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ALGORITHM DEVELOPMENT FOR THE TWO-FLUID PLASMA
MODEL

AFOSR Grant No. F49620-02-1-0129

U. Shumlak

Department of Aeronautics and Astronautics
Aerospace & Energetics Research Program

University of Washington

Abstract

A new algorithm is developed based on the complete two-fluid plasma model.
The model captures physics that is not contained in the more common magne-
tohydrodynamic model. Recent progress on the algorithm development for the
two-fluid plasma model includes analysis of the simulation results, extension to
two dimensions, and preliminary investigation of a higher order method. The
algorithm is first developed in one dimension and applied to the electromag-
netic plasma shock. Results are analyzed to provide physical support for the
numerically observed fast waves. The two-fluid plasma algorithm is extended
to multidimensions including a complete electromagnetic field description. The
divergence constraints on the fields are satisfied by transforming the constraints
into hyperbolic equations. A preliminary higher-order discontinuous Galerkin,
Runge-Kutta method is investigated to more accurately balance equilibrium
sources.

1 Executive Summary

This project represents a three year effort to develop a new algorithm for plasma
simulations based on the two-fluid plasma model. Current plasma simulation
algorithms capable of complex geometries are based on the MHD (magneto-
hydrodynamic) model. The derivation of the MHD model involves several
assumptions that severely limit its applicability. The two-fluid model only
assumes local thermodynamic equilibrium and is, therefore, more physically
accurate and capable than MHD models. The two-fluid model is formulated
in conservation form. An approximate Riemann solver is developed for the
two-fluid plasma model to compute the fluxes in a stable and accurate man-
ner. Several methods are investigated to solve the electromagnetic field model,
which includes the source terms and divergence constraints. These methods
include a characteristic-based algorithm, a perfectly hyperbolic modification,
and a mixed potential formulation. The two plasma fluids and the electromag-
netic fields communicate through the source terms. The fluid momentum and
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energy equations have source terms that depend on E and B. The electromag-
netic equations have source terms that depend on vi and ve (Ampere's law)
and ni and n, (Poisson's equation). Accurately coupling the source terms is
important both for numerical stability and for modeling plasmas where large
equilibrium forces exist.

An algorithm is developed for the complete two-fluid plasma model ini-
tially in one dimension. The algorithm uses a Roe-type approximate Riemann
solver [1] to discretize the hyperbolic fluxes of the fluid model and an upwind
characteristic-based solver for the electromagnetic fields. Simulations from the
resulting finite volume algorithm are benchmarked against known analytical
results. Furthermore, the algorithm is applied to the electromagnetic plasma
shock problem to reveal the transition from gas dynamic shock to MHD shock.
The results are analyzed to reveal the fast plasma waves that are captured in
the two-fluid plasma model. [2]

The algorithm is extended to multiple dimensions. The divergence con-
straints can be difficult to satisfy with the presence of current and charge
sources on an arbitrary computational grid. The divergence constraints are
satisfied by reformulating Maxwell's equations to include correction potentials.
The approach involves coupling the divergence constraint equations with the
time-dependent field equations to form a perfectly hyperbolic equation set. [3]
The finite volume algorithm is applied to a two-dimensional plasma shock prob-
lem which is similar to a field reversed configuration (FRC) being investigated
at the Air Force Research Laboratories (FRC magnetic implosions). The sim-
ulations demonstrate the importance of accurately modeling the source terms.
The FRC simulation must balance large magnetic field forces with large plasma
pressure forces. A preliminary algorithm is developed using a discontinuous
Galerkin method. [4].

This project resulted in the Master of Science theses for Chris Aberle and
John Loverich titled "Algorithm for Solving Colocated Electromagnetic Fields
with Sources" and "A Finite Volume Algorithm for the Two-fluid Plasma Sys-
tem in One Dimension", respectively. Archival journal and conference papers
were published reporting on the work from this project. Archival journal papers
are U. Shumlak, J. Loverich, "Approximate Riemann solver for the two-fluid
plasma model", Journal of Computational Physics 187, 620-638 (2003) and "A
discontinuous Galerkin method for the full two-fluid plasma model", Computer
Physics Communications 169 251-255 (2005). This project was performed by
Prof. Uri Shumlak and graduate students Chris Aberle, Ammar Hakim, and
John Loverich.

2 Project Description

Plasmas are essential to many technologies that are important to the Air Force,
some of which have dual-use potential. These applications include portable
pulsed power systems, high power microwave devices, drag reduction for hyper-
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sonic vehicles, advanced plasma thrusters for space propulsion, nuclear weapons
effects simulations, radiation production for counter proliferation, and fusion
for power generation. Several of these applications are specifically mentioned
in the New World Vistas Report from the USAF Scientific Advisory Board. [5]
In general, plasmas fall into a density regime where they exhibit both collective
(fluid) behavior and individual (particle) behavior. The intermediate regime
complicates the computational modeling of plasmas.

2.1 Kinetic, PIC, and MHD Models

Plasmas may be most accurately modeled using kinetic theory. The plasma is
described by distribution functions in physical space, velocity space, and time,
f(x, v, t). The evolution of the plasma is then modeled by the Boltzmann
equation.

cOfa cOfa qa ( Of a 'Of (1
o- +v" + q- (E +v, xB).--=(

at +OV collisions

for each plasma species a = ions, electrons. The Boltzmann equation cou-
pled with Maxwell's equations for electromagnetic fields completely describe
the plasma dynamics. [6-8] However, the Boltzmann equation is seven dimen-
sional. As a consequence of the large dimensionality plasma simulations using
the Boltzmann equation are only used in very limited applications with narrow
distributions, small spatial extent, and short time durations. [9, 101 The seven
dimensional space is further exacerbated by the high velocity space that is un-
used except for tail of the distribution or energetic beams. Boundary conditions
are difficult to implement in kinetic simulations.

Particle in cell (PIC) plasma model apply the Boltzmann equation to repre-
sentative superparticles which are far fewer (10) than the number of particles
in the actual plasma (1020). [11] PIC simulations have similar limitations as
simulations using kinetic theory due to statistical errors caused by the fewer
superparticles. Boundary conditions are also difficult to implement in PIC
simulations.

The other end of the spectrum in plasma model involves taking moments
of the Boltzmann equation and averaging over velocity space for each species
which implicitly assumes local thermodynamic equilibrium. The resulting equa-
tions comprise the two-fluid plasma model. The two-fluid equations are then
combined to form the MHD model. [12] However, in the process several ap-
proximations are made which limit the applicability of the MHD model to low
frequency and ignores the electron mass and finite Larmor radius effects.

The MHD model treats the plasma like a conducting fluid and assigning
macroscopic parameters to describe its particle-like interactions. Plasma simu-
lation algorithms based on the MHD model have been very successful in model-
ing plasma dynamics and other phenomena. Codes such as MACH2 are based
on arbitrary Lagrangian/Eulerian formulations. [13] ALE codes are well suited
for simulating plasma phenomena involving moving interfaces. [14] However,
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Figure 1: Dispersion relation for the fast and slow modes with wT 1.0. The dashed
lines represent the ideal MHD modes.

ALE codes cannot be formulated as conservation laws and lack many of the
inherent conservative properties. The MHD model has been successfully im-
plemented in conservative form to simulate realistic three-dimensional geome-
tries. [15,161

A severe limitation of the MHD model is the treatment the Hall effect
and diamagnetic terms. These terms represent the separate motions of the
ions and electrons. The Hall effect and diamagnetic terms also account for
ion current and the finite ion Larmor radius. These effects are important in
many applications such as electric space propulsion thrusters: Hall thrusters,
magnetoplasmadynamic (MPD) thrusters, Lorentz force thrusters. The Hall
term is also believed to be important to electrode effects such as anode and
cathode fall which greatly affect many directly coupled plasma applications.
Furthermore, the Hall and diamagnetic effects may be important for hypersonic
flow applications. [17]

The Hall terms can be difficult to stabilize because they lead to the whistler
wave branch of the dispersion relation. The phase and group velocities of the
whistler wave increase with frequency. The velocities become large even for
modest values of the Hall parameter. See Fig. 1 for the dispersion diagram for
a modest value of the Hall parameter (We-r = 1).

A semi-implicit technique has been applied to treat the Hall term. [18, 19]
After the hyperbolic terms of the MHD equations are advanced, the Hall terms
are treated independently. The conserved variables are then corrected. The
procedure can be computationally intensive. The operator stencil uses 5 points
in the sweep direction and 3 points in each orthogonal direction. The complete
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operator stencil is 45 points. The semi-implicit method works adequately for
small Hall parameters, but becomes unstable or slow to converge for the large
Hall parameters often seen in applications.

2.2 Project Results

The next step is to extend the realistic geometry capabilities of the MHD model
to the more physically accurate two-fluid model. The complexity of the two-
fluid model is greater the MHD model but significantly less than the kinetic
model.

In this project a new algorithm is developed that solves the two-fluid plasma
model using an approximate Riemann solver. [2] The method tracks the wave
propagation across the domain based on conservation laws.

The two-fluid plasma model captures the separate motion of the electrons
and ions without the added complexity of the kinetic model. The two-fluid
model is derived by taking moments of the Boltzmann equation for each species.
The process of taking moments eliminates the velocity space and yields rep-
resentative fluid variables (density, momentum, energy) for each species. The
only approximation made is local thermodynamic equilibrium within each fluid
and is, therefore, a generalization of the MHD model. The fundamental vari-
ables are generated by taking moments of the distribution function.

The evolution of the particle density of the ions and electrons is expressed by
continuity equations. The equations are the zeroth moment of the Boltzmann
equation.

S+V . = 0 (2)
at

49n, " =0 (3)

where ni, ne are the ion and electron number densities and the particle fluxes
are defined by the partial current densities ji = qnivi and je = -eneVe in terms
of the charges q, e and fluid velocities vi, ve for the ion and electron fluids.

The first moment of the Boltzmann equation yields momentum equations
for each species. The momentum equations are written in divergence form.

+t V"-(j + 1pi) =2ýn-E +• 1-i xB +• -Rei (4)
at qni "i mi mi mi

-e I- + peI- = "je xB+-Rei (5)
a erme / m, me m(

where E and B are the electric and magnetic fields, pi and Pe are the ion and
electron partial pressures, and Rei is the electron to ion momentum transfer
vector.
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The second moment of the Boltzmann equation yields energy equations for
each species which are expressed in divergence form for the total energy.

[-+ V - (i + pi) j• = (E+ e.) (6)

OEv (Ee +Pe) J~e =e"( +eRiE) (7)

where the total energy is defined by

1 1 2
7- -1P + -nm8

Sand ad1 1 2
7- 1P+ 2 nemeve. (9)

where -y is the ratio of specific heats and Ti, Te are the ion and electron tem-
peratures. An adiabatic equation of state is assumed. The temperatures are
related to the partial pressures by Pa = nfaTa for a = {i, e}.

The equations that govern the ion and electron fluids are rewritten in com-
pact, conservative form. aQ

- + V. F = S (10)at
where Q is the vector of conserved fluid variables, F is the tensor of hyperbolic
fluxes (Fi + Gý + H'), and S is the vector containing the source terms. The
vector of conserved variables is

Q [[ni,Ine,jix,3iJiz,)jex,jex , ez,Si,E e]. (11)

for the number densities, electrical current densities, and energy densities. The
flux Jacobian OF/&Q for the two fluid equations is constructed in the usual
way. The characteristic velocities are calculated to construct the approximate
Riemann fluxes.

The eigenvalues of the flux Jacobian give the characteristic velocities.

~~~ f, :1 ST Jx .J __ ~ (12)
Sen' en 3 mi' ene' ene 3 me J

The eigenvalues for the two fluid plasma model represent the combination of
the drift speeds and thermal speeds for the electrons and ions.

The electromagnetic fields influence the motion of the plasma fluid through
the Lorentz force which is contained in eqns(4) and (5). The motion of the
plasma influences the evolution of the electromagnetic fields through the re-
distribution of charge density and current density. Maxwell's equation govern
the evolution of the electromagnetic fields. The charge density qnj - ene and
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current density (j = ji +je) are calculated directly from the two-fluid equations
which couple the electromagnetic fields.

- = -V ×E (13)

EO-5- = V x B/p0 -j (14)

EOV E = qni -ene (15)

V.B=0 (16)

The two-fluid plasma model (including the electromagnetic equations) can
also be expressed in divergence form.

oQ-- + V. F S (17)

where Q is the vector of conserved fluid variables, F is the tensor of hyperbolic
fluxes (FR + G9 + Hi), and S is the vector containing the source terms.

The hyperbolic fluxes are discretized using a Roe-type approximate Rie-
mann solver. [1] In this method the overall solution is built upon the solutions
to the Riemann problem defined by the discontinuous jump in the solution
at each cell interface. The numerical flux for a first-order accurate (in space)
Roe-type solver is written in symmetric form as

=1 (Fi+1 + Fi) - _1 E k (Qi+l - Qi) JAkJ rk (18)
k

where rk is the kth right eigenvector, Ak is the kth eigenvalue, and 1k is the
kth left eigenvector, evaluated at the cell interface (i + 1/2). The values at the
cell interface are obtained by a Roe average of the neighboring cells. Higher
order accuracy is obtained by using a minmod flux limiter in the numerical
flux calculation. The algorithm is second-order accurate in regions where the
solution is smooth and first-order accurate in the vicinity of large gradients in
the solution. The flux calculated as above is normal to the cell interface which
is the desired orientation for applying the divergence theorem in a finite volume
method.

The source terms of eqn(17) are large, in general, since they contain the
electromagnetic forces that act upon the fluids. The homogeneous fluxes are
calculated for the electron and ion fluids with the approximate Riemann solver
described previously. An approximate Riemann solver is also used to calculate
the homogeneous fluxes for Maxwell's equations. The large source terms make
the equation stiff. The source terms for all of the equations are then solved self-
consistently with an implicit treatment to alleviate the stiffness of the problem.

8Q n+1 =sn+' (19)at Iso SO~s
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Figure 2: Two-fluid solution of the electromagnetic plasma shock problem for four
values of the Larmor radius rL. The transition from gas dynamic shock to MHD
shock is evident. Fast moving waves are present for intermediate values of rL.

where S'+1 is the source term evaluated at the n + 1 time step. Previously, the
source term is expanded in a Taylor series to first order and a Newton iteration
is required to solve the equation. This step has been eliminated by using an
implicit time approach to rewrite the equation as

aQ n 1  Sn+ = Sn + as At as
at I Soes ýQ atAtQ t S. (20)

This formulation does not require a Newton iteration.

2.2.1 One-Dimensional Algorithm

The described algorithm is used to simulate the coplanar Riemann problem
to test for proper wave capturing behavior, Langmuir oscillations to test the
electric field component in the Lorentz force, and the electromagnetic plasma
shock.

The two-fluid algorithm is benchmarked to the electromagnetic plasma
shock problem often used for MHD algorithms as in Ref. [20]. The MHD shock
problem is a good test of the two-fluid algorithm's ability to model MHD like
problems. MHD problems are characterized by strong coupling of the two-fluid
source terms which makes for a stiff system of equations. In this benchmark
case, it is shown that the algorithm can be used to model MHD like problems.
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Figure 3: Fourier analysis of the numerical results for a small amplitude electro-
magnetic plasma shock compared to the analytical dispersion relations for plasma
waves for rL = 0.1. Analytical dispersion relations for the L mode, R mode, and
Alfv~n mode waves are plotted for comparison. The low frequency portion of the
lower branch of the R mode is the whistler wave. The agreement of the numerical
and analytical results supports the physical basis for the fast waves in the two-fluid
solutions.

The comparison is made between the ideal MHD solution and a two-fluid solu-
tion with equivalent initial conditions. The two-fluid model allows the flexibility
to choose the desired Larmor radius rL (zero in MHD), the ionic charge state
(unity in MHD), and the electron to ion mass ratio (zero in MHD). For the
simulations presented here, the ionic charge state is set to one, and the electron
to ion mass ratio is set to 5.45 x 10-3 (hydrogen plasma). The Larmor radius
is varied while holding the Alfv~n and sound speeds constants.

Simulation results are presented in Fig. 2 comparing the results for four
values of the Larmor radius. As the Larmor radius decreases, the two-fluid
solution approaches the MHD solution. The algorithm is able to capture the
MHD shock in the limit of rL --* 0, the gas dynamic shock in the limit of
rL -- oo, and two-fluid (Hall effect) physics for intermediate values. The MHD
model assumes rL =- 0 where the electron and ion fluids are tightly coupled to
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the magnetic field. The plasma completely decouples from the magnetic field
when rL = oo. The transition from gas dynamic shock to MHD shock is a
smooth transition that shows faster moving waves for intermediate values of
the Larmor radius and has not been previously studied.

Simulation results reveal the transition from gas dynamic shock to MHD
shock is a smooth transition that shows fast moving waves for intermediate
values of the Larmor radius and had not been previously studied. The character
of these fast waves is studied by decreasing the shock strength so nonlinear
effects become small and linear wave analysis can be applied. The simulation
results are Fourier analyzed to form a dispersion plot which is compared to the
analytic dispersion relations from plasma wave theory. For the electromagnetic
plasma shock problem the wave vector is perpendicular to the discontinuity
and parallel to the longitudinal magnetic field. The plasma dispersion relation
for this case yields the left and right circularly polarized waves (L mode and R
mode), in addition to the slower Alfv~n waves.

c2 k2  W2
(;e --)1(21)

where wop = /nlee 2 /meo is the electron plasma frequency and w, = eB/me
is the electron cyclotron frequency. The simulation and analytical results are
shown in Fig. 3. The low frequency portion of the lower branch of the R mode
is the whistler wave. The agreement of the numerical and analytical results
supports the physical basis for the fast waves in the two-fluid simulations.

2.2.2 Multi-Dimensional Algorithm

The formulation of the approximate Riemann solver for the fluid equations al-
lows for a straight forward extension to multiple dimensions. The extension
from one to two dimensions introduces the complexity of extending the algo-
rithm to multiple dimensions. The extension from two to three dimensions only
requires additional compute resources but does not add additional complexity.
Therefore, a large effort is concentrated on the two dimensional algorithm.

The divergence constraints on the magnetic and electric fields are satisfied
automatically in one dimension and the electromagnetic fields are solved using
an upwind characteristic-based method. However, in multiple dimensions the.
divergence constraints can be difficult to satisfy with the presence of current
and charge sources on an arbitrary computational grid. The divergence con-
straints are satisfied by reformulating Maxwell's equations to include correction
potentials.

The approach involves coupling the divergence constraint equations with the
time-dependent field equations to form a perfectly hyperbolic equation set. [3]
The field equations are expressed as

,9B-- + V x E + 7V = 0, (22)
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8E c2VxB+xc2V = (23)
Ot Co

180€ +V. E =PC (24)
X Tt EO

1c------ + V- B = 0, (25)

where € and 4 are the electric and magnetic correction potentials or, more
formally, Lagrange multipliers which vanish at the domain boundaries. The
method more accurately predicts the propagation speed of the waves; how-
ever, the method can overestimate the Lorentz force caused by charge sepa-
ration. The implementation illustrates the importance of tightly coupling the
field solver to the fluid solver.

Open or absorbing boundaries can be troublesome for finite volume meth-
ods applied to electromagnetic fields because the impedance mismatch causes
spurious reflections and oscillations. The problem has been solved by imple-
mentation a PML (perfectly matched layer) boundary condition [21,22] which
is common in PIC codes.

The two dimensional algorithm has been applied to the cylindrical elec-
tromagnetic plasma shock problem and the collisionless magnetic reconnec-
tion problem. The simulation results for the two-dimensional electromagnetic
plasma shock are shown in Fig. 4. The fast waves have already left the do-
main by this time. The discontinuous jump in the out-of-plane magnetic field
is supported by an azimuthal current carried primarily by the electron fluid.
The electron fluid undergoes a Kelvin-Helmholtz instability which broadens
the current layer. (This behavior may be important for shock degradation in
hypersonic vehicles.) The simulation results from the collisionless magnetic
reconnection problem are shown in Fig. 5. The simulation demonstrates an
important numerical effect.

As described, the source terms make the equations stiff and must be treated
implicitly to relax the stiffness. The relaxation works well for transient prob-
lems. However, for problems involving equilibrium conditions, the equilibrium
force balance artificially diffuses resulting in a loss of the original equilibrium.
The simulation ultimately reduces to a trivial equilibrium.

Magnetic reconnection is the process where plasma currents coalesce and
magnetic fields reconnect. The process is demonstrated by a plasma sheet car-
rying an initially uniform current. The current produces oppositely directed
magnetic fields above and below the plasma sheet. The plasma current sup-
ports the jump in the magnetic field, and the configuration is in force balance
(equilibrium) though large forces are present. If the plasma has collisions (finite
resistivity), the current sheet breaks into small filaments through a magnetic
tearing instability. [23] However, even perfectly conducting plasmas undergo a
similar instability that is due to two-fluid effects instead of resistivity. The cur-
rent sheet again breaks into current filaments. The magnetic field reconnects
"through" the remaining plasma sheet. The process is important in many ap-
plications including space physics. [24] However, it is a difficult problem to
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Figure 4: Two-dimensional electromagnetic plasma shock simulation showing the
magnitude of in-plane electron current density. The azimuthal current supports the
discontinuous jump in the out-of-plane magnetic field. The current layer is seen to
broaden due into a turbulent layer due to a Kelvin-Helmholtz instability.
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Figure 5: Magnetic field contours for the collisionless magnetic reconnection problem
solved with the finite volume method. Shown is the magnitude of the transverse mag-
netic field B- (parallel to the current sheet). The equilibrium jump in the magnetic
field has diffused significantly.
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Figure 6: Magnetic field contours for the collisionless magnetic reconnection problem
solved with a higher-order method. Shown is the magnitude of the transverse mag-
netic field B. (parallel to the current sheet). The equilibrium jump in the magnetic
field is maintained.
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Figure 7: Comparison of the transverse magnetic field at x 0.5 computed using the
finite volume method and the higher order method. The higher order method better
preserves the equilibrium jump in the magnetic field.
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model and provides a rigorous test for the algorithm. Simulations of the two-
dimensional collisionless reconnection problem are performed using the algo-
rithm described previously with the implicit source treatment. Figure 5 shows
the simulation results. Shown are contours of the magnitude of the transverse
magnetic field B, (parallel to the current sheet). The equilibrium jump in the
magnetic field has diffused significantly.

Preliminary results using higher-order methods have solved the problem. [4]
Figure 6 shows the same simulation of the two-dimensional collisionless recon-
nection problem using an algorithm that is second-order in space and third-
order in time implemented for a uniform computational mesh. Figure 7 com-
pares B, through the domain midplane as computed by the previous method
and the higher-order method. The higher-order method preserves the equilib-
rium jump in the magnetic field. The higher-order algorithm uses a discontin-
uous Galerkin method with a TVD Runge-Kutta time advance. [25-271

The conserved variables of the two-fluid plasma model are modeled with a
set of basis functions, {Vh}. The governing equations, expressed as eqn (17),
are multiplied by each basis function and integrated over the mesh cell volume
Q. An integral equation is generated for each basis function.

jfVhLdV+ vhF.dS- F.VvhdV = jVhSdV (26)

where the divergence theorem has been applied to the second term. The volume
and surface integrals are replaced with Gaussian quadrature. The flux F is
computed with the approximate Riemann solver with a limiter applied directly
to the conserved variables to get high resolution. The source terms are described
by the basis functions and are, therefore, the same order accurate as the solution
variables. This satisfies the higher order accuracy requirement to preserve the
equilibrium balance between the divergence of the flux and the source.

For the preliminary, two-dimensional, second-order accurate algorithm, a
linear set of basis functions are used.

v x- xii Y -Yi (27)
J~hJ IVO,.,Vy Ax/2 ,Ay/2 (27

where the center of the mesh cell is located at (xij, yij) and extends Ax by Ay.
The conserved variables Q are defined as

Q=Qo + QXvX + QYvY (28)

within each mesh cell. Update equations for the coefficients for each conserved
variable are found directly from eqn (26) applied to each mesh cell.

The temporal evolution is determined with a Runge-Kutta method.
The preliminary discontinuous Galerkin method has greatly reduced the

diffusion of the equilibrium forces. Figure 6 shows the same simulation of the
two-dimensional collisionless reconnection problem using an algorithm that is
second-order in space and third-order in time. Figure 7 compares Bx through

17



the domain midplane as computed by the previous method and the higher
order method. The higher order method preserves the equilibrium jump in the
magnetic field.
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