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Abstract

Over the last two decades attempts to quantify decision-
making have established that, under a wide range of
conditions, people trade-off effectiveness for efficiency in the
strategies they adopt. However, as interesting, significant, and
influential as this research has been, its scope is limited by

three factors; the coarseness of how effort was measured, the
confounding of the costs of steps in the decision-making
algorithm with the costs of steps in a given task environment,
and the static nature of the decision tasks studied. In the
current study, we embedded a decision-making task in a
dynamic task environment and varied the cost required for the
information access step. Across three conditions, small
changes in the cost of interactive behavior led to changes in
the strategy adopted for decision-making as well as to

differences in how a step in the same strategy was
implemented.

Introduction

In the 80’s and 90’s, Payne, Bettman, and Johnson (1993)
showed that decision-makers trade-off efficiency of their

decision making strategy for the effort it requires. They

attempted to quantify the cognitive effort of decision

making by counting the number of steps that different

strategies required for the same decision. The conclusion of

this work was that people adapt to a wide variety of

conditions to find a strategy that is about as accurate as it

needs to be for as little cognitive effort as possible.

As interesting, significant, and influential as Payne, et

al.’s work was, its scope was limited by three factors; the

coarseness of how effort was measured, the confounding of
the costs of steps in the decision-making algorithm with the

costs of steps in a given task environment, and the static

nature of the decision tasks studied.

First, the elementary information processes (EIPs) that

Payne et al. used to count steps were neither elementary or

steps. By today’s standards EIPs such as “reading value,

comparing two values or storing a result in long-term

memory” (Todd & Benbasat, 2000) would be analyzed as a

series of more fundamental cognitive, perceptual, and action

operations. Furthermore, the count of steps was not based

on an analysis of the decision-making process executed by a

human, but stemmed from task analyses of the minimum
number of steps a perfect agent would require to execute the

algorithm. The step count did not consider the mis-steps or

re-steps taken by a boundedly rational agent as they skipped

a step or forgot an intermediary product, and then backed up

and redid a number of steps to recover.

Second is the confounding of the costs of a step in the

decision-making algorithm with the costs associated with

how a step is implemented in a given task environment.

Research has shown that the organization, form, and

sequence of information influences strategy selection (for

example, Fennema & Kleinmuntz, 1995; Kleinmuntz &

Schkade, 1993; Schkade & Kleinmuntz, 1994). Other

research has looked at how individual differences in

working memory capacity interact with interface design to

affect performance on decision-making tasks (Lohse, 1997).
Other studies have looked at how the design of decision aids

may have unintended consequences for the decision

strategies that people adopt (Adelman, Miller, & Yeo, 2001;

Benbasat & Todd, 1996; Rose & Wolfe, 2000; Todd &

Benbasat, 1994, 1999, 2000). At least one study has

investigated how the cost of information access affects

strategy selection (Lohse & Johnson, 1996).

The third limit on the scope of Payne, et al.’s pioneering

work is that the decision-making tasks they used were static,

not dynamic. Although time constraints were sometimes

introduced (Payne, Bettman, & Luce, 1996), these were
extrinsic, not intrinsic to the decision-making task. For

example, subjects were told to work quickly, timed, or

rewarded for fast performance. Such extrinsic time pressure

differs from tasks where the information, options, and

criteria for decision-making change over time (Adelman,

Bresnick, Black, Marvin, & Sak, 1996) or in which an early

step in decision-making may result in changes to the task

environment (Ehret, Gray, & Kirschenbaum, 2000). Hastie

(2001) has characterized these dynamic situations as

entailing a series of “linked decisions in a dynamic,

temporally extended future” and has marked understanding

this type of decision making as one of his 16 challenges for
decision-making research in the 21st century.

The current paper reports empirical data from the first of a

planned series of experimental and modeling efforts to

extend the scope of decision-making research. In the study

reported here, decision-making was embedded as an integral

part of a dynamic classification task. Subjects’ goal was to

score as high as possible on the classification task while

maximizing performance on the decision-making task. This

initial study focuses on the ways in which varying the cost

of interactive behavior affects the decision-making process.

Specifically, across three between-subject conditions, we
introduced modest differences in the cost of information

access and studied how these differences affected the mix of

cognitive, perceptual, and action operations for acquiring

and comparing information.
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Method

Subjects

Forty undergraduate students participated for approximately
five hours each. Seven failed to complete the study. Subjects
were either given course credit or were paid $5.00 per hour
of participation and a $5.00 per hour completion bonus.
Subjects were run individually.

Task

The experimental task was a preferential choice decision-
making task embedded in the Argus Prime simulated radar-
operator task environment (Schoelles & Gray, 2001a).
Argus Prime is a complex but tractable simulated task
environment (Gray, 2002) that we have used in a variety of
studies (see, e.g., Gray & Schoelles, 2003; Schoelles, 2002;
Schoelles & Gray, 2001b).

Classification Task. For the classification task, the subject

must assess the threat value of each target in each sector of a

radar screen (depicted in Figure 1). The screen represents an
airborne radar console with ownship at the bottom. Arcs

divide the screen into four sectors; each sector is fifty miles

wide. The task is dynamic since the targets have a speed and

course. A session is scenario driven; that is, the initial time

of appearance, range, bearing, course, speed, and altitude of

each target are read from an experimenter-generated file.

The scenario can contain events that change a target’s

speed, course, or altitude. New targets can appear at any

time during the scenario.

Figure 1: Argus Prime Radar Screen (left) and
Information/Decision Window (upper right).

The subject selects (i.e., hooks) a target by moving the

cursor to its icon (i.e., track number) and clicking. When a

target has been hooked, an information window appears (on

the upper-right of the display) that contains the track

number of the target hooked and the current value of target

attributes such as speed, bearing, altitude, and course. The

subject’s task is to combine these values, using an algorithm

that we have taught them, and to map the result onto a

7–point threat value scale (at the bottom of the information

window).

Targets must be classified once for each sector that they

enter. If a target leaves a sector before the subject can

classify it, it is considered incorrectly classified and a score

of zero is assigned. A running score that indicates

percentage of targets correctly classified is shown in the

upper-left of the display. For this study, each Argus Prime
scenario lasted 12-min. During this period a subject had the

opportunity to calculate the threat value of between 70 and

90 targets.

The Decision–Making Task (DMT). The decision-making

task (DMT) was added to Argus Prime for this study. As

discussed in the Procedure section, subjects were introduced

to the DMT after an hour of training and a second hour of

practice on the classification task.

Each scenario proceeded until the subject had classified 8

targets. At this point, a DMT presented the subject with 4 or

6 targets for which he or she had already calculated the

threat value. All groups were given the identification
number for each of the DMT alternatives in a target-column

that appeared in the lower right of the display (this area is

blank in Figure 1). The subject’s task was to determine

which target had the highest threat value and select that

target by clicking on its number in the target-column. The

DMT ended and the classification task resumed when the

subject clicked the CHOOSE button located below the target-

column.

On making a correct choice, feedback was given via a

simulated explosion, the chosen aircraft was removed from

the radar screen, and the overall percent score for decision-
making on that scenario was increased. If the participant

chose the incorrect target, the participant’s overall percent

score for that scenario was reduced. A running average of

DMT performance was presented to the right of the

classification score. After classifying or re-classifying 8

more aircraft, another DMT was presented. This sequence

continued until the end of each scenario.

Procedure

Subjects were randomly assigned to one of three DMT
conditions: Table, 0-Second Lockout (0-Lock), or 2-Second
Lockout (2-Lock). We were most interested in differences
between the two lockout conditions, with the Table
condition providing a measure of how high decision-making
performance could be in this task environment under near
optimal conditions.

As in other Argus Prime studies, subjects were trained for
1-hr on the Argus Prime classification task. They then

practiced this task during their second hour by performing

four scenarios in which the classification task was the only

task. After the fourth scenario, subjects were given a short

break and were then instructed on the DMT task. Training

on the DMT took approximately 10-min. During the last 8

scenarios (5 through 12), subjects continued doing the

classification task while being interrupted to perform the

DMT.

The more time spent on the DMT, the more likely it

would be that a target would cross a sector boundary



Gray, W. D., Schoelles, M. J., & Myers, C. W. (2004). Strategy constancy amidst implementation differences: Interaction-intensive versus
memory-intensive adaptations to information access in decision-making. In K. D. Forbus, D. Gentner & T. Regier (Eds.), 26th Annual Meeting

of the Cognitive Science Society, CogSci2004. Hillsdale, NJ: Lawrence Erlbaum Publisher.

without being classified. Such unclassified targets were

assigned a score of zero. Hence, time on the DMT decreased

time available for classification. This, in turn, placed

pressure on the subjects to perform the DMT quickly.

The three between-subject conditions differed in their

cost of information access. As it was unclear to us how
demanding the DMT would be in the Argus Prime task

environment, the Table condition provided near minimum

access costs. For this condition the numeric threat value for

each target was listed in the target-column next to the

target’s identification number. Subjects simply scanned the

target-column for the highest threat value (a 1–7 scale).

In contrast, to obtain a threat value, the 0-Lock and 2-

Lock groups had to locate the target on the radar screen and

move the cursor to it. Similar to a “tool-tip”, the threat value

then appeared next to the target. For 0-Lock, the threat value

appeared as soon as the cursor moved to the target. For 2-

Lock, the threat value appeared after a 2-s delay.

Results

Our focus is on process measures; namely, how the cost of
information access affects the combination of cognitive,
perceptual, and action operators required to implement the
information access step in decision-making. For these
comparisons, we focus on the two lockout conditions as we
have not yet analyzed the eye movement data required to
infer process in the Table condition. However, before
discussing the process measures we look at outcome
measures for both classification and decision-making. For
these outcome measures, the Table condition provides a
baseline against which to compare the effect of increased
access costs on outcome.

Classification

All subjects received four practice scenarios of Argus Prime
with the classification task only, followed by 8 scenarios
where performance on the classification task was interrupted
by the decision-making task.

An analysis of variance (ANOVA) that looked at

classification performance over blocks of scenarios

(scenarios 1–4, 5–8, and 9–12) yielded a significant main

effect of block, F (2, 30) = 3.1, p = 0.0597, MSE = 2313.

Performance improved from a mean of 56% during practice

to 66% in the first four DMT scenarios to 72% in the final

four DMT scenarios (see Figure 2).

All conditions were treated the same through the initial

training and initial four practice scenarios. Hence,

performance on the four practice scenarios provides an

opportunity to determine whether the subjects in the three
conditions were of roughly equal ability (as per the

assumption of random assignment of subjects to condition).

A second ANOVA was conducted on scenarios 1–4. As

judged by the classification scores there were no differences

among the three groups (F < 1). Any difference in

classification performance during the 8 DMT scenarios will

be regarded as due to the DMT manipulation.

A third ANOVA focused on classification performance

during the 8 DMT scenarios (scenarios 5 through 12).

Classification scores varied significantly between conditions

[F (2, 30) = 7.0, p = 0.003, MSE = 3118.9], Table = 79%, 0-

Lock = 64%, and 2-Lock = 65%. Planned comparisons

showed that this difference was localized in the Table versus
0- and 2-Lock comparison (p = .0008) with no difference

between 0-Lock and 2-Lock (F < 1). Performance increased

from scenario 5–8 to 9–12 [F (1, 30) = 33.6, p = .0001, MSE

= 1167] but this effect did not interact with DMT condition

(p = 0.12).
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Figure 2: Classification Score across Practice scenarios (1–4) and

DMT scenarios (5–8 and 9–12). (Error bars show the standard
error.)

Summary of Classification Performance. The three

groups were equal in their classification performance during

practice (scenarios 1–4) and each continued to improve

through the first and then second set of DMT scenarios (5–8
and 9–12). However, once the DMT began, the two lockout

conditions performed lower on the classification task than

the Table condition. As discussed below, the Table

condition spent much less time on the DMT than did the

lockout conditions. Hence, we believe the difference in

classification performance is simply attributable to the

difference in time spent by the three groups on the

classification task.

Decision-Making Task (DMT)

Outcome Measures. Although performance on the

decision-making task was uniformly high (see Figure 3),
there was a significant difference between conditions [F (2,

30) = 10.4, p = .0004, MSE = 0.05] with Table being almost

perfect (0.98) followed by 0-Lock (0.94) and then by 2-

Lock (0.91). Planned comparisons showed the difference

between Table and the two lockout conditions to be

significant (p = .0003) and the difference between 0-Lock

versus 2-Lock to be marginally significant (p = .064). The

influence of number of choices (DMT-4 versus DMT-6)

was also significant [F (1, 20) = 14.25, p = .0007, MSE =

.043]. The interaction of number of choices with condition
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was marginally significant, F (2, 20) = 2.71, p = .08, MSE =

.008.
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Figure 3: Proportion Correct Choices in Decision Making Task by

Number of Alternatives (DMT-4 and DMT-6) and Interface
Condition. (Error bars show the standard error.)

A second outcome measure is the time per DMT. This

measure yields a significant effect of condition [F (2, 30) =

27.45, p = .0001, MSE = 4953] with Table spending a mere

2.7-s per DMT, 0-Lock spending 16.5-s and 2-Lock
spending 23.6-s per DMT. The effect of number of targets

per DMT was significant (p = .0005); however, this effect is

constrained by a significant interaction of condition by

DMT number [F  (2, 30) = 3.21, p = 0.054, MSE = 83.8].

This interaction reflects the near asymptotic performance of

Table in both DMT-4 (2.6-s) and DMT-6 (2.7-s) whereas

both of the Lock groups showed a healthy increase in time

from DMT-4 to DMT-6 (14.2 to 18.8 for 0-Lock and 20.8 to

26.3 for 2-Lock).
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Figure 4: Number of different targets checked per DMT for 0-Lock
and 2-Lock. (Error bars show the standard error.)

Of course the 2-Lock condition was locked out for 2-s for

each check they made. To determine the contribution of

lockout time to the difference between 0-Lock and 2-Lock

we subtracted 2-s for each check or recheck made by 2-

Lock. With this adjustment, time per 0-Lock versus 2-Lock

was no longer significant (F < 1), leaving only a significant

main effect of DMT target number [F (1, 20) = 15.45, p =

.0008, MSE = 397].

Process Measures. Our first process measure is total

number of targets that were checked at least once per DMT.

Clearly, if subjects were doing a thorough job this number
would be 4 for DMT-4 and 6 for DMT-6. Although we do

not have this information for the Table condition, we do

have it for the two lockout conditions (see Figure 4) and it is

not surprising to find a significant main effect of number of

alternatives [F (1, 20) = 33.87, p = .0001, MSE = 18.34]

with DMT-4 checking an average of 2.82 targets versus 3.74

for DMT-6. However, this absolute increase masks a
relative decrease as DMT-4 checked 72% of their targets

versus 62% for DMT-6.

More interesting for our purposes is the difference in

number checked across the two lockout conditions.

Although 0-Lock checked slightly more targets than 2-Lock

(3.62 versus 2.94) this difference was not significant (p =

.24). No other comparisons were significant.

Our second measure of process is the number of rechecks

per DMT. If a threat value was checked once, how likely

was it to be rechecked? As the proportion correct and

number checked varied between DMT-4 and DMT-6, we

were somewhat surprised that the number of rechecks was
constant (F < 1). It is somewhat less surprising that more

rechecks were done for 0-Lock than for 2-Lock [F (1, 20) =

44.63, p = .0001, MSE = 4.57]. However, it does surprise us

that the 2-Lock condition made almost no rechecks (see

Figure 5). None of the interactions were significant (F < 1).
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Figure 5: Rechecks as a proportion of those checked at least once.
(Error bars show the standard error.)

Our third process measure is the time per check or

recheck. We know from Figure 4 that 0-Lock performed
more checks per DMT than 2-Lock. However, after

subtracting 2-s for each check, the analysis of time per DMT

showed that 0-Lock spent as much time per DMT as did 2-

Lock. Hence, the time per check must be greater for 2-Lock

than 0-Lock. We tested this conjecture in our final process

analysis.

Time per check or recheck (after subtracting 2-s for each

check made by 2-Lock) yielded a significant difference

between lockout conditions [F (1, 20) = 7.98, p = 0.01, MSE

= 374]. Even after subtracting 2-s per check, 2-Lock spent

over twice as much time per check as 0-Lock (7.2-s versus
3.1-s). Interestingly enough, no other comparisons were

significant—neither number of alternatives (DMT-4 versus

DMT-6, F < 1) nor any interactions.

Discussion of Results

The Classification results suggest that the three between-
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subject conditions (Table, 0-Lock, and 2-Lock) were
equivalent as measured by their performance during the four
practice scenarios. Performance on classification increased
across the eight scenarios in the decision making part of the
study. This increase suggests that subjects were still taking
the classification task very seriously.

The classification score differences between conditions

during scenarios 5-12 appear to reflect the differences in

time spent on the decision-making task. As the Table

condition spent < 3-s per DMT compared to 16-s for 0-Lock

and 24-s for 2-Lock they had more time to devote to the

classification task. (Although there were significant
differences between groups on the mean number of DMTs

per scenario, these differences were small – Table = 3.4, 0-

Lock = 2.9, and 2-Lock = 2.7 DMTs per scenario.)

All groups did well on the decision-making task though

the Table group did the best. Table also spent much less

time per decision than did the other two groups. The time to

locate and move the mouse to the screen position of the

target contributed to time spent per check by each of the

Lock groups. However, although the search and movement

costs were similar for 0-Lock and 2-Lock, the 0-Lock group

made more rechecks than did the 2-Lock and this difference

was constant across DMT-4 and DMT-6. Likewise, after
subtracting time for the 2-s lockout, time per check was over

twice as great for 2-Lock than for 0-Lock. What factors can

explain these patterns?

Discussion

The current study addresses three limits to traditional
research on the tradeoff of effectiveness for efficiency in
decision-making. First, rather than counting the steps
required for an expert agent to execute a decision-making
algorithm, we counted the actual steps taken by human
subjects during the process of decision-making and
measured the duration of those steps. This approach
provides better evidence for what people actually do when
they make a decision and exposes important intermediary
steps not captured by the traditional approach. For example,
the current data reveals that the 0-Lock group performs
many rechecks of threat value during decision-making. The
necessity to check a step more than once implies that the
requirement to hold the currently highest threat value in
memory while searching for another target is an important
sub-step that is affected by memory limits.

Second, by varying the interface design of the decision-

making task, we have begun to disentangle the cost of a step

in a decision-making algorithm from the cost due to how a

step is implemented in a given task environment. It is

obvious that the 0-Lock and 2-Lock conditions required

more visual search and more motor movement than did the

Table condition. In addition, the necessity to search for the

next target while holding the currently highest threat value
and its target identification number in memory adds a

significant cognitive cost to the lockout conditions as

compared to the Table.

Of great interest to us is that the additional 2-s per check

imposed on the 2-Lock condition seems responsible for the

vast differences in process and the slight differences in

outcome between lockout conditions. 0-Lock rechecked

more targets per decision-making trial while spending half

as long on each check or recheck than did 2-Lock. Although

there was nothing preventing subjects in the lockout

conditions from rechecking the same number of targets or
spending the same amount of time per check and recheck,

they differed on both of these measures. Apparently

differences in lockout costs led the two groups of subjects to

adopt two different solutions to the problem of comparing a

new threat value to the currently highest threat value.

Encoding of location is a fairly automatic outcome of

locating a target on a screen (Ehret, 2002). For 0-Lock, after

a target had been found once, the cost of reacquiring that

target was relatively low. This low reacquisition cost led 0-

Lock to adopt a strategy of minimum memory encoding (as

judged by the time spent per check) and more reliance on

rechecks. For the 2-Lock group, the 2-s lockout did not
simply add a delay in the time to access threat value, it also

added 2-s to the retention interval for previously encoded

threat values as well as for previously encoded target

locations. As time for retrieving an item from memory

varies with its activation level, we interpret the additional

time per check of 2-Lock over 0-Lock as reflecting

additional time spent retrieving old information from

memory as well as a longer encoding time in anticipation of

a longer retention interval.

Third, our experiment helps to move decision-making

studies from static to more dynamic paradigms. Time spent
on the decision-making task took time away from

performing the classification task. Subjects had spent the

first two hours of the study learning and practicing the

classification task. During the last three hours we

encouraged them to continue working hard on classification

and to attempt to improve their performance. The data

indicate that all groups improved their classification

performance throughout the 8 decision-making scenarios.

The pressure to do well on the classification task

apparently led subjects in the lockout conditions to satisfice

on the decision-making task. As reported earlier, only 72%

of the DMT-4 targets and 62% of the DMT-6 targets were
checked on any given decision-making trial.

Summary & Conclusions

The study shows that small changes in the cost of

interactive behavior may lead to changes in the strategy

adopted for decision-making as well as to differences in

how a step in the same strategy is implemented. The low

cost of scanning the target-column for threat values led the

Table condition to use all of the data to achieve near perfect
performance in decision-making. In contrast, the lockout

conditions satisficed by using less than 100% of the target

data.

Although the two lockout conditions did not differ in the

amount of information accessed, the differences in lockout

time led each group of subjects to implement the

information access step in very different ways. The 0-Lock
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group adopted an interaction-intensive procedure that made

good use of perceptual–motor operations to minimize

memory load. In contrast, the 2-Lock group adopted a

memory-intensive procedure that maximized memory load

and minimized lockout time per alternative. The different

procedures adopted by the different groups reflect an
adaptation of cognition, perception, and action to the cost

structure or soft constraints (Gray & Fu, 2004) of the task

environment.
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