Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE
00 MAY 2002

2. REPORT TYPE
N/A

3. DATES COVERED
-

4. TITLE AND SUBTITLE
Department of the Army Cost Anlaysis Manual

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Director, US Army Cost and Economic Analysis Center, ATTN; SFFM-CA-CP, Washington, DC

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
POC: Robert Young, Dep for Cost Analysis, OASA(FM&C), (703) 601-4185 OR DSN 329-4185 , The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 UU

18. NUMBER OF PAGES
 211

19a. NAME OF RESPONSIBLE PERSON

FOREWORD

A major objective of the Army's Cost and Economic Analysis Program is to improve the justification and documentation used to effectively allocate and manage Army resources. To attain this objective, we must develop more accurate cost and economic analyses of Army programs, materiel systems, installations, facility acquisitions, automated information systems, forces, and activities. This manual provides basic frameworks for methodologies and procedures to implement policies for better cost analyses. The specific goal of this manual is to help the cost analyst serve the customer.

This manual is the result of the combined efforts of the Headquarters Department of the Army, the Major Commands, and Program Executive Officers. The format is designed to facilitate updating and expanding the manual, as necessary. Therefore, this publication should be considered a "living document" which will serve as a vehicle to disseminate current cost and economic analysis guidance. This is a continuing effort; additional or revised materiel will be forwarded as it is completed.

I believe you will find this edition of the Cost Analysis Manual a valuable and useful aid in understanding and participating in the cost and economic analysis process. Your ideas and suggestions for improving this manual are always welcome. Comments and suggested improvements may be provided to Director, U.S. Army Cost and Economic Analysis Center, ATTN: SFFM-CA-CP, phone (703) 601-4185 or DSN 329-4185.

Robert W. Young
Deputy for Cost Analysis
OASA(FM&C)
TABLE OF CONTENTS

CHAPTER 1 - INTRODUCTION ... 1
 1-1. PURPOSE ... 1
 1-2. REFERENCES ... 1
 1-3. EXPLANATION OF ABBREVIATIONS AND TERMS ... 1
 1-4. INTRODUCTION TO COST ANALYSIS ... 1
 1-5. COST ANALYSIS REQUIREMENTS, USES, AND LIMITATIONS ... 2
 1-6. ECONOMIC ANALYSIS ... 4
 1-7. COST ANALYSIS TRAINING ... 4
 1-8. INTERNAL CONTROL .. 4
 1-9. COST ANALYSIS ADVICE/AID .. 4

CHAPTER 2 – INTERRELATIONSHIPS ... 5
 2-1. INTRODUCTION .. 5
 2-2. INTERRELATIONSHIP WITH THE DEFENSE ACQUISITION PROCESS 5
 2-3. INTERRELATIONSHIP WITH THE PPBS PROCESS ... 22
 2-4. INTERRELATIONSHIP WITH THE CONTRACT PROCESS ... 28

CHAPTER 3 – COST ANALYSIS PROCESS, METHODS AND TECHNIQUES ... 32
 3-1. INTRODUCTION .. 32
 3-2. THE ANALYTICAL APPROACH ... 32
 3-3. COST-ESTIMATING METHODS ... 33
 3-4. ESTIMATES IN CONSTANT, CURRENT, AND DISCOUNTED DOLLARS 34
 3-5. COST-ESTIMATING DATA SOURCES ... 36
 3-6. SOFTWARE COST ESTIMATING ... 37
 3-7. COST AS AN INDEPENDENT VARIABLE (CAIV) .. 38
 3-8. RISK AND UNCERTAINTY ANALYSIS .. 39
 3-9. SENSITIVITY ANALYSIS ... 40
 3-10. VALIDATION ANALYSIS ... 41
 3-11. INTERFACE WITH ENVIRONMENTAL AND HAZARDOUS MATERIAL IMPACT ANALYSIS 42
 3-12. COST-ESTIMATING ERRORS ... 43
 3-13. INHERITED ASSETS ... 43
 3-14. RESIDUAL OR SALVAGE VALUE .. 44

CHAPTER 4 – MATERIEL SYSTEMS COST ANALYSIS ... 45
 4-1. INTRODUCTION ... 45
 4-2. COST ANALYSIS REQUIREMENTS DESCRIPTION (CARD) .. 47
 4-3. WORK BREAKDOWN STRUCTURE/COST ELEMENT STRUCTURE (WBS/CES) 49
 4-4. MAJOR MATERIEL SYSTEMS’ COST ESTIMATES ... 52
 4-5. DOCUMENTATION REQUIREMENTS .. 55
 4-6. COST REVIEW BOARD (CRB) ... 65
 4-7. ARMY SYSTEMS ACQUISITION REVIEW COUNCIL (ASARC) .. 71
 4-8. COST ANALYSIS IMPROVEMENT GROUP (CAIG) ... 74
 4-9. SELECTED ACQUISITION REPORT/UNIT COST REPORT (SAR/UCR) FORMAT 75
 4-10. PPBES SUPPORT ANALYSIS ... 77
 4-11. CONTRACT SUMMARY ANALYSIS .. 81

CHAPTER 5 – MATERIEL SYSTEMS SPECIAL TOPICS .. 82
 5-1. INTRODUCTION ... 82
 5-2. UNIT COST DEFINITIONS ... 82
 5-3. ANALYSIS OF ALTERNATIVES (AOA) .. 82
 5-4. UNIT COST, ARMY WORKING CAPITAL FUND (AWCF), AND SURCHARGE 84
 5-5. INTERFACE WITH INTEGRATED LOGISTICS SUPPORT (ILS) AND LOGISTICS IMPACT ANALYSIS (LIA) .. 85
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING ... 90
 6-1. INTRODUCTION ... 90
 6-2. ENVIRONMENTAL QUALITY COST METHODS AND WORK BREAKDOWN STRUCTURE 90
 6-3. ENVIRONMENTAL QUALITY COST ESTIMATING TOOLS .. 91
 6-4. ENVIRONMENTAL QUALITY COST ESTIMATING CORE ACTIVITIES 91
 6-5. RESIDUAL OR SALVAGE VALUE .. 96
 6-6. TRENDS IN THE ENVIRONMENT QUALITY IMPACTING THE COST ESTIMATE 96

CHAPTER 7 – FORCE COSTING ... 114
 7-1. INTRODUCTION ... 114
 7-2. ACTIVATION/ACQUISITION .. 114
 7-3. ANNUAL OPERATIONS .. 115
 7-4. MODIFICATION .. 116
 7-5. MOVEMENT .. 117
 7-6. INACTIVATION .. 117
 7-7. CONVERSIONS ... 118
 7-8. FORCE AND ORGANIZATION COST ESTIMATING SYSTEM (FORCES) 119

APPENDIX A - REFERENCES ... 120
 SECTION I - REQUIRED PUBLICATION .. 120
 SECTION II - RELATED PUBLICATIONS ... 120

APPENDIX B – FIGURES AND TABLES ... 122
 FIGURES .. 122
 TABLES ... 122

APPENDIX C – COST ANALYSIS TRAINING ... 123
 DEFENSE ACQUISITION UNIVERSITY .. 123
 OTHER SOURCES .. 123

APPENDIX D – MATERIEL SYSTEMS PME GENERIC WORK BREAKDOWN STRUCTURES 124

APPENDIX E – COST ELEMENT STRUCTURE ... 125
 SECTION I - COST ELEMENT STRUCTURE ... 125
 SECTION II - COST ELEMENT DEFINITIONS ... 127

APPENDIX F – COST ANALYSIS TECHNIQUES .. 141
 SECTION I - MANPOWER COSTING .. 141
 SECTION II - GUIDANCE FOR INCLUDING SURCHARGES AND CREDITS IN COST ESTIMATES FOR DEPOT LEVEL REPARABLES AND CONSUMABLES ... 145
 ANNEX A - GLOSSARY/DEFINITIONS .. 149

APPENDIX G – FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS 153
 SECTION I - FORCE COST MODEL ELEMENT STRUCTURE .. 153
 SECTION II - FORCE COST ELEMENT DEFINITIONS .. 155

APPENDIX H - STUDY PLAN ... 167

APPENDIX I - COST ANALYSIS REQUIREMENTS DESCRIPTION (CARD) 170

APPENDIX J - ARMY COST ESTIMATING TOOLS ... 171
CHAPTER 1 - INTRODUCTION

1-1. Purpose

a. This manual provides basic methodologies and procedures for implementing cost analysis policies. It is one part of the essential set of instructions for analysts working in the cost and economic analysis area. Another part, Army Regulation (AR) 11-18, The Cost and Economic Analysis Program, specifies the policies and responsibilities for cost and economic analysis throughout the Army. The last part, Department of the Army Economic Analysis Manual, provides the methodologies and procedures for implementing economic analysis policies.

b. The specific goal of this manual is to help the cost analyst serve the customer. This is done by providing reference material on cost analysis processes, methods, techniques, structures, and definitions. It covers special analyses, review procedures, and selected common cost analysis topics. In addition, this manual provides a structure for materiel systems composed of system-specific, appropriation-discrete, and time-sensitive cost elements. Lastly, it presents accepted documentation standards.

d. Department of Defense Directive (DoDD) 5000.1 and Department of Defense (DoD) Regulation 5000.2-R describe the current defense acquisition process. They are the basis for the frameworks in this manual. Included in this manual is a framework for the development, documentation, and presentation of materiel systems’ life cycle cost estimates. Specifically addressed are the requirements for a program office estimate (POE), Independent Cost Estimate (ICEs), component cost analysis (CCA), cost analysis brief (CAB), and other cost analysis documents. Also, the manual provides a framework for the development, documentation, and presentation of force cost estimates.

e. This manual contains useful information for those who help in providing data for cost analysis purposes. It also helps those who use the results of cost analysis.

1-2. References

Appendix A lists the required and related publications with web sites.

1-3. Explanation of abbreviations and terms

The glossary explains the abbreviations and special terms used in this manual.

1-4. Introduction to cost analysis

a. Cost analysis is:

(1) The act of developing, analyzing, and documenting cost estimates using analytical approaches and techniques.

(2) The process of analyzing and estimating incremental and total resources required to support past, present, and future forces, units, systems, functions, and equipment. It is an integral step in the selection between alternatives by the decision maker.

(3) A management tool used to help decision makers evaluate resource requirements at key management milestones and decision points in the acquisition process.
CHAPTER 1 - INTRODUCTION

b. Cost analysis is used to produce cost estimates for materiel systems, automated information systems, force units, training, and other Army programs and projects.

c. Each cost analysis should contain:

(1) A clear definition of what is being costed.

(2) The specification of all assumptions, ground rules, and constraints, assumed or imposed, underlying the analysis. They must each be explained with adequate rationale.

(3) An estimate of all expected costs, directly or indirectly associated with the project over its life, including disposal. The cost estimate must include the identification of all data sources used.

(4) Risk and uncertainty analyses identifying any circumstances which could affect a course of action.

(5) Key limitations in terms of elements that were excluded.

d. The documentation supporting the cost analysis should describe the methodology used in developing these estimates. It also should identify all the data sources and include the computations used to estimate the costs. The documentation should be in sufficient detail to permit reviewers to follow the logic from assumptions to conclusion and to update the estimate at a later time. Chapter 4 presents documentation formats and a set of presentation matrices for materiel systems.

1-5. Cost analysis requirements, uses, and limitations

a. Cost analysis is a critical element in the Army acquisition process. It supports management decisions by quantifying the resource impact of alternative options. A quality analysis includes different acquisition strategies, hardware designs, software designs, personnel requirements, and operating and support concepts.

b. As a program matures and more information becomes available, the cost estimate grows in complexity and detail. One test of the utility of cost analysis is its ability to respond quickly to program turbulence. Army planners must have reliable and readily available information about the cost consequences of program changes, extensions, or cancellations. Cost analysts must develop models to support these quick turnaround analyses.

c. Cost analysis plays a key role in budgeting the Army's operating tempo (OPTEMPO) related training costs. The Army's implementation of the DoD Visibility and Management of Operating and Support Costs (VAMOSC) program is the Operating and Support Management Information System (OSMIS) and the Army Military-Civilian Cost System (AMCOS). The U.S. Army Cost and Economic Analysis Center (USACEAC) manage the OSMIS program including developing and reporting reparable and consumable OPTEMPO costs for selected tactical systems by major command (MACOM). The development of the training mission budgets requires reliable OPTEMPO cost factors. AMCOS is a database, which provides personnel cost factors for estimating acquisition, installation operations and force/unit requirements.

d. Cost analysis has an on-going role in the management of base operations. Cost analysis assists installations, MACOMs and HQDA in determining base support requirements, developing budgets, conducting cost benefit analysis, and performing special studies. At the HQDA level, USACEAC develops cost factors in support of the Army Chief of Staff for Installation Management (ACSIM) for both the Installation Status Report (ISR) and the Army Installation Management - Headquarters Information (AIM-HI) model. Other ACSIM efforts supported by cost analysis include A-76 studies, Service Based Costing, and Standard Service Costing.
CHAPTER 1 - INTRODUCTION

With the establishment of the cost/outcome oriented Government Performance Results Act (GPRA), cost analysis has taken on a larger role in to support management of base operations. The managerial costing focus, to meet GPRA mandates, requires cost analysis in the measuring and management of cost and results. Cost analysis will be needed to develop methodologies, conduct studies and analyze data of the products and services provided through base operations. The prerequisite to cost management is cost measurement. There are numerous methods of measuring costs, all of which will require cost analysis skills now and in the future. Examples of cost measurement include, full cost, job-order cost, service based cost, activity based cost, standard cost, product cost, and responsibility cost to name a few. Though there are many examples of cost measurement each demands cost analysis support to make information meaningful to Army management. USACEAC will prepare a managerial costing manual in the future on Activity Based Costing, Service Based Costing and Standard Service Costing.

e. Other uses of cost analysis in the Army are to:

1. Support decisions on program viability, structure, and resource requirements.
2. Evaluate the cost implications of alternative materiel system designs.
3. Provide credible and auditable cost estimates in support of milestone reviews during the acquisition process.
4. Assess the cost implications of new technology, new equipment, new force structures, or new operating or maintenance concepts.
5. Support the Planning, Programming, Budgeting, and Execution System (PPBES) process. This includes formulating and documenting Army Cost Positions (ACPs) on programs within the Program Objective Memorandum (POM) and the Budget Estimate Submission (BES) processes.
6. Determine the funds required for a given level of training or operational activity such as miles driven per year.

f. Cost analysis applies scientific and statistical methods to evaluate the likely cost of a specific item in a defined scenario. In the real world, there are multiple uncertainties about the item's cost. Some "internal" uncertainties influencing cost are inadequate item definition, poor contract statement of work, optimistic proposed solutions, inexperienced management, and success-oriented scheduling. Some "external" uncertainties include funding turbulence, contractor's underestimating of complexity, contractor's changing business base, and excessive (or insufficient) Government oversight. In spite of uncertainty, the process of cost analysis is the most rigorous approach available to evaluate the costs of alternatives for the decision maker.

f. Cost analysis does have limitations. Analysts develop cost estimating methodologies with an imperfect understanding of the technical merits and limitations of the item. The applicability of historic data is always subject to interpretation. Because of future uncertainties, there are limitations in determining the degree to which reality varies from the plan. Realistically, the cost analysis process cannot:

1. Be applied with cookbook precision, but must be tailored to the problem.
2. Produce results that are better than input data.
3. Predict political impacts.
4. Substitute for sound judgment, management, or control.
5. Make the final decisions.

g. Despite these limitations, cost analysis is a powerful tool. Rigorous and systematic analysis leads to a better understanding of the problem. It improves management insight into resources allocation problems. Because the future is uncertain our best estimate will differ from reality.
CHAPTER 1 - INTRODUCTION

1-6. Economic Analysis

The Economic Analysis (EA) manual provides guidance to analysts who prepare or review EA's in support of the decision making process. The manual provides a basic framework for implementing the policies of EA concepts, methods and procedures, and applies to all Army proponents preparing EA's. The manual describes the EA process, provides information on identifying and quantifying program benefits, identifies methods of comparing alternatives, and gives examples of quantitative techniques. Information for handing sensitivity, risk and uncertainty is also provided.

1-7. Cost analysis training

Continuing education in cost analysis is crucial to the critical mission of providing Army decision makers with quality, timely cost analysis. DoD agencies provide several excellent training programs. Appendix C presents a partial list of current training courses.

1-8. Internal control

The U.S. Army Cost Review Board (CRB) process (see paragraph 4-4c) is an evaluation method for internal control (AR 11-2, Management Control). The CRB process provides an independent review of the cost of ACAT I and special interest ACAT II programs, safeguards assets, checks the accuracy and reliability of cost data, promotes efficiency within the discipline of cost analysis, and encourages adherence to prescribed cost analysis managerial policies.

1-9. Cost analysis advice/aid

As the proponent for the Army’s cost analysis program, CEAC is available to provide advice/aid. Questions may be addressed to Director, U.S. Army Cost and Economic Analysis Center, ATTN: SFFM-CA-ZA, Arlington, VA 22202-3259, phone (703) 601-4200 or DSN 329-4200. Additional information is available on the ASA(FM&C) home page (www.asafm.army.mil).
CHAPTER 2 – INTERRELATIONSHIPS

2-1. Introduction

This chapter provides an overview of the cost analysis interrelationships with three processes. They are the defense acquisition process, the DoD Planning, Programming and Budgeting System (PPBS) process, and the contract process. The Army’s process (Planning, Programming, Budgeting and Execution System (PPBES)) adds emphasis to efficient management execution of the allotted resources.

2-2. Interrelationship with the defense acquisition process

a. Introduction

(1) Cost analysis is an integral part of the acquisition process. This section provides an introduction to the defense acquisition process and identifies the cost analysis that it uses.

(2) DoDD 5000.1, The Defense Acquisition System, states policies and principles for all DoD acquisition programs and identifies the Department's key acquisition officials and forums. DoD 5000.2-R, Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs, establishes a general model for managing MDAPs and MAIS acquisition programs. The principal thrust of DoDD 5000.1 and DoD 5000.2-R is a disciplined yet flexible management approach for acquiring quality products that satisfy the operational user's needs and effectively translates operational needs into stable, affordable acquisition programs. The Army implements the DoDD 5000.1 and DoD 5000.2-R in AR 70-1, Army Acquisition Policy.

b. Document summaries

Key elements impacting Army cost analysis are summarized below.

(1) DoDD 5000.1

(a) Applies to the management of major and non-major programs and to highly sensitive classified programs. The Army cannot supplement DoDD 5000.1 without Office of the Secretary of Defense (OSD) approval and must keep implementing directives to a minimum.

(b) Presents the policies and principles that govern the operation of the defense acquisition system. These policies and principles are divided into three major categories: (1) Translating Operational Needs into Stable, Affordable Programs, (2) Acquiring Quality Products, and (3) Organizing for Efficiency and Effectiveness.

(2) DoD 5000.2-R

(a) Establishes a simplified and flexible management framework for translating mission needs into stable, affordable, and well managed MDAPs and MAIS Acquisition Programs;

(b) Sets forth mandatory procedures for MDAPs and MAISs and, specifically where stated, for other than MDAPs or MAISs;

(c) Serves as a general model for other than MDAPs or MAISs;

(d) Consistent with statutory requirements, authorizes Milestone Decision Authorities (MDAs) to tailor the procedures as they see fit;

(e) Implements the guidelines in DoD Directive 5000.1 and OMB Circular A-109 current statutes;
CHAPTER 2 – INTERRELATIONSHIPS

(f) Authority to change this Regulation has been delegated to the Under Secretary of Defense for Acquisition and Technology (USD(A&T)); Director, Operational Test & Evaluation; and Assistant Secretary of Defense for Command, Control, Communications, and Intelligence (ASD(C3I)). All future changes shall be jointly signed by these three officials.

(3) AR 70-1

(a) Implements DoDD 5000.1, DoD 5000.2-R, DoDD 5000.52, DoD 5000.52-M and Department of Defense Instruction (DoDI) 5000.58.

(b) Governs research, development, and acquisition, and Life Cycle Management (LCM) of Army materiel to satisfy approved Army requirements and applies to major systems, non major systems, highly sensitive classified acquisition programs, automated information systems, and clothing and individual equipment.

(c) First in order of precedence for managing Army acquisition programs following statutory requirements, DoD guidance, Federal Acquisition Regulation, and Defense and Army Federal Acquisition Regulation Supplements.

(4) AR 25-1

(a) Implements the Clinger-Cohen Act and supplements AR 70-1 for Information Technology (IT).

(b) Governs IT planning and acquisition. Contains specific IT costing/investment requirements.

c. Milestones

OSD structured the acquisition process into major decision points called milestones (MS A through MS C). The milestone reviews process provides a framework for comparing military goals. There are three types of decision point: milestones, decision reviews, and interim progress reviews. Each decision point results in a decision to initiate, continue, advance, or terminate a project or program work effort or phase. The review associated with each decision point shall typically address program progress and risk, affordability, program trade-offs, acquisition strategy updates, and the development of exit criteria for the next phase or effort. The type and number of decision points shall be tailored to program needs. The Milestone Decision Authority (MDA) shall approve the program structure as part of the acquisition strategy.

(1) Milestone decision points shall initiate programs and authorize entry into the major acquisition process phases: Concept and Technology Development, System Development and Demonstration, and Production and Deployment. The information specified in DoDI 5000.2, Enclosure 3, (reference (b)) shall support milestone reviews.

(2) Decision Reviews shall assess program progress and authorize continued program development. Programs beginning in the concept exploration work effort of the Concept and Technology Development Phase shall require a decision review to determine whether or not the concept is ready to be pursued in component advanced development has been completed, a Milestone B review may substitute for this decision review. The MDA shall schedule a Full-Rate Production and Deployment Decision Review during the Production and Deployment Phase to consider the results of production qualification testing and the initial operational test and evaluation and to authorize full-rate production and deployment. Decision reviews are designed to be streamlined reviews and shall require only the information specified by the MDA or as required by statute.
CHAPTER 2 – INTERRELATIONSHIPS

(3) Interim progress reviews shall assess program progress within the System Development and Demonstration phase. This review shall only require information as specified by the MDA.

The Integrated Product Team (IPT) process allows for tailoring the documentation presented at each review to meet the specific program’s needs. All programs must achieve goals (threat, requirements, affordability, acquisition strategies, life cycle costs, cost-performance-schedule tradeoffs, and risk management). Figure 2-1 shows this process. Following Figure 2-1 are excerpts from DoDD 5000.2 on the new acquisition milestones.

THE 5000 MODEL

Figure 2-1. Acquisition Milestones
CHAPTER 2 – INTERRELATIONSHIPS

Table 2-1. Summarize key descriptors for Acquisition Categories (ACATs) of the acquisition process.

<table>
<thead>
<tr>
<th>ACAT</th>
<th>SELECTION CRITERIA</th>
<th>DESIGNATION AUTHORITY</th>
<th>MILESTONE DECISION AUTHORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Not classified as highly sensitive by SECDEF that are: Designated ACAT I by USD(A&T), or Estimated by USD(A&T) to require: >$365M (FY00$) RDT&E or >$2.190B Procurement (FY00$)</td>
<td>USD(A&T)</td>
<td>ACAT ID USD(A&T)</td>
</tr>
<tr>
<td>IA</td>
<td>Designated ACAT I by ASD(C3I), or Estimated by ASD(C3I)) to require: >$32M (FY00$) single year or >$126M (FY00$) total program or >$378M (FY00$) total life-cycle costs</td>
<td>ASD(C3I)</td>
<td>ACAT IAM ASD(C3I)</td>
</tr>
<tr>
<td>II</td>
<td>Does not meet ACAT I criteria and are: Designated ACAT II by SA, or Estimated by SA to require: >$140M RDT&E (FY00$), or >$660M Procurement (FY00$)</td>
<td>SA</td>
<td>ASD(C3I))</td>
</tr>
<tr>
<td>III</td>
<td>Does not meet ACAT I, IA and II criteria and are designated ACAT III by AAE. High visibility, special interest programs</td>
<td>AAE</td>
<td>Lowest level deemed appropriate by AAE</td>
</tr>
</tbody>
</table>

Table 2-1: Acquisition Categories

ACAT Explanations Listed In Table 2-1 (taken from DODI 5000.2):

ACAT I
ACAT I programs are those programs that are MDAPs or that are designated ACAT I by the MDA as a result of the MDA's special interest. ACAT I programs have two sub-categories: ACAT ID, for which the MDA is USD(AT&L) (the "D" refers to the Defense Acquisition Board (DAB), which advises the USD(AT&L) at major decision points) or ACAT IC, for which the MDA is the DoD Component Head or, if delegated, the DoD Component Acquisition Executive (CAE) (the "C" refers to Component).

ACAT IA
4.8.3.1. ACAT IA programs are those programs that are MAISs or that are designated as ACAT IA by the MDA as a result of the MDA's special interest. ACAT IA programs have two sub-categories: ACAT IAM for which the MDA is the Chief Information Officer (CIO) of the Department of Defense (DoD), the ASD(C3I) (the "M" in ACAT IAM) refers to Major Automated Information System (MAIS)) or ACAT IAC, for which the DoD CIO has delegated
CHAPTER 2 – INTERRELATIONSHIPS

milestone decision authority to the CAE or Component CIO (the "C" (in ACAT IAC) refers to Component).

ACAT II.
ACAT II programs are those programs that do not meet the criteria for an ACAT I program, but that are Major Systems or that are designated as ACAT II by the MDA as a result of the MDA's special interest. Because of the dollar values of MAISs, no AIS programs are ACAT II. The MDA is the CAE or the individual designated by the CAE.

ACAT III.
ACAT III programs are defined as those acquisition programs that do not meet the criteria for an ACAT I, an ACAT IA, or an ACAT II. The MDA is designated by the CAE and shall be at the lowest appropriate level. This category includes less-than-major AISs.

Pre-Systems Acquisition
Pre-system acquisition is composed of ongoing activities in development of user needs, in science and technology, and in concept development work specific to the development of a materiel solution to an identified, validated need (See Table 2-1). The responsible authority outside of this Instruction defines policies and directives for development of user needs and technological opportunities in science and technology.

Technology Opportunities and User Needs Work Content

User Need Activities
The MNS shall identify and describe the projected mission needs of the user in the context of the threat to be countered or business need to be met. The user representative, with support from the operational test and evaluation community, develops the needs expressed in the MNS into requirements in the form of CRDs (if applicable) and ORDs. CRDs contain capabilities-based requirements that facilitate the development of individual ORDs by providing a common framework and operational concept to guide their development. The CRD is an oversight tool for overarching requirements for a family of systems (reference (i)). Validated ORDs translate the MNS and, if applicable, CRDs into broad, flexible, and
CHAPTER 2 – INTERRELATIONSHIPS

time-phased operational goals that are further detailed and refined into specific operational capability requirements contained in the final ORD at System Demonstration. The appropriate requirements authority shall validate all MNSs, CRDs, and ORDs.

Concept and Technology Development

Work Content

Figure 2-3: Concept and Technology Development Work Content

<table>
<thead>
<tr>
<th>Entrance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>After the requirements authority validates and approves a MNS, the MDA (through the IPT process) will review the MNS, consider possible technology issues (e.g., technologies demonstrated in ATDs), and identify possible alternatives before making a Milestone A decision. The decision shall not be made final until a thorough analysis of multiple concepts to be studied, including international systems from Allies and cooperative opportunities (see 10 U.S.C.2350a, reference (t)), has been completed. If an international system is selected, the program shall enter systems acquisition activities at Milestone B or C.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milestone A</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Milestone A, the MDA shall approve the initiation of concept studies, designate a lead Component, approve Concept Exploration exit criteria, and issue the Acquisition Decision Memorandum. The leader of the concept development team, working with the integrated test team, shall develop an evaluation strategy that describes how the capabilities in the MNS will be evaluated once the system is developed. That evaluation strategy shall be approved by the DOT&E and the cognizant OIPT leader 180 days after Milestone A approval.</td>
</tr>
</tbody>
</table>

Milestone A approval can lead to Concept Exploration or Component Advanced Development depending on whether an evaluation of multiple concepts is desired or if a concept has been chosen, but more work
CHAPTER 2 – INTERRELATIONSHIPS

is needed on key sub-systems or components before a system architecture can be determined and the technologies can be demonstrated in a relevant environment.

Concept Exploration

Concept Exploration typically consists of competitive, parallel, short-term concept studies. The focus of these efforts is to define and evaluate the feasibility of alternative concepts and to provide a basis for assessing the relative merits (i.e. advantages and disadvantages, degree of risk, etc.) of these concepts. Analyses of alternatives shall be used to facilitate comparisons of alternative concepts.

Decision Review

During Concept Exploration, the MDA may hold a decision review to determine if additional component development is necessary before key technologies will be sufficiently mature to enter System Development and Demonstration for one of the concepts under consideration. If the concepts do not require technologies necessitating additional component development, the appropriate milestone (B or C) shall be held in place of this review.

Program Initiation In Advance of Milestone B

The practical result of a preference for more mature technology is initiation of individual programs at later stages of development, after determination of technology maturity. As a consequence, most MDAPs will be initiated at Milestone B. On the rare occasions when an earlier program initiation is appropriate, it will take place at entry to or during Component Advanced Development. At program initiation in advance of Milestone B, the MDA shall approve the acquisition strategy, the acquisition program baseline, and IT certification for MAISs (reference (u)), and exit criteria for the Component Advanced Development work effort if not already established.

Component Advanced Development

The project shall enter Component Advanced Development when the project leader has a concept for the needed capability, but does not yet know the system architecture. Unless otherwise determined by the MDA, the component technology to be developed shall have been proven in concept. The project shall exit Component Advanced Development when system architecture has been developed and the component technology has been demonstrated in the relevant environment or the MDA decides to end this effort. This effort is intended to reduce risk on components and subsystems that have only been demonstrated in a laboratory environment and to determine the appropriate set of subsystems to be integrated into a full system. This work effort normally will be funded only for the advanced development work. The work effort will be guided by the validated MNS, but during this activity, an ORD shall be developed to support program initiation. Also, acquisition information necessary for a milestone decision (e.g., the acquisition strategy, program protection plan, etc.) shall be developed. This effort is normally followed by entry into the System Development and Demonstration phase after a Milestone B decision by the MDA.
The purpose of the System Development and Demonstration phase is to develop a system, reduce program risk, ensure operational supportability, design for producibility, ensure affordability, ensure protection of Critical Program Information, and demonstrate system integration, interoperability, and utility. Discovery and development are aided by the use of simulation-based acquisition and test and evaluation and guided by a system acquisition strategy and test and evaluation master plan (TEMP).

System modeling, simulation, test, and evaluation activities shall be integrated into an efficient continuum planned and executed by a test and evaluation integrated product team (T&E IPT). This continuum shall feature coordinated test events, access to all test data by all involved Agencies, and independent evaluation of test results by involved Agencies. Modeling, simulation, and development test shall be under the direct responsibility of the PM or a designated test agency. All results of early operational assessments shall be reported to the Service Chief by the appropriate operational test activity and used by the MDA in support of decisions. The independent planning, execution, and evaluation of dedicated Initial Operational Test and Evaluation (IOT&E), as required by law, and Follow-on Operational Test and Evaluation (FOT&E), if required, shall be the responsibility of the appropriate operational test activity (OTA).

Milestone B

Milestone B is normally the initiation of an acquisition program. The purpose of Milestone B is to authorize entry into System Development and Demonstration.

Prior to approving entry into System Development and Demonstration at Milestone B, the MDA shall consider the validated ORD, System Threat Assessment, independent technology assessment and any technology issues identified by DoD research facilities, any early operational assessments or test and evaluation results, analysis of alternatives including compliance with the Department of Defense’s strategic plan (based on the Government Performance and Results Act (GPRA), reference (x)), the independent cost estimate or, for MAISs, component cost analysis and the economic analysis, manpower estimate (if applicable), whether an application for frequency allocation has been made (if the system will
CHAPTER 2 – INTERRELATIONSHIPS

require utilization of the electromagnetic spectrum), system affordability and funding, the program protection for Critical Program Information, anti-tamper provisions, the Delegation of Disclosure Authority Letter (DDL) concerning foreign disclosure of program information vis-à-vis foreign participation in the program and/or sales of the system, the proposed acquisition strategy, cooperative opportunities, and infrastructure and operational support.

At Milestone B the MDA shall confirm the acquisition strategy approved prior to release of the final Request for Proposal and approve the development acquisition program baseline, low-rate initial production quantities (where applicable), and System Development and Demonstration exit criteria (and exit criteria for interim progress review, if necessary). For shipbuilding programs, the lead ship engineering development model shall be authorized at Milestone B. Critical systems for the lead and follow ships shall be demonstrated given the level of technology maturity and the associated risk prior to ship installation. Follow ships may be initially authorized at Milestone B, to preserve the production base, with final authorization dependent on completion of critical systems demonstration, as directed by the MDA.

Entry into System Development and Demonstration

Milestone B approval can lead to System Integration or System Demonstration. Regardless of the approach recommended, PMs and other acquisition managers shall continually assess program risks. Risks must be well understood, and risk management approaches developed, before decision authorities can authorize a program to proceed into the next phase of the acquisition process. Risk management is an organized method of identifying and measuring risk and developing, selecting, and managing options for handling these risks. The types of risk include, but are not limited to, schedule, cost, technical feasibility, threat, risk of technical obsolescence, security, software management, dependencies between a new program and other programs, and risk of creating a monopoly for future procurements.

System Integration

The program shall enter System Integration when the PM has an architecture for the system, but has not yet integrated the subsystems into a complete system. The program shall exit System Integration when the integration of the system has been demonstrated in a relevant environment using prototypes (e.g., first flight, interoperable data flow across systems), a system configuration has been documented, the MDA determines a factor other than technology justifies forward progress, or the MDA decides to end this effort.

Interim Progress Review

The purpose of an interim progress review is to confirm that the program is progressing within the phase as planned or to adjust the plan to better accommodate progress made to date, changed circumstances, or both. If the adjustment involves changing the acquisition strategy, the change must be approved by the MDA. There is no required information necessary for this review other than the information specifically requested by the decision-maker.

System Demonstration

The program shall enter System Demonstration when the PM has demonstrated the system in prototype articles. This effort is intended to demonstrate the ability of the system to operate in a useful way consistent with the validated ORD.

This phase ends when a system is demonstrated in its intended environment, using engineering development models or integrated commercial items; meets validated requirements; industrial capabilities
CHAPTER 2 – INTERRELATIONSHIPS

are reasonably available; and the system meets or exceeds exit criteria and Milestone C entrance requirements. Preference shall be given to the use of modeling and simulation as the primary method for assessing product maturity where proven capabilities exist, with the use of test to validate modeling and simulation results. The completion of this phase is dependent on a decision by the MDA to commit to the program at Milestone C or a decision to end this effort.

Commitment to Low-Rate Production and Produce and Deploy Systems

Production and Deployment Work Content

Figure 2-5: Production and Deployment Work Content

General
The purpose of the Production and Deployment phase is to achieve an operational capability that satisfies mission needs. The production requirement of this phase does not apply to MAISs. However, software has to prove its maturity level prior to deploying to the operational environment. Once maturity has been proven, the system or block is baselined, and a methodical and synchronized deployment plan is implemented to all applicable locations.

Milestone C
The purpose of this milestone is to authorize entry into low-rate initial production (for MDAPs and major systems), into production or procurement (for non-major systems that do not require low-rate production) or into limited deployment for MAIS or software-intensive systems with no production components.

Milestone Approval Considerations
Prior to making the milestone decision, the MDA shall consider the independent cost estimate, and, for MAISs, the component cost analysis and economic analysis, the manpower estimate, compliance with the CCA (reference (m)), whether an application for frequency allocation has been approved (for systems that require utilization of the electromagnetic spectrum), System Threat Assessment, the program protection for Critical Program Information including anti-tamper recommendations, the DDL, and an established completion schedule for National Environmental Policy Act (NEPA) (reference (aa)) compliance covering testing, training, basing, and operational support.
CHAPTER 2 – INTERRELATIONSHIPS

At this milestone, the MDA shall confirm the acquisition strategy approved prior to the release of the final Request for Proposal and approve an updated development acquisition program baseline, exit criteria for low-rate initial production (if needed) or limited deployment, and the acquisition decision memorandum.

A favorable Milestone C decision authorizes the PM to commence LRIP or limited deployment for MDAPs and major systems. The PM is only authorized to commence full-rate production with further approval of the MDA. There shall be normally no more than one decision (i.e. either low-rate or full-rate) at the Defense Acquisition Executive (DAE)-level for MDAPs.

Low-Rate Initial Production (LRIP)

This work effort is intended to result in completion of manufacturing development in order to ensure adequate and efficient manufacturing capability and to produce the minimum quantity necessary to provide production configured or representative articles for initial operational test and evaluation (IOT&E), establish an initial production base for the system; and permit an orderly increase in the production rate for the system, sufficient to lead to full-rate production upon successful completion of operational (and live-fire, where applicable) testing. The work shall be guided by the ORD.

Deficiencies encountered in testing prior to Milestone C shall be resolved prior to proceeding beyond LRIP (at the Full-Rate Production Decision Review) and any fixes verified in IOT&E. Operational test plans shall be provided to the DOT&E for oversight programs in advance of the start of operational test and evaluation.

LRIP may be funded by either research, development, test and evaluation appropriation (RDT&E) or by procurement appropriations, depending on the intended usage of the LRIP assets. The DoD Financial Management Regulation (reference (bb)) provides specific guidance for determining whether LRIP should be budgeted in RDT&E or in procurement appropriations.

LRIP quantities shall be minimized. The MDA shall determine the LRIP quantity for MDAPs and major systems at Milestone B. The LRIP quantity (with rationale for quantities exceeding 10 percent of the total production quantity documented in the acquisition strategy) shall be included in the first Selected Acquisition Report (reference (c)) after its determination. Any increase in quantity after the initial determination shall be approved by the MDA. The LRIP quantity shall not be less than one unit. When approved LRIP quantities are expected to be exceeded because the program has not yet demonstrated readiness to proceed to full-rate production, the MDA shall assess the cost and benefits of a break in production versus continuing annual buys.

Full-Rate Production Decision Review

Before making the full-rate production and deployment decision, the MDA shall consider:

- The independent cost estimate, and for MAISs, the component cost analysis and economic analysis.
- The manpower estimate (if applicable).
- The results of operational and live fire test and evaluation (if applicable).
- CCA compliance certification (reference (m)) and certification for MAISs (reference (u)).
- C4I supportability certification.
- Interoperability certification.
- The MDA shall confirm the acquisition strategy approved prior to the release of the final Request for Proposal, the production acquisition program baseline, provisions for evaluation of post-deployment performance (in accordance with GPRA (reference (x)), CCA (reference (m)), and the Paperwork Reduction Act (reference (ee)), and the acquisition decision memorandum.
- A full-rate production and deployment decision shall be the occasion for an update of the Selected Acquisition Report (reference (c)).
Following IOT&E, the submission of the Beyond LRIP and LFT&E Reports (where applicable) to Congress, the Secretary of Defense, and the USD(AT&L), and the completion of a Full-Rate Production Decision Review by the MDA (or by the person designated by the MDA), the program shall enter Full-Rate Production (or procurement) and Deployment.

Sustainment

The objectives of this activity are the execution of a support program that meets operational support performance requirements and sustainment of systems in the most cost-effective manner for the life cycle of the system. When the system has reached the end of its useful life, it must be disposed of in an appropriate manner.

Figure 2-6: Operations and Support Work Content

Sustain Systems

The sustainment program includes all elements necessary to maintain the readiness and operational capability of deployed systems. The scope of support varies among programs but generally includes supply, maintenance, transportation, sustaining engineering, data management, configuration management, manpower, personnel, training, habitability, survivability, safety, occupational health, protection of Critical Program Information (CPI), anti-tamper provisions, IT (including NSS) supportability and interoperability, and environmental management functions. This activity also includes the execution of operational support plans in peacetime, crises, and wartime.

Evolutionary Sustainment

Supporting the tenets of evolutionary acquisition, sustainment strategies must evolve and be refined throughout the life cycle, particularly during development of subsequent blocks of an evolutionary strategy, modifications, upgrades, and reprocurement. The PM shall ensure that a flexible, performance-oriented strategy to sustain systems is developed and executed. This strategy will include consideration of the full scope of operational support, such as maintenance, supply, transportation, sustaining engineering, spectrum supportability, configuration and data management, manpower, training, environmental, health, safety, disposal and security factors. The use of performance requirements or
CHAPTER 2 – INTERRELATIONSHIPS

conversion to performance requirements shall be emphasized during repurchase of systems, subsystems, components, spares, and services after the initial production contract.

Dispose of Systems

At the end of its useful life, a system must be demilitarized and disposed. The PM shall address in the acquisition strategy demilitarization and disposal requirements and shall ensure that sufficient information exists so that disposal can be carried out in a way that is in accordance with all legal and regulatory requirements relating to safety, security, and the environment. The Defense Reutilization and Marketing Office shall execute the PM’s strategy and demilitarize and dispose of items assigned to the Office.

Follow-on Blocks for Evolutionary Acquisition

Evolutionary acquisition strategies are the preferred approach to satisfying operational needs. Evolutionary acquisition strategies define, develop, test, and produce/deploy an initial, militarily useful capability (“Block 1”) and plan for subsequent definition, development, test and production/deployment of increments beyond the initial capability over time (Blocks 2, 3, and beyond). The scope, performance capabilities, and timing of subsequent increments shall be based on continuous communications among the requirements, acquisition, intelligence, logistics, and budget communities.

The requirements community shall ensure that user requirements are prioritized (and constrained, if necessary) for both the capability in the initial block and the increasing functionality in subsequent blocks.

The PM shall balance the need to meet evolving user requirements (responsiveness) against the ability of the users to support continued training and repeated deployments for new blocks (turbulence). The PM shall also consider the ability of the system contractor(s) to develop/integrate, test, and deploy multiple concurrent blocks.

d. Required acquisition documents

The decision authority shall, as a minimum, review a program's progress at MS A through MS C. Documentation is the primary means for the functional staff and Project, Product or Program Manager (PM) to provide the decision authority with the information needed to make a milestone decision. Under the IPT process, documentation other than the required statutory documents, should be tailored to meet the needs of the decision authority. The scope and formality of this documentation will vary depending on the program's ACAT. However, ACAT I and II programs, subject to a particular statutory document must use the required formats. At their discretion, the Army may require ACAT II and III programs to
use requisite formats. Figure 2-2 summarizes milestone documentation. The purpose of program status reporting is to provide the decision authority with adequate information to oversee the program. Also, management-by-exception is the basis for program status reporting, which is limited to those reports required by statute and DoD 5000.2-R. The scope and formality of reporting requirements will vary depending on the program's ACAT and the IPT's recommendations. Figure 2-3 summarizes periodic reports and certifications.
e. Defense Acquisition Board (DAB)

(1) The DAB is the senior DoD acquisition review board chaired by the USD(A&T). The DAB advises the USD(A&T) on major decisions on individual acquisition programs.

(2) The DAB convenes for all potential ACAT I programs at MS A and all ACAT I program new starts at MS A. A DAB is scheduled for the milestones on ACAT ID programs and the USD(A&T) request a DAB to hold a special program reviews between milestones. Examples are baseline changes, release of withheld funds, and acquisition strategy changes.

(3) Approximately one week prior to the DAB review, a DAB Readiness Meeting (DRM) shall be held to pre-brief the USD (A&T), Vice Chairman, Joint Chiefs of Staff (VCJCS), and the other DAB participants (including cognizant Program Executive Officer(s) (PEO(s)) and PM(s). The purpose of the meeting is to update the USD(A&T) on the latest status of the program and to inform the senior acquisition officials of any outstanding issues. Normally, the Overarching Integrated Product Team (OIPT) Leader shall brief the DRM. If outstanding issues are resolved at the DRM, the USD(A&T) may decide that a formal DAB meeting is not required and issue an Acquisition Decision Memorandum (ADM) following the DRM. ADMs shall be coordinated with the DAB Principals.

(4) Briefings by the PM during the process leading to the DAB are limited to those essential to the process. Figure 2-4 shows the DAB milestone time line and briefing requirements.

f. Army program reviews

(1) The Army Systems Acquisition Review Council (ASARC) is the Army's senior-level review authority for ACAT I and ACAT II programs. It recommends appropriate action to the Army Acquisition Executive (AAE) and the Vice Chief of Staff, Army (VCSA) for decisions or recommendation to the DAB. At meetings of the ASARC, members hold face-to-face discussions of program issues leading to a recommended ACP. Decisions/guidance provided at an ASARC may cause revisions to the program documentation and baseline, including program cost documents. The purpose of the pre-ASARC, normally held 3 to 4 weeks before the ASARC meeting, is to define remaining open issues and set the ASARC agenda. The ACP is available at the pre-ASARC to highlight any cost issues resulting from the POE/CCA and associated PPBES reviews.

(2) An in-process review (IPR) is the decision review body for all ACAT III and ACAT IV programs. These reviews, held before each milestone, provide recommendations for decision by the milestone decision authority. The decision authority will identify an IPR chairperson. The general policies and documentation requirements for an IPR program are the same as for ASARC programs. The life cycle cost estimate is a key decision document. No Army Cost Position is developed for ACAT III & IV programs. The milestone decision authority may require pre-IPR reviews. It is critical for the cost analyst to highlight any cost issues resulting from the POE/CCA and associated PPBES reviews.
Figure 2-9. Periodic Reports and Certifications

(3) The decision authority sets the policy on decision reviews for special access programs (SAPs). To limit dissemination of program information, reviewing activities will follow AR 380-381, Special Access Programs. The general policies and documentation requirements for an SAP are the same as for ASARC programs. It is critical for the cost analyst to highlight any cost issues resulting from the POE/CCA and associated PPBES reviews.

Milestone Review Support

Typical ASARC/DAB Preparation Timeline

![Timeline Diagram](image)

Figure 2-10. Typical ASARC/DAB Milestone Timeline

g. Key cost analysis interfaces

1. Analysts prepare cost estimates in support of MS A and all later milestones. These estimates provide a comprehensive and realistic snapshot of the definition and relationships between program goals, requirements, and contractual specifications. The Program Office (PO) normally prepares one cost estimate, while an organization outside the acquisition chain may prepare a second, independent estimate. The independent estimate, called a Component Cost Analysis, is prepared by USACEAC when requested by the AAE. When a Joint-Service organization manages a program, the decision authority appoints an organization to prepare the CCA and/or the ICE. As warranted by the issues involved, program reviews may require cost estimates. Under the IPT process, a joint estimate may be prepared by the Cost Analysis (CA) Working-Level IPT (WIP).

2. Analysis of Alternatives (AoA) provide a comparison between the cost and operational parameters of a program and one or more alternative programs. AoA also provide a structure to review design, acquisition, and life cycle cost options. Their primary benefit occurs during the conceptual phase of the acquisition life cycle. However, AoAs can provide later insight during the Cost as an Independent Variable (CAIV) process (See Section 3-7). It is during this phase when Army planners have the most flexibility to influence important design or hardware configurations. Analysts perform system tradeoff analysis using AoA or updates for ACAT I and II programs at each milestone. For other programs, analysts should tailor AoAs as directed by the AAE.
CHAPTER 2 – INTERRELATIONSHIPS

(3) The CAIV process involves setting challenging life cycle cost goals during the development phase or the introduction of major modifications. It also involves the management of the program to reach these goals. The primary management tool used is tradeoff analysis of system capability, performance, schedule, and cost. When treated as a design parameter, cost management helps to achieve goals throughout development and production in an economical and efficient manner. The Milestone Decision Authority approves the CAIV goals for ACAT I programs (others at the decision authority's discretion) beginning at MS A and updates them at successive milestones. CAIV focuses on identifying cost drivers, potential risk areas that may become cost drivers, and cost-schedule-performance tradeoffs. Later efforts focus on identifying and applying cost reduction techniques to areas of excessive costs.

(4) Systems must undergo a complete system review for design, manufacturing, and production. The purpose of the review is to ensure design consistency with initial technical requirements and production capability and efficiency. Production engineering and producibility efforts begin at MS A and focus on simplifying the design and stabilizing the manufacturing process. A rigorous assessment of product design and manufacturing process risks is essential to ensure quality and reduce life cycle cost. The cost analyst should compare design alternatives against performance measures, as well as associated life cycle cost. Each program should undergo a thorough design tradeoff analysis. The cost analyst's role in this process is to interpret the resources and risks associated with each competing design. The decision authority will not approve full production until there is a stable design, a proven manufacturing process, and the production facilities are in place or planned.

(5) Managers develop tailored acquisition strategies to optimize the calendar time and cost of satisfying established requirements. These strategies evolve through an iterative process, becoming more definitive in describing the essential elements of a program.

(6) Managers are required to establish a risk management program with industry participation. The purpose is to identify and manage performance, cost, and schedule risks throughout the acquisition cycle.

(7) A disciplined acquisition process assures fielding reliable and maintainable systems. Throughout the process, program managers must maintain a comprehensive understanding of the user's system requirements, physical environment, and available resources. To reduce overall Army resource requirements, the program manager should continually focus on system reliability and maintainability.

(8) The AoA reviews a range of materiel concepts that satisfy a mission need before committing to a program new start. The requirement for investigating alternative materiel concepts arises when a system proposes:

(a) The use or modification of an existing U.S. military system.
(b) The use or modification of a commercial or allied system.
(c) A cooperative research and development (R&D) program with the allies.
(d) A Joint-Service program.
(e) A Service-unique program.

(9) Financial analyses provide a significant assessment of the potential financial risks associated with contractors' operations.

2-3. Interrelationship with the PPBS process

a. The DoD Planning, Programming, and Budgeting System (PPBS) is the primary system for managing the department's resources. It is also the parent system of the Army's Planning, Programming, Budgeting, and Execution System (PPBES). The purpose of the PPBS is to produce a plan, a program, and the defense budget. The Future Years Defense Program (FYDP) is the official summary of programs
CHAPTER 2 – INTERRELATIONSHIPS

developed within the PPBS and approved by the Secretary of Defense (SECDEF). The FYDP lists resources by program element/project or SSN, resource identification code, FY, and value. The FYDP sums resource by appropriation. Under a 1987 statute, DoD must provide Congress with the FYDP underlying the President's budget.

b. PPBES serves as the Army's primary resource management system. Supporting the DoD PPBS, it is used to develop and maintain the Army's portion of the program at all levels of command. It supports execution of the approved program and budget by both headquarters and field organizations. During execution, it provides feedback to the planning, programming, and budgeting processes. The PPBES process is described in Army Regulation 1-1, Planning, Programming, Budgeting, and Execution System.

c. Management Decision Packages (MDEPs)

(1) Currently, the Army uses MDEPs as a resource management tool. Early in the PPBES process, resource managers distribute program and budget resources to MDEPs. The distribution is by appropriation, standard study number (SSN), and program element (PE). Taken collectively, MDEPs account for all Army resources. They describe the capability of the Total Army (Active, Guard, and Reserve). Individually, an MDEP describes a particular organization, program, or function, and records the resources associated with the intended output. An individual MDEP applies uniquely to one of the following six management areas:

(a) Missions of Modified Table of Organization and Equipment (MTOE) units,
(b) Missions of Table of Distribution and Allowance (TDA) units and Army wide standard functions,
(c) Missions of Standard Installation Organizations (SIOs),
(d) Acquisition, fielding, and sustainment of weapon and information systems,
(e) Special Visibility Programs (SVPs),
(f) Short Term Projects (STPs).

Chapter 4 further discusses MDEPs as they relate to weapon system cost estimates.

(2) During programming, MDEPs provide useful visibility. They help Army managers, decision makers, and leaders assess program worth, confirm compliance, and rank resource claimants. During budgeting, MDEPs help convey approved programs and priorities into budget estimates. Providing the vehicle for data entry, MDEPs also help in tracking post-program changes caused by budget decisions and approved funding. During execution, the posted MDEPs help HQDA principal officials, MACOM commanders, PEOs, and heads of other operating agencies track program and financial performance. The financial data they get as feedback help determine future requirements.

d. Major PPBES documents

(1) Long-range planning looks 10 to 30 years ahead. In the process, the senior leadership of the Army creates a vision of the future Army. Commands and agencies then develop long-range plans to attain its concepts. The products of long-range planning guide the midterm vision used in developing the force and setting program requirements.

(a) Research, Development, and Acquisition Plan (RDA Plan). The RDA Plan is a continuous process focusing on a 15-year planning period (six Budget and POM years plus a nine-year Extended Planning Period). The RDA Plan process systematically focuses research, development, and acquisition programs on solving battlefield needs derived from war-fighting concepts.
(b) The Army Plan (TAP). The TAP documents policy of senior Army leadership and gives resource guidance. The TAP concurrently documents force levels stabilized initially through force requirements planning and then refined through objectives planning that results in a proposed program force. The Office of the Deputy Chief of Staff for Operations and Plans (ODCSOPS) drafts the TAP in coordination with the HQDA staff, MACOMs, and PEOs. Preparation occurs in three stages. First, ODCSOPS issues a preliminary TAP in December of the odd-numbered year. The preliminary TAP guides developing and updating a base force structured through a computer-assisted Total Army Analysis (TAA). As a minimum, the preliminary TAP codifies planning assumptions and sets parameters for modeling and structuring the program force. About 1 year later, in January of the next odd year, ODCSOPS issues the draft TAP. The draft TAP records the updated base force and revises planning assumptions given in the preliminary TAP as a basis for a Force Integration Analysis (FIA). Published as the resource section of the TAP, draft Army Program Guidance (APG) translates planning objectives into an initial plan of what the Army hopes to achieve in the next POM. The final version of the TAP appears the following June, after the FIA. The final TAP sets the preliminary program force approved by the Secretary of the Army (SA) and Chief of Staff, Army (CSA).

(c) Force development and TAA. The thrust of PPBES planning is to develop an attainable force structure for the Total Army that supports the national military strategy. The approach centers on the TAA process, which, led by ODCSOPS, includes HQDA agency and MACOM-PEO participation. The process gets under way about January of the even-numbered year. Then, in June of the odd-numbered year, ODCSOPS issues the final TAP, documenting the decision, making the preliminary program force the force structure basis for the Army program.

(2) Programming process and major documents

(a) Army programming helps the senior leaders assign resources to support Army roles and missions. Programming translates planning decisions, OSD programming guidance, and congressional guidance into a comprehensive and detailed allocation of forces, manpower, and funds. In the process, the PPBES integrates and balances centrally managed programs for manpower, operations, stationing, construction, and research, development, and acquisition. Concurrently, the PPBES incorporates requirements from the MACOMs and PEOs for manpower, operations and maintenance, housing, and construction. The result is the Army POM. The POM presents the Army's proposal for a balanced allocation of its resources within specified constraints. The Chairman’s Program Assessment (CPA) evaluates the balance and capabilities of the composite force and support levels to attain national security objectives recommended by the Services’ POMs. The CPA helps the SECDEF make program decisions. OSD reviews the Services’ POMs, and issues Program Decision Memoranda (PDM) to reflect SECDEF program decisions. The Army POM, as approved by the SECDEF, provides the basis for the Army budget estimates submitted to OSD in the September time frame.
Figure 2-11. POM 02 - 07 Time Line

Resource Allocation

- Enactment
- Execution
- 2nd Year Funds
- 3rd Year Funds
- 4th Year Funds
- 2nd Year Funds
- 3rd Year Funds
- 4th Year Funds

Plan
Program
Budget

FY 00
FY 01
FY 02
FY 03
FY 04

CY 99
CY 00
CY 01
CY 02

J F M A M J J A S 0
N D J F M A M J J A S 0
N D J F M A M J J A S 0
N D J F M A M J J A S 0

Enactment
Execution
Enactment
Execution
Enactment
Execution
Enactment
Execution

POM 01 05
POM 02 07
POM 03 07
POM 04 07
POM 04 08

Plan
Program
Budget
Plan
Program
Budget
Plan
Program
Budget

3rd Year Funds
2nd Year Funds
3rd Year Funds
2nd Year Funds
3rd Year Funds
2nd Year Funds

FY 00 FY 00
FY 01 FY 01
FY 02 03 FY 02 FY 02
FY 02 03 FY 03 FY 03
FY 04 -

Figure 2-11. POM 02 - 07 Time Line* Toda
CHAPTER 2 – INTERRELATIONSHIPS

(b) Army Program Guidance (APG). The APG guides program development. HQDA issues a draft of the document as part of the draft TAP in January of the even-numbered year. It issues a final version the following June, also included as part of the TAP.

(c) Program administrative instructions

1) MACOM POM Development Instructions (MPDI). The MPDI appears in May of the odd-numbered year. The document gives administrative instructions to guide MACOMs and PEOs in preparing their program submissions and to the MACOMs for submitting CINC high-priority war-fighting needs.

2) Army POM Preparation Instructions Supplement (APPIS). The APPIS appears in January of the even-numbered year. For HQDA staff agencies, the document augments OSD's POM Preparation Instructions (PPI).

(d) The Program and Budget Guidance (PBG) is the document that provides resource guidance to MACOMs, PEOs and other operating agencies. The PBG is published three times each year, consistent with the FYDP updates associated with the development of the Army POM (May PBG), the submission of the Army BES (Fall PBG) and the President’s Budget submission (Feb PBG).

(e) Usually, HQDA completes the program and prepares the POM in March. The document's narrative and supporting exhibits reflect program actions fleshed out by the HQDA staff with the Directorate of Program Analysis and Evaluation (DPAE). It also documents the program decision of the SA and CSA. Sent to OSD in April/May, the POM submits the Army program for OSD review.

(f) Within 45 days after the Services submit their POMs, the Joint Staff issues the CPA. Assessing the balance and capabilities of the POM force and reporting on the adequacy of Service support levels to attain U.S. national security objectives, the CPA helps OSD evaluate program issues. Having started in early April, the OSD program review continues until mid- to late June. At that time and when the Defense Planning and Resources Board (DPRB) have debated all outstanding issues, the DEPSECDEF signs the PDM. The PDM approves the POM with specific changes as the program basis for Army budget estimates submitted to OSD.

(3) Budgeting process and major documents

(a) Army budgeting proceeds in three stages: formulation, justification, and execution. Budget formulation converts the first 2 years of the program, as approved by the DEPSECDEF in the PDM, into the Army budget estimates. Budget justification presents the estimates to Congress and defends them before that body. Budget execution applies congressionally approved resources consisting of the authorized manpower and appropriated funds to accomplish the approved program.

(b) OSD-OMB budget review. Members of OSD and OMB jointly review Army budget estimates. The joint review focuses on fine-tuning the BES, in development of the DoD budget input for the President’s Budget. The review typically starts with a series of briefings to OSD and OMB representatives that will serve as a baseline for the decisions OSD will present to the Army leadership through the Program Budget Decisions (PBDs).

(c) President's budget. In mid-December at the end of the PBD cycle, OSD issues a final PBD incorporating any changes resulting from Major Budget Issue (MBI) deliberations. Completing the review phase, the Office of the Secretary of Defense-Office of Management and Budget (OSD-OMB) and the Military Departments submit required budget
information in the form of the President's budget. The budget provides updated resource estimates for the prior and current years. It also covers estimates of TOA for seven years with focus on the budget year and budget year plus 1. The ABO updates the FYDP to reflect the President's budget submission. (As mentioned, a 1987 statutory change [Title 10 United States Code Section 114] requires DoD to annually submit to Congress the FYDP coinciding with the President's budget.) Managers for Program and Performance and Appropriation Sponsors update their internal systems and the PROBE database to reflect adjustments resulting from budget review and approval.

(d) Budget hearings

1) During budget justification, the Army presents and defends its portion of the President's program before Congress. The process proceeds under the staff supervision of the Assistant Secretary of the Army (Financial Management and Comptroller) (ASA (FM&C)).

2) After the President formally submits the budget, the Army provides detailed budget justification material to the authorizing and appropriations committees. First, however, Appropriation Sponsors will have prepared the justification material to conform with decisions of the SECDEF and the President. The justification material also must conform to congressional requirements for specific formats and supporting information. Justification books undergo internal Army review under OASA (FM&C) supervision before being sent to OSD for final review.

3) The authorization and appropriation committees hold hearings to discuss the issues in the budget request. The SA and the CSA normally testify first. The OASA (FM&C) and Office, Chief of Legislative Liaison help program managers in presenting and defending the details of the budget.

4) Budget execution applies the funds appropriated by Congress to carry out approved programs. The procedure entails:

(a) Apportioning, allocating, and allotting funds.

(b) Obligating and disbursing funds.

(c) Reporting and reviewing.

(d) Financing unbudgeted requirements. Unbudgeted requirements are caused by changed conditions unforeseen at the time of the budget submission. Also, they are requirements that have a higher priority than those from which funds were diverted.

5) An apportionment distributes funds by making specified amounts available for obligation. The Army requests apportionment from OMB by submitting justification through the DAB, ASA (FM&C) and OSD at the time of budget review. OMB approves the requests, returning apportionments through OSD. Operating agencies, in turn, make funds available to subordinate commands and installations by an allotment. Allotments authorize users to place orders and award contracts for products and services to carry out approved programs. Installations obligate funds as orders are placed and contracts awarded. They make payments as materiel is delivered or as services are performed.

6) Congress recognizes the need for flexibility during budget execution to accommodate unforeseen requirements or changes in operating conditions. Congress accepts that rigid adherence to program purposes and amounts originally budgeted and approved would jeopardize businesslike performance. Accordingly, as controlled by stated restrictions and within specified dollar thresholds, Congress allows Federal agencies to reprogram existing funds to
finance unbudgeted requirements. MACOMs, PEOs, and other operating agencies carry out the approved program within manpower and funds provided. They review budget execution, and account for and report on the use of assigned manpower and funds by appropriation. The manpower and financial data received as feedback help MACOMs and agencies develop future requirements.

(7) HQDA conducts a Quarterly Army Performance Review, which is a management review of selected Army programs.

e. Key cost analysis interfaces

The function of the POE and CCA is to provide an assessment of life cycle costs to the decision maker during the acquisition process. During the planning process, the POE will provide a credible source for the early planning estimates or "budget wedges." During the programming phase, the cost estimate most readily supports the analysis of "what if" drills. Because of the nature of cost estimates, they provide an excellent basis from which to assess the impact of changes in the program. Up to this point in the process, the key question is "What will this change cost?" During the budgeting phase, the cost estimate plays an important role, but the nature of the question often changes. During this phase, the question is more often, "What will this level of funding do to the program plan?" The level of detail in the cost estimate grows as the system progresses through the acquisition process. Therefore, the POE and CCA offer excellent tools to answer these questions and support the decision process in the PPBES. The nature (the inclusion/exclusion criteria) of the MDEP changes for each Army program to meet the specific needs of the PPBES community. Therefore, cost analysts must check the structure of their cost analysis results to ensure they are in line with the current budget guidance. If they are not, an excursion to the estimate should be prepared that is in line with the budget guidance. The POE and CCA are ready tools to support planning, programming, budgeting, and execution analyses during each phase of the process described in the previous sections. However, the cost estimate does not play a direct role in the execution process. This phase is the tracking of the execution of the budget decisions made during the budgeting process. The data received during the execution phase provide critical feedback on the accuracy and timeliness of the cost estimate. Therefore, this phase of the PPBES process provides critical feedback to the cost analyst.

2-4. Interrelationship with the contract process

a. Introduction

Cost analysis plays a critical role in the evaluation of contractor proposals and the monitoring of contractor progress (contract cost and schedule). The following sections describe the cost analysis interfaces with the contract cost/price analysis, reconciliation of proposed contract award price, and contractor cost data.

b. Contract cost/price analysis

(1) Title 10 United States Code Section 2306a (10 USC 2306a)(Cost or pricing data: truth in negotiations) requires prospective prime contractors and their subcontractors to submit certified cost or pricing data in support of their proposals. Contractors must submit cost or pricing data on all procurements other than sealed-bid. An offeror for a prime contract under this chapter to be entered into using procedures other than sealed bid procedures shall be required to submit cost or pricing data before the award of a contract if - a) in the case of a prime contract entered into after December 5, 1990, the price of the contract to the United States is expected to exceed $500,000; and b) in the case of the prime contract entered into on or before December 5, 1990, the price of the contract to the United States is expected to exceed $100,000. They must
submit cost data in the SF 1411 format (formerly DD Form 633). This format requires the contractor to separate the proposal and supporting data into the following groups:

(a) Purchased parts.
(b) Subcontracted items.
(c) Raw material.
(d) Engineering labor.
(e) Engineering overhead.
(f) Manufacturing labor.
(g) Manufacturing overhead.
(h) Other general and administrative (G&A).
(i) Profit.

(2) When submitting certified cost or pricing data, contractors use a Certificate of Current Cost or Pricing Data stating the data are accurate, complete, and current as of the final agreement date. The contracting officer shall make a cost analysis to check the reasonableness of individual cost elements. In addition, the contracting officer shall make a price analysis to ensure that the overall price offered is fair and reasonable. A comparison of the negotiated price to the program cost estimate fulfills the price analysis requirement.

(3) Contract cost analysis is the traditional method for analyzing a contractor's proposal. It is the analysis of the separate cost elements and profit of (1) an offeror's cost and pricing data and (2) the judgmental factors applied in projecting from the data to the estimated costs. The analyst does this to form an opinion on the degree to which the proposed costs represent what the contract should cost. This review includes a technical appraisal of estimated labor, materials, tooling, scrap, etc., and the application of audited or negotiated indirect and direct rates. Also, the analyst must consider past and current actual costs in projecting estimates of cost to perform a scope of work. In some commands, this work is done by a price analyst. In recent years, contractors have been able to use parametric cost estimating techniques. See section 3-3.c. Cost-estimating methods section on parametric cost estimating methods.

(4) These reviews are a contracting officer team effort. The contracting officer will usually request the evaluation from experts within and outside the buying organization. Individuals within the procurement organizations will review material costs, engineering and manufacturing hours, testing, tooling, etc. They may request field-pricing support from the Defense Contract Audit Agency (DCAA). The contracting officer starts these review efforts. The contracting officer uses the data generated by these reviews in the development of the Government's negotiation position and overall negotiation strategy.

(5) Should Cost analyses go beyond the traditional contract cost analysis concept, by the use of special teams of highly qualified individuals to perform a rigorous, in-depth analysis of all phases of a contractor's operation. The team's purpose is to perform a one-time task and disband after completion of that task. The goal is to identify uneconomical or inefficient practices in a contractor's management and operation and to quantify the cost impact of those findings. Should Cost procedures require a review only on sole-source major programs (that is, a $100 million or more annual production contract). The reviews address only the first production contract (when setting up the production line) and the procurement after completion of the first production lot.

(6) The difference between traditional contract cost analysis and a Should Cost study is the analysis' depth and the extent to which analysts challenge inefficiencies. The Should Cost team will explore such areas as materials, subcontracts, operations, labor, overheads, estimating procedures, material handling, make-or-buy, etc. Some of the analyses may not apply.
CHAPTER 2 – INTERRELATIONSHIPS

to the specific proposal under review, but they may be helpful in the long term, since long-term production tooling improvements may reduce the future cost of an item. Normally, a negotiation ceiling price results from the Should Cost study.

(7) The exchange of cost data between the program cost and contracting processes is very important. For initial production contracts, the negotiation goals are set to create a directly traceable basis from the program cost estimate to the negotiated price. This is accomplished by predetermining exactly how the negotiated goals will track to the program contract cost estimate before getting a business clearance. By having IPRs between Should Cost study team members and program management personnel, traceability is maintained during the Should Cost study. Comparison between the Should Cost team recommendations and the contract estimates shows the reasonableness and affordability of contractor proposals. A planning Procurement Work Directive (PWD) for each Contract Line Item Number (CLIN) of the Request for Proposal (RFP) is submitted before issuance of future-production RFP. The PWD is based on estimates from the current program cost estimate. This is done to ensure that the CLINs or groups of CLINs are directly relatable to the cost and work breakdown structure (WBS) elements of the program cost estimate. Theses direct relationships between CLINs and the POE aid in updating the estimate based on the actual negotiated price. Incorporating the results of the latest negotiated price in the program cost estimate is an iterative process. The result is used during future proposal evaluations and negotiations.

c. Reconciliation of proposed contract award price

(1) PM for major systems must advise contracting officers of the estimated cost for each contract from the POE. Prior to the contract award, the contracting officer must reconcile the presolicitation cost estimate and the proposed contract award price. The cost analyst will be a great asset to the contracting officer during the reconciliation. This reconciliation shall be compatible with the WBS and cost element structure of the POE. The results of this reconciliation will be used to update the POE.

(2) The contract portion of the POE reflects the presolicitation cost estimate. Cost analysts are responsible for producing a POE in enough detail that it can be used as a presolicitation estimate. Contracting officers must identify their requirements during the formulation stages of the program cost estimate. Also, they should participate in the development of the cost estimates, lending their business and contractual judgment to the cost estimating process. Finally, they must aid, coordinate, and accept the contract portion of the program cost estimate as their benchmark for contract price comparison.

d. Contractor cost data

(1) The Cost Performance Report (CPR) and the Contract Funds Status Report (CFSR) are two contractor cost data reports that analysts can use to monitor contractor performance and to update the program cost estimate. CPRs apply to most major contracts (contracts exceeding $60 million RDT&E or $250 million production in FY 90 dollars). Cost/Schedule Status Reports (CSSRs) similarly apply to most non-major contracts. DoD 5000.2-R does not require compliance with the Cost/Schedule Control System Criteria on firm fixed price (FFP), time and materials (T&M), and contracts that consist mostly of level-of-effort work, although the milestone decision authority may make exceptions. The monthly CPR provides work scheduled, work performed, actual cost of the work performed, and the contractor’s estimate of the actual cost at competition. The quarterly CFSR provides time-phased funding requirements and execution and identifies requirements for agreed-to work not yet under contract.
(2) The CPR and CFSR reports provide another source of data for the POE and CCA. The CPR data show the contractor's cost and schedule performance trends and allow the PM to independently assess the contract cost at completion. These data are extremely useful to the cost analyst in estimating the cost of future work. The CPR variance analysis can give indications of potential cost overruns. Also, it may provide insight into contract and technical execution that could influence the cost estimate. The CFSR data can ensure that the Government's funding plan is consistent with contractor performance trends.

(3) The Contractor Cost Data Reporting (CCDR) system is a primary data base used in DoD cost estimating. DoD has established uniform procedures for collecting contractor costs for ACAT I and II programs and designated the OSD Cost Analysis Improvement Group (CAIG) as the CCDR proponent for reporting. CEAC is the Army focal point for CCDR implementation. In the CCDR plan, the PM tailors cost data collection to satisfy program and DoD requirements. The plan identifies the reportable WBS elements, the type of reports required (C/SSR, CFSR, or CCDR), and reporting frequency. The PM submits the draft CCDR plan to CEAC for review (ACAT I systems) or approval (ACAT II systems). The CAIG approves CCDR plans for ACAT I systems. The CCDR requirement includes four reports: Cost Data Summary Report, Functional Cost-Hour Report, Progress Curve Report, and the Plant-Wide Report level. These reports provide actual lot-based costs at a level of detail required to develop credible cost-estimating relationships, such as hours and dollars by type of labor, material, and subcontract costs.

e. Key cost analysis interfaces

(1) Cost analysis supports contracting efforts by initially estimating and developing a rationale for the resources needed to fund the requirement. For major contracts, cost estimates support the Government's negotiation team. Cost analysts are frequently members of Source Selection Evaluation Boards and other special teams to support contracting efforts. The CCDR plan guides the development of a common WBS for both the cost estimate and the contract. Cost analysts can also support contract execution through the analysis of contract cost performance reports.

(2) A contractor's current and future financial condition has a significant impact on its ability to successfully execute the terms of a contract. A careful analysis of a firm's financial health through ratio, cash flow, and other financial analyses enables the Army to make informed decisions during the source selection process, negotiate with potential contractors concerning the amount of money to be paid and how payment is to be made, and monitor contractor performance after contract award. The Army must be assured that firms can meet contractual obligations in terms of costs, schedule, and performance.

(3) Contractors now are able to use parametric to estimate their responses to RFPs. Since the Army Acquisition Executive and the Assistant Secretary of the Army (Financial Management & Comptroller) endorsed the Automated Cost Estimating Integrated Tools (ACEIT) model and since it is widely used to prepare POEs, CCAs and ICEs, it would expedite the comparative analysis of the submission if the contractor uses the same model.
3-1. Introduction

This chapter provides an overview of the cost analysis process, including methods and techniques. The primary purpose of cost analysis is to translate resource requirements (equipment and personnel) associated with programs, projects, or processes into dollar values. Analysts use these cost estimates to translate resource requirements into budget requirements.

3-2. The analytical approach

a. An analytically sound methodology and a systematic approach are the keys to developing reliable and valid cost analyses. The following six steps briefly describe the general cost analysis approach:

 (1) Set up definitions, ground rules, and assumptions/constraints. At the beginning of each cost analysis, the analyst must determine the scope of the problem or issue. This definition, with the ground rules and assumptions, provides the basis for the cost analysis. For major materiel systems, the DoD Component responsible for the system's development must prepare a Cost Analysis Requirements Description (CARD). Chapter 4 and appendix I discuss the CARD in more detail.

 (2) Select the cost structure. A well developed cost structure ensures that a program is completely costed and eliminates double counting. For materiel systems, there are two types of structure. The first is the cost element structure (CES). This structure groups costs into system-specific and appropriation-discrete cost elements. The second is the WBS. The MIL-HDBK-881B defines the general WBS elements, by commodity. Since elements will vary slightly among materiel systems, each materiel system will have its own WBS. Combining the WBS with the CES forms a structure that provides the primary means for ensuring the consideration of all appropriate costs. Chapter 4 and appendices D and E provide a set of well-defined cost elements, a structure, and formats to document and present a materiel system cost estimate.

 (3) Compile the database. The process of identifying appropriate data sources is a critical step towards completing a successful analysis. Data in the form of cost, technical, and programmatic information serve as the basis for the analysis. Data take many forms, such as historical contractor cost reports, Government contracts, cost/technical databases, data from previous estimates, and Should Cost studies. Selecting appropriate data for the task requires sound analytic judgment, because the analysis process benefits from organized and structured data. The analyst must analyze historical data to verify comparability between the current program and previous or similar programs. Also, the analyst should identify and address any anomalies in the data and adjust it for inflationary effects and quantity differences, as necessary.

 (4) Prepare the cost estimate. In the preparation of a specific estimate, the analyst may use more than one cost-estimating technique. For example, if a conceptual system involves key equipment for which there has been no experience, a detailed engineering cost estimate would not be possible, since the system description is minimal and historical data does not exist on key areas. Therefore, analogy cost estimates would be used when historical cost data exist for one or more items that are similar to those proposed. Parametric cost estimates would be appropriate when relationships between cost and system characteristics can be authenticated.

 (5) Test the total cost estimate. The purpose of testing the estimate is to ensure reasonableness and completeness. The analyst should test key cost elements for sensitivity to the cost-
estimating techniques used and to key ground rules and assumptions. Finally, the analyst should conduct a
cost-risk assessment.

(6) Prepare documentation. The analyst must document all steps in the development of a
cost estimate, including definition, ground rules, and assumptions. Also, the analyst must state the source
of all data and the processes used to analyze the data. In addition to the identification of the methods
employed for each cost element, the documentation should address the rationale for that selection. The
documentation must provide enough detail for another person to track the cost-estimating process from
definition to conclusion and to modify the analysis at a later date. Chapter 4 provides cost documentation
standards for materiel systems.

b. Figure 3-1 depicts the general methodology.

Figure 3-1. Cost Analysis Methodology

3-3. Cost-estimating methods

a. The engineering approach, parametric approach, analogy approach, and expert opinion
approach are four cost-estimating methods. The use of a specific approach varies with the reliability and
quantity of available data. Each approach has limitations.

b. The engineering (bottom-up) approach is an examination of separate work segments in detail
and a synthesis of the many detailed estimates into a total. With this approach, the analyst divides the
system, activity, or item of hardware into its segments and makes an estimate of each segment's costs.
The analyst then combines these estimated costs with estimates of integration costs to arrive at a total
cost. A major limitation of the engineering approach is that it requires the analyst to have an extensive
knowledge of the system, activity, or item. Also, the analyst must know both the development and
production processes. Particularly for new technologies, the detailed knowledge required for a complete
engineering analysis is not always available, making this approach the most difficult to apply.

c. In the parametric approach, the analyst relates cost to some physical attributes or performance
characteristics. An attribute can be weight, horsepower, bore diameter, fuel consumption, etc. In
developing the cost-estimating relationship (CER), data availability limits the application. Confidence in
the results of a parametric estimate depends directly on setting up valid relationships between cost and
definable physical attributes or performance characteristics. When documenting the results of a
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

parametric approach, the analyst must present the statistical characteristics, data sources, and assumptions surrounding its development.

d. The analogy approach is a direct comparison with historical data of similar existing systems, activities, or items. The major limitation of this approach is that it is a judgment process and requires considerable experience. The analyst must show the validity of the direct comparison. A variation to this methodology is to adjust the historical data to account for some variation in the proposed system, activity, or item. For example, if commercial vehicle data are used to estimate some aspect of a tactical vehicle, then the historical data might have to be adjusted to accommodate the impact of complexity or "militarization." It is very important that the analyst document the "adjustment technology" to show the applicability of the methodology.

e. The expert opinion approach uses the subjective judgment of an experienced individual or group. Whenever expert opinion is used, the documentation should contain the sources of the opinions cited. Also, the documentation should include a list of the sources' attributes that make them experts. It is very important to show the credibility of the experts.

(1) One common technique used is the Delphi questionnaire. This technique involves querying a group of experts about their opinions. The analyst seeks information and supporting rationale independently from each expert. Then the analyst summarizes the results and sends a report to each expert. The analyst gathers a second opinion from each expert, summarizes those results, and reports again to the experts. This iterative process continues until the experts reach a consensus, or near-consensus.

(2) A second application of expert opinion in cost analysis is the development of cost knowledge bases. Both knowledge bases and traditional databases store information, but differ significantly in the type of information stored. Databases store only facts. In addition to the facts, knowledge bases capture, cause-and-effect relationships, estimating rules such as time-tested rules of thumb, and probabilistic information. Expert opinion is used to develop knowledge bases. In cost estimating, knowledge bases have the potential of improving the applicability and utility of existing databases.

3-4. Estimates in constant, current, and discounted dollars

a. Estimates prepared in constant dollars do not show the changing spending power of the dollar over time. When estimates are used for programming and budgeting, they must be adjusted for inflation. OMB is responsible for developing inflation guidance by appropriation for Government estimates, normally each January; OSD distributes this inflation guidance to the Services. This coincides with preparations for the budget and the annual Selected Acquisition Report (SAR). It is important to use the latest inflation guidance for all estimates.

(1) Constant-year dollars must be associated with a base year (for example, FY 2001 constant dollars). To be in constant dollars, the analyst must adjust the costs so they reflect base-year prices for all time periods. Constant dollar estimates help the analyst determine the true cost changes of a system, activity, or item. Normally, estimates should be prepared in constant dollars for the year after the calendar year in which the estimate will be completed.

(2) Current-year dollars (then-year dollars) reflect the effect of inflation. That is, they reflect the buying power of the dollar in the year the work was done or programmed. Prior costs are the actual amounts obligated or spent. Future costs stated in current-year dollars are the amounts that should be programmed under the full funding concept. When making cost estimates, the analyst changes the constant-dollar estimate to a current-year dollar estimate by applying the correct inflation factors. These
factors not only adjust for the year-to-year compound inflation rates, but also include appropriation-unique outlay rates. For example, the RDT&E appropriation historically expends 51.3 percent in the first year, 36.7 percent in the second, 8 percent in the third, and 4 percent in the fourth year. Thus, the analyst calculates the current-year dollar value for year 1 by using an inflation factor that assumes the funds will be spent (outlay) over 4 years. The factor incorporates the expected outlay rate with compounded inflation rate. As a result, where there are significant outlays, the constant-dollar and current-dollar costs for even the base year will differ.

b. The time value of money considers the value of money at different points in time. Interest costs, the Government’s cost of capital, vary by time period, expenditures, and alternative acquisition strategy. Future expenditures must be adjusted to a common point in time for comparison. This adjustment is called discounting, a technique used for converting cash flows occurring over time to equivalent value at a single point in time.

(1) OMB Circular A-94 and DoDI 7041.3 require the use of a discount rate based on the Treasury Department cost of borrowing funds. This discount rate should be used in evaluating the measurable costs and benefits of programs or projects when they are distributed over time. The prescribed rate will vary dependent on the length of the period of analysis and on whether the costs and benefits are measured in constant or current dollars. A discount rate that has already been adjusted to eliminate the effect of expected inflation should be used to discount costs and benefits expressed in constant dollars. Conversely, a discount rate that reflects expected inflation should be used to discount costs and benefits expressed in current dollars.

(2) The estimate of the discount rate is prepared annually by the OMB, and reflects the expected cost of borrowing for 3, 5, 7, 10, and 30 year securities. Annual updates to discount rates are provided by OMB in the February/March time frame, and are disseminated throughout the Army by USACEAC upon receipt.

(3) Documentation must specify whether end-of-year or mid-year values are used. The use of mid-year values is preferred, because this reflects the normal situation where expenditures are spread throughout the year. If end-of-year is used, include justification in the documentation as to why end-of-year values were used rather than mid-year values.

(4) For additional information on discounting, see the Department of Army Economic Analysis Manual.

c. A cash flow diagram is useful for displaying and understanding payments of money over time. This type of diagram graphically displays the timing and size of all costs and benefits associated with a given estimate. Figure 3-2 is an example of a cash flow diagram for an alternative with a 9-year life. In this cash flow diagram, a downward arrow depicts costs while an upward arrow shows benefits. This alternative has an investment of $500 at the beginning of year 1, midyear annual costs of $30, one-time costs (midyear) in years 4 and 8 of $50, midyear benefits of $60 in year 2 and $120 annually in years 3-9, and a salvage value of $20.
3-5. Cost-estimating data sources

a. A cost analyst should identify, collect, classify, and analyze data before doing cost estimating within the analysis process. Cost data, by definition, include all available quantitative and monetary information. Potential data sources are listed below. This list is not all inclusive. Regardless of the nature of the data used, the source must be identified in the documentation of any analysis. The cost analyst should be aware of the sensitivity of contractor proprietary data.

(1) Financial reports.
(2) Budget and Program Objective Memorandum (POM) submissions.
(3) Management Decision Packages (MDEPs).
(4) Contract cost and performance reports.
(5) Audit reports.
(6) Manpower records/reports.
(7) Statistical reports.
(8) Surveys.
(9) Management studies.
(10) Modernization plans.
(11) Industry guides and standards.
(12) Professional journals and publications.
(13) State and local government publications.
(14) Army publications.
 (a) Field manuals.
 (b) Standard operating procedures.
 (c) Table of organization and equipment/table of distributions and allowances (TOE/TDA) documentation.
b. Cost estimating requires a relational comparison among data. A basic premise underlying the application of analytical review procedures is that relationships among data exist and will continue unless conditions change. The presence of these relationships provides the analyst with indicators that can form the basis for assumptions, cost factors, and CERs.

c. CERs use various combinations of data, such as dollars, physical characteristics, quantities, ratios, or percentages. The CER should be relevant, valid, verifiable, and reasonable.

d. After identifying and collecting cost data, the analyst must relate the data to cost elements. Cost elements are the lowest level of a cost estimate. The cost estimate total is the sum of all the cost elements.

3-6. Software cost estimating

a. Because software life cycle costs account for a significant portion of information systems' costs, and are often significant in materiel systems, they must be estimated carefully. Software cost estimating involves a large degree of professional judgment, from both a project management and cost analysis perspective.

b. The typical software life cycle phases are plans and requirements, product design, detailed design, code and unit test, integration, implementation, operations and maintenance, and phaseout. The most critical of all the phases is the plans and requirements phase. A thorough analysis of the software development requirements during this phase will avoid many future changes that lead to schedule slippages and cost overruns.

c. One way to develop software cost estimates is by collecting historical data on processes similar to the one being modeled (analogy). The data is used to form an empirical relationship between the required tasks and the resources needed to complete them. There are several software cost models available to estimate software development costs, but no one model is superior for all applications. The use of these models requires a high level of professional judgment and their accuracy is, in part, a function of how closely the historical data correlate to the modeled process. Regardless of the model used to estimate software costs, the results will not be better than the input data.

d. Most models use estimated lines of code (LOC) to estimate software development costs. The sizing of the development effort directly relates to the program requirements determined during the plans and requirements phase. Various models and techniques are available to aid the analyst in sizing the proposed program. Sizing by analogy, function point analysis models, and size-in size-out are just a few of the techniques used for sizing software development efforts.

e. It is important to estimate LOC as closely as possible, since that number drives the estimate of the project cost and completion schedule. It is also important to identify reusable software LOC.
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

Software development, writing, and installation incur high costs. Cost reductions are possible using reusable code, code generators, and object-oriented programming, because they reduce the number of LOC that must be written, thus reducing the cost to develop the software.

3-7. Cost as an Independent Variable (CAIV)

a. Overview

(1) DoDD 5000.1 recognizes the fiscal constraints on the defense acquisition process. CAIV is one tool to meet our objective of acquiring systems that are both operationally effective and affordable throughout their life cycles. At major milestone reviews, the Milestone Decision Authority approves aggressive, achievable life cycle CAIV objectives and approves the management plan to achieve these goals. These objectives become part of the Acquisition Program Baseline.

(2) The acquisition strategy addresses the means to meet the CAIV objectives -- balancing mission needs with available resources. Normally, at the inception of an acquisition program (Milestone A), the PM with the collaboration of the user proposes system thresholds and CAIV objectives for cost, schedule, and performance that will result in a product that is both operationally suitable and effective -- and timely and affordable. CAIV is not limited to new programs. It is also implemented when there is major modification to existing programs.

(3) Proposed system thresholds establish the requirement boundaries separating an acceptable from an unacceptable product. Examples of system thresholds are limits for unit cost, weight, or power consumption, which, if exceeded, would require the reevaluation of either the concept design, its acquisition approach, or the system requirement.

(4) The successful application of CAIV requires continuous, effective communications between the acquisition community and the operational user. The developer must master a full understanding of user needs. The user, in turn, benefits from close engagement with the developer -- tracking program progress and gaining insights into the product’s future operational potential and limitations. This collaboration is needed to achieve the proper balance among the product design dimensions of cost, schedule and performance.

(5) In the Army, Integrated Concept Teams (ICTs) and Integrated Product Teams (IPTs) are important forums for continual, open communications between the stakeholders. Before milestone 0, the user led ICTs include the developer in investigating the feasibility of a wide range of proposed concepts that provide a materiel solution to the identified operational need. The AoA is the mechanism that links the proposed concept to the mission capability. “Order of magnitude” life cycle cost is one important selection attribute used during the AoA.

(6) The user community drafts the Mission Needs Statement (MNS) with the support of the materiel developer. For the CAIV process to be most effective, the MNS should not be written to specify a unique materiel solution. As the design concept matures, the PM, with the concurrence of the stakeholders, may refine the CAIV objectives and the performance thresholds consistent with the user’s operational requirements. When necessary, the MNS will be modified to reflect these changes.

(7) The application of CAIV challenges the user to identify a limited number of Key Performance Parameter (KPPs), which establish non-negotiable limits for system performance, from among all of the desired performance parameters. KPPs are selected based on their relatively high contribution to the system’s overall operational performance. For example, one set of KPPs might include a day/night operational capability and effective range, transportability, lethality, and survivability.
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

limits. KPPs must not be allowed to be so numerous or restrictive that they make meaningful cost, schedule, and performance trade-offs impossible.

(8) As the program moves beyond Milestone A the user led ICT transforms into a developer led IPT, continuing the active collaboration between the developer and user. (The same stakeholders are represented in both ICT and IPT.) In the IPT, the user evaluates the potential mission consequences of design trade-offs that impact non-critical performance parameters. A successful CAIV process requires the user’s active participation throughout the acquisition cycle.

b. The Cost Analysts Role in CAIV

(1) The Army cost analyst plays an active role in the implementation of CAIV. Army cost analysis is represented on all program ICTs and IPTs. At the pre-milestone 0 concept stage, the cost analyst provides “order-of-magnitude” estimates of the cost to bring emerging technologies from the technology base to full-scale development. They also estimate the cost to produce and operate them. At this early stage, it is critically important to ensure that cost assumptions for competing alternatives represent reasonable expert assessments of the expected technical difficulty. These early estimates play an important role in the relative rankings of the AoAs. As alternatives are down-selected, these early “order-of-magnitude” estimates are developed into the basis for initial program planning and budgeting.

(2) Cost analysts establish linkages between the early promises of new technology, the expected mission capability and the resulting life cycle costs.

(3) The ACP is required at milestone decision points for all ACAT I and special interest ACAT II programs. The ACP is the approved life cycle cost estimate for the program described in the Cost Analysis Requirements Description (CARD). A proposed ACP is developed in the CAWIPT, which is co-chaired by the PM and the USACEAC. The CRB, composed of senior Army functional leaders, reviews the proposed ACP and advises the Assistant Secretary of the Army (Financial Management and Comptroller) (ASA (FM&C)) on its reasonableness. When approved by the ASA (FM&C), the ACP is the basis for decision making, contracting, programming, planning and budgeting. The ACP is the cost to achieve the threshold system requirements, or a reasonable tasking from the threshold system as reflected in the CARD.

(4) CAIV objectives are related to the ACP. Depending on the program phase, the Cost Performance IPT (CPIPT) group (which looks a lot like the CAWIPT) works from either the ACP developed information, or earlier “order of magnitude” estimates to investigate the relationships between technology/cost/schedule and mission effectiveness. These analyses assess the related technical, cost and schedule risks associated with a particular course of action. These analyses support the PM’s development of aggressive CAIV objectives to propose to the Milestone Decision Authority at the time of the milestone reviews. When successful, these approaches would be incorporated into subsequent CARDs and ACPs. The CAIV objectives will hopefully reduce the program life cycle resource requirements and be incorporated into the Army budget.

3-8. Risk and uncertainty analysis

a. Although many people use the terms “risk” and “uncertainty” interchangeably, a distinction can be drawn between them. Risk deals with measurable probabilities, while uncertainty must be defined subjectively. An event contains an element of risk when the likelihood of its occurrence can be defined by a probability distribution. Risk that is defined by a probability distribution is often referred to as “objective risk.” The event is uncertain when the likelihood of its occurrence can only be defined in
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

subjective terms. There are many tools and techniques, such as probability theory, game theory, Monte Carlo technique, Delphi technique, and decision trees to aid in making quantified risk assessments.

b. Risk analysis examines the likelihood that actual results will fall within a specified range around a predicted point estimate, using probability concepts. Once the analysis is complete, the risk must be explicitly defined for the decision maker. Every life cycle cost estimate will have a risk analysis. The Cost Review Board Working Group or the CAWIPT depending on the program prepares this analysis.

c. See appendix K provides for additional cost risk analysis guidance.

3-9. Sensitivity analysis

a. Sensitivity analysis is a tool for assessing the extent to which costs and benefits are sensitive to changes. It repeats a prior analysis using different quantitative values to determine their effects on the results of the basic analysis. If changing an assumed value results in a relatively large change in the outcome of the analysis, it is said to be sensitive to that assumption. And finally, sensitivity analyses provide a range of possible outcomes that are likely cost to provide a better guide for the decision maker than a point estimate.

b. All cost estimates should include sensitivity analyses. The first step is to describe the approach, assumptions, and the model used to conduct the base analysis. Next, identify the factors that warrant sensitivity analysis. Finally, repeat the analysis while systematically changing the values that it is believed to be sensitive to. Some factors that may warrant sensitivity analyses are:

(1) The effects of a shorter or longer economic life.

(2) The effects of variation in the estimated volume, mix, or pattern of workload; for example, the production rate or learning curve.

(3) The effects of potential changes in requirements resulting from either congressional mandate or changes in functional responsibilities.

(4) The effects of potential changes in requirements resulting from changes in organizational responsibility at the site, installation, base, or MACOM level.

(5) The effects of changes in configuration of hardware, software, data communications, prime support equipment, and other facilities.

(6) The effects of alternative assumptions on areas such as the project operations, inflation rate, residual value of equipment, and length of development.

(7) The effects of changing the fielding strategy.

c. Figure 3-3, illustrates one way a sensitivity analysis could be presented. Choose the method that best communicates the cost sensitivity information to the decision maker.
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

Estimated Life Cycle Cost Sensitivity
(FY 92 Constant Dollars,

"High" Estimate Assumptions

1. Increase the Number of Cost Penalties in the Airframe Development CER to
2. Double the Development Testing
3. Increase the Airframe Weight to 9,000 lbs.
4. Delay Program “Y” Causing Program “X” to Pay for the First 3,300 Engines off the Production
5. Increase Program “X” Aircraft Quality to Allow for Expanded

"Low" Estimate Assumptions

10. Use an 88% Learning Curve (vs. 91%) for
11. Eliminate Integration and Assembly Cost Add-On Factors for Airframe
12. Reduce Airframe Weight to 8,000 lbs.
13. Improve Aircraft Maintainability and Parts Saving by 15% Due to RAM
14. Reduce Peacetime Flying Hours to 240 Hours per Year (vs.

Figure 3-3. Estimated Life Cycle Cost Sensitivity

3-10. Validation analysis

a. An independent organization or agency will review each cost estimate that exceeds $1,000,000 or as required by management. A statement or evidence of the validation will be attached/ixed to the cost estimate with the point of contact listed in the statement. The purpose is to verify the existing cost estimate rather than create a new one.
CHAPTER 3 - COST ANALYSIS PROCESS, METHODS AND TECHNIQUES

b. The review includes a thorough analysis of problem definition, alternatives, assumptions, cost estimate, benefit analysis (as necessary), risks, sensitivity analysis, conclusions, and recommendations. The review of source data and analytical methodology is of particular importance. If time and resources permit, the review should address the applicability of other data sources and methods. Figure 3-4 outlines validation considerations for key elements, methods, and issues.

SYSTEM DEFINITION
- Is the system to be costed well defined; CARD or other definition?
- Are all variances and reasons clearly stated?
- Are basic study ground rules identified?

ASSUMPTIONS/CONSTRAINTS
- Are all assumptions clearly stated; not just a repeat of ground rules?
- Are the assumptions reasonable and can they be validated?
- Are intuitive judgments identified?
- Are study constraints identified?

INCLUSION/EXCLUSION CRITERIA
- Are all cost elements and WBS elements clearly defined?
- Do the cost elements and WBS elements agree with the system definition and adequately represent the system to be costed?
- Are all costs included?

DATA SOURCE AND DATA ADJUSTMENTS
- Are all data sources and data adjustments clearly presented?

COST ESTIMATE EXPRESSION AND METHODOLOGY
- Does the estimate use good analysis techniques?
- Is quality analysis presented?
- Is the estimate arithmetically correct?
- Are the estimating methodologies identified and are they appropriate for the subject matter?
- If previous cost estimates exist, can the differences in the current estimate be traced to the previous?
- Has inflation been applied and calculated properly?
- Is the source of the inflation indexes identified?
- Is the estimate documented thoroughly (including assumptions, data sources, methodologies, CERs, results)?

SENSITIVITY/UNCERTAINTY
- How sensitive are the final results to changes in the values of model parameters?
- Is uncertainty analysis performed?

RESULTS
- Are the results clearly presented and do they track to the proposed system PPBES (MDEP) formats?

Figure 3-4. Validation Considerations

3-11. Interface with environmental and hazardous material impact analysis

Hazardous materials must be given special consideration during the design phase of the system. Public Law 103-337 requires the Secretary of Defense to analyze the environmental costs of a major defense acquisition as an integral part of the life cycle cost analysis of the program. This analysis should include the materials to be used, the mode of operations and maintenance, requirements for demilitarization, and methods of disposal. The handling and disposal of hazardous materials have potentially significant cost impacts. The first step is to determine whether the use of alternative materials is possible. Using alternative materials may offset disposal costs by higher design or production costs. Thus, the analyst must evaluate the impacts on costs in a life cycle context. If there is no alternative,
reducing the hazardous material handling and disposal impacts can be considered. In addition to health and safety considerations, the requirements for hazardous materials certificates and transportation should be addressed.

3-12. Cost-estimating errors

 a. The analyst should always be aware of the four types of cost-estimating errors: double counting, omission of costs, hidden costs, and spillovers.

 (1) Double counting occurs when the analyst includes the same element of cost in two portions of the estimate. Thus, the analyst counts the same element of cost twice.

 (2) Omission of costs occurs when the analyst overlooks costs that apply to an estimate. Omitting costs can seriously distort the analysis.

 (3) Hidden costs can occur in many ways. They can occur from mislabeling cost elements, nondisclosure of certain costs, and improper allocation of overhead.

 (4) Spillover costs are secondary effects not directly related to the project/program. For example, when the reference system's requirements require unplanned production of a second system, there are spillover costs. When the analyst does not address these burdens, the decision maker does not know the total impact of the decision.

 b. Any of these problems may seriously distort the outcome and reflect unfavorably upon the credibility of the cost analysis.

3-13. Inherited assets

 a. Inherited assets occur as systems or organizations phase out of the force. These systems usually release personnel, equipment, or facilities that are available for use by existing or new systems or organizations. When new or existing systems or organizations use these released resources to fill their requirements, they become inherited assets.

 b. The availability of inherited assets may make a considerable difference in the cost of a new system. They may be important in cost effectiveness comparisons, especially if one alternative can use inherited assets while the other cannot. A system using inherited assets does not have to fund such one-time costs. However, there may be one-time transitional costs, such as training, transportation, and travel that the system using the inherited assets must fund.

 c. Inherited assets represent an opportunity cost that the analyst must include in the system's estimate that inherits the asset. The rationale for including this opportunity cost is that if a particular project uses the asset, then another project cannot use it. Therefore, the other project will have to purchase a new asset. The Government does not pay for the inherited asset (a second time), but the asset has a value. The analyst must add this value as a cost to the project. However, if only one system needs an inherited asset, then there is no opportunity cost.

 d. A practical approach to estimating the value of an inherited asset is to determine its residual value when inherited.
3-14. Residual or salvage value

a. Residual value, or salvage value, is the estimation of future value of assets that will be available later for alternative uses. An example is when a major system phases out of the Army's inventory. Some assets will have value because they can fill requirements of future organizations or can be sold.

b. The analyst should not use residual values to reduce life cycle costs. These costs are sunk by the time residual values come into play. Residual value is a benefit that is very speculative. It does not represent savings, but does represent a potential value. Salvage value is usually negligible.

c. The analyst can estimate residual value using depreciation tables provided by the Internal Revenue Service for different types of assets. Another source is OMB Circular A-76.
CHAPTER 4 – MATERIEL SYSTEMS COST ANALYSIS

4-1. Introduction

AR 11-18, The Cost and Economic Analysis Program, provides the policies and responsibilities for the conduct of cost analysis throughout the Army. This chapter provides a basic framework of methodologies and procedures for implementing the cost analysis policies in AR 11-18 on materiel systems.

a. Process

(1) Cost analysis is the scientific process used to evaluate the resources required to develop, test, produce, operate, maintain, or cut forces, systems, functions, or equipment. The scientific process of cost analysis requires a thorough understanding of the item and its phases of evolution. Cost analysis includes the identification of assumptions and constraints, collection and testing of data, and application of cost methods, theories, and techniques. Finally, the cost analysis process must include the testing of the results for reasonableness and sensitivity to the assumptions. Analysts usually express the results in dollars. They should include a discussion of the quality of the data, the methods, and the results in their documentation.

(2) Analysts can apply the cost analysis process to either a small portion of a complex system or the total system. An example is the analysis of the cost difference between single-year and multiyear procurement strategies of a materiel subsystem. They can apply cost analysis to the item's total life cycle, or to a single phase of the life cycle. Also, analysts can apply cost analysis to check the relative cost differences between competing alternative solutions.

(3) A cost estimate is the result of the cost analysis of a particular item. Analysts use specific information: a definition of the item, its life cycle phase, assumptions, constraints, quantities, and other data sources. The analyst should document the estimate such that outside reviewers can track the logic from the assumptions to the conclusion.

(4) The first step in any cost analysis is the development of a study plan. Appendix H provides a study plan outline for any cost analysis.

b. Integrated management framework

(1) Figure 4-1 graphically portrays the key interactions of the DoD Requirements Generation System, Acquisition Management System, and Planning, Programming, and Budgeting (PPBS) System. A synopsis follows.

(2) The Requirements Generation System initially identifies the broad mission needs.

(3) The Acquisition Management System must identify and assess alternative ways of satisfying these needs. The system must consider current and projected technology development, producibility, industrial capability, and support infrastructure constraints.

(4) The PPBS must make initial affordability decisions on proposed acquisition programs based on the Defense Planning Guidance, approved investment plans, and overall funding constraints.

(5) The integrated management framework allows for the progressive translation of the initial, broad MNS into performance goals. The framework then allows these goals to progress to system-specific performance requirements, and finally to a stable system design.
(6) Management must make major cost-performance-schedule tradeoffs throughout the course of program implementation. They base the tradeoffs on threat assessments, status of program execution, risk assessment, test results, and affordability.

c. Life cycle management model

(1) Analysts must address many different costs when performing a cost analysis. Normally, the analyst must estimate all costs from the start through implementation, operation, and disposal for a program or project. Collectively, these costs are the life cycle costs (LCCs). Normally, LCCs in the Army are broken into five parts—Research, Development, Test and Evaluation (RDT&E), Procurement, Military Construction (MILCON), Military Personnel, and Operations and Maintenance (O&M).

(2) Research, Development, Test and Evaluation (RDT&E)

(a) This manual defines RDT&E costs as all costs for system-specific efforts during the Program Definition and Risk Reduction and the engineering and manufacturing development phases from Milestone A through Milestone C. RDT&E costs include all Government costs, both contractor and in-house costs, of products and services necessary to bring a system from concept to production. They also include all costs to the Government of developing the specific capability, without regard to the funding source for such costs.

(b) Estimates of RDT&E costs include all nonrecurring and recurring costs for prototypes, engineering development equipment, and test hardware. Analysts must identify and estimate any contractor system test and evaluation and Government support to the test program. In addition, analysts should consider such items as support equipment, training, data, and military construction. Finally, analysts should include the cost of all related RDT&E in the estimate, such as redesign efforts necessary to install equipment on existing platforms.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

(3) Procurement

(a) This manual defines procurement costs as all costs of buying the prime mission equipment (PME) and its support. Procurement costs cover production through introduction (fielding) of the materiel system into the Army's operational inventory. Examples of cost elements commonly associated with the support portion of the system are support equipment, training, data, and initial spares. A more refined breakout of the cost elements associated with the Procurement costs follows.

(b) Procurement costs include all Government costs, both contractor and in-house costs, of products and services necessary to produce and field an operational system. This includes the hardware, training, and support activities necessary to begin operations. It also includes costs of both a nonrecurring (such as to set up a production capability) and recurring nature (such as repeated production).

(c) Finally, procurement costs include all costs resulting from fielding the system. Fielding is the iterative process of introducing a system to a final user with enough resources (people, materiel, and facilities) to achieve its mission. This requires the integrated efforts of the ARSTAF (policy makers), PM/PEO (system proponent), MACOMs (functional intermediaries), and MTOE or TDA units (final users). The fielding limits (beginning and ending) are a function of the number of fielding interactions for which each group is responsible. An iteration begins when the manufacturer passes ownership of the system to the Government. It ends when the MTOE or TDA unit accepts the system and begins operations with it. The range of fielding limits thus extends from a single iteration for a unit to the ARSTAF, responsible for all iterations.

(4) Military Construction (MILCON)

This manual defines MILCON costs as all costs of system-specific construction. Only projects that are required for the materiel system and will be canceled upon termination of the materiel system are system-specific construction. Examples of system-specific construction projects include simulator buildings, missile bunkers, and billets associated with the fielding of new organizations for the new system.

(5) Military Personnel (MP)

This manual defines MP as the military personnel costs associated with the development, production, fielding, operations and support of the materiel system that is not reimbursed by any other appropriation.

(6) Operations and Maintenance (O&M)

(a) Operating and Maintenance costs include all direct and indirect elements of a fielded weapon system. Major cost elements include personnel, unit-level consumption, depot maintenance, sustaining investment, inventory management control, and indirect O&M costs. In general terms, O&M costs include the continuing annual recurring costs of operating and maintaining force structure and materiel systems to perform assigned missions. The level of sustainment is a function of force allocation, training goals, and the operating tempo (OPTEMPO) assigned to individual materiel systems. O&M costs begin with materiel system fielding and end when the materiel system leaves the Army inventory. The length of time associated with steady-state operations also drives the O&M costs.

(b) Also, O&M costs include all costs of the program, regardless of fund source or management control. They also include any measures of the opportunity cost of existing assets or assets available from another source. Also, O&M costs include demilitarization, detoxification, or long-term waste storage.

4-2. Cost Analysis Requirements Description (CARD)

a. The CARD is key in life cycle costing for major materiel systems. It is the source of a system's description for the development of the POE, CCA, ICE and Army Cost Position (ACP). It describes the salient features of both the acquisition program and the system itself, and provides the basis
for the LCCEs. With the kick-off of the CARD preparation milestones are identified and published in the Department of the Army Program Cost Analyses.

COMPARISON OF Current VS NEW 5000

Figure 4-2. Comparison Current vs NEW 5000

(Details for Figure 4-2 located in Chapter 2)

b. A POE, CCA and/or an ACP shall be prepared for each alternative that will be presented to the DAB or, for delegated programs, to the AAE. The CAIG Chair will coordinate on a complete description of these alternatives, the scope of the estimates to be made, and other related assumptions needed for developing the cost estimates. This information shall be documented in the CARD and used by both the program office and independent cost analysis office. In addition to the requirement for a ACP at each milestone, the ACP should be kept up to date on a regular basis to reflect the latest program changes. The ACP should not be older than two years.
c. The CAIG requires a preliminary CARD no later than the OSD Milestone Planning Meeting. OSD normally holds this meeting about 180 days before a planned DAB review.

d. A more detailed discussion on the CARD is provided in appendix I.

4-3. **Work breakdown structure/cost element structure (WBS/CES)**

a. **Introduction**

A goal is the consistent preparation and documentation of cost estimates through using uniform cost structures with standardized elements and definitions. A three-dimensional matrix best describes the basic concept of materiel system life cycle costing. One dimension consists of cost elements, another consists of PME, and the third is time (see figure 4-3). The structures and definitions presented in this document support decision making at all levels within the PPBS and defense acquisition management processes. The term milestone costing describes the cost analysis process that normally is event-driven within the acquisition management process. A time-phased matrix and a PME matrix are an integral part of the milestone costing concept. They provide the basis for supplying various decision makers with needed information. These matrices are two-dimensional output formats that combine the CES, PME structure, and time. Section 4-5.d.(6) describes these matrices in detail.

![Figure 4-3. Materiel System Life Cycle Costing Matrix Cell](image)

b. **Work breakdown structure (WBS)**

DoD 5000.2-R requires a WBS for each program. The program WBS defines the total system, displays it as a product-oriented family tree, and interrelates work elements. During the early phases of a program, analysts can use a generic WBS if a program WBS is not yet available. Figure 4-4 presents this evolutionary process of refining the initial WBS. As the program proceeds, the PM will develop a WBS accordance with the WBS guidance in MIL-HDBK-881. Figure 4-5 presents this translation from a generic to a program WBS. Figure 4-6 presents a WBS matrix showing the hierarchical relationships among the elements. This figure presents the total prime mission system WBS of which the PME WBS is a subset. Appendix D presents the PME generic WBS structure for selected types of systems.

c. **Cost element structure (CES)**

Appendix E presents a CES that incorporates defense management review decisions (DMRDs)/ program budget decisions (PBDs). The CES more closely aligns with the defense acquisition management process.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

(including milestone decision reviews) and the PPBES (including MDEPs and budget forms). Also, the CES incorporates all aspects of the program WBS Level 2 support elements, such as system engineering/program management, training, data, and peculiar support equipment. Six criteria guided the development of the new CES:

1. Cost elements should be system specific.
2. Cost elements should be appropriation discrete.
3. Cost elements should be time sensitive (cost related to when appropriations are required).
4. Cost elements should be flexible to accommodate new budget guidance and definition changes.
5. Cost elements should support the integration of cost analysis and the PPBES.
6. Cost elements should support DoDD 5000.1, DoD 5000.2-R, and MIL-HDBK-881B requirements.

![Figure 4-4. The Evolution of a Work Breakdown Structure](image-url)
Figure 4-5. MIL-HDBK-881 Translation from Function to Product
4-4. **Major materiel systems' cost estimates**

 a. Program office estimate (POE)

 The POE is a specific type of cost estimate. The PM develops the POE to support specific acquisition milestone requirements. Significantly, the POE uses cost element definitions common with those used by both the Director of the Army Budget and the Director, Program Analysis and Evaluation. Also, the use of the cost element structure and definitions in appendix E will greatly facilitate the review of the POE. Key to the development of the POE is the CARD that includes information such as the system description, acquisition strategy, fielding plan, and operational concepts. The POE should reflect the program described in the CARD. The analysis behind the POE is of utmost importance. The POE should embody the principles of analysis and the application of the scientific method. Specifically, the analysis must be objective and supported by a database relevant to the system. Each part of the estimate must be consistent with each other part and clearly identify key cost driver assumptions. The estimate
must be complete in the coverage of all costs. Also, it must be forthright in stating the shortcomings and risks in the estimate. Finally, the POE should convey to the decision maker, in a "truth in lending" sense, what the estimate does and does not represent. The POE is an LCC estimate, documented and reflecting a snapshot in time. Section 4-5.d. discusses the specific documentation required for the POE. Figure 4-7 shows the POE/CCA/ACP milestone time lines for ACAT ID, IC, and II systems.

b. Component cost analysis (CCA)

(1) The CCA is another type of cost estimate. An agency not in the acquisition community develops the CCA to support specific regulatory acquisition milestone requirements. Analysts use the CCA to test the reasonableness of the POE. For major matériel systems, USACEAC develops this estimate. Independence is the key in the conduct of the CCA. Independence does not mean that the CCA analyst is uninformed about the POE and its methodology; rather, it means that the analysis behind the CCA takes a different, independent approach from the POE. Otherwise, the CCA has all the characteristics of the POE. The CCA is a life cycle estimate, documented and reflecting a snapshot in time. Section 4-5.d. discusses the specific documentation required for the CCA. The CCA meets the statutory requirement for the ICE on ACAT IC programs. Figure 4-7 shows the POE/CCA/ACP milestone time lines for the ACAT ID, IC, and II systems.

(2) ICEs shall include all program costs, regardless of funding source or management control. This includes system integration and modification costs, logistics support costs, and military construction costs. Significant deficiencies in the cost estimates or their documentation may lead to deferment of the milestone review.

(3) DoD components shall not contract for development of CCAs without prior written approval of the CAIG Chair. Requests must demonstrate that special circumstances require use of contractor, vice organic, personnel for the CCA, and that adequate safeguards will protect against conflicts of interest.

c. Army Cost Position (ACP)

The ACP is the Army's approved LCC estimate for the matériel system. It is the basis for Army planning, contracting, programming, budgeting, and execution. For DoD milestone reviews, the ACP satisfies the DoD 5000.2-R requirement for a Component cost position. The ACP is also a snapshot in time as are the POE and CCA. The ACP is recorded in the Acquisition Program Baseline. The CRB recommends approval of the proposed ACP after an intensive review of both the POE and CCA. The first step in developing an ACP is to compare the POE to the CCA. This is to ensure that both estimates represent the same scope of work defined in the CARD. Otherwise, the CRB working group must adjust either the POE or the CCA. Any remaining difference is with estimating methodology. The CRB working group then analyzes the POE and CCA to check whether the data and methodology employed were correct and properly used. The CRB working group should make a comparison to locate the cost elements (or PME subelements) where differences are greater than 10 percent. The CRB must judge which methodology is most reasonable and sound. This judgment process is not a matter of negotiation with the POE preparer; rather, it is a matter of objective reasoning. The ASA(FM&C) approves the ACP for the AAE. When approved, the ACP is the reference for all planning, contracting, programming, and budgeting for the system. The cost analysis brief (CAB) documents the rationale for reconciling the POE and CCA to form the ACP. Section 4-5.d. discusses the specific documentation required for the ACP. Figure 4-7 shows the POE/CCA/ACP milestone time lines for ACAT ID, IC, and II systems.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

<table>
<thead>
<tr>
<th>Event</th>
<th>Date (Calendar Days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACAT ID Timeline</td>
<td></td>
</tr>
<tr>
<td>Receive CARD</td>
<td>D - 194 days</td>
</tr>
<tr>
<td>CAIG Planning Meeting</td>
<td>D - 166 days</td>
</tr>
<tr>
<td>POE and CCA Documentation Provided CRB</td>
<td>D - 73 days</td>
</tr>
<tr>
<td>Draft POE/CCA/ACP Documentation to CAIG</td>
<td>D - 69 days*</td>
</tr>
<tr>
<td>Brief CRB</td>
<td>D - 59 days*</td>
</tr>
<tr>
<td>Preliminary ASARC</td>
<td>D - 54 days</td>
</tr>
<tr>
<td>ACP Approved</td>
<td>D - 49 days</td>
</tr>
<tr>
<td>Brief CAIG</td>
<td>D - 45 days*</td>
</tr>
<tr>
<td>MILDEP Review</td>
<td>D - 35 days*</td>
</tr>
<tr>
<td>Final POE/CCA/ACP Documentation to CAIG</td>
<td>D - 34 days*</td>
</tr>
<tr>
<td>ASARC</td>
<td>D - 24 days*</td>
</tr>
<tr>
<td>OIPT</td>
<td>D - 17 days*</td>
</tr>
<tr>
<td>DAB</td>
<td>D - day</td>
</tr>
<tr>
<td>ACAT IC Timeline</td>
<td></td>
</tr>
<tr>
<td>Receive CARD</td>
<td>A - 166 days</td>
</tr>
<tr>
<td>CAIG Planning Meeting</td>
<td>A - 166 days</td>
</tr>
<tr>
<td>POE and CCA Documentation provided CRB</td>
<td>A - 49 days</td>
</tr>
<tr>
<td>Draft POE/CCA/ICE/ACP Documentation to CAIG</td>
<td>A - 45 days*</td>
</tr>
<tr>
<td>Brief CRB</td>
<td>A - 35 days*</td>
</tr>
<tr>
<td>Preliminary ASARC</td>
<td>A - 30 days</td>
</tr>
<tr>
<td>ACP Approved</td>
<td>A - 25 days</td>
</tr>
<tr>
<td>Brief CAIG</td>
<td>A - 21 days*</td>
</tr>
<tr>
<td>MILDEP Review</td>
<td>A - 11 days*</td>
</tr>
<tr>
<td>Final POE/CCA/ICE/ACP/ACP Documentation to ASARC Secretary</td>
<td>A - 10 days*</td>
</tr>
<tr>
<td>ASARC</td>
<td>A - day</td>
</tr>
<tr>
<td>ACAT II Timeline</td>
<td></td>
</tr>
<tr>
<td>Receive CARD</td>
<td>A – 165 days</td>
</tr>
<tr>
<td>POE and CCA Documentation provided CRB</td>
<td>A - 49 days</td>
</tr>
<tr>
<td>Draft POE/CCA/ICE/ACP Documentation to ASARC Secretary</td>
<td>A - 45 days</td>
</tr>
<tr>
<td>Preliminary ASARC</td>
<td>A - 40 days</td>
</tr>
<tr>
<td>Brief CRB</td>
<td>A - 35 days*</td>
</tr>
<tr>
<td>ACP Approved</td>
<td>A - 25 days</td>
</tr>
<tr>
<td>Brief CAIG</td>
<td>A - 21 days*</td>
</tr>
<tr>
<td>MILDEP Review</td>
<td>A – 11 days*</td>
</tr>
<tr>
<td>Final POE/CCA/ICE/ACP Documentation to ASARC Secretary</td>
<td>A - 10 days</td>
</tr>
<tr>
<td>ASARC</td>
<td>A - day</td>
</tr>
</tbody>
</table>

* OSD required. IPT Process other dates flexible.

Figure 4-7. Milestone Time Lines for POE/CCA/ACP

d. Independent cost estimate (ICE)

The ICE is required by 10 USC 2434 (ICES, operational manpower requirements). The OSD CAIG usually prepares the ICE for ACAT ID. When OSD delegates the decision authority to the Army Acquisition Executive for ACAT I systems, then USACEAC is responsible for the ICE that meets the statutory requirement.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

4-5. Documentation requirements

a. General

(1) Documentation should be clear, concise and display consistency in each study. The goal of the cost documentation process is to provide cost-estimating reports that are readable, auditable, and useful. The analyst should index the documentation for easy and rapid access. The basic needs of documentation are to record:

 (a) All ground rules and assumptions used in developing the estimate.

 (b) The data used in the estimate and their sources.

 (c) The analyst's treatment of the data (for example, normalization and cause-and-effect determinations).

 (d) The CERs used in the estimate, their sources and limitations.

(2) There should be enough documentation to enable a person unfamiliar with the estimate to reconstruct the same results as the person who conducted the analysis. The reviewer, or the decision maker, may delay the project if unable to follow the assumptions, data, and computations. Normally, it pays to take the time and effort to document the analysis adequately.

b. Cost calculation rules

(1) Cost analysts must avoid the pitfall of confusing precision (the number of significant figures) with accuracy. The accuracy of the least accurately known factor limits the accuracy of a product of numbers. This is regardless of the number of digits used to express the product.

(2) In the real world, incomplete data and information limit the analyst. The practical rule in cost estimating is to limit the precision of the estimate to the level needed to support the requirement. For example, it is standard in materiel system budget documents to limit the report to the nearest $100,000. Here an estimate carried to $1,000 has no significance and adds nothing to the process. However, for high-volume piece parts, manufacturers make production decisions at the unit cost level of $.01 or less. This is where $.01 is a significant percentage of the unit cost.

(3) One rule on significant figures limits an arithmetic product's significant figures to the least number of significant figures of any of its factors, excluding integers. (Treat an integer value as having an infinite number of zeros to the right of the decimal point.) For example, using a factor such as 1.0143 to inflate a constant-dollar estimate of $2.0 million (two significant figures), the simple arithmetic product is $2.0286 million. However, when the rule of significant figures is applied, the two-significant-figure estimate is only $2.0 million in inflated dollars. If, however, the constant-dollar value is $20.0 million (three significant figures), the result is $20.3 million. This illustrates that a 1 percent inflation increase to a $2.0 million estimate is below the level of significance. However, it is significant at the $20.0 million level.

(4) A second rule on significant figures limits the number of significant figures to the right of the decimal point when summing. Limit the summation to the number of significant figures to the right of the decimal point of the least precise term.

(5) For briefings and presentations, the analyst should be mindful of both the audience and the estimate's credibility. Never burden an audience with extraneous information or numbers of superfluous digits. Never suggest that cost estimating can imply more accuracy or precision than can be justified and delivered.

c. Cost documentation concept
(1) Figure 4-8 shows the relationships among the various elements of the cost documentation module. The Cost Documentation Format (CDF) is the central element of the cost documentation module. The Variable Explanation Format (VEF) provides the explanation and data that support the methodology and calculations on the CDF. It should be noted that the CDF and the VEF are not forms or specific formats to be used verbatim as shown. Rather, the contents of the CDF and the VEF are important.

(2) The key to this documentation concept is the ability to track data from one format to another. The goal of these formats is to provide direct links among the various displays without undocumented excursions. For example, the results portion of the CDF provides the costs for the Cost Summary Format when used. Otherwise, the costs on the CDF go directly to the PME and time-phased matrices.

(3) Figure 4-8 does not display the MDEP, SAR, contract support, and other PPBES matrices because they are system specific. However, the data used to develop these displays should come directly from the CDF and the VEF.

d. POE/CCA documentation

(1) The POE and CCA have the same documentation requirements. The CCA can accept costs for non-developmental or commercial hardware as throughput from the POE. Additional throughput from the POE to the CCA requires the approval of the OSD CAIG. In all cases, the CCA analyst will challenge the data before accepting any throughput costs.

(2) A variety of activities will review the POE/CCA documentation. Examples are MACOMs, HQDA, OSD, Congress, General Accounting Office (GAO), Army Audit Agency (AAA), and DoD Inspector General. None of these reviewers will be as familiar with the POE or the CCA as the analyst that prepared it. Yet, the reviewer will critically analyze and pass judgment on the analysis' adequacy based on available documentation. For this and other reasons, the analyst must fully document the sources of the cost data and the cost-estimating methods. The POE/CCA documentation should include enough information for each cost element to provide reviewers with all the evidence required to confirm the POE/CCA.

(3) The documentation should specify the databases (and methods) considered and the rationale for the selection of one database (or method) over all others. Actual cost experience, from CCDR and other data sources, on prototype units, early engineering development hardware, and early production hardware for the program under consideration, should be used to the maximum extent possible. If development or production units have been produced, the actual cost information shall be provided as part of the documentation. Estimates for Milestone C reviews must be based at least in part on actual production cost data for the system under review. Beyond those identified in the CARD, the documentation should address any additional constraints imposed. The analyst should identify any ground rules, assumed or imposed, and their underlying rationale. Also, the analyst should provide an evaluation of the limitations and constraints of the estimate for each cost element.

(4) The sensitivity of projected costs to critical program assumptions shall be examined in both the POE and the CCA. Aspects of the program to be subjected to sensitivity analysis shall be identified in the independent analysis of program assumptions. The analysis shall include such factors as learning curve assumptions, technical risk of increased development and/or production effort, changes in performance characteristics, schedule alterations, and variations in testing requirements. Program offices will support USACEAC in identifying risk areas and assessing their potential cost effects. The use of statistical analysis to describe the sensitivity of critical assumptions shall be documented and provided to the CAIG. The POE and CCA analysts shall identify and quantify areas of program uncertainty. Uncertainty will be quantified by the use of probability distributions or ranges of cost (see section 3-7). The probability distributions, and assumptions used in preparing all range estimates, are documented in the POE or CCA.
The goal of developing standard documentation criteria is to produce reports that are readable, auditable, and useful. The analyst must prepare a set of documentation formats for each element (or PME subelement), except totals. The analyst should provide the rationale for estimating zero cost. A description of the documentation formats follows.

(6) Documentation formats

(a) Appendix H provides an outline for a study plan.

(b) Figure 4-9 provides an outline for the POE or CCA. The executive summary should be a short, stand-alone document that summarizes the POE or CCA for the decision maker. Sections I and II can be in one or more volumes.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

Executive Summary

A. Introduction
 — Preparing Organization
 — Purpose

B. Program Description

C. Assumptions, Ground Rules and Constraints

D. Cost Summary

E. Summary Cost Comparison (current versus previous estimates)

Section I. Cost Documentation

A. Estimate Overview
 — Purpose
 — Program Description
 — Ground Rules, Assumptions, and Constraints
 — Risk Analysis
 — Sensitivity Analysis
 — Evaluation of Limitations and Constraints
 — Reconciliation with Fiscal Guidance

B. Cost Summary Formats (includes required matrices)

C. Cost Documentation Formats
 — CDFs
 — VEFs

Section II. Appendices

A. CARD

B. Program WBS

C. CDF/VEF Specific References (including data sources)

D. General References

E. Other (NOTE: Other appendices can be added for such items as risk analysis or sensitivity analysis.)

Figure 4-9. POE/CCA Outline

(c) Figure 4-10 presents the Cost Documentation Format.

MAY 2001 58
COST DOCUMENT FORMAT

1. **HEADER.**

 SYSTEM: _______________ DATE: _______________

 ELEMENT TITLE: ___________ ELEMENT NO. ___________

2. **ASSUMPTIONS.**

3. **INCLUSION/EXCLUSION CRITERIA.**

4. **DATA SOURCE AND DATA ADJUSTMENTS.**

5. **COST EXPRESSION.**

 a. **EQUATION:**

 b. **VARIABLES:**

6. **METHODOLOGY/CALCULATIONS.**

7. **LIMITATIONS OF ESTIMATE.**

8. **RESULTS (CONSTANT FY XX $).**

<table>
<thead>
<tr>
<th>PREV YRS</th>
<th>PR YR</th>
<th>CU YR</th>
<th>BY 1</th>
<th>BY 2</th>
<th>FY 1</th>
<th>FY 2</th>
<th>FY 3</th>
<th>FY 4</th>
<th>FY 5</th>
<th>FY 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO COMPLETE</td>
<td></td>
<td>TOTAL LIFE</td>
<td>CYCLE COST</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-10. Cost Documentation Format

The CDF is an expansion of the Cost Data Sheet concept employed before in cost estimate documentation. The expansion as designed will more completely accomplish the goals of documentation. The header information on the CDF will help the reader quickly identify which segment of the cost estimate the analyst is explaining. The CDF calls for eight types of information:

1) **HEADER.** This section should identify the system, cost element (or PME subelement) title and number, and date of the documentation.

2) **ASSUMPTIONS.** The analyst should clearly state all assumptions. These assumptions are about this element only and are not just a repeat of the overall ground rules and assumptions for the basic study. As an example, a study ground rule may be that the analyst will complete the estimate in constant FY XX dollars. A specific assumption for this element might be the use of a specific composite material, or only one production shift.

3) **INCLUSION/EXCLUSION CRITERIA.** A listing of the inclusion/exclusion criteria should provide a simple explanation of the element the analyst is costing.

4) **DATA SOURCE AND DATA ADJUSTMENTS.** The analyst should identify all data sources and any adjustments.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

5) **COST EXPRESSION.** The cost expression should provide the basic equation used to calculate the results and a listing of variables unique to this element. The analyst should document all recurring variables using the VEF.

6) **METHODOLOGY/CALCULATIONS.** The analyst should include in this section a basic summary of the methodology, techniques, and calculations used to compute the estimate.

7) **LIMITATIONS OF ESTIMATE.** The analyst should present the limitations and constraints of the estimate. In this section of the CDF, the analyst provides insight about the strengths or weaknesses of the estimate. For example, this section might include statements such as "the estimate is valid for production rates up to 100 per month and above 100 invalidates the methodology."

8) **RESULTS.** These results should track directly to the PME matrix and time-phased matrix discussed below. As a minimum, the analyst should present sunk costs in two parts—a prior year (PR YR) and a rollup of all previous years. Follow sunk costs with the current fiscal year (CU YR). Next follow with both budget years (BY1 and BY2) as required when the current year is the last year of the past budget. As a representative CDF, figure 4-10 shows 6 fiscal years beyond the budget (FY 1 to FY 6). A TO COMPLETE column finishes the TOTAL LIFE CYCLE COST display. The analyst may provide additional fiscal displays when required. For example, the PPBES requirements may include extended planning annex displays.

(d) The analyst should use the VEF (see figure 4-11) to document all recurring variables.

<table>
<thead>
<tr>
<th>VARIABLE EXPLANATION FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HEADER.</td>
</tr>
<tr>
<td>SYSTEM: ____________________</td>
</tr>
<tr>
<td>DATE: ____________________</td>
</tr>
<tr>
<td>VARIABLE TITLE: ____________</td>
</tr>
<tr>
<td>VARIABLE NO. _____________</td>
</tr>
<tr>
<td>2. CURRENT VALUE BEING USED.</td>
</tr>
<tr>
<td>3. DATA SOURCE AND DATA ADJUSTMENTS.</td>
</tr>
<tr>
<td>4. DESCRIPTION OF HOW VALUE DERIVED.</td>
</tr>
</tbody>
</table>

Figure 4-11. Variable Explanation Format

Place the VEFs at the end of the documentation in alphabetic/numerical order. The VEF is an expansion of the Variable Explanation Sheet concept employed before in cost estimate documentation. The expansion as designed will more completely accomplish the goals of documentation. The VEF header provides quick identification of which cost estimate segment the analyst is explaining. The VEF calls for four types of information:

1) **HEADER.** This section should identify the system, variable title and number, and date of the documentation.
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

2) CURRENT VALUE BEING USED. This is a statement of the variable's numerical value used in this estimate.

3) DATA SOURCE AND DATA ADJUSTMENTS. The analyst should identify all data sources and any adjustments.

4) DESCRIPTION OF HOW VALUE DERIVED. The analyst should include in this section a basic summary of the methodology, techniques, and calculations used to determine the value of the variable.

(e) When appropriate, the analyst may use a Cost Summary Format (figure 4-12) to total the results from several CDFs for convenience.

<table>
<thead>
<tr>
<th>COST SUMMARY FORMAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. HEADER.</td>
</tr>
<tr>
<td>SYSTEM: ______________ DATE: ______________</td>
</tr>
<tr>
<td>SUMMARY ELEMENT TITLE: __________________________</td>
</tr>
<tr>
<td>ELEMENT NO. ______________</td>
</tr>
<tr>
<td>2. CDF SUMMARY: __________________________</td>
</tr>
<tr>
<td>PREV PR CU BY BY FY FY FY FY TO TOTAL</td>
</tr>
<tr>
<td>YRS YR YR 1 2 1 2 3 4 5 6 COMP COST</td>
</tr>
<tr>
<td>SUMMARY __________________________</td>
</tr>
<tr>
<td>ELEM NO: __________________________</td>
</tr>
</tbody>
</table>

Figure 4-12. Cost Summary Format

(7) Required matrices
(a) This guide identifies three matrices basic to the presentation of the POE/CCA. The required matrices are a PME matrix, a time-phased matrix, and an MDEP matrix to support PPBES analyses. A discussion of each of these matrices follows. The analyst may use additional matrices to support specific customer or presentation requirements. As an example, the analyst only presents the matrices described in section 4-7.d.(3) when the CAIG receives the cost estimate.

(b) The PME matrix provides an LCC total by cost element and PME. Figure 4-13 presents this matrix.
Figure 4-13. PME Matrix

(c) The time-phased matrix presents, in a two-dimensional format, three discrete concepts, i.e., time, cost element, and PME. This matrix provides the lowest level of detail in the documentation of the cost estimate. It also serves as the basis for the analyst to complete all data calls. The horizontal axis displays the time dimension. Figure 4-14 shows a sample time-phased matrix with a limited fiscal year display. The fiscal year display matches that shown in the CDF. The analyst can expand or regroup the fiscal year display to meet specific needs, such as an extended planning annex display. The vertical axis displays the cost elements, including the PME as sub-elements of the cost elements.
Figure 4-14. Time-Phased Matrix

(d) Various elements of the CES can be crosswalked to the materiel system's unique MDEPs. Figure 4-15 presents the classes of MDEPs. (Note: Not all cost elements from a system's LCC estimate will map directly into specific MDEP(s).)

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Previous Years</th>
<th>PR YR</th>
<th>CY YR</th>
<th>BY 1</th>
<th>BY 2</th>
<th>FY 3</th>
<th>FY 4</th>
<th>FY 5</th>
<th>FY 6</th>
<th>To Complete</th>
<th>Total Life Cycle Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>PME 1</td>
<td></td>
</tr>
<tr>
<td>PME 2</td>
<td></td>
</tr>
<tr>
<td>PME n</td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>PME 1</td>
<td></td>
</tr>
<tr>
<td>PME 2</td>
<td></td>
</tr>
<tr>
<td>PME n</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td></td>
</tr>
<tr>
<td>1.051</td>
<td></td>
</tr>
<tr>
<td>1.052</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

A - Logistics
AM - Maintenance Activity
AS - Supply Activities
A2 - Second-Destination Transportation
BR - Base Realignment Cost
BS - Base Realignment Savings
CD - Combat Developments
D - Mobilization/Deployment
E - Engineer Revitalization and Activities
FA - Field Operating Agencies
FL - Fielding Systems (Intensively Managed Non-PEO)
FP - Fielding Systems (PEO Intensively Managed)
GP - National Foreign Intelligence Programs
HS - Health Services/Medical Activities
J - Joint/DoD Activities
<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Information Systems</td>
</tr>
<tr>
<td></td>
<td>MP - PEO Managed</td>
</tr>
<tr>
<td></td>
<td>MS - Non-PEO Intensively Managed</td>
</tr>
<tr>
<td></td>
<td>MT - Non-PEO Tactical</td>
</tr>
<tr>
<td></td>
<td>MU - Non-PEO Sustaining Base</td>
</tr>
<tr>
<td></td>
<td>MX - Non-PEO Support Activities</td>
</tr>
<tr>
<td>NG</td>
<td>National Guard Activities</td>
</tr>
<tr>
<td>PA</td>
<td>Pay and Subsistence Active Component</td>
</tr>
<tr>
<td>PN</td>
<td>Pay and Subsistence National Guard</td>
</tr>
<tr>
<td>PR</td>
<td>Pay and Subsistence</td>
</tr>
<tr>
<td>PE</td>
<td>PEO Operations</td>
</tr>
<tr>
<td>Q</td>
<td>SIO</td>
</tr>
<tr>
<td>R</td>
<td>RDA (Non-IM or PEO Managed)</td>
</tr>
<tr>
<td></td>
<td>RA - Close Combat</td>
</tr>
<tr>
<td></td>
<td>RB - Fire Support</td>
</tr>
<tr>
<td></td>
<td>RC - Air Defense</td>
</tr>
<tr>
<td></td>
<td>RD - Aviation</td>
</tr>
<tr>
<td></td>
<td>RE - AMMO</td>
</tr>
<tr>
<td></td>
<td>RF - EMW</td>
</tr>
<tr>
<td></td>
<td>RG - NBC</td>
</tr>
<tr>
<td></td>
<td>RH - IEW</td>
</tr>
<tr>
<td></td>
<td>RJ - CSS</td>
</tr>
<tr>
<td></td>
<td>RK - STB (Tech Base)</td>
</tr>
<tr>
<td></td>
<td>RL - Test Evaluation</td>
</tr>
<tr>
<td></td>
<td>RN - Base Support</td>
</tr>
<tr>
<td></td>
<td>RP - Training</td>
</tr>
<tr>
<td>S</td>
<td>Sustaining</td>
</tr>
<tr>
<td></td>
<td>SL - Sustaining Systems (Intensively Managed Non-PEO)</td>
</tr>
<tr>
<td></td>
<td>SP - PEO Sustaining Systems (Intensively Managed)</td>
</tr>
<tr>
<td>T</td>
<td>Training</td>
</tr>
<tr>
<td></td>
<td>TA - Active Force</td>
</tr>
<tr>
<td></td>
<td>TF - Other Services</td>
</tr>
<tr>
<td></td>
<td>TB - Simulators/Training Devices</td>
</tr>
<tr>
<td></td>
<td>TN - NGB</td>
</tr>
<tr>
<td></td>
<td>TC - Combined Training Centers</td>
</tr>
<tr>
<td></td>
<td>TR - SAR</td>
</tr>
<tr>
<td></td>
<td>TD - Joint/Defense</td>
</tr>
<tr>
<td></td>
<td>TS - Support</td>
</tr>
<tr>
<td>USM</td>
<td>U.S. Military Academy</td>
</tr>
<tr>
<td>V</td>
<td>Special Visibility</td>
</tr>
<tr>
<td>W</td>
<td>MTOE Organizations</td>
</tr>
<tr>
<td>X</td>
<td>TDA Activities</td>
</tr>
</tbody>
</table>
Figure 4-15. Classes of MDEPs

Figure 4-16 presents an MDEP outline showing the different combinations (program elements, projects, and Standard Study Numbers (SSNs)s) possible for materiel systems (both major and non-major). Normally all RDT&E and procurement-funded activities in the time-phased matrix should map directly to a single system’s MDEP. MCA cost elements should track to specific Military Construction, Army (MCA) project numbers in the system's MDEP.

<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Previous</th>
<th>PR</th>
<th>CY</th>
<th>BY</th>
<th>BY</th>
<th>FY</th>
<th>FY</th>
<th>FY</th>
<th>FY</th>
<th>FY</th>
<th>FY</th>
<th>To</th>
<th>Total Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDT&E</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td>PE/Project #1</td>
<td></td>
<td>Cycle Cost</td>
</tr>
<tr>
<td>PE/Project #2</td>
<td></td>
</tr>
<tr>
<td>PROC</td>
<td></td>
</tr>
<tr>
<td>SSN #1</td>
<td></td>
</tr>
<tr>
<td>SSN #2</td>
<td></td>
</tr>
<tr>
<td>OMA</td>
<td></td>
</tr>
<tr>
<td>PE #1</td>
<td></td>
</tr>
<tr>
<td>PE #2</td>
<td></td>
</tr>
<tr>
<td>MCA</td>
<td></td>
</tr>
<tr>
<td>Project #A</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-16. MDEP Outline

4-6. Cost Review Board (CRB)

a. Overview.

(1) The Assistant Secretary of the Army for Financial Management and Comptroller (ASA(FM&C) formed the Army CRB to review cost estimates for major weapon and information
systems. This was in response to the need for a comprehensive ACP acceptable to both the acquisition and financial management communities and to support the Planning, Programming, Budgeting and Execution System (PPBES). This chapter addresses these needs and is in keeping with the DoD 5000 series guidance dated 15 Mar 96.

(2) The ASA (FM&C) is responsible for approving the recommended ACP, which is forwarded to the AAE and then briefed following the ASARC, Information Technology Overarching Integrated Product Team (IT OIPT) or DAB briefing patterns. The task of recommending an ACP falls on the CRB Chairperson who is the Principal Deputy ASA(FM&C). The CRB Chair exercises the Army’s financial management control responsibility through the operation of the Cost Review Board. The CRB uses the Integrated Product Team (IPT) approach. This approach improves the quality of the ACP by bringing together experts from the acquisition, combat developments, financial management, and logistic communities. The membership of this board provides a broad range of Army perspectives and experiences required for making sound decisions. The CRB reviews major weapon and information systems at their critical acquisition decision points. All Army and Joint Army ACAT I programs and programs of special interest must have a recommended ACP briefed to the CRB.

(3) The CRB consists of

(a) Principal Deputy, Assistant Secretary of the Army (ASA), Financial Management & Comptroller (FM&C) is the Chairperson of the CRB

(b) Deputy for Cost Analysis ASA(FM&C), Secretary of the CRB:

(c) Permanent Voting Members:

1) Deputy, Chief of Staff for Programming, DCSPRO-FD
2) Deputy Director, Program Analysis & Evaluation Directorate, Army Staff, DCSPRO-PA
3) Director, Assessment & Evaluation, OASA(ALT)
4) Assistant Secretary of the Army for Installation and Environmental ASA (I&E)
5) Vice Director, Information Systems for Command, Control, Communications and Computers (DISC4)
6) Assistant Deputy for Army Budget, ASA(FM&C)
7) Director of Investment Assistant Secretary for Army Budget, ASA(FM&C)
8) Assistant Deputy Chief of Staff for Logistics, ODCSLOG
9) Director of Aviation, Munitions and War Reserve, ODCSLOG
10) Chief, Cost and Economic Analysis Division, Headquarters, AMC
11) Chief of Cost, Training & Doctrine Command, HQ TRADOC
12) Functional Proponent Representative (Information System only)

(d) **Ad Hoc, Non-Voting Members:**

1) Chief, Program & Manpower Division, HQ FORSCOM
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

2) Representative from the systems Program Executive Office

3) Other experts the CRB Chair deems necessary (e.g., OSD CAIG Analyst)

(4) The Figure 4-17 diagram shows that the CRB principals are represented among the membership of a typical program CAWIPT.

![Diagram of typical functional area teams of an IPT and Cost/CRB IPT membership]

Figure 4-17. Membership Of The Cost/CRB IPT

b. Program Categories:

(1) ACAT ID Programs. The OSD CAIG will develop an ICE for ACAT ID programs as part of the DAB process. The CRB Executive Secretary may decide that it is in the Army’s interest to perform some additional form of independent analysis based on the programs level of risk, maturity, cost growth, etc.

(2) ACAT IC Programs. Recent OSD guidance states that the OSD CAIG unless the service component is otherwise notified, delegates the development of the ICE for ACAT IC programs and has passed that function to the component services. For Army ACAT IC programs USACEAC will develop the ICE for consideration during the ASARC process.

(3) In either situation the recommended ACP must provide to the ASA(FM&C) for approval. Figure 4-18 shows the recommended ACP process as a two stage process. Stage I activities and products take place under the CA WIPT process, while stage II activities and products are part of the CRB IPT process. The members and leadership of both groups are essentially the same and the entire process can be referred to as the Cost/CRB IPT process with the understanding that stage I and stage II processes and products are different.
c. Program Reviews:

(1) ACAT ID Programs. The OSD CAIG develops an ICE, which fulfills the statutory requirement for an independent cost and manpower estimate. However, as noted above Army leadership may decide to develop a CCA for an ACAT ID program based on the program’s level of risk and uncertainty. Therefore, for ACAT ID programs there are two options for the Cost/CRB IPT. If there are no risk and uncertainty issues with the program, the CA WIPT estimate may be sufficient for a recommended ACP. The CA WIPT co-chairs, in coordination with the CRB Support Office and the CRB Executive Secretary, make an initial and on-going assessment of program risk and uncertainty. Based upon the initial assessment or emerging issues, the Cost/CRB Co-chairs may recommend one of two involvement options for the CRB to the CRB Executive Secretary.

(a) Option 1. CRB Executive Secretary decides that the program has no significant risk and the Cost/CRB IPT can go forward with the CA WIPT estimate. The Cost/CRB IPT will then document the estimate, develop a risk analysis, and this will become the recommended ACP. After this has been briefed to the CRB and any needed changes have been made, the ACP will be forwarded to the ASA(FM&C) in the form of a Cost Analysis Brief (CAB). When this is approved by the ASA(FM&C) it becomes the ACP and can be used in the ASARC/DAB process. Under Option 1 the OSD CAIG analyst estimate will fulfill the statutory requirement for an ICE.

(b) Option 2. CRB Executive Secretary decides that the level of program risk and uncertainty warrant an independent Army review of portions, or all, of the CA WIPT estimate. This review will be tailored to fit the situation. Figure 4-19 below illustrates the options for ACAT ID programs.
• Criteria for Determining CRB IPT Options for ACAT ID Programs
 – Cost & Technical Uncertainties
 – Program Cost Growth
 – Program Changes
 – Program Schedule Delays
 – Data Availability
 – AMC Validator, CAIG Analyst, or CRBWG Member Comments and Concerns
 – Stage in Life Cycle
 – Others ...?

Figure 4-19. Options for ACAT ID Programs

(2) ACAT IC Programs. Since the OSD CAIG delegates most ICEs for ACAT IC programs to the Army, the USACEAC Co-chair will prepare an ICE to fulfill the statutory requirement. The CCA analyst will employ the best current professional practice for that task. When comparing two estimates they may incorporate in the ICE, with or without adjustment, specific portions of the CA WIPT estimate, if it has independently established that the portions included are valid.

(a) The decision to incorporate parts of the CA WIPT estimate shall be based on such evidence, as follows:
 1) Current prices or realized costs;
 2) Cost incurred on similar programs; or
 3) A verification based on experience that the methods and data used in constructing the portion accepted are reasonable.

(b) The ICE analyst will document the reasons for incorporation in its estimate of any portion of the CA WIPT estimate.

d. Preparation of the recommended ACP. The Cost/CRB IPT Co-chairs will prepare the recommended ACP. In situations where there is one estimate (ACAT ID, Option 1) the Cost/CRB IPT document the CA WIPT estimate in preparing the recommended ACP. In situations where there are two estimates (ACAT ID, Option 2, and ACAT IC) the Cost/CRB IPT will reconcile the two estimates and develop a single recommended ACP.

e. Cost/CRB IPT Issue Resolution Process:

One of the criteria for the success of the CA WIPT and CRB IPT processes is that reasoned disagreement leads to a better overall product. Any disagreement should be discussed and resolved within the CA WIPT/CRB IPT whenever possible. However, there will be those instances when the disagreement cannot be resolved within this IPT. When the disagreement cannot be resolved within the IPT, the Co-chairs should inform the PM of the problem and possible solution(s). At the same time the Staff Action officers (AO) should inform their supervisor. The PM and Staff AO’s supervisor should
then try to resolve the problem. If a resolution is not possible, the Staff AO’s supervisor should inform the CRB principal of the problem and possible solution(s). The CRB principal and the PM should then try to resolve the problem. If the problem still cannot be resolved, the PM should inform the PEO and the CRB principal should inform the CRB Chairman. The PEO and CRB Chairman should then try to resolve the problem. If the problem still exists, the CRB Chairman should call a special CRB meeting where the problem can be presented with possible solution(s). In most instances the CRB should be able to adjudicate a solution. In the rare instance where this is not possible, the ASA(FM&C) will adjudicate. The ASA(FM&C) is the designate decision authority for cost and financial matters. When issues need to be resolved outside the CA WIPT, all affected parties should keep their respective chains of command informed of the issue, possible solution(s), and steps being taken to resolve the issue. Figure 4-20 illustrates the process.

![Cost IPT Diagram](image)

Figure 4-20. Issue Resolution Process

f. Documenting the ACP:

1. The Cost/CRB IPT Co-chairs, with the assistance of the IPT members, will produce the CAB. The CAB is the responsibility of the Cost/CRB IPT Co-chairs. The documentation produced by the Cost/CRB IPT (in ACEIT) will be the basis for information contained in the CAB. Any remaining unresolved issues from the IPT process will be raised at the appropriate point in the CAB. The package is not complete until any changes that arise from the CRB briefing are adequately addressed. When this package is completed, the Co-chairs will sign the document and forward it to the ASA(FM&C) for approval of the CAB containing the ACP. The Co-chairs will maintain both paper and electronic copies of the approved CAB/ACP.

2. The major sections of the CAB are as follows: Executive Summary, Introduction, System Overview (Description and Schedules), Methodology Summary, ACP (Ground Rules and Assumption, Cost Comparisons (if needed for unresolved issues), and Funding), and Appendices (References and Others, as needed).

3. In addition to the developing the CAB, the Cost/CRB IPT Co-chairs, with the assistance of the IPT members, will brief the CRB on the results of their proceedings. The documentation produced by the Cost/CRB IPT (in ACE-IT) will be the basis for information contained in the briefing. Any remaining unresolved issues from the IPT process will be raised at the appropriate point in the briefing. General format is as follows: Introduction of the CA WIPT members (and description of its proceedings), System Overview, Description of the Milestone Decision, System Quantities, Cost Element Summaries (prior & future), Cost Element Methodologies, Funding Status, Issues, and Recommendations. For option 2 (ACAT ID) and ACAT IC programs a “Selected Cost Comparison” section will be added below Methodology sections. Both sections will address a proposed and an alternative response to the major issues in the program.
(4) The CRB Support Office (CRBSO) has numerous CABs and some CRB briefing packages on file. They can provide advice and assistance to the Co-chairs on these documents. As the proponent for the Army’s cost risk and uncertainty analysis efforts, the CRBSO can provide advice and assistance for that portion of the CAB and CRB briefing packages.

4-7. Army Systems Acquisition Review Council (ASARC)

a. The ASARC is the Army's senior-level review authority for ACAT I, ACAT II, and special programs. The ASARC is established to provide senior acquisition managers and functional principals the opportunity to review designated programs at formal milestones to determine a program or system’s readiness to enter the next acquisition phase. They make recommendations to the AAE and the VCSA, who co-chairs the ASARC, for programs for which the AAE is the MDA. In addition to Milestone reviews, the ASARC may be convened at any time to review the status of a program. ACAT ID programs are subsequently reviewed by the DAB, where the MDA authority is the USD(A&T). The ACP is one critical decision document for the ASARC. In an effort to optimize the acquisition process, the Army has incorporated the principles of Integrated Product and Process Development (IPPD) into the ASARC process. At the core of the IPPD methodology are the IPTs. The Secretary of Defense has directed that the Department perform as many acquisition functions as possible, including oversight and review, using IPTs. These IPTs function in a spirit of teamwork with participants empowered and authorized, to the maximum extent possible, to make commitments for the organization or the functional area they represent. The IPTs themselves, are composed of representatives from all appropriate functional disciplines and the PM, working together to build successful programs. They enable decision-makers to make the right decisions at the right time.

b. There are two IPT elements or levels supporting the PM throughout the ASARC process: (1) the ASARC IPT, and (2) the various Working-level Integrated Product Teams (WIPT). The ASARC IPT, established to support each program, performs the day-to-day work required to support the program throughout the acquisition process, to include those activities leading to a successful milestone decision.

c. ASARC Meeting

(1) An objective of the DoD Acquisition Streamlining procedures is to reduce the number of major program reviews; therefore, the MILDEP Review, concentrating on issues resolvable by the Army, will be the key Army review for ACAT ID programs. Formal ASARC meetings for ACAT ID programs will be held only if issues remain unresolved after the MILDEP Review.

(2) Attendance - The ASARC is composed of staff officials and commanders listed in Table 4-1. The ASARC Executive Secretary has responsibility for preparing the attendee list and the subsequent notification of all three star equivalent attendees. The PM and the DASC will provide the ASARC Executive Secretary a recommended attendance list based on the issues remaining at the conclusion of the MILDEP Review. The DASC will advise ASARC IPT members of the approved attendance list and ensure that the Principals below the three star levels are notified.

Table 4-1. ASARC Membership

| Vice Chief of Staff of the Army - Co-Chairman |
| Army Acquisition Executive* - Co-Chairman |
| Deputy Under Secretary of the Army (Operations Research) |
| Deputy Under Secretary of the Army (International Affairs) |
| Assistant Secretary of the Army (Financial Management) |
| Assistant Secretary of the Army (Research, Development, and Acquisition)* |
| Assistant Secretary of the Army (Installations, Logistics, and Environment) |
| Assistant Secretary of the Army (Manpower and Reserve Affairs) |
| Commanding General, Army Materiel Command |
| Commanding General, Training and Doctrine Command |
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

<table>
<thead>
<tr>
<th>Item</th>
<th>Presenter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>PEO</td>
<td>5 min</td>
</tr>
<tr>
<td>User Briefing</td>
<td>TSM</td>
<td>20 min</td>
</tr>
<tr>
<td>Developer Briefing</td>
<td>PM</td>
<td>30 min</td>
</tr>
<tr>
<td>Operational Effectiveness</td>
<td>OPTEC*</td>
<td>10 min</td>
</tr>
<tr>
<td>Affordability</td>
<td>PAED</td>
<td>10 min</td>
</tr>
<tr>
<td>Discussion</td>
<td>All</td>
<td>40 min</td>
</tr>
<tr>
<td>Summary of Decision</td>
<td>AAE/VCSA</td>
<td>5 min</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>120 min</td>
</tr>
</tbody>
</table>

* If there are no test issues, the PM may brief this portion of the presentation

(4) Preparations - The final MIPS should answer all questions and identify the issues needing resolution by the ASARC. The ASARC briefing presentation should be prepared based on the information/data included in the MIPS. Background on all areas to be briefed in the ASARC - user, developer, tester, and affordability - is contained in the MIPS. Some PMs may choose to include the ASARC briefing slides with the MIPS, thus having a single document/package for the ASARC Principals to review. The overall briefing package should include information on the topics/areas indicated below:

(a) The User briefing should focus on issues related to system requirements and should provide a validation of the requirement. Discussion of the threat must be included in order to identify those current projected enemy capabilities that drive the requirement or affect its ability to
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

operate in the threat environment. At a MS C, certification is required that the forces will be prepared to accept and operate the system when fielded.

(b) The Developer briefing should include an update of accomplishments to date and compliance with previous directions; primarily a description of the issues related to alternatives for the future of the program. The briefing must also address acquisition strategy, schedule, current and future Exit Criteria, and cost. Schedule issues and associated risks must be discussed.

(c) The OPTEC briefing should present the results of required testing and must indicate if the system is operationally effective and suitable (if no test issues exist, the PM may cover testing results in the developer part of the briefing).

(d) The DPAE will brief the Affordability Assessment, which uses the ACP as the basis.

(e) The ASARC IPT Facilitator/DASC will present any unresolved issues and the Army Staff’s Risk Assessment.

d. The Final ASARC IPT meeting is chaired by the VDISC4 or the ASARDA Deputy for Systems Management. The purpose of the meeting is to determine if the program is ready to proceed to the MILDEP Review, and to review the MIPS and the ASARC Briefing. The goal of this final IPT meeting is to ensure that there are no open issues and no non-concurrences going into the MILDEP review. If this is not the case, the ASARC IPT will identify any remaining issues, which require guidance or resolution at the MILDEP review.

(1) Attendance - This Final ASARC IPT meeting will normally be attended by the PEO, PM, all ASARC IPT members, and any staff principals that might be involved in issue discussion and resolution. ASARC IPT members will determine if their staff principal should attend and advise the PM and DASC accordingly. This should only be necessary if the office has an unresolved issue to be briefed and the principal’s representation is needed to discuss and resolve the open issue. If the staff principal does not attend, the ASARC IPT member should be prepared to confirm the principal’s concurrence with the contents of the MIPS.

(2) Agenda - The typical agenda should include a run-through of the proposed briefing slides by the briefers. Where there are issues, which require a staff principal to attend, more time may be allocated to the discussion period. Briefers should present only the information required to support the decisions requested. It is important that all remaining issues are accorded a fair hearing and every effort made to reach resolution prior to the MILDEP Review. A typical Agenda is provided below:

<table>
<thead>
<tr>
<th>Item</th>
<th>Presenter</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>PEO</td>
<td>5 min</td>
</tr>
<tr>
<td>User Briefing</td>
<td>TSM</td>
<td>20 min</td>
</tr>
<tr>
<td>Developer Briefing</td>
<td>PM</td>
<td>30 min</td>
</tr>
<tr>
<td>Operational Effectiveness</td>
<td>OPTEC</td>
<td>10 min</td>
</tr>
<tr>
<td>Affordability</td>
<td>PAED</td>
<td>10 min</td>
</tr>
<tr>
<td>ASARC IPT Memo</td>
<td>DASC</td>
<td>20 min</td>
</tr>
<tr>
<td>Discussion</td>
<td>All</td>
<td>20 min</td>
</tr>
</tbody>
</table>
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

Summary of Decision

<table>
<thead>
<tr>
<th>Summary of Decision</th>
<th>Chairman</th>
<th>5 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td>120 min</td>
</tr>
</tbody>
</table>

(3) Preparations - It is the responsibility of the PM and the DASC to make arrangements for the meeting to include selecting the date, reserving a room and notifying attendees. It should be held 4-5 days before the scheduled brief to the MILDEP. The SARD, DISC4, and ASARC briefing rooms are all adequate for this purpose.

(4) Outcomes - It is important to make every effort to conclude this meeting with no unresolved issues. It is the responsibility of the VDISC or the ASARDA Deputy for Systems Management to determine if the program is ready for the MILDEP review. He also decides whether or not to recommend a “Paper ASARC” to the MILDEP. The PM will prepare a recommended attendance list for the ASARC based on the issues/outcomes of this meeting. In the event that issues still remain, the ASARC Review will be held. The Recommended Attendance List will be provided to the ASARC Executive Secretary before final invitations are issued.

4-8. Cost Analysis Improvement Group (CAIG)

a. The goal is to provide the CAIG Chairman with a thorough understanding of the ACP. This includes the assumptions, data, and analysis made to support the ACP, which is based on the content in as described in the CARD (Section 4-2). The program overview includes acquisition strategy, technologies involved, inventory objectives, and operational concepts. The ACP can be a result of joint estimating or reconciliation. See section 4-6, CRB.

b. CAIG required documentation

(1) The DoD 5000 requires draft documentation of the POE, CCA, and ACP be provided to the CAIG no later than 45 calendar days before OIPT. For delegated programs, the draft documentation is due 45 calendar days before the ASARC’s Milestone B or C review. To be determined (TBD) entries are unacceptable. The USACEAC analyst must provide the CAIG with the final documentation of the updated POE, CCA, and ACP.

(2) The draft documentation of POE, CCA and ACP must contain the analyses to support the estimates. These include the specific assumptions, calculations, and supporting analyses in enough detail to allow the CAIG staff to replicate the estimates. The draft documentation is complete documentation.

(3) The final ACP will contain the changes made after the submission to the drafts. The CAIG must receive the final ACP at least 10 calendar days before a scheduled OIPT.

(4) Copies of the planned CAIG briefing and backup charts, and the briefing text (if it exists) should be submitted to the CAIG prior to the briefing.

c. CAIG briefing

(1) The briefing is scheduled to occur no later than 21 days prior to the OIPT. The format for CAIG briefings is tailored for each individual program. Ordinarily, within the general guidelines provided below, the CAIG, PM and USACEAC action officers agree to a briefing format in advance. The format and content will depend on the issues. Typical elements for a CAIG briefing are:

(a) The POE, CCA (if prepared) and ACP. Note: The POE and ACP can be the same if they are prepared by a joint IPT and it is approved by the ASA (FM&C).
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

(b) Reconciliation of each of the major cost element variances among the POE, CCA, and ACP.

c) Price escalation indices used.

d) Summaries in base-year and then-year dollars.

e) Proposed funding for each alternative.

(f) A year-by-year comparison of the ACP with the program in the latest POM and President's budget.

(2) A typical CAIG briefing will last no more than 2 hours.

4-9. Selected Acquisition Report/Unit Cost Report (SAR/UCR) format

The SAR/UCR format provides for standard, comprehensive summary cost reporting for major acquisition programs. This format is based on the data in the SAR and the UCR (section 6, Defense Acquisition Executive Summary). These reports are required by law—the SAR by Title 10, U.S. Code, Section 2432 and the UCR by Title 10, U.S. Code, Section 2433. Figure 4-21 presents the SAR/UCR format that contains cost data required in the SAR and the UCR. These data aid in showing baselines for total program acquisition costs and unit cost reporting. In addition, they aid in determining the variances during the program's life cycle. The SAR/UCR format as designed provides a crosswalk from a cost estimate using the CES to the SAR baseline and Program Deviation Reports. The SAR baseline reflects the cost, schedule, and performance estimates of the program at the milestone decision point. For a pre-Milestone B report, the SAR reflects the current estimate of cost, schedule, and performance parameters for the initial submissions "as of" date. The SAR requires costs in both base-year and then-year dollars.

<table>
<thead>
<tr>
<th>PROGRAM ACQUISITION</th>
<th>Base-Year $</th>
<th>Then-Year $</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. COST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Development (RDT&E)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Procurement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBS 1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>WBS 2</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>WBS n</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Total Flyaway</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Other Weapon System</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peculiar Support</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Spares</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Construction (MILCON)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>TOTAL (FY XX base-year $)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

Escalation (total dollars)
- Development (RDT&E) N/A
- Procurement N/A
- Construction (MILCON) N/A
- TOTAL (then-year $) N/A

b. QUANTITIES
- Development (RDT&E)*
- Procurement
- Total

II. PROGRAM ACQUISITION UNIT COST SUMMARY
(then-year $)

<table>
<thead>
<tr>
<th>Program Acquisition</th>
<th>Base-Year $</th>
<th>Then-Year $</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Cost (total then-year $)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>(2) Quantity (total)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Unit Cost (1/2)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

NOTE: * Must be "fully configured" for operational use to be counted.

Figure 4-21. SAR/UCR Format

SAR/UCR FORMAT

III. OPERATING AND SUPPORT COSTS
(Milestone B and later, only)

a. Average Annual Cost Per Unit of Measure
(elements approved at Milestone B)

Example:
- Personnel N/A
- O&G Consumables N/A
- Direct Depot Maintenance N/A
- Sustaining Environment N/A
- Other Direct Costs N/A
- Indirect Costs N/A
- **Total** N/A

b. Contractor Support Costs (then-year $)

<table>
<thead>
<tr>
<th>Current & Prior</th>
<th>BY 1</th>
<th>BY 2</th>
<th>Balance to Complete</th>
<th>Total</th>
</tr>
</thead>
</table>

MAY 2001 76
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

O&M
Industrial Fund

IV. COST/QUANTITY INFORMATION

a. First Unit Cost
b. Slope (%, B value)
c. Tabular Data

<table>
<thead>
<tr>
<th>Quantity</th>
<th>FY 1</th>
<th>FY 2</th>
<th>--------</th>
<th>FY n</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flyaway Cost (base-year $)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonrecurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurring</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plot Points (X-axis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-21. SAR/UCR Format (Continued)

4-10. PPBES support analysis

a. The cost elements, as defined, provide an estimating structure that track directly to the budget reporting requirements. In general, the RDT&E-funded elements will normally roll into a specific project number. This assumes that any RDT&E needed to develop system-specific support equipment will be funded under the PM’s project number. The PM, in turn, will fund the support equipment efforts. The procurement-funded elements, as designed, directly map to the required P-Forms. This assumes the system’s PM will buy all support equipment required for the system, with these costs appearing in the P-1 line.

b. Figure 4-22 presents the crosswalk between the cost elements and the RDT&E forms. Figure 4-23 presents the crosswalk between the cost elements and the procurement forms. Figure 4-24 provides the AR 100-XX perspective on procurement accounts for each appropriation.

<table>
<thead>
<tr>
<th>COST ELEMENTS</th>
<th>SYSTEM-SPECIFIC PROJECT NUMBER</th>
<th>OTHER PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 RDT&E FUNDED- ELEMENTS</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>1.01 DEVELOPMENT ENGINEERING</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>1.02 PRODUCIBILITY ENGINEERING AND PLANNING (PEP)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>1.03 DEVELOPMENT TOOLING</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>1.04 PROTOTYPE MANUFACTURING</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>1.05 SYSTEM ENGINEERING/PROGRAM</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

1.06 SYSTEM TEST AND EVALUATION

1.07 TRAINING

1.08 DATA

1.09 SUPPORT EQUIPMENT

1.10 DEVELOPMENT FACILITIES

1.11 OTHER RDT&E

* All the RDT&E-funded elements are included in the 1.0 rollup. The detailed cost-estimating structure is provided to support the estimating process. Each RDT&E project is described by an Army Management Structure Code (AMSCO). In most cases, the first digit of the AMSCO identifies the major force program, the second digit identifies the budget activity, the third digit identifies the research category, and the fourth, fifth, and sixth digits identify a unique serial number. The first three elements are identified below.

<table>
<thead>
<tr>
<th>Major Force Program</th>
<th>Budget Activity</th>
<th>Research Categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strategic</td>
<td>Basic Research</td>
<td>6.1 Basic Research</td>
</tr>
<tr>
<td>General-Purpose Forces</td>
<td>Applied Research</td>
<td>6.2 Applied Research</td>
</tr>
<tr>
<td>Intelligence, Communications, and Other Activities</td>
<td>Advanced Technology Development</td>
<td>6.3A Advanced Technology Development</td>
</tr>
<tr>
<td>Research and Development</td>
<td>Management Support</td>
<td>6.5 Management Support</td>
</tr>
<tr>
<td>Central Supply & Maintenance</td>
<td>Operational Systems Development</td>
<td>6.6 Operational Systems Development</td>
</tr>
</tbody>
</table>

Figure 4-22. Crosswalk from Cost Elements to RDT&E Forms

<table>
<thead>
<tr>
<th>COST ELEMENTS TO PROCUREMENT FORMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 PROCUREMENT-FUNDED ELEMENTS</td>
</tr>
<tr>
<td>P-1 Line (FY 92 and beyond)*</td>
</tr>
<tr>
<td>2.02 RECURRING PRODUCTION</td>
</tr>
<tr>
<td>2.03 ENGINEERING CHANGES</td>
</tr>
<tr>
<td>2.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT</td>
</tr>
<tr>
<td>2.05 SYSTEM TEST AND EVALUATION, PRODUCTION</td>
</tr>
<tr>
<td>2.06 TRAINING</td>
</tr>
<tr>
<td>2.07 DATA</td>
</tr>
<tr>
<td>2.08 SUPPORT EQUIPMENT</td>
</tr>
<tr>
<td>2.09 OPERATIONAL/SITE ACTIVATION</td>
</tr>
<tr>
<td>2.10 FIELDING</td>
</tr>
<tr>
<td>Section</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>2.101</td>
</tr>
<tr>
<td>2.102</td>
</tr>
<tr>
<td>2.103</td>
</tr>
<tr>
<td>2.104</td>
</tr>
<tr>
<td>2.105</td>
</tr>
<tr>
<td>2.106</td>
</tr>
<tr>
<td>2.11</td>
</tr>
<tr>
<td>2.14</td>
</tr>
</tbody>
</table>

Separate P-Form Line—Support Equipment and Facilities

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.01</td>
<td>NONRECURRING PRODUCTION</td>
</tr>
<tr>
<td>2.12</td>
<td>WAR RESERVE AMMUNITION/MISSILES**</td>
</tr>
<tr>
<td>2.13</td>
<td>MODIFICATIONS</td>
</tr>
</tbody>
</table>

NOTES:

* There are some commodity-specific forms (such as the P-5) that require a lower level of detail than required by the time-phased matrix. However, this level of detail is normally included in the cost estimate documentation.

** Normally this element of cost (while an element of the system's life cycle cost) will not be included in the P-1 line for the system.

Figure 4-23. Crosswalk from Cost Elements to Procurement Forms
<table>
<thead>
<tr>
<th>Account</th>
<th>Description</th>
<th>Account</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>Aircraft Procurement, Army</td>
<td>20000000</td>
<td>Missile Procurement, Army</td>
</tr>
<tr>
<td>11000000</td>
<td>Aircraft</td>
<td>22000000</td>
<td>Other Missile</td>
</tr>
<tr>
<td>11100000</td>
<td>Fixed Wing</td>
<td>22100000</td>
<td>Surface to Air</td>
</tr>
<tr>
<td>11200000</td>
<td>Rotary</td>
<td>22200000</td>
<td>Air to Surface</td>
</tr>
<tr>
<td>12000000</td>
<td>Modification of Aircraft</td>
<td>22300000</td>
<td>Anti-Tank/Assault</td>
</tr>
<tr>
<td>13000000</td>
<td>Spares and Repair Parts</td>
<td>23000000</td>
<td>Modification</td>
</tr>
<tr>
<td>14000000</td>
<td>Support Equipment and Facilities</td>
<td>24000000</td>
<td>Spares and Repair Parts</td>
</tr>
<tr>
<td>25000000</td>
<td>Support Equipment and Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30000000</td>
<td>Procurement Weapons and Tracked Combat Vehicles, Army</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31000000</td>
<td>Tracked Combat Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31100000</td>
<td>Tracked Combat Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31200000</td>
<td>Modification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31300000</td>
<td>Support Equipment and Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32000000</td>
<td>Weapons and Other Combat Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32100000</td>
<td>Weapons and Other Combat Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32200000</td>
<td>Modification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32300000</td>
<td>Support Equipment and Facilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40000000</td>
<td>Procurement Ammunition, Army</td>
<td>50000000</td>
<td>Other Procurement, Army</td>
</tr>
<tr>
<td>41000000</td>
<td>Ammunition</td>
<td>51000000</td>
<td>Tactical and Support Vehicles</td>
</tr>
<tr>
<td>41100000</td>
<td>Special Ammunition</td>
<td>51100000</td>
<td>Tactical Vehicles</td>
</tr>
<tr>
<td>41300000</td>
<td>Small/Medium Caliber Ammunition</td>
<td>51200000</td>
<td>Nontactical Vehicles</td>
</tr>
<tr>
<td>41400000</td>
<td>Artillery Fuses</td>
<td>51300000</td>
<td>Modifications</td>
</tr>
<tr>
<td>41500000</td>
<td>Miscellaneous</td>
<td>51400000</td>
<td>Support Equipment and Facilities</td>
</tr>
<tr>
<td>42000000</td>
<td>Ammunition Production Base Support</td>
<td>52000000</td>
<td>Communications and Electronic Equipment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>53000000</td>
<td>Other Support Equipment</td>
</tr>
</tbody>
</table>

Figure 4-24. AR-100-XX Procurement Accounts
CHAPTER 4 - MATERIEL SYSTEMS COST ANALYSIS

4-11. Contract summary analysis

The POE and CCA documentation should provide a track to the major elements of the program contracts. This track should support contract analysis and cost/schedule analysis. The key to this is the development of the program WBS. This manual does not present a format because there is no specific or generic format that applies.
CHAPTER 5 – MATERIEL SYSTEMS SPECIAL TOPICS

5-1. Introduction

This chapter provides an overview of special topics on materiel systems life cycle costing.

5-2. Unit cost definitions

The definitions for the seven key cost terms from DoD 5000.4-M are shown in appendix L. Figure 5-1 presents the new cost elements (Appendix E) crosswalked to the DoD 5000.4-M terms. Also, the figure presents the crosswalk to the Unit Cost Report (UCR) and the Selected Acquisition Report (SAR) definitions.

5-3. Analysis of Alternatives (AOA)

a. An AOA shall be prepared and considered at appropriate milestone decision reviews of ACAT I programs, beginning with program initiation (usually Milestone A). For ACAT IA programs, an AoA shall be prepared by the Procurement Systems Analyst for consideration at Milestone A. These analyses are intended to:

(1) Aid and document decision-making by illuminating the relative advantages and disadvantages of the alternatives being considered. Show the sensitivity of each alternative to possible changes in key assumptions (e.g., threat) or variables (e.g., selected performance capabilities). Where appropriate, include discussion of interoperability and commonality of components/systems that are similar in function to other DoD Component programs or Allied programs. The analysis shall aid decision makers in judging whether or not any of the proposed alternatives to an existing system offer sufficient military and/or economic benefit to be worth the cost. There shall be a clear linkage between the AOA, system requirements, and system evaluation measures of effectiveness.

(2) Foster joint ownership and afford a better understanding of subsequent decisions by early identification and discussion of reasonable alternatives among decision-makers and staffs at all levels. The analysis is intended to be quantitatively based, producing discussion on key assumptions and variables.

b. The DoD Component (or Principal Staff Assistant (PSA) for ACAT IA programs) responsible for the mission area in which a deficiency or opportunity has been identified normally prepares the AoA.

(1) The DoD Component Head (or PSA for ACAT IA programs), or as delegated, but not the PM, is responsible for determining the independent activity responsible for preparing the analysis.

(2) The lead DoD Component for a joint program is responsible for ensuring that a comprehensive analysis is prepared for a joint program. If the single analysis is to be supplemented by individual DoD Component developed analyses, the lead DoD Component shall ensure that the assumptions and methodologies used are consistent across the analyses.

(3) For ACAT ID and ACAT IAM programs, the DoD Component Head or designated official shall ensure coordination with the Under Secretary of Defense (Acquisition and Technology)
CHAPTER 5 - MATERIEL SYSTEMS SPECIAL TOPICS

1.0
Development Engineering
Producibility Engineering and Planning
Development Tooling
Prototypes Manufacturing
System Engineering/Program Management
System Test and Evaluation
Training
Data
Support Equipment
Development Facilities

2.0
Development Engineering
Producibility Engineering and Planning
Development Tooling
Prototypes Manufacturing
System Engineering/Program Management
System Test and Evaluation
Non-Recurring Production
Engineering Changes
System Engineering/Program Management
System Test and Evaluation, Production

3.0
Training
Data
Support Equipment
Operational/Site Activation
Initial Support Equipment
New Equipment Training
Contractor Logistic Support
3. Weapon System Cost **

2.01 thru 2.10 Fielding
4. Procurement Cost (*)**

1.0, 2.01 to 2.10 and 3.0
Development Construction
Production Construction
Operational/Site Activation Construction
Other MC
5. Program Acquisition Cost **

4.0, 5.0, 6.0 past Milestone C and 2.11, 2.12, 2.13, 2.14
Crew
Maintenance
System-Specific Support
System Engineering/Program Management
Replacement Personnel
Other MP
Field Maintenance Civilian Labor
System-Specific Base Operations
Replenishment Spares
Replenishment Repair Parts
Petroleum, Oil and Lubricants
End-Item Supply and Maintenance
Transportation
Software
System Test and Evaluation, Operational
System Engineering/Program Management
Training
Other O&M
Class IX War Reserve
Training Ammunition/Missiles
Modifications
Other Procurement
6. Ownership **

1.0 Thru 6.0
7. Life Cycle Cost

* CPUC (current procurement unit Cost) equals the P-1 line for a given fiscal year (adjusted for prior or current year advanced procurement) divided by quantity. The P-1 line normally should match to procurement cost.

** Same as DoD 5000.4-M and UCR

*** PAUC (program acquisition unit cost) equal program acquisition cost divided by quantity.
(USD (A&T)) or Assistant Secretary of Defense (Command, Control, Communications and Intelligence) (ASD (C3I)) staff, the Joint Staff (or PSA) staff, the DOT&E staff, and the Director, Program Analysis & Evaluation (PA&E) staff takes place early in the development of the alternatives analysis. The staffs can make valuable contributions by ensuring that the full range of alternatives is considered; organizational and operational plans are developed with input from the Commanders in Chief of the Unified Commands and are consistent with U.S. military strategy; and joint-service issues, such as interoperability, security, and common use, are addressed. To form the basis for development of an analysis plan, the Director, PA&E shall prepare guidance for the AOA in coordination with the offices listed above. This guidance shall be issued by USD(A&T) or ASD(C3I).

c. Normally, the DoD Component completes the analysis for ACAT I programs and documents its findings in preparation for a program initiation decision (usually Milestone (I)). The Milestone Decision Authority (MDA) may direct updates to the analysis for subsequent decision points, if conditions warrant. For example, an AoA may be useful in examining cost performance trades at Milestone B. An AoA is unlikely to be required for Milestone C, unless the program or circumstances (e.g., threat, alliances, operating areas, technology) have changed significantly. If the MDA determines that an AoA is required for ACAT IA programs after Milestone A, the PM shall incorporate the analysis into the cost/benefit element structure and process described in 5000.2-R Paragraph 3.5.1.

d. A frequent focus of cost effectiveness analysis is the integration, or combination of cost and effectiveness results. There is no standard approach or single methodology for comparing cost and effectiveness to identify preferred alternatives. Rather, judgments about the relative importance of threats, needs, and tactics are important to the final decision. Cost effectiveness analysis can aid the decision process by providing a strong analytical framework. This framework provides a basis for ranking alternatives, identifying issues, highlighting implications of individual alternatives, and identifying variables that drive results. In this regard, cost effectiveness analysis should compare alternatives in the following context:

1. On the basis of either equal cost or equal effectiveness.
2. Identifying absolute values for measures of cost and effectiveness.
3. Using cost effectiveness ratios or weighted measures carefully. The analyst should clearly explain their use such that the decision maker can interpret the results properly. The analyst should use ratios or weighted measures only with absolute values for cost and effectiveness measures.
4. Identifying dominating relationships.
5. Determining at what threshold results occur or change.
6. Highlighting factors that determine relative ranking of alternatives.

5-4. Unit cost, Army Working Capital Fund (AWCF), and surcharge

a. The total cost-per-output, or unit cost, concept states that all costs incurred within a defined unit cost activity should be related to the output of that activity. This concept supports
CHAPTER 5 - MATERIEL SYSTEMS SPECIAL TOPICS

mission budgeting, mission-focused managing, and measuring the work performed in each unit cost activity. Cost that cannot be identified directly to a product or service can be formulated based on allocation methodologies appropriate for the unit cost activity. This approach has the advantage of encouraging DoD managers to look at all costs, including indirect costs plus the G&A costs, in terms of the output of their business activity (vice the entity itself). Unit costs, once properly mapped and verified, thus have the potential for communicating commonly accepted resource requirements, and are a tool to manage, to measure work performance, and to use as the basis for variance analysis. Further, where unit costs are indeed accurate and timely, the concept helps earlier managerial intervention when cost-to-output goals are not achieved.

b. AWCF combines existing commercial or business operations into a single revolving, or business management, fund. The Army's initial business areas were in revolving funds, but future business areas will include activities from other than revolving funds. Setting up the AWCF does not change any previous organizational reporting structure or command authority relationship. Combining business activities under a single Treasury Code allows consolidation of cash management, while functional and cost management responsibilities remain with the Military Departments and Defense Agencies. Prices for goods and services produced in a component's business area remain the responsibility of that component and are set on a break-even basis over the long term. Profits, if they occur, are returned to customers through lower rates in later years. Losses, if they occur, are recouped through increased rates in later years.

c. AWCF was perceived as the ideal vehicle which total mission could accomplish budgeting through revolving fund principles. Business-type cost accounting systems were already being used in the original AWCF business areas and had the potential to be expanded to recognize both operating costs and capital (amortized) costs. Further, by operating under the premise that directly funded operating forces—the customer, such as Army divisions, Air Force wings, and Navy carrier groups—place demands on AWCF business areas through requisitions and job orders, the provider support infrastructure would be indirectly funded to the level of their sales. Note that there is no direct funding of the provider business areas.

d. A goal of the AWCF is to balance total revenues with total net operating costs. Net operating costs also include all gains and losses on inventories, capitalization, and transfers to reutilization and marketing. Total costs will not include requirements funded by appropriations such as war reserve appropriated amounts. The standard price of items will include a surcharge to cover logistics operations costs. Logistics operations costs represent the total cost of operations for a business area. These costs include integrated materiel management, supply depot operations, and second-destination transportation. Integrated materiel management primarily includes supply management costs, for example, inventory management, procurement, maintenance management, and G&A expenses. Supply depot operations include those costs to receive, ship, store, and preserve the inventory. Second-destination transportation includes those costs to move equipment to and from depots and field units. All AWCF sales will include applicable surcharges, including direct deliveries from contractors, commercial items, nonstandard items, manufacturers part numbered items, and other items without a standard price. The Office of the DoD Comptroller will approve all surcharges, including any special local surcharges.

5-5. Interface with integrated logistics support (ILS) and logistics impact analysis (LIA)

a. ILS and LIAs are crucial for effective system operations after fielding. ILS is a key step in the development of a system.
b. Early in the acquisition process, the developer must define the logistics requirements. Also, the developer must emphasize ILS comparable to cost, schedule, and performance in tradeoff decisions. ILS decisions apply to all acquisition programs, including Nondevelopment item (NDI), as well as development programs, both major and non-major.

5-6. **Interface with program baseline**

a. Baselining captures the program, in detail, for any given phase of the program. The baseline shall embody the cost, schedule, and performance part of the program.

 (1) The concept baseline, approved at Milestone A, shall apply to the effort in Phase I, Program Definition and Risk Reduction.

 (2) The development baseline, approved at Milestone B, shall apply to the effort in Phase II, Engineering and Manufacturing Development.

 (3) The production baseline, approved at Milestone C, shall apply to the effort in Phase III, Production and Deployment.

b. Each baseline will contain goals for key cost, schedule, and performance parameters to include supportability. Normally for each goal, a minimum acceptable threshold exists. The thresholds set deviation limits that the PM may not trade off. DoD 5000.2-R requires acquisition program baselining and deviation reporting for all ACATs.

5-7. **Financial analysis**

Financial analysis is the process of analyzing financial performance through various analytical approaches and techniques. In the Financial Analysis Primer (appendix M), financial analysis is defined as an assessment of a company's past, present, and projected future financial condition, with the goal of evaluating its financial ability to perform. The Financial Analysis Primer is designed for managers and analysts who are interested in financial analysis. The primer is not intended to provide detailed "how to" instructions. Instead, it provides a discussion of the importance of financial analysis to the Army and various approaches to its accomplishment.

5-8. **Operating and Support Management Information System (OSMIS)**

a. The Army developed OSMIS to provide a centralized database for O&S information on fielded materiel systems. OSMIS had its origin in a 1974 initiative from OSD to improve the visibility and control over materiel systems' O&S costs. The initiative called for the Services to develop a management information system to report the actual O&S costs for fielded materiel systems. OSMIS is the Army's response to that requirement.

b. OSMIS is a relational database accessible through the internet at http://www.ceac.army.mil/default.htm. Access is controlled by User ID and password assigned by USACEAC. OSMIS provides data on over 700 systems, June FY90 to the present.

c. OSMIS provides data of the following nature:

 (1) System definitions by WBS;
 (2) Class IX cost data by weapon system;
 (3) Training ammunition by weapon system;
(4) Class IX parts;
(5) POL;
(6) Ammunition;
(7) CLS;
(8) Activity;
(9) Density;
(10) Age;
(11) Total Cost;
(12) Cost/Activity;
(13) Cost/Density;
(14) Consumption;
(15) Intermediate Maintenance Hours;
(16) Depot Maintenance Levels;
(17) Total Army;
(18) Installation;
(19) Unit;
(20) Annual MACOM costs;
(21) Weapon System OPEMPOS;
(22) Annual weapon system depot civilian and military labor costs in comparison to Aviation Intermediate Maintenance (AVIM), Direct Support/General Support (DS/GS), and Directorate of Logistics (DOL) military and civilian labor costs;
(23) Average cost to rebuild/overhaul and repair by weapon/materiel system;
(24) Specific national stock number (NSN) cost driver detail at the Total Army level (down to unit level) for consumable and reparable; and
(25) Historical Class IX reparable and consumable consumption rates (quantity per hour or per mile).
(26) Training Resource Model OPTEMPO rates to include change in logistics and supply policy for budget development.
(27) Age of fleet analysis
(28) Ammunition Training Costs

5-9. Sunk costs

a. Sunk costs are all past expenditures or irrevocably committed funds related to a given cost estimate. Analysts can express sunk costs in either current or constant dollars, but it must be
explicitly stated as to what type of dollars they are. Normally, analysts should not use sunk costs in alternatives for decision making as they reflect previous choices rather than current choices. However, in some cost effectiveness analyses, analysts may use sunk costs in alternatives that consider the value of existing assets versus buying new assets. Sunk costs are an important basis for estimating future trends and are required when documenting the program LCC. As a general practice, analysts estimate costs without regard for which portions, if any, are programmed, budgeted, appropriated, obligated, committed, invoiced, or expended. In life cycle costing, cost analysts must identify all sunk costs and should identify them by cost element.

b. To help tracking to the PPBES process, analysts should separate sunk costs in the estimate in two groupings. The first is the year preceding the current year. Prior year (PY) is the name of this first grouping. The second is a total of all the previous years exclusive of the PY.

c. Funding policy changes have resulted in new cost element definitions. As a result, formerly reported sunk costs do not conform to the new CES used in this manual. The new CES contains special cost elements for sunk cost only. This allows analysts to incorporate directly estimates completed under previous guidance into the new CES. These new cost elements are in the procurement and O&M "other" cost elements (see figure 5-2).
<table>
<thead>
<tr>
<th>Cost Element</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>PROCUREMENT-FUNDED ELEMENTS</td>
</tr>
<tr>
<td>2.14</td>
<td>Other Procurement</td>
</tr>
<tr>
<td>2.141</td>
<td>Replenishment Spares (sunk prior to DMRD 971 funding changes). This element includes all other replenishment spares that are not contained in any of the other procurement funded cost elements.</td>
</tr>
<tr>
<td>2.142</td>
<td>War Reserve Spares (sunk prior to DMRD 971 funding changes). This element includes all other war reserve spares that are not contained in any of the other procurement funded cost elements.</td>
</tr>
<tr>
<td>2.143</td>
<td>Depot Maintenance Materiel (sunk prior to DMRD 971 funding changes). This element includes all other depot maintenance materiel that are not contained in any of the other procurement funded cost elements.</td>
</tr>
<tr>
<td>2.144</td>
<td>Other.</td>
</tr>
<tr>
<td>5.0</td>
<td>OPERATIONS AND MAINTENANCE-FUNDED ELEMENTS</td>
</tr>
<tr>
<td>5.12</td>
<td>Other O&M.</td>
</tr>
<tr>
<td>5.121</td>
<td>Initial Repair Parts (sunk prior to DMRD 971 funding changes). This element includes all other initial repair parts that are not contained in any of the other O&M funded cost elements.</td>
</tr>
<tr>
<td>5.122</td>
<td>War Reserve Repair Parts (sunk prior to DMRD 971 funding changes). This element includes all other war reserve repair parts that are not contained in any of the other O&M funded cost elements.</td>
</tr>
<tr>
<td>5.123</td>
<td>Other.</td>
</tr>
</tbody>
</table>

Figure 5-2. Special Sunk Cost Categories
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

6-1 Introduction

This chapter provides an overview of topics on environmental quality costing. Environmental quality costs for any weapon system are those costs that specifically relate to activities in pollution prevention, compliance, restoration, and conservation.

The Total Ownership Costs of Army weapon systems must address and identify the environmental quality costs associated with their development, production, operations, maintenance, support, and disposal. These costs also include the environmental quality costs at installations that host the system’s operations, overhaul, and disposal, which can be directly linked to the weapon system.

The National Defense Authorization Act for fiscal year 1995 requires the Secretary of Defense, beginning no later than March 31, 1995, to "analyze the environmental costs of a major defense acquisition process as an integral part of the life-cycle cost analysis of the program. "Toward this end, the Secretary is required to issue guidance as to "how to analyze, as early in the process as feasible, the life-cycle environmental costs for such major defense acquisition programs, including the materials to be used, the mode of operations and maintenance, requirements for demilitarization, and methods of disposal, after consideration of all pollution prevention opportunities and in light of all environmental mitigation measures to which the department expressly commits.”

Guidance from the Department of Defense (DoD) Cost Analysis Improvement Group (CAIG) states that environmental quality costs should be included in program cost estimates. This guidance stresses demilitarization and disposal as well as environmental quality costs that may arise in any major element of the Program Office Estimate (POE) cost element structure (CES) or work breakdown structure (WBS) and includes costs arising from requirements for pollution prevention, compliance, conservation, and restoration. This guidance applies to all acquisition category programs.

DoD 5000.2-R requires that environment, safety, and occupational health (ESOH) be integrated into the systems engineering process that translates operational needs and requirements into a system solution including design, manufacturing, test and evaluation, and support processes and products. This recent guidance to environmental quality costing policy states that the cost estimate must present evidence that the environmental quality costs are adequately accounted for.

6-2 Environmental Quality Cost Methods and Work Breakdown Structure

One of the challenges facing the cost analyst is how to integrate the environmental quality costs into a program specific WBS. Guidelines and costing preferences have ranged from costing the environmental quality impact wherever it is appropriate in the WBS to costing the environment as a single entry at each acquisition entry to obtain the total environmental quality cost. One popular recommendation has been to map the environmental quality breakdown structure to the program work breakdown structure starting at the subsystem level and moving progressively to lower levels as the system becomes better defined during the acquisition cycle. Based upon the data normally available during the System Development and Demonstration phase, the cost analyst should be able to collect costs at WBS level five or six for components that have potential environmental quality impacts.

Another recommendation is to estimate the cost of environmental quality impacts as a single entry at each major acquisition phase of the POE. Regardless of the approach used, keep in mind two general environmental quality costing objectives:
• First, ensure that all environmental quality life cycle costs are included in the program estimate.
• Second, provide appropriate visibility to the environmental quality life cycle costs such that they support acquisition decisions.

In summary, what to cost and how much detail to place in the cost estimate will depend upon an accurate assessment of the program and the Cost Analysis Requirements Description (CARD). If the environmental quality risk for the program is significant and has the potential for environmentally catastrophic events or results in significant amounts of hazardous materials, then a significant amount of cost analysis will be necessary. A realistic CARD is the final driver in determining the specific cost estimating requirements since all program cost estimates must align with the information in the CARD. If the cost analyst discovers during the assessment that a program has the potential for significant environmental quality risk or environmental quality costs, then it is appropriate to provide that information to the authors of the CARD for amendment. This assures that the CARD accurately reflects the environmental quality risks of the program and that the cost estimate addresses the costing requirements.

6-3. Environmental Quality Cost Estimating Tools

6-4. Environmental Quality Cost Estimating Core Activities

There are several core activities that are imperative for good environmental quality cost estimating and analysis. Each of the activities described occur over multiple phases of the system’s life cycle. These core activities have been grouped into five categories.

a. Participation. Participation activities are focused on involving the appropriate agencies in environmental quality matters at the appropriate level and phase of the system’s acquisition. Participation by the appropriate agencies at the appropriate time is essential to define requirements, identify alternatives, select the best alternative, and obtain the necessary consensus for implementation of the system. In system acquisition it is often observed that establishing initial participation is the hardest part of continued involvement. Once the habits of participation are established and the benefits demonstrated to the participating activities, their participation will be easier to sustain. As the system’s design is being finalized and system’s specifications are being completed, the opportunities to make significant changes are limited. At a minimum, the following agencies should be participants:

(1) Participation by an environmental quality representative along with the cost analyst or financial management specialist in the weapon system’s Environmental Management Team will enable the participants to more quickly identify the environmental quality cost issues that should be addressed in the program cost estimate. The cost analyst or financial management specialist will also provide the necessary expertise to perform some of the life cycle cost tradeoffs that may be required later in the program. Early integration of environmental quality costs will provide the cost analyst or financial management specialist familiarity with the program’s history and the alternatives reviewed during the decision process.

(2) Testing agency involvement is essential to ensure that the Test and Evaluation Master Plan guidance both meets the needs of the developers and testers to comply with all statutory environmental standards.
(3) Logistics agencies need to become involved early in the acquisition process since the use of hazardous materials and ozone depleting chemicals (ODCs) can affect support concepts.

(4) User agency involvement is essential. This includes, at a minimum, the Office of the Deputy Chief of Staff for Operations and Plans (ODCSOPS) and the U.S. Army Training and Doctrine Command (TRADOC).

(5) The users will bear the bulk of environmental quality costs and their involvement is essential. Environmental quality issues reflected by the users in the operations and support (O&S) phase can often be solved at a minimal cost early in the acquisition life cycle.

(6) Environmental quality agencies associated with the office of the Assistant Chief of Staff for Installation Management, the U.S. Army Corps of Engineers, and the Major Commands have substantial expertise and cost data, which can be useful for estimating environmental quality costs. Early involvement by representatives of these agencies often introduces innovative solutions to costly environmental quality issues.

b. Planning. Environmental quality planning must occur as an essential element of the overall acquisition strategy. Pollution prevention strategies are important considerations in the overall acquisition plan such as performance tradeoffs, material tradeoffs, risk management, source selection procedures, budgeting and funding, test and evaluation, and logistic considerations. Other environmental quality considerations in the acquisition strategy include: demilitarization and disposal, remediation, litigation and liability, environmental quality management, resource conservation, and compliance.

DoD 5000.2-R requires that the acquisition strategy include a programmatic environment, safety, and occupational health evaluation (PESHE) document prepared by the Program Manager (PM). The PM initiates the PESHE at the earliest possible time in support of a program initiation decision and maintains an updated evaluation throughout the life cycle of the program. The PESHE describes the PM’s strategy for meeting ESOH requirements, establishes responsibilities, and identifies how progress will be tracked.

c. Costing. Costing refers to environmental quality cost estimating as well as to the analysis of historical costs necessary for decision-making. As with other cost drivers, environmental quality costing activities occur as appropriate during each phase of system acquisition. The cost estimating may be associated with other tradeoff studies in which only costs sensitive to the tradeoffs are addressed or the cost estimating may be more comprehensive such as in the development of a complete program cost estimate. DoD 5000.2-R requires that hazardous materials be identified that may be encountered or generated during the development, manufacture, transportation, storage, operation, or disposal. Five general topics are identified as highly relevant to environmental quality costing:

(1) Cost Analysis Requirements Description. The CARD is important to the environmental quality management of a program. The CARD provides the environmental quality baseline from a costing perspective. The importance of the CARD cannot be overstated because all program cost estimates are required to be consistent with the CARD. For this reason, it is essential that the CARD explicitly identify all environmental quality requirements, goals, and directives. Environmental quality professionals and cost estimators must work together to identify the environmental quality content of the CARD.

(2) Program Office Estimate. The POE must include costs for environmental quality related activities, products, and services. DoD CAIG guidance specifically requires that the estimate encompass all significant environmental quality costs. Such costs may arise in any or all of the major segments of the estimate and stem from activities for pollution prevention, compliance, remediation, restoration,
conservation, litigation, liability, added management or overhead costs, and/or operation, maintenance, demilitarization, and disposal of the system.

(3) Cost and Environmental Risk Management. Risk management is a large part of the PM’s job. From an environmental quality perspective, the risk management process should include the results of contractor trade studies, material substitutes, elimination of certain regulated materials and environmental compliance during manufacturing. If extremely hazardous materials are used, the Environmental Protection Agency (EPA) may require a separate risk management plan. DoD 5000.2-R already requires a hazardous materials management program. Environmental quality risk to an acquisition program in the form of delayed schedule, increased cost, or degraded performance can be generated by: (a) actions that violate environmental laws; (b) actions that result in natural or physical impacts; (c) actions that result in economic impacts; and (d) actions that result in social impacts.

Managing environmental quality risk is necessary because: (a) the environmental consequences of each proposed program action are required by law to be analyzed; (b) the weapon system acquisition program can become the target of legal proceedings (usually in the form of an injunction) that slow or stop scheduled progress and increase cost; and (c) the decision maker can be held personally liable for penalties if environmental laws are consciously disregarded. The factors to be used to determine environmental quality management program costs can be found in Table 6-1.

(4) Cost as an Independent Variable (CAIV). The environmental quality community supports CAIV for two reasons. First, CAIV places an increased emphasis on life cycle cost thereby bringing increased attention to O&S costs where the majority of environmental quality costs reside. Second, the establishment of aggressive cost objectives means that environmental quality solutions or alternatives that result in lower life cycle costs will receive greater support than they have in the past. This may reverse practices that emphasized lower development and production costs at the expense of higher user and disposal costs. CAIV provides the opportunity for prepared analysis to demonstrate the benefits of environmental quality improvements and influence the decision processes.

(5) Analysis of Alternatives (AOA). The AOA takes the place of what was formerly referred to as the Cost and Operational Effectiveness Analysis (COEA). Environmental quality professionals should provide inputs to the AOA. Pollution prevention considerations should be part of the assumptions, variables, and constraints, especially for the life cycle cost of each alternative. Any updates to the initial AOA should be sufficiently detailed to permit the identification of a preferred alternative and its cost. Cost estimates for AOA should take into account gross estimates of investment and disposal costs. Most of the environmental quality costing associated with the AOA will focus on comparing life cycle costs for material and manufacturing process alternatives to eliminate or reduce the use of hazardous materials.

d. Requirements. The requirements documents, the Operational Requirements Document (ORD) and the Mission Need Statement (MNS), describe key boundary conditions that may affect the operational environments in which the mission is expected to be accomplished. It is appropriate in this section to address environmentally quality sensitive issues. Although there is no requirement in DoD 5000.2-R to address specific environmental quality requirements in the ORD or MNS, using commands are documenting environmental quality requirements such as the “system must be maintainable using no ODCs.” Additionally, environmental quality external requirements, such as Executive Orders (EOs) and Public Laws, are levied upon the service from outside the DoD. These requirements may have a significant effect on system’s environmental quality costs. Reacting to externally generated requirements is best accomplished by a team composed of professionals such as program engineers, environmental quality professionals, and cost analysts.

e. ESOH Engineering and Management. ESOH engineering and management is a category of recurring activities that reviews environmental quality alternatives, monitors and reports on those that are
implemented, and all documentation associated with Federal compliance. Cost estimating supports this category of activities including modeling and measuring the cost effectiveness of different alternatives. Subordinate topics of ESOH engineering and management include:

(1) **Identification and Analysis of Hazardous Materials.** This activity is the heart of a PM’s environmental quality responsibility. PMs are charged with reducing the use of hazardous materials in all phases of weapon system development from concept exploration through disposal and finding alternative materials or processes. A key element in reviewing alternatives is a “could cost” analysis that includes both direct and indirect costs throughout the life cycle. Each milestone review should contain an evaluation of hazardous materials and documentation of the program decisions for pollution prevention.

(2) **Environmental Analysis (EA) and the National Environmental Policy Act (NEPA) Process.** Engineering analyses of environmental quality issues and risks are sometimes referred to as environmental analyses. Though the engineering processes are virtually the same, these various analyses are not to be confused with the EA as defined by the NEPA, which is a formal process that results in a public document. The EA and NEPA processes address the environmental analysis that a program may have to perform to comply with Federal requirements and includes the documentation of that analysis in a manner that complies with current DoD acquisition guidance.

DoD 5000.2-R requires PMs to implement NEPA, its implementing regulations, and appropriate EOs. When required, this analysis begins at the initiating acquisition phase and continues throughout each phase of the acquisition cycle, updating the information previously generated. The analysis feeds into the PESHE. The PESHE is the roadmap or environmental plan that includes the status of documents required for compliance with NEPA, as well as the inclusion of the cost, schedule, and performance impacts of all program environmental quality issues. In costing these elements, the analysts should rely heavily on the input provided by the environmental quality professionals then are guided by the basic principles of economics and informed judgment.

A summary of the PESHE is a component of the Support Strategy and must typically answer, but is not limited to, the questions listed below. Analysts should consider the costs associated to the program actions necessary to answer the questions:

- Are waivers necessary for the successful completion of the program?
- What is the potential for significant adverse environmental quality impacts associated with the decisions to be made during the next acquisition phase?
- How will the NEPA process be used to mitigate environmental quality risks?
- Is there a potential for adverse operational performance or readiness impacts associated with environmental laws, regulations, and EOs?
- What is the design approach for a clean environment?
- How will pollution-free processes be used on the program?
- What is the program environmental quality support strategy?
- How is the program addressing safety, health hazard, and human factor domains?
- What hazardous materials management approach will the contractor use?
- What is the system’s environmental quality life cycle cost as identified in the Army Cost Position? Has it changed since the last milestone review? If so, how?
- What is the ESOH system cost drivers? For the ESOH cost drivers, can you identify the ESOH costs at the subsystem/component level by Milestone C?
- What are the ESOH related labor and material costs?
- Who is responsible for and budgets for the disposal of your system when it is ready? Will an estimate of those be available at the Milestone B review?
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

- When you identify an installation(s) needed to support your system during its life cycle, have you identified funding needed for ESOH related costs associated with that support? What are those costs by fiscal year?

- Are any modifications/upgrades directly related to ESOH for existing systems? Can the ESOH costs be identified for those modifications/upgrades by Milestone C? At DAB, ASARC, or MACOM level?

The Environmental Impact Analysis Process (EIAP) is a direct result of the NEPA and the Council on Environmental Quality (40 CFR, Parts 1500-1508). The EIAP serves two purposes. First, the EIAP forces Federal agencies to assess the environmental quality impacts of their actions in order to make informed decisions. Second, the EIAP allows Federal agencies to inform and include the public in the decision making process of Federal actions that have environmental quality impacts. Some programs, by virtue of design and performance characteristics, may require multiple EIAP documents. The cost analyst using EIAP documents is advised to check for multiple documents on large or complex programs.

(3) Monitoring Contractor Activities. DoD 5000.2-R requires that PMs establish a hazardous material management program to ensure that appropriate consideration is given to eliminating and reducing the use of hazardous materials rather than simply managing the pollution created. The selection, use, and disposal of hazardous materials will be evaluated and managed so that DoD incurs the lowest cost possible to protect human health and the environment. Where a hazardous material cannot be avoided, the PM will plan for later material replacement capability in the system design, if feasible and practical, and shall develop plans and procedures for identifying, minimizing, tracking storing, handling, and disposing of the hazardous material.

A method similar to National Aerospace Standard 411 (NAS-411) is often used to satisfy this management requirement. NAS-411 includes requirements for a hazardous materials management program and its associated reports. In each phase and in each contract, it is expected that the hazardous materials management program will be updated and the reports continued. This process serves to focus the contractor’s attention on hazardous materials. The reports will also enable the PM’s office to monitor the contractor’s efforts. The DoD Defense Acquisition Deskbook contains additional management processes and checklists.

Other methods for monitoring contractor environmental management are through the use of logistics support information. Logistics support information is typically an electronic database generated by the contractor as part of the design process. It may be referred to as the Logistics Management Information (LMI) system. The LMI system is one of the primary methods for recording important environmental information throughout the system acquisition cycle as it provides a summary of all hazardous materials that are required to support the system or any component therein. Early identification of potential pollutants and hazardous materials can assist in implementing optimum prevention strategies. Reports generated from the electronic database can prove useful for cost estimates of hazardous materials and their associated storage and disposal costs.

(4) Procurement Action. The Program Management Office (PMO) and the prime contractor need to function as a team when addressing environmental quality issues. Whether in the initial system acquisition or performing major modifications to existing weapon systems, the same activities are used to form the Government and contractor team. The Statement of Objectives or Statement of Work, Request for Proposal, and source selection activities establish the requirements and expectations. Most of the activities involved in procurement have an impact on environmental cost and will provide valuable insight to the cost analyst.

In source selection, cost estimating support may be required to evaluate the environmental quality costs presented by the contractor. The cost analyst should pay close attention to:
activities and costs anticipated during system support, training, demilitarization, and disposal;
identification of all activities associated with pollution prevention and hazardous materials
and ensure that their costs are factored into unit costs or costs of the program; and
risk possibilities, consequences, and estimates for remediation.

(5) Program Technical Reviews. Each phase of the system acquisition cycle may have program
technical reviews. Particular emphasis is placed on ensuring that adequate consideration has been given
to logistics support, software, test, and production constraints. Design reviews in the later stages of
development are critical milestones for assessing the status of program environmental management.
From a management perspective, the reviewers will compare pollution prevention accomplishments to
those postulated in the Integrated Master Plan. These design reviews should include a review of pollution
prevention metrics, drawings, and documents, which define material content. Specific items of interest to
the cost analyst may include other cost estimates, environmental related trade studies, and the contractor’s
approach to pollution prevention and hazardous materials management.

6-5. Residual or salvage value

Residual value, or salvage value, is the estimation of the future value of assets that will be
available later for alternative uses. An example is when a major system phases out of the Army's
inventory. Some assets will have value because they can fill requirements of future organizations or can
be sold.

The analyst should not use residual values to reduce life cycle costs. These costs are sunk by the
time residual values come into play. Residual value is a benefit that is very speculative. Residual value
does not represent savings but does represent a potential value. Salvage value is usually negligible.

6-6. Trends in the Environment Quality Impacting the Cost Estimate

Since Acquisition Reform and Streamlining, the DoD’s system acquisition processes have
continued to undergo changes and adjustments to many of their acquisition procedures. Increased
reliance upon commercial equipment, reduced reliance upon specifications and standards, and increased
environmental regulations are just a few processes undergoing changes. This section highlights
environmental changes to cost management. Cost analysts may use this section of the Cost Analysis
Manual for planning system acquisition activities. However, cost analysts are cautioned to check with
Department of the Army functional managers for the latest guidance as changes are occurring rapidly.

a. Demilitarization and Disposal (D&D). For certain types of weapon systems, typically
ordnance or munitions related, the area with the greatest potential for extensive environmental quality
cost impacts is demilitarization and disposal. Although the revised DoD 5000.2-R does not include a
separate D&D phase, the emphasis on D&D costs remains high.

It is important that the cost analyst distinguish between D&D costs and other environmental
quality costs. D&D costs and environmental quality costs overlap considerably within the umbrella of
total life cycle costs, especially when D&D costs occur due to environmental compliance or remediation
requirements. Generally speaking, pollution prevention should be included in all phases of the system
acquisition life cycle including D&D.

b. Streamlined Acquisition Procedures. The area of streamlining is changing rapidly and new
procedures are not as well documented as the PESHE changes or D&D costing. MIL-STD-881B has
been reduced to MIL-HDBK-881B, a guidance document only. That reduction may make it more
difficult to compare costs between programs. As a result, decision makers will be challenged to make
c. **Affirmative Procurement.** Affirmative procurement is the establishment of specific requirements for the purchase of environmentally preferred products and services. The purchase of recycled materials will be emphasized and contract awards will be evaluated based upon the objectives. Cost estimating techniques and source selection will need to address affirmative procurement.

d. **Contractor Overhead Management.** The contractor’s overhead represents a sizable portion of the cost of a Government contract. Recent trends attempt to drive down overhead costs. Cost analysts need to remain aware that most contractors currently carry the majority of their environmental quality activities as overhead. With more cost-plus contracts, contractors will be pressured to reduce overhead costs, including needed environmental quality activities. The environmental quality activities embedded in the overhead rate structure could be reduced in an effort to lower overhead rates. PMOs may want to consider overhead “should cost” analyses to gain insight into the environmental quality costs that reside in the contractor’s overhead rates.

e. **EO 12969 and EPCRA.** Executive Order (EO) 12969 was released on 8 August 1995. EO 12969 requires toxic release inventory reporting for all Federal acquisitions. This requirement is consistent with, and supports, the Emergency Planning and Community Right-To-Know Act (EPCRA). EO 12856 requires compliance with EPCRA while the Federal Facilities Compliance Act also requires federal facilities and operations to comply with all environmental laws and regulations including state requirements for reporting hazardous material spills and releases. Therefore, even if the Federal requirement was dropped for EPCRA reporting, the states may still have this reporting requirement. This can increase the environmental quality costs for weapon systems.
Table 6-1. Environmental Cost Elements

<table>
<thead>
<tr>
<th>CES/WBS</th>
<th>Element Name</th>
<th>Overhead</th>
<th>Tradeoff Analyses</th>
<th>NEPA</th>
<th>Pollution Prevention</th>
<th>Conservation</th>
<th>Remediation and Restoration</th>
<th>Demil and Disposal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>RDT&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.01</td>
<td>Dev Eng</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.02</td>
<td>PEP</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.03</td>
<td>Dev Tool</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>Proto Mlg</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>SE/PM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.06</td>
<td>ST&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.07</td>
<td>Training</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>1.08</td>
<td>Data</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.09</td>
<td>Sppt Equip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.10</td>
<td>Dev Fac</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>1.11</td>
<td>Other RDT&E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Procurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.01</td>
<td>Nonrecr Prod</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.02</td>
<td>Recur Prod</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.03</td>
<td>Engr Chng</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.04</td>
<td>SE/PM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.05</td>
<td>ST&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.06</td>
<td>Training</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.07</td>
<td>Data</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.08</td>
<td>Sppt Equip</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.09</td>
<td>Op/Site Act</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.10</td>
<td>Fielding</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>2.11</td>
<td>Trg Ammo/Msl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.12</td>
<td>WR Ammo/Msl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.13</td>
<td>Mods</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>2.14</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Mil Constrct</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.01</td>
<td>Dev Constrct</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3.02</td>
<td>Prod Constrct</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>3.03</td>
<td>Op/Site Act</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.04</td>
<td>Other</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>4.0</td>
<td>Mil Pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.01</td>
<td>Crew</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.02</td>
<td>Maintenance</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.03</td>
<td>Sys Spec Sppt</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.04</td>
<td>SE/PM</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.05</td>
<td>Repl Persnl</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.06</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td>D&M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.01</td>
<td>Fld Maint (Civ)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.02</td>
<td>Sys Sp Base Op</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.03</td>
<td>Spares</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.04</td>
<td>Repr Parts</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.05</td>
<td>POL</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.06</td>
<td>End Item D&M</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.07</td>
<td>Transportation</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.08</td>
<td>Software</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.09</td>
<td>ST&E</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.10</td>
<td>SE/PM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.11</td>
<td>Training</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>5.12</td>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td>AWCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.01</td>
<td>Wr Res</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

1. Overhead includes costs for environmental management; compliance, plans, permits, reports, tests and assessments; cost and liability risk. All costs under overhead must be broken out separately, if at all possible.
2. Tradeoff analyses include costs for environmental compliance review; safety and health; and pollution prevention program. All costs under tradeoff analyses must be broken out separately, if at all possible.
3. NEPA includes costs for NEPA documentation and NEPA mitigation actions. All costs under NEPA must be broken out separately, if at all possible.
4. Pollution Prevention include costs for pollution prevention implementation and hazardous material disposal. All costs under pollution prevention must be broken out separately, if at all possible.
5. Conservation includes costs for natural and cultural resources and land management and conservation. All costs under conservation should be broken out separately, if at all possible.
OVERHEAD

Overhead applies to the design contractor, in-house laboratories, original equipment manufacturers, Government-owned, contractor-operated (GOCO) plants, testing contractors, testing installations, training contractor, training installation, field installations, and Depot/Arsenals. Overhead is an aggregate of charges that are not specific to a particular action. Environmental quality overhead include personnel and other charges that are necessary to keep the facility open. Overhead directly related to the environmental quality cost elements include:

- Compliance, Plans, Permits, Reports, Tests and Assessments
- Environmental Management – Personnel Support
- Cost and Liability Risk
- Contractor Costs

If possible, costs for these four Overhead subcategories must be broken out separately.

Further explanation of these environmental quality cost element subcategories are as follows:

Compliance, Plans, Permits, Reports, Tests and Assessments. This subcategory includes all of the costs associated with attaining and sustaining compliance with Federal, state, and local environmental laws and regulations. This also includes the costs associated with compliance outside the continental United States. This will also include the cost studies to support the documentation of environmental impacts, as well as application fees, settlements, fines, reimbursements paid to national, Federal, and state governments or other municipalities and all payments made to legally certify operations. The cost elements in this category address some of the following environmental quality requirements including the National Environmental Policy Act, Clean Air Act, Clean Water Act, Safe Drinking Water Act, Resource Conservation and Recovery Act, Toxic Substances Control Act, Occupational Safety and Health Act, compliance with the Emergency Planning and Community Right-To-Know Act, and plans, permits, studies, and audits.

Environmental Management. This subcategory includes all the costs associated with the management of environmental quality programs. Environmental quality program management includes the development of plans and programs associated with environmental pollution prevention, compliance, restoration, and conservation. The professional support functions associated with these plans, programs, and other environmental quality management activities are included in this element.

Cost and Liability Risk. This subcategory includes all of the costs associated with legal liability. Included is the cost of settling legal claims against the U.S. Government that results from the adverse environmental impacts of weapon system operations. Examples are costs of property devaluation and personal health issues resulting from contamination of private or public property.

Contractor Costs. Contractor environmental costs from contractor operations can be obtained from past projects and can be reported as a fixed percentage of the total contractor costs. This subcategory includes all environmental costs incurred by the contractor/manufacturer of the weapon system.
TRADEOFF ANALYSES

PMs conduct tradeoff analyses to maintain compliance with DoD 5000.2-R requirements. Tradeoff analyses include studies necessary to reduce overhead. Tradeoff analyses can be contracted tasks to design contractors, in-house laboratories, original equipment manufacturers, GOCO plants, testing contractors, testing installations, Depot/Arsenals, and PMO support contractors. Tradeoff analyses directly related to the environmental quality cost element include:

- Environmental Compliance Review
- Safety and Health
- Hazardous Materials Management Program

If possible, costs for these three Tradeoff Analyses subcategories must be broken out separately.

Further explanation of these environmental quality cost element subcategories are as follows:

Environmental Compliance Review. An environmental compliance review encompasses the whole life cycle of the system acquisition and focuses on maintaining compliance with environmental laws and regulations. Environmental compliance tradeoff analyses should be conducted in the early stages of the design of the weapon system to ensure that the system is in compliance.

Safety and Health. Safety and health studies help to minimize potential adverse effects on weapon system developers and operators. Most of the safety and health requirements can be found in the PESHE document developed by the PM.

Hazardous Materials Management Program. This subcategory includes developing a program to track the use of hazardous materials in each phase of system acquisition development and is required by DoD 5000.2-R. The hazardous materials management program involves the simple pharmacy approach for hazardous materials management. Hazardous materials are centrally stored and are checked out when required. This type of program helps to track the usage and disposal of hazardous materials that are used in each phase of the weapon system.

NEPA

The purpose of the NEPA is to identify environmental impacts from federal facilities and to determine alternative procedures. This includes conducting environmental assessments and environmental impact statements of Federal sites and preparing ESOH evaluations. Studies support that documentation of environmental impacts address the identification of natural and cultural resources, wildlife and plant inventory, and noise control requirements.

NEPA activities directly related to the environmental quality cost elements include:

- NEPA Documentation
- NEPA Mitigation Actions

If possible, costs for these two NEPA subcategories must be broken out separately.

Further explanation of these environmental quality cost element subcategories are as follows:

NEPA Documentation. NEPA documentation includes any type of environmental assessment or environmental impact statement documentation. This could be conducted at any phase of the weapon system.

NEPA Mitigation Actions. Mitigation actions are direct actions resulting from NEPA documentation. These actions are most likely to be found in the operations and support phase of the weapon system.
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

POLLUTION PREVENTION

This category includes all the costs associated with pollution prevention. These costs include the development of pollution prevention and programs as well as their implementation. This includes the hands-on control of hazardous materials or all processes throughout each phase, and the disposal of generated hazardous wastes. Hazardous waste is any waste that may be considered ignitable, corrosive, toxic, or reactive. The Resource Conservation and Recovery Act is the principal Federal law, which provides for the regulation of hazardous waste. Other examples in this category may be capital outlay for equipment used to capture and store waste, changes to manufacturing productivity due to personal protection equipment, or the cost of operating a hazardous material pharmacy system, as well as fees paid for off site disposal of waste material.

Further explanation of these environmental quality cost element subcategories are as follows:

Pollution Prevention Program. This category includes studies to reduce pollution in all phases of the weapon system and is required by DoD 5000.2-R. Reducing pollution throughout the life cycle of the weapon system will help to cut down environmental quality costs in each acquisition phase.

Pollution Prevention Implementation. Implementation of pollution prevention measures is a direct result of tradeoff analyses conducted. These measures help to reduce pollution in production operations.

If possible, costs for these two Pollution Prevention subcategories must be broken out separately.

CONSERVATION

This category includes all costs associated with conservation measures directly attributed to weapon system activity. Conservation activities directly related to the environmental quality cost elements include:

Land Management and Conservation. The costs associated with this subcategory are attributed to training centers, test ranges, and fielding installations. These areas require conservation and maintenance to ensure extended life for these centers, ranges, and installations.

Natural and Cultural Resources. The costs associated with this subcategory are attributed to training centers, test ranges, and fielding installations. These areas require conservation and maintenance to ensure extended life for these centers, ranges, and installations. This section includes all the costs associated with Natural and Cultural Resource Preservation for use by future generations. Examples of this element may include relocating operations away from proximity to resources requiring protection.

If possible, costs for these two Conservation subcategories must be broken out separately.

REMEDIATION AND RESTORATION

This category includes all the costs associated with environmental cleanup of contaminated sites. Environmental cleanup involves the remediation of soils, sediment, groundwater, surface water, and structures contaminated with hazardous and/or toxic materials. Contamination will result from peacetime operations including training, but not including operations connected with actual or threatened hostilities, peacekeeping missions, or relief operations. Contamination may occur within the territory of a nation other than the United States and will be subject to the laws and requirements of that nation.
Environmental cleanup involves the remediation of soils, sediment, groundwater, surface water, and structures contaminated with hazardous and/or toxic materials from weapon system activities.

DEMILITARIZATION AND DISPOSAL

Demilitarization and disposal refers to the disposal of equipment and facilities at the end of their useful life. Demilitarization and disposal includes the transfer, donation, selling, redistribution, and disposal. This also includes deactivation and demilitarization phase-out with distribution of inert materials and disposal of any associated hazardous wastes. This section also includes the cost of disposing of a system or facility at the end of their useful life. Disposal is the process of redistributing, transferring, donating, selling, or demilitarizing the system. Demilitarization is a subset of disposal and is the act of deactivating or rendering inoperable by destroying the military offensive or defensive advantage inherent in an item. The complete deactivation and demilitarization of a system entails not only the disposal of hazardous wastes but also the proper distribution of inert materials and support equipment as well.
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

ENVIRONMENTAL COST ELEMENTS

The following environmental definitions are meant to assist the cost analyst when costing environmental issues. Only the cost elements that have potential environmental costs associated with the element are explained. In some analyses, not all of the environmental cost elements can be accounted for depending on the type of system being analyzed. For more non-environmental detailed explanations of each CES, refer to Appendix E of the Cost Analysis Manual.

1.0 RESEARCH, DEVELOPMENT, TEST, AND EVALUATION (RDT&E)-FUNDED ELEMENTS

1.01 DEVELOPMENT ENGINEERING

The design contractor and Government in-house laboratory can be involved in the Development Engineering cost element. Environmental cost element categories that should be considered for Development Engineering include:
- **Overhead**: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
- **Tradeoff Analyses**: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
- **Pollution Prevention**: Pollution Prevention Program; Pollution Prevention Implementation
- **Demilitarization and Disposal**: Demilitarization and Disposal

1.02 PRODUCIBILITY ENGINEERING AND PLANNING

The original equipment manufacturer can be involved in the Producibility Engineering and Planning cost element. Environmental cost element categories that should be considered for Producibility Engineering and Planning include:
- **Overhead**: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
- **Tradeoff Analyses**: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
- **Pollution Prevention**: Pollution Prevention Program; Pollution Prevention Implementation
- **Demilitarization and Disposal**

1.03 DEVELOPMENT TOOLING

The original equipment manufacturer and GOCO plant can be involved in the Development Tooling cost element. Environmental cost element categories that should be considered for Development Tooling include:
- **Overhead**: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
- **Pollution Prevention**: Pollution Prevention Program; Pollution Prevention Implementation
- **Demilitarization and Disposal**

1.04 PROTOTYPE MANUFACTURING
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

The original equipment manufacturer and GOCO plant can be involved in the Prototype Manufacturing cost element. Environmental cost element categories that should be considered for Prototype Manufacturing include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Demilitarization and Disposal

1.05 SYSTEM ENGINEERING/PROGRAM MANAGEMENT

1.051 PROJECT MANAGEMENT ADMINISTRATION

1.052 OTHER

The PMO and contractor support to the PMO can be involved in the System Engineering/Program Management cost element. Environmental cost element categories that should be considered for System Engineering/Program Management include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Demilitarization and Disposal

1.06 SYSTEM TEST AND EVALUATION

The testing installation and testing contractor can be involved in the System Test and Evaluation cost element. Environmental cost element categories that should be considered for System Test and Evaluation include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

1.07 TRAINING

The testing contractor, training installation, and fielding installation can be involved in the Training cost element. Environmental cost element categories that should be considered for Training include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

Conservation: Natural and Cultural Resources; Land Management and Conservation
Remediation and Restoration
Demilitarization and Disposal

1.08 DATA

Environmental cost element categories that should be considered for Data include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
NEPA: NEPA Documentation; NEPA Mitigating Actions
Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation
Conservation: Natural and Cultural Resources: Land Management and Conservation
Remediation and Restoration
Demilitarization and Disposal

1.09 SUPPORT EQUIPMENT

1.091 PECULIAR
1.092 COMMON

The environmental cost element category that should be considered for Support Equipment include:
Demilitarization and Disposal

1.10 DEVELOPMENT FACILITIES

The design contractor, Government in-house laboratory, original equipment manufacturer, and GOCO plant can be involved in the Development Facilities cost element. Environmental cost element categories that should be considered for Development Facilities include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
NEPA: NEPA Documentation; NEPA Mitigating Actions
Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation
Conservation: Natural and Cultural Resources: Land Management and Conservation
Remediation and Restoration

1.11 OTHER RDT&E

Include any additional environmental costs not captured in the RDT&E cost elements.

2.0 PROCUREMENT-FUNDED ELEMENTS

2.01 NONRECURRING PRODUCTION

2.011 INITIAL PRODUCTION FACILITIES
2.012 PRODUCTION BASE SUPPORT
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

2.013 OTHER

The original equipment manufacturer and GOCO plant can be involved in the Nonrecurring Production cost element. Environmental cost element categories that should be considered for Nonrecurring production include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.02 RECURRING PRODUCTION

2.021 MANUFACTURING

2.022 RECURRING ENGINEERING

2.023 SUSTAINING TOOLING

2.024 QUALITY CONTROL

2.025 OTHER RECURRING PRODUCTION

The original equipment manufacturer and GOCO plant can be involved in the Recurring Production cost element. Environmental cost element categories that should be considered for Recurring Production include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.03 ENGINEERING CHANGES

The original equipment manufacturer and GOCO plant can be involved in the Engineering Changes cost element. Environmental cost element categories that should be considered for Engineering Changes include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

2.041 PROJECT MANAGEMENT ADMINISTRATION

2.042 OTHER

The PMO and contractor support to the PMO can be involved in the System Engineering/Program Management cost element. Environmental cost element categories that should be considered for System Engineering/Program Management include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

2.05 SYSTEM TEST AND EVALUATION, PRODUCTION

The testing installation and testing contractor can be involved in the System Test and Evaluation, Production cost element. Environmental cost element categories that should be considered for System Test and Evaluation, Production include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.06 TRAINING

The training contractor, training installation, and fielding installation can be involved in the Training cost element. Environmental cost element categories that should be considered for Training include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources: Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.07 DATA

The environmental cost category that should be considered for Data include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

2.08 SUPPORT EQUIPMENT
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

2.081 PECULIAR
2.082 COMMON

The environmental cost category that should be considered for Support Equipment include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

2.09 OPERATIONAL/SITE ACTIVATION

Environmental cost categories that should be considered for Operational/Site Activation include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

2.10 FIELDING

2.101 INITIAL DEPOT-LEVEL REPARABLES
2.102 INITIAL CONSUMABLES
2.103 INITIAL SUPPORT EQUIPMENT
2.104 TRANSPORTATION
2.105 NEW EQUIPMENT TRAINING
2.106 CONTRACTOR LOGISTICS SUPPORT

The training contractor, training installation, and fielding installation can be involved in the Fielding cost element. Environmental cost element categories that should be considered for Fielding include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

2.11 TRAINING AMMUNITION/MISSILES

The environmental cost elements category that should be considered for Training Ammunition/Missiles include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

2.12 WAR RESERVE AMMUNITION/MISSILES

The environmental cost element category that should be considered for War Reserve Ammunition/Missiles include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

2.13 MODIFICATIONS

MAY 2001 108
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

The original equipment manufacturer and GOCO plant can be involved in the Modifications cost element. Environmental cost element categories that should be considered for Modifications include:

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Remediation and Restoration

Demilitarization and Disposal

2.14 OTHER PROCUREMENT

Include any additional environmental costs not captured in the Procurement cost elements.

3.0 MILITARY CONSTRUCTION (MC)-FUNDED ELEMENTS

3.01 DEVELOPMENT CONSTRUCTION

The Government in-house laboratory can be involved in the Development Construction cost element. Environmental cost element categories that should be considered for Development Construction include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

3.02 PRODUCTION CONSTRUCTION

The GOCO plant can be involved in the Production Construction cost element. Environmental cost element categories that should be considered for Production Construction include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

3.03 OPERATIONAL/SITE ACTIVATION CONSTRUCTION

The fielding installation can be involved in the Operational/Site Activation Construction cost element. Environmental cost element categories that should be considered for Operational/Site Activation Construction include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
NEPA: NEPA Documentation; NEPA Mitigating Actions
Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation
Conservation: Natural and Cultural Resources; Land Management and Conservation
Remediation and Restoration
Demilitarization and Disposal

3.04 OTHER MC

The fielding installation, training installation, and Depot/Arsenal can be involved in the Other MC cost element. Environmental cost element categories that should be considered for Other MC include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program
NEPA: NEPA Documentation; NEPA Mitigating Actions
Conservation: Natural and Cultural Resources; Land Management and Conservation
Remediation and Restoration
Demilitarization and Disposal

4.0 MILITARY PERSONNEL (MP) DIRECT-FUNDED ELEMENTS

4.01 CREW

The environmental cost element category that should be considered for Crew include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

4.02 MAINTENANCE

The environmental cost element category that should be considered for Maintenance include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

4.03 SYSTEM-SPECIFIC SUPPORT

The environmental cost element category that should be considered for System-Specific Support include:
Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

4.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
4.041 PROJECT MANAGEMENT ADMINISTRATION
4.042 OTHER

The environmental cost element category that should be considered for other system engineering/program management include:
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

4.05 REPLACEMENT PERSONNEL
 4.051 TRAINING
 4.052 PERMANENT CHANGE OF STATION

 The environmental cost element subcategory that should be considered for Replacement Personnel include:
 Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

4.06 OTHER MILITARY PERSONNEL

 Include any additional environmental costs not captured in the Military Personnel cost elements.

5.0 OPERATIONS AND MAINTENANCE (O&M)-FUNDED ELEMENTS

5.01 FIELD MAINTENANCE CIVILIAN LABOR

 Environmental cost element categories that should be included for Field Maintenance Civilian Labor include:
 Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs
 Remediation and Restoration

5.02 SYSTEM-SPECIFIC BASE OPERATIONS

 Environmental cost element categories that should be considered for System-Specific Base Operations include:
 Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation
 Conservation: Natural and Cultural Resources; Land Management and Conservation
 Remediation and Restoration
 Demilitarization and Disposal

5.03 REPLENISHMENT DEPOT-LEVEL REPARABLES (SPARES)

 Environmental cost element categories that should be considered for Replenishment Depot-Level Reparables include:
 Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

5.04 REPLENISHMENT CONSUMABLES (REPAIR PARTS)

 Environmental cost element categories that should be considered for Replenishment Consumables include:
 Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

5.05 PETROLEUM, OIL, AND LUBRICANTS (POL)
Environmental cost element categories that should be considered for Petroleum, Oil, and Lubricants include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Demilitarization and Disposal

5.06 END-ITEM SUPPLY AND MAINTENANCE

5.061 OVERHAUL
5.062 INTEGRATED MATERIEL MANAGEMENT
5.063 SUPPLY DEPOT SUPPORT
5.064 INDUSTRIAL READINESS
5.065 DEMILITARIZATION

The fielding installations, Depot/Arsenal, and contractor can be involved in the End-Item Supply and Maintenance cost element. Environmental cost element categories that should be considered for End-Item Supply and Maintenance include:

OVERHEAD: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal

5.07 TRANSPORTATION (SECOND DESTINATION)

Environmental cost element categories that should be considered for Transportation include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Remediation and Restoration

Demilitarization and Disposal

5.08 SOFTWARE

Environmental cost element category that should be considered for Software include:

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

5.09 SYSTEM TEST AND EVALUATION, OPERATIONAL

The testing installation and testing contractor can be involved in the System Test and Evaluation, Operational cost element. Environmental cost element categories that should be considered for System Test and Evaluation, Operational include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration
CHAPTER 6 – ENVIRONMENTAL QUALITY COSTING

Demilitarization and Disposal

5.10 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
 5.101 PROJECT MANAGEMENT ADMINISTRATION
 5.102 OTHER

The PMO can be involved in the System Engineering/Program Management cost element. Environmental cost element category that should be considered for System Engineering/Program Management include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Tradeoff Analyses: Environmental Compliance Review; Safety and Health; Hazardous Materials Management Program

NEPA: NEPA Documentation; NEPA Mitigating Actions

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Remediation and Restoration

Demilitarization and Disposal

5.11 TRAINING

The PMO, fielding installations, and Depot/Arsenal can be involved in the Training cost element. Environmental cost element category that should be considered for Training include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Demilitarization and Disposal

5.12 OTHER

Environmental cost element categories that should be considered in other include:

Remediation and Restoration

Demilitarization and Disposal

6.0 ARMY WORKING CAPITAL FUND (AWCF)

6.01 AWCF CLASS IX WAR RESERVE

Environmental cost element categories that should be considered for AWCF Class IX War Reserve include:

Overhead: Compliance, Plans, Permits, Reports, Tests and Assessments; Environmental Management; Cost and Liability Risk; Contractor Costs

Pollution Prevention: Pollution Prevention Program; Pollution Prevention Implementation

Conservation: Natural and Cultural Resources; Land Management and Conservation

Remediation and Restoration

Demilitarization and Disposal
CHAPTER 7 – FORCE COSTING

7-1. Introduction

a. The Army force cost mission is to estimate the cost of the different configurations of people and equipment that make up force units. Force units are detachments, squads, platoons, companies, battalions, brigades, divisions, corps, or armies. A detachment is the smallest force unit, and an Army is the largest. Force unit estimates increase in complexity as the units become larger. Most force cost estimates are done from detachment to division level. Additionally, the number of personnel in each type of unit varies. For example, an armor platoon consists of four tanks and sixteen soldiers. An infantry platoon consists of three squads, which equals 38 to 42 soldiers. Traditionally, force units have consisted entirely of soldiers. However, this is changing. In Desert Storm as well as Operation Just Cause contractor personnel were deployed and performed previously soldier only missions such as equipment repair.

b. There are two methods used to capture the number of personnel and equipment in force units: the Standard Requirement Code (SRC) method, which equates to the Table of Organization and Equipment (TOE) and the Modified Table of Organization and Equipment (MTOE) method. For force costing purposes, SRCs represent all the types of force units that can exist. At present there are more than 2,000 different types of TOE units or SRCs. Presently, there are 5,000 MTOE units in the force structure.

c. Force costing is a process that identifies and estimates the costs associated with a force unit. For those familiar with weapon system costing, as weapon systems are said to have a life cycle so do force units. However, instead of having Development, Production, Fielding, and Sustainment phases, force units have Acquisition of Resources, Activation, Annual Operations, Movement, Modification, Inactivation, and Conversion phases.

d. The Acquisition of Resources and Annual Operations phases provide the basic costs upon which all other options rest.

7-2. Activation/acquisition

a. This represents the one-time (nonrecurring) costs associated with bringing a force unit into being. It answers the question "How much does it cost to acquire a new unit?" This includes the cost for outfitting a unit with the equipment, basic loads, and personnel required by organizational documents. When additional facilities are needed to support the new force, these costs also are included.

b. The major cost categories are shown below:

(1) Materiel

 (a) This is the total cost of aircraft, missiles, weapons, combat and tracked vehicles, other procurement, and ammunition in a unit's table of organization and equipment (TOE). The product of the unit price of each piece of equipment and its density is summed to provide the nonrecurring cost of equipment within a unit.

 (b) Ammunition initial issue is similarly costed. The nonrecurring cost of the unit's ammunition basic load is calculated by ammunition type. Ammunition round price is multiplied by density and then summed for all types.
CHAPTER 7 – FORCE COSTING

(c) Organizational clothing and individual equipment are identified and similarly costed.

(d) Consolidated tables of allowances (CTAs) are identified and similarly costed.

(e) Prescribed Load Lists (PLLs)/Authorized Stockage Lists (ASLs) are similarly costed.

(f) The basic load requirements for Class 1 (Subsistence), Class II (Chemical Defense Equipment) and Class III (Packaged POL such as cans of oil) are identified and similarly costed.

(g) The publication cost is the product of total pages of technical manuals required for the unit and the cost per page.

(2) Personnel

This is the total cost of bringing soldiers into the force through initial Military Occupational Specialty (MOS). This includes MPA; Operations and Maintenance, Army (OMA); and procurement costs for pay, allowances, and training and initial clothing issue.

7-3. Annual Operations

This option provides the recurring costs that a force unit either expends annually (direct) or requires to be obligated by the Army because the unit exists (indirect). The major cost elements include: direct Equipment Parts and Fuel Costs, indirect Support Costs, other training support, personnel, and other unit support.

a. Direct Equipment Parts and Fuel Costs include:

(1) The number of miles driven or the number of hours major end items of equipment is operated. It drives the direct recurring costs of training operations. The equipment’s hours or miles of operation for a required readiness rating are multiplied by its cost factors for oil and lubricants, consumables and reparables. The products of the unit of operation times each cost factor are summed together to provide the direct recurring training cost of a unit.

(2) Training ammunition and missiles that are expended during normal annual training for familiarization or qualification.

b. Indirect Support Costs are those incurred in support of a unit's training but not directly related to the number of miles driven or hour's equipment is operated and include:

(1) Transportation to training sites includes the cost of sending a unit to the National Training Center (NTC). For a Reserve Component (RC) unit, this includes the cost to send the unit to the annual training site.

(2) Supplies for normal housekeeping and maintenance in the unit such as reimbursable items through the General Services Administration (GSA).

(3) Contractual Services–Field includes the cost for special support items required outside the continental United States (OCONUS) units during field training.

(4) Mission travel of personnel in support of training or operational requirements.

(5) Equipment leases for items such as copiers.
CHAPTER 7 – FORCE COSTING

(6) Contractual services for automated data processing (ADP) equipment and other items.

(7) Purchased commercial equipment that is not free issue to the unit and is required for normal garrison activities.

(8) Administrative travel that the unit members must complete unrelated to training activities.

(9) Civilian labor is used to augment table of distributions and allowances (TDA) civilians required at an OCONUS location. Continental United States (CONUS) civilians are normally paid through base operations/real property maintenance (BASOPS/RPMA) accounts.

(10) Other costs borne by the unit in support of training but not directly linked to miles driven or hour's equipment is operated.

c. Personnel includes:

(1) Replacement personnel. The cost to train a soldier for each specific MOS, multiplied by the expected number of annual MOS replacements.

(2) Permanent change of station (PCS) travel for military personnel and their dependents based on the transfer rate.

(3) All pay, allowances, and benefits for military personnel. This includes basic pay (BP), basic allowance for quarters (BAQ), basic allowance for subsistence (BAS), retired pay accrual (RPA), and variable housing allowance (VHA), summed across all grades. Specialty pays are included when appropriate.

d. Other unit support includes:

(1) BASOPS/RPMA that is attributable to that unit being on the post.

(2) Medical support below general hospitals required for the soldier and dependents in dispensaries, etc.

(3) Army family housing O&M.

(4) Army family housing leases.

(5) Other support chargeable against a unit but not captured anywhere else.

7-4. Modification

This option provides the costs and savings resulting from the removal or exchange of equipment and/or personnel during force modernization or modification. This option represents only the marginal costs resulting from the reorganization. The estimation process is highly dependent on the conditions affecting the reorganization. One example of reorganization is when an M1A1 tank battalion is changed to an M1A2 battalion. The procurement of the M1A2 tank is a nonrecurring cost. The operating cost of the displaced M1A1 tank is a recurring cost avoidance. This is, however, offset by the operating cost of the new M1A2 tank. The new M1A2 battalion requires new MOSs that are addressed in the personnel and training systems. Inherited assets are equipment and personnel that are common to both units. Inherited assets that are currently available equipment are neither a cost nor a savings to the reorganization. Marginal changes are the only significant items to be costed.
7-5. Movement

a. There are two types of force unit movements: administrative moves and tactical moves. An administrative move is when a unit moves its home base. Many of these moves occurred in 1996 as part of the restructuring of the total force. Administrative moves can easily be differentiated from tactical moves by asking the question, do the families of the soldiers move? If the families move with the soldiers, the move is administrative. If the families don’t move with the soldiers, the move is tactical. Tactical moves are movements of force units for purposes of war or contingency operations. In an administrative move, one-time costs are incurred to transport the people and equipment to the new location. In a tactical move, round-trip costs are incurred.

b. The costs to move the unit are straightforward. A factor per ton-mile for the mode of transportation is multiplied by the tonnage to be shipped over the distance to be traveled. However, for administrative moves there is an impact on the installations for both the losing and gaining post. These costs are very situation dependent. For tactical moves, analysts should determine if they need to include indirect costs related to movement such as soldier inoculation fees.

c. Disposition of unit equipment will not only dictate the direct cost of the move, but may change the mode of transportation. All TOE equipment will move when a unit moves. However, a unit owns much more equipment than that shown in its TOE. The analyst or decision maker must determine the depth of the cost estimate; if not, there is a strong chance of underestimating the cost involved.

d. Another cost/savings consideration is the status of facilities on the installation gaining or losing soldiers. In administrative moves the availability of a support base on the gaining installation or community must be compared with savings generated at the losing installation. In tactical moves, soldiers may be moving where there is a bare base environment. The gain or loss of both military and civilian support personnel at both installations must also be taken into account for both types of movements. Moving will also show a cost or saving depending on the difference in VHA at each location for administrative moves.

e. Military personnel moves can cause an out-of-cycle PCS. However, when relocation can be planned over the normal rotation period, the marginal PCS can be reduced or absorbed through normal PCS turnover. Civilian moves always incur added costs.

7-6. Inactivation

a. This option estimates both nonrecurring costs and recurring savings resulting from the removal of a unit from the force. This option is the most situation dependent of any discussed. Reasonable assumptions that address detailed information on the process, schedule, and ultimate disposition of people, equipment, and facilities form the basis for a reliable estimate.

b. Not all identified operating costs translate into savings of an inactivated unit. When the inactivated personnel are reassigned and there is no decrease in the end strength of the Army, then there are no savings in MPA. It is normally assumed that only one-half of any savings is achieved in the first year, while all costs are reflected. This convention assumes that the decrease is on the average at the midpoint. Savings are available for only half a year. However, all costs such as severance pay and transportation are chargeable.

c. The analyst must consider several areas under an inactivation:

 (1) Disposition of equipment. Regardless of what happens to the equipment, the Army will incur costs. Unless the Army decides to leave the equipment as it is, there is a cost to bring the
equipment up to standard. When the equipment is moved to another unit or into a storage site, the Army incurs costs. However, a marginal savings results when the equipment is operated fewer miles or hours than before. When the Army sells equipment, the proceeds do not necessarily return to the Army. So the only savings or cost avoidance credited results from reduced operating costs.

(2) Disposition of facilities. As previously discussed, closing of facilities can provide savings after any costs to mothball facilities are considered.

(3) Impact on military personnel. If there is a concurrent reduction in the end strength of the Army with an inactivation, there are costs for moving the military personnel, and severance pay for the officers and enlisted personnel. During an inactivation, movement of military personnel may require two changes of station. The first PCS occurs when the inactivated-unit members are reassigned and moved to a new unit. The second PCS occurs when a second individual is removed from the force, creating a separation PCS. Because of uncertain time of initiation, the first-year MPA savings are limited to one-half of the associated staff reductions.

(4) Pay and allowances. The savings generated will be the BP, BAQ, BAS, and RPA of the affected military personnel within the unit being inactivated.

(5) Impact on civilian work force. Inactivation also can reduce the civilian work force. Civilians can be eligible for severance pay, worth up to one-half of their base pay. Results of inactivation under the Base Realignment and Closure (BRAC) Commission reveal that not all civilians opt to take severance pay. Their choices are to take an early retirement, find other Government employment, or resign without severance pay. So, some savings can result during the first year that a civilian reduction in force (RIF) occurs. Using the midyear convention, civilian work force savings are small during the first year, and do not reach full potential until the year after all reductions have taken place.

7-7. Conversions

a. Conversion is the transfer of a unit from the Active Component (AC) to the Reserve Component (RC). Conversion costs depend very much on the situation and other concurrent plans. There is normally an inactivation of the AC unit with a concurrent inactivation, activation, or modification of the RC unit. Equipment is likely to be moved from the AC location to the RC location. Therefore, the considerations just listed for the various options must be addressed as well as some new ones.

b. The "new" RC unit will most likely have a different SRC from the inactivating AC unit. This requires that the gaining RC unit obtain the proper equipment to qualify it as the new SRC. Inherited assets must be considered for the new unit to minimize excess equipment inventories. When the AC equipment transfers to the RC unit, transportation costs must be included. There is also a cost associated with the removal of the displaced equipment from the RC unit.

c. The size of the recruiting base may impact the cost of the RC unit. This is especially true if the unit grows or changes type radically. When the old and new MOSs is significantly different, the formal training burden will increase. When the unit size increases, the Reserve center or armory may need to be expanded to contain the growth. Support equipment may need to be upgraded, especially if an RC unit changes from having little equipment to being equipment heavy. If the RC unit is located in a sparsely populated region, it may require the decentralization of the unit to increase its recruiting potential, resulting in adding senior headquarters costs for administration.
CHAPTER 7 – FORCE COSTING

d. A conversion involves both nonrecurring costs to effect the change and recurring savings or cost avoidances. When the RC unit gets new equipment, a new recurring operating cost is incurred. Although OMA funds may be saved in the AC, the conversion can increase the RC operating costs.

a. Because of the magnitude of people paid at different rates and the vast amount and types of equipment involved in force costing, force costing lends itself to automation. The suite of tools developed and used by USACEAC to perform force costing is called FORCES (http://www.sbcweb.calibresys.com/forces/). FORCES consists of the Force Cost Model (FCM), the Army Cost Factors Handbook (Handbook), the Exportable Force Cost Data Base (EFCDB), the Army Cost and Factors Handbook (CFH) and the Army Contingency Operations Cost Model (ACM). FCM is the primary tool used at USACEAC to estimate the cost of force units and perform other force cost analysis drills. In order to use it, data must be in or able to be converted to the SRC format. The CFH is a user-friendly version of the data contained in FCM. In addition, the CFH contains a smaller subset of data made for analysts not primarily working in force costing. The ACM is designed to assist planners in determining requirements for contingency operations and can also assist with planning for training and exercise deployments. The official and most current FORCES data is applied to produce cost estimates for planning a contingency force or training operation. The analyst can develop cost estimates for any of the six identified phases of the operation. The phases consist of (1) Predeployment; (2) Deployment; (3) Operations and Sustainment; (4) Redeployment; (5) Reconstitution and (6) Demobilization.

b. USACEAC developed FORCES to meet many stringent user requirements and the needs of the Army cost community. The design of the FORCES suite of models and databases is flexible to accommodate both changes in cost data and Army requirements. FORCES model includes all elements necessary to estimate the cost of a force unit. USACEAC regularly updates the suite and distributes it to reflect changes in acquisition, operations, transportation, and personnel costs. FORCES model also contains the approved TOE force structure for both AC and RC units. The TOE structure represents the unclassified doctrinal structure of the Army vis-à-vis the classified, modified TOE operational structure. The TOE structure allows flexibility in costing notional force units.

c. Analysts can cost force units using FCM, which guides the analyst in the preparation of the various types of force cost estimates. In addition, analysts can use the data in the EFCDB to refine data in their own models or to create models for out of the ordinary force costing exercises. FORCES is available for distribution to any level within the Army.

d. Although FORCES provides finished products, the analyst must still use professional judgment. Analysts must always review FORCES results to ensure that estimates fully address the question being asked. Please see Appendix G for the FCM cost element structure and definitions.
APPENDIX A - REFERENCES

Section I - Required Publication

AR 11-18 - The Cost and Economic Analysis Program (cited in section 1-1a.)

Section II - Related Publications

A related publication is merely a source of additional information. The user does not have to read it to understand this manual.

Title 10, United States Code, Section 2434 - Independent Cost Estimates; Operational Manpower Requirements: http://frwebgate4.access.gpo.gov/cgi-bin/waisgate.cgi?WAISdocID=4645410572+0+0+0&WAISaction=retrieve

DoDD 5000.1 - Defense Acquisition
http://www.deskbook.osd.mil

DoD 5000.2-R - Mandatory Procedures for Major Defense Acquisition Programs (MDAPs) and Major Automated Information System (MAIS) Acquisition Programs
http://www.deskbook.osd.mil

DoDD 5000.4 - OSD Cost Analysis Improvement Group (CAIG)
http://www.deskbook.osd.mil

DoD 5000.4-M - Cost Analysis Guidance and Procedures
http://www.deskbook.osd.mil

DoDI - 7041.3 Economic Analysis and Program Evaluation for Resource Management

AR 1-1 - Planning, Programming, Budgeting, and Execution System
http://books.usapa.belvoir.armt.mil/cgi-bin/bookmgr/BOOKS/R1_1/CONTENTS

AR 25-1 - Army Information Management

AR 70-1 - Army Acquisition Policy

OMB Circular A-76 - Performance of Commercial Activities
http://www.whitehouse.gov/OMB/circulars/a076/a076.html
APPENDIX A - REFERENCES

OMB Circular A-94 - Guidelines and Discount Rates for Benefit-Cost Analysis of Federal Programs
http://www.whitehouse.gov/OMB/circulars/a094/a094.html

OMB Circular A-109 - Major System Acquisitions
http://web.deskbook.osd.mil/reflib/MFED/001MO/001MODOC.HTM

AMC-P 715-5 - Cost/Schedule Control System Criteria Joint Implementation Guide
(Site not listed)

SARDA Guide for the Preparation of Army Acquisition Programs for Review by the Army Systems Acquisition Review Council (ASARC), November 1996

APPENDIX B – FIGURES AND TABLES

Figures

FIGURE 2-1. ACQUISITION MILESTONES 7
FIGURE 2-2. MILESTONE DOCUMENTATION 19
FIGURE 2-3. PERIODIC REPORTS AND CERTIFICATIONS 20
FIGURE 2-4. TYPICAL ASARC/DAB MILESTONE TIMELINE 21
FIGURE 2-5. POM 02 - 07 TIME LINE 25

FIGURE 3-1. COST ANALYSIS METHODOLOGY 33
FIGURE 3-2. CASH FLOW DIAGRAM 36
FIGURE 3-3. ESTIMATED LIFE CYCLE COST SENSITIVITY 41
FIGURE 3-4. VALIDATION CONSIDERATIONS 42

FIGURE 4-1. KEY INTERACTIONS 46
FIGURE 4-2. MAJOR SYSTEM LIFE CYCLE MANAGEMENT MODEL 48
FIGURE 4-3. MATERIEL SYSTEM LIFE CYCLE COSTING MATRIX CELL 49
FIGURE 4-4. THE EVOLUTION OF A WORK BREAKDOWN STRUCTURE 50
FIGURE 4-5. MIL-STD-881 TRANSLATION FROM FUNCTION TO PRODUCT 51
FIGURE 4-6. WORK BREAKDOWN STRUCTURE MATRIX 52
FIGURE 4-7. MILESTONE TIME LINES FOR POE/CCA/ACP 54
FIGURE 4-8. COST DOCUMENTATION CONCEPT 57
FIGURE 4-9. POE/CCA OUTLINE 58
FIGURE 4-10. COST DOCUMENTATION FORMAT 59
FIGURE 4-11. VARIABLE EXPLANATION FORMAT 60
FIGURE 4-12. COST SUMMARY FORMAT 61
FIGURE 4-13. PME MATRIX 62
FIGURE 4-14. TIME-PHASED MATRIX 63
FIGURE 4-15. CLASSES OF MDEPS 65
FIGURE 4-16. MDEP OUTLINE 65
FIGURE 4-17. MEMBERSHIP OF THE COST/CRB IPT 67
FIGURE 4-18. THE ACP PROCESS 68
FIGURE 4-19. OPTIONS FOR ACAT ID PROGRAMS 69
FIGURE 4-20. ISSUE RESOLUTION PROCESS 70
FIGURE 4-21. SAR/UCR FORMAT 76
FIGURE 4-22. CROSSWALK FROM COST ELEMENTS TO RDT&E FORMS 78
FIGURE 4-23. CROSSWALK FROM COST ELEMENTS TO PROCUREMENT FORMS 79
FIGURE 4-24. AR-100-XX PROCUREMENT ACCOUNTS 80

FIGURE 5-1. CROSSWALK FROM COST ELEMENTS TO UNIT COSTS 84
FIGURE 5-2. SPECIAL SUNK COST CATEGORIES 89

Tables

TABLE 2-1. ACQUISITION CATEGORIES (ACATS) 8
TABLE 4-1. ASARC MEMBERSHIP 71
TABLE 6- 1. ENVIRONMENTAL COST ELEMENTS 98
APPENDIX C – COST ANALYSIS TRAINING

Defense Acquisition University
The following courses, available through the Defense Acquisition University, can be used to meet Defense Acquisition Workforce Improvement Act (DAWIA) certification requirements as of FY 1997 for members of the Acquisition Workforce in the Cost Estimating Track.

a. ACQ 101 Fundamentals of Systems Acquisition Management
b. ACQ 201 Intermediate Systems Acquisition
c. BCF 101 Fundamentals of Cost Analysis
d. BCF 204 Intermediate Cost Analysis
e. BCF 206 Cost/Risk Analysis
f. BCF 207 Economic Analysis
g. BCF 208 Software Cost Estimating
h. BCF 301 Business Cost Estimating Financial Management Workshop
i. BCF 102 Fundamentals of Earned Value Management
j. BCF 201 Systems Acquisition Funds Management
k. BCF 203 Intermediate Earned Value Management
l. BCF 205 Contractor Finance for Acquisition Managers
m. BCF 209 Selected Acquisition Report Review

Other Sources
The following cost analysis related courses are also available as indicated, but cannot be used to meet Defense Acquisition Workforce Improvement Act (DAWIA) certification requirements for members of the Acquisition Workforce in the Cost Estimating Track.

a. U.S. Army Logistics Management College, Fort Lee, VA
 (1) ALMC-CC Cost Estimating for Engineers
 (2) ALMC-DA Decision Risk Analysis
b. U.S. Army Management Engineering College, Rock Island, IL
 (1) AMEC-292 Activity-Based Costing Principles
 (2) 7A-F10 Economic Analysis for Decision-Making
 (3) AMEC-285 Functional Economic Analysis
c. U.S. Air Force Institute of Technology, Wright Patterson AFB, OH
 (1) CON 104 Contract Pricing
 (2) QMT 353 Introduction to Life Cycle Costing
 (3) SYS 362 Cost/Schedule Control Systems Criteria
This appendix displays the Level 2, 3, and 4 prime mission equipment (PME) generic work breakdown structure (WBS) elements as adopted for Army aircraft, electronic, missile, and surface vehicle systems. It also shows the Level 2 and 3 PME generic WBS elements for ordnance and space systems. These structures were developed from the MIL-HDBK-881B, dated 4 January 1998. The MIL-HDBK-881B is available at http://www.acq.osd.mil/pm/newpolicy/wbs/mil_hdbk_881/mil_hdbk_881.htm. The cost element structure (appendix E) incorporates all aspects of the WBS Level 2 support elements, such as system engineering/program management, training, data, and peculiar support equipment. This appendix is presented as a guide and may be adapted as necessary for specific weapon systems. However, any changes must conform to the program WBS (reference DoD 5000.2-R, Part 4.4.2B).
APPENDIX E – COST ELEMENT STRUCTURE

Section I - Cost Element Structure

1.0 RESEARCH, DEVELOPMENT, TEST, AND EVALUATION (RDT&E)-FUNDED ELEMENTS

1.01 DEVELOPMENT ENGINEERING*
1.02 PRODUCIBILITY ENGINEERING AND PLANNING (PEP)*
1.03 DEVELOPMENT TOOLING*
1.04 PROTOTYPE MANUFACTURING*
1.05 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
1.051 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)
1.052 OTHER
1.06 SYSTEM TEST AND EVALUATION
1.07 TRAINING
1.08 DATA
1.09 SUPPORT EQUIPMENT
1.091 PECULIAR
1.092 COMMON
1.10 DEVELOPMENT FACILITIES
1.11 OTHER RDT&E

2.0 PROCUREMENT-FUNDED ELEMENTS

2.01 NONRECURRING PRODUCTION
2.011 INITIAL PRODUCTION FACILITIES (IPFs)*
2.012 PRODUCTION BASE SUPPORT (PBS)*
2.013 OTHER NONRECURRING PRODUCTION*
2.02 RECURRING PRODUCTION
2.021 MANUFACTURING*
2.022 RECURRING ENGINEERING*
2.023 SUSTAINING TOOLING*
2.024 QUALITY CONTROL*
2.025 OTHER RECURRING PRODUCTION*
2.03 ENGINEERING CHANGES*
2.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
2.041 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)
2.042 OTHER
2.05 SYSTEM TEST AND EVALUATION, PRODUCTION
2.06 TRAINING
2.07 DATA
2.08 SUPPORT EQUIPMENT
2.081 PECULIAR
2.082 COMMON

* These elements should be further subdivided to reflect the MIL-STD-881B Level 3 prime mission equipment WBS elements. Greater level of detail is permissible.
APPENDIX E – COST ELEMENT STRUCTURE

2.09 OPERATIONAL/SITE ACTIVATION
2.10 FIELDING
2.101 INITIAL DEPOT-LEVEL REPARABLES (SPARES)
2.102 INITIAL CONSUMABLES (REPAIR PARTS)
2.103 INITIAL SUPPORT EQUIPMENT
2.104 TRANSPORTATION (EQUIPMENT TO UNIT)
2.105 NEW EQUIPMENT TRAINING (NET)
2.106 CONTRACTOR LOGISTICS SUPPORT
2.11 TRAINING AMMUNITION/MISSILES
2.12 WAR RESERVE AMMUNITION/MISSILES
2.13 MODIFICATIONS
2.14 OTHER PROCUREMENT

3.0 MILITARY CONSTRUCTION (MC)-FUNDED ELEMENTS
3.01 DEVELOPMENT CONSTRUCTION
3.02 PRODUCTION CONSTRUCTION
3.03 OPERATIONAL/SITE ACTIVATION CONSTRUCTION
3.04 OTHER MC

4.0 MILITARY PERSONNEL (MP) DIRECT-FUNDED ELEMENTS (not reimbursed by any other appropriation)
4.01 CREW
4.02 MAINTENANCE (MTOE)
4.03 SYSTEM-SPECIFIC SUPPORT
4.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
4.041 PROJECT MANAGEMENT ADMINISTRATION (PM MIL)
4.042 OTHER
4.05 REPLACEMENT PERSONNEL
4.051 TRAINING
4.052 PERMANENT CHANGE OF STATION (PCS)
4.06 OTHER MP

5.0 OPERATIONS AND MAINTENANCE (O&M)-FUNDED ELEMENTS
5.01 FIELD MAINTENANCE CIVILIAN LABOR**
5.02 SYSTEM-SPECIFIC BASE OPERATIONS
5.03 REPLENISHMENT DEPOT-LEVEL REPARABLES (SPARES)**
5.04 REPLENISHMENT CONSUMABLES (REPAIR PARTS)**
5.05 PETROLEUM, OIL, AND LUBRICANTS (POL)**
5.06 END-ITEM SUPPLY AND MAINTENANCE
5.061 OVERHAUL (P7M)
5.062 INTEGRATED MATERIEL MANAGEMENT
5.063 SUPPLY DEPOT SUPPORT
5.064 INDUSTRIAL READINESS
5.065 DEMILITARIZATION
5.07 TRANSPORTATION
5.08 SOFTWARE

** These elements should be further subdivided to reflect the MIL-STD-881B Level 2 prime mission equipment WBS elements and the support equipment element. Greater level of detail is permissible.
APPENDIX E – COST ELEMENT STRUCTURE

5.09 SYSTEM TEST AND EVALUATION, OPERATIONAL
5.10 SYSTEM ENGINEERING/PROGRAM MANAGEMENT
5.101 PROJECT MANAGEMENT ADMINISTRATION (PM CIV)
5.102 OTHER
5.11 TRAINING
5.12 OTHER O&M

6.0 ARMY WORKING CAPITAL FUND (AWCF) ELEMENT

6.01 AWCF CLASS IX WAR RESERVES

Section II - Cost Element Definitions

1.0 RESEARCH, DEVELOPMENT, TEST, AND EVALUATION (RDT&E)-FUNDED ELEMENTS

All RDT&E-funded costs associated with the research and development (R&D) of the materiel system, including development costs for system armament, training devices, ammunition, missiles, and modifications.

1.01 DEVELOPMENT ENGINEERING

This element includes the costs of study, analysis, design development, evaluation, testing, and redesign for the system component(s) during the system development efforts. It includes the design efforts of preparing specifications, engineering drawings, parts lists, wiring diagrams, test planning and scheduling, analysis of test results, data reduction, report preparations and establishment of reliability, maintainability, and quality assurance control requirements. It also includes the costs of raw and semi-fabricated material plus purchased parts consumed in the performance of component engineering efforts. Also included is engineering test equipment such as oscilloscopes, transducers, recorders, radio transmitters, converters, discriminators, receivers, and other equipment required to accomplish the engineering function for the specified system components. This element also includes the engineering efforts in support of preplanned product improvements and development costs for any neutralization process designed to change the physical, chemical, biological character or composition of hazardous waste produced by the system. Excluded from this element are the engineering efforts (producibility engineering and planning) to ensure producibility of the item or system prior to quantity procurement.

1.02 PRODUCIBILITY ENGINEERING AND PLANNING (PEP)

This element includes the costs of ensuring the producibility of the developmental materiel system, item, or component. PEP involves the engineering tasks necessary to ensure timely, efficient, and economic production of essential materiel and is primarily of a planning nature. PEP includes efforts related to development of the Technical Data Package (TDP), quality assurance (QA) plans, and special production processes to assess producibility. Also included are the development of unique processes essential to the design and manufacture of the materiel and details of performance ratings dimensional and tolerance data; manufacturing assembly; sequences; schematics; mechanical and electrical connections; physical characteristics, including form, fit, and finishes; inspection test and evaluation requirements; calibration information; and quality control procedures.

1.03 DEVELOPMENT TOOLING
APPENDIX E – COST ELEMENT STRUCTURE

This element includes the costs of planning, design, fabrication, assembly, installation, modification, maintenance, and rework of all tools, inspection equipment, and test equipment supporting the development of a specified system component. It includes that time expended in determining tool, inspection, and test equipment requirements; planning of fabrication and testing operations; maintaining tool records; scheduling and control of all tools orders; and programming and preparing software for all numerically controlled machine tools used in development of a system component. It includes the costs of new materials used in the fabrication, assembly, installation, modification, and maintenance and rework of dies, jigs, fixtures, inspection equipment, handling equipment, work platforms, and test equipment used to develop each system component, as well as tools normally purchased in final form or that require negligible effort to assemble.

1.04 PROTOTYPE MANUFACTURING

This element includes the costs of fabrication, processing, subassembly, final assembly, reworking modification, and installation of parts and equipment, power plants, boosters, electronic equipment, explosives, and other items (including Government-Furnished equipment [GFE]), and the proving of such equipment and instruments for the specified system prototype element. This includes the construction of piece parts from raw materials—the cutting, forming, stretching, and blanking operations performed on materials to make individual parts. It includes bench assembling of all minor and major assemblies; mating or joining of primary sections; installation of special and general equipment, instruments, and accessories performed after the mating; and all other preparation and/or processing and preflight and production service operations. Also included is the raw and semi-fabricated material plus purchased parts used in the manufacture of the specified system prototype item. The costs of prototype spare assemblies and parts are also included within this element.

1.05 SYSTEM ENGINEERING/PROGRAM MANAGEMENT

1.051 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)

This element includes the RDT&E-funded costs of the PM's office (civilian and military reimbursement) for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and integrated logistics support (ILS) management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. System engineering/management efforts that can be associated specifically with the individual hardware elements are excluded. This element includes any RDT&E reimbursement to MP for military personnel costs associated with project management in the PM's office. Also included are any PM office RDT&E-funded costs to manage and administer environmental efforts, e.g., PM environmental management team, and compliance with the National Environmental Policy Act (NEPA) and the National Aerospace Standard (NAS) 411 for pollution prevention plans.

1.052 OTHER

This element includes the costs of any other RDT&E-funded costs for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. System engineering/management effort that can be associated specifically with the individual hardware elements is excluded. This element also includes
any RDT&E reimbursement to MP for military personnel costs associated with project management not in the PM's office.

1.06 SYSTEM TEST AND EVALUATION

This element includes the RDT&E-funded costs of system-related test activities, including costs of specially fabricated hardware to obtain or validate engineering data on the performance of the system. This element also includes costs of the detailed planning, conduct, support, data reduction, and reports from such testing, as well as hardware items that are consumed or planned to be consumed in the conduct of such operations. This element includes the testing of innovative pollution prevention technologies and neutralization processes as well as the costs of any hazardous, toxic, or radiological materials used during system test and evaluation. Also included are the costs of all efforts associated with the design, production, and disposal of models, specimens, fixtures, and instrumentation in support of the test program. The actual test articles (i.e., functionally configured systems) are excluded from this element; they were included in the element prototype manufacturing. Also excluded is all testing that is O&M-funded. Testing that can be associated with a subsystem (e.g., aircraft engine) is included in the costs of that subsystem, rather than this system-oriented cost element.

1.07 TRAINING

This element includes the costs of services, devices, accessories, aids, equipment, facilities, and parts used to facilitate instructions through which personnel acquire sufficient concepts, skills, and aptitudes to operate and maintain the system with maximum efficiency. This element includes costs of efforts associated with the design, development, and production of prototype training equipment, and the execution of training services. It includes the RDT&E costs of training initial service test crews and maintenance personnel, including temporary duty of Government personnel, involved in the testing including training needed on handling hazardous materials and proper use of personal protection equipment.

1.08 DATA

This element includes the costs of preparation, revision, and reproduction of drawings, specifications, parts lists, test plans, testing procedures, draft manuals, environmental reports, and other documentation that are produced in support of project management, engineering, tooling fabrication, and testing functions. Relative to a contract, this element includes costs of all deliverable data listed on a DD Form 1423, i.e., such efforts as can be reduced or eliminated with reductions or elimination of the listed requirements. If the data are Government peculiar, include the efforts of acquiring, writing, assembling, reproduction, etc. If the data are not Government peculiar, but are identical to that used by the contractor except in a different format, include costs of such efforts as reproduction, packaging, shipping, and, if necessary, reformatting.

1.09 SUPPORT EQUIPMENT

1.091 PECULIAR

This element includes the costs of the design and development of those deliverable items and associated software required to support and maintain the system or portions of the system while not directly engaged in the performance of its mission, and that have application peculiar to the given system. It includes, for example, vehicles, equipment, tools, etc., unique to the system used to fuel, service, transport, hoist, repair, overhaul, assemble, disassemble, test, inspect, or otherwise maintain the mission equipment.
APPENDIX E – COST ELEMENT STRUCTURE

1.092 COMMON

This element includes the costs of the design and development of those deliverable items and associated software required to support and maintain the system or portions of the system while not directly engaged in the performance of its mission, and that have application common to other than the given system. It includes, for example, vehicles, equipment, tools, etc., not unique to the system used to fuel, service, transport, hoist, repair, overhaul, assemble, disassemble, test, inspect, or otherwise maintain the mission equipment.

1.10 DEVELOPMENT FACILITIES

This element includes the RDT&E-funded costs of any new building, conversion or expansion of facilities or sites, and the acquisition of real estate for development and testing of the system. This includes those RDT&E-funded costs for facilities to handle or store hazardous materials or waste including underground storage tanks. It also includes any RDT&E funded construction costs for modification and testing of systems already in the Army inventory if necessary to the furtherance of the R&D program.

1.11 OTHER RDT&E

This element includes any RDT&E-funded costs not included in the previous elements. Costs must be system specific and clearly identified.

2.0 PROCUREMENT-FUNDED ELEMENTS

All procurement-funded costs resulting from the production and introduction of the materiel into the Army's operational inventory. This includes:

(1) All costs to the Government, defined as contractor costs plus in-house costs, of products and services necessary to transform the results of development into a fully operational system consisting of the hardware, training, and support activities necessary to initiate operations.

(2) Costs of both a nonrecurring (i.e., costs that are required to establish a production capability) and recurring nature (i.e., costs that occur repeatedly during production and delivery to user organizations).

(3) All costs resulting from production and introduction into inventory irrespective of how allocated, e.g., unit equipment (UE), maintenance float (MF), war reserve (WR), and training usage classification.

2.01 NONRECURRING PRODUCTION

2.011 INITIAL PRODUCTION FACILITIES (IPFs)

This element includes the cost of the initial hard tooling and production line set up to support low-rate and full-scale production of the system; and the cost of fabrication, assembly, and installation of tools (including modification and rework of development tools for production purposes), dies, templates, patterns, form block manufacture, jigs, fixtures, master forms, inspection equipment, handling equipment, load bars, work platforms (including installation of utilities thereon), and test equipment (such as checkers and analyzers) to support the manufacture of the specified system. It includes initial and duplicate sets of tools necessary to reach full-rate production plus modification of LRIP tool records, establishment of make-or-buy and manufacturing plans on nonrecurring tools and equipment, scheduling and control of
APPENDIX E – COST ELEMENT STRUCTURE

tool orders, and programming and preparation of software for numerically controlled machine equipment. Included in this element are any provision of industrial facilities (PIF), depot maintenance plant equipment (DMPE), and layaway of industrial facilities that are system specific.

2.012 PRODUCTION BASE SUPPORT (PBS)

This element includes the procurement-funded costs of construction, conversion, or expansion of facilities for production, inventory, or maintenance required to accomplish the program. These costs may be identified with either or both the contractor and in-house efforts. They may be identified with the total system or with specific components of the total system, such as the engine. This element excludes any PIF costs included in IPFs.

2.013 OTHER NONRECURRING PRODUCTION

This element includes any procurement-funded, nonrecurring production costs not included in the above subelements. Costs must be system specific and clearly identified. For example, disposal, demilitarization, or layaway costs of Government-owned production equipment should be included here as a cost to the system.

2.02 RECURRING PRODUCTION

2.021 MANUFACTURING

This element includes the costs of material, labor, and other expenses incurred in the fabrication, checkout, and processing of parts, subassemblies, and major assemblies/subsystems needed for the final system. This element also includes Government-furnished equipment and material, as well as costs of subcontractors and purchased parts/equipment. The element further includes costs of the efforts to integrate and assemble the various subassemblies into a working system, costs to install special and general equipment, costs to paint and package the system for shipment to its acceptance destination, and costs associated with preplanned product improvements. It also includes moves in order to assemble into a final system.

2.022 RECURRING ENGINEERING

This element includes the costs of all engineering efforts performed in support of production, including maintainability/reliability engineering, maintenance engineering, value engineering, and production engineering costs associated with the system. It also includes redesign, evaluation, and other support engineering efforts (either in-house, contract, or separate contractor) directly involved with production of the components/end item, e.g., maintenance of the TDP, preparation of engineering change proposals (ECPs), engineering change orders (ECOs), and analysis of test results.

2.023 SUSTAINING TOOLING

This element includes the costs of maintenance replacement or modification of tools and test equipment after the start of production. It includes the replacement of initial tools that break down, and modification, maintenance, and rework of initial and duplicate sets of tools occurring after production begin.

2.024 QUALITY CONTROL

This element includes the costs of implementing controls necessary to ensure that a manufacturing process produces a system that meets the prescribed standards. Included are costs of receiving, in-
APPENDIX E – COST ELEMENT STRUCTURE

process, and final inspections of tools, parts, subassemblies, and complete assemblies. It also includes such tasks as reliability testing, establishment of acceptable quality levels (AQLs), statistical methods for determining performance of manufacturing processes, preparation and review of reports relating to these tasks, stockpile reliability testing, and the performance of production acceptance tests (PATs).

2.025 OTHER RECURRING PRODUCTION

This element includes any procurement-funded, recurring production costs not included in the above subelements. Costs must be system specific and clearly identified, e.g., warranty cost for a specific item.

2.03 ENGINEERING CHANGES

This element includes the costs of official alterations made to a system while it is still in the manufacturing process (before acceptance by the Army). Modifications that change the performance of the system or done after the system is accepted by the Army will be costed in modifications.

2.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT

2.041 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)

This element includes the procurement-funded costs of the PM's office (civilian and military reimbursement) for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. System engineering/management efforts that can be associated specifically with the individual hardware elements are excluded. This element also includes any procurement reimbursement to MP for military personnel costs associated with project management in the PM's office. Also included is any PM office procurement-funded costs to manage and administer environmental efforts, e.g., PM environmental management team, and compliance with the National Environmental Policy Act (NEPA) and the National Aerospace Standard (NAS) 411 for pollution prevention plans.

2.042 OTHER

This element includes the costs of any other procurement-funded costs for system engineering and technical control as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. System engineering/management effort that can be associated specifically with the individual hardware elements is excluded. This element also includes any procurement reimbursement to MP for military personnel costs associated with project management not in the PM's office.

2.05 SYSTEM TEST AND EVALUATION, PRODUCTION

This element includes the procurement-funded costs of the system-related production test activities that are identifiable with the evaluation of the system. Included are the costs of hardware to obtain or validate data. Also included are the costs of the planning, conduct, support, data reduction, and reports from such testing and test items consumed in the conduct of such operations, as well as the costs of design, production, handling, storage, and disposal of models, specimens, fixtures, instrumentation, and
hazardous materials or waste in support of the test program. Articles for testing that are complete production units should be costed under recurring production.

2.06 TRAINING

This element includes the system-specific, procurement-funded costs of training devices, accessories, aids, equipment, facilities, and parts used to facilitate instruction through which personnel will acquire sufficient concepts, skills, and aptitudes to operate and maintain the system with maximum efficiency. This element includes costs for the efforts associated with the production and fielding of training equipment.

2.07 DATA

This element includes the procurement-funded costs of gathering, storing, reproducing, and disseminating system-specific technical, environmental, and managerial supportability data, and the cost of preparing, updating, and reproducing publications such as technical orders, handbooks, and field manuals during production. Relative to a contract, this element includes costs of all deliverable data listed on a DD Form 1423. This element includes only such efforts that can be reduced or will not be incurred if the data item is eliminated. If the data are Government peculiar, include the efforts of acquiring, writing assembling, and reproduction. If the data are not Government peculiar, but are identical to that used by the contractor, except in a different format, include costs of such efforts as reproduction, packaging, shipping, and, if necessary, reformatting.

2.08 SUPPORT EQUIPMENT

2.081 PECULIAR

This element includes the costs of the production of those deliverable items and associated software required to support and maintain the system or portions of the system while not directly engaged in the performance of its mission, and that have application peculiar to the given system. It includes, for example, vehicles, equipment, tools, etc., unique to the system used to fuel, service, transport, hoist, repair, overhaul, assemble, disassemble, test, inspect, or otherwise maintain the mission equipment. Excluded are any initial support equipment costs.

2.082 COMMON

This element includes the costs of the production of those deliverable items and associated software required to support and maintain the system or portions of the system while not directly engaged in the performance of its mission, and that have application common to other than the given system. It includes, for example, vehicles, equipment, tools, etc., not unique to the system used to fuel, service, transport, hoist, repair, overhaul, assemble, disassemble, test, inspect, or otherwise maintain the mission equipment. Excluded are any initial support equipment costs.

2.09 OPERATIONAL/SITE ACTIVATION

This element includes the procurement-funded costs of real estate, construction, conversion, utilities, and equipment to provide all facilities required to house, service, and/or launch prime mission equipment at the organizational and intermediate levels. This element includes the conversion of site, ship, and vehicle; and system assembly, checkout, and installation into the site facility to achieve operational status. It also includes contractor support in relation to operational/site activation. This element also includes the procurement reimbursement costs for system-specific initial base operations (BASOPS)/real property maintenance activities (RPMA)—such as utilities, repair of real property, minor
APPENDIX E – COST ELEMENT STRUCTURE

construction, fire prevention, supply operations, maintenance of materiel, and transportation—for site activation equipment installation and one-time BASOPS. Excluded from this element are any MC-funded efforts under operational/site activation construction or O&M-funded efforts under transportation, system testing and evaluation, training, or system-specific base operations.

2.10 FIELDSING

2.101 INITIAL DEPOT-LEVEL REPARABLES (SPARES)

This element includes the procurement costs for initial spare components, assemblies, and subassemblies (reparable items) necessary to fill initial ASL/PLL stockage to support end-item fielding throughout the system life cycle. It includes any purchases from the AWCF for reparables. However, any items costed as part of manufacturing should be excluded here, such as engines.

2.102 INITIAL CONSUMABLES (REPAIR PARTS)

This element includes the procurement costs for consumables necessary to fill initial ASL/PLL stockage to support end-item fielding. It includes any purchases from the AWCF for consumables. This element also includes consumable (nonreparable) individual parts, assemblies, or subassemblies required to support end-item fielding. It excludes consumables used in depot maintenance overhaul, repair, or modifications covered in redistribution of displaced equipment.

2.103 INITIAL SUPPORT EQUIPMENT

This element includes the procurement-funded, one-time, system-specific fielding costs (both labor and material) for special equipment, tools, deprocessing of new equipment, and those fielding costs associated with post-production software support (PPSS) that were not funded by RDT&E. Normally, initial support equipment is packaged with equipment end items prior to delivery of the equipment to Army units.

2.104 TRANSPORTATION (FIRST DESTINATION) (FDT)

This element includes only the procurement-funded costs of moving materiel from the manufacturer to the first point of acceptance, receipt or storage point by the Government. This represents a portion of a total system cost. FDT includes transportation costs for shipments, which may be interrupted for test or modification before acceptance. Included are such costs as temporary duty (TDY) of crews from duty station to manufacturing plant, to delivery point, and return to duty station; supplies, minor repairs, and fuel during delivery; transporting hazardous materials; and other costs. Excluded is transportation costs paid by a vendor as prescribed in procurement contracts for manufacturing, as well as all one-time costs of retrograding equipment that is being replaced by the materiel system.

2.105 NEW EQUIPMENT TRAINING (NET)

This element includes the system-specific, procurement-funded costs of training services for new equipment training through which personnel will acquire sufficient concepts, skills, and aptitudes to operate and maintain the system with maximum efficiency. It includes the costs for TDY of Government personnel, of training initial-service test crews, maintenance personnel, instructors, initial crew, maintenance personnel and NET teams, as well as the one-time cost of establishing system-specific individual training programs, including all services and manuals. It excludes the costs of replacement training.
APPENDIX E – COST ELEMENT STRUCTURE

2.106 CONTRACTOR LOGISTICS SUPPORT

This element includes the procurement-funded contractor support when introducing a new materiel system. It includes all contractor-provided support required to field and maintain the system until normal maintenance procedures are established and assumed by the unit receiving the new equipment.

2.11 TRAINING AMMUNITION/MISSILES

This element includes the costs of ammunition and missiles consumed by the system being costed (e.g., an aircraft or a tank) during both unit training and annual service practice. The cost of ammunition and/or missiles consumed during the training of replacement personnel, along with the procurement cost of replacement equipment, is included in this cost element. It excludes the MP associated with replacement training and the O&M-funded training services cost.

2.12 WAR RESERVE AMMUNITION/MISSILES

This element includes the costs of war reserve (WR) ammunition/missiles required to sustain combat operations of approved forces through the prescribed period. WR ammunition includes basic load. This element includes all system-specific WR ammunition and basic load.

2.13 MODIFICATIONS

This element includes the procurement-funded costs of the labor and material associated with any approved alteration made to a system by accomplishing a Modification Work Order (MWO), retrofit, conversion, remanufacture, or engineering change after fielding by the Army. It excludes modifications that require a Milestone C Decision Review, as well as the MP-funded labor costs for installation of these modifications.

2.14 OTHER PROCUREMENT

This element includes any procurement-funded costs not included in the above elements. The costs must be system specific and clearly identified. This element may include any procurement-funded services to address environmental litigation and liabilities.

3.0 MILITARY CONSTRUCTION (MC)-FUNDED ELEMENTS

Military construction projects associated with a materiel system are defined as either system specific or not system specific. System-specific requirements and projects are defined as those that meet the following test:

(1) The materiel system cannot be fielded without the construction; and

(2) The need for the construction is generated by the decision to acquire and field a given materiel system or, conversely, if and when a materiel system acquisition is terminated prior to fielding, the need for the construction ceases and the construction project is automatically canceled along with materiel system program; and

(3) Stationing and organizational requirements such as barracks, dining facilities, unit headquarters building, and the like oriented toward forces' support will be excluded from materiel system cost estimates, unless approved for inclusion as an exception to policy. An example of an exception that would be system specific is the construction of a new fielding location not contiguous to an existing Government facility, i.e., basic site construction for PATRIOT.
APPENDIX E – COST ELEMENT STRUCTURE

Examples of system-specific construction projects are simulator buildings, missile bunkers, and billets associated with the fielding of new organizations for the new systems. All other military construction projects related to the materiel system, either directly or indirectly, is not considered system specific.

3.01 DEVELOPMENT CONSTRUCTION

This element includes only the MC-funded costs of any new building, conversion or expansion of facilities or sites, and acquisition of real estate for development and testing of the system. It includes any construction costs for modification and testing of systems already in the Army inventory if necessary to the furtherance of the development program. This element also includes any MC-funded environmental remediation costs for preparation and cleanup of structures and real estate before, during, and after system specific development or testing.

3.02 PRODUCTION CONSTRUCTION

This element includes only the MC-funded costs of real estate, construction, conversion, utilities, and equipment to achieve initially the total production capability for the materiel system. This includes planning, acquisition of real estate, minor construction, and other MC-funded supporting activities. This element also includes any MC-funded environmental remediation costs for preparation and cleanup of structures and real estate before initial total production capability is achieved.

3.03 OPERATIONAL/SITE ACTIVATION CONSTRUCTION

This element includes only the MC-funded costs of real estate, construction, conversion, environmental remediation, utilities, and equipment to provide all facilities required to house, service, and/or launch prime mission equipment at the organizational and intermediate level. This element includes planning, acquisition of real estate, minor construction, and other MC-funded supporting activities.

3.04 OTHER MC

This element includes any MC costs not included in the previous elements. The costs must be system specific and clearly identified.

4.0 MILITARY PERSONNEL (MP) DIRECT-FUNDED ELEMENTS (not reimbursed by any other appropriation)

This element includes all MP-funded costs associated with the development, production, fielding, operation and support of the materiel system not reimbursed by any other appropriation.

4.01 CREW

This element includes the costs of base pay and allowances, theater costs, and special pay of military personnel whose primary function is to operate the materiel system being costed. Excluded are the costs of those who operate other equipment in the force unit such as trucks and switchboards.

4.02 MAINTENANCE (MTOE)

This element includes the costs of base pay and allowance, theater costs, and special pay of those direct and general support military personnel below depot level whose primary function is to maintain the
APPENDIX E – COST ELEMENT STRUCTURE

material system being costed. Excluded are the costs of those persons whose primary function is to maintain other equipment in the force unit such as trucks and switchboards.

4.03 SYSTEM-SPECIFIC SUPPORT

This element includes the costs of base pay and allowances, theater costs, and special pay of all military personnel below depot level who are charged to the materiel system and who are not crew or maintenance. It includes the costs of persons in those units (battalions, companies, or attached platoons) that exist only because of the system being costed. Examples of persons who might be included are a company commander, a switchboard operator, a truck driver, a truck repairman, a fuel handler, and an ammunition handler.

4.04 SYSTEM ENGINEERING/PROGRAM MANAGEMENT

4.041 PROJECT MANAGEMENT ADMINISTRATION (PM MIL)

This element includes the MP-funded costs of the PM’s office (not reimbursed by the RDT&E or procurement appropriations.) For system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. This element excludes any RDT&E or procurement reimbursement to MP for military personnel costs associated with project management in the PM's office. Also included is any PM office MP-funded costs to manage and administer environmental efforts, e.g., PM environmental management team, and compliance with the National Environmental Policy Act (NEPA) and the National Aerospace Standard (NAS) 411 for pollution prevention plans.

4.042 OTHER

This element includes any other MP-funded costs for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. This element excludes any RDT&E or procurement reimbursement to MP for military personnel costs associated with project management not in the PM's office.

4.05 REPLACEMENT PERSONNEL

4.051 TRAINING

This element includes the MP-funded costs of all pay and allowances for the system-specific replacement personnel undergoing formal training for future assignment to the given materiel system. It also includes the pay and allowances of the instructors for the replacement personnel training.

4.052 PERMANENT CHANGE OF STATION (PCS)

This element includes the MP-funded costs associated with the permanent change of station of system-specific replacement personnel to and from overseas theaters and within CONUS.

4.06 OTHER MP
APPENDIX E – COST ELEMENT STRUCTURE

This element includes any MP-funded costs not included in the previous elements. Costs must be system specific and clearly identified.

5.0 OPERATIONS AND MAINTENANCE (O&M)-FUNDED ELEMENTS

All O&M-funded costs associated with the development, production, fielding, operation, and support of the materiel system.

5.01 FIELD MAINTENANCE CIVILIAN LABOR

This element includes the costs of civilian maintenance labor at any level below depot maintenance. It includes contractor performed DS/GS maintenance costs. It excludes civilian labor at the depot.

5.02 SYSTEM-SPECIFIC BASE OPERATIONS

This element includes the O&M-funded costs of system-specific initial BASOPS/RPMA—such as utilities, repair of real property, environmental remediation, minor construction, fire prevention, supply operations, maintenance of materiel, and transportation—for site activation equipment installation and one-time BASOPS. Excluded from this element are any O&M-funded efforts under system test and evaluation, training, transportation, or software.

5.03 REPLENISHMENT DEPOT-LEVEL REPARABLES (SPARES)

This element includes the consumer's O&M costs of purchasing from the AWCF reparables required to resupply initial stockage. It also includes the repairable individual parts, assemblies, or subassemblies required on a recurring basis for the repair of major end items of equipment (including PME and support equipment) subsequent to fielding.

5.04 REPLENISHMENT CONSUMABLES (REPAIR PARTS)

This element includes the consumer's O&M costs of purchasing from the AWCF consumables required to resupply initial stockage. It also includes the consumable (nonreparable) individual parts, assemblies, or subassemblies required on a recurring basis for the repair of major end items of equipment (including PME and support equipment) subsequent to fielding.

5.05 PETROLEUM, OIL, AND LUBRICANTS (POL)

This element includes the costs of fuel, oil, and lubricants for the system.

5.06 END-ITEM SUPPLY AND MAINTENANCE

5.061 OVERHAUL (P7M)

This element includes the costs of material, labor, and overhead for the repair/overhaul of the basic end item and associated components including any compliance costs associated with hazardous materials or waste. The material, labor and overhead costs for contractor-performed depot overhaul are also included in this element.

5.062 INTEGRATED MATERIEL MANAGEMENT

This element includes central supply and maintenance activities conducted in support of end-item distribution, disposal, requirements determination, requisition processing, stock control, WR
requirements, cataloging, weapons systems management, weapon systems supply support, provisioning, budgeting/ funding, allowances, configuration management, technical support, and maintenance management. It excludes conventional ammunition and secondary-item integrated materiel management.

5.063 SUPPLY DEPOT SUPPORT

This element includes operations at supply depots, manpower, peculiar support equipment, necessary facilities, and associated costs directly identifiable to end-item supply operations including any compliance costs associated with hazardous materials or waste. It excludes conventional ammunition and secondary-item supply depot operations.

5.064 INDUSTRIAL READINESS

This element includes manpower authorizations, peculiar and support equipment, necessary facilities, environmental compliance, and other associated costs specifically identifiable to management of end-item industrial preparedness activities.

5.065 DEMILITARIZATION

This element includes manpower authorizations, peculiar and support equipment, necessary facilities, and associated costs specifically identifiable to end-item demilitarization activities.

5.07 TRANSPORTATION (SECOND DESTINATION)

This element includes the O&M-funded costs for movement of Army supplies and equipment worldwide, after receipt from production or either a CONUS port, CONUS depot, or CONUS Customer. This includes, but not limited to delivery of new equipment to units (except first destination transportation), direct equipment redistribution, TOE equipment moves on direct unit PCS, and transporting items to depot maintenance facilities and back to the operational units. Examples are special transportation of tracked vehicles to and from training areas and one-time costs of retrograding equipment that is being replaced by the materiel system. Costs must be system specific and clearly identified. It excludes transportation funded by stock fund/AWCF and movement of cargo by TOE units as part of their mission functions.

5.08 SOFTWARE

This element includes all O&M-funded costs for software. This would normally be predominately. However, this element should include any software development, procurement, and support costs that were not funded by either the RDT&E or the procurement appropriations.

5.09 SYSTEM TEST AND EVALUATION, OPERATIONAL

This element includes the O&M-funded costs of system-specific test activities, including costs of specially fabricated hardware, to obtain or validate engineering data on system performance. It also includes costs of the detailed planning, conduct, support, data reduction, and reports from such testing. The actual test articles (i.e., functionally configured systems) are excluded from this element; they should be included in the prototype manufacturing or manufacturing elements.

5.10 SYSTEM ENGINEERING/PROGRAM MANAGEMENT

5.101 PROJECT MANAGEMENT ADMINISTRATION (PM CIV)
APPENDIX E – COST ELEMENT STRUCTURE

This element includes the O&M-funded costs of the PM's office (not funded by the RDT&E, or procurement) for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system. Also included are any PM office O&M-funded costs to manage and administer environmental efforts, e.g., PM environmental management team, and compliance with the National Environmental Policy Act (NEPA) and the National Aerospace Standard (NAS) 411 for pollution prevention plans.

5.102 OTHER

This element includes the costs of any other O&M-funded costs for system engineering and technical control, as well as the business management of the system/program. It encompasses the overall planning, direction, and control of the definition, development, and production of the system/program, including functions of logistics engineering and ILS management, e.g., maintenance support, facilities, personnel, training, testing, and activation of a system.

5.11 TRAINING

This element includes the O&M-funded costs of system-specific, individual training for replacement personnel. The training can include a specific course taught in a TRADOC school and/or transition training for qualifying the replacement personnel. It includes recurring costs associated with training materiel and devices. It excludes the MP costs associated with the instructors and students, and the procurement costs for training ammunition/missiles.

5.12 OTHER O&M

This element includes any O&M-funded costs not included in the previous elements. Costs must be system specific and clearly identified. They may include supplies, direct support operations, indirect support, environmental efforts (pollution prevention, compliance, remediation, and restoration), and quarters, maintenance, and utilities (QMU) that are not included above. In the event that any R&D or production efforts are O&M-funded costs and are not captured above, they should be separately identified under this cost element.

6.0 ARMY WORKING CAPITAL FUND (AWCF) ELEMENT

6.01 AWCF CLASS IX WAR RESERVES

This element includes the costs of Class IX war reserve components, assemblies, and subassemblies determined to be combat critical for maintaining and sustaining combat operations of the materiel system until resupply can be accomplished, which are procured with Supply Maintenance, Army operating cost authority and held to satisfy the War Reserve Materiel Requirements.
Section I - Manpower Costing

1. Manpower cost analysis
 a. This appendix provides guidance on manpower costing of the materiel system's life cycle. Manpower includes the number of personnel (military officers/enlisted, civilian, and contractor) required to operate, maintain, support, and train for full operational deployment of a materiel system. This section covers manpower cost tools and cost elements. One of the tools used for costing manpower is the Army Manpower Cost System (AMCOS). This system consists of three life cycle cost modules - (1) the Active, (2) the Reserve, and (3) the Civilian modules.

 b. Manpower cost analysis is an analytical approach, using cost tools and techniques, to develop personnel costs for the POE, CCA and the ACP estimates for materiel systems and information management systems. Analysis should be based on the MER, if available.

 c. The manpower cost elements used in the POE and the CCA are defined in Appendix E. Additional guidance and an explanation of the cost elements are provided in section 1-5, Manpower cost elements, below. The same cost elements and manpower costing tools are used by the CRB to develop the ACP. For questions regarding manpower life cycle costing contact CEAC, Forces, Operations and Installations Cost and Economic Analysis Division, commercial (703) 756-0336, DSN 289-0336.

2. Military manpower costing tools
 This section covers military personnel costing tools. There are several tools that can be used to cost military personnel.

 a. Manpower Estimate Report (MER) or like documents to identify the number of military personnel assigned to the specific weapon system (identified by grade and Military Occupational Specialty (MOS)).

 b. AMCOS. The AMCOS Active module provides manpower life cycle costs by MOS/grade. AMCOS Active module cost elements consist of:

 (1) Military Compensation
 (a) Basic Pay
 (b) Allowance for Quarters
 (c) Variable Housing Allowance
 (d) Basic Allowance for Subsistence

 (2) Acquisition

 (3) Recruiting

 (4) Permanent Change of Station

 (5) Retired Pay Accrual

 (6) Selective Reenlistment Bonus

 (7) Other Benefits

 (8) Special Pays
APPENDIX F - COST ANALYSIS TECHNIQUES

(9) Training
(10) Medical Benefits
(11) Morale, Welfare, and Recreation
(12) New GI Bill

c. The Composite Standard Rates (CSR) can be used to cost military manpower. These rates are used for pricing, estimating, budgeting, costing and billing for U.S. Army personnel services provided to other federal agencies, non-DoD customers, and to foreign military sales customers. These rates consist of six cost elements:

 (1) Basic Pay
 (2) Retired Pay Accrual
 (3) Allowance for Quarters
 (4) Miscellaneous Expense
 (5) Permanent Change of Station
 (6) Incentive and Special Pay

d. The AMCOS Reserve module may be required if reserve personnel are assigned to the materiel system.

e. The Automated Cost Estimating Integrated Tools (ACEIT) is an estimating system containing a variety of tools designed to assist cost analyst with cost estimates.

3. Civilian manpower costing tools

This section covers civilian manpower personnel costing. Civilian manpower costing addresses personnel that are required to operate, maintain, support, or train for full operational deployment of a materiel system. The following are used to cost civilian manpower.

a. MER or like documents that identify the number of civilians assigned to the specific materiel system (identified by grade/series).

b. The AMCOS Civilian module is a tool that can be used to cost civilian manpower. The civilian life cycle cost module and database is used for the POE, CCA, and special manpower studies. AMCOS Civilian module cost elements consist of:

 (1) Base Pay
 (2) Retirement Benefits
 (3) Premium Pay
 (4) Other Benefits

4. Dedicated/non-dedicated manpower

a. When manpower is dedicated to a particular materiel system, manpower costing is relatively simple. However, when manpower costing is shared with two or more materiel systems, the manpower costing process is more complex.

b. Definitions:
APPENDIX F - COST ANALYSIS TECHNIQUES

1. Dedicated manpower - personnel assigned full-time to a materiel system.
2. Non-dedicated manpower - personnel assigned part-time to a materiel system.

C. An hourly rate is derived from identifying the annual cost of the personnel divided by the annual man-hours, less sick leave, vacation, etc, or 1740 hours. This hourly rate is then multiplied by the hours worked on the project to give the dedicated costs to a particular materiel system.

5. Manpower cost elements

This section provides guidance on the use of AMCOS for costing manpower cost elements as defined in Appendix E.

RESEARCH, DEVELOPMENT, TEST, AND EVALUATION (RDT&E)-FUNDED ELEMENTS

1.051 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)
 a. Use AMCOS Civilian module to compute this element for civilian personnel only.
 b. Use AMCOS Active module to compute this element for military personnel only when RDT&E funds are used to reimburse the military personnel appropriations.

PROCUREMENT-FUNDED ELEMENTS

2.041 PROJECT MANAGEMENT ADMINISTRATION (PM CIV/MIL)
 a. Use AMCOS Civilian module to compute this element for civilian personnel only.
 b. Use AMCOS Active module to compute this element for military personnel only when Procurement funds are used to reimburse the military personnel appropriations.

2.11 TRAINING AMMUNITION/MISSILES

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 2.11 from the CCA/POE menu selection.

MILITARY PERSONNEL (MP) DIRECT-FUNDED ELEMENT

4.01 CREW

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.01 from the CCA/POE menu selection.

4.02 MAINTENANCE (MTOE)

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.02 from the CCA/POE menu selection. This element addresses dedicated and non-dedicated personnel (see section 1-4. for additional guidance).

4.03 SYSTEM-SPECIFIC SUPPORT
APPENDIX F - COST ANALYSIS TECHNIQUES

Use the AMCOS Active module. Input the military manpower requirement by MOS/grade and select cost element 4.03 from the CCA/POE menu selection.

4.041 PROJECT MANAGEMENT ADMINISTRATION (PM MIL)

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.041 from the CCA/POE menu selection.

4.042 OTHER

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.042 from the CCA/POE menu selection.

4.051 TRAINING

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.051 from the CCA/POE menu selection.

4.052 PERMANENT CHANGE OF STATION (PCS)

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.052 from the CCA/POE menu selection.

4.06 OTHER MP

Use the AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 4.06 from the CCA/POE menu selection. This element is the MPA file applied to military personnel not mention above but clearly identified as specific to the system. An example would be fuel handlers.

OPERATIONS AND MAINTENANCE (O&M)-FUNDED ELEMENTS

5.01 FIELD MAINTENANCE CIVILIAN LABOR

Use AMCOS Civilian module. Input the civilian manpower requirements by grade/series and select cost element 5.01 from the CCA/POE menu selection.

5.061 OVERHAUL (P7M)

Use AMCOS Civilian module. Input the civilian manpower requirements by grade/series and select cost element 5.061 from the CCA/POE menu selection.

5.063 SUPPLY DEPOT SUPPORT

Use AMCOS Civilian module to cost the manpower directly identifiable to end-item supply operations. Input the civilian manpower requirements by grade/series and select cost element 5.063 from the CCA/POE menu selection.

5.101 PROJECT MANAGEMENT ADMINISTRATION (PM CIV)

Use AMCOS Civilian module. Input the civilian manpower requirements by grade/series and select cost element 5.101 from the CCA/POE menu selection.
5.102 OTHER

Use AMCOS Civilian module. Input the civilian manpower requirements by grade/series and select cost element 5.102 from the CCA/POE menu selection.

5.11 TRAINING

Use AMCOS Active module. Input the military manpower requirements by MOS/grade and select cost element 5.11 from the CCA/POE menu selection.

Section II - Guidance For Including Surcharges And Credits In Cost Estimates For Depot Level Reparables And Consumables

1. Purpose

The purpose of this Appendix is to provide background and procedures for estimating the cost of a Depot Level Reparable (DLR) and a Consumable in Program Office Estimates (POE), and Component Cost Estimates (CCA) and other cost estimating products. A Glossary of terms and pertinent definitions is at Annex A.

2. Background

 a. Two Defense Management Review Decisions (DMRDs) require the inclusion of surcharges in Army Master Data File (AMDF) prices and the change from procurement funding to operations and maintenance funding for Replenishment Depot Level Reparables (DLRs) under the Supply Management, Army (SMA), formerly and Army Stock Fund (ASF). Both changes became effective in FY 92 and fall under the umbrella concept of the Army Working Capital Fund (AWCF). [See Chapter 5.]

 b. DMRD 901 "Reducing Supply System Costs" requires that the Army become more efficient in buying, managing, and distributing materiel. In order to become more efficient, a basic two pronged approach was implemented: reduce unit demands to only those things that cannot be fixed, and reduce the total cost of providing unit supplies by improving the efficiency in the delivery of supplies. DMRD 901 directed that all costs for, or directly related to, stock-funded items be included in the price paid by customers; those costs include personnel, transportation, repair, items beyond repair (washouts), storage, and other associated costs.

 c. DMRD 904 "Stock Funding of Reparables" transferred Army funding of repairable parts from procurement appropriations to stock funds. It affected the cost element structure and the definition of cost components used in Army resource management, particularly in the management of operating and support costs. Units must fund replacement DLRs out of their operations and maintenance (OMA) account. Therefore, customer operations accounts increased and customers received credit for unserviceable and serviceable returns for which there remained a valid Army requirement to offset part of the cost.

 d. Stock funding of DLRs affords the Army the benefit of improved secondary item inventory management and financial management. Instead of having one appropriated fund for procurement and another for repair, the Supply Management, Army (SMA) funds both. The accounting and reporting functions for the ASF is decentralized and performed at the branch office/MSC level. Thus, the customer would become more judicious when placing order for high dollar value items, which would reduce demand, thus freeing up OMA funds for other requirements.
e. Several key policy decisions changed the way cost estimating for DLR (Spares) and Consumables (Repairs) is done. There were changes in terminology, stock fund procedures, and surcharge and credit policy.

1. Terminology
Beginning in FY 92, all secondary items were realigned into two categories: reparables (a.k.a. DLRs, SFDLRs) and consumables. The terms DLR and consumable are from the wholesaler's perspective, where a DLR is a part, which must be returned to the depot (wholesale supply system) for repair. However, many parts can be repaired at the retail level, such as a Direct Support Unit, and still be classified as a reparable. The Army Master Data File (AMDF) contains these data, along with the price, for each item. See Glossary for more detailed description of reparable, consumable, and AMDF.

2. Stock Fund
Under the Stock Funding of Depot Level Reparables (SFDLR) concept, replenishment DLRs (5.03) are purchased from producers by the SMA portion of the AWCF and sold to the unit. The unit pays for them with OMA dollars. Initial DLRs (2.101) are purchased by the AWCF, which is reimbursed by appropriated dollars when issued to the PEOs/PMs (initial issue is reimbursed by procurement authority).

3. Surcharge
DMRD 901, "Reducing Supply System Costs," directs that all costs for, or directly related to, stock-funded items be included in the price paid by customers. A surcharge is included in the price of the consumables and reparables (DLRs) to cover personnel, transportation, repair, storage, and associated costs. Beginning in FY 92, the published AMDF prices included the applicable surcharge. Army units are funded based on AMDF prices, therefore they are funded for the surcharge. Surcharges are developed on a periodic basis by Army ODCSLOG and approved by the Office of the DoD Comptroller.

4. Credit
A credit, or percentage of the item price, is given to the customer for each DLR turned in to the supply system. DA, ODCSLOG provided Major Subordinate Command (MSC)-specific credit rates for DLRs. These are composite rates derived from rebuild cost and washout rates. Army units are funded using these rates. However, credit rates for consumables are not applicable to costing because any turn-in of a consumable is usually the result of an ordering adjustment and thus is not tied to usage of the equipment.

5. Single Stock Fund
Beginning in FY 01, the Army began the transition to a Single Stock Fund (SSF). MACOM retail stock funds have been closed and retail credit rates have been abolished. Under SSF, the Army has established a single price, single credit, single credits/multiple points of sale that existed under the retail/wholesale system that existed in FY 00.

3. Procedures

a. Cost estimating for Consumables and DLRs involve three steps: establishing item price, making adjustments to the price (i.e. surcharges and credits), and developing operating costs for the item. The following methodology assumes that an AMDF price is available. See paragraph 2-3.d. below when AMDF prices are not available.

b. The application of surcharges and credits affects the cost estimate of initial DLR, initial consumables, replenishment DLR, replenishment consumables, and war reserves. Below are the corresponding cost elements shown in Appendix E of this manual along with a description of how to do the cost estimate for each. For the formulas below:
APPENDIX F - COST ANALYSIS TECHNIQUES

MSC = MSC specific credit rate
Q = Quantity
P = AMDF or AMDF-equivalent price

(1) Initial DLR (Procurement 2.101)
DLRs are costed using the most recently published AMDF price (standard price), which includes a surcharge, and is adjusted for inflation. If the DLR is a new item, the manufacturer's production price is used. Credits should not be considered when costing initial DLRs since the Program Manager purchases them and issued free with the end item. When the initial DLR becomes unserviceable, the credit for its turn-in will be applied to the replenishment DLR. Initial DLRs should be costed using Procurement Appropriation funding in the year of fielding.

(2) Initial Consumable (Procurement 2.102)
Consumables are costed using the most recently published AMDF price (standard price), which includes a surcharge, and is adjusted for inflation. If the consumable is a new item, the manufacturer's production price is used. Credits should not be considered when costing initial consumables since the Program Manager purchases them and issued free with the end item. Initial consumables should be costed using Procurement Appropriation funding in the year of fielding.

(3) Replenishment DLR (OMA 5.03)
(a) DLRs are costed using the most recently published AMDF price (standard price), which includes a surcharge, and is adjusted for inflation. Credits must be considered, since the assumption is that there will be turn-ins of unserviceable DLRs. The MSC-specific credit rate is a percentage specific to each fiscal year.

(b) The equation for costing a specific item is:

\[\text{Cost} = (1 - \frac{\text{MSC}}{100}) \times P \]

This approximates the item's net cost from the Army wholesaler. Replenishment DLRs should be costed using OMA funding in the year of operation. Therefore, it is important to determine the first year of "replenishment" after the fielding of a new system.

(c) The ODCSLOG Return Rate must also be considered when estimating Replenishment DLRs. The FY 01 DCSLOG return rate goal is 100%. This means DCSLOG assumes that 100% of DLRs are being returned to the system. The goal changes from time to time. In the recent past it was 95%. This would mean that DCSLOG assumes that 5% of the DLRs would be costed at full price. The remaining 95% of the projected demand should be costed net of the unserviceable credit. The formula is as follows:

\[\text{Cost} + (0.05 \times Q \times P) + (0.95 \times Q \times P \times [1 - (\text{MSC}/100)]) \]

(4) Credit Rates
Analysts will also note that under the Army's Single Stock fund in FY 01-03, credit rates are established on an NSN-by-NSN basis rather than the average AMC MSC basis. Therefore, analysts can consider pricing each individual DLR part with the NSN-by-NSN credits used in the AMDF. As an alternative, the USACEAC has developed average SSF credit rates based on the demand weighted NSN-by-NSN
credit rates. These average credit rates may be used when prices are available, but NSN-by-NSN credits are not.

(5) Replenishment Consumable (OMA 5.04)

Consumables are costed using the most recently published AMDF price (standard price), which includes a surcharge, and is adjusted for inflation. Credits need not be considered for costing purposes since the assumption is made that there will be no turn-in of consumables; units will consume what they order. Replenishment Consumables should be costed using OMA funding in the year of operation. Therefore, it is important to determine the first year of "replenishment" after the fielding of a new system.

(6) War Reserves (AWCF 6.01)

War Reserves are costed using the most recently published AMDF price, which includes a surcharge and is adjusted for inflation. Credits need not be considered, since the assumption is no turn-in of war reserves. War Reserves should be costed using AWCF Budget Authority.

c. Operating costs are usually expressed in terms of dollars per hour or per mile basis multiplied by the system density. Established cost factors may be used as a starting point to estimate operating costs. Operating costs must be spread over the useful life of the system.

d. When AMDF prices are not available, an AMDF-equivalent price must be developed.

(1) This can be done by using a Cost Estimating Relationship (CER) to estimate the AMDF-equivalent price. Use of a CER requires review of the relevant historical data. Valid relationships between cost and definable physical attributes or operational characteristics must be set up in order to establish a base price.

(2) Adjustment(s) for the inclusion and exclusion of surcharges and credits must then be made. If acquisition costs (cost to acquire item from the manufacturer) are used, the appropriate base surcharge must be added regardless of whether the item is a consumable or reparable (DLR).

(3) If the item is a DLR, a distinction must be made between initial and replenishment DLRs. Only replenishment DLRs need to be adjusted using the MSC-specific credit rates, as described in paragraph 2-3.a. above. Therefore, it is important to determine the first year of "replenishment" after the fielding of a new system.

(4) As a final step, the proper inflation factors must always be applied to develop the AMDF equivalent price. New inflation guidance is distributed annually from OSD.

d. Analysts should also consider serviceable return credit in their cost computations. Serviceable credit is paid by the AWCF for items turned-in in a fully capable status and is normally higher than unserviceable credit. Serviceable returns occur for various reasons including errors by clerks, changes in PLL or ASL repair lists. Currently, DCSLOG estimates about 14% of parts are returned in a serviceable condition. For Army Managed DLRs, the serviceable credit is equal to the latest acquisition cost. When considering serviceable returns, the equation for costing a specific item is:

\[
\text{Cost} = \left[\text{Unserviceable Return \%} \times (\text{Price} - \text{Unserviceable Credit})\right] + \left[\text{Serviceable Return \%} \times (\text{Price} - \text{Serviceable Credit})\right]
\]

4. AWCF Operations

a. The Army frequently competes for replenishment DLRs and consumables rather than purchasing them directly from the original manufacturer. However, this depends on availability and cost of the item(s). The development contractor should provide the PMO a list of items that should be stocked, and indicate whether they are critical or not. The PMO and the designated Logistics Support
Activity (LSA) would then determine the details of the provisioning process, including retail level requirements, referred to as the Authorized Stockage List and Prescribed Load List (ASL/PLL), and the wholesale level requirements designated for the Depots. The PMO and the LSA would then work with the AWCF to develop a contracting strategy so that the appropriate quantity is available at the retail and wholesale level in a timely manner. The AWCF has contracting authority.

b. The wholesale pipeline funding is the responsibility of the AWCF, specifically, the Supply Management, Army (SMA) business area. The AWCF receives appropriated funds from Congress to buy and sell secondary items (consumables and reparables) to the retail level or unit level. Therefore, the investment cost of the pipeline is born by the AWCF, but is recouped at the end of the life cycle when it sells off the remainder of the pipeline and doesn't replace it.

c. While the system is in the field, AWCF Obligational Authority (OA) is increased in order to buy all the replenishment DLRs and consumables. The AWCF is then reimbursed by OMA dollars from units that are purchasing the parts.

d. There are a few items that cannot be handled by the process described above. These items are either so expensive or so unique that it is not cost effective for AWCF to buy these and stock them.

5. System Cost Estimating

a. The PM is responsible for estimating the quantity and cost of all secondary items (consumables and reparables) associated with the system being fielded. This includes both the wholesale (depot) and retail (MSC item manager and unit) levels.

b. Procurement dollars are used to fund initial spares (now referred to as DLRs) and initial repairs (now referred to as consumables). OMA dollars are used to fund replenishment reparables and consumables.

c. The revolving part of AWCF, or the cost of the pipeline, does not go into the POE/CCA. That is, an estimate of AWCF obligational authority is not included because it is transparent to the unit, or customer. However, the OMA appropriations should reflect the funds that the units will need to reimburse the AWCF for the necessary quantity of replenishment parts at a given price over the life of the system.

d. The cost estimate, and PM procurement funding, for initial consumables and reparables should be the same. The quantity should be based on ASL/PLL requirements, in order to accurately complete initial fielding. For replenishment consumables and reparables, the cost estimate, and unit OMA funding, should be based on annual procurement requirements, or unit consumption rates. The cost estimate must consider the requirement for common components vs. system peculiar or unique components. In either case, consideration must be given to the "spares to availability" criteria by accounting for the Mean-Time-Between-Failure (MTBF) and other appropriate demand rate indicators affecting procurement requirements. Depot availability should not be an issue. What AWCF does to meet the procurement requirements is immaterial to the unit. The unit will still have to have OMA funds to buy the item whether it is currently stocked at the depot or not.

Annex A - Glossary/Definitions

Army Master Data File (AMDF)
An automated data system maintained by the Army Materiel Command (AMC) used to record supply management information for the Army. It contains many different fields and codes to describe an item (e.g. unit weight and price, units of measure and issue, supply class and repair codes). A combination of
these codes determines the separation of Class IX into consumable and reparable categories. The Maintenance Repair Code (MRC) and the Automatic Return Item (ARI) code together indicate whether a part is to be repaired when unserviceable, instructions for component return and the lowest level of maintenance authorized to perform the repair (e.g. wholesale level, Depot; or retail level, Direct Support Unit). The Materiel Category (MATCAT) code is used to identify which MSC manages the part. (See Consumable and Reparable definitions for code combinations.)

AMDF Price
The AMDF contains the most recently approved price for an item in the inventory with a unique NSN. The AMDF price will show the latest known representative procurement cost plus authorized surcharge for each fiscal year. Once the prices are fixed in a given year, changes have to be approved by HQDA as price challenges.

Army Stock Fund (ASF)
A revolving capital fund designed to finance the supply pipelines between the user and the vendor. It is now called Supply Management, Army (SMA) and it is part of the Defense Business Operating Fund (DBOF). The SMA will finance the peacetime operating stock requirements for both consumable and reparable secondary items. It will also fund the wholesale (depot level) and retail (general support level) maintenance requirements for AWCF owned reparable items.

Army Working Capital Fund (AWCF)
Revolving Fund established under DMRD 971 in FY 92 with the goal of balancing total revenues with total net operating costs. All existing industrial and stock funded activities were encompassed in AWCF, which operates like a commercial business. It purchases supplies from vendors with stock funds and sells those supplies to customers, and then uses the proceeds from those sales to buy more supplies and pay operating costs.

AWCF Business Area
An activity financed under AWCF. Criteria for inclusion in the AWCF as a Business Area are: outputs can be identified, costs can be related to outputs, and customers can be identified. There are currently three Army business areas in AWCF, including Supply Management, which covers secondary items.

Class IX Supply Category
This category identifies items, which are repair parts. This includes kits, assemblies, and subassemblies, used in the repair of end items. It includes any item, reparable or nonreparable, which is needed to provide maintenance support to any equipment.

Consumable
Defined by AMDF field attributes. Specifically, consumables are those parts with MRC = 'F', 'H', or 'O' and an ARI not equal to 'C', 'E', 'R', 'S', or MRC equal to 'Z', 'B', 'G', '-' and Blank. (By default, they are parts that are not reparables/DLRs.) Generally, any part, assembly, subassembly or component consumed in the operation, maintenance, and support of a primary system and associated support equipment at the unit level. Typically, a consumable is consumed in use and has no salvage or rebuild value. Excludes critical items stocked at General Support, Direct Support or Unit level.

Credit
Funds returned to units when they turn-in serviceable items or unserviceable DLRs to the supply system. Under the Army's Single Stock Fund in FY 01-03, credit rates are established on an NSN-by-NSN basis rather than the average AMC MSC basis. For DLR items, the unserviceable credit is based on the latest acquisition cost, the repair cost, and the washout rate.
APPENDIX F - COST ANALYSIS TECHNIQUES

Depot Level Reparables
Defined by AMDF attributes. Reparables are defined as secondary items with a MRC = 'D', 'L', or field level repairable items with MRC = 'F', 'H', or 'O', and an ARI code of 'C', 'E', 'R', or 'S'. Generally, any part, assembly, subassembly or component required on a recurring basis for the repair of major end items of equipment subsequent to fielding. A DLR is a secondary item repairable that can be completely repaired only at the depot level or special repair activity (SRA). Includes critical items at General Support, Direct Support or Unit Level. Typically, DLRs are returned to the supply system for repair/rebuild when broken.

Depot Maintenance
Maintenance of secondary items that support the supply system at the national level. Maintenance capability at depots includes overhaul; modification; calibration; analytical, special, and nondestructive testing and inspection; cannibalization; and fabrication of assets. Typical activities are rebuild of vehicles/aircraft and the rebuild of a DLR.

Rebuild Cost
The cost required restoring an item to its previous normal operating condition.

Return Rate
The rate at which repairable secondary items are sent back to the depot for repair.

Reparable
Defined by AMDF attributes. Any part, assembly, subassembly or component required for installation in the maintenance or repair of an end item, subassembly or component, subsequent to fielding, at a depot or special repair activity (SRA). Includes critical items at general support, direct support or unit level maintenance levels.

Revolving Fund
A working capital fund whose basic structure serves two purposes: first, to capitalize the costs of producing goods or providing services, and second, to buy and hold inventories until the customer or user pays for them. Market demand sets the level of operation. However, over the long run, revolving funds must break even. This causes prices, as well as the corresponding surcharges, to fluctuate from year to year.

Secondary Item
A repairable or consumable item under the SFDLR Plan that is included in the stock fund account. Secondary items are centrally managed by Army Inventory Control Points (ICP).

Stock Funded Depot Level Reparable (SFDLR)
Another term for Depot Level Reparable (DLR). (See definition above.)

Supply Management, Army (SMA)
An AWCF business activity (formerly Army Stock Fund) that sells secondary items (consumables and reparables).

Surcharge
Percentage included in the formula prescribed for computing the standard price for an item to cover estimated transportation costs, inventory maintenance, foreseeable net losses, price stabilization, and other expenses relating to such items, as authorized.

Unit Level Maintenance

MAY 2001
Unit maintenance is performed at the battalion level and by mobile teams operating from the battalion level that support operational units. Unit level maintenance operations normally include preventive maintenance checks and service inspections, lubrication, cleaning, preserving, tightening, replacing, minor adjustments, diagnosing, fault isolating, replacing unserviceable consumable parts authorized by the Source, Maintenance, and Recoverability (SMR) code, and verifying faults and levels of repair.

War Reserve
Stocks that are routinely maintained at levels necessary to support wartime operations. War Reserve stocks will be funded through a separate congressional appropriation to AWCF.

Washout Rate
The engineering estimate based on historical data of the percentage of parts that, after failure, will be determined to be beyond economical repair.

Wholesale Pipeline
The processing and moving of both serviceable and unserviceable secondary items (DLR) through the supply system. This includes transportation and transaction costs, as well as the cost of the item. Since these costs are reflected in the surcharge to the standard AMDF price, it is no longer necessary to separately cost the wholesale pipeline in weapon system cost estimates. The wholesale pipeline for both DLRs and consumables for a weapon system is initially purchased by the SMA business area of AWCF. It is no longer purchased with appropriated dollars. During the life of the system, the SMA sells parts to units, repairs DLRs and buys new parts from suppliers, always maintaining a "pipeline" of parts in stock or on order. At the end of system life, that pipeline will be sold and not replaced. Since customers now purchase DLRs until disposal of the system, replenishment DLR costs should be shown for all years since the cost of doing business (i.e. maintaining the wholesale pipeline) is funded by the surcharge to the standard price.
Section I - Force Cost Model Element Structure

1.0 ACQUISITION OF RESOURCES

1.1 Materiel Acquisition
 1.1.1 Equipment
 1.1.1.1 Aircraft
 1.1.1.2 Missiles
 1.1.1.3 Weapons & Tracked Combat Vehicles
 1.1.1.4 Other Procurement
 1.1.1.4.1 Tactical & Nontactical Vehicles
 1.1.1.4.2 Telecoms & Other Comms
 1.1.1.4.3 Other Support Equipment
 1.1.1.5 Ammunition Items & Special Weapons
 1.1.1.6 O&M Major End Item
 1.1.2 Ammunition Initial Issue
 1.1.3 Organizational Clothing & Field Equipment
 1.1.4 CTA Field Equipment & Medical Items
 1.1.5 PLL/ASL (not currently available)
 1.1.5.1 PLL (not currently available)
 1.1.5.2 ASL (not currently available)
 1.1.6 Class 1,2,3 Basic Load
 1.1.7 Replenishment Spares (Wholesale)
 1.1.8 Replenishment Repair Parts (Wholesale)
 1.1.9 Publications
 1.2 Personnel Acquisition
 1.2.1 Recruiting
 1.2.1.1 Military Pay Funded
 1.2.1.2 O&M Funded
 1.2.2 Training Through Initial MOS
 1.2.2.1 Military Pay Funded
 1.2.2.2 O&M Funded
 1.2.2.3 OTHER Funded
 1.2.3 Organizational Clothing and Field Equipment
 1.2.4 Accession Travel

2.0 ACTIVATION

2.1 Transportation
 2.1.1 Material
 2.1.2 Personnel-PCS Travel For Military & Dependents
2.2 Military Construction
 2.2.1 Facilities
 2.2.2 Army Family Housing
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

3.0 OPERATIONS
3.1 Direct Equipment Parts & Fuel Costs
3.1.1 Training Operations
3.1.1.1 Aircraft Operations
3.1.1.1.1 Replenishment Spares
3.1.1.1.2 Replenishment Repair Parts
3.1.1.1.3 POL
3.1.1.2 Ground/Afloat Operations
3.1.1.2.1 Replenishment Spares
3.1.1.2.2 Replenishment Repair Parts
3.1.1.2.3 POL
3.1.1.3 Non-OSMIS Equipment Operating Cost
3.1.2 Training Ammunition and Missiles
3.2 Indirect Support Costs
3.2.1 Transportation to Training Sites
3.2.2 Supplies and Equipment
3.2.3 Contractual Services - Field
3.2.4 Mission Travel
3.2.5 Equipment Leases
3.2.6 Contractual Services
3.2.6.1 ADP
3.2.6.2 Other
3.2.7 Purchased Equipment
3.2.8 Admin Travel
3.2.9 Civilian Labor
3.2.10 Other
3.3 Personnel
3.3.1 Replacement Personnel
3.3.1.1 Training Through Initial MOS
3.3.1.1.1 Military Pay Funded
3.3.1.1.2 O&M Funded
3.3.1.1.3 Other Funded
3.3.1.2 Organizational Clothing
3.3.2 PCS Travel for Military & Dependents
3.3.3 Military Personnel
3.3.3.1 Basic Pay and Allowances
3.3.3.2 Special/Incentive/Hazardous Duty Pay
3.4 Other Unit Support
3.4.1 BASE OPS Support (Navigator Data)
3.4.1.1 Acquisition
3.4.1.2 Command and Control
3.4.1.3 Engineering
3.4.1.4 Information Technology
3.4.1.5 Logistics
3.4.1.6 Operations
3.4.1.7 Personnel
3.4.1.8 Resource Management
3.4.2 Defense Health Program
3.4.3 Army Family Housing Operations & Maintenance
3.4.4 Army Family Housing Leases
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

4.0 MOVEMENT
4.1 Material
4.1.1 Aircraft Self Movement
4.1.2 Wheeled Vehicle Self Movement
4.1.3 Rail
4.1.4 Truck
4.1.5 Air
4.1.6 Sea
4.2 Personnel
4.2.1 Administrative (PCS)
4.2.2 Tactical (Air)
4.2.3 Tactical (Bus)
4.2.4 Tactical (Rail)

5.0 INACTIVATION
5.1 Savings (Annual Operations)
5.1.1 Direct Equipment Parts and Fuel Costs
5.1.1.1 Training Operations
5.1.1.2 Training Ammunition and Missiles
5.1.2 Indirect Support Costs
5.1.3 Other Training Support
5.1.4 Personnel: Delta in Allowances (MACOM unique)
5.1.5 Other Unit Support: O&M
5.1.6 Other Unit Support: AFHO
5.1.7 Analyst Input
5.2 Costs
5.2.1 Accelerated PCS
5.2.2 Transfer Standards Maintenance
5.2.3 Equipment Support
5.2.4 Change in Gaining Unit Operating Cost
5.2.4.1 O&M Funded (Analyst Input)
5.2.4.2 AMMO Funded (Analyst Input)
5.2.5 Analyst Input

Section II - Force Cost Element Definitions

1.0 ACQUISITION OF RESOURCES (1.1 + 1.2)

Procurement of resources within, or with an increase in, end strength. If end strength is not increased then there are no personnel (1.2) costs.

1.1 Material acquisition (1.1.1 through 1.1.9)

All authorized equipment, initial issue ammunition, clothing, field equipment, replenishment spares and repair parts and technical manuals/publications.

1.1.1 Equipment (1.1.1.1 through 1.1.1.6)

Cost of aircraft, missiles, weapons & tracked vehicles; other procurement including tactical & nontactical vehicles, telecommunications and other support equipment; ammunition items and special weapons; and, O&M major end items.
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

1.1.2 Ammunition Initial Issue

The cost of the basic quantity of ammunition for the organization. Allocated based on the number of personnel assigned, the type and quantity of equipment and type of unit.

1.1.3 Organizational Clothing & Individual Equipment

Cost includes all authorized individual clothing and equipment. The cost is dependent upon variables such as type of unit, climatic zone, and authorized level of organization (ALO).

1.1.4 Consolidated Table of Allowances (CTA) Field Equipment and Medical Items.

The cost for items allocated based on the number of personnel, the type and equipment, and/or the type and size (CO, BN, BDE, etc.) of the unit.

1.1.5 PLL/ASL (not currently available)

1.1.5.1 PLL - Prescribed Load List (not currently available)

The basic load of repair parts the unit keeps on hand.

1.1.5.2 ASL - Authorized Stockage List (not currently available)

The basic load of repair parts the Direct Support Unit (DSU) maintains for the unit.

1.1.6 Class 1,2,3 Basic Load

The basic load of field rations, clothing and packaged POL the unit keeps on hand.

1.1.7 Replenishment Spares (Wholesale)

Spare components, assemblies and subassemblies (reparable items) to support end items of equipment to sustain the spares supply pipeline.

1.1.8 Replenishment Repair Parts (Wholesale)

Individual parts, assemblies, or subassemblies (nonreparable) required supporting end-items of equipment to sustain the repair parts supply pipeline.

1.1.9 Publications

Technical publications, e.g., how to operate, maintain, or repair, associated with each line item number piece of equipment.
1.2 Personnel Acquisition (1.2.1 through 1.2.4)

Cost of procurement of military personnel for the SRC unit.

1.2.1 Recruiting

The cost, by appropriation, to recruit each authorized member of the unit.

1.2.1.1 Military Pay Funded (MPA)

Military salary costs.

1.2.1.2 O&M Funded (OMA)

Acquisition/recruiting costs.

1.2.2 Training through initial MOS

Cost, by appropriation, is keyed to E-3 pay rate and cost of formal initial MOS training for the MOS.

1.2.2.1 Military Pay Funded (MPA)

1.2.2.2 O&M Funded (OMA)

1.2.2.3 Other Funded (AMMO)

1.2.3 Clothing Initial Issue

Contains a list and cost of authorized initial clothing items for respective male and female enlisted members. Often called or referred to as clothing bag.

1.2.4 Accession Travel

Cost of enlisted accession travel from home to point of entry for training or duty.

2.0 ACTIVATION (2.1 + 2.2)

Costs to move all of the unit equipment and personnel from the location at which the unit was formed to its permanent home station.

2.1 Transportation (2.1.1 + 2.1.2)

2.1.1 Material

Transport of unit equipment to a permanent home station.

2.1.2 Personnel-PCS Travel for Military

Transport of personnel to a permanent home station.

2.2 Military Construction
2.2.1 Facilities

Construction of installation buildings and utilities for use by the unit/organization.

2.2.2 Army Family Housing

Construction of housing for married personnel in the unit.

3.0 OPERATIONS (3.1 through 3.4)

Annual direct and indirect costs to operate the force unit selected at the specified ALO, Training Readiness Rating, MACOM, and Component. The estimate includes the cost of Direct Equipment Parts and Fuel Costs, Indirect Support Costs and Other Unit Support.

3.1 Direct Equipment Parts and Fuel Costs (3.1.1 through 3.1.2)

3.1.1 Training Operations

Includes cost of air and ground operations, replenishment spares and repair parts, non-OSMIS equipment operating costs and POL. Costs are calculated with annual operational tempo and OSMIS factors. OSMIS factors are expressed as the cost per unit of OPTEMPO. A non-OSMIS equipment operating cost is computed by applying scaling factors (ranging from 3% to 9%) to the ground operations cost estimate.

3.1.2 Training Ammunition & Missiles

Costs are based on the average ammunition expenditures of like units over the last four years.

3.2 Indirect Support Costs (3.2.1 through 3.2.10)

Costs are calculated with MACOM per capita cost factors and SRC personnel populations.

3.2.1 Transportation to Training Sites

3.2.2 Supplies and Equipment

3.2.3 Contractual Services - Field

3.2.4 Mission Travel

3.2.5 Equipment Leases

3.2.6 Contractual Services

3.2.6.1 ADP

3.2.6.2 Other

3.2.7 Purchased Equipment
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

3.2.8 Admin Travel

3.2.9 Civilian Labor

3.2.10 Other

3.3 Personnel (3.4.1 + 3.4.2 + 3.4.3)

Costs include training replacement personnel through initial MOS, initial (enlisted) clothing issue and PCS travel for military and dependents.

3.3.1 Replacement Personnel (3.4.1.1 + 3.4.1.2)

The costs are based on MACOM enlisted rotation rates, expressed as a percentage of assigned personnel, to determine the cost of training through initial MOS for replacement personnel. Rotation rate is synonymous to attrition rate.

3.3.1.1 Training through initial MOS

Costs include military pay funded (MPA), O&M funded (OMA) and OTHER funded (AMMO).

3.3.1.2 Clothing Initial Issue

The costs are based on MACOM enlisted rotation rates, expressed as a percentage of assigned personnel, to estimate clothing costs for replacement personnel/annual operations.

3.3.2 PCS Travel for Military & Dependents

The cost calculation includes applying of officer/warrant officer and enlisted rotational PCS cost factors and, in turn, respective MACOM officer/warrant officer and enlisted rotation rates.

3.3.3 Military Personnel (3.4.3.1 + 3.4.3.2)

3.3.3.1 Basic Pay and Allowances

Includes base pay, BAQ, BAS, retired pay accrual, FICA, station allowance, survivor benefits, enlisted clothing allowance, enlisted reenlistment and separation allowances.

3.3.3.2 Special/Incentive/Hazardous Duty Pay

Cost incentive pay authorized for performance of hazardous related duties, e.g., flight or parachute jump, or special skills such as physician's duties.

3.4 Other Unit Support (3.5.1 through 3.5.6)

3.4.1 Base Operating Support

Repair and maintenance of facilities: Buildings/structures, utilities, roads and grounds.

3.4.2 Defense Health Program

Medical clinics and other medical service activities. These are O&M, Defense-wide dollars.
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

3.4.3 Army Family Housing Operations & Maintenance

Property operations and maintenance oriented for/to Army family housing.

3.4.4 Army Family Housing Leases

Cost for housing leased in the private sector for military personnel.

4.0 MOVEMENT (4.1 + 4.2)

Costs to move an entire unit either on a tactical deployment or an administrative relocation.

4.1 Materiel (Tactical/Administrative) (4.1.1 through 4.1.6)

Costs are calculated for movement of unit equipment and materiel from a specified MACOM/Installation location or point of origin to a specified MACOM/Installation destination, using one or more modes of transportation.

4.1.1 Aircraft Self Movement

4.1.2 Wheeled Vehicle Self Movement

4.1.3 Rail movement of equipment/materiel

4.1.4 Truck movement of equipment/materiel

4.1.5 Air movement of equipment/materiel

4.1.6 Sea movement of equipment/materiel

4.2 Personnel (4.2.2 through 4.2.4)

4.2.1 Administrative

Costs (PCS) for movement of all unit personnel, personnel dependents, and household belongings.

4.2.2 Tactical (Air) (w/o dependents)

Tactical transport of unit personnel by air.

4.2.3 Tactical (Bus) (w/o dependents)

Tactical transport of unit personnel by bus.

4.2.4 Tactical (Rail) (w/o dependents)

Tactical transport unit personnel by rail.

5.0 INACTIVATION (5.1 + 5.2)
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

A unit can cease to exist due to a variety of reasons. Whenever a unit is inactivated there are savings and costs associated with the scenario. Operations and maintenance savings are generated by an inactivation (ceasing operations). Costs, in the form of redistribution of personnel and equipment, results from the occurrence of an inactivation. And, long-term savings may be offset by short-term cost(s).

5.1 Savings (5.1.1 through 5.1.7)

 Annual operations (savings)

5.1.1 Direct Equipment Parts and Fuel Costs

 See Annual Operations module: Cost Elements 3.1.1, 3.1.2, and 3.2.

5.1.1.1 Training Operations

5.1.1.2 Training Ammunition & Missiles

5.1.2 Indirect Support Cost

5.1.3 Other Training Support

5.1.4 Personnel

 Significant savings result only if the Army ends strength is reduced by an inactivation. Minimal savings or costs can result with a difference between the SRC pay and allowances in the origin MACOM and SRC pay and allowances in the destination MACOM.

5.1.5 Other Unit Support: O&M

5.1.6 Other Unit Support: AFHO

 See Annual Operations module: Cost Elements 3.5.1, 3.5.2, 3.5.3, 3.5.4, and 3.5.5.

5.1.7 Analyst Input

 The analyst can input any other savings that are not/were not computed above.

5.2 Costs (5.2.1 through 5.2.5)

5.2.1 Accelerated PCS

 The costs for the officer and enlisted various pay and allowances plus applying of respective officer/warrant officer and enlisted PCS rotational factors and, in turn, accelerated PCS rates.

5.2.2 Transfer Standards Maintenance

5.2.3 Equipment Transport

 See Movement module, cost element 4.1.

5.2.4 Change (5.2.4.1 + 5.2.4.2)

 Analyst entry, or input, costs that are not computed above.
APPENDIX G - FORCE COST MODEL ELEMENT STRUCTURE AND DEFINITIONS

5.2.4.1 O&M Funded (Analyst Input) (OMA funded)

5.2.4.2 AMMO Funded (Analyst Input) (AMMO funded)

5.2.5 Analyst Input

Analyst can input source of funding value not specified and for costs not computed above.

6.0 MODIFICATION

This activity involves modifying the initial unit personnel strength, equipment type/density or OPTEMPO values for a 1.0 - Acquisition of Resources or 3.0 - Annual Operations cost scenario as described below. This enables alignment of a SRC more closely with a particular Modified Table of Organization and Equipment (MTOE) unit (or SRC), or examination of the cost deltas for input personnel strength changes and/or equipment additions or deletions and OPTEMPO changes. Modification of 1.0 - Acquisition of Resources or 3.0 - Annual Operations defaults to the respective force cost element structures for 1.0 and 3.0 because modification doesn't possess a force cost element structure of its own.

Personnel

An initial unit by-grade distribution of personnel is modified with a proposed or required number of personnel changes, in any or all grades, and recosted.

Cost Driver Data

Equipment unit cost, density values and appropriation identity, corresponding to a given LIN and LIN nomenclature, are required to conduct an initial cost estimate and modify an initial cost estimate. The analyst changes the quantity and type of equipment assigned and total cost, for a SRC unit, by modifying any one or all of the aforementioned Cost Driver Data information or data values, except appropriation.

Replenishment (Operational) Driver Data

Equipment LIN, LIN nomenclature, density, appropriation identity; annual mileage or hourly OPTEMPO; and, repairable, consumable, and POL operation and maintenance factor values are needed to conduct an initial and modified acquisition of resources cost estimate. The analyst changes the quantity and type of equipment assigned and operational cost by providing changes to any one or all of the aforementioned Replenishment (Operational) Driver Data information or data values, except appropriation.
SAMPLE DFAS SUMMARY REPORT

1.0 PERSONNEL COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>14,753,297</td>
</tr>
<tr>
<td>1.1 Military Personnel:</td>
<td></td>
</tr>
<tr>
<td>1.1.1 Reserve Components Called to Active Duty</td>
<td>2,257,550</td>
</tr>
<tr>
<td>1.1.2 Imminent Danger or Hostile Fire Pay</td>
<td>63,000</td>
</tr>
<tr>
<td>1.1.3 Family Separation Allowance</td>
<td>0</td>
</tr>
<tr>
<td>1.1.4 Foreign Duty Pay</td>
<td>990</td>
</tr>
<tr>
<td>1.1.5 Subsistence</td>
<td>10,739,160</td>
</tr>
<tr>
<td>1.1.6 Other Military Personnel (MILPERS)</td>
<td>1,672,620</td>
</tr>
<tr>
<td>1.2 Civilian Personnel:</td>
<td>19,977</td>
</tr>
<tr>
<td>1.2.1 Civilian Premium Pay</td>
<td>9,931</td>
</tr>
<tr>
<td>1.2.2 Civilian Temporary Hires</td>
<td>9,931</td>
</tr>
<tr>
<td>1.2.3 Other Civilian Personnel</td>
<td>115</td>
</tr>
</tbody>
</table>

2.0 PERSONNEL SUPPORT COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>41,417,705</td>
</tr>
<tr>
<td>2.1 Temporary Duty (TDY)/Temporary Additional Duty (TAD)</td>
<td>7,140</td>
</tr>
<tr>
<td>2.2 Clothing and Other Personnel Equipment and Supplies</td>
<td>7,607,943</td>
</tr>
<tr>
<td>2.3 Medical Support/Health Services</td>
<td>1,862,536</td>
</tr>
<tr>
<td>2.4 Reserve Component Activation and Deactivation</td>
<td>55,561</td>
</tr>
<tr>
<td>2.5 Other Personnel Support</td>
<td>31,884,525</td>
</tr>
</tbody>
</table>

3.0 OPERATING SUPPORT COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>32,360,249</td>
</tr>
<tr>
<td>3.1 Training</td>
<td>7,054,902</td>
</tr>
<tr>
<td>3.2 Operation OPTEMPO (Fuel, Other POL, Parts)</td>
<td>4,212,883</td>
</tr>
<tr>
<td>3.3 Other Supplies and Equipment</td>
<td>1,550,289</td>
</tr>
<tr>
<td>3.4 Facilities/Base Support</td>
<td>2,070,247</td>
</tr>
<tr>
<td>3.5 Reconstitution</td>
<td>13,145,605</td>
</tr>
<tr>
<td>3.6 Other Services and Miscellaneous Contracts</td>
<td>4,326,323</td>
</tr>
</tbody>
</table>

4.0 TRANSPORTATION COSTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>538,888</td>
</tr>
<tr>
<td>4.1 Airlift</td>
<td>481,096</td>
</tr>
<tr>
<td>4.2 Sealift</td>
<td>8,363</td>
</tr>
<tr>
<td>4.3 Ready Reserve Force</td>
<td>0</td>
</tr>
<tr>
<td>4.4 Port Handling/Inland Transportation</td>
<td>41,199</td>
</tr>
<tr>
<td>4.5 Other Transportation</td>
<td>8,230</td>
</tr>
</tbody>
</table>

Estimate Total **89,070,140**
DFAS SUMMARY REPORT DEFINITIONS

Incremental Costs. Those additional costs the Department incurs as a direct result of the contingency operation: they are costs which otherwise would not have been incurred if the operation had not been supported. Pricing for incremental material and services shall be at the DoD rate (refer to Chapter 1, Volume 11A of the “DoD Financial Management Regulation (FMR) (DoD 7000.14-R).”

Cost offsets. In some instances, costs for which funds have been appropriated may not be incurred as a result of a contingency operation. These savings or cost offsets should be deducted from Incremental Costs to the maximum extent possible.

Cost Categories. Specifies cost categories are to be used to estimate and report contingency operations costs. Costs are limited to that increment above and beyond programmed baseline training, operational and personnel costs, as adjusted by applicable cost offsets. The following categories and definitions are provided, with detail as to how the Contingency Operations Cost Model handles each category to arrive at estimated costs. Costs will be generated and reported by phase of the operation where they can be so identified and with a summary cost report.

1.0 **Personnel Costs.** Includes only incremental pay and allowances above normal monthly payroll costs for active reserve and guard personnel and are summarized into MPA (Military Personnel) and OMA Civilian Personnel Costs Categories: Subcategories are:

- Reserve components called to active duty. This is an incremental cost, which includes Reserve Pay, outside of what normal drill pay would be.

- Imminent Danger or Hostile Fire Pay (Special Pay). This allowance approved by directing authority applies to all uniformed personnel in theater at a uniform rate per service member.

- Family Separation Allowance (Allowance). Applies to all uniformed personnel in theater at a uniform rate per service member who are separated from their families for more than 30 days.

- Foreign Duty Pay (Special Pay) A monthly special payment only to active duty enlisted and reserve component personnel who are at a location outside of the Continental United States (OCONUS) that has been designated for foreign duty pay.

- Subsistence. Includes the costs of water, food, ice and other subsistence items (Army Class I), which are purchased expressly to support personnel engaged in or supporting the contingency operation.

- Active and reserve component forces may be entitled to other allowances or special pay not included above as a result of their support of the contingency. Examples are BAS, BAQ, Clothing Allowance, etc.

- Civilian Pay and Allowances.

 - Civilian Premium Pay. This category includes the civilian pay incremental costs for things such as overtime pay, night/shift differential, Sunday pay, holiday pay, hazardous duty pay, danger pay allowance, differentials in foreign areas. Premium pay covers both permanent and temporary DoD civilian employees.
Civilian Temporary Hires. Includes the basic salary and benefit costs of DOD civilian employees hired specifically to participate in or support a contingency operation.

Other Civilian Personnel. Includes the basic civilian salary and benefits costs for DoD personnel engaged in the contingency operation.

2.0 Personnel Support Costs

TDY (Temporary Duty) / TAD (Temporary Additional Duty). Includes the cost of travel, per diem, and lodging for military and civilian personnel in support of a contingency operation.

Clothing and Other Personnel Equipment and Supplies. Includes the cost of individual and organizational clothing and equipment not already issued to military, reserve and civilian personnel. Includes the issue and replacement of clothing, tools, administrative supplies and personal demand items.

Medical Support / Health Services. Additive incremental costs associated with providing medical services to the force in clinics, hospitals, hospital ships or other medical treatment facilities.

Reserve Component Activation and Deactivation. Includes costs to mobilize and train reserve units or individual reservists. Primarily includes transportation to the mobilization station and training required to meet deployment standards.

Other Personnel Support Costs. Personnel support costs not included in one of the above items. This category would include unusual costs such as permanent change of station (PCS) or special actions associated with household goods or privately owned vehicle (POV) storage.

3.0 Operating Support Costs

Training. Includes all the costs associated with predeployment training to prepare units and personnel for an operation.

Includes the incremental costs to operate units during the contingency operation. Includes POL, Bulk Class III, can Class IX. (Excludes Class V)

Other Supplies and Equipment. Includes acquisition of supplies and equipment required to equip and sustain the forces during all phases of the contingency operation.

Facilities/Base Support. Services include establishment, maintenance and operation of billeting, camps, airfields, staging areas, and real property maintenance away from home station. Includes leases, rents, and utilities.

Reconstitution. Includes the cost to clean, inspect, maintain, replace and restore equipment to the required condition at the conclusion of the contingency operation.

Command, Control, Communications, Computers and Intelligence (C4I) other services as Miscellaneous Contracts. Includes the cost of installing and maintaining C4I systems supporting the contingency operations to include all communications services and intelligence services. Includes general support and administrative equipment (copiers). Includes contract services such as linguists.
4.0 Transportation

Airlift. Includes the transportation of personnel, equipment and material by air, using either commercial or military assets.

Sealift. Includes the transportation of personnel, equipment and material by sea, using either commercial or active duty naval ships.

Ready Reserve Force (RRF)/Fast Sealift Ship (FSS). Transportation of personnel, equipment and materials by using Ready Reserve or FSS ships. Includes the cost to activate/deactivate and make the vessels ready for use in contingency operations.

Port Handling/Inland Transportation. Port Handling and transportation of personnel and equipment by land. Includes contracted services to support movement of the force.

Other Transportation. Transportation not included as airlift, sealift, ready reserve forces or port handling/inland transportation.
APPENDIX H - STUDY PLAN

Developing a study plan is the first step in preparing a cost estimate or conducting an economic analysis. The plan is required and should be submitted to the Director, CEAC, and one week prior to a methodology in-process review (IPR). The Director, CEAC, approves the plan at the IPR, and it should be updated as major methodologies change.

Study Plan

Program Name ________________
Date ________________

1. REFERENCES:

List all references such as taskings, memorandums, letters, meeting notes, and telephone conversations.

2. MISSION:

Describe the mission of the system being costed.

3. BACKGROUND:

Provide background information on how the program evolved to its current stage and the current status of the system (milestone).
Provide the current funding profile (e.g., FYDP, POM) of the program and the last Army Cost Position (if one exists).

4. PURPOSE OF THE STUDY:

State the purpose of the study, e.g., OSD-CAIG, ASARC, MAISARC, and EA.

5. STUDY SPONSOR AND ANALYST:

Sponsor: ___________________ Analyst (name and phone #): ___________________

6. TASKS:

Describe what tasks need to be accomplished, e.g., POE, CCA, ACP, EA, special study, sensitivity analysis.

7. ASSUMPTIONS, GROUND RULES AND CONSTRAINTS:

Provide all assumptions, ground rules and constraints. Give a definition for each not to exceed three or four sentences.
8. WORK BREAKDOWN STRUCTURE (WBS):

Provide a copy of the system WBS and definitions for what is included within each WBS.

9. SYSTEM DESCRIPTIONS AND CONFIGURATION:

Provide a hardware and software system configuration and definitions.

10. ACQUISITIONS AND FIELDING SCHEDULE:

Provide an approved current program acquisition and fielding schedule. Also, include a description of the program’s acquisition strategy.

11. METHODOLOGY AND DATA:

Provide data and methodology on cost drivers for each WBS. A more detailed discussion of the methodology will be presented at a methodology IPR. This section will be updated to reflect the results of the methodology IPR and data and/or methodology changes during the course of study. This section should also describe any estimating model planned to be used.

12. PROGRAM MILESTONE SCHEDULE:

This section should include the program acquisition schedule based on past, current, and future events.

<table>
<thead>
<tr>
<th>Event</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. POE/EA, CCA and ACP SCHEDULE OF EVENTS:

<table>
<thead>
<tr>
<th>Event</th>
<th>Start</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Tasking Letter | Study Plan | POE/EA Methodology IPR | Validated POE/EA to CEAC | CCA | Brief CCA to Director, CEAC | CRB Working Group Meeting | Brief POE/EA, CCA, and Cost Variance Analysis to CRB | ACP Approval by the ASA(FM&C) |

14. PROGRAM POINTS OF CONTACT (POCs):

<table>
<thead>
<tr>
<th>Agency</th>
<th>Name</th>
<th>Phone #</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAY 2001 168
PEO
PMO
SARDA
DISC4
DCSLOG
DCSOPS
Army Budget
Army PA&E
OSD-CAIG
AMC-EM
MACOM Validator

15. ISSUES:

Discuss the issues raised in the last CAIG report. List all management, cost, and technical program issues. Provide an explanation for each issue.
APPENDIX I - COST ANALYSIS REQUIREMENTS DESCRIPTION (CARD)

DoD 5000.2-R specifies that the DoD Component sponsoring an acquisition program establish, as a basis for cost estimating, a description of the salient features of the program and of the system being acquired. This information is to be presented in the CARD. DoD 5000.4-M, Chapter 1, provides specific guidance for preparing and updating a CARD.

The CARD is intended to be comprehensive enough to facilitate identification of any area or issue that could have a significant cost impact and, therefore, must be addressed by the cost analyst. It is also intended to be flexible enough to accommodate the use of various estimation methodologies. However, the information provided in the CARD should be limited to the data necessary to support the cost estimation process. In some CARD sections, it may be possible to convey the information pertinent to cost estimation in a few sentences or in a single matrix or table. The input options available to the CARD preparers are identified below. The option exercised should be consistent with the condition of the data.

Input Options Available to CARD Preparers

<table>
<thead>
<tr>
<th>Condition of Data</th>
<th>CARD Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The required data are available.</td>
<td>Provide the data in the appropriate section of the CARD.</td>
</tr>
<tr>
<td>2. The data are contained in another document.</td>
<td>Summarize the data pertinent to cost in the appropriate section of the CARD and provide reference to the more detailed source.</td>
</tr>
<tr>
<td>3. There are no significant cost implications associated with that CARD section.</td>
<td>The CARD section should be identified as not relevant (N/R).</td>
</tr>
<tr>
<td>4. Sufficiently detailed definition is not yet available.</td>
<td>The available data should be provided and the remainder of the information should be identified as to be determined (TBD).</td>
</tr>
<tr>
<td>5. Uncertainty is associated with this area.</td>
<td>A range of values can be specified as opposed to a discrete value. If a range is used, it should be associated with a base case. Include rational for the range as well as a discussion of the significance of its variation for other parts of the system. If possible, designate a most likely or design value.</td>
</tr>
</tbody>
</table>

As a program evolves and matures, it is anticipated that additional data, which will resolve TBDs and uncertainties, will become available and will be incorporated into the CARD.
APPENDIX J - ARMY COST ESTIMATING TOOLS

Section I - Automated Cost Estimating Integrated Tools (ACEIT)

ACEIT provides a framework for standardized cost estimating. ACEIT is a PC based model, which provides standard framework for cost estimating and other analysis tasks. ACEIT automates the storage, retrieval, and analysis; facilitates building cost models, risk analysis, budget time phasing and narrative documentation of the cost estimates. ACEIT is an integrated suite of tools. ACE Executive is the heart of ACEIT. ACE automates all of the steps of the estimating process, including building a Work Breakdown Structure, specifying estimating methods, performing learning, time phasing, inflation, and documentation. ACE also provides access to on-line databases and knowledge bases of cost estimating relationships, models, and source references.

ACEIT is widely used by Army organizations from the headquarters to small cost shops. Additionally the Air Force, Navy, OSD, other government agencies and support contractors use it. For more information see the U.S. Army Cost and Economic Analysis Center website at http://www.asafm.army.mil/ceac.htm.

Section II - Automated Cost Data Base (ACDB)

ACDB is part of the suite of Automated Cost Estimating Integrated Tools (ACEIT). ACDB is a source of commodity based cost, technical and performance data. Commodities include communications/electronics, rotary wing aircraft, missiles and munitions, wheeled and track vehicles. ACDB provides the unique capability to enter, search, and retrieve standardized cost, schedule, technical, and programmatic data with easy interface with the ACEIT Cost Analysis Statistic Package (CO$TAT) or Excel. ACDB includes powerful Database Administrator (DBA) tools to allow the database framework to be easily customized to meet the specific requirements of the site, without expert knowledge of database programming. The Database Entry (DBE) tools automate the process of loading raw data; mapping and normalizing cost data into standard WBS. The Search and Retrieval module is user-friendly facilitating data access, data exporting and report generation. Additional ACDB information is available the U.S. Army Cost and Economic Analysis Center website at http://www.asafm.army.mil/ceac.htm.

Section III – Operating & Support Management Information System (OSMIS)

The Operating and Support Management Information System (OSMIS) is the Army’s portion of the Department of Defense (DoD) Visibility and Management of Operating and Support Costs (VAMOSC) Program. OSMIS is managed by the U.S. Army Cost and Economic analysis Center (USACEAC). It is the U.S. Army’s source of standardized historical operating and support (O&S) cost information for more than 500 systems deployed in tactical units – Active, Guard, and Reserve. It is easily accessible and widely used by Department of Defense analysts in developing O&S cost analyses, preparing O&S estimates and cost reduction initiatives. The types of analyses and comparisons include: Component Cost Analyses (CCAs), Program Office Estimates (POEs), Cost Estimating Relationships (CERs), Alternative of
Analyses (AOAs), Economic Analyses (EAs), and weapon/materiel system O&S cost comparisons between legacy and new systems.

Additional information is available on the U.S. Army Cost and Economic Analysis Center website at http://www.ceac.army.mil under OSMIS.
APPENDIX K - COST RISK ANALYSIS

APPENDIX K – COST RISK ANALYSIS

1. Introduction

Cost risk is very important in determining the potential cost of a program. This Appendix is divided into eight sections. Section 2 provides general background information and a discussion of some common definitions. Section 3 reviews some basic definitions of risk and uncertainty. Section 4 provides the cost analyst with an overview of the program manager’s (PM’s) responsibilities to identify, plan for, and manage the risks in their program. Since considerable cost risk can be abated by the PM’s management of risk, the information in Section 4 can be useful knowledge for the analyst who must assess and estimate cost risk. Section 5 provides a summation of some of the sources of risk and what is included in each of the three main areas of risk (performance or technical, schedule, and cost estimating risk). Section 6 identifies some methods currently being used by analysts to estimate cost risk. Section 7 discusses some of the models available to cost analysts who must include cost risk in their estimates. The main purpose of sections 6 and 7 is to show some of the approaches that have been implemented by field practitioners. Section 8 concludes with some common sense guides for identifying and quantifying the risk in a program.

2. Background

 (1) DoD Directive 5000.1 defines the concepts, identifies key officials and forums, and establishes guiding principles for risk assessment and management.

 (2) DoD Regulation 5000.2-R, Part 3, Program Structure issues the fundamental guidance that requires PMs to address risk management in their acquisition strategy.

 (3) DoD Regulation 5000.2-R, Part 5, Program Assessments and Decision Reviews requires that information produced and distributed to decision-makers include all appropriate information needed by the decision-maker and must include any risks of the specific program.

b. Before we begin a discussion on risk and uncertainty, some pertinent definitions are relevant to the discussion.

 (1) Budgeting to Most Likely Cost: This represents the most likely or most probable estimate of the cost that will ultimately be realized for a program, project, or task. An essential characteristic of the estimate should be that it includes the funding necessary to ensure that the program can be executed in an environment of undefined technical complexity, schedule uncertainty, and the associated cost risk. Furthermore, such risk funds should be an integral part of the estimated cost of each work breakdown structure (WBS) element that has risk or uncertainty. The risk funds are not management reserve, nor are they an identifiable or traceable element of cost. As a rule, more of the risk funds are budgeted in the development phase than in the production phase of a program. Factors bearing on risk include the phase of the acquisition cycle, the amount of concurrency between development and production, system complexity, etc.

 (2) Management Reserve (MR): The use of this term is limited to cost type contracts that require cost/schedule control system criteria (C/SCSC) reporting. It represents a budget value within the negotiated contract target cost that contractors have decided not to initially distribute to their cost account.
APPENDIX K - COST RISK ANALYSIS

managers. Contractors are required to track the application of MR. In addition, they are required to report the amount of MR in their financial reports submitted to the government.

(3) Engineering Change Orders (ECOs): ECOs are our best estimate for anticipated product changes and are based on such things as historical precedence, (e.g., safety of flight, correction of deficiencies, and value engineering). ECOs are a reserve for known or unknown contract changes. ECOs do not include reserves for "requirements creep," but are rather a reserve over and above allowances for risk. ECOs are an identifiable and traceable element of cost. ECOs apply to both development and productions phases and vary by program and by fiscal year within a program.

3. Risk and uncertainty

a. Major Elements of Risk. Experts disagree on the sources of uncertainty in systems acquisition. In one of the first cost risk studies, Fisher identified two categories of uncertainty--requirements and cost estimation. In a later study, Garvey proposed three categories of uncertainty--requirements (or configuration) uncertainty, technical (or system definition) uncertainty, and cost estimation uncertainty. When PMs address risk in their acquisition strategy, they are primarily concerned with the performance (technical), schedule and cost estimation uncertainties of the system because these are the categories that determine the risk and uncertainty in a program and are those that the PM must identify and manage. To complicate matters, the risks and uncertainties associated with performance, schedule and cost estimating are not independent but exhibit a correlation among each other. For example, an increase in performance risk also impacts schedule risk, and an increase schedule risk may increase cost estimating risk. Good acquisition strategies attempt to identify and assess all sources of risk pertaining to their program. When cost analysts quantify risk, they begin by examining these same three areas--performance (requirements or technical), schedule, and cost estimating uncertainty. Since PMs must address the risks associated with these aspects of their acquisition strategies, we will examine the sources of uncertainty as they relate to performance, schedule and cost estimation.

b. Risk vs. Uncertainty. Before we proceed further, clarification of the technical distinction between the terms risk and uncertainty is needed. A risky situation is defined as one in which the outcome is subject to an uncontrollable random event with a known probability distribution. An example would be the expected chance failure of a component. We know that when events are purely random, as they are in chance failure, the times between successive events can be described by an exponential distribution. If we know the mean time between failure (MTBF) for the component, based on repeated observations from past experience, then the probability that the component will fail can be calculated.

An event is uncertain if the probability distribution of the uncontrollable event is unknown; in other words, if we have had no past experience (data) with which to establish a probability distribution of the outcome of the event, we are unable to predict the probability of an outcome without first performing a number of repeated experiments to establish a distribution. Since a defense system is unique and is built only once, there are no repeated experiments to which the system can be subjected -- a necessary condition for the computation of known probabilities. For this reason, when PMs address risk assessment, they are almost always working in the realm of uncertainty and when we discuss cost risk, we may be using the terms risk and uncertainty indiscriminately and may really be discussing cost uncertainty. (For purposes of this discussion, please note that cost uncertainty is not used in the same context as cost estimating uncertainty, which will be discussed later.)

c. Point Estimates vs. Interval Estimates. Development of a cost estimate usually involves the application of a variety of techniques to produce an estimate of the individual elements' costs. The summation of these costs becomes the singular, best (and most likely) estimate of the total system cost.
APPENDIX K - COST RISK ANALYSIS

and is referred to as a point estimate. In and of itself, the point estimate provides no information about uncertainty other than that it is the value judged more likely to occur than any other value. A confidence interval, on the other hand, provides a range within which the actual cost is expected to fall given the confidence level specified. For this reason, the cost analyst can best quantify cost uncertainty (or risk) by assigning a probability to all of the possible outcomes of an event and a consequence if the risk becomes a reality.

d. Uncertainty in Decision Making. Most people have a practical understanding of the impact that chance can have on the outcome of an event. When estimating the likelihood of an event, we frequently describe the event using such language as “probable” or “likely.” The study of random events and random processes falls under the subject of probability theory. Most of us, at one time or another, have unknowingly referred to the principles of classical probability theory when we have asked such questions as “What is the probability that some event will happen?” The point estimate provides a best single value, but with no consideration of uncertainty. The interval estimate provides significant information about the uncertainty, but little about the single value itself. It is when the interval is taken, together with the point estimate that the best results are obtained and yield the most valuable information to the decision-maker. Given a point estimate and a confidence interval, it is the decision-maker’s disposition toward risk that determines the alternative selected. Here the uncertainty information provides the means for the decision-maker to select between alternatives.

e. Budget Realities. Establishing the funding level for a program or system is one of the primary purposes for developing an estimate. Unfortunately, the budgeting process is not designed to accommodate an interval estimate, which means that a single monetary value must be chosen. In most cases, the point estimate is not selected as the budget since it does not reflect any adjustments for uncertainty or circumstances beyond the realm of the cost estimate. Since it is likely that the choice will be somewhere between the point estimate and the upper level of a conservative interval estimate, an obvious concern becomes the selection of a value reflective of external constraints and the cost uncertainty of the estimate. This is where the cost analyst can assist the manager in arriving at the best decision by providing uncertainty information for various budget values.

One of the most effective methods of portraying the uncertainty of an alternative is to depict the estimate and its related uncertainty in the form of a cumulative probability distribution. The usefulness of this approach is the easy-to-understand, convenient manner in which the information is presented to the decision-maker enabling them to easily see the implications of any particular choice.

4. Requirements for risk assessment and management

Today’s weapon systems are increasing in technical complexity and this increases technical risk. Increased technical risk increases the risk of schedule delays and cost overruns. If you, as the cost analyst, are required to provide an estimate of a system’s cost risk, one of your first considerations should be to examine how the program office is managing risk. You will need to examine the Cost Analysis Requirements Description (CARD) and interview the PM Office’s (PMO’s) risk management team to determine how actively risk is being assessed and managed. The more proactively and aggressively risk is being managed, the less impact risk will have on the system’s cost. Some things the analyst should consider include the following:

a. Risk Assessment Methodology. Most decisions a PM makes are heavily biased toward cost and schedule goals. While cost and schedule are two easily understood concepts, the impact of cost and schedule decisions and their relationship to performance, or technical, risks are usually not as apparent.
APPENDIX K - COST RISK ANALYSIS

For this reason, a formal method for evaluating the impacts of foreseeable problems upon cost, schedule and performance is essential if decision-makers are to make informed choices.

Many PMs use intuitive reasoning as the starting point in their decision-making process. The astute manager will go beyond intuitive reasoning or personal experience when making decisions, which involve risk. At a minimum, the PM should attempt to identify all high-risk components or processes, and determine the level of risk and the impact of that risk on the progress of the program.

b. Risk Management Activities. Major program acquisition strategies may include a series of “plans” that provide the rationale and intended processes for program execution. A risk management plan (RMP) is a sensible part of this series of guiding documents. The RMP may include the results or latest status of the risk management planning process and may also suggest items or activities that need to be addressed in the other plans. The following outline suggests the types of information a cost analyst may obtain from the RMP:

1. System description and program summary. This section provides a technical description of the system, its mission, and current status.

2. Approach to risk management. Under this heading would be the intended approach for executing the processes of risk assessment, risk analysis and risk handling. Also appropriate would be the definitions, measurement and rating techniques used for the technical, programmatic, supportability, schedule, and cost estimating risks.

3. Application issues and problems. This section should include the procedures and processes for identifying and quantifying risk, the tools used to analyze risk, and the specific actions, which would be applied to manage risk.

4. While the RMP addresses the analysis and management of risk, risk may also be identified and highlighted in any or all plans where it is appropriate. Therefore, the cost analyst should review all other program plans, as these plans may provide information that will enable the cost analyst to raise risk questions. The cost analyst should review these plans before, during, and after preparation of the cost risk estimate.

One set of useful guidelines, which the analyst may use in assessing the PM’s management of risk, has been provided by Fairley who suggests that certain actions be implemented to manage risk. Using Fairley’s guidelines, the cost risk analyst should determine if there is evidence that the PMO has taken action to:

1. Identify risk. A risk is a potential problem. A problem is a risk that has materialized.

2. Assess risk probabilities and effects on the project. Does the RMP provide an estimate of the two elements of a risk—the probability that the risk will become a problem and the effect the problem would have on the project if it materializes? Remember, the primary goal of risk management is to identify and confront risk with enough lead-time to avoid a crisis.

3. Develop strategies to mitigate identified risks. Has the PM set a threshold, beyond which some corrective action will be taken? Has a determination been made, ahead of time, what that corrective action will be? Do you, the risk analyst, see evidence of two types of strategies—action planning and contingency planning? Action planning addresses risks that can be mitigated by an immediate response. Contingency planning addresses risks that require monitoring for some future response should the need arise.
APPENDIX K - COST RISK ANALYSIS

(4) **Monitor risk factors.** Has the PMO identified a person, or team, to monitor a component’s risk metrics to ensure the data is objective, timely, and accurate?

(5) **Invoke a contingency plan.** Has the PM demonstrated a proclivity to invoke a contingency plan immediately when a quantitative risk indicator crosses a predetermined threshold? If the team could not solve the problem within the specified period, did the PM invoke a crisis-management plan?

(6) **Manage the crisis.** Does the PM have some plan for seeing a project through a crisis, including the allocating of sufficient resources and specifying a drop-dead date, at which time management will reevaluate the project for more drastic corrective action?

(7) **Recover from the crisis.** After a crisis, did the PM reward and recognize personnel and re-evaluate the PMO’s cost and schedule estimates?

There is no getting away from risks. There is only recognizing them, managing them, and deciding which ones can be taken. The most successful risk managers are managers whose strategies for risk are proactive rather than reactive.

5. Elements of risk

Risk identification is the first step in the risk assessment process. Risks cannot be assessed or managed until they are identified and described in an understandable way. Risk identification should be an organized, systematic approach to identify the real risks associated with the program. Risks may be identified through such efforts as expert interviews, analogy comparisons, and the evaluation of the program plans. The object of risk identification is to enable the cost risk analysts to include in their cost risk estimates a straightforward narrative that describes the anticipated program risks and their expected value. Areas the cost analyst may examine for their potential impact on cost risk include:

a. **Performance Related Risks.** The major risks that can impact on program performance are requirements uncertainty. Requirements uncertainty is a major source of uncertainty in the cost analysis of military systems and total force structure proposals. Requirements uncertainty may include such factors as:

 (1) **Technical risk.** Technical risk can be defined as the risk associated with evolving a new design to provide a greater level of performance than previously demonstrated. How much risk is added by changes in performance requirements depends upon the maturity of the technology used to meet those requirements. Obviously, if requirements can be met using existing technology, then risk is considerably less because the technology has a performance history, which can be used to predict the performance of the new system. If performance requirements can only be met through the development of a new or emerging technology, then the risk becomes much greater because technology becomes an unknown with no solid foundation for predicting its attainability.

 (2) **Configuration uncertainty.** Configuration uncertainty is defined as the risk associated with changes in the physical or performance characteristics of a system. The primary reason for this uncertainty is the changes to the configuration of a system that occur during the system’s life cycle. Configuration may change for a number of reasons:
APPENDIX K - COST RISK ANALYSIS

(a) The original design may fail to produce the desired performance characteristics and have to be changed.

(b) The performance characteristics themselves may be changed with a resulting change in hardware specifications.

(c) A change in system specifications may be introduced purely by error or omission in establishing the initial requirements.

(d) The strategic situation may change, thus affecting the method of deploying and employing the system.

Although sometimes desirable, all of these changes can lead the project beyond its original intended scope and requirements. For this reason, a distinction must be made between necessary from nice to have changes because of the latter’s adverse effect on project cost and schedule objectives.

(3) Supportability risk. Supportability risk is defined as the risk associated with fielding and maintaining systems that are currently being developed or have been developed and are being deployed. The ten Integrated Logistic Support (ILS) elements are the potential sources of supportability risk. They include:

(a) Maintenance planning,
(b) Manpower and personnel,
(c) Support equipment,
(d) Technical data,
(e) Training,
(f) Training support,
(g) Computer resources support,
(h) Facilities,
(i) Packaging, handling, storage, and transportation
(j) Design interface

The PMs address how they plan to manage supportability risk in their acquisition strategy. One of the most effective strategies for reducing supportability risk is to involve logistics support personnel in the early concept and design planning phases of the acquisition process.

(4) Programmatic risk. Programmatic risk can be defined as those risks, which are outside the program’s control, but can affect the program’s direction. Programmatic risks tend to be a function of the business environment and may include such sources as:

(a) decisions made at higher levels of authority regarding the program,

(b) indirect events or actions affecting the program,

(c) inability to foresee production related problems,

(d) other unforeseen imperfect capabilities.

A survey of program management offices indicates that directed funding cuts most often are viewed as the source of programmatic risk having a major impact on program execution.
APPENDIX K - COST RISK ANALYSIS

b. Schedule Related Risks. Schedule duration is affected by requirements and cost changes and for this reason, the schedule risks may be acerbated by the degree of requirements and cost estimating uncertainty. For example, any change in system specifications, design requirements, or strategy may require a rework of design efforts and delay milestone approval. Changes in the monetary resources available may require a change to the schedule. In short, any event that may change the time schedule should be considered an uncertainty and be addressed as an element of schedule risk in the acquisition strategy.

A quality schedule is critical for the effective planning, implementing, and controlling of any program. A quality schedule is essentially a plan of action that is goal oriented. It should include activities and events, which must be accomplished to achieve the desired objective. The techniques of program evaluation and review technique (PERT) and critical path method (CPM) have proven to be extremely valuable to PMs in managing their program management responsibilities. The output of the network risk analysis process generally provides an in-depth understanding of the sources and degree of risks and can be a valuable source of information for the cost risk analyst in their efforts to quantify schedule risk.

c. Cost Estimating Risks. In addition to the relationship of cost estimating uncertainty to performance and schedule uncertainty, the cost risk analyst must address a number of additional sources of cost estimating uncertainty. According to Fisher, cost estimating uncertainties may arise due to:

1) Differences in individual cost analysts. Even if the analysts are of comparable competency, variations in cost estimates will arise because of individual differences in interpreting requirements, and differences in methodologies and techniques.

2) Errors in cost estimating relationships (CERs). Actual costs can be expected to deviate somewhat from the predicted costs. Usually CERs are expressed in terms of a dependent variable being a function of one or more independent variable such that \(g = f(x_1,x_2) \). These CERs cannot be assumed to hold exactly since they are developed using a statistical technique. Because they are a function of some independent variable, we cannot assume that these relationships will predict cost exactly.

3) Errors in data. Observations used in deriving CERs invariably contain errors, even if these data come from carefully kept historical records.

4) Extrapolation errors. In costing systems, analysts often use CERs derived from past experiences. We cannot be assured that a structural relationship that held in the past, or holds reasonably well now, will continue to hold satisfactorily in the future and for the system being costed.

5) Price-level changes. Usually cost estimates are made in constant dollars. In this case, price level uncertainty is usually not a factor. However, any time estimates for future systems are made in terms of price levels expected to prevail in future years, there is obviously a potential for future price levels to turn out differently than originally expected.

6) Errors due to aggregation. Cost estimating errors may occur because of an estimating method that uses a considerable amount of aggregation.

Generally, true cost estimating and schedule risks are few when the source of the risk is well known. More often than not, cost estimating and schedule uncertainty are a reflection of technical, programmatic, and supportability risks.
6. Approaches for estimating cost risk

Several approaches are available for estimating uncertainty in a cost estimate, ranging from very subjective judgment calls to complex statistical approaches. This section provides an insight into the more fundamental and traditional techniques that form the basis for current field use. The order of presentation of these techniques is intentional to portray the evolution that has taken place in terms of the tools used to handle uncertainty.

Before beginning actual discussions of the uncertainty approaches, there are a few points for an analyst to keep in mind. First, to the extent actual historical cost information has been used in developing the point estimate, that data already includes the realities of both requirements and cost estimating uncertainty. This leads to a natural question of why there is any need to separately treat uncertainty. The need appears to come from the view that a point estimate includes an inherent amount for expected uncertainty. There is a bias toward hedging one’s bet to the cautious side by adding an amount to the point estimate to cover uncertainties over and above what might be expected. Other than lacking the specific precision of statistics, this is not any different than adding some number of standard deviations to the mean to arrive at a higher specified level of confidence. A second point to keep in mind is whether cost estimating uncertainty, schedule uncertainty, or requirements uncertainty are to be addressed because the approaches discussed are more appropriately used in some situations than in others. Several of the approaches discussed here require the analyst to provide a highest and lowest possible value. The point becomes one of knowing whether these values presume a fixed baseline and, therefore, only reflect cost estimating uncertainty or whether they reflect possible variations of the baseline itself. Whatever the case, it must be clearly communicated so that the decision maker knows exactly what is included in, or excluded from, the estimate.

a. Subjective Estimator’s Judgment. This is perhaps one of the oldest methods of accounting for uncertainty and, in some respects, is the basis for most other approaches. Under this approach the analyst merely reflects back upon the assumptions and judgments that were made during the development of the estimate. After evaluating all of the influencing parameters, a final adjustment is made to the estimate—usually as a percentage increase. This yields a revised total cost, which explicitly recognizes the existence of uncertainty. The logic to support this approach is that the analyst is more aware of the uncertainty in the estimate than anyone else—especially if the analyst is a veteran of the estimating wars and has experience in systems or items similar to the one being estimated. Analysts may use a questionnaire to arrive at their subjective judgments. For example, an individual or team of analysts may answer questions such as:

1. What cost has an equal chance of being greater than or less than the actual cost (this gives the median or 50 percent probability level)?

2. What is the greatest possible cost of the project (this gives the 100 percent probability level)?

3. What cost is just as likely to be above the 50 percent probability level as it is to be below the 100 percent probability level (this gives the 75 percent probability level)?

4. What cost is just as likely to be above the 75 percent probability level as it is to be below the 100 percent level (this gives the 87.5 percent probability level)?

b. Expert Judgment/Executive Jury. Regardless of how subjective judgment is determined, there comes a time where the complexity and sophistication of the defense item is beyond the analyst's subjective assessment abilities. One method to overcome this is to use the expert judgment/executive jury technique. This technique is a variant of the estimator subjective judgment where an independent jury of
experts is gathered to review, understand, and discuss the system and its costs, with the specific objective that from their collective deliberation will come some measure of uncertainty that can be quantified into dollars and used to adjust the point estimate cost. The strengths of such an approach are directly related to the diversity, experience, and availability of the group members.

The use of such panels or juries requires careful planning, guidance, and control to insure that the product of the group is objective and reflects the best unmitigated efforts of each member. Approaches have been designed to contend with the group dynamics of such panels. One classical approach is the Delphi technique, which was originally suggested by the RAND Corporation. The principle drawback of Delphi is that it is cumbersome. The time spent in processing inputs may present some difficulty to respondents.

Much literature has been written on expert opinions and subjective judgments. A good paper, which succinctly summarizes current philosophy and practice, was written by Spetzler and Von Holstein in 1975.

c. Sensitivity Analysis. Another common approach is to measure how sensitive system cost is to variations in non-cost system parameters. For instance, if system weight is a critical issue, then weight would be varied over its relevant range and the influence on cost could be observed. Analysis of this type helps to identify major sources of uncertainty and provides valuable information to the system designer in terms of highlighting elements that are cost sensitive, areas in which design research is needed to overcome cost obstacles to achieving better program performance, and areas in which system performance can be upgraded without substantially increasing program cost. The traditional criticism of this procedure is that it does not reveal the extent to which the estimated system cost might differ from the actual cost. That is, it tends to address requirements uncertainty more than cost estimating uncertainty.

d. High/Low Analysis. The high/low analysis approach requires the analyst to specify the lowest and highest possible values for system element costs, in addition to their most likely values. These sets of input values are then summed to give total system cost estimates. The most likely values establish the central tendency of the system cost, while the sums of the lowest possible values and highest possible values determine the uncertainty range for the cost estimate. Although this approach has a logical appeal, it tends to greatly exaggerate the uncertainty of system cost estimates because it is unlikely that all system element costs will be at the lowest (or highest) values at the same time. While the high/low approach is plausible, its shortcoming is that it restricts measurement to three points without consideration to intermediate values or their likelihood. The approaches described in the next paragraph provide solutions to this shortcoming.

e. Mathematical Approaches. If the individual cost elements can be regarded as random variables and their distributions can be determined, then the system cost can also be expressed as a probability distribution around an expected value. This is the basis for mathematical approaches. These approaches simply improve upon the high/low approach by providing a probability distribution for each cost element. To do so first requires the solution of two distinct problems: (1) how to determine the probability distribution for each cost element, and (2) how to combine the individual cost elements and their measures of uncertainty into a total estimate of cost and uncertainty (the summation of moments and Monte Carlo simulation are possible solutions to this problem). Some guidelines for resolving the problem of identifying the appropriate distribution follow.

1. The Beta Distribution - This distribution is particularly useful in describing cost risk because it is finite, continuous, can easily accommodate a unimodal shape requirement, \((\alpha \geq 0, \beta \geq 0)\), and allows for virtually any degree of kurtosis and skewness. The values of \(\alpha\) and \(\beta\) are the shape parameters, and each combination produces a unique shape. However, the process of deriving the
appropriate values for a particular shape can be quite involved. Fortunately, a few observations about α and β lead to a rather useful approach in approximating the appropriate values. In the case of skewness, when α and β are equal, the distribution is symmetric, when $\alpha > \beta$, the distribution is negatively skewed, and when $\alpha < \beta$, the distribution is positively skewed. Similarly, variance (kurtosis) can be categorized as high, medium, or low based upon the magnitude of α and β. When these notions of skewness and kurtosis are combined, the result is nine combinations as shown in Table 1. These nine types tend to be fairly descriptive of most situations an analyst might confront. Analysts can choose the distribution which best approximates their subjective view of the cost element uncertainty without having to derive α or β. It should also be noted that these nine distributions limit the location of the mode to the first, second, or third quartiles of the distribution range. In the case where the analyst specifies only the lowest and highest value and has identified the parameters, α and β, the most likely (ML) value can be calculated as in Equation 1:

$$\text{ML} = \frac{\alpha \ (H) + \beta \ (L)}{\alpha + \beta} \quad \text{(Eq. 1)}$$

Obviously, one shortcoming of the beta distribution is that it is difficult to specify α and β because there is no literal interpretation for these parameters as there are many possible Beta distributions for a given set of high, low, and most likely values. One way to overcome this shortcoming is to use the PERT beta distribution (see Table 2, below). Under the assumption of a PERT beta distribution, the mean and variance can be estimated without identifying the parameters, α, and β, of the distribution. In any case, analysts should only use the beta distribution if they are very comfortable with the highs, lows, and most likely values.

(2) The Triangular Distribution - An alternative approach to assigning a beta distribution shape to a cost element is the triangular distribution. Like the beta, it can take on virtually any combination of skewness and kurtosis but is represented by a triangle rather than the smoother curve of beta distribution. The triangular distribution is specified by the lowest, most likely (usually the point

Table 1 Beta Shape Combinations

<table>
<thead>
<tr>
<th>Combination Type</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Negative</td>
<td>High</td>
<td>1.50</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>Symmetric</td>
<td>High</td>
<td>1.35</td>
<td>1.35</td>
</tr>
<tr>
<td>3</td>
<td>Positive</td>
<td>High</td>
<td>0.50</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>Negative</td>
<td>Medium</td>
<td>3.00</td>
<td>1.00</td>
</tr>
<tr>
<td>5</td>
<td>Symmetric</td>
<td>Medium</td>
<td>2.75</td>
<td>2.75</td>
</tr>
<tr>
<td>6</td>
<td>Positive</td>
<td>Medium</td>
<td>1.00</td>
<td>3.00</td>
</tr>
<tr>
<td>7</td>
<td>Negative</td>
<td>Low</td>
<td>4.50</td>
<td>1.50</td>
</tr>
<tr>
<td>8</td>
<td>Symmetric</td>
<td>Low</td>
<td>4.00</td>
<td>4.00</td>
</tr>
<tr>
<td>9</td>
<td>Positive</td>
<td>Low</td>
<td>1.50</td>
<td>4.50</td>
</tr>
</tbody>
</table>
APPENDIX K - COST RISK ANALYSIS

estimate), and the highest value. Any point within the range of the distribution can be chosen to locate the mode, and the relationship among the three values specifies the amount of kurtosis. Given the selection of the values and the triangular shape inherent to those values, both the mean and the variance can be calculated as shown in Table 2.

In contrast to the beta distribution, the triangular distribution is much easier to use and produces equally satisfactory results. For this reason, the triangular distribution is preferred by many analysts over the more common beta distribution.

(3) The Lognormal Distribution. The lognormal distribution results when the logarithm of the random variable is described by a normal distribution. That is, if X is lognormally distributed, then Y = ln X is normally distributed. The lognormal distribution applies as the limiting case for multiplicative quantities due to the approach to normality of the sum of the logs. The distribution is often found to provide a good representation for physical quantities that are constrained to being non-negative, and are positively skewed, such as pollutant concentrations, stream flows, spill quantity, etc. The lognormal distribution is particularly appropriate for representing large uncertainties that are expressed on a multiplicative or order-of-magnitude basis.

(4) The Normal (Gaussian) Distribution. The normal, or Gaussian, distribution arises in many applications, in part because of the central limit theorem, which results in a normal distribution for additive quantities, and in part because of its well studied and frequent use in classical statistics. The normal distribution is commonly used to represent uncertainty resulting from unbiased measurement errors and is quite useful, for example, for estimating system failure due to a part wearing out. Fortunately, wear-out failures are quite predictable and are modeled quite well by the normal distribution because they cluster around a mean failure time and tend to be symmetrically distributed. If we take the probability density function, f(x), of a normal distribution, and substitute time (t) for the variable (x) and the MTBF (m) for the mean (µ), we can measure the probability of wear-out failure over any time interval by integration.

(5) The Exponential Distribution. When events are purely random (e.g., chance failure of a component), the times between successive events can be described by an exponential distribution. The parameter of the distribution, λ, is equal to one divided by the average time between events, and is thus equivalent to the occurrence rate of the process. Therefore, the exponential distribution is most appropriate for estimating chance failure of systems to arrive at the operations and support costs of components because the range of the exponential distribution is from t = 0 to t = ∞. This range corresponds nicely with the interpretation of “t” representing time and can be used to model chance and early failures.

(a) Chance failure. The exponential distribution is very useful in the case of chance failure if we know what the failure rate is. We need only to divide the number 1 by the failure rate to find the MTBF. For expositional convenience, MTBF can be represented by the lower case letter “m”. To recap, the reliability of a component subject only to chance failure then becomes:

\[R(t) = 1 - e^{-\frac{t}{\lambda}} = e^{-\frac{t}{m}} \]

(Eq. 2)

(b) Early failure. Early failure results from the production of substandard components, which are unable to withstand ordinary operating stresses. As a result, the substandard components have a very high failure rate which follows the exponential distribution and are, therefore, similar to chance failures except that their failure rate is much higher. The reliability impact of early failures depends directly upon whether or not we can assume that defective parts will be replaced with
APPENDIX K - COST RISK ANALYSIS

If we make that assumption and further assume that we start with N components, N_o of which are good, and N_b of which are bad, initially the failure rate will be:

\[
\text{System Failure Rate} = N_o \lambda_o + N_b \lambda_b
\]

(Eq. 3)

where \(\lambda_o \) is the chance failure rate. As the defective parts are replaced with good parts, the failure rate of the system will converge to the chance failure rate, which characterizes the good parts.

Whichever distribution the analyst selects to model the risk, once the distribution shapes have been identified for each cost element (or group of elements), the next step is to find the expected value (mean) and measure of uncertainty (variance) for the total system cost. This can be done in one of two ways.

(1) The Method of Moments - This method takes its name from the fact that one particular method of measuring or describing a distribution is through the use of moment statistics. The first moment is the mean, the second is the variance, and the third, and fourth moments are used to calculate two measures which provide additional insight into the shape of a particular distribution. These last two moments are the coefficient of skewness, which provides a measure of symmetry, and the coefficient of kurtosis, which measures the peakedness or "height" of a distribution. An acceptable method, using judgments, to compute the mean and variance of some common distributions is summarized in Table 2 below.

<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
<th>MEAN</th>
<th>VARIANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNIFORM</td>
<td>Mean = (high+low) / 2</td>
<td>Var = [(high - low)^2] / 12</td>
</tr>
<tr>
<td>TRIANGULAR</td>
<td>Mean = (a + b + c) / 3 *</td>
<td>Var = (a^2 + b^2 + c^2 -ab-ac-bc)/18*</td>
</tr>
<tr>
<td>NORMAL (Gaussian)</td>
<td>Mean = most likely</td>
<td>Var = [(high - low) / 6] ^2</td>
</tr>
<tr>
<td>BETA</td>
<td>Mean = [low + 4 (most likely) + high] / 6</td>
<td>Var = [(high - low) / 6]^2</td>
</tr>
<tr>
<td>TOTAL COST</td>
<td>(\mu_T = \sum \mu_i), where i = 1, 2, 3, ...</td>
<td>(\sigma_T^2 = \sum_i \sigma_i^2 + 2 \sum_{i<j} \text{Cov}_{ij})</td>
</tr>
</tbody>
</table>

* where: a = low, b = high, and c = most likely

The relevance of moment statistics to the development of a measure of total system cost uncertainty hinges upon the fact that the moment measures for each cost element can be summed to produce the moment measures for the total system cost, when the variables (cost elements) are independent. If, for some reason, independence among variables does not exist, then the covariance of the interdependent variables must be incorporated in estimating the moment of the sum. For instance, the system mean is the sum of the individual element means; the variance (second moment) of the sum of independent variables is equal to the sum of the variances; etc. Some authors use only the first and second moments to arrive at a measure of uncertainty. That is, with both the mean and variance of the total system cost determined through the summation process, the standard deviation is directly computed and the total cost portrayed as either a normal probability distribution or cumulative density distribution. The critical assumption in this approach is that even though the individual cost element distributions may not be normal, the total cost distribution will be. The basis for this normality assumption is the central
APPENDIX K - COST RISK ANALYSIS

limit theorem and a sufficiently large number of individual cost elements. However, it is possible that if the variance of the distribution for an individual cost element is an order of magnitude greater than the others, it may dominate the resulting aggregate distribution, which may then take on any of the non-normal characteristics of the dominant cost element. When this or any other condition occurs which might jeopardize the central limit assumption, the Monte Carlo Simulation approach described in the following paragraph offers a better solution. Some useful descriptions of probability distributions and their parameters are summarized in Table 3.

Table 3 Descriptive Parameters of Probability Distributions

<table>
<thead>
<tr>
<th>DISTRIBUTION</th>
<th>PARAMETERS</th>
<th>MODE</th>
<th>MEDIAN</th>
<th>MEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRIANGULAR</td>
<td>L, M, H</td>
<td>M</td>
<td>H-(H-L)(H-M)/2</td>
<td>(L+M+H)/3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L-(H-L)(M-L)/2</td>
<td>**</td>
</tr>
<tr>
<td>NORMAL (GAUSSIAN)</td>
<td>µ, σ</td>
<td>µ</td>
<td>µ</td>
<td>µ</td>
</tr>
<tr>
<td>LOGNORMAL</td>
<td>P, Q</td>
<td>e^P(Q-2)</td>
<td>e^P</td>
<td>e^P+0.5Q^2</td>
</tr>
<tr>
<td>EXPONENTIAL</td>
<td>L, λ</td>
<td>L</td>
<td>L + (ln2/λ)</td>
<td>L + (1/λ)</td>
</tr>
<tr>
<td>UNIFORM</td>
<td>L, H</td>
<td>NONE</td>
<td>(L+H)/2</td>
<td>(L+H)/2</td>
</tr>
</tbody>
</table>

* IF H-M ≥ M-L (Right Skew)
** IF M-L ≥ H-M (Left Skew)

(2) Monte Carlo Simulation - An alternative to the method of moments is to use the Monte Carlo simulation. With this approach, the distribution defined for each cost element (using a beta, triangular, or empirical distribution) is treated as a population from which a random sample is drawn. The sample values for each element are summed to a total cost and then the entire process is repeated again. This procedure is repeated many times (e.g. 100-1000). The result is a distribution of total cost, which can be described by its mean and standard deviation and portrayed as a cumulative distribution.

The question of independence versus dependence arises. Realistically, it is quite unlikely a total system cost either consists of completely dependent or independent cost elements. Nor does there appear to be a consensus on which assumption to make. One position holds that the only estimating errors meeting the criteria of randomness are cost estimating uncertainties and, therefore, the assumption of independence is reasonable for cost estimating uncertainty only. Dependence appears to be more of a concern when cost and requirements uncertainties are considered jointly or when requirements uncertainty is considered alone. That is, requirements variations tend to be viewed more like "bias errors" than the "noise" normally associated with randomness. If, for some reason, the analyst determines that independence among variables does not exist, then the covariance of the interdependent variables must be incorporated in estimating, whether the summing is by the methods of moments or by Monte Carlo simulation.

This concludes the discussion on the methods for dealing with uncertainty. The discussion was not intended to be exhaustive, but rather to provide an insight into the "how" and "why" of selected methods prominent in some cost offices. Before proceeding to the next section, there is an additional point that needs to be made. Rarely is there enough data available to generate a frequency distribution that can be used like those in textbook examples. However, analysts can try to approximate distributions through the use of some of the techniques discussed in this section.
7. Software Models for estimating uncertainty

a. Automated Cost Estimating Integrated Tools (ACEIT). ACEIT is an estimating system containing tools to assist in conducting cost analysis activities including risk and uncertainty analysis. A major function of ACEIT is the RISK model which quantifies risk associated with a cost estimate. The primary solution method of RISK is based on Monte Carlo simulation and is appropriate for cost uncertainties that can be characterized as probabilistic in nature. One advantage to using RISK is that it is structured around the WBS specified during the development of the ACEIT cost estimate.

b. Crystal Ball. Crystal Ball is a risk analysis spreadsheet add-in that lets users conduct what-if scenarios with Excel spreadsheet values/cells. The program examines the degree of risk in forecasts by using Monte Carlo techniques that allow Crystal Ball to forecast all statistically possible results for a given situation. Users apply either a range of values or a probability distribution to each cell containing an uncertain number. The model generates random values for each cell according to the parameters given by the user. The software displays the distribution of results showing the highest, lowest, and most likely values. This software is best used when the analyst has some idea of the distribution and the values of the distribution parameters. The software is one of the best for addressing correlation between elements and can be used to estimate technical, schedule, and cost estimating uncertainty. This model is taught in the Graduate Cost Analysis Program at the Air Force Institute of Technology (AFIT).

c. @RISK. @RISK is a Lotus 1-2-3/Microsoft Excel (PC or Macintosh) add-in for risk analysis. Any worksheet built in 1-2-3 or Excel can be used with @RISK. The software uses Monte Carlo simulation to analyze uncertainty. Probability distributions are added to cells in the worksheet using any of the more than 30 built-in probability distribution functions, including: normal, log normal, beta, uniform, and triangular. Simulations are controlled from a Lotus/Excel-style menu that lets users choose Monte Carlo or Latin Hypercube sampling, select output ranges, and monitor convergence. Results are displayed graphically, and detailed statistical reports are generated. The software is also capable of handling correlated cost elements and is more appropriate when the analyst has a number of data points, but is unsure of the distribution to model. The PC Excel version of @RISK is taught at the Army Logistics Management College (ALMC).

d. The Cost Analysis and Strategy Assessment (CASA) Model. The CASA model was developed by Honeywell for the Defense Systems Management College in 1986. The CASA model allows the user to generate data files, perform Life Cycle Costing, sensitivity, and risk analyses. One limitation of the CASA model is that it overestimates operational availability because it ignores preventive maintenance.

e. Program Evaluation and Review Technique (PERT). The PERT is a commonly used network method for project planning, scheduling, and control. It was developed for application in projects where there is much uncertainty about the nature and duration of activities. PERT addresses schedule uncertainty by using three time estimates—optimistic, most likely, and pessimistic. The three estimates are related in the form of a Beta probability distribution with parameters a and b as the end points, and m, the modal, or most frequent, value. These estimates are then used to calculate the “expected time” for an activity and the range between the estimates provides a measure of variability, which permits statistical inferences to be made about project events at particular times.

Although it enjoys wide use, PERT has been widely criticized since its inception. For one thing, PERT statistical procedures provide overly optimistic results. Another major criticism is that PERT puts too much emphasis on the critical path. This leads managers to ignore other paths that are near critical or have large variances, and which could easily become critical and jeopardize the project.
f. The Air Force Systems Command (AFSC) Risk Model. The AFSC Risk Model uses the beta distribution combined with Monte Carlo simulation to arrive at a system’s estimated cost and uncertainty. RISK considers the median (50% point) to be the “best estimate of total cost.” Point estimates below the median are considered high-risk programs. Point estimates above the median represent programs with management reserve added as a hedge against cost risk.

g. Risk Plus. Risk Plus can be used to estimate schedule and software costs and their associated risks.

Again, the use of these, or any other models, requires a clear definition of what types of uncertainty are to be treated and how the specific model satisfies the requirement.

8. Summary

Accomplishing a program risk analysis can be a formidable task because there are few management analysis topics as abstract and complex as risk analysis. This chapter has introduced you to some general concepts, methodologies, and models pertaining to cost risk. For more information, references are provided at the end of this chapter.

Beginning risk analysts should approach a cost risk analysis as they would any problem. First become familiar with all existing knowledge on the system to be analyzed. Become familiar with the system and the Program Office Estimate (POE). Read all related documents such as the CARD, reports, program plans and by studying the cost estimate. Interview all persons who have knowledge of the program and its complexities and problems. Finally, look for answers to questions such as the following, that you may have formed during your research:

a. How good is the PMO’s identification and management of risk? Is there a current tracking of risk areas? Do they have an abatement plan in place should the risk materialize? Consider all other issues raised in section 4 of this chapter.

b. Take a hard look at the software estimate. This area typically has one of the highest potentials for cost overruns. Is the PMO using software metrics to track software development efforts or is the developer telling them how well the development effort is progressing? Are development efforts on schedule? Have schedule problems been experienced? What is the SEI maturity level of the software developers? What tools are they using? What is the defect ratio? What does current cost schedule control system criteria (C/SCSC) data tell you? Listen to the experts, but form your own opinions.

c. Cost estimating risk. Look at the estimating methodology. Does it appear sound and straightforward? Examine any “cost savings” or “cost avoidance” measures which are reflected in the estimate. These are risky areas and should be included in your cost risk. Examine the labor and inflation rates, learning curves, and all other assumptions made by the cost estimator. How did the analyst arrive at the point estimate? What was the range considered (minimum and maximum) before deciding on the point estimate? Use the range to establish your distribution for any cost risk analysis of components you have identified as containing risk or uncertainty.

d. Schedule risk. Is the program on schedule? If there are schedule overruns, what will be the cost impact? Don’t forget that a schedule delay has a cost impact for all aspects of the program, including the SE/PM costs.
e. **Technical risk.** How is development progressing? Is technology state-of-the-art or is it current technology? Look at C/SCSC data. Based on the cost of work performed and the percent of work completed, what is the projected cost to complete? Look at sub-components and identify any technical risk of each. Remember, if you do a cost risk analysis at the sub-component level, you must use a Monte Carlo simulation model to sum costs. You cannot make an assumption on the total distribution, based on the distribution of sub-components. For example, when you sum two uniform distributions, the total sum is a triangular distribution! Also remember, when conducting a cost risk analysis of sub-elements, you must address any correlation between/among the elements. Otherwise your risk analysis will be invalid.

h. Were *environmental costs* included in the POE? Examine all phases, from Research, Development Test & Evaluation (RDT&E) to disposal, to ascertain that all environmental costs are included in the total life cycle cost of the system.

The fourth step will be to plan your strategy. Decide how you plan to quantify the cost risk based on the knowledge you have acquired. Now is the time to select the methodology and model you think will produce the best results.

Finally, you must devise a clear way to communicate the results. The best cost risk analysis is useless if the information is not stated in a format and language the decision-maker can understand.

In summary, keep in mind that the credibility of cost estimates is primarily governed by two factors: the soundness of estimating methodology and data availability. The following descriptors provide a basis for classifying Army cost estimates into seven data availability and four techniques classes. Experience has shown that, for an estimate, the higher these classes are on each list, the more confidence one can have in an estimate using the data and techniques specified.

a. **Methods Used**

 (1) Detailed

 (2) Detailed and Parametric

 (3) Parametric and Factors

 (4) Analogous and Factors

b. **Data Availability**

 (1) Actual cost of significant quantities for the system being estimated arrayed by functional and WBS breakout.*

 (2) Actual cost for development hardware for the system being estimated arrayed by functional and/or WBS breakout.*

 (3) Actual cost by functional and/or WBS for analogous systems.*

 (4) Firm contractors' proposals with detailed backup or negotiated prices.

 (5) Contractor budgetary estimates with program office add-ons (factors, ECO, management reserve, etc.)
APPENDIX K - COST RISK ANALYSIS

(6) Limited cost data but good descriptions of physical, technical, and performance characteristics.

(7) Limited cost data and limited physical, technical, and performance descriptors.

* If based on cost performance management report data, so state and report percent complete.

References

The definitions for the seven key cost terms from DoD 5000.4-M are as follows.

1. **Development Cost.**

 b. Budget. Funded from the RDT&E appropriation (i.e. concept exploration and definition, demonstration and validation, and engineering and manufacturing development phases from the point the program and/or system is designated by title as a Program Element or major project in a Project Element).

 c. Life-Cycle Costs. The development costs, both contractor and in-house, of the Research and Development cost category, including the cost of specialized equipment, instrumentation, test, and facilities required to support the RDT&E contractor and/or Government installations.

2. **Flyaway (Rollaway, Sailaway, etc.) Cost.**

 Flyaway cost is used as a generic term to refer to the cost of producing a usable end item of equipment (hardware and software). Flyaway cost includes:

 a. Work Breakdown Structure (WBS). WBS elements of Prime Mission Equipment (such as basic structure, propulsion, electronics (hardware and software), system software, etc.), System Engineering/Program Management, and System Test and Evaluation.

 b. Budget. Funded from RDT&E and Procurement appropriations. This would include funding for warranties, engineering changes, pre-planned product improvement (during system acquisition), and first destination transportation (unless FDT is separate budget line item). Certain acquisition costs funded in the O&M appropriation (e.g. ship installations) are also included.

 c. Life-Cycle Cost. The flyaway costs (including Government Furnished Equipment), both contractor and in-house, of the Research and Development and Investment Nonrecurring and Recurring cost categories.

3. **Weapon System Cost.**

 a. Work Breakdown Structure (WBS). WBS elements Prime Mission Equipment, System Engineering/Program Management, System Test and Evaluation (if funded by Procurement), plus WBS elements Training, Peculiar Support Equipment, Data, Operational/Site Activation, and Industrial Facilities (unless funded as a separate budget line item or by RDT&E).

 b. Budget. Funded from the Procurement appropriation. It includes funding for warranties, engineering changes, pre-planned product improvement (during system acquisition), and first destination transportation (unless FDT is a separate budget line item). Certain acquisition costs funded in the O&M appropriation (e.g. ship installations) are also included.

 c. Life-Cycle Cost. The weapon system costs (including Government-Furnished Equipment), both contractor and in-house, of the Investment Nonrecurring and Recurring cost categories.
4. Procurement Cost.

 a. Work Breakdown Structure (WBS). The same WBS elements as in Weapon System Cost; i.e., Prime Mission Equipment, System Engineering/Program Management, System Test and Evaluation (if any of this effort is funded by Procurement), Training, Peculiar Support Equipment, Data, Operational/Site Activation, and Industrial Facilities (unless funded as a separate budget line item or by RDT&E), plus the WBS element: Initial Spares and Repair Parts.

 b. Budget. Funded from the Procurement appropriation. It includes funding for warranties, engineering changes, pre-planned product improvement (during system acquisition), and first destination transportation (unless FDT is a separate budget line item). For Navy shipbuilding programs, outfitting and post delivery costs are also included when Procurement funded. Certain acquisition costs funded in the O&M appropriation (e.g. ship installations) are also included.

 c. Life-Cycle Cost. The procurement costs (including Government Furnished Equipment), both contractor and in-house, of the Investment Nonrecurring and Recurring cost categories.

5. Program Acquisition Cost.

 Program Acquisition Cost consists of Development Costs, Procurement Costs, and any construction costs that are in direct support of the defense acquisition program. It includes:

 a. Work Breakdown Structure (WBS). WBS elements of Prime Mission Equipment, System/Program Management, System Test and Evaluation (except Operational Test and Evaluation funded from Military Personnel or Operation and Maintenance), Training, Peculiar Support Equipment, Data, Operational/Site Activation, Industrial Facilities (unless funded by Procurement as a separate budget line item), and Initial Spares and Repair Parts.

 b. Budget. Funded from the RDT&E, Procurement, and MILCON appropriations. It includes funding for warranties, engineering changes, pre-planned product improvement (during system acquisition), and first destination transportation (unless FDT is a separate budget line item). Certain acquisition costs funded in the O&M appropriation (e.g. ship installations) are also included.

 c. Life-Cycle Cost. The program acquisition costs (including Government Furnished Equipment), both contractor and in-house, of the Research and Development, and Investment nonrecurring and recurring cost categories.

6. Operating and Support (O&S).

 a. All personnel, equipment, supplies, software, services, including contract support, associated with operating, modifying, maintaining, supplying, training, and supporting a defense acquisition program in the DoD inventory. This includes costs directly and indirectly attributable to the specific defense program; i.e., costs that would not occur if the program did not exist, such as:

 (1) **Mission Personnel.** Pay and allowances for officer, enlisted, and civilian personnel assigned to support a discrete operational system or deployable unit. Includes personnel necessary to meet combat readiness, training, and administrative requirements.

 (2) **Unit Level Consumption.** Fuel and energy resources; operations, maintenance, and support materials consumed below depot level; reimbursement of stock fund for depot level reparables; operational munitions expended in training; transportation of materials, repair parts and reparables
between the supply or repair point and unit; and other unit level consumption costs such as purchased services for equipment lease and service contracts.

(3) Intermediate Maintenance. Labor, material, and other costs expended by designated activities and/or units (third and fourth echelons) performed external to the unit. Includes calibration, repair and replacement of parts, components or assemblies and technical assistance to the mission unit.

(4) Depot Maintenance. Personnel, material, overhead support, and depot purchased maintenance required to perform major overhaul, and maintenance of a defense system, its components, and support equipment at DoD centralized repair depots, contractor repair facilities, or on site by depot teams.

(5) Contractor Support. Labor, materials, and depreciable assets used in providing all or part of the logistics support to a defense system, subsystem, or related support equipment.

(6) Sustaining Support. Procurement (exclusive of war readiness materiel) of replacement support equipment, modification kits, sustaining engineering, software maintenance support, and simulator operations provided for a defense system.

(7) Indirect Support. Personnel support for specialty training, permanent changes of station, and medical care. Also includes relevant host installation services, such as base operating support and real property maintenance.

b. O&S costs are funded from Operation and Maintenance (O&M), Military Personnel, Procurement, Military Construction, stock funds, and other appropriations.

Life Cycle Cost includes ALL WBS elements; ALL affected appropriations; and encompasses the costs, contractor and in-house effort, as well as existing assets to be used, for all cost categories. It is the TOTAL cost to the Government for a program over its full life, and includes the cost of research and development, investment in mission and support equipment (hardware and software), initial inventories, training, data, facilities, etc., and the operating, support, and, where applicable, demilitarization, detoxification, or long term waste storage.
GLOSSARY

Section I - Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Army Audit Agency</td>
</tr>
<tr>
<td>AAE</td>
<td>Army Acquisition Executive</td>
</tr>
<tr>
<td>AC</td>
<td>Active Component</td>
</tr>
<tr>
<td>ACAT</td>
<td>Acquisition Category</td>
</tr>
<tr>
<td>ACAT IA</td>
<td>Acquisition Category IA (Major Automated Information System)</td>
</tr>
<tr>
<td>ACAT IAM</td>
<td>ACAT IA Major Automated Information Systems Review Council (MAISRC)</td>
</tr>
<tr>
<td>ACAT IAC</td>
<td>ACAT IA Component</td>
</tr>
<tr>
<td>ACP</td>
<td>Army Cost Position</td>
</tr>
<tr>
<td>ADARS</td>
<td>Army Defense Acquisition Regulation Supplement</td>
</tr>
<tr>
<td>ADM</td>
<td>Acquisition Decision Memorandum</td>
</tr>
<tr>
<td>ADP</td>
<td>Automated Data Processing</td>
</tr>
<tr>
<td>AE</td>
<td>Acquisition Executive</td>
</tr>
<tr>
<td>AIS</td>
<td>Automated Information System</td>
</tr>
<tr>
<td>AMC</td>
<td>Army Materiel Command</td>
</tr>
<tr>
<td>AMCOS</td>
<td>Army Manpower Cost System</td>
</tr>
<tr>
<td>AMSCO</td>
<td>Army Management Structure Code</td>
</tr>
<tr>
<td>AOA</td>
<td>Analysis of Alternatives</td>
</tr>
<tr>
<td>APB</td>
<td>Acquisition Program Baseline</td>
</tr>
<tr>
<td>APG</td>
<td>Army Program Guidance</td>
</tr>
<tr>
<td>APPIS</td>
<td>Army POM Preparation Instructions Supplement</td>
</tr>
<tr>
<td>AR</td>
<td>Army Regulation</td>
</tr>
<tr>
<td>ARNG</td>
<td>Army Reserve National Guard</td>
</tr>
<tr>
<td>ARSTAF</td>
<td>Army Staff</td>
</tr>
<tr>
<td>ASA(FM&C)</td>
<td>Assistant Secretary of the Army (Financial Management and Comptroller)</td>
</tr>
<tr>
<td>ASARC</td>
<td>Army Systems Acquisition Review Council</td>
</tr>
<tr>
<td>ASA(RDA)</td>
<td>Assistant Secretary of the Army (Research, Development, and Acquisition)</td>
</tr>
<tr>
<td>ASD(C3I)</td>
<td>Assistant Secretary of Defense for Command, Control, Communications, and Intelligence</td>
</tr>
<tr>
<td>ASL</td>
<td>Authorized Stockage List</td>
</tr>
<tr>
<td>AWCF</td>
<td>Army Working Capital Fund</td>
</tr>
<tr>
<td>BAQ</td>
<td>Basic Allowance for Quarters</td>
</tr>
<tr>
<td>BAS</td>
<td>Basic Allowance for Subsistence</td>
</tr>
<tr>
<td>BASOPS</td>
<td>Base Operations</td>
</tr>
<tr>
<td>BCR</td>
<td>Benefit/Cost Ratio</td>
</tr>
<tr>
<td>BES</td>
<td>Budget Estimate Submission</td>
</tr>
<tr>
<td>BIR</td>
<td>Benefit/Investment Ratio</td>
</tr>
<tr>
<td>BP</td>
<td>Basic Pay</td>
</tr>
<tr>
<td>BRAC</td>
<td>Base Realignment and Closure</td>
</tr>
<tr>
<td>BY</td>
<td>Budget Year</td>
</tr>
</tbody>
</table>
| C4ISR | Command, Control, Communications, Computers, Intelligence, Surveillance,
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAB</td>
<td>Cost Analysis Brief</td>
</tr>
<tr>
<td>CAIG</td>
<td>Cost Analysis Improvement Group</td>
</tr>
<tr>
<td>CAIV</td>
<td>Cost as an Independent Variable</td>
</tr>
<tr>
<td>CARD</td>
<td>Cost Analysis Requirements Description</td>
</tr>
<tr>
<td>CCA</td>
<td>Component Cost Analysis</td>
</tr>
<tr>
<td>CCDR</td>
<td>Contractor Cost Data Reporting</td>
</tr>
<tr>
<td>CDF</td>
<td>Cost Documentation Format</td>
</tr>
<tr>
<td>CDR</td>
<td>Capstone Requirement Document</td>
</tr>
<tr>
<td>CEAC</td>
<td>Cost and Economic Analysis Center</td>
</tr>
<tr>
<td>CER</td>
<td>Cost-Estimating Relationship</td>
</tr>
<tr>
<td>CES</td>
<td>Cost Element Structure</td>
</tr>
<tr>
<td>CFSR</td>
<td>Contract Funds Status Report</td>
</tr>
<tr>
<td>CINC</td>
<td>Commander in Chief</td>
</tr>
<tr>
<td>CIO</td>
<td>Chief Information Officer</td>
</tr>
<tr>
<td>CLIN</td>
<td>Contract Line Item Number</td>
</tr>
<tr>
<td>CLS</td>
<td>Contractor Logistic Support</td>
</tr>
<tr>
<td>CONUS</td>
<td>Continental United States</td>
</tr>
<tr>
<td>CPA</td>
<td>Chairman Program Assessment</td>
</tr>
<tr>
<td>CPR</td>
<td>Cost Performance Report</td>
</tr>
<tr>
<td>CPUC</td>
<td>Current Procurement Unit Cost</td>
</tr>
<tr>
<td>CRB</td>
<td>Cost Review Board</td>
</tr>
<tr>
<td>CSA</td>
<td>Chief of Staff, Army</td>
</tr>
<tr>
<td>C/SSR</td>
<td>Cost/Schedule Status Report</td>
</tr>
<tr>
<td>CTA</td>
<td>Consolidated Table of Allowances</td>
</tr>
<tr>
<td>CY</td>
<td>Current Year</td>
</tr>
<tr>
<td>DA</td>
<td>Department of the Army</td>
</tr>
<tr>
<td>DAB</td>
<td>Defense Acquisition Board</td>
</tr>
<tr>
<td>DAE</td>
<td>Defense Acquisition Executive</td>
</tr>
<tr>
<td>DAP</td>
<td>Defense Acquisition Program</td>
</tr>
<tr>
<td>DCAA</td>
<td>Defense Contract Audit Agency</td>
</tr>
<tr>
<td>DCMC</td>
<td>Defense Contract Management Command</td>
</tr>
<tr>
<td>DCP</td>
<td>Decision Coordinating Paper</td>
</tr>
<tr>
<td>DCSOPS</td>
<td>Deputy Chief of Staff for Operations and Plans</td>
</tr>
<tr>
<td>DFSC</td>
<td>Defense Financial Services Center</td>
</tr>
<tr>
<td>DISC4</td>
<td>Director of Information Systems for Command, Control, Communications, and Computers</td>
</tr>
<tr>
<td>DMRD</td>
<td>Defense Management Review Decision</td>
</tr>
<tr>
<td>DoD</td>
<td>Department of Defense</td>
</tr>
<tr>
<td>DoDDD</td>
<td>Department of Defense Directive</td>
</tr>
<tr>
<td>DoDI</td>
<td>Department of Defense Instruction</td>
</tr>
<tr>
<td>DPAE</td>
<td>Directorate of Program Analysis and Evaluation</td>
</tr>
<tr>
<td>DPRB</td>
<td>Defense Planning and Resources Board</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>CAIV</td>
<td>Cost as an Independent Variable</td>
</tr>
<tr>
<td>ECP</td>
<td>Engineering Change Proposal</td>
</tr>
<tr>
<td>EIC</td>
<td>End Item Code</td>
</tr>
<tr>
<td>EUSA</td>
<td>Eighth U.S. Army</td>
</tr>
<tr>
<td>FDT</td>
<td>First Destination Transportation</td>
</tr>
<tr>
<td>FFP</td>
<td>Firm Fixed Price</td>
</tr>
<tr>
<td>FIA</td>
<td>Force Integration Analysis</td>
</tr>
<tr>
<td>FORCES</td>
<td>Force and Organization Cost Estimating System</td>
</tr>
<tr>
<td>FORSCOM</td>
<td>Forces Command</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>FYDP</td>
<td>Future Years Defense Program</td>
</tr>
<tr>
<td>G&A</td>
<td>General and Administrative</td>
</tr>
<tr>
<td>GAO</td>
<td>General Accounting Office</td>
</tr>
<tr>
<td>GOSC</td>
<td>General Officer Steering Committee</td>
</tr>
<tr>
<td>GSA</td>
<td>General Services Administration</td>
</tr>
<tr>
<td>HQDA</td>
<td>Headquarters, Department of the Army</td>
</tr>
<tr>
<td>ICE</td>
<td>Independent Cost Estimate</td>
</tr>
<tr>
<td>ICS</td>
<td>Interim Contractor Support</td>
</tr>
<tr>
<td>ILS</td>
<td>Integrated Logistics Support</td>
</tr>
<tr>
<td>IOT&E</td>
<td>Initial Operational Test and Evaluation</td>
</tr>
<tr>
<td>IPA</td>
<td>Integrated Program Assessment</td>
</tr>
<tr>
<td>IPR</td>
<td>In-Process Review</td>
</tr>
<tr>
<td>IPS</td>
<td>Integrated Program Summary</td>
</tr>
<tr>
<td>IT OIPT</td>
<td>Information Technology Overarching Integrated Process Team</td>
</tr>
<tr>
<td>LCC</td>
<td>Life Cycle Cost</td>
</tr>
<tr>
<td>LCCE</td>
<td>Life Cycle Cost Estimate</td>
</tr>
<tr>
<td>LCM</td>
<td>Life Cycle Management</td>
</tr>
<tr>
<td>LIA</td>
<td>Logistics Impact Analysis</td>
</tr>
<tr>
<td>LIN</td>
<td>Line Item Number</td>
</tr>
<tr>
<td>LOC</td>
<td>Lines of Code</td>
</tr>
<tr>
<td>LRIP</td>
<td>Low-Rate Initial Production</td>
</tr>
<tr>
<td>RDA Plan</td>
<td>Research, Development, and Acquisition Plan</td>
</tr>
<tr>
<td>MACOM</td>
<td>Major Command</td>
</tr>
<tr>
<td>MAIS</td>
<td>Major Automated Information System</td>
</tr>
<tr>
<td>MBI</td>
<td>Major Budget Issue</td>
</tr>
<tr>
<td>MCA</td>
<td>Military Construction, Army</td>
</tr>
<tr>
<td>MDAP</td>
<td>Major Defense Acquisition Program</td>
</tr>
<tr>
<td>MDEP</td>
<td>Management Decision Package</td>
</tr>
<tr>
<td>MFP</td>
<td>Major Force Program</td>
</tr>
<tr>
<td>MNS</td>
<td>Mission Need Statement</td>
</tr>
<tr>
<td>MOE</td>
<td>Measures of Effectiveness</td>
</tr>
<tr>
<td>MOP</td>
<td>Measures of Performance</td>
</tr>
<tr>
<td>MOS</td>
<td>Military Occupational Specialty</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MPDI</td>
<td>MACOM POM Development Instruction</td>
</tr>
<tr>
<td>MS</td>
<td>Milestone</td>
</tr>
<tr>
<td>MTOE</td>
<td>Modified Table of Organization and Equipment</td>
</tr>
<tr>
<td>NDI</td>
<td>Nondevelopment Item</td>
</tr>
<tr>
<td>NET</td>
<td>New Equipment Training</td>
</tr>
<tr>
<td>NSN</td>
<td>National Stock Number</td>
</tr>
<tr>
<td>NTC</td>
<td>National Training Center</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Maintenance</td>
</tr>
<tr>
<td>O&S</td>
<td>Operating and Support</td>
</tr>
<tr>
<td>OASA(FM&C)</td>
<td>Office of the Assistant Secretary of the Army (Financial Management and Comptroller)</td>
</tr>
<tr>
<td>OASA(RDA)</td>
<td>Office of the Assistant Secretary of the Army (Research, Development, and Acquisition)</td>
</tr>
<tr>
<td>OCONUS</td>
<td>Outside the Continental United States</td>
</tr>
<tr>
<td>ODCSOPS</td>
<td>Office of the Deputy Chief of Staff for Operations and Plans</td>
</tr>
<tr>
<td>ODISC4</td>
<td>Office of the Director of Information Systems for Command, Control, Communications, and Computers</td>
</tr>
<tr>
<td>OMA</td>
<td>Operations and Maintenance, Army</td>
</tr>
<tr>
<td>OMB</td>
<td>Office of Management and Budget</td>
</tr>
<tr>
<td>OPTEMPO</td>
<td>Operating Tempo</td>
</tr>
<tr>
<td>ORD</td>
<td>Operational Requirements Document</td>
</tr>
<tr>
<td>OSD</td>
<td>Office of the Secretary of Defense</td>
</tr>
<tr>
<td>OSMIS</td>
<td>Operating and Support Management Information System</td>
</tr>
<tr>
<td>PAED</td>
<td>Program Analysis & Evaluation Directorate</td>
</tr>
<tr>
<td>PAUC</td>
<td>Program Acquisition Unit Cost</td>
</tr>
<tr>
<td>PBD</td>
<td>Program Budget Decision</td>
</tr>
<tr>
<td>PBG</td>
<td>Program and Budget Guidance</td>
</tr>
<tr>
<td>PC</td>
<td>Personal Computer</td>
</tr>
<tr>
<td>PCS</td>
<td>Permanent Change of Station</td>
</tr>
<tr>
<td>PDM</td>
<td>Program Decision Memorandum</td>
</tr>
<tr>
<td>PE</td>
<td>Program Element</td>
</tr>
<tr>
<td>PEG</td>
<td>Program Evaluation Group</td>
</tr>
<tr>
<td>PEO</td>
<td>Program Executive Officer</td>
</tr>
<tr>
<td>PEP</td>
<td>Producibility Engineering and Planning</td>
</tr>
<tr>
<td>PLL</td>
<td>Prescribed Load Lists</td>
</tr>
<tr>
<td>PM</td>
<td>Program Manager</td>
</tr>
<tr>
<td>PME</td>
<td>Prime Mission Equipment</td>
</tr>
<tr>
<td>POE</td>
<td>Program Office Estimate</td>
</tr>
<tr>
<td>POL</td>
<td>Petroleum, Oil, and Lubricants</td>
</tr>
<tr>
<td>POM</td>
<td>Program Objective Memorandum</td>
</tr>
<tr>
<td>PPBERS</td>
<td>Program Performance and Budget Execution Review System</td>
</tr>
<tr>
<td>PPBES</td>
<td>Planning, Programming, Budgeting, and Execution System</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>PPI</td>
<td>POM Preparation Instructions</td>
</tr>
<tr>
<td>PSA</td>
<td>Principal Staff Assistant</td>
</tr>
<tr>
<td>PWD</td>
<td>Procurement Work Directive</td>
</tr>
<tr>
<td>PY</td>
<td>Prior Year</td>
</tr>
<tr>
<td>R&D</td>
<td>Research and Development</td>
</tr>
<tr>
<td>RC</td>
<td>Reserve Component</td>
</tr>
<tr>
<td>RDT&E</td>
<td>Research, Development, Test, and Evaluation</td>
</tr>
<tr>
<td>RFP</td>
<td>Request for Proposals</td>
</tr>
<tr>
<td>RIF</td>
<td>Reduction in Force</td>
</tr>
<tr>
<td>RPA</td>
<td>Retired Pay Accrual</td>
</tr>
<tr>
<td>RPMA</td>
<td>Real Property Maintenance Activity</td>
</tr>
<tr>
<td>ROR</td>
<td>Rate of Return</td>
</tr>
<tr>
<td>SA</td>
<td>Secretary of the Army</td>
</tr>
<tr>
<td>SAP</td>
<td>Special Access Program</td>
</tr>
<tr>
<td>SAR</td>
<td>Selected Acquisition Report</td>
</tr>
<tr>
<td>SCP</td>
<td>System Concept Paper</td>
</tr>
<tr>
<td>SDP</td>
<td>System Decision Paper</td>
</tr>
<tr>
<td>SECDEF</td>
<td>Secretary of Defense</td>
</tr>
<tr>
<td>SIO</td>
<td>Standard Installation Organization</td>
</tr>
<tr>
<td>SIR</td>
<td>Savings/Investment Ratio</td>
</tr>
<tr>
<td>SRC</td>
<td>Standard Requirement Code</td>
</tr>
<tr>
<td>SSF</td>
<td>Single Stock Fund</td>
</tr>
<tr>
<td>SSN</td>
<td>Standard Study Number</td>
</tr>
<tr>
<td>STP</td>
<td>Short-Term Project</td>
</tr>
<tr>
<td>SVP</td>
<td>Special Visibility Program</td>
</tr>
<tr>
<td>TAA</td>
<td>Total Army Analysis</td>
</tr>
<tr>
<td>T&M</td>
<td>Time and Materials</td>
</tr>
<tr>
<td>TAP</td>
<td>The Army Plan</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TDA</td>
<td>Table of Distributions and Allowances</td>
</tr>
<tr>
<td>TOA</td>
<td>Total Obligation Authority</td>
</tr>
<tr>
<td>TOE</td>
<td>Table of Organization and Equipment</td>
</tr>
<tr>
<td>TRADOC</td>
<td>Training and Doctrine Command</td>
</tr>
<tr>
<td>TSG</td>
<td>The Surgeon General</td>
</tr>
<tr>
<td>UAC</td>
<td>Uniform Annual Cost</td>
</tr>
<tr>
<td>UCR</td>
<td>Unit Cost Report</td>
</tr>
<tr>
<td>USAIISC</td>
<td>U.S. Army Information Systems Command</td>
</tr>
<tr>
<td>USAR</td>
<td>U.S. Army Reserve</td>
</tr>
<tr>
<td>USAREUR</td>
<td>U.S. Army, Europe</td>
</tr>
<tr>
<td>USARJ</td>
<td>U.S. Army, Japan</td>
</tr>
<tr>
<td>USD(A&T)</td>
<td>Under Secretary of Defense (Acquisition & Technology)</td>
</tr>
<tr>
<td>VAMOSC</td>
<td>Visibility and Management of Operating and Support Costs</td>
</tr>
<tr>
<td>VCSA</td>
<td>Vice Chief of Staff, Army</td>
</tr>
<tr>
<td>VEF</td>
<td>Variable Explanation Format</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>VHA</td>
<td>Variable Housing Allowance</td>
</tr>
<tr>
<td>WBS</td>
<td>Work Breakdown Structure</td>
</tr>
<tr>
<td>WESTCOM</td>
<td>Western Command</td>
</tr>
</tbody>
</table>

Section II - Terms

Acquisition strategy
Conceptual framework for conducting materiel acquisition, encompassing broad concepts and objectives that direct and control overall development, production, and deployment of system.

Alternative
One of two or more approaches, programs, or projects that are the means of fulfilling a stated objective, mission, or requirement.

Alternative cost
The total cost associated with developing, producing, fielding (including military construction), and sustaining the system. The alternative cost also includes the phaseout cost of the status quo. It does not include sunk cost.

Appropriation
A legislative process setting aside a designated amount of public funds for a given purpose. Jointly, the Senate Appropriations Committee and House Appropriation Committee annually establish funding levels through an appropriations bill, which ultimately is enacted into law upon signing by the President.

Army Acquisition Executive
The Secretary of the Army designated principal advisor and staff assistant for acquisition of Army systems. The Assistant Secretary of the Army for Research, Development, and Acquisition is currently designated as the Army Acquisition Executive responsible for overall management of Army acquisition programs.

Army Cost Position
The results of the comparative analysis of the Program Office Estimate or Economic Analysis and the Component Cost Analysis or a joint IPT estimate that is documented in the Cost Analysis Brief and approved by the Assistant Secretary of the Army for Financial Management and Comptroller. It is the approved cost position for all subsequent programming, budgeting, and cost analysis activities.

Army Systems Acquisition Review Council
A panel composed of regular, special members, and participants designated by the chairman whose mission is to review DoD major programs and DAPs at specific milestones and provide Army approval prior to the next phase of system acquisition.

Assumption
A statement or hypothesis made concerning unknown factors and data that are required to accomplish the analysis. Assumptions should never be confused with facts.

Benefit
Results and outputs expected in return for costs and inputs incurred or used. A positive output of an alternative. It includes measures of utility, effectiveness, and performance. Benefits focus on the purpose and the objectives of a project.
Benefit/cost ratio
The ratio of the present value of the total benefits (savings and cost avoidances) divided by the present value of the total costs. It does not include sunk cost. A benefit/cost ratio (BCR) of 1.0 indicates that the present value of the benefits is equal to the present value of the total costs. The calculation for BCR begins by applying the discount factor to the constant-dollar benefits and the constant-dollar costs to arrive at the present value of the total benefits and the present value of the total costs.

Benefit/investment ratio
The ratio of the present value of the dollar quantifiable benefits (savings and cost avoidances) divided by the present value of the investment (development, production, military construction, and fielding) cost of the alternative. It does not include benefits that are associated with sunk cost. A benefit/investment ratio of 1.0 indicates that the present value of the benefits is equal to the present value of the investment. The calculation begins with constant dollars.

Break-even point
The point, for example, number of years or fractional years, at which the savings in current dollars equals the investment in current dollars. It does not include sunk cost.

Common costs
Common costs are cost element estimates, which will be the same regardless of the alternative selected. In instances where this occurs, common costs must be identified and included in the life cycle cost estimate of all feasible alternatives for accomplishing the mission objective.

Component Cost Analysis
A complete and fully documented life cycle cost estimate for a system that is developed external of and independent from the acquisition proponent or a independent estimate of major cost drivers and or cost elements. The Component Cost Analysis is used to test the reasonableness of the POE/EA and provide a second opinion of the system's cost.

Constant dollars
All prior year, current, and future costs that reflect the level of prices of a base year. Constant dollars have the effects of inflation removed.

Cost analysis
The act of developing, analyzing, and documenting cost estimates through various analytical approaches and techniques. It is the process of analyzing and estimating incremental and total resources required to support past, present, and future systems. In its application to future resource requirements, it becomes an integral step in selection of alternatives by the decision maker.

Cost Analysis brief
A Cost Review Board-originated document that presents a comparative analysis between the Program Office Estimate/Economic Analysis and the Component Cost Analysis. It documents the contrasting methodologies between the two estimates, explains major cost differences, and is used to document the Army Cost Position.

Cost Analysis Improvement Group
An OSD committee, which serves as the principal advisory body to the Defense Acquisition Board on matters, related to cost estimates.
Cost avoidances
All reductions in future resource requirements, not in an approved Army program, because investment in some needed program/project will not have to be made. For example, there is a cost avoidance if the status quo has a plan that requires the purchase of certain hardware that has not been included in an approved Army program, but the implementation of the preferred alternative does not require the purchase of the hardware and does not degrade current capability. Cost avoidances are a quantifiable benefit.

Cost driving variable
A parameter, such as speed, range, peak power levels, that has a major or significant effect on the cost.

Cost estimate
a. A prediction of costs consisting of:
 (1) A clearly defined requirement.
 (2) A statement of cost assumptions.
 (3) A source identification for basic cost data.
 (4) A documentation of the methodologies used.

b. The estimated cost of a component or aggregation of components that is developed by using historical cost data and/or mathematical models.

Cost-estimating relationship
A mathematical expression relating cost as the dependent variable to one or more independent cost-driving variables. The expression may be represented by several functions, such as linear, power, exponential, and hyperbolic.

Cost factor
A cost-estimating relationship where the cost estimate is determined by performing a mathematical operation on some other related cost element. It is a brief arithmetic expression where cost is determined by application of a factor such as a percent, and so on.

Cost reduction
A decrease in elements of cost between the status quo and one of the feasible alternatives that results from a variation in operations. For example, the requirement for supplies may decrease as a result of a change in operations.

Current dollars
Dollars that reflect the purchasing power of the dollar in the year the cost or savings is to be realized or incurred. That is, current dollars reflect the effects of inflation. Prior-year costs stated in current dollars are the actual costs incurred in those years. Future costs or savings stated in current year dollars are the projected values that will be paid out in the future years.

Defense Acquisition Board
A senior DoD corporate body for systems acquisition that provides advice and assistance to the DAE and the Secretary of Defense.

Defense acquisition program
A program designated by OSD management or the AAE for DAB or ASARC review.

Discounting
A technique for converting various annual cash flows occurring over time to equivalent amounts at a common point in time, considering the time value of money, to facilitate comparison. (This is an alternative definition of present value.)

Discount rate
The interest rate used to discount or calculate future costs and benefits so as to arrive at their present values. This term is also known as the opportunity cost of capital investment. OMB Circular A-94 presently uses a discount rate tied to the Government's cost of capital.

Economic Analysis
A systematic approach to identify, analyze, and compare costs or benefits of alternative courses of action that will achieve a given set of objectives. This approach is taken to determine the most efficient and effective manner to employ resources. In the broad sense, the systematic approach called economic analysis applies to new programs as well as to the analysis of ongoing actions.

Economic life
The period of time over which the benefits to be gained from deployment or use of a resource may be reasonably expected to accrue. The economic life of a project begins in the year it starts producing benefits and ends when the project no longer accomplishes its primary objective.

Independent assessment/sufficiency review
An evaluation and validation of the PEO's and PM's cost or economic analysis, short of performing a full CCA, for a program scheduled to be reviewed by the ASARC or Army MAISRC. This review includes a thorough analysis of the problem definition, alternatives, assumptions, cost estimate, benefit analysis, risks, conclusions, and recommendations.

Independent cost estimates
A complete and fully documented life cycle cost estimate for a system that is developed external of and independent from the acquisition proponent. The ICE is used to test the reasonableness of the BCE/EA and provide a second opinion of the system’s cost.

Information systems
Organized assembly of resources and procedures designed to provide information needed to execute or accomplish a specific task or function. It applies to those systems that evolve, are acquired, or are developed that incorporate information technology. It applies to all five Information Mission Area disciplines and encompasses AIS. Information system equipment consists of components to create, collect, process, store, retrieve, transmit, communicate, present, dispose, and/or display information.

Information Technology Overarching Integrated Process Team
Any equipment or interconnected system or subsystem of equipment, that is used in the automatic acquisition, storage, manipulation, management, movement, control, display, switching, interchange, transmission, or reception of data or information. The term “equipment” means any equipment used by the DOD directly or used by a contractor under a contract with the DOD that requires the use of such equipment, or the use, or a significant extent, of such equipment in the performance of a service or the furnishing of a product. The term “IT” includes computers, ancillary equipment, software, firmware, and similar procedures, services (including support services), and related resources. The term “IT” also includes National Security Systems. It does not include any equipment that is acquired by a Federal contractor incidental to a Federal contract.

Inherited assets
Operational equipment or software that becomes part of a system irrespective of original funding or "ownership."

In-process review
Review of a project or program at critical points to evaluate status and make recommendations to the decision authority; accomplish effective coordination; and make cooperative, proper, and timely decisions bearing on the future of the project.

Investment cost
Includes the research and development phase and the production and deployment phase (to include military construction) costs of the system.

Life cycle cost estimate
A document that:
- Includes all costs incurred during the total life (from project initiation through termination) of a system or aggregation of systems.
- Includes cost for research and development, production, military construction, deployment, and operating and support.

Major system
- Systems estimated by the Secretary of Defense to require a total expenditure for RDT&E of more than $200 million (FY 80 constant dollars) or an eventual total expenditure for procurement of more than $1 billion (FY 80 constant dollars).
- Materiel system acquisition programs recommended by HQDA to be managed as MDAPs or ADAPs. Designation is normally a part of the required operational capability.
- Army systems designated by the Secretary of Defense for DAB review are automatically identified as Army major systems.

Management Decision Package
A structured life cycle process that represents the most current approved funding position developed through the PPBES. A separate MDEP will normally be created for each major system. Each MDEP covers a 9-year period.

Materiel system
A combination of hardware components that function together as an entity to accomplish a given objective. A materiel system includes the basic items of equipment, support facilities, and services required for operation and sustainment.

Milestone decision review
An event (meeting) composed of top military and civilian managers, including the program manager. Its purpose is to address and resolve major program issues before approval is granted to proceed to the next life cycle management phase.

Net present value
The difference between the present value of the benefits and the present value of the costs.

Nonquantifiable benefits
A benefit that does not lend itself to numeric valuation, such as better quality of services. Nonquantifiable benefits are to be addressed in narrative form in the documentation.

Operating tempo
The annual operating miles or hours for systems in a particular unit required to execute the commander's training strategy.

Payback period
The number of years required for the cumulative savings to equal the cumulative investment costs (development, procurement, military construction, and fielding) in current dollars. The payback period is normally stated in nondiscounted terms; however, a discounted payback period may also be shown.

Phaseout cost
That cost required for the parallel operations of the status quo while the new system is being developed, fielded, and accepted. This cost occurs from the time the development of the new system begins to when fielding is completed.

Present-value dollars
Dollars that have had their annual cash flow occurring over time converted to equivalent amounts at a common point in time in order to account for the time value of money. The normal discount rate is 7%, as prescribed by OMB. The computation begins with constant dollars.

Productivity improvements
Cost avoidances that are in the form of personnel time savings and are dollar quantified, and that do not represent an opportunity to reduce a force structure or MDEP.

Program baseline
A description of a specific program containing the following key elements:
 b. Program content. A concise description of the program capabilities and products to be provided, including required technical and operational characteristics, within the approved funding.

Program cost
Consists of research and development, procurement, and deployment (includes military construction) costs (including sunk) that are in direct support of the system or project. Included within this definition are operations and maintenance funds for expenditure directly related to concept development, design, and deployment. Program cost and program acquisition cost are synonymous terms.

Program/project/product manager
An individual assigned the responsibility and delegated the authority for the centralized management of a specific system acquisition program/project/product.

Program Office Estimate
A complete, detailed, and fully documented materiel system life cycle cost estimate updated throughout the acquisition cycle and the Planning, Programming, Budgeting, and Execution System. The Program Office Estimate, as accepted or modified by the Army Cost Position, provides the basis for subsequent tracking and auditing.

Quantifiable benefit
A benefit that can be assigned a numeric value, such as dollars, physical count of items, or percentage change.
Rate of return
The discount rate at which the present value of the investment cost equals the present value of the savings. The calculation begins from constant dollars. The ROR does not include sunk cost.

Savings
A cost reduction (to include civilian whole spaces) that will be made in a specific MDEP resulting from implementing a specific alternative that does not degrade current capability, in lieu of continuing the present system. The savings will be specifically identified. Savings are a quantifiable benefit. For example, if the implementation of an alternative way of doing business does not consume as much paper as the previous way of doing business, there is a savings, because an MDEP can be reduced by the amount of paper that does not have to be purchased. Likewise, if the new alternative reduces the number of civilians required to perform the mission and those civilian spaces are terminated, there is a savings because an MDEP can be reduced by the amount required to employ that manpower. If military manpower can be specifically identified to a force reduction, there is a savings. If the military manpower cannot be identified to a specific force reduction, there is a cost avoidance. There must be a program reduction for a savings to occur; thus, benefits are considered as savings only if the estimate identifies benefits that start accruing during the POM period and end during the POM period. If the estimate identifies benefits that accrue beyond the POM period, the benefits are considered as cost avoidances.

Savings/investment ratio
The ratio of the present value of the savings to the present value of the investment required to produce the savings. It does not include sunk costs. An SIR of 1.0 indicates that the present value of the savings is equal to the present value of the investment. The calculation begins with constant dollars.

Sunk costs
Sunk (past or unavoidable) costs are past expenditures or irrevocably committed costs that are not avoidable and, therefore, should not be considered in the decision process.

System
A combination of all components and tangible items that function together as an entity to accomplish a given objective.

System-specific cost
Hardware, software, and related costs that can be directly attributable to a particular system.

Uniform annual cost
A measure of the relative cost of a project that represents the average yearly cost, and is derived from the total discounted cost figure. The average yearly cost (UAC) is the total project cost discounted, divided by the sum of the discount factors for the years in which the system provides benefits (economic life).

Validation
A review of all elements in a cost estimate to confirm that they are sound, developed using acceptable cost estimating methods, adequately documented, and capable of being justified, supported, and defended. The validation will be performed by an organization external and independent from that of the functional proponent and preparer of the estimate.
INDEX

A
Analysis of Alternatives (AOA), 22, 23, 40, 87, 89, 98, 201
Army Cost Position (ACP), 20, 41, 56, 70, 74, 75, 77, 78, 79, 147, 173, 174, 201, 207, 208, 212
Army System Acquisition Review Council (ASARC), 20, 21, 70, 75, 76, 77, 78, 127, 173, 209, 210

C
Component Cost Analysis (CCA), 1, 20, 21, 22, 30, 33, 50, 56, 59, 60, 64, 78, 79, 86, 147, 148, 149, 150, 151, 155, 173, 174, 202, 207, 208, 210
Cost Analysis, i, iii, 1, 22, 33, 34, 35, 39, 41, 49, 70, 74, 78, 95, 97, 126, 127, 129, 176, 182, 193, 196, 202, 207, 208
Cost Analysis Brief (CAB), 1, 56, 74, 202, 207
Cost Analysis Improvement Group (CAIG), 33, 50, 51, 56, 59, 65, 71, 78, 79, 95, 97, 126, 173, 175, 202, 208
Cost Analysis Requirements Description (CARD), 34, 39, 41, 44, 49, 50, 51, 55, 56, 59, 61, 78, 96, 97, 176, 177, 182, 194, 202
Cost as an Independent Variable (CAIV), 22, 23, 40, 41, 98, 202, 203
Cost Documentation Format (CDF), 58, 59, 61, 62, 63, 64, 66, 202
Cost Element Structure (CES), 34, 51, 52, 67, 79, 93, 95, 103, 131, 202

D
Defense Acquisition Board (DAB), 20, 29, 50, 51, 70, 75, 202, 208, 209, 211
Defense Business Operations Fund (DBOF), 66, 90, 103, 133, 140, 144, 145, 146, 151, 152, 154, 155, 156, 157, 158, 201
Discount Rate, 127
Discounting, 209
Documentation, 17, 19, 37, 57, 58, 60, 61, 62

F
Financial Analysis, 91
Force and Organization Cost Estimating System (FORCES), 125, 203

I
Integrated Logistics Support (ILS), 91, 134, 138, 143, 146, 185, 203

L
Life Cycle Cost, 129, 193, 200, 204
Logistics Impact Analysis (LIA), 204
M
Management Decision Package (MDEP), 24, 30, 38, 44, 59, 64, 204, 211, 212, 213

O
Operating and Support Management Information System (OSMIS), 2, 91, 160, 164, 205

P
Planning, Programming, Budgeting and Execution System (PPBES), 3, 5, 20, 21, 24, 25, 28, 30, 44, 52, 59, 63, 64, 70, 93, 205, 211
Planning, Programming, Budgeting, and Execution System (PPBES), 3, 5, 20, 21, 24, 25, 28, 30, 44, 52, 59, 63, 64, 70, 93, 126, 205, 211, 212
Program Office Estimate (POE), 1, 20, 21, 30, 32, 33, 50, 55, 56, 59, 60, 64, 78, 79, 86, 97, 147, 148, 149, 150, 151, 155, 173, 174, 194, 195, 205, 207, 208, 212

R
Risk Analysis, 61, 129, 196

S
Selected Acquisition Report, 36, 79, 87, 129, 206

U
Uncertainty, 59, 176, 181, 182, 196
Unit Cost, 79, 81, 87, 89, 202, 205, 206

W
Work Breakdown Structure (WBS), 32, 33, 34, 44, 51, 52, 53, 61, 80, 86, 95, 103, 126, 130, 131, 132, 174, 180, 193, 195, 196, 198, 199, 200, 206