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Abstract

Inpainting,thetechniqueof modifyinganimagein anundetectable
form, is asancientasartitself. The goalsandapplicationsof in-
paintingare numerousfrom the restorationof damagedaintings
andphotographso theremoval/replacemendf selectedbjects.In
this paper we introducea novel algorithmfor digital inpaintingof
still imagesthat attemptsto replicatethe basictechniquesisedby
professionakestorators. After the userselectsthe regionsto be
restoredthe algorithmautomaticallyfills-in theseregionswith in-
formationsurroundinghem. Thefill-in is donein suchaway that
isophotelinesarriving at the regionsboundariesare completedn-
side. In contrastwith previous approacheshetechniqueherein-
troduceddoesnot requirethe userto specifywherethe novel in-
formationcomesfrom. This is automaticallydone(andin a fast
way), therebyallowing to simultaneouslyill-in numerousegions
containingcompletelydifferent structuresand surroundingback-
grounds.In addition,nolimitationsareimposedon thetopologyof
the region to be inpainted. Applicationsof this techniqueinclude
therestoratiorof old photographanddamagedilm; removal of su-
perimposedext like dates subtitles,or publicity; andthe removal
of entireobjectsfrom the imagelike microphonesr wiresin spe-
cial effects.

CR Categories: 1.3.3 [Computer Graphics]: Picture/lmage
Generation—;1.3.4 [Computer Graphics]: GraphicsUtilities—
; 1.4.4 [Image Processingand ComputerVision]: Restoration—;
1.4.9 [ImageProcessingndComputeVision]: Applications—;
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1 Introduction

The modificationof imagesin a way thatis non-detectabléor an
obsererwho doesnot know the originalimageis a practiceasold
asartisticcreationitself. Medieval artwork startedto berestoredas
earlyasthe Renaissancéhe motivesbeingoftenasmuchto bring
medieval pictures“up to date” asto fill in any gaps[1, 2]. This
practiceis calledretoutiing or inpainting Theobjectof inpainting
is to reconstitutehe missingor damagedortionsof the work, in
orderto make it morelegible andto restoreits unity [2].

The needto retouchthe imagein an unobtrusie way extended
naturally from paintingsto photographyand film. The purposes
remainthesame:o revertdeterioratior(e.g.,cracksin photographs
or scratchesanddustspotsin film), or to addor remove elements
(e.g.,removal of stampeddateandred-e/e from photographsthe
infamous‘airbrushing”of political enemieg3]).

Digital techniquesrrestartingto beawidespreadvay of inpaint-
ing, rangingfrom attemptgo fully automatidetectiorandremoval
of scratchedn film [4, 5, 6], all theway to softwaretoolsthatallow
a sophisticatedbut mostly manualprocesg7].

In this articlewe introducea novel algorithmfor automatiadigi-
tal inpainting,beingits main motivationto replicatethe basictech-
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niguesusedby professionatestoratorsAt this point, the only user
interactionrequiredby the algorithm hereintroducedis to mark
the regionsto beinpainted. Although a numberof techniquesx-

ist for the semi-automatiaetectionof image defects(mainly in

films), addressinghis is out of the scopeof this paper Moreover,

sincethe inpaintingalgorithmherepresented¢anbe usednot just
to restoredamagecphotographdut alsoto remove undesirecob-
jectsandwritings ontheimage theregionsto beinpaintedmustbe
marked by the user sincethey dependon his/hersubjectve selec-
tion. Herewe areconcernedn how to “fill-in” the regionsto be
inpainted,oncethey have beenselected. Marked regionsare au-
tomaticallyfilled with the structureof their surroundingjn aform

thatwill beexplainedlaterin this paper

2 Related work and our contribution

We shouldfirst note that classicalimagedenoisingalgorithmsdo
notapplyto imageinpainting,sincetheregionsto beinpaintedare
usuallylarge. Thatis, regionsoccupiedby top to bottomscratches
along several film frames,long cracksin photographssuperim-
posedargefonts,andsoon, areof significantlarger sizethanthe
typeof noiseassumedn commonimageenhancemerglgorithms.
In addition,in commonimageenhancemergpplicationsthepixels
containbothinformationabouttherealdataandthenoise(e.g.,im-
ageplus noisefor additive noise),while in imageinpainting,there
is no significantinformationin the region to be inpainted. The
informationis mainly in the regions surroundingthe areasto be
inpainted. Thereis thena needto develop specifictechniqueso
addressheseproblems.

Mainly threegroupsof works canbe foundin the literaturere-
latedto digital inpainting. Thefirst onedealswith the restoration
of films, thesecondneis relatedto texture synthesisandthethird
one,a significantlylessstudiedclassthoughvery influential to the
work herepresentedis relatedto disocclusion.

Joyeuxetal. [4] deviseda 2-stepsfrequenyg basedreconstruc-
tion systenfor detectingandremaving line scratche# films. They
proposeto first recorer low andthenhigh frequencies.Although
good resultsare obtainedfor their specificapplication,the algo-
rithm cannothandldargelossareasFrequeng domainalgorithms
tradeagoodrecovery of theoverall structureof theregionsfor poor
spatialresultsregarding for instancethe continuity of lines.

Kokaramet al. [6] use motion estimationand autorgressie
modelsto interpolatelossesin films from adjacentframes. The
basicideais to copy into the gaptheright pixels from neighboring
frames.Thetechniquecannotbeappliedto still imagesor to films
wheretheregionsto beinpaintedspanmary frames.

HiraniandTotsukd8] combinefrequeng andspatialdomainin-
formationin ordertofill agivenregionwith aselectedexture. This
isaverysimpletechniquehatproducesncrediblegoodresults.On
the otherhand, the algorithm mainly dealswith texture synthesis

1In orderto studytherobustnes®f thealgorithmhereproposedandnot
to betoo dependenon themarkingof theregionsto beinpainted we mark
themin avery roughform with ary availablepaintbrustsoftware. Marking
theseregionsin theexamplesreportedn this paperjusttakesafew seconds
to anon-epertuser
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(andnotwith structuredackground)andrequiregheuserto select
thetextureto be copiedinto theregion to beinpainted.For images
wheretheregion to bereplacedcoversseveral differentstructures,
theusemwould needto gothroughthetremendousvork of sgment-
ing themandsearchingorrespondingeplacementthroughouthe
picture. Although part of this searchcan be done automatically
thisis extremelytime consumingandrequiresghenon-trivial selec-
tion of mary critical parameterse.g.,[9]. Othertexture synthesis
algorithms.e.g.,[9, 10, 11], canbeusedaswell to re-createa pre-
selectedextureto fill-in a(squareyegionto beinpainted.

In the group of disocclusionalgorithms,a pioneeringwork is
describedn [12]. The authorspresentec techniquefor removing
occlusionswith the goal of imageseymentatiorf. The basicidea
is to connectT-junctionsat the samegray-level with elasticamin-
imizing curves. The techniquewas mainly developedfor simple
imageswith only afew objectswith constangray-levels, andwill
not be applicablefor the exampleswith naturalimagespresented
laterin this paper MasnouandMorel [13] recentlyextendedthese
ideas,presentinga very inspiring generalvariationalformulation
for disocclusioranda particularpracticalalgorithmimplementing
someof theideasin this formulation. The algorithmperformsin-
paintingby joining with geodesicurvesthe pointsof theisophotes
arriving at the boundaryof theregion to beinpainted.As reported
by the authors,the regions to be inpaintedare limited to having
simpletopology e.g.,holesarenotallowed? In addition,theangle
with which the level lines arrive at the boundaryof the inpainted
region is not (well) presered: the algorithmusesstraightlinesto
join equalgray valuepixels. Thesedravbackswill be exemplified
laterin this paper Ontheotherhand we shouldnotethatthisis the
closestechniqueo oursandhasmotivatedin partandinspiredour
work.

2.1 Our contribution

Algorithmsdevisedfor film restoratiorarenot appropriatefor our
applicationsincethey normally work on relatively small regions
andrely on the existenceof informationfrom severalframes.

Ontheotherhand,algorithmsbasedn texture synthesisanfill
large regions, but requirethe userto specify what texture to put
where. Thisis a significantlimitation of theseapproachesasmay
be seenin examplespresentedaterin this paper wheretheregion
to beinpainteds surroundedby hundred®f differentbackgrounds,
someof thembeingstructureandnottexture.

The techniquewe proposedoesnot requireary userinterven-
tion, oncetheregion to beinpaintedhasbeenselected.The algo-
rithm is ableto simultaneouslyill regionssurroundedy different
backgroundswithout the userspecifying“what to putwhere” No
assumption®n the topology of the region to be inpainted,or on
the simplicity of the image,are made. The algorithmis devised
for inpaintingin structuredregions(e.g.,regionscrossingthrough
boundaries)thoughit is not devised to reproducéarge textured
areas.As we will discusdater, the combinationof our proposed
approachwith texture synthesigechniquess the subjectof current
research.

3 Thedigital inpainting algorithm

3.1 Fundamentals

Let Q2 standfor theregionto beinpainted andof? for its boundary
(noteonceagainthatno assumptioronthetopologyof €2 is made).

2sincetheregionto beinpaintedcanbeconsideredsoccludingobjects,
removing occlusionds analogougo imageinpainting.

3Thisis notintrinsicto thegenerablariationalformulationthey propose,
only to the specificdiscreteémplementatiorthey perform.

Figurel: 1D signalslo(z) andb(z).

Intuitively, thetechniqueve proposewill prolongtheisophotdines
arriving at 92, while maintainingthe angleof “arrival.” We pro-
ceeddrawing from 92 inwardin this way, while curvingthe pro-
Iong?gtionlines progressiely to prevent themfrom crossingeach
othe

Before presentinghe detaileddescriptionof this technique Jet
us analyzehow expertsinpaint. Conseratorsof the Minneapolis
Instituteof Arts were consultedfor this work andmadeit clearto
usthatinpaintingis a very subjectve proceduredifferentfor each
work of art andfor eachprofessional. Thereis no suchthing as
“the” way to solve the problem,but the underlyingmethodologyis
asfollows: (1.) Theglobalpicturedetermineion tofill in thegap,
thepurposeof inpaintingbeingto restorethe unity of thework; (2.)
The structureof the areasurrounding? is continuedinto the gap,
contourlines are dravn via the prolongationof thosearriving at
0Q; (3.) Thedifferentregionsinside(?, asdefinedby the contour
lines,arefilled with color, matchinghoseof 992; and(4.) Thesmall
detailsarepainted(e.g. little white spotsonanotherwiseuniformly
bluesky). In otherwords,“texture” is added.

Our algorithmsimultaneoushanditeratively performsthe steps
(2.) and(3.) abore. (In thediscussiorsectionwe will arguehow
both stepscan be performedseparatelyandwe will alsodiscuss
step(4.).) We progressiely “shrink” the gap2 by prolongingin-
ward,in asmoothway, thelinesarriving atthe gapboundaryo2.

3.2 A onedimensional illustration

A simpleone dimensional(1D) exampleis first usedto illustrate
our technique.This is doneonly for a didacticpurpose sinceour
algorithmwasdevisedfor 2D, andthereareothertechniquegsuch
assplines)that might yield betterinterpolationresultsin 1D. Our
1D examplewill helpto explain how we translatehe basicinpaint-
ing ideaspresentedbore into aworking algorithm.Considera 1D
(discrete)signalIo(z) : [0, M] — IR ( [0, M] C IN ) anda“box-
function” masksignalb(z), asillustratedin Figurel. Theregion
Q to inpaintis given by the setof pointswhereb(:) # 0, while
its boundaryof2 arethe pointsQ andP. Let N bethedirectionof
increasing.

The progressie natureof the inpaintingproceduresuggestan
“evolution” approach.We definea family of 1D signals(z,n) :
[0, M] x [0,00) = IR ([0, M] C IN, [0, 00] C IN ) wheren isthe
“time” parametersuchthat (¢, 0) = Io(¢) andlimp— ool (3, n) =
Ir(7), whereIr(i) is theoutputof thealgorithm(inpaintedmage).
At eachiterationstepn we wantto constructl (i, n) givenI(i,n —

1).

Forthe 1D casethe“prolongationof linesinto 2" is interpreted
as‘“the continuationof the function Iy (¢) from theleft of Q to its
right, andfromtheright of Pto its left, in asmoothway” Therefore,

4Thistypeof informationpropagations relatedandmightbeapplicable
to velocity fieldsextensionin level-settechnique$14].



Figure2: Discreteexample;seetext..

in orderto inpaintin thedirectionof ﬁ thefollowing pseudo-code
realizesheideasabore:

forn = 0ton = Number — of — Iterations
for eachpoint (pixel) (i) € Q
computethesmoothnessf I™ (¢): L™ (i) := I}, (%)
computethesmoothnessef I™ (¢ — 1): L™ (4 — 1) := I, (i — 1)
computethesmoothnessariationin -N:
I (i) :=L"(i) — L™ (i — 1)
I"T1(6) = 1™ () + AtIP ()
end
end,

wherethe index ¢ denotesspatialposition, the superindg n de-
notesthe artificial evolution time (Z(¢,n) = I™(%)), the subinde

x denotegdiscretized)spatialdifferentiationin the horizontalaxis
direction, and At controlsthe velocity of the evolution. We are
changingn timethefunctionI (i, n) sothatateachpointi, " (4)

tendgtofollow I™(¢—1). Thepurposef thesmoothnessstimation
is to ensurecontinuitynotonly of I(¢, n) but alsoof its deriatives.
Our discretesmoothnesgstimatoris the secondspatialderivative

of I(i,m), L™ (¢) = I ,(¢), whichin discreteform canbe written
asL™(i) = I"(i — 1) — 21" (i) + I" (i + 1).

To explain why this works, considerFigure 2. The continuous
line denoteghepartof I(4, n) thatis notchangedy thealgorithm
sinceit is outsidef). Totheright of Q, thethreedashedinesdenote
threepossiblanitial conditionsfor I(z, 0) inside(2. Beingstraight
lines, L(R,0) = 0 in thethreecases At the point Q on the other
hand,thevalueof L(Q, 0) is differentin eachcase:

If I(R,0) = a, L(Q,0) > 0, I(R,0) = L(R,0) — L(Q,0) < 0, and
I(R,0) decreases;

If I(R,0) = b, L(Q,0) = 0, I;(R, 0) = L(R,0)— L(Q,0) = 0,andI(R, 0)
doesnotchange;

If I(R,0) = ¢, L(Q,0) < 0, I,(R,0) = L(R,0)— L(Q,0) > 0,andI(R, 0)
increases.

In all threecasesheevolutionis deforming! (i, n) inside(2 into
acontinuatiorof Iy () to theleft of Q.

Figure3 shaws threestageof the evolution of thesignalin Fig-
urel. Thedottedline correspondso the initial condition, I (4, 0).
The dashedine correspondso anintermediatestate. The contin-
uousline correspondso Ir(i), the steadystateof the evolution.
Notice how continuity up to thefirst derivative is obtainedfor the
point Q. Thatis not the casefor P, sincethe directionof propaga-
tionis N andnot—N. Wewill laterseethatthis is notaproblem
for the 2D case.We have testedl D exampleswith differentinitial
conditions,and found that the algorithm always convergesto the
samesolutionwithin a0.1%errormaigin. Theformal studyof this
experimentaresultis of theoreticainterest(seeSections).

3.3 The 2D inpainting algorithm

Let us re-write the 1D discreteequationdescribingthe rate of
changeof I(%, n):

"6y = 1 (3) + AtI7 (i), @)

Figure4: Propagatiomirectionasthe normalto thesigneddistance
to theboundaryof theregion to beinpainted.

where
'@ =L"G) - L"(i—1), VieQ, 2
L") =I"(i—1) —2I"() + I"(i + 1). (3)

In otherwords, we estimatethe smoothnesd™ () of our func-

tion andcomputeits changealongthe—ﬁ direction,adaptingthe
imagein the region to be inpaintedwith this variationof smooth-
nessquantity Let usnow seehow to extendtheseideasinto 2D.

Let Ip(3, §) : [0, M] x [0, N] — IR, with [0, M] x [0, N] C
IN x IN, beadiscrete2D gray level image. The inpainting pro-
cedurewill constructa family of imagesI(i,j,n) : [0, M] x
[0,N] x [0,00) — IR suchthat I(¢,5,0) = Io(s,5) and
limn—ooI(i,3,m) = Ir(i,7), wherelIg(i, 7) is the outputof the
algorithm(inpaintedimage).

Following the 1D procedurefirst we estimatethe smoothness
L™ (4, j) of our function. For this purposewe may usea simple
discreteimplementatiorof the Laplacian:L™ (i, j) := I7,(:,5) +
I,(4, ). Othersmoothnessstimatoramight be used thoughsat-
isfactoryresultswerealreadyobtainedwith this very simpleselec-
tion.

Then,we mustcomputethe changeof this valuealong ~N.In
orderto do this we mustfirst definewhat the direction N for the
2D informationpropagatiowill be. Onepossibilityis to define
asthenormalto the signeddistanceto 91, i.e., at eachpoint (¢, 5)
inQ thevectorﬁ(i,j) will benormalto the“shrinked version” of
09 to which (4, j) belongs seeFigure4. This choiceis motivated
by the beliefthata propagatiomormalto the boundarywould lead
to the continuity of the isophotesat the boundary Instead,what
happenss thatthelinesarriving at 9Q2 curve in orderto align with
ﬁ, seeFigure5. Thisis of coursenot whatwe expect. Note that
the orientationof 92 is notintrinsic to the imagegeometrysince
theregionto beinpainted! ! is arbitrary

If isophotedendto alignwith ﬁ, thebestchoicefor N is then
the isophotesdirections. This is a bootstrappingoroblem: hav-
ing the isophotesdirectionsinside Q2 is equialentto having the
inpaintedimageitself, sincewe can easily recover the gray level
imagefrom its isophotedirectionfield ( seethediscussiorsection
and[15]).



Figure5: Unsuccessfuthoiceof the information propagatiordi-
rection. Left: detail of the originalimage,region to be inpaintedis
in white. Right: restoration.

We usethenatime varying estimationof theisophoteslirection
field: for ary given point (z, j), the (discretized)gradientvector
VI"(i,j) givesthedirectionof largest(spatial)changewhile its
90 degreesrotatiorv-I™ (4, ) is thedirectionof smallesi(spatial)
changesothevectorvI" (i, j) givestheisophoteslirection.Our
field N is thengivenby thetime-varying N (i, j, n) = VXI"(i, §).
We areusinga time-varying estimationthatis coarseat the begin-
ning but progressiely achieves the desiredcontinuity at 92, in-
steadof a fixed field N (i, j) thatwould imply to know the direc-
tionsof theisophotedrom the start.

Note that the field is not normalizedasit wasin the 1D case,
where N wasjustthedirectionof increasing. Thereasorfor this
choicereliesonthenumericaktability of thealgorithm,andwill be
discussedn thefollowing subsection.

Sincewe areperforminganinpaintingalongthe isophotesit is
irrelevantif V1™ (4, §) is obtainedasa clockwiseor counterclock-
wise rotationof VI™ (3, 7). In both casesthe changeof I"(z, j)
alongthosedirectionsshouldbe minimum.

Recappingwe estimatea variationof the smoothnesgjiven by
a discretizationof the 2D Laplacianin our case,and projectthis
variationinto the isophotesdirection. This projectionis usedto
updatethevalueof theimageinsidetheregionto beinpainted.

To ensurea correctevolution of the directionfield, a diffusion
processs interleaved with the imageinpaintingprocesslescribed
above. Thatis, every few steps(seebelow), we apply a few itera-
tionsof imagediffusion. This diffusioncorrespondso the periodi-
cal curvingof linesto avoid themfrom crossingeachother aswas
mentionedin section3.1. We useanisotropicdiffusion, [16, 17],
in orderto achieve this goalwithoutlosing sharpness therecon-
struction.In particular we applyastraightforvarddiscretizatiorof
the following continuous-time/continuous-spaaeisotropicdiffu-
sionequation:

7
O @ 31) = 9. R 9.1) VI, 0] Vi) € 9 (@)
whereQ€ is adilationof © with aball of radiuse, « is theEuclidean
cunatureof theisophote®f u andg. (z, v) is asmoothfunctionin
Q° suchthatge(z,y) = 0in Q° \ Q, andg.(z,y) = 1 atthesetof
pointsof 2 whosedistanceto 992 is largerthate (thisis away to
imposeDirichlet boundaryconditionsfor theequation(4)).

3.4 Discrete scheme and implementation details

The only input to our algorithmare the imageto be restoredand
themaskthatdelimitsthe portionto beinpainted.As apreprocess-
ing step,the wholeoriginal imageundegoesanisotropicdiffusion
smoothing. The purposeis to minimize the influenceof noiseon
theestimatiorof thedirectionof theisophotesrriving ato$2. After
this, theimageentergheinpaintingloop, whereonly thevaluesin-
sideQ2 aremodified. Thesevalueschangeaccordingto thediscrete
implementatiorof the inpainting procedurewhich we proceedto

describe Every few iterations,a stepof anisotropidiffusionis ap-
plied (a straightforvard, centraldifferencesmplementatiorof (4)
is used;for detailssee[16, 17]). This processs repeateduntil a
steadystateis achieved.

Let I"(7, j) standfor eachone of the image pixels inside the
region Q attheinpainting“time” n. Then,the discreteinpainting
equatiorborrons from thenumericabnalysiditeratureandis given
by

"6, 5) = I (3, ) + AP (3, ), (5)

where

PG, j) = (Wu,j)- |ﬁgj Zh) VG, (6)

5L (i, j) = (L"(i+1,j)—L"<z'—1,j),L“(i,j+1)—L"(i,j—(1))),
7
Ln(iaj) = :m(iaj)‘l'I;y(i:j): (8)
NGjn) _ (1G9, 12(9)) ©)
NGl T a1 ae
| (7'7.77”)| \/(Im(z:])) +(I?I(Z:.7)) +e
np: o RTRe: N (i, j,n)
B"(4,3) = 0L" (4, §) NG, (10)
and
\/rgfﬁbg)z + (2 a0)? + L) + ()
ooy wheng™ > 0
VICIN= N T, T T+ W ¥ (T
wheng™ < 0

(11)

We first computethe 2D smoothnessstimationZ in (8) andthe
isophotedirectionﬁ/|ﬁ| in (9). Thenin (10) we computeg™,
the projectionof 37 ontothe (normalized)vectorﬁ, thatis, we
computethe changeof L alongthe direction of N. Finally, we
multiply 8™ by a slope-limitedversionof the normof the gradient
of theimage,| V1|, in (11). A centraldifferencesealizationwould
turn the schemeunstable,andthat is the reasonfor using slope-
limiters. The subindeesb and f denotebackward and forward
differencesespeciiely, while thesubindeesm and M denotethe
minimum or maximum, respectrely, betweenthe deriative and
zero(we have omittedthe spacecoordinateq, j) for simplicity);
see[18] for details. Finally, let us note that the choiceof V1
insteadof a normalizedversionof it (aswasthecasein 1D) allows
for asimplerandmorestablenumericalschemeseg[19, 20].

Whenapplyingequationg5)-(11)to the pixelsin theborderdo
of the region Q to be inpainted,known pixels from outsidethis
region areused. Thatis, conceptuallywe computeequationg5)-
(11)in theregionQ© (ane dilationof 2), althoughupdatehevalues
onlyinsidef (thatis, (5) is appliedonly insidef2). Theinformation
in thenarrav bandQ¢ — Q (isophotedirectionsandgray values)is
propagatednside ). Propagatiorof this information, both gray-
valuesandisophotedirections,is fundamentafor the succesof
thealgorithm.

In the restorationloop we perform A stepsof inpainting with
(5), then B stepsof diffusion with (4), again A stepsof (5), and
soon. Thetotal numberof stepsis 7. This numbermay be pre-
establishedor the algorithmmay stopwhenchangesn theimage



Figure6: Relationbetweerthe (R, G, B) color modelandtheone
usedin this article(p, sing, siny).

arebelowv agiventhreshold. Thevalueswe useare: A = 15, B =
2, At = 0.1. Thevalueof T dependn the sizeof Q. If Q is
of considerablsize,a multiresolutiorapproachs usedto speed-up
theprocess.

Color imagesare considereds a setof threeimages,andthe
abore describedtechniqueis appliedindependentlyto eachone.
To avoid the appearancef spuriouscolors,we usea color model
which is very similar to the LUV model,with oneluminanceand
two chromacomponentsSeeFigure6.

4 Results

The CPUtime requiredfor inpaintingdepend®n the sizeof Q. In
all the color examplesherepresentedthe inpainting processwvas
completedn lessthan5 minutes(for the threecolor planes)using
non-optimized_++ coderunningonaPentiumlIPC(128MbRAM,
300MHz)underLinux. All theexamplesuseimagesavailablefrom
public databasesver theInternet.

Figure 7 shavs, on the left, a syntheticimagewith the region
to inpaintin white. Here Q is large (30 pixels in diameter)and
containsahole. Theinpaintedreconstructioris shavn ontheright.
Notice that contoursare recovered, joining points from the inner
and outer boundaries. Also, thesereconstructeadontoursfollow
smoothlythedirectionof theisophotesarriving at 9<2.

Figure 8 shaws a deterioratedB&W imageandits reconstruc-
tion. As in all the examplesin this article, the useronly supplied
the“mask” image,shavn in Figure9. Thisimagewasdravn man-
ually, usinga paintbrush-lile program. The variableswere setto
the valuesspecifiedin the previous section,andthe numberof it-
erationsI” wassetto 3000. Whenmultiresolutionis not used,the
CPUtime requiredby theinpaintingprocedurevasapproximately
7 minutes. With a 2-level multiresolutionschemepnly 2 minutes
wereneeded.Obsere thatdetailsin the noseandright eye of the
middlegirl couldnotbe completelyrestored.Thisis in partdueto
thefactthatthe maskcoversmostof therelevantinformation,and
thereis not muchto be donewithout the useof high level prior in-
formation(e.g.,thefactthatit is aneye). Theseminorerrorscanbe
correctedby the manualproceduresnentionedn theintroduction,
andstill the overall inpaintingtime would be reducedby ordersof
magnitude.In Figure10, top, we shaw a differentinitial condition
insideQ). Theinpaintedimage(bottom)is practicallyidenticalto
the onein Figure 9, therebyshaving the robustnessf the algo-
rithm.

Figurellshawvs avandalizedmageandits restorationfollowed
by anexamplewhereoverimposedext is removedfrom theimage.
Thesearetypical exampleswheretexture synthesisalgorithmsas
thosedescribedn theintroductioncannot be used sincethe num-
berof differentregionsto befilled is very large.

Figure7: Syntheticexample: 2 is shavn in white. Topologyis
not an issue, and the recorered contourssmoothly continuethe
isophotes.

Figure12 shaws the progressie natureof the algorithm: several
intermediatestepsof theinpaintingprocedureareshavn for adetail
of figure11.

Finally, Figure 13 shavs an entertainmentapplication The
bungeecordandthe knottying the mans legs have beenremoved.
Given the size of Q a 2-level multiresolutionschemewas used.
Hereit becomesapparenthatit is the userwho hasto supplythe
algorithmwith themaskingimage sincethe choiceof theregionto
inpaintis completelysubjectve.

5 Conclusions and future work

In this paperwe have introduceda novel algorithmfor imagein-
paintingthatattemptgo replicatethebasictechniquesisedoy pro-
fessionatestoratorsThebasicideais to smoothlypropagaténfor-
mationfrom the surroundingareasn theisophotedirection. The
userneedsonly to provide the region to be inpainted,the restis
automaticallyperformedby the algorithmin a few minutes. The
inpaintedimagesare sharpandwithout color artifacts. The exam-
ples shawvn suggesta wide rangeof applicationslike restoration
of old photographsand damagedilm, removal of superimposed
text, andremoval of objects. Theresultscaneitherbe adoptedas
afinal restoratioror be usedto provide aninitial pointfor manual
restorationtherebyreducingthe total restoratiortime by ordersof
magnitude.

Oneof themainproblemswith ourtechnigqués thereproduction
of largetexturedregions,ascanbeseerin Figurel4. Thealgorithm
hereproposeds currentlybeingtestedin conjunctionwith texture
synthesisdeasto addresshisissue.

The inpainting algorithm here presentechas beenclearly mo-
tivatedby and hasborraved from the intensie work on the use
of Partial Differential Equations(PDE’s) in imageprocessingand
computewision. When“blindly” letting thegrid goto zero,thein-
paintingtechniquein equationg5)-(11), naively resembles third
order equation(not resulting from a variationalgradientdescent
flow, seebelaw). Althoughaddingregularizationtermsmightmale
this high orderequationstableandallow aformal analysis, to the
bestof our knowledgethe completeunderstandingf suchtype of
equationsds notjust beyondthe scopeof this paperbut beyondthe
currentstateof mathematicaknowledge(althoughresultsfor other
highorderequationsywhichmightberelevantfor imageprocessing
aswell, areavailable,e.g.,[22]). In addition,thediscretealgorithm
hereintroducedusesas“boundaryconditions”bothgrayvaluesand
isophotedirectionspresentat the narrav bandsurroundinghe re-
gionto beinpainted.This is done,asexplainedabore, performing
thecomputationsn thedilatedregion Q<. All thisimportantinfor-
mationneeddo beincorporatedo suchanequatioras“extra” (and

5Note that numericalimplementation®f PDE’s intrinsically regularize
theequations.



fundamentalboundaryconditions.Neverthelessthis suggestshe
investigatiorof theuseof lower, secondrder PDE’'sto addresshe
inpaintingproblem.Moreover, having theseequationgo be gradi-
entdescenflows of variationalformulationspermitsthe inclusion
of the narrav bandinformationsimply by changingthe limits of
integration. Onepossibleapproacho follow is to first reconstruct
theisophotedirectionsf (a planarvectorfield), andfrom themthe
correspondingyray valuesI. Oncethe isophotedirectionsarere-
constructedthe gradientdirectionis given,andwe canreconstruct
the gray levels by finding an image consistentwith thesegradi-
entdirections.Althoughthis canbe doneusinga onedimensional
transportequation the existenttheorylimits the possiblegradient
fields, therebydisqualifyingedges.We cantake thena variational
approachandfind theimagel minimizing fQ€(|VI| —0-VI)dQ,
where# is the reconstructedjradientdirectioninside Q¢ (an ad-
ditional term that penalizesthe deviation from the real imagein
the narrav bandQ¢ — Q canbe addedaswell). The minimal I
is obtainedvia gradientdescenflows (secondorderPDE). There-
fore, whatis left is to reconstructhevectorfield 8. This canagain
be achieved using a variationalformulationon 8 with the proper
boundaryconditionsto guaranteghe continuity of the vectorfield
acrossof? (seealso[13, 21]). Both variationalformulationscan
actuallybecoupledto simultaneouslyecorertheisophotegvector
field) andgray valuesvia the correspondingradientdescenflow,
obtainingasetof coupledseconcrderPDE’s® Preliminaryresults
in this directionarepromisingandwill befurtherinvestigatecand
reportecelsavhere[23]. Oneof the adwantage®f this approachs
thatformal resultsregardinguniquenessndexistenceof the solu-
tions canbe shawn, therebyreducingthe necessityto rely mainly
on experimentalalidationsasdoneuntil now with thebasicimage
inpaintingalgorithmsreportedn theliterature.
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Figure10: Fromadifferentinitial conditioninsideQ we arrive ata very similarresult..



Figurell: Restoratiorof a colorimageandremoval of superimposetext.



Figure12: Progressie natureof the algorithm: severalintermediatestepsof thereconstructiorof figure 11 (detail).

Figure13: Thebungeecordandtheknottying the mans feethave beenremoved.



Figurel14: Limitationsof thealgorithm:textureis notreproduced.



