
Energy transfers and spectral eddy viscosity in
large-eddy simulations of homogeneous isotropic

turbulence: Comparison of dynamic Smagorinsky and
multiscale models over a range of discretizations

Thomas J.R. Hughes1 ∗ Garth N. Wells2 Alan A. Wray3

Abstract

Energy transfers within LES and DNS grids are studied. The spectral eddy viscosity for

conventional dynamic Smagorinsky and variational multiscale LES methods are compared

with DNS results. Both models underestimate the DNS results for a very coarse LES, but the

dynamic Smagorinsky model is significantly better. For moderately to well-refined LES, the

dynamic Smagorinsky model overestimates the spectral eddy viscosity at low wave numbers.

The multiscale model is in good agreement with DNS for these cases. The convergence of

the multiscale model to the DNS with grid refinement is more rapid than for the dynamic

Smagorinsky model.
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1 Introduction

The transfer of energy between different scales of motion in a turbulent flow has been studied

widely for homogeneous isotropic turbulence. The flow of energy between different wave num-

ber modes is often expressed using the concept of an eddy viscosity. Heisenberg 1 examined the

loss of energy, in the Fourier domain, from modes within the interval k = [0,kc] to modes outside

the interval. The transfer of energy from a mode below kc to modes beyond kc was represented

by an additional viscosity, acting on the modes below kc.

Theoretical studies of Kraichnan2 involved choosing an arbitrary wave number cut-off (anal-

ogous to a filter) and examining the form of the energy transfer to modes beyond the cut-off.

Assuming infinite Reynolds number, Kraichnan2 identified the existence of a strong cusp in the

spectral eddy viscosity near the cut-off wave number, and a plateau at low wave numbers (low rel-

ative to the cut-off). It was predicted that significant energy would be transferred from low wave

numbers to wave numbers beyond the cut-off, owing to the presence of the plateau. However,

the dominant mechanism of energy transfer was the cusp, which represented local interactions

between modes below and near the cusp with modes having wave numbers no larger than twice

the cut-off.

Following the theoretical studies of Kraichnan2, the spectral eddy viscosity for homogeneous

isotropic turbulence has been studied by direct numerical simulations (DNS). The spectral energy

transfer can be calculated from a DNS database by introducing an arbitrary cut-off below the

DNS limit of resolution3,4. The eddy viscosity is calculated by examining the energy transfer

from a mode below the cut-off to resolved modes beyond the cut-off. These calculations give

an indication of the eddy viscosity that would be required for an effective large eddy simulation

(LES) in which the cut-off corresponds to the LES limit of resolution. DNS results confirmed the

presence of a cusp close to the cut-off wave number. However, no plateau at low wave numbers

was found for moderate to high cut-offs in the low Reynolds number studies of Domaradzki

2



et al.3, which indicate that no eddy viscosity on low wave number components in an LES would

be required to replicate the DNS energy transfer.

McComb and Young4 studied energy transfers at somewhat higher Reynolds numbers. The

spectral eddy viscosity was calculated from the a DNS of homogeneous isotropic turbulence

with 2563 points, with a cut-off placed at a wave number below the limit of DNS resolution.

The cut-off acts as an ‘explicit’ filter, where all Fourier modes above a specified wave number

are eliminated. Negligible energy transfer was observed from low wave number modes (relative

to the explicit filter – the cut-off) to modes beyond the cut-off for higher values of the cut-off.

Decreasing the cut-off wave number, the strength of the cusp increased. Only for the lowest

cut-off was a plateau present.

Lesieur and colleagues have parametrized the plateau and cusp assuming a k−5/3 range has

developed at the cut-off (see Lesieur and Rogallo5, Metais and Lesieur6), and shown a non-zero

plateau which is close to that predicted by the test-field model2 and the eddy damped quasi-

normal Markovian (EDQNM) kinetic energy transfer model7. We also wish to draw the reader’s

attention to the recent study of Cerutti et al.8 who have considered spectral eddy viscosities

determined from experimental data.

Large-eddy simulations have been tested widely for homogeneous isotropic turbulence. The

relative simplicity of the problem and the availability of well-resolved DNS results make it an

attractive test bed. The variational multiscale method for the LES simulation of homogeneous

isotropic turbulence was presented in Hughes et al.9. The velocity field was partitioned into

coarse-scale (low wave number) and fine-scale (high wave number) components. The subgrid

scale stress was then made a function of the fine-scale velocity field, and applied only to the

fine-scale motions. Effectively, the LES model extracted energy only from high wave number

modes. The method has a variational basis, as it relies on ‘projecting’ the subgrid model onto

the fine-scale motions10, and it was shown to outperform conventional LES models in Hughes
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et al.9. It appeared that extracting energy only from high wave number modes led to better results

than formulations which extract energy from all modes. Subsequent studies have also confirmed

the good behavior of the variational multiscale method on a variety of problems: see Hughes

et al.11, Winckelmans and Jeanmart12, Oberai and Hughes13, Farhat and Koobus14, Jeanmart

and Winckelmans15, Holmen et al.16, Koobus and Farhat17, Ramakrishnan and Collis18–21.

In this work, the spectral eddy viscosities for the conventional dynamic Smagorinsky model

and the variational multiscale model are calculated and examined for a range of discretizations.

The spectral eddy viscosity is decomposed into terms associated with Reynolds-type interactions,

cross-stress interactions and the model. The results from the LES are compared with DNS data.

Based on the results, conclusions are drawn as to the merits and deficiencies of the two LES

models.

2 Formulation

The results presented in this work are simulations of homogeneous isotropic turbulence in a peri-

odic box computed from DNS, the conventional dynamic Smagorinsky model and the variational

multiscale method. In this section, the formulation of the variational multiscale method for the

simulation of homogeneous isotropic turbulence is briefly described.

In the multiscale formulation, the velocity field is partitioned into coarse-scale (ūuu) and fine-

scale (uuu′) components. In a spectral context, the coarse-scale component is given by:

ūuu = ∑
|kkk|<k̄

ûuukkk exp(ikkk · xxx) (1)

where k = |kkk| and k̄ defines the partition between coarse- and fine-scale components. The fine-
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scale motions then involve all resolved Fourier modes greater than and equal to k̄.

uuu′ = ∑
|kkk|≥k̄

ûuukkk exp(ikkk · xxx) (2)

The Navier-Stokes momentum equation in the Fourier space with the multiscale subgrid model

is given by9:
(

d
dt

+ν|kkk|2
)

ûuukkk = −ikkkp̂kkk −
(

̂(uuu⊗uuu)kkk −H
(

k− k̄
)

τ̂ττkkk

)

(3)

where H is the Heaviside function (H(x) = 1 if x ≥ 0, otherwise H(x) = 0). Equation (3) im-

plies that the subgrid stress term acts only on the fine-scale modes. Replacing H(x) by 1, a

conventional LES model is recovered.

For conventional dynamic Smagorinsky and variational multiscale simulations, the Smagorin-

sky parameter Cs∆ is calculated using the dynamic procedure22,23. The eddy viscosity at each

point is then given by:

νT = (Cs∆)2 |∇suuu| (4)

where |∇suuu| = (2∇suuu:∇suuu)1/2. For the conventional dynamic Smagorinsky model, the subgrid

stress is then calculated in the usual fashion and applied to all scales. For the multiscale model,

the subgrid stress is calculated as:

τττ = 2νT ∇suuu′ (5)

which involves the gradient of the fine-scale velocity field. Hughes et al. 9 used the constant

Smagorinsky model in combination with the multiscale method. Note however that here, the

term Cs∆ is calculated using the dynamic procedure.
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3 Numerical results

The numerical simulations are performed in a cube with a side-length of 2π and periodic bound-

ary conditions. A schematic illustration of the cube is presented in Fig. 1. The cube denotes a

lattice in wave-vector space and each point in the lattice corresponds to a resolved Fourier mode.

If the edge of the cube has length 2k′, then the wave number of the highest Fourier mode present

is
√

3k′. The sphere depicts the internal cut-off k̄ which is taken to be
√

3k′/2. In the multiscale

cases, the interior of the sphere corresponds to the coarse-scale subspace, whereas the comple-

ment corresponds to the fine-scale subspace. The coarse-scale subspace is thus approximately

34% of the total space.

The numerical results are calculated using a pseudo-spectral method. Non-linear terms are

integrated using a four-step, third-order Runge-Kutta scheme and terms due to molecular vis-

cosity are integrated using the integrating factor method. Non-linear convective terms terms are

de-aliased using the 3/2 rule. Terms relating to the LES model are not de-aliased. For all cal-

culations, the initial flow field is taken from a well-developed DNS with 2563 Fourier modes.

The initial energy spectrum, together with relevant resolution limits for following simulations, is

shown in Fig. 2a. Note that three regimes of the spectrum are identified in Fig. 2a, corresponding

to approximate slopes of −1, −5/3 and −6. The −5/3 regime extends from about k = 10 to

k = 30. Beyond k = 30, the slope asymptotes smoothly to −6.

All plots of spectral eddy viscosity have been presented on the same scale to allow quantitative

comparisons.

3.1 DNS results

The flow is advanced for approximately one large-eddy turnover time at a resolution of 1603

Fourier modes. The energy spectrum is shown in Fig. 2b. To place LES results in context, the

spectral energy transfer for direct numerical simulations with various cut-offs is first examined.
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The energy transfers, expressed as spectral eddy viscosities, due to Reynolds stress interactions,

cross-stress interactions, and the sum of the two are shown in Fig. 3. The spectral eddy viscosities

are shown in Fig. 3 with three different spherical cut-offs: k̄ = 8
√

3; 16
√

3; and 24
√

3. These

values of k̄ are identified in Fig. 2. The first cut-off k̄ = 8
√

3, is at the beginning of the k−5/3

regime; the second k̄ = 16
√

3 is close to the end of it; and the third, k̄ = 24
√

3, is within the

dissipation regime. The calculated eddy viscosity represents the transfer of energy from modes

below k̄ to modes between k̄ and the DNS limit of resolution.

From Fig. 3, a significant plateau in the spectral eddy viscosity clearly exists for the k̄ = 8
√

3

case at low wave numbers, and the cusp is weak. This case is representative of the energy

extraction that would be required for a very coarse LES. Increasing k̄ to 16
√

3, the spectral eddy

viscosity takes on the classic plateau-cusp profile. There is a small plateau at low wave numbers

which is due to Reynolds stress interactions. Cross-stress interactions lead to the typical cusp as k̄

is approached. Examining the spectral eddy viscosity for k̄ = 24
√

3, Reynolds stress interactions

are insignificant across all wave numbers, and energy transfers are primarily due to cross-stress

interactions. In the absence of a plateau, the energy transfer from low wave number modes to

modes beyond k̄ is negligible.

Remark The case of k̄ = 8
√

3 is coarse enough to be representative of the inviscid case. This

is confirmed by computing the value of the eddy viscosity plateau from the parametrization

given by Lesieur and Rogallo5 and Metais and Lesieur6 , which is predicated on the cut-off

being within the k−5/3 range. In this case, νT /ν = 0.267
√

E
(

k̄
)

/k̄
/

ν ≈ 0.005/ν = 5.3. This

value is comparable to the computed plateau, νT /ν ≈ 0.006/ν = 6.3, but slightly less which is

consistent with the fact that the slope at k̄ is in the range of k−m with m slightly less than 5/3.

Inviscid cases have been thoroughly studied in Lesieur and Rogallo 5 and Metais and Lesieur6,

confirming the test-field model of Kraichnan2 and the EDQNM calculations of Lesieur7. For

the cases k̄ = 16
√

3 and k̄ = 24
√

3 , the Lesieur-Metais-Rogallo parametrization gives values of
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νT /ν much higher than those computed, which is consistent with the fact that for these cases the

cut-off is in the range of k−m with m > 5/3. In this situation, the “spectral dynamic” model (see

Lesieur24), which is applicable for m > 5/3, may be utilized to obtain more accurate estimates

of νT /ν .

3.2 LES energy transfers: Addition of the model component

The spectral eddy viscosity is now examined for the dynamic Smagorinsky and multiscale LES

models. Simulations are performed with 323, 643 and 963 Fourier modes. For each LES, k̄ is

placed at half the limit of resolution, namely, k̄ = 8
√

3, 16
√

3 and 24
√

3, respectively, which is

the same placement as for the DNS spectral eddy viscosity calculations. We consider these LES

to be very coarse, moderately-refined and well-refined, respectively. These characterizations are

supported by the energy spectra, shown in Fig. 2. The spectral eddy viscosity is decomposed

into components corresponding to Reynolds stress interactions, cross-stress interactions and the

LES model. The sum of these components is compared to the DNS total spectral eddy viscosity

for the same k̄. Ideally, the addition of the model contribution to the sum of the Reynolds and

cross-stress spectral eddy viscosities will bring the total spectral eddy viscosity to that for the

DNS. In the following figures, the relevant DNS spectral eddy viscosity is shown in gray. For

the LES results, the model eddy viscosity is shown up to the limit of LES resolution (k/k̄ = 2).

The spectral eddy viscosity for a series of LES with the conventional dynamic Smagorinsky

model is shown in Fig. 4. For the least-well resolved case (Fig. 4a), it is clear that LES energy

transfers due to Reynolds and cross-stress interactions are too small compared to the DNS result

because there are too few modes between k̄ = 8
√

3 and the limit of resolution. The model com-

pensates somewhat for this deficiency in the low wave number region, but the model supplements

the Reynolds and cross-stress interactions insufficiently to reach the DNS dissipation level. For

the better resolved LES (Figs. 4b and 4c), the spectral eddy viscosity due to Reynolds-type inter-
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actions is small, as it was in the DNS case. The cross-stress contribution to the energy transfer is

also small at low wave numbers, but exhibits the cusp near k̄. Generally, the total spectral eddy

viscosity for the two better-resolved dynamic LES cases match the DNS spectral eddy viscosity

well close to k̄. However, the differences are significant at lower wave numbers. The deviation

in the spectral eddy viscosity from the DNS result is attributable to the contribution of the model

at low wave numbers. While the DNS eddy viscosity is small to negligible at low wave numbers,

the model contribution is significant. Curiously, for all cases, the model contribution is nearly

constant across all wave numbers. It can be summarized from Fig. 4 that the dynamic Smagorin-

sky model introduces spurious dissipation at low wave numbers for moderately to well-resolved

LES.

The spectral eddy viscosity for a series of multiscale LES is shown in Fig. 5. The discretiza-

tions and partitions are the same as those for the dynamic Smagorinsky model. Consistent with

the multiscale concept, the model eddy viscosity is zero below k̄, and acts only beyond k̄, as can

be seen in Fig. 5. For the coarsest discretization (Fig. 5a), the multiscale model is unable to

represent the significant plateau at low wave numbers. For the better resolved cases (Figs. 5b

and 5c), the multiscale results correspond very well with the DNS results. The absence of a

model acting at low wave numbers avoids the spurious plateau, leading to results which are in

good agreement with the DNS results.

The spectra for the multiscale LES are compared to the 1603 DNS at the end of the simulation

time in Fig. 6. As expected, based on the previous results, the spectra for the two better resolved

multiscale LES match the DNS spectrum up to the k̄ cut-off very well. In the coarse case, the LES

spectrum lies above the DNS, which is consistent with the fact that the spectral eddy viscosity is

significantly underestimated in this case. In all multiscale cases, the LES spectra drops abruptly

below that of the DNS for k > k̄. Note that the LES spectra are shown up to the the limit of

resolution.
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Remark It is important to note that there are differences in the multiscale method utilized

in this paper and that employed in our initiatory study9. In Hughes et al.9, k̄ = k′/2 and a

static Smagorinsky-type model was used in the fine scales. Here, k̄ =
√

3k′/2 and a dynamic

Smagorinsky-type model is used. In the present case k̄ is quite close to k′. The abrupt drop in

the energy spectrum beyond k̄ noted here (see Fig. 6) was not observed in our earlier study when

k̄ was smaller compared with k′. No effort has been made yet to determine optimal values of

k̄ for homogeneous isotropic flows. An initiatory study of the sensitivity of results to the ratio

k̄/k′, with k′ fixed, for channel flows in presented in Holmen et al.16. There it was observed that

smaller ratios of k̄/k′ (approximately 0.5) better suited the dynamic multiscale model and larger

ratios of k̄/k′ (approximately 0.7) performed better for the static multiscale model. It has not yet

been determined whether this trend is generally applicable.

3.3 Comparison of the dynamic and multiscale models

From the preceding results, it it clear that, for the better resolved calculations, the spectral eddy

viscosity for the multiscale case is closer to the DNS results than the dynamic Smagorinsky case.

To examine the differences between the dynamic Smagorinsky and multiscale models, the total

spectral eddy viscosity (Reynolds stress plus cross-stress plus model contribution) for the two

LES models is compared in Fig. 7. As a reference, the DNS total is included. Figure 7 shows

the total eddy viscosity for the two LES models and the DNS for k̄ = 8
√

3, 16
√

3 and 24
√

3. For

the coarsest discretization, both LES models underestimate the spectral eddy viscosity across all

wave numbers, although the contribution of the dynamic model to the low-mode dissipation leads

to a better result than with the multiscale model. For the better resolved cases, the multiscale

model is in better agreement with the DNS, across all wave numbers.

For each LES case and the DNS, the spectral eddy viscosity is now decomposed into its

Reynolds-type and cross-stress components. Figure 8 shows the Reynolds stress contribution
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to the spectral eddy viscosity. Clearly, for the coarse discretization the Reynolds stress contribu-

tion for the LES is very small compared to the DNS. However, upon refining the discretization,

the Reynolds-stress component becomes extremely small for all cases and even slightly negative

for the finest DNS. Figure 8 shows how rapidly the low wave number plateau (which is due to

Reynolds stresses) vanishes with improved resolution.

Figure 9 shows the spectral energy transfer attributable to cross-stress interactions. For all

cases, both LES formulations are in reasonable agreement with the DNS result. For the coarsest

resolution, the low wave number spectral eddy viscosity due to cross-stress interactions is low

relative the eddy viscosity due to Reynolds stress interactions (Fig. 8a). For the better resolved

cases, the low-wave number eddy viscosity due to cross-stress interactions is effectively zero for

all cases.

The spectral eddy viscosity due to Reynolds-type and cross-stress interactions for the conven-

tional dynamic Smagorinsky model is reasonably close to the corresponding quantities from the

DNS. However, the total spectral eddy viscosity deviates from the DNS results. For moderately

to well-resolved cases, the error is introduced by the model, which is ironically introduced to

improve the representation. The model introduces a low wave number plateau to the spectral

eddy viscosity which is not present in the DNS results.

3.4 Convergence

A global measure of the error in the eddy viscosity, corresponding to Fig. 7, is given by:

e =

∫ 1

0

∣

∣νLES
T

(

k̃
)

−νDNS
T

(

k̃
)
∣

∣ dk̃
/

ν (6)

where

k̃ =
k
k̄
. (7)
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This quantity is presented in Fig. 10 for all the cases studied. For the coarsest discretization, the

error is smaller for the conventional dynamic Smagorinsky model, whereas the multiscale model

is more accurate for the better resolved simulations.

4 Conclusions

The spectral eddy viscosities for a conventional dynamic Smagorinsky LES model and the mul-

tiscale LES model have been examined and compared to DNS results.

For the coarsest discretization, the dynamic Smagorinsky model spectral eddy viscosity is

closer to that for the DNS than the multiscale model, owing to the introduction of eddy vis-

cosity to the low modes. For moderately to well-refined simulations, the conventional dynamic

Smagorinsky model overestimates the eddy viscosity in low wave number modes. The eddy

viscosity introduced by the dynamic Smagorinsky model is nearly constant across all wave num-

bers. While the model has the ability to adapt itself to a flow, its distribution is nearly uniform

across the Fourier modes and it appears unable to partition itself appropriately to the different

scales of motion in the flow.

For the moderately- to well-refined cases, the multiscale spectral eddy viscosity more accu-

rately approximates that for the DNS than the conventional dynamic Smagorinsky model. In

particular, as the discretization is refined, convergence to the DNS is more rapid than for the

conventional dynamic Smagorinsky model. However, the multiscale model significantly under-

estimates energy transfers from the low wave number part of the spectrum to unresolved modes

in the coarsest case. This is important because practical calculations with LES may behave in a

similar fashion to this case.

These results provide additional understanding of the behavior of the multiscale model and

the conventional dynamic Smagorinsky model for homogeneous isotropic flows and suggest re-

search directions that may lead to further improvements. In the case of the multiscale method,
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the representation of the short-range action of the cusp near the cut-off by a fine-scale eddy vis-

cosity model seems to be a simple and adequately accurate procedure. The issue of how to model

the plateau, that is, the long-range transfers from the low wave number part of the spectrum to

the unresolved modes, appears to be a more delicate matter. An eddy viscosity mechanism in the

low wave number regime is unlikely to be the answer because it is well-known from standard

numerical analysis theory that artificial viscosities acting on low wave number components pre-

clude higher-order, and, in particular, spectral accuracy. Furthermore, one needs to realize that

the physical mechanism of long-range transfers is not a viscous phenomenon. How to go about

this appears to be an open question at this juncture.
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