 10 states with the following A where aii = 0:19; aij = 0:09; 8i 6=
j; i; j 2 f1; 2; : : : ; 10g. The observation model is scalar where vk is Gaussian distributed. Note that

when the measurement disturbance is bounded, it makes sense to use the robust estimation method in

the minimax sense as presented in Section 3. Risk-sensitive or risk-neutral methods become suboptimal

in that case. However, we ran some simulations with vk being a truncated Gaussian noise such that

jvkj � 5�, where � is the standard deviation of the Gaussian distribution. The observed signal i.e.,

H(xk) is H 0Xk whereH = (1 2 3 4 5 6 7 8 9 10)0. The performance criterion is the average squared error
1
T

PT

k=1(Xk � X̂k)
0Q(Xk � X̂k) where X̂k represents the risk-neutral, risk-sensitive or the minimax

state estimate, as the case may be (with some abuse of notation) and Q = HH 0.

Figure 1 shows how the suboptimal risk-sensitive filter performs with different values of �. Figure

2 shows the performance of the minimax robust estimate against various values of �. The risk-neutral

average error was found to be 3:3555 over a run of T = 1000 time points.

We also simulated the mixed estimation algorithm. Note that when vk is purely random and the

statistical information about vk is accurately known, the error performance achieved by the mixed

algorithm is lower bounded by that of the risk-neutral estimation, since the mixed estimation optimizes

over a constrained state space whereas the risk-neutral algorithm optimizes over the complete state space

of which the constrained state space is only a subset. However, when vk contains a mixture of random

and unknown but bounded noise or the statistical information about the noise is not accurately known, we

observed that the constraint on the worst case cost (15) is repeatedly violated by the risk-neutral estimation

scheme whereas the mixed estimation scheme always satisfies the constraint. We also observed similar

results when the noise was generated according to a uniform distribution but was assumed to be Gaussian

instead. Note that both the risk-neutral and the mixed estimation schemes become suboptimal for such

uncertainties. However, the mixed estimation scheme guarantees an upper bound on the worst case cost

whereas the risk-neutral estimation scheme fails to do so. We do not present any numerical results here

for obvious reasons.

6 Conclusions

We addressed the problem of robust state estimation for hidden Markov models in this paper. We

introduced a minimax robust estimation problem for HMMs with bounded uncertainties and presented a

solution to this problem using the techniques of information states and forward dynamic programming

methods. We also solve a mixed estimation problem that optimizes a quadratic cost with a constraint

on the worst case cost. Some simulation results are presented that compare the performances of these

different methods in case of uncertainties in the noise model.

Please note also that we have not addressed the problem of parameter estimation for HMMs in case
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Figure 1: Performance of the risk-sensitive filter for bounded measurement noise
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of bounded uncertainties. This is a problem currently under investigation with a possible generalization

being combined robust state and parameter estimation for more general signal models.
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