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Statistical Analysis of RNA Backbore

Guillermo Sapirof
Eli Hershkovitz andAllen Tannenbaum?
L oren Dean Williams®

Abstract The work described here follows recent efforts in study-
ing the local 3D structure of RNA, e.g., [5, 9, 10, 11]. In
RNA backbone conformation analysis has been demdfis paper we use classical techniques from statistical sig
strated to be particularly difficult due to the large numb&@! processing to study the RNA torsion angles, which
of torsion angles per residue and the large variability 8f€ illustrated in Figure 1; see also [15]. We present
the raw data. Due in part to the importance of local strutlly automatic techniques to search for motifs (conform-
tures in the understanding of RNA catalysis and bindifgjs/fotamers) in the RNA backbone, both at the level of
functions, studies in this area have recently received |Rdividual residues or suites and at the level of a group
creased attention. In this work we use classical tools frdth consecutive ones. Note that in [5], we considered
statistics and signal processing to search for clusterein the problem of finding repeating conformational states
RNA backbone torsion angles. Results are reported béggnformational motifsand representing them as repeat-
for scalar studies, where each torsion angle is separatg strings of ASCII characters. The use of quantiza-
studied, and for vectorial studies, where several angkes #9h makes the recent approaches of [5, 9] fully automatic
simultaneously clustered. Using techniques from optinfild based on well defined distortion and quality metrics.
guantization, we automatically find the torsion angle cluédditional statistical analysis techniques demonstrated
ters. With these clustering techniques, we find RNA badikis paper are mutual information to compare between
bone motifs, both at the single residue level (phosphat@sidue and suite parsing, optimal fitting of the main tor-
to-phosphate) and at the suites level (base-to-base) pai@d angle clusters, and principal component analysis of
ing. These two parsing techniques are also compared gy found motifs.
ing mutual information measurements. We conclude the
work with statistical analysis of some of these motifs, an ] )
optimal fitting of torsion angle distributions in the moséj Scalar and Vector Quantization

significant clusters. The whole process is fully automatic
and based on well-defined optimality criteria. In this section, we briefly describe the basic concepts of
vector quantization that we will use for clustering. Dedail
on this technique can be found, e.g., in [2], from which we
have prepared the summary we now present. Note that in
this work we restrict ourselves to the use of this cluster-
ing technique, while in the future we plan to use more
RNA plays an important role in storage and communicadvanced ones such as those reported in912].
tion of information, as well as in other important biologi- vsector quantization (VQ) is a clustering technique orig-
cal processes. As with proteins, the 3D structure of RNAg|ly developed for lossy data compression. In 1980,
is essential for performing these functions. The 3D strucnde et al, [8], proposed a practical VQ design algo-
ture of RNA is different than that of proteins, with Sixithm based on a training sequence. The use of a training
torsion angles in each residue; see Figure 1. sequence by-passes the need for multi-dimensional inte-
. gration, thereby making VQ a practical technique, imple-
T\é{gz:riscﬁl’pﬁzd %’O%NR' DARPA, NSF, ARO, AFOSR, and N'H'|r_nented in most scientific computation packages, such as
puter Engineering and Digital Techno
ogy Center, University of Minnesota, Minneapolis, MN 5545sMatlab (www.mathworks.com).

1 Introduction

guile@ece.umn.edu A VQ is nothing more than an approximator. The idea
tschools of Electrical & Computer Engineering and Biomeldia:
gineering, Georgia Institute of Technology, Atlanta, GA332-0250, lvector quantization was used in the context of protein stneg e.g.,
eli@theor.chemistry.gatech.edu, tannenba@ece.gatkch. [6].
§School of Chemistry and Biochemistry, Georgia InstituteTeth- 2We should also note that vector quantization is often alsmvknin

nology, Atlanta, Georgia 30332, loren.williams@chenyigiatech.edu. the literature ag-means clustering.



a vector source with its statistical properties known, give

a distortion measure, and given the number of desired
codevectors, find a codebook (the set of all red stars) and a
partition (the set of blue lines) which result in the smdlles
average distortion.

We assume that there is a training sequence (e.g., the
measured torsion angles in RNA backbone) consisting of
M source vectors of the forlf = {z1,22,...,20}.

We assume that the source vectors ardimensional,
e.0.%m = {Tm1,Tm2, -, Tmi}, fOrl <m < M.

Let N be the number of desired codevectors and let

‘/\. C = {c,ca,...,cn} be the codebook, where each,
1 < n < N, is of coursek-dimensional as well. Let
Figure 1: RNA backbone with six torsion angles labeled of,, be the cell associated with the codevectgrand let
the central bond of the four atoms defining each dihedral. The = {5, S, ..., Sy} be the corresponding partition of
two alternative ways of parsing out a repeat are indicated: ¢he t-dimensional space. If the source vectgr is in the
traditior\al nugleotide residue goes from phosphate to phate encoding regiorf,,, then its approximated by, and let
(changing residue number between O5’ and P), whereas an Ra‘é'lote byQ(2m) = cn (if #m € Sn) such a map. Then,

suite, which is more appropriate for local geometry analysi . . .
ssuming for example a squared error distortion measure,
goes from sugar to sugar (or base to base). Only the ang%s

«, v, 0, and ¢ are investigated in this study. This image wa e average d!zstortlon IS gl\éen Eiy :zﬁ Zm:21 M|

obtained from [9], where the reader is directed for a detdile®m — @(Zm) ||°, where|| e [°= €] + €5 + ... + ;. _

description of the reasons for using both parsing approache  1he design problem then becomes the following: Given
the training data sef’ and the number of desired code-

books (or clusters)V, find the cluster center§ and the
is similar to that of “rounding-off” (say to the nearest intespace partitior” such that the distortiof is minimized.
ger). An example of a 1-dimensional VQ is shown in FigFhis problem can be efficiently solved with the LBG algo-
ure 2. Here, every number less than -2 are approximatédm [4, 8], and as mentioned above, its implementation
by -3. Every number between -2 and 0 are approximateah be found in most of the popular scientific computing
by -1. Every number between 0 and 2 are approximategrams.
by +1. Every number greater than 2 are approximated by
+3. Figure 2 also presents a two-dimensional exampje. .
Here, every pair of numbers falling in a particular regiog CIUSte”ng the RNA Backbone
are approximated by the red star associated with that re- Torsion Angles
gion.

™~ suite
L ]

residue

We first report results from scalar quantization, where
, each one of the angles are studied separately. Once this
o123 is done, we will analyze all torsion angles as a vector. We
o I e — use two data sets. One follows the work reported in [5],
ot ] and is for a single RNA with 2914 residues (HM LSU
2t ] 23S rRNA, rr0033), while the second one follows work
. - ] reported in [9], and is for a collection of 132 RNAgiv-

o ! - ] ing a total of 10463 residues. Here, as in the rest of this
TN ] work, residues with unknown torsion angles were ignored
in the analysis. The data was obtained from kheleic
Acid Databasg13]. Although we have not performed the

]
K

P =1
B 2

D V. Swith NDB and PDB codes: ar0001, 02, 04, 05, 06, 07, 08, 09, 11,
12, 13, 20, 21, 22, 23, 24, 27, 28, 30, 32, 36, 38, 40, 44; arbB02,
. ) . 5; arf0108; arh064, 74; arl037, 48, 62; arn035; dr0005, 08dib002,
Figure 2: One (top) and two (bottom) dimensional exampless o5, 07, 08, 18; drd004; pd0345; pr0005, 06, 07, 08, 0911015,
of clustering via (vector) quantization. All the points igewven 17, 18, 19, 20, 21, 22, 26, 30, 32, 33, 34, 36, 37, 40, 46, 47531,
interval (in one-dimension) or a given cell (two-dimensipare 55, 57, 60, 62, 63, 65, 67, 69, 71, 73, 75, 78, 79, 80, 81, 83985,
represented by the red marked “center.” (This is a color fghr 91; prv001, 04, 10, 20, 21; pte003; ptr004, 16; rr000S5, 10,186 33;
tr0001; trnal2; uh0001; uhx026; ur0001, 04, 05, 07, 09, #2,15,
19, 20, 22, 26; urb003, 08, 16; urc002; urf042; url029, 5E0&8; and
The VQ design problem can be stated as follows. Giverx0s3, 59, 63, 75.




filtering techniques in [9], these might be used to improve
our results. As in [5], we here limit the analysis to the
torsion anglesy, v, d, ¢ (see Figure 1), since the other
ones are either dependent with respect to these ones ol
have unimodal distributions [14, 16]. There is no intrin- . 1
sic limitation in our technique in working only with this T TR T
reduced set of angles (moreover, being the process fully Q 5
automatic, the work can certainly be carried out for larger

sets), but this will clarify the presentation. i | J

In Figure 3 we show the distributions for these four ] .
angles for the two datasets. A few remarkable thingsto ~ 1 J
notice are the following. First, the distributions are very . a ] 1

similar for both datasets, pointing out to the fact that the T
local structures are not only “rotameric” for a given RNA 5

(first data set) but also across RNAs (second dataset). Sec-

ondly, although the distributions farand( are very sim-

ilar (since these can be considered analogous angles), the

secondary picks fof are much broader and less well de-

fined, Figure 4. This has been the subject of controversy,

and for example, the authors of [9] solve this by filtering, s
and then reporting more clusters than in the non-filtered o Ay
approach in [5]. Still, although this filtering is important

in the analysis, it doesn’t explain the unique long tail in

the ¢ distribution; see also [15]. In particular, note that

analysis (see below) to what the VQ statistical analysis LA . ‘l

the rotation of is sterically more restricted than that®f

by proximity to the furanose ring. Here, we will limit our

tells us, working with the raw data and without any addi- 5

tional constraints. Understanding this difference betwee

the o and( torsion angle_s is something that intrigues L1§‘igure 3: Cumulative distributions of the torsion angles

and we hope to address in the near future. v, 8, and ¢ for the single RNA (first two rows) and the collec-
“Using the automatic and optimal quantization techion of RNAs (last two rows). We observe the similitude among

nique, and requesting the numk@rof codevectors fol- the distributions, marking the presence of “rotamers” naiyo

lowing [5] (or just from visual inspection) we found theor a given RNA but also across RNAs. We also observe clear

codevectors or centers of the clusters given in Table 1. modes, which are automatically detected by the proposest clu
tering technique. In addition, note that tgeorsion angle has a

-

¢
¢

Dataset 1 large tail not present in the other distributions.
a | 68.3(1),169.7 (2), 294.3 (3)
v | 50.4,60.0 (1), 175.8 (2), 292.3 (3
) 81.7 (1), 147.8 (2) when we proceed to cluster the data. Note also that al-
¢ 118.0 (2), 286.7 (1) though we have pre-defined the number of clusters, this
Dataset 2 could also be left as part of the automatic process, for ex-
o 68.6 (1), 167.8 (2), 294.0 (3) ample via the expectation minimization (EM) algorithm.
7 | 50.1,65.0 (1), 174.4 (2), 290.2 (3 We have observed that increasing the number of clusters
8 82.7 (1), 144.4 (2) doesn’t produce a significant change in the distortign
¢ 1164 (2). 286.0 (1) indication that the selected number of clusters is enough.

Table 1: Cluster centers automatically computed by our tedEF;egardlngC, i addltlonal clusters are requestgd, e.g. 3
nique Numbers in parenthesis are used for cluster ideatific lusters, for the first dataset these are automgtlcallydoun
tion ' at.85.86, .188.25, gnd _289.27, therepy splitting the large
' tail (following the directions reported in [9]).
We should also comment on the particular distributions
We note once again the very similar results for both dateeach cluster. There are a number of reasons for the vari-
sets. We should also note that fgrtwo of the centers areability inside each cluster, and therefore it is important t
very close to each other, and will be considered just onrderstand the possible statistical explanation forntesi



whole. We could then use this as well, instead of the scalar
work which we continue below as the basis for vectorial
clustering.

- 4 Automatically Finding M otifs

Figure 4: The tail of ¢ for the second dataset. Although twdnith the above automatic procedure, we can proceed and

picks can be “guessed,” the distribution is much more flatthafind motifs. Basically, we cluster the torsion angles ac-

for example for ther torsion angle. cording to their proximity to the centers in Table 1. In the
results reported below, we have not considered a “dead

this is connected to problems in the data acquisition Hifne (equivalent to the manually defined bins “other

also to the RNA dynamics. We have experimented wih [5]. a_nd to some of the r(_esults f“"T‘ the fil_t(_aring ap-
a number of fitting functions, and we have observed t roach in [9]), and each torsion angle is classified to one

the best fitting (with a significant improvement) for th the clusters. Following the filtering approach in [9] and

major clusters is obtained using exponential distribuijor% € 0tf|1er b'ng |nt[5],. we corld tl:;]e tmore ;:onsertvgtl\ég
and not Gaussian ones as argued for example in [5]. i on'y consider torsion angies that are at a certain dis-

example, for the first dataset, the kurtosis for the ma,t) 1ce ?f_le? cI;Jster centec;s, wh|lle cpn3|der|tng th? r;asthas

cluster is 5.3 forx and 4.6 for¢, clearly indicating a sig- _nm.;,e. IS OI course Its' otnhe a solln a:n Sunga Ifh ash-

nificant deviation from Gaussian distributions. The log2 : 'Of €xampie requesting th€ angies to bp ames the
ariance inside the class. Therefore, the technique here

likelihood while fitting an exponential function improve . ) :
by 24% with respect to fitting a Gaussian for théorsion proposed provides not only an automatic clustering ap-
proach, but also a way to filter out data if so desired.

angle and by 23% for thé torsion angle. Similar behav- X o7 .

ior is observed for the other dataset, although sometim éJsmg the notation in Table 1, we pregent in Table 3

the improvementis a bit more moderate (e.qg., for the fi most f_requent cells for_ the residues In both datas_,ets

mode ofa in the first dataset, the improvementis of 16% _eft _and right for_ each _palr), _ar_ld for residue and suite
qrsing (left and right pairs). Similar results were repdrt

Understanding the distributions in each cluster is cruc . : : .

for future steps of this research, namely probabilistic dl- [S] for the first dataset and for residue parsing (that is,

sign ' corresponding only to the top-left table), where the cluste
' centers and boundaries were defined manually.

o o The next step if of course to look for motifs for more
3.1 Vector Quantization and Binning than one consecutive residue. In Table 2, we report the

The results described above address the scalar quan E"élre]r A-helices we automatically founc:](the%e arefga/en
tion of the torsion angles, and will already lead to t the compositior111, see [5]) in each residue of the

fully automatic motif finding technique reported in théirstdataset.

next section. We can of course also perform vector quanti-We also found 27 tetralqops (defin_e_d by the series 3111,
11, 2111, 3111), starting at positions 149, 252, 313,

zation, and provide this way an additional automatic w.
#68, 505, 624, 690, 804, 1054, 1197, 1326, 1388, 1468,

to study the vector clusters, without the need to perfo
visualization based decisions such as those in [5, 9]. 499, 1595, 1628, 1706, 1748, 1793, 1808, 1862, 1991,
example, if we request 6 centers for the pair (), we 2061, 2248, 2411, 2629, 2695;_ and four e.—strands (3111,
(294.4,289.4), (105.1,110.5), (287.4,86.7).4 1367, 2689.

We note that thee component of the automatically de-
tected centersis as in the case of scalar quantizatiore wigil
the( componentincludes terms that appear both when We

_reque_st 2 and_3 bins fo:_r in the scalar case. _PerformRNA can be parsed by residues or by suites as in [9]; see

ing this vectorial analysis, for 2 or more torsion ang| o2 : )

; . . . igure 1. The motivation for the latter is the high corre-

together, gives us information on the importance of the . .

AP . l[ation between the adjacent phosphate torsional argles
distribution centers when the angles are considered as : . . ) -

anda. This correlation was established for dinucleotides

 “These  results  are  for  residue-based pargnd short oligonucleotides [15]. Here we will extend the
'896'7 6o ;Vlhé';e @ 87f°5r a6 75)”'&33;32"89 4)"’(&‘{3'5”2 : 09";‘; obtaie|ation to any RNA molecule using information theory.
(2914, 189.2). (69.9. 284.2). More details in these o types of 1O try to further understand the differences between the

parsing are provided below. two forms of parsing the RNA backbone, we computed

Residue vs. Suite Parsing




Starting residug Length domness) of) givenz.

12 12 In the case of residual parsing, we obtained
98 10 MI(a,() = 0.83, while for suites parsing we obtain
294 10 MI(a,¢) = 1.16.5 This increase in mutual informa-
343 13 tion indicates that the suites parsing is more appropri-
399 10 ate (as claimed in [9]), at least that these torsion angles
418 10 are functionally more dependent with this parstnive

519 13 should add, for completeness, th#tl(a,v) = 0.82

589 14 (H(y) = 3.56), MI(a,d) = 0.46 (H(5) = 2.74), and

606 13 MI(~,6) = 0.38.

747 12

796 10
o i 6 Principal Component Analysis of
1217 12 Tetraloops
1261 16

1291 20 As done for secondary structures in protein research, e.g.,
1317 11 [3], it is important to study the variability of the motifs
1329 11 found in RNA, due once again to its possible implications
1453 17 in the dynamics. Following the work on proteins [3], we
1507 17 perform principal component analysis (PCA) on the 27
1535 24 tetraloops reported above and in an additional larger data
1606 10 set.

1760 11 The basic procedure is as follows. LEtdenote the
1843 12 number of residues in the motif.(= 4 for tetraloops)
1896 23 and N the number of samples (27 for our first example).
1920 21 The first step in the PCA is to compute the covariance ma-
2259 12 trix C, which is a square matrix of dimensidrd. (four
2429 13 angles per each residue), whose elements are given by
2542 10 Cij = w3 2o (@i < @ >)(@mj— < 17 >),
2621 10 where< z; > ,is thei-th coordinate of the mean struc-
2708 10 ture. We then compute the eigenvalues and eigenvec-

tors of this matrix,\, and#,. The eigenvalues distribu-
Table 2:Location and length of larger A-helices automaticallgion will tell us the number of modes in this class. In
found in the first dataset. Figure 5, top, we clearly see 2 to 3 dominant eigenval-
ues for this data set, considering the 4 angtesy, ¢, ().

In the middle, we repeat the computation for a total of

the mutual information betweenand(, both for residue 261 tetraloopg,consmerlr_lg now all the six torsion ang_les
(o, 8,7, 9, ¢, (), and defining a tetraloop as the combina-

parsing (i) against((i)) and for suite parsingo((i) \

against(i—1)). Mutual information is defined as followstt')cc))ln {53;1;;3,83;1”1?“1&02;112;;231]%‘.;115Where thle Symv'v
1]: Let x andy be two random variables. First, tlea- ’ 0s€ angles. e
Ergpyof;is déyfined adl (z) := — E,[log(P(x)], where observe again the 2 (maximum 3) dominant eigenval-
E,[] stands for the expectation. Entropy measures Hff> (analyvs\;rs] of the e|gtinvectors V(;””t be rteporteq els_tet;
bits) the randomness of a signal, the larger the entropy mlléet;]ee).s' toresno usmgl € satms f.aa Se{ taglaln wi
more random the variable is. Th@nt entropyis defined (371171 ;’;11?1'321??19 gf’ll’?llj) WZ Icr)lé)rtlginalseSraeg;rpr)] as
asH(x,y) .= —E,[E,[log(P(z, , and summarizes\°: " 9T 0 R 0 b a2 T . B
the d(eq:cjrlé)e of depéLdé[nc%SQyuHile theconditional Ples- The eigenvalues distribution is shown in the last fig-
entropyif given by H(y|z) = —E,[E,[log(P(y|z))]], ure on the bottom, with two dominant eigenvalues once

which summarizes th_e randomnegsycgwen. knowledge 55 i, andc have ] — 4.59.
of z. We can now define theutual information 8For computing theV/ T, we quantized the: and( torsion angles in
100 bins. We also tested for different numbers of bins ancysvthe
MI(z,y) := H(y)—H(y|zr) = H(z)+ H(y)— H(z,y), mutual information increased for suite parsing.
“rr0011, rr0033, rr0055, 110043, rr0044, rr0060, rr006N07,
which is a measure of the reduction of the entropy (rameo78 and rr0079; HLSU 50 from NDB.
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avyd( | Freq. ayd( | Freq.
ayé¢ | Freq. ayé¢ | Freq. 3111|1835 3111 | 6946
3111|1812 3111 6702 3121 136 2211 630
2211 125 2211 593 2211 125 3121 375
3122 114 3112 337 3112 92 3112| 298
3112 111 3122 294 2111 52 2111 206
2111| 86 2111 294 2112 42 2112 148
3121 58 3121 187 1212 40 1212 144
1111 47 1211 182 3122 37 3211 123
1211 42 1111| 161 2122 36 1112 120
2122 39 3211 111 1122| 36 3122 119
1121 38 1311 91 1111 35 1111 104
3211 30 1121 77 3211 31 1122 91
1322 23 2212 74 1112 31 1311| 84
2121 21 2122 70 2121 24 1211 76
1311| 20 1122 70 1121 22 2121 71
1122 20 2121 58 1321 19 2212| 68
1112 19 2112| 54 1322 15 2122| 64
3222 13 1112 53 1311 14 1121| 58
3311 13 3311| 41 3312 13 2221 43
2222 12 3222| 40 2221 12 1321| 38
1321 11 3212| 40 3321 12 3221| 34
3321 10 1322 39 3222 11 3312| 34
3212 10 2222 38 1222 10 3212| 32
1221 9 1212| 37 3212 9 3222| 28
2112 7 1221 27 3221| 8 1322| 27
3221| 6 1321 24 2212 8 1222 26
3322| 6 3321| 283 1211 7 3321| 26

1312 7 1312 23

Table 3:Frequency of most popular torsion angles motifs, both feichee parsing (first two columns) and suite parsing (last two
columns). The table on the left of each pair corresponds eéditst dataset while the one on the right corresponds to ticersed

dataset. Note that angles of the first two columns corresporde same residue, while the last two columns to suitesFgpee
1.



