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Automatic Low-Visibility Trajectory Optimization
for Visually Identifying a Suspected Aircraft

Leonard Wholey* and Leena Singh'
Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

This paper describes two methods used for producing trajectories, which enable an
interceptor aircraft to perform a visual identification on a suspected aircraft. A trajectory
typically used by fighter pilots is referred to as a beam intercept. The main goal for
the maneuver is to put the interceptor in a relative position and heading with respect to
the target such that it is in the best configuration to view the target aircraft’s markings.
Optimal trajectories complete this maneuver in minimum time and avoid detection. The
first approach is formulated as a mixed integer linear programming problem which can
be solved in real time. The linear cost function and constraints are adjusted to enable
the interceptor to avoid radar detection. However, there are limitations to the accuracy
of a radar detection model formed with only linear equations, which might justify using
a nonlinear programming formulation. With this approach the interceptor’s radar cross
section and range between the suspected aircraft and interceptor can be incorporated into
the problem formulation.

I. Introduction

In recent air-to-air combat, many planes have been shot down in the beyond visual range region. During
the Gulf war of 1991, this was the case in over 40% of the scenarios.® Improved radar and missile technology
have decreased the chances of a dogfight. However, when a visual identification (VID) of an unidentified
aircraft is necessary, a fighter pilot must be able to produce a trajectory, which enables a VID in minimum
time while reducing the chances of being detected.

A frequently performed maneuver used for a VID is called a beam intercept.* As long as the target
maintains an approximately constant heading, the maneuver can be performed with fairly low-g turns. This
paper addresses some options for improving upon a fighter pilot’s ability to perform an intercept on a single
suspected aircraft. A computer could cue the pilot to an optimal trajectory which could decrease the amount
of time required to complete the maneuver and reduce the chances of being detected by radar by managing
range and attitude. Additionally, this scenario could be adapted to an unmanned aerial vehicle (UAV)
equipped with a camera in order that a ground based operator could ultimately perform the VID.

Two methods were considered for calculating trajectories which model a beam intercept. The first
method, which closely follows the approach in Richards,” is mixed integer linear programming (MILP).
MILP is a powerful and effective method for solving rendezvous problems in real time.® The drawback of
the approach for low-visibility trajectories is that it is difficult to accommodate certain nonlinear criteria,

such as radar cross section, involved in producing a stealthy trajectory. As a result, we also formulate the
" problem as a nonlinear program using a direct trajectory optimization method sometimes referred to as
direct collocation.® Although this allows a more accurate radar avoidance constraint, a real time solution is
not guaranteed. A trajectory interpolation approach may be one solution to this problem, where a library
of maneuvers parameterized by boundary conditions are stored offline; online, the automatic trajectory
synthesis could interpolate to obtain a desired trajectory.?

*Masters student, Department of Aeronautical and Astronautical Engineering, MIT; Charles Stark Draper Laboratory, 555
Technology Square, Cambridge, MA 02139, ATAA member
¥Sr. Member Technical Staff, C.S. Draper Lab, 555 Technology Sq., Cambridge, MA. ATAA member
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The paper follows the following format. In section II, the details of the beam intercept maneuver are
described. The aircraft radar detection model is explained in section III. For sections IV and V the MILP
and direct collocation methods are outlined. In section VI, the results obtained from using both trajectory
design methods are shown, and in section VII, conclusions and suggestions for future work are discussed.

II. Beam Intercept Description

In order to visually identify the suspected aircraft, a fighter pilot will typically perform a maneuver
called a beam intercept."*® An example of this maneuver is shown in the figure below, where the inter-
ceptor, approaching from the right, is performing the maneuver on the target, on the left. Three regiments
characterize this trajectory at the final state: (1) interceptor is a prescribed distance away from the target,
(2) interceptor’s velocity vector is pointed at the target, (3) angle between the line of sight vector and the

target’s velocity vector is between 90 and 110 degrees.!:® For the simulations presented in this paper, the
desired angle is set to 90°.

INTERCEPTOR
> >
TARGET

Figure 1. The above figure is a description of a beam intercept. The target has a constant speed and heading
and is represented with the aircraft on the left. The interceptor is on the right and performs the beam
intercept. This blind-side maneuver gives the interceptor a major tactical advantage over the target.

There are several advantages to performing a beam intercept as opposed to using proportional navigation,
which might allow a faster merge:

- Decreases the chances of being detected by the target’s radar

- Reduces the closing velocity which will allow more time for the VID, without this excess time the
interceptor might have to reposition itself to obtain a firing opportunity

- Increases difficulty for the target to visually identify the interceptor, because during the final turn
of the maneuver the interceptor is essentially pointed at the target

- Places the interceptor in an offensive position, in the event that the target is an enemy

In this research, we assume that the interceptor has perfect knowledge of the state of the target. This
information could be provided by the aircraft’s own radar or an Airborne Warning and Control System
(AWACS) aircraft. Furthermore, we assume that the interceptor and target are at the same altitude. We
introduce two different approaches for automatically synthesizing the trajectory.

III. Radar Model

For an aircraft flying over a ground based radar, it is possible to significantly reduce the amount of time
during which the aircraft may be detected.® The same should be true in performing a beam intercept with
a possibility of avoiding radar detection completely.

In order to avoid radar detection, the interceptor can affect three variables. The maximum half cone
angle for aircraft radar typically ranges between 45 to 60 degrees. As a result the interceptor can fly a
significant portion of the trajectory outside of the radar cone where radar detection is impossible. Within

the cone, the power received by radar is inversely proportional to range R and directly proportional to radar
cross section o

2 of 16

American Institute of Aeronautics and Astronautics Paper 2005-6096



o

In performing a beam intercept, the interceptor must maintain a large distance between itself and the
target until it has flown outside of the target’s radar cone. Additionally, the interceptor can also affect its
radar cross section, which is a function of the interceptor’s azimuth k, and elevation 6, angles relative to
the target aircraft. These angles are determined with the equations®

£y, = Rpede , . 2
Kk, = arctan( _Ambg ) _ (3)
Zp,1 :
—Fpa
6, = arctan( 5,3

——) (4)
Y :2127,1 + §:12>,2

where Rp. is a rotational matrix which rotates the unit relative position vector between the target and
the interceptor, Z., from an earth frame to a body frame, #;. &3 is a three dimensional vector where 2y ;
represents the i** component of ;. For the direct collocation development described in section V, a generic
aircraft radar cross section model is used similar to the one found in Norsell,> where a bivariate cubic spline
is used to map the interceptor’s azimuth and elevation angles to o, as shown in Figure 2.

Elevation ™) 80 -180 Agireth (*}

Figure 2. Generic Aircraft Radar Cross Section Model®

IV. MILP Approach

MILP is an optimization based approach which can be used to solve an optimal control problem in real
time. The problem is discretized with N nodes, where linear equations describe the vehicle’s state at each
node. Constraints on the vehicle’s states and controls can be added as long as they occur in linear form, and
adjoint binary variables are used in order to impose or relax relevant constraints.

This approach closely follows the method presented in Richards” with variations in the cost function and
constraints. Richards has shown that MILP can be used in real time for a rendezvous between two vehicles.®
This problem is very similar to the beam intercept, wherein the interceptor essentially performs a rendezvous
with an offset distance along with the other requisites described in section II.

While the rendezvous problem® models the dynamics in the relative frame, the dynamics for this approach
include only the interceptor’s states. We project the target aircraft’s position and velocity to produce its
baseline trajectory. Solving for the controls, f; ;. and fy  which are the interceptor’s forces in the inertial
and y direction at time step k, will produce the desired trajectory according to the following dynamics and
constraints. Using a set of N nodes, the dynamics of the aircraft are discretized with the linear equations
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Binge = 225 5)
mass
- _ fy,k
‘ymt’k " mass (6)
Vke[l...N—-1]

where (Zint k, Yint,k) are the interceptor’s z and y position in the inertial frame. Similarly (Zins, %ine) and
(&int, Jint) are the interceptor’s velocities and accelerations in the inertial frame. The time between each

node is defined as At(k). The maximum speed v,,,; and maximum force f;1q. at each node are approximated
with the linear constraints

, . 2mm 2mm T
Tint k SI0 —p = + Yint k COS = < Umaz COS 37 (7
V ke€ll...N],me]l...M]
. 2mm 2mm m
Fajsin—e + fyrcos == < fmaz cos 3 (8)
V ke[l...N-1,me[l...M]

where M is the number of linear constraints used to approximate a 2 norm. With larger values of M, the
set of constraints approaches an actual magnitude constraint of the velocity and force vectors.

1

Yint/Vmaz

Figure 3. Linear constraints are used to approximate the maximum speed limit vmaz. The lines m =1...6
represent each of the linear inequalities.

A limit on minimum speed is not included in the problem formulation. This can result in infeasible
trajectories, where the solution produced by the optimizer might exceed a maximum turn rate given the
speed of the aircraft, or the aircraft might stall. A minimum speed constraint with the same accuracy as
the maximum speed approximation would require N x M binary variables. This slowed the run time of the
MILP optimization software Xpress!® significantly. Otherwise, the turn rate constraint can also be satisfied
by decreasing fimaz.”

The interceptor’s desired endstate changes in order to include a maneuvering target, whose position and
velocity at each node k are specified before the MILP step
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Tdesy = Tigek + Rscos(Tygy s +90°) 9)
Ydes,k = Ytgtk + R, Sin(\I’tgt,k + 900) (10)

i 90°) — Yyg1,1 sin(F90°
. Ege k €0S(FI0°) — Yyt k SIN(F )Us (11)

. 2 .2
\ Ftgtk + Yige k

. T sin(F90°) + 3 cos(F90°
Ydes,k = tgt:k (:F ) Ytghk ( )'vs : (12)

\/‘Ii"%gt,k + y?gt,k
V kell...N]

where (Zdes i, Ydes,k) are the desired interceptor z and y position. (Zdes, ks ydes,k).are the desired interceptor x
and y velocity. (Tige, Yegt) and (Legt, Ysge) are the target’s x and y position and x and y velocity respectively.
Wyg: 1 is the target’s heading, and Ry is the desired range between the target and the interceptor once the
beam intercept is completed. At the end of the engagement, the interceptor is also required to have a heading
+90° relative to the target. MILP software could be used to solve both problems with additional binary
variables, or a heuristic could be applied which defines in general when one heading should be applied over
the other.

The following binary constraints model the completion of the beam intercept

Xint — Xdes < Huwg (13)
—Xint + Xges < Huy (14)
Vk€[l...N]

where X;n: represents the set of variables (Zint k) Yint,k)s (Fint k> Yint,k) and Xges represents (Zdes k, Ydes,k )
(Zdes,k» Udes,k). H is a large positive number, and wy is a binary variable which allows the constraints to
be relaxed. This formulation admits solutions that drive the interceptor to intersect the candidate set of
desired interceptor states produced earlier. If the interceptor has reached the candidate relative position and
velocity at node k, then w; = 0 which is shown in Figure 4.

w1=0 w2=0 WN=0
Xintk=1 ~intl=2 X inthe=N
RS
1 »>- »>- »>-
Rigtl=1 Stgt =2 Xigt =N

Figure 4. This figure shows the candidate endstates of the interceptor at each node k for a target with a
constant heading. Xin:; and X4 contain the states of the interceptor and target respectively, and R;s is the
desired separation distance. If there is a feasible solution at an endstate, the binary variable w; can be set to
zero, otherwise it is set to one in order to relax the desired endstate constraint. MILP solves multiple linear
programming problems where the binary variables wy are varied in order to find a feasible, optimal solution.

This relaxation of the constraints is represented in the objective function as the variable {x. At node k if

wy = 0, then t; N = 0 otherwise t; = 1. In order to enforce that the maneuver is completed at some time
step k, an additional constraint is added

N
dt<N-1 (15)
k=1

5 of 16

American Institute of Aeronautics and Astronautics Paper 2005-6096




The objective is to minimize the time to complete the beam intercept and the acc_elérations over the
course of the mission. In order to approximate our objective of maximizing the range between the two
aircraft within the linear cost formulation structure that MILP permits, we introduce the term c¢|yx|

N

min J =) (elfoxl +€lfyxl +tx — clyxl) (16)
fm,kaf y,k k=1

Through clyk|, the interceptor is encouraged to maximize its y distance relative to the target throughout the
trajectory. This formulation allows us to approximately penalize proximity with the target. The target’s
initial position is placed at the origin with its velocity vector pointed along the x-axis, so that with larger
values of ¢ the interceptor will maintain higher values of range throughout the trajectory. This could
potentially decrease the chances of being detected by the target’s radar because the amount of power that
the aircraft’s radar receives is heavily dependent on range.

In the results section, the problem is solved once during the maneuver, given the initial states of the

interceptor and the target’s projected trajectory. However, the problem could be resolved if the target
deviates significantly from its previously calculated path.

A. Additional State Constraint for Radar Detection Avoidance

Another method for avoiding radar detection involves breaking up the trajectory planning problem into two
segments. The first segment entails the interceptor flying to a point of at least a certain distance RR along
the target’s radar cone. If the value for RR is sufficiently large given the radar cross section of the interceptor
and the efficacy of the target’s radar, then it is reasonable to assume that the interceptor will not be detected
" by radar. Beyond this point then, we continue the solution with a range independent formulation for the
intercept problem. This method has the advantage over the previous approach in that the interceptor only
maintains distance from the target while within the target’s radar cone.

This method uses the equations as previously described but with an additional requirement that the
interceptor is required to fly to two waypoints. The ¢|yi| term is also removed from the cost function. The
first point, described in Figure 5, is a distance of at least a certain range RR along the target’s radar cone

(Tintk — Tegte) — RRcoS(RCA+ Wypr i) < Hug (17)
—(Tintk — Tegt,k) + RRCcoS(RCA+ Wigs ;) < Hug (18)
-(yint,k - ytgt,k) + RR Sin(RCA + ‘I’tgt,k) < H'Uk (19)

V ke[l...N]

where RC A is the radar cone angle limit and vy is a binary variable. Now, tx.. n = 0 if both v and w are
zero at previous time steps. The second point is the previously defined completion state of the maneuver.

INTERMEDIATE WAYPOINT

TARGET /

INTERCEPTOR

Figure 5. In order to reduce.the chances of being detected by the target’s radar, the MILP problem is

formulated with an additional constraint that the interceptor is required to fly to an intermediate waypoint
of at least a distance RR along the radar cone. RCA indicates the maximum angle at which the target’s radar
will function, and ., is the target’s heading.
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V. Direct Collocation Approach

While the MILP approach can create feasible trajectories for a beam intercept in real time, it is difficult
to formulate a linear constraint that models the radar cross section of an aircraft. The following direct
collocation approach can address this issue, although the nonlinear programming formulation might result
in longer computation times without a guarantee of converging to a feasible solution.

With direct collocation, the states are approximated with cubic polynomials and the controls are found
by linearly interpolating between nodes.® The dynamics are discretized with N nodes using collocation of
the states and controls. Now, the dynamics are approximated with algebraic equations, and the problem
is formulated as a nonlinear program. Solutions for this paper are produced using the function fmincon in
MATLAB’s Optimization Toolbox.

We use a lateral aircraft model for this method assuming a constant speed for the interceptor and a
constant speed and turn rate for the target. Also, the interceptor and target are flying at the same altitude.
The model dynamics are described in a relative frame with the following equations

Trel = Uint COS(‘I’int) — Utgt COS(‘I’tgt) i (20)

Urel = VingSIN(Wing) — Vege SiN(Pyge) (21)

. tan

By = 2000) (22)
Vint

\I’tgt = d V (23)

where z¢; and y,.; are the z and y position of the interceptor with respect to the target, v;,: and vy are the
interceptor and target speed respectively, ¢ is the interceptor’s bank angle, ¥;,; and W, are the interceptor
and target heading respectively, and d is the target’s turn rate.

The problem is formulated as a nonlinear program where the states include the following values: zi(k),
yret(k), and ¥;ne(k), and the control is ¢(k) where Vk € [1... N]. There is also a variable for final time ty,
and the nodes are equally spaced in time. The objective is to perform the maneuver in minimum time with
control weighting to assist in coverging to a locally optimal, feasible solution

N
minJ =t;+p Y ¢*(k) (24)
$(k) =1
where p is a small constant.

The constraints for the NLP include dynamic feasibility which is approximated using collocation. Ay ;
represent the dynamics of equations (20-22), whereas equation (23) is easily integrated to find the target’s
heading at each node. The constraints also include a limit on the maximum bank angle, radar detection
avoidance, and final desired heading and position :

Ag; = 0 | | (25)
V ke[l...N,Vje[l...m]
$min < (k) < brmaa (26)
Ry(k) < y/al (k) +yle(k) (27)
Be(N) (V) = o0° (28)
Zret(N) = Rgcos(¥uge(N) + 90°) (29)
Yrel(N) = Rgsin(Uyq(N) +90°) (30)

where Rg(k) is the range at which the target’s radar can detect the interceptor at node k, and R; is the final
separation range to complete the beam intercept. R4(k) is defined as

Ra(k) = % (31)
C(k) = cos(90° — (RCA+ Wygpe(k)))rer (k) —
Sin(90° — (RCA + Vgt ()t () (32)
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where v is a variable dependent on the power of the target’s radar, o(k) the interceptor’s radar cross section,

a a constant which is explained later, {(k) the distance from the radar cone (shown in Figure 6), and RC A
the radar cone angle.

Gy

®)

INTERCEPTOR

+

.
TARGEY RCA INTERCEPTOR Yrel
i
~ \/;60'—‘1?
NS

~
Xpel

Figure 6. ¢ is the distance from the interceptor to the edge of the target’s radar cone and is defined as positive

(Figure A) if the interceptor is within the region of detection and negative otherwise (Figure B). RCA is the
target’s radar cone angle, and ¥4 is the target’s heading.

For this scenario, o(k) is a function of ¢(k), Wint(k), zre(k), and yre(k) where the function of these
variables is described in section III. It is assumed that the interceptor’s angle of attack is nearly a constant
throughout the trajectory and does not significantly change the radar cross section of the aircraft.

With the detection range constraint, the sigmoid form of equation (31) allows the aircraft to fly outside
of the radar cone without concern for radar cross section or range. For this simulation, a = 16.39/km so

that if ¢ = 1m?2, then the radar detection range can be described with the curves in Figure 7 where R, varies
according to the strength of the target’s radar.

T T v T T —r— —r—
®r r— Ry = 40km
ams Ry=30km
3B
30+
P23
£
s 20 h
1 4
LL13 4
10+ -
5t 4
0 L i 1. 1 i i 1 A 1 3
10 -8 £ -4 2 0 2 4 6 8 10
S

Figure 7. Radar detection range as a function of distance from the radar cone { with radar cross section held
constant

With larger values of a, the radar constraint becomes more like a binary switch. However, if this value
was set too large, then the optimization software had difficulties in converging to an answer.
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VI. Results

For the following the simulations, initially the target and interceptor are heading towards each other and
are separated by 27.5km. The two aircraft have the same initial speed, and the target is turning to the
right with a constant turn rate. Three different methods are applied to solve the beam intercept problem.
The first involves using MILP to calculate a trajectory where the objective includes maintaining a larger
distance from the target throughout the maneuver. The second approach also uses MILP with an additional
requirement that the interceptor is required to fly to a point of at least a certain distance along the target’s
radar cone edge. The final approach uses direct collocation which allows a higher fidelity radar cross section
model of the interceptor.

A. MILP Results with Adjusted Cost Function
As presented in section IV, the cost function for the beam intercept scenario is
N

min J =) (e|fo x|+ €|fyrl +tx — clyrl) A (33)
f:c,k)fy,k k=1

where the c|yx| term encourages the interceptor to maintain a standoff range from the target vehicle. The
constants for the MILP simulations are

Table 1. Constants for MILP beam intercept simulations

N 60 M .1 10
mass | 10,442kg || H 100, 000
Vmaz 167m/s frmaz 313kN
Tint k=1 27.5km Yint, k=1 Okm
Tigt k=1 | Okm Yegt k=1 | Okm
-'tint,kzl —152.5m/s ?}int,k:l Om/s
-'i:tgt,kzl 152.5m/s 'gtgt,k=1 Om/s

Us 152.5m/s R, 3.05km
€ 1x10~° At(k) | 2s

The first results show solutions to the problem with variations on the weighting factor ¢ of c|yg|. Using
a 1.50 GHz desktop with 1.00 GB of RAM, Xpress software is typically able to solve this problem in 2-6
seconds, as shown in Table 2.

Table 2. Results from MILP beam intercept trajectories including c|yx| term in cost function

path trajectory | computation | active fz,f, | min/max

length (km) | time (s) time (s) duration (s) | speed (m/s)
c=0 14.2 88 2.9 26 . 150/159
c=10-10"% 14.7 88 4.7 48 153/167
c=20-10"6 15.0 90 5.2 50 153/167
c=50-10"° 17.8 108 5.3 74 150/167
c=100-10"3 || 18.2 118 3.4 68 106/167

Figures 8 and 9 show two examples of a beam intercept and the corresponding control histories. With the
largest value of the y weighting coefficient, the maneuver requires significantly more control effort and the
time to completion is 30 seconds longer than the shortest trajectory, as shown in Table 2. In both scenarios,
at the end of the maneuver the interceptor has a 3.05km separation distance from the target and a terminal
heading 90° different than target’s.
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Figure 8. Beam intercept using MILP with y weighting coefficient ¢ = 0. Figure (A) shows the interceptor and
target trajectory, and Figure (B) shows the interceptor’s controls during the maneuver. The target is turning
at a constant rate of 0.3°/s. A large control control action is required at the beginning of the trajectory in
order to change the heading of the interceptor. For the majority of the maneuver, the interceptor maintains

this heading, and then finally a large control effort is applied in order to obtain the desired relative heading
and position.

Figure 9. Beam intercept using MILP with y weighting coefficient ¢ = 0.1 which encourages the interceptor to
increase its cross<range from the target. Figure (A) shows the interceptor and target trajectory, and Figure
(B) shows the interceptor’s controls during the maneuver. The target is turning at a constant rate of 0.3°/s.
Initially, the interceptor makes a sharp turn to the right in order to obtain a larger distance from the target.
Then, the interceptor briefly travels along a straight path and banks left to head towards the target. After
following along another straight path, a small turn is applied to complete the maneuver.
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Figure 10 shows how the c|yx| term influences the range between the interceptor and target during the
beam intercept. The four curves are from the trajectories in Table 2.

301

—_—c=0

- ¢=10M0®
- ¢ =500
w=e ¢ =100*10"

Figure 10. With higher values of the constant ¢, the interceptor maintains a larger distance from the target
throughout the trajectory. :

A range of trajectories can be created by varying c. However, there is no guarantee that the interceptor
will avoid radar detection. After the trajectory is created, one could include a separate evaluation to
determine if the interceptor would be detected by the target’s radar. If the trajectory fails the test, the
algorithm could run iteratively with larger values of c. ‘ '

B. MILP Results with Additional State Constraint for Radar Detection Avoidance

For this formulation, the interceptor is required to fly to a point of at least a certain distance RR along the
radar cone where the radar cone angle RC A is limited to 45°. The cost function for this scenario is

N
min J= Z(e]fx,kl +€|fy il + tk) (34)
k=1

Fa,k2Fy,k

so that now the interceptor must fly to both waypoints in minimum time with a small weight on control effort.
With the additional binary variables required for this approach, the computation times are significantly longer
as seen by comparing the results in Table 3 to the results without the constraint in Table 2.

In Figures 11 and 12, the interceptor flies to a point of exactly the required distance along the radar cone
and finishes the trajectory with the desired relative heading of 90° and range of 3.05km.

Table 3. Results from MILP beam intercept trajectories including a constraint to fly to point of at least a
distance RR along the radar cone edge

Anmerican Institute of Aeronautics and Astronautics Paper 2005-6096

path trajectory | computation | active fy,f, | min/max
length (km) | time (8) | time (s) duration (s) | speed (m/s)
RR =92km 14.5 90 10.1 32 151/163
RR =12.2km || 16.2 102 29.9 48 124/165
5
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Figure 11.

point the interceptor towards the desired endstate.

Beam intercept using MILP where interceptor is required to fly to a distance of at least 9.2km
along the target’s radar cone. Figure (A) shows the aircrafts’ trajectories along with the radar cone limit of
the target, and Figure (B) is the interceptor’s control history. The target is turning at a constant rate of
0.3°/s. The interceptor begins the maneuver with a right turn in order reach the end of the target’s radar
cone. Shortly before reaching this point, a hard left turn is executed to wrap around the radar cone and to

arget
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Figure 12. Beam intercept using MILP where interceptor is required to fly to a distance of at least 12.2km
along the target’s radar cone. Figure (A) shows the aircrafts’ trajectories along with the radar cone limit of
the target, and Figure (B) is the interceptor’s control history. The target is turning at a constant rate of
0.3°/s. The interceptor performs the maneuver in a similar manner as Figure 11 but with exaggerated turns

in order to fly around the stronger radar.
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C. Direct Collocation with Radar Avoidance Constraints Results

For the following scenarios, the interceptor and target maintain a constant speed and altitude. The inter-
ceptor’s objective is to complete the maneuver in minimum time with a small weight on bank angle

N
minJ =t;+p Y  4*(k) (35)
(k) k=1

Additionally, the interceptor must avoid radar detection throughout the trajectory. Table 4 shows the
constants used for the first two simulations. In Figure 13, a trajectory is shown where the interceptor ignores
the radar of the target, and in Figure 14 radar constraints are added with the target’s radar detection range
set to 12.2km when the interceptor’s radar cross section is 1m?2. In exchange for attempting to avoid radar
detection, the trajectory duration is 11.6 seconds longer. ' '

Table 4. Constants for direct collocation simulations with constant speed aircraft model

N 50 g 9.8m/s?
¢min —60° ¢maz 60°

T (to) 180° Wit (to) | 0°

v 152.5m/s || v 152.5m/s
Lrel (tO) 27.5km Yrel (tO) 0km

R 3.05km RCA 45°

P 0.1

Table 5. Results for constant speed trajectories including radar avoidance constraints. The term Ry(o = 1m?)
refers to the detection range of the target’s radar when the interceptor’s radar cross section is 1m2.

path trajectory | computation
length (km) | time (s) time (s)
Ry(o = 1m?) = Okm 13.6 89.1 15.1
Ry(o = 1m?) = 12.2km || 15.4 100.7 52.6

Because the detection range constraint is only applied at the nodes, for nearly every simulation the
interceptor is detected by the target’s radar for a brief moment before crossing the radar cone as shown in
Figure 15. There are a few variations to the formulation which might prevent this problem. The density of
the nodes around this area could be increased, using the previously calculated trajectory as an initial guess
in forming a new solution. Also, the optimization problem could be solved increasing the target’s radar

power to more than its actual value. Finally, the sigmoid equation could be altered with the term b in order
to shift the radar cone

voi(k) voi(k)
14 e-ot(®) ~ T4 e=alc(hI+b)

A problem with casting the optimal control problem as a nonlinear program is the existence of multiple
local minima. Of 1,140 simulations run using MATLAB’s Optimization Toolbox, which varied with initial
position of the interceptor with respect to the target and target radar strength, 99.74% appear to be solutions
that could be globally optimal. For the three cases which were clearly local minima, the simulation was
performed again, changing the guess of the initial variables at the nodes by multiplying by 1.1, and a better
solution was obtained. One example is shown in Figure 16.

Another issue with nonlinear programming is the time duration for the optimization software to converge
to a solution. Of the 1,140 simulations, the average computation time to reach a locally optimal solution
was 24.25 seconds with a standard deviation of 19.04 seconds. In compiled implementation and on a faster
processor, these computation times may be acceptable for real-time implementation. However, the maximum

(36)
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Figure 13. For this scenario, the detection range of the target’s radar is set to zero, Ry(c = 1m?) = Okm, and
the target is turning at a constant rate of 0.3°/s. Figure (A) shows the trajectories of both aircraft, and Figure
(B) is the bank angle history of the interceptor. The interceptor initially makes a small turn away from the

target followed by a very gradual turn towards the target. At the end of the trajectory, a sharp turn is applied
to achieve the final desired relative heading and position.
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Figure 14. In this case, the detection range of the target’s radar is 12.2km when the interceptor presents a radar
cross section of 1m?, and the target is turning at a constant rate of 0.3°/s. Figure (A) shows the trajectories of
the aircraft, and Figure (B) is the bank angle history of the interceptor. The interceptor begins the maneuver
with a turn away from the target to fly to the point, shown with a solid black diamond, at which it will cross
the target’s radar cone. Just before reaching this point, maximum negative bank angle is applied to return the
interceptor to a heading which will allow completion of the maneuver. The interceptor travels along a nearly
straight path and then finally applies maximum positive bank angle to obtain the desired endstate.
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Figure 15. Limitation of radar avoidance constraint for the simulation where R4(c = 1m?) = 12.2km. The

interceptor is detected by the target’s radar for a brief moment just before crossing the target’s radar cone.
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Figure 16. This figure shows two locally optimal trajectories where each was produced using a different initial
guess for the NLP variables. Trajectories (A) and (B) are completed in 140.4s and 94.2s respectively. The solid
black diamond is the point at which the interceptor crosses the target’s radar cone.
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computation time was over 6 minutes. This uncertainty in reaching a locally optimal solution clearly makes
online implementation difficult.

VII. Conclusion

Two approaches have been shown to produce feasible trajectories that resemble the fighter pilot maneuver
called a beam intercept. While the first MILP formulation is able to produce a trajectory in a few seconds, the
method does not take into account the attitude and range dependent radar cross section of the interceptor.
The direct collocation method is able to handle the nonlinearity of the radar cross section although this
formulation will generally result in longer computation times. Additionally, the method is not guaranteed
to converge to an optimal or even feasible solution.

Norsell has shown that the ground based radar problem can be solved with a more sophisticated aircraft
model which includes varying speed and altitude.> The beam intercept is not limited to two dimensions and
in many cases an altitude offset can aid in performing a VID. Future work will include an aircraft model
with these capabilities.

For all of the approaches presented, the trajectory of the target aircraft was limited to trim flight in
steady level or a constant turn rate. Future research could include a more sophisticated target which would
take precautions to avoid a beam intercept. For example, the target could respond defensively or offensively
when the interceptor violates the radar range constraint. It could also intelligently vary its heading so that
its radar cone does not produce constant blind spots.

Radar blind spots can also be avoided by flying in formation. It is unlikely that the target aircraft will
always fly alone. An ideal trajectory would include constraints considering the radar of all present aircraft.
Additionally, the method should include which aircraft to pursue first.

The interceptor will most likely fly with support aircraft as well. The problem could include additional
friendly aircraft which would be able to assist in performing visual identifications. The MILP approach can
easily handle more aircraft. However, this might be difficult to include with the direct collocation approach.
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