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INTRODUCTION 
NOMADS is a Java-based mobile agent system. It is an infrastructure that allows mobile 
agents to be developed and deployed. Mobile agents are programs that can behave 
autonomously and can move from one system to another over a network. Mobile agents 
are a useful approach to solving a number of problems. Agents in general are very good 
for delegating tasks. Agents can be written to accept high-level goals from a user 
describing a task to be completed and satisfy the goals based on their prior knowledge, 
experiences, and preferences of the user. Along these lines, agents can be very useful in 
gathering, filtering, and highlighting information, which makes them useful for command 
and control scenarios. Agents can also be very useful for monitoring state waiting for 
changes to occur over long periods of time. In general, agents are good for automating 
many types of repetitive tasks. 
 
Mobile agents extend the agent metaphor by adding a new capability - the ability for an 
agent to move from one system to another across a network. This movement may be 
user-directed or self-directed (or a combination). Mobility allows agents to be used in 
new scenarios. For example, mobile agents can be used to gather information from 
various sites by actually moving themselves to the remote sites. By moving from one host 
to another, mobile agents can reduce network bandwidth usage, reduce communication 
and interaction latency, and allow for customized operations to be performed on remote 
systems. 
 
A key feature of mobile agents is the support for disconnected operation, which allows a 
system to transmit an agent to a remote system and then disconnect from the network. 
The agent can remain on the remote system (or even travel to other systems) completing 
its task. Eventually, when the original system reconnects to the network, the agent can go 
back and report any results. 
 
Another key feature of mobile agents is the ability to dynamically download new 
capabilities to systems. Mobile agents can be sent to systems that have already been 
deployed out in the field. These agents can add new behavior to the system, customize 
the system, or use the system in new ways that were not envisioned when the system was 
deployed. For example, suppose that sensors of various kinds have been deployed. If the 
current data-reporting capabilities are inadequate to accommodate an unusual situation 
and the sensors were capable of receiving mobile agents, a mobile agent could be sent to 
the sensor with a new algorithm to gather data as needed and report back to the user. 
Agents could also be used to upgrade or reprogram the capabilities of the sensors in 
general. 
 
The NOMADS mobile agent system uses the AromaVM, which gives NOMADS a few 
key enhancements over other systems. For example, NOMADS can support strong (or 
transparent) mobility of agents because the AromaVM allows the capture of execution 
state. Strong mobility makes mobile agents easier to program by providing a paradigm 
that is easier to understand and easier to use. NOMADS also supports forced mobility, 
which allows the system to move agents between hosts potentially even without the 
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agents realizing the relocation. Such forced mobility of agents is very useful for 
load-balancing and evacuation. 
 
Finally, the AromaVM allows resource limits to be placed on processes. NOMADS uses 
this capability to limit resources that an agent uses on a system. This is a very important 
component of providing secure execution environments. Without secure execution 
environments, it would be dangerous to run mobile agents that originate from untrusted 
places. Even if only trusted agents are allowed, it is quite possible that an agent has been 
tampered with during the process of traveling. Without a secure execution environment, 
the system would be open to several kinds of attacks. In particular, without the kind of 
resource limits provided by the AromaVM, it would be easy to launch denial of service 
attacks that use up valuable system and network resources. 
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Chapter 1 Strong Mobility and Fine-Grained Resource Control in NOMADS1 
 
 
1. Introduction  
Mobile agent systems may be classified into two categories: those that support strong 
mobility and those that do not. Systems that provide strong mobility are able to capture 
and transfer the full execution state of the migrating agent. Systems that support only 
weak mobility do not transfer the execution state but rather restart execution of the agent 
on the remote system. 
 
The Mobile Agent List [7] identifies over 60 mobile agent systems with the 
overwhelming majority being Java-based. Examples of well-known Java-based systems 
include Aglets [10], D’Agents [6], Voyager [14], and Concordia [12]. Because Sun’s 
Java Virtual Machine (VM) does not allow execution state capture, very few of the Java-
based mobile agent systems provide strong mobility. Those that do fall into two 
categories: systems using a modified Java VM and systems using a preprocessor 
approach. 
 
Sumatra [1] and Ara [11,15] are two systems that use a modified Java VM to provide 
strong mobility. One problem with this approach is that the modified VM cannot be 
redistributed due to licensing constraints.

2
 A second problem is that both of these systems 

were based on Java Developer Kit (JDK) 1.0.2 VM, which did not use native threads. 
Since JDK 1.2 and JDK 1.3 VMs rely on native threads, modifying the newer VMs to 
capture execution state would be more difficult. 
 
The WASP system [5] uses a preprocessor approach to provide strong mobility. The 
advantage of the preprocessor approach is the ability to work with the standard JDK VM. 
However, one of the disadvantages of the preprocessor approach is the overhead 
introduced by the additional code added by the instrumentation process. Another 
disadvantage is that capturing execution state of multiple threads requires that each 
thread periodically poll the other threads to see if any of them have requested a move 
operation. This polling adds additional overhead and complicates the task of writing 
agents with multiple threads. 
 
Our approach in NOMADS was to develop a custom VM (called Aroma) that has the 
ability to capture thread execution state. Since the Aroma VM does not use any source 
code from Sun’s VM implementation, there are no licensing constraints on redistributing 
the NOMADS system. Implementing the state capture in the VM gives us the capability 
to transparently handle multiple threads and to support additional kinds of mobility such 
as forced mobility. 
 
Another important feature of the NOMADS system is dynamic resource control. Early 
versions of Java relied on the sandbox model to protect mobile code from accessing 
dangerous methods. In contrast, the security model in the Java 2 release is permission-
based. Unlike the previous “all or nothing” approach, Java applets and applications can 
be given varying amounts of access to system resources based upon policies. Because 
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these policies are external to the programs, the policies can be created and modified as 
appropriate by a developer, system or network administrator, the end user, or even a Java 
program. The policy-based approach is a major advance, however current policies and 
underlying Java mechanisms do not address the problem of resource control. For 
example, while it may be possible to prevent a Java program from writing to any 
directory except /tmp (an access control issue), once the program is given permission to 
write to the /tmp directory, no further restrictions are placed on the program’s I/O (a 
resource control issue). As another example, there is no current Java policy or 
mechanism available to limit the amount of disk space the program may use or to control 
the rate at which the program is allowed to read and write from the disk drive. 
 
One attempt to provide resource control in Java is JRes [4] which provides CPU, 
network, and memory control. JRes uses a preprocessor to instrument code, allowing it to 
take into account object allocations for memory control. A second attempt [9] uses a 
modified Java VM to provide CPU resource control and scheduling. The Ajanta mobile 
agent system [16] takes a different approach by using proxies between the Java agents 
and resources to account for and limit the resources used by the agents. In the case of 
NOMADS, the Aroma VM enforces all of the resource controls and therefore does not 
rely on any preprocessing or special API at the Java code level. Agents simply use the 
standard Java platform API. Also, the overhead introduced by the resource control code 
in NOMADS is very low since the resource control is implemented in native code inside 
the VM (see performance results in section 5). 

The rest of this paper is organized as follows. The next section describes the capabilities 
of the NOMADS system and some potential applications. Section three describes the 
implementation of the Aroma VM and in particular the implementation of the state 
capture and resource control mechanisms. Section four describes the Oasis agent 
execution environment. Section five presents our performance results to date and 
compares NOMADS with other mobile agent systems. Finally, section six concludes the 
paper and briefly discusses our plans for future work.  

2. NOMADS Capabilities  
The NOMADS environment is composed of two parts: an agent execution environment 
called Oasis and the Aroma VM. The combination of Oasis and Aroma provides two key 
enhancements over today’s Java agent environments: 
 

1. Strong mobility, the ability to capture and transfer the full execution state of 
mobile agents. This allows agents to be moved “anytime” at the demand of the 
server or the agent rather than just at specific pre-determined points.  

2. Safe execution, the ability to control the resources consumed by agents thereby 
facilitating guarantees of quality of service while protecting against denial of 
service attacks. Adding these resource control capabilities to the access control 
mechanisms already provided by the new Java 2 security model allows mobile 
agents to be deployed with greater confidence in open environments. 
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2.1 Strong Mobility  
 
Strong mobility simplifies the task of the agent programmer. Since strong mobility 
preserves the execution state, mobility can be invoked by the agent simply by calling the 
appropriate API anywhere in the code. The code fragment below shows a simple 
NOMADS agent that displays a message on one system, moves to another system, and 
displays another message.  

public class Visitor extends Agent 
 
{ 
 

public static void main (String[] args) 
 
{ 
 

System.out.println (“On source”); 
 
go (“<destination host>”); 
 
System.out.println (“On destination”); 
 

} 
} 
 

The following code fragment shows an Aglets agent that performs the same task. Note 
that in this case a Boolean variable has to be introduced external to the run() method in 
order to store state information. This added complexity is not peculiar to Aglets but to 
any mobile agent system that does not provide strong mobility.  

public class Visitor extends Aglet 
 
{ 
 

public void run() 
 
{ 
 

if (_theRemote) { 
 

System.out.println (“On destination”); 
 

} 
 
else { 
 



 

  

 

6

System.out.println (“On source”); 
 
_theRemote = true; 
 
dispatch (destination); 
 

} 
 

} 
 
protected Boolean _theRemote = false; 

} 
 

Strong mobility is also vital for situations in which there are long-running or long-lived 
agents and, for reasons external to the agents, they need to suddenly move or be moved 
from one host to another. In principle, such a transparent mechanism would allow the 
agents to continue running without any loss of their ongoing computation and, depending 
on circumstances, the agents need not even be aware of the fact that they have been 
moved (e.g., in forced mobility situations). Such an approach will be useful in building 
distributed systems with complex load balancing requirements. The same mechanism 
could also be used to replicate agents without their explicit knowledge. This would allow 
the support system to replicate agents and execute them on different hosts for safety, 
redundancy, performance, or other reasons (e.g., isolating and observing malicious agents 
without their knowledge). 
 
Exploiting Java’s byte code approach, NOMADS allows the execution state of an agent 
to be captured on one host of one architecture (say an Intel x86 running Windows NT) 
and restored on another host with a different architecture (such as a Sun SPARC running 
Solaris). While it is possible to achieve some measure of transparent persistence by 
techniques such as having a special class loader insert read and write barriers into the 
source code before execution, such an approach poses many problems [8]. First, the 
transformed byte codes could not be reused outside of a particular persistence framework, 
defeating the Java platform goal of code portability. Second, such an approach would not 
be applicable to the core classes, which cannot be loaded by this mechanism. Third, the 
code transformations would be exposed to debuggers, performance monitoring tools, the 
reflection system, and so forth, compromising the goal of complete transparency. 
 
We note that the current version of NOMADS does not provide any mechanism to 
transparently access resources independent of agent mobility. Section 6 briefly describes 
our current efforts for transparently redirecting network and disk resources.  

2.2 Safe Execution  
Mechanisms for monitoring and controlling agent use of host resources are important for 
three reasons [13]. First, it is essential that access to critical host resources such as the 
hard disk be denied to unauthorized agents. Second, the use of resources to which access 
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has been granted must be kept within reasonable bounds, making it easier to provide a 
specific quality-of-service for each agent. Denial-of-service conditions resulting from a 
poorly programmed or malicious agent’s overuse of critical resources are impossible to 
detect and interrupt without monitoring and control mechanisms for individual agents. 
Third, tracking of resource usage enables accounting and billing mechanisms that hosts 
may use to calculate charges for resident agents. 
 
The Aroma VM provides flexible and dynamic resource control for disk and network 
resources. Using Aroma, it is possible to limit both the rate and the quantity of resources 
that each agent is allowed to use. Resource limits that may be enforced include disk and 
network read and write rates, total number of bytes read and written to disk and network, 
and disk space. Note that disk space is different from disk bytes written because of seek 
operations that may be performed on disk files. The rate limits are expressed in bytes/sec 
whereas the quantity limits are expressed in bytes. 
 
Once an agent is authenticated, a policy file specifies the initial set of limits that should 
be enforced by Aroma. These limits are dynamically changeable through the Oasis 
administration program (discussed in section 4). Dynamically changing resource limits is 
also beneficial to prioritizing agents that are running on a host. In a related project, we 
are working on a high-level policy-based agent management system that resides on top of 
the low-level enforcement capabilities of the Aroma VM [2,3]. 

2.3 Miscellaneous Features  
NOMADS provides several other features to support agents and the tasks agents may 
need to perform. A low-level messaging API is provided to allow an agent to send a 
message to another agent. Agents are assigned UUIDs upon creation and the UUIDs are 
used to address agents when sending messages. Agents may also use alternate names for 
the convenience of people or other agents. A directory service maps agent names to their 
UUIDs. Agents may use the Java Platform API for creating new threads, synchronizing 
between threads, accessing files, networks, and for performing I/O.  

3. Aroma Virtual Machine  
The Aroma VM is a Java-compatible VM designed and implemented with the specific 
requirements of strong mobility and safe execution. The primary goals for Aroma were to 
support: 
 

1. Capture of the execution state of a single Java thread, thread group, or all threads 
(complete process) in the VM;  

2. Capture of the execution state at fine levels of granularity (ideally, between any 
two Java byte code instructions);  

3. Capture of the execution state as transparently to the Java code executing in the 
VM as possible;  

4. Cross-platform compatibility for the execution state information;  
5. Flexibility in how much information is captured (in particular whether to include 

the definitions of Java classes);  
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6. Easy portability to a variety of platforms (at least Win32 and various UNIX/Linux 
platforms);  

7. Flexible usage in different contexts and inside different applications;  
8. Enforcement of fine-grained and dynamically changing limits of access to 

resources such as the CPU, memory, disk, network, and GUI.  
 
 
In the current version of Aroma, the VM can only capture the execution state of all 
threads rather than just a designated subset. Also, at the present time, only the disk and 
network resource limits have been implemented. These limitations will be addressed in 
future versions of Aroma. 
 
The Aroma VM is implemented in C++ and consists of two parts: the VM library and a 
native code library. The VM library can be linked to other application programs. 
Currently, two programs use the VM library – avm (a simple wrapper program that is 
similar to the java executable) and oasis (the agent execution environment). The VM 
library consists of approximately 40,000 lines of C++ code. The native code library is 
dynamically loaded by the VM library and implements the native methods in the Java 
API. Both the VM and the native code libraries have been ported to Win32, Solaris (on 
SPARC) and Linux (on x86) platforms. In principle, the Aroma VM should be portable 
to any platform that supports ANSI C++, POSIX or Win32 threads, and POSIX style 
calls for file and socket I/O. We plan to port the Aroma VM to WinCE-based platforms, 
and expect that a port to Macintosh OS X when it is available will be straightforward as 
well. 

3.1 Capturing Execution State  
Aroma is capable of capturing the execution state of all threads running inside the VM. 
This state capture may be initiated by either a thread running inside or outside the VM. 
The former is useful when the agent requests an operation that needs the execution state 
to be captured. The latter is useful when the system wants the execution state to be 
captured (for example, to implement forced mobility). 
 
For several reasons, we chose to map each Java thread to a separate native operating 
system thread. The other alternatives were to develop our own threads package (which 
would be platform specific and difficult to port) or use an existing threads package 
(which may or may not be available on different platforms). Also, mapping to native 
threads allows the VM to take advantage of the presence of multiple CPUs. Therefore, if 
a VM has two Java threads running (JT1 and JT2), then there are two native threads 
(NT1 and NT2) that correspond to JT1 and JT2. If the execution state of the VM is 
captured at this point and restored later (possibly on a new host), then two new native 
threads will be created (NT3 and NT4) to correspond to the two Java threads JT1 and 
JT2. 
 
However, mapping Java threads to native threads complicates the mechanism of 
capturing the execution state. This is because when one Java thread (or some external 
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thread) requests a state capture, the other concurrently running threads may be in many 
different states. For example, other Java threads could be blocked trying to enter a 
monitor, waiting on a condition variable, sleeping, suspended, or executing native code. 
We wanted as few restrictions as possible on when a thread’s state may be captured so 
that we can support capturing execution state at fine levels of granularity. Therefore, the 
implementation of monitors was carefully designed to accommodate state capture. For 
example, if a Java thread is blocked trying to enter a monitor, then there is a 
corresponding native thread that is also blocked on some IPC primitive. If at this point 
the execution state is captured and restored later (possibly on a different system and of a 
different architecture), a new native thread must resume in the same blocked state that the 
original native thread was in when the state was captured. To support this capability, the 
monitors were designed in such a way that native threads blocked in monitors could be 
terminated and new native threads could take their "place” in the monitor at a later point 
in time. As an example, consider a native thread NT1 on host H1 that represents a Java 
thread JT1. NT1 could be blocked because JT1 was trying to enter a monitor. The VM 
will allow another thread to capture the execution state at such a time and when the state 
is restored later, a new native thread NT2 (on possibly a new host H2) will be created to 
represent JT1. Furthermore, NT2 will continue to be blocked in the monitor in the same 
state as NT1. 
 
Another requirement is the need to support multiple platforms. In particular, to support 
capturing the execution state on one platform (such as Win32) and restoring the state on a 
different platform (such as Solaris SPARC). The Java byte code format ensures that the 
definitions of the classes are platform independent so transferring the code is not an 
issue. For transferring the execution state, the Aroma VM assumes that the word size is 
always 32-bits and that the floating-point representations are the same. With these 
assumptions, the only other major issue is transferring state between little-endian and 
big-endian systems. The Aroma VM writes a parameter as part of the state information 
indicating whether the source platform was big- or little-endian. The destination platform 
is responsible for byte-swapping values in the execution state if necessary. 
 
One limitation is that if any of the Java threads are executing native code (for example, 
by invoking a native method), then the VM will wait for the threads to finish their native 
code before initiating the state capture. This limitation is necessary because the VM does 
not have access to the native code execution stack. 

3.2 Enforcing Resource Limits  
The native code library is responsible for implementing the enforcement of resource 

limits. The current version is capable of enforcing disk and network limits. The limits 
may be grouped into three categories: rate limits, quantity limits, and space limits. Rate 
limits allow the read and write rates of any program to be limited. For example, the disk 
read rate could be limited to 100 KB/s. Similarly, the network write rate could be limited 
to 50 KB/s. The rate limits ensure that an agent does not exceed the specified rate for any 
input and output operations. For example, if a network write rate of 50 KB/s was in effect 
and a thread tried to write at a higher rate, the thread would be slowed down until it does 
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not exceed the write rate limit. 
 
Quantity limits allow the total bytes read or written to be limited. For example, the disk 
write quantity could be limited to 3 MB. Similarly, the network read quantity could be 
limited to 1 MB. If an agent tried to read or write more data than allowed by the limit, the 
thread performing the operation would get an IOException. 
 
The last category of limits is the space limit, which applies only to disk space. Again, if 
an agent tries to use more space than allowed by the disk space limit, then the VM would 
throw an IOException. Note that the disk space limit is different from the disk write 
quantity limit. If an agent has written 10 MB of data, it need not be the case that the agent 
has used up 10 MB of disk space because the agent could have written over the same 
file(s) or erased some of the files that it had written. 
 
To enforce the quantity limits, the native code library maintains four counters for the 
number of bytes read and written to the network and the disk. For every read or write 
operation, the library checks whether performing the operation would allow the agent to 
exceed a limit. If so, the library returns an exception to the agent. Otherwise, the 
appropriate counter is incremented and the operation is allowed to proceed. To enforce 
the disk space limit, the library performs a similar computation except that seek 
operations and file deletions are taken into consideration. Again, if an operation would 
allow the agent to exceed the disk space limit, the library returns an exception and does 
not complete the operation. 
 
To enforce the rate limits, the library maintains four additional counters for the number of 
bytes read and written to the network and the disk and four time variables, which record 
the time when the first operation was performed. Before an operation is allowed, the 
library divides the number of bytes by the elapsed time to check if the agent is above the 
rate limit. If so, the library puts the thread to sleep until such time that the agent is within 
the rate limit. Then, the library computes how many bytes may be read or written by the 
agent in a 100ms interval. If the operation requested by the agent is less than what is 
allowed in a 100ms interval, the library simply completes the operation and returns (after 
updating the counter). Otherwise, the library divides the operation into sub-operations 
and performs them in each interval. After an operation is performed, the library sleeps 
until the interval finishes. For example, if an agent requested a write of 10 KB and the 
write rate limit was 5 KB/s, then the number of bytes that the agent is allowed to write in 
a 100ms interval is 512 bytes. Therefore, the library would loop 20 times, each time 
writing 512 bytes and then sleeping for the remainder of the 100ms interval. One final 
point to make is that if a rate limit is changed then the counter and the timer are reset. 
This reset is necessary to make sure that the rate limit is an instantaneous limit as 
opposed to an average limit. 

4. Oasis Execution Environment  
Oasis is an agent execution environment that embeds the Aroma VM. It is divided into 
two independent programs: a front-end interaction and administration program and a 
back-end execution environment. Figure 1 shows the major components of Oasis. The 
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Oasis Console program may be used to interact with agents running within the execution 
environment. The console program is also used to perform administrative tasks such as 
creating accounts, setting policies, and changing resource limits.  

 

Figure 1. The Oasis Execution Environment 
 
The Oasis process is the execution environment for agents. Among other things, it 
contains instances of the Aroma VM for running agents, a Policy Manager, one or more 
Protocol Handlers, and a Dispatcher. Each agent executes in a separate instance of the 
Aroma VM, and can use multiple threads if desired. In the normal case, all the instances 
of the Aroma VM are inside the same Oasis process. However, it is possible to execute 
agents in separate isolated agent processes. One advantage of using a separate process is 
that the Oasis process itself can be stopped and restarted without stopping the agents. 
 
The policy manager is a major component of the execution environment. It is responsible 
for establishing security and resource control policies for all agents. Policies address 
authentication and agent transfer, execution control, access control, and resource usage. 
As Figure 1 shows, a user or administrator may interact with the Oasis environment 
through a separate administration process that allows the user to examine and change 
various resource limits. 
 
Oasis can support multiple protocol handlers. A protocol handler is responsible for 
transferring the state of an agent from one Oasis to another. The default protocol handler 
in Oasis implements a custom agent transfer protocol but new protocol handlers can be 
written to support other (standard) protocols. The default protocol handler is capable of 
compressing and decompressing agent state information on the fly while an agent is 
being transferred. 
 
One important design choice was to run each agent within a separate instance of the 
Aroma VM. Such a design has both advantages and disadvantages. The advantage is that 
resource accounting and control is simplified. The disadvantage is increased overhead. 
We are working on the possibility of sharing class definitions between multiple Aroma 
VMs which should reduce the overhead significantly. 
 
One of the capabilities provided by Oasis is the dynamic adjustment of resource limits of 
agents. This causes a potential problem for certain kinds of resources when resource 
limits are lowered below the threshold already consumed by an agent. For example, an 
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agent may have already used 10 MB of disk space and the resource limit might be 
reduced to 8 MB. The current implementation does not attempt to reclaim the 2 MB of 
disk space back from the agent. Instead, any future requests for disk space simply fail 
until the agent’s disk usage drops below 8 MB. In the future, we would like to explore a 
mechanism to notify an agent about the change in resource limits (using a callback 
function) and allow the agent a fixed amount of time for the agent to comply with the 
changed limits or perhaps to negotiate some compromise. If the agent does not comply 
then Oasis has the option of terminating the agent or transmitting the agent back to its 
home or to some other designated location. 

5. Performance  
This section describes some initial performance results of NOMADS. The performance 
measurements are divided into two categories: performance of agent mobility and 
performance of resource limits. We have yet not collected any data but superficial 
comparisons indicate that the Aroma VM is significantly slower than the Sun’s Java VM. 
Once we have completed implementation of necessary features, we will focus more 
attention on performance optimization and testing.  

5.1 Agent Mobility Performance
3 
 

We compared the mobility performance of NOMADS with three other Java-based 
systems including Aglets 1.1b2 [10], Concordia 1.14 [12], and Voyager 3.2 [14]. For 
each platform, we wrote a simple mobile agent that carried a payload of a specified size. 
The objective was to measure the round-trip time of each agent (i.e., the time taken for 
the agent carrying the payload to move from the source host to the destination and return 
back to the source. In our experiments, the independent variables were the system type 
and the agent payload size (0, 16 KB, and 64 KB). In the case of NOMADS, an 
additional independent variable was compression of agent state information. The 
dependent variable was the round-trip time for the agent. 
 
The equipment used for the experiments were two Pentium III systems operating at 650 
MHz with 256 MB RAM each running Windows NT 4.0 with Service Pack 6. The 
systems were on an isolated 100 Mbps Fast Ethernet network. The results are 
summarized in the table 1 below. The times reported for NOMADS-C are the times for 
NOMADS with compression enabled for agent transfer. All times are in milliseconds.  
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Table 1. Comparison of Jump Agent Performance  
  

NOMADS  
NOMADS-
C  

Aglets Concordi
a  

Voyager 

0 KB  333.5  443.8  90.6  138.5  115.6  
16 
KB  

337.4  446.7  100.8  147.7  124.7  

64 
KB  

341.6  448.7  144.8  182.3  169.3  

 
The results show that the performance of NOMADS ranges from 1.87 to 3.7 times slower 
than the other systems. NOMADS is slower because of the additional execution state 
information that is being transferred. The relative performance of NOMADS is better 
when the agents are larger (or are carrying a large payload). Another interesting result is 
the tradeoff between CPU-time and transfer time with and without compression. On a 
100 Mbps network, enabling compression actually decreases performance because more 
time is spent in the compression and decompression phase than the actual transfer phase. 
We expect the compression feature would be more useful on a slower connection, such as 
one implemented on a wireless network. Finally, it is also interesting to note that the 
performance of NOMADS is virtually unchanged irrespective of the payload size. This 
can be explained by the fact that the size of the payload is insignificant when compared 
to the size of the agent state (which is several hundred KB). 
 
We expect the performance of NOMADS to improve significantly after optimization. For 
example, currently, the state information transferred by NOMADS includes all the Java 
class definitions. We plan to optimize the system by not transferring the class definitions 
of those classes that are already available on the remote system.  We also plan to support 
capturing the execution state of individual threads or thread groups, which should 
significantly improve performance.  

5.2 Resource Control Performance  
To report on the performance of resource control in NOMADS, we measured the 
overhead imposed by the resource control code on the overall performance of I/O 
operations. We took four different performance measurements: 
 
The Java VM from Sun Microsystems,  
The Aroma VM with no resource control code  
The Aroma VM with resource control code but no resource limit in place  
The Aroma VM with resource control code and a very high resource limit in place 
(i.e., one that will never be exceeded by the agent).  
 
The measurements were taken using an agent that continuously writes data to the 
network. Two variants of the agent were used, one that wrote the data in 10 KB blocks 
and the other that wrote the file in 64 KB blocks. In each case, we measured the I/O rate 
in bytes per millisecond.  
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Table 2. NOMADS Resource Control Performance Results 
  10 KB  64 KB  
Java VM  9532  9903  
Aroma VM (with no resource 
control code)  

8772  9650  

Aroma VM (with code but no limit)  8746  9656  
Aroma VM (with code but very high 
limit)  

8702  9655  

 
The results show that the overhead imposed by the resource control code is minimal. 
Although we have not measured the overhead of the disk resource limits, we expect them 
to be very similar since the mechanism for enforcing the limits is the same.  

6. Conclusions  
We have described our motivations for developing a mobile agent system that provides 
strong mobility and safe execution. We have also described the initial design and 
implementation of the Aroma VM and the Oasis agent execution environment. Initial 
performance results are promising. The speed of agent transfer using the current 
unoptimized NOMADS code ranges only from 1.87 to 3.7 times slower than the weak 
mobility systems evaluated and we have several ideas for significantly increasing 
performance. The overhead for resource control in our experiment was insignificant. 
 
To date, both the Aroma VM and Oasis have been ported to Windows NT, Solaris (on 
SPARC), and Linux (on x86). The Aroma VM is currently JDK 1.2 compatible with 
some limitations and missing features, the major omission being support for AWT. The 
AWT implementation affords opportunities for evaluating resource management 
mechanisms for graphical resources. NOMADS may be downloaded at no cost for 
educational and research use from http://www.coginst.uwf.edu/nomads. 
 
Work is currently underway on optimizing the transfer of execution state information, 
capturing execution state of individual threads and thread groups, implementing 
transparent redirection for both disk and network resources, and resource controls for 
CPU and memory. We are also working on sophisticated high-level agent management 
tools [2,3] that build on top of the resource control capabilities of NOMADS.  
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Chapter 2 State Capture and Resource Control for Java:  The Design and 
Implementation of the Aroma Virtual Machine 
 
 
1. Introduction 
 
Although Java is currently riding a rising wave of popularity, current versions fail to 
address many of the unique challenges posed by the new generation of distributed 
applications. In particular the advent of peer-to-peer computing models and the 
proliferation of software agents motivates various requirements that go beyond the 
capabilities of current Java Virtual Machines: 
 

• Full state capture. To support check-pointing and load balancing, the Virtual 
Machine (VM) must be able to capture its complete state including all threads, 
objects, and classes in the heap. To support requirements for strong “anytime” 
mobility and forced migration (such as when a host is about to go offline), the 
VM must be able to support asynchronous requests to capture execution state for 
a thread or thread group. 

 
• Dynamic access and resource control. The security model in Java 2 [4] provides a 

fairly comprehensive model for access control but does not allow for dynamic 
permission revocation. Once permission is granted to a process, that permission is 
in effect for the lifetime of that process. Furthermore, there is no way of 
specifying the amount of a resource that is granted, assuring a specific quality of 
service for each process. For example, one would like to be able to limit the 
quantity of hard disk, network, or CPU usage that is available to a given process 
or to determine the rate at which the resource may be used. Denial-of-service 
conditions on a host or network resulting from code that is poorly programmed, 
malicious, or has been tampered with are impossible to detect and interrupt 
without dynamic monitoring and control mechanisms for individual processes. 

 
• Resource accounting. Tracking of resource use, based on resource control 

mechanisms, enables accounting and billing mechanisms that hosts can use to 
calculate charges for resident programs. The same mechanisms can be used to 
detect patterns of resource abuse. 
 

 
The Aroma VM is a Java-compatible VM that provides unique capabilities such as thread 
and VM state capture and dynamic, fine-grained resource control and accounting. Aroma 
was developed as part of a research project on mobile agent systems and distributed 
systems. The overall goal was to develop a VM for research use that would be simple, 
flexible, and portable. Therefore, Aroma tries to minimize dependence on operating 
systems features and avoids platform-specific assembly code. Aroma is currently being 
used as part of the NOMADS mobile agent system and in the WYA (“While You’re 
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Away”) distributed system for load balancing and utilizing idle workstations. 
 
Aroma currently provides mechanisms to capture the state of individual threads or the 
complete VM. Individual thread state capture examines each of the stack frames in the 
method stack of the thread and saves all relevant values (such as the program counter, the 
local variables, and the operand stack) as well as all reachable objects. Full VM state 
capture saves the state of all threads in the VM as well as all loaded classes. State capture 
may be initiated synchronously by a thread or asynchronously by an external request. 
 
Java threads in Aroma have a one-to-one mapping to native operating system threads. 
The primary reason for mapping directly to native threads was to not have a platform-
specific user-level threads package. However, mapping to native threads complicates the 
task of capturing a Java thread’s state. In particular, asynchronous requests to capture 
thread state are harder to support because threads may be in one of many states (such as 
running, blocked, waiting, sleeping, or suspended) when the state capture is requested. 

Several components of Aroma were carefully designed to support state capture of 
asynchronous Java threads. The Java threads and their corresponding native threads are 
decoupled so that the native thread’s stack stays constant while allowing the Java 
thread’s stack to change with method invocations and returns. Aroma also uses special 
stack frames on the Java thread stack to handle situations where Java code and C code 
might be interleaved (such as a Java method instantiating an object which requires native 
code to load the class which might again require a Java method to be invoked to initialize 
the class). Finally, the monitors in Aroma were carefully designed to be portable so that 
the state of Java threads can be captured even if they are blocked trying to enter a 
monitor or waiting on a condition variable. 
 
Aroma currently provides a comprehensive set of resource controls for CPU, disk, and 
network. The resource control mechanisms allow limits to be placed on both the rate and 
quantity of resources used by Java threads. Rate limits include CPU usage, disk read rate, 
disk write rate, network read rate, and network write rate. Rate limits for I/O are specified 
in bytes/millisecond. Quantity limits include disk space, total bytes written to disk, total 
bytes read from the disk, total bytes written to the network, and total bytes read from the 
network. Quantity limits are specified in bytes. 
 
CPU resource control was designed to support two alternative means of expressing the 
resource limits. The first alternative is to express the limit in terms of byte codes 
executed per millisecond. The advantage of expressing a limit in terms of byte codes per 
unit time is that given the processing requirements of a thread, the thread’s execution 
time (or time to complete a task) may be predicted. Another advantage of expressing 
limits in terms of byte codes per unit time is that the limit is system and architecture 
independent. The second alternative is to express the limit in terms of some percentage of 
CPU time, expressed as a number between 0 and 100. Expressing limits as a percentage 
of overall CPU time on a host provides better control over resource consumption on that 
particular host.  
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Rate limits for disk and network are expressed in terms of bytes read or written per 
millisecond. If a rate limit is in effect, then I/O operations are transparently delayed if 
necessary until such time that allowing the operation would not exceed the limit. Threads 
performing I/O operations will not be aware of any resource limits in place unless they 
choose to query the VM.  
 
Quantity limits for disk and network are expressed in terms of bytes. If a quantity limit is 
in effect, then the VM throws an exception when a thread requests an I/O operation that 
would result in the limit being exceeded. 
 
The Aroma VM implementation is based on the Java Virtual Machine specification and 
does not use any source code from other licensed VM implementations. Therefore, 
Aroma may be distributed without any licensing constraints. Currently, Aroma is 
distributed in binary form as bundled with the NOMADS mobile agent system. 
NOMADS may be downloaded and used free of charge for non-commercial purposes 
from http://www.coginst.uwf.edu/nomads. We also plan to release the Aroma VM in the 
form of an object library that may be embedded inside other applications.  
 
Aroma is currently JDK 1.2.2 “compatible” with some missing features such as support 
for AWT and Swing. Also, Aroma currently works with the Sun implementation of the 
Java Platform API (as distributed in the Java Runtime Environment). In the future, we 
also plan to support other API implementations such as the GNU Classpath project. 
Aroma has been ported to Win 32 on x86, Solaris on SPARC, and Linux on x86. 
 
Currently, Aroma does not provide a Just-in-Time compiler, which significantly affects 
the performance of Aroma when compared with other VM implementations. In the 
future, we will work on integrating freely available JIT compilers (such as OpenJIT) 
while still retaining the unique features of Aroma. The VM does offer good state capture 
performance and has minimal overhead for disk and network resource controls. CPU 
resource control introduces an overhead of 6.6% to 6.9%. More information on the 
Aroma VM, the NOMADS mobile agent system, and the WYA (While You’re Away) 
distributed system is available on the NOMADS web site at 
http://www.coginst.uwf.edu/nomads. 




