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Chapter 1: THEORY, MODELING AND DESIGN

1.1  Thermal Conductivity in CNT Bundles

1.1.1. Introduction

It is expected that a single-wall carbon nanotube (SWCN) is a very promising object for
creation of metamaterials with a high thermal conductivity (TC) [1,2]. The first reason for
this expectation is that carbon-based materials, like diamond, have the largest known TC
and, the second reason is a molecular perfection of the SWCNs [1]. However, to the best of
my knowledge, the highest TC ever observed in SWCN bundles at room temperature is
about 220 W/mK and it is ten times smaller than the TC of the natural diamond [3]. This
highest result has been reported by Hone et al. [4] for a bulk sample of magnetically aligned
nanotubes. The aligned SWCNs form a bundle in which all tubes have a preferable
orientation in some direction. Hone et al. showed that the TC of the aligned SWCNs is
strongly anisotropic with the largest value in the direction of the alignment.

The enhancement of the TC due to the alignment has been observed also by Zhou
et al. [S] and by Choi et al. [6], but the absolute values of the reported TC have been
significantly smaller than in [4].

There are many theoretical works on TC of the SWCNs. Some computational ones [7-
10] are made by molecular dynamics simulations. The results of these simulations have
different values and different T-dependences. They predict mostly very high values of the
room temperature TC (for example 6000 in [7].)

Evidently, the main problem of all these works is the small size of the array that can
be simulated. There are also some different analytical approaches to the problem [11,12] and
wonderful reviews [13-15].

The purpose of this research is to estimate the maximum TC value of aligned nanotubes
taking into account that they do necessarily consist of segments with a finite length. It is well
known, that tubes in ropes are not infinitely long, but have brakes, because each method of
synthesis is able to create separated tubes of only a certain length. It is believed that this
length is of the order of a few microns (see [16] and references therein). Then, due to Van der
Waals forces, the tubes stick together and create bundles wherein the end of a tube has no
chance to make a strong chemical bond to the end of a neighboring tube.

There are many experiments that show that tubes inside bundles have free ends. The
idea here is to argue that this effect may be responsible for the relatively low TC as
compared to crystalline carbon materials.

1.1.2. Scattering problems

Consider a bundle of nanotubes perfectly aligned; each segment has a finite length
with an average value L. The nanotubes are organized in an ideal triangular lattice with six
nearest neighbors [17]. The cross section in a plane perpendicular to the nanotubes is shown
in Fig.1.1(a). The cuts in each line of the nanotubes have random positions. Thus, on the




length of each segment there are in average six cuts of its nearest neighbors. A homogeneous
interaction between infinite tubes does not cause the loss of the phonon momentum.
However, a phonon flux has to overcome the openings between the segments at the
termination points of each nanotube segment. Assume that these openings are so large that a
jump of flux occurs with an assistance of all six neighboring rows of the tubes as shown in
Fig.1.1(b). A slightly different mechanism of momentum scattering appears in a given
nanotube ("0") if one of the neighboring nanotubes has a termination point as shown in
Fig.1.1(c).
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Fig. 1.1: (a) The cross-section of the bundle that shown a nanotube **0'' and its nearest neighbors.

(b) The first scattering problem - cross-section by the plane of nanotubes 2-0-5. The wave incident
from 0. reflects backward and transmits through the opening into 0, with simultaneous
excitation of the waves in all six neighboring tubes.

(¢) The second scattering problem. The wave incident from 0. is scattered by the cut in tube 2.

It reflects backward, transmits into 0. and excites waves in tube 2..

The propagation of heat flux Q between the scattering points was assumed to be
ballistic because the goal is to get a maximum estimate of the TC. Quick phonon exchange at
the scattering points leads to a thermalisation of symmetrical parts of the distribution
functions of phonons with temperatures that are determined by values of effective thermal
resistances between scattering points. It should be noted that calculations could not be
applied directly to multiwall carbon nanotubes.

Thus, there are two different scattering problems. Since the bottle neck of problem 1 is
a jump through the opening, let us assume strong interaction between tubes as compared to
the phonon energy. In this way, we can achieve the upper estimate of TC. In all cases, the
scattering is determined by three coefficients: reflection D, transmission C and penetration to
a neighboring nanotube A. In this case, the results for transmission and reflection are
independent of the spectrum of the phonon mode and determined by the geometry of the
problem only.

For the first scattenng problem |D| 36/49, |C|2 = |A|2 = 1/49 and for the second
problem |D,|*= |C,[*= |A*=1/4.



1.1.3. Thermal Conductivity

In the approximation of elastic scattering, the heat flux Q along each row of the aligned
nanotube is conserved because the waves generated in neighboring nanotubes due to
scattering have zero total momentum. This leads to a conservation of Q along the row
because in the theory of phonon thermal conductivity any relaxation of Q is the result of
momentum loss. It is important, however, that at the points of scattering of both types
considered above, the numbers of phonons in each mode changes. Therefore the symmetric
parts of the distribution functions in these points can be considered as in equilibrium with
different temperatures for each point. Assume that the propagation is ballistic between the
scattering points of both types.

In average every section of a nanotube can be divided into seven ballistic regions such
that each boundary of the region corresponds to a cut in one of the six neighboring rows of
the nanotubes. The part of one row is shown in Fig. 1.2. The energy flux is the same along the
row. Since the scattering is different, the temperature intervals between neighboring
boundaries are also different. To calculate the TC, the total temperature difference through
all the nanotube at a given flux Q was found.

Fig. 1.2: Part of the row of nanotubes with two cuts. Dotted lines in the nanotubes correspond to
cuts of the neighboring nanotubes. The regions between them are considered to be ballistic.

Consider one region i of a nanotube and assume that each end of the region perfectly
matches a thermal bath. The temperature difference of the left and right boundaries of the
region is t; Thermal flux produced in this region is Q=G(T)t; , where the function G(T) is
called thermal conductance. It can be written in the form [18]:

(1.1)
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where z = hw/kgT and the sum is over all monotonously increasing segments of spectrum
ws(K), z; and z; are the lower and upper boundaries of such segments. Here kg and h are the
Boltzmann and the Plank constants respectively. To calculate the above integrals one should
know the vibration spectra of nanotubes. They have been calculated previously within
different frameworks such as an empirical force constant model [17,19]. The function G(T)
calculated by Yu. Gartstein [20] is used in this experiment. Finally, an equation for TC was
obtained,




k=NLG(T)/B (1.2)
where N is the number of tubes in the bundle per square meter (assuming triangular lattice,
it is easy to get N=4 x 10" m? for (10,10) nanotubes), L is the length of a nanotube,

-8 _+_ 1 6 - |cCP=10.097.
- D,f I [D]

Since the interaction is assumed to be strong, coefficients in B are independent of the
frequency. As a result the TC can be expressed in terms of G(T) . Thus, the final result is

k = 0.0976G(T)LN (1.3)

Fig. 1.3 shows the results at L=1, 0.87, 0.7um together with the results by Hone et al.
[4]. One can see that the theory reflects well enough both the magnitude and the temperature
behavior. In fact, the only parameter here is the average length of a nanotube. The deviation
at high temperatures is probably related to the Umklapp processes.
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Fig. 1.3: Thermal conductivity as calculated theoretically for the (10,10) tube with L=0.7um (dashed
line), 0.87um (solid) and 1.0um (dotted). The experimental data of [4] are shown by diamonds.

T F sy v S

1.1.4. Conclusions

In this paper, the maximum estimate of the TC of perfectly aligned nanotubes, taking
into account the scattering of phonons by the terminal points of the nanotubes, was
presented. This estimate gives a quantitatively correct description of the thermal
conductivity of aligned nanotubes as obtained experimentally by Hone et al. [4] assuming
that the length of segments is of the order of 1pm. It follows from these results that the way
to make the thermal conductivity of the aligned nanotubes at room temperature larger than
300 W/m K is to increase their lengths. Of course, the TC will not increase indefinitely with
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length (L), as it follows from (1.3), because, sooner or later, the mean free path, due to other
scattering processes, will be smaller than L/7. However, some additional gain may be
achieved with increasing L.

The paper is published in cond-mat/0405499 and sent to Phys. Rev. B
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1.2 Theory of Thermal Conductivity by Polaritons
See APPENDIX 5.1 and 5.4

1.3 Modeling of Phonons and Heat Transfer in Carbon Nanostructures

1.3.1. Phonon dynamics and thermal properties of zigzag and armchair carbon nanotubes

Report-2b:  "Strategies to Increase Thermal Conductivity. Enhancement by Optical
Phonon Sub-Bands Engineering in 3-D Nanostructures Based on C and
BN Nanotubes"

1.3.1a. Phonon dynamics and thermal properties of zigzag carbon nanotubes
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III. Generalized equation of thermal conductivity in a single nanotube
IV.  Thermodynamics and statistics for a carbon nanotube

V. Summary
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VIL. Attachment - Short investigation plan
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Introduction

This report presents the second stage of investigation of phonon fluxes in carbon and
BN nanostructures in the framework of the tasks for "Strategies to Increase Thermal
Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D Nanostructures
Based on C and BN Nanotubes".

Here, the dynamics of the heat transfer problem for closed carbon nets (planned point
1¢), zigzag tubes (point 2¢) and macroscopic manifestations (point 3c) are presented. Phonon
eigenstates, density of states and vibration amplitude distribution for each phonon along the
molecular fragment are considered for two main tubulene geometries: zigzag and armchair.

The idea of the PQDM approach proposed in the previous report is to use a discrete
microscopic model for phonon dynamics of relatively small molecular fragments
approximately of phonon mean free path sizes. The dynamics of such a cluster may be
described classically in Born approach [1, 2] and all the important data may be obtained:
eigenfrequences, density of states and phonon amplitude distribution inside the molecular
fragment during its lifetime. Neighboring fragments of a molecular net are in an
uninterrupted process of exchange by phonons. Due to the weak fragment-surrounding
medium interaction, the process may be described by Fermi’s “golden rule” which
determines the value of the transfer rate. This quantum characteristic is a transport process
consideration that enables the introduction of a microscopic thermal conductivity coefficient
that depends on the temperature difference between opposite sides of the fragment in contact
with the baths.

An averaged classical picture of phonon energy (heat) transport and temperature
distribution in the big 2D carbon nets, both open (graphene) and closed (tubulenes), and
other kinetic and statistical phenomena may be obtained in rough space scale. The transition
to rough scale leads to the generalized phonon kinetics equation describing heat propagation
in 2D molecular nets. Results obtained in the previous report for flat nets have important
meaning for comparison with that for closed nets. Considering here phonon dynamics and
statistics in tubes with zero-chirality and of zigzag geometry, comparison with data for flat
nets will be made.

The general picture of connected subjects for the problem of phonon propagation in
molecular nets is shown in Fig.1.




Vibration energy propagation
in open and closed 2D carbon

Theoretical apErasehes to the problem

Phonon Quantum
al Discrete Model
P

(-':rroon.-llI(ubo Klnetic theory Ab-initio potenti
ormalism % 4 aproaches
2~ Jdte™ <g@)a> 31 TN T INL

Vlbrau nal en
on in ",?35.
an closod molecular el G,
¥ B 6 6 G
Ga 8 5 aplT)
Closed formr’s and statistics E
specificity -

C- and BN-tubes

°ri mental dat®

Fig.1. General picture of connected subjects for the problem of phonon propagation in molecular nets.

In Fig.1, fundamental data such as elastic modulus E, G and elastic coefficients &, k’
describing forces when shifts are directed along the main axes of the bond potential ellipsoid
are presented. U(r) is the site potential energy of an atom which has to be determined in
other approaches; the same for thermal expansion coefficient 3, pressure coefficient y(T),
characteristic frequency (or phonon band width) temperature dependence w,(T).

IL Phonon dynamics in a zigzag carbon nanotube

Linear approximation in phonon dynamics is based on the supposition that small
atomic vibrations have harmonic character at least in the case of not too high temperatures.
It means that a potential equienergetical surface in the vicinity of atomic equilibrium
positions has an ellipsoidal form. Classical motion of atoms near their equilibrium points is
described by elastic constants k that characterizes atom-atom bonds in Born approach [1].
For atomic shifts perpendicular to bond we will use nonzero elastic constant &’ << k coming
out the framework of linear approximation.
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Fig.2. Fragment of hexagonal lattice. Shaded
is the conventional elementary cell
containing four atoms. Two types of bonds
are presented by different colors.

The symmetry of carbon structures dictates three main vibration types (radial p-
mode, tangential ¢-mode and axial z-mode) shown in Fig.3. It should be marked that
principal difference between vibration branches originates from bonds direction relative the
direction of symmetry axes connected with given freedom’s degree. This difference manifests
itself in phonon band structure for tangential and axial branches in pure zero-chirality case.
In presence of helicity the difference vanishes.

Fig.3. The problem’s geometry. Z-axes is
perpendicular to the figure plane. It’s shown
¢ and p shifts of an atom.
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In Fig.4, the case when ¢-mode and axial z-mode have approximately equal
orientation shifts relative to both red and blue bonds inside a chosen elementary cell is

Fig.4. Fragment of armchair tubulene (10,5) with non-zero
chirality created from a graphene sheet {14,10} by rolling up
around the armchair direction. Picked out is the conventional
elementary cell containing four atoms. Two types of bonds
are marked by different colors.

presented.

Systems of dynamical equations for all three branches of vibrations are calculated
taking into account that the motion of each atom is three-dimensional. The zero-
approximation approach supposes that radial p-mode, tangential p-mode and axial z-mode
should be considered independently.

Consider a zigzag tube (n,0) produced from the fragment shown in Fig.2 by rolling
around vertical direction without any shift. In this case, each of the tube fragments is
connected with the same fragment. Therefore, contrary to the case of flat fragments
connecting external media (Report-1b) all atomic pesitions and their bonds are described
similarly by the same dynamical equations. The difference exists with different vibration
types or branches only.

For shifts directed normal to the tube surface, the equation is the following

{mp, =—k'Gp;— Pu— P~ Pis)>
1)

where iy, i) i; are indexes for atom i neighbors. Atomic coordinates are not important here.
The united atomic number i is defined using its position in the row and column of initial flat
fragment creating the tube. For tangential atomic shifts having in view that atom space
coordinates on the tube surface x=¢R , where R is the tube radius and ¢ is the azimuth angle.
The zigzag case with the absence of chirality is described by the system:

{ms, = —0.75k(2x; — x; — x,,) — k'(x; — x;3)

()
where coefficient 0.25 characterizes two weak bonds for this vibration. For axial atomic
shifts we have
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Fig.5. Sketch of the dynamical matrix for zigzag tubulene created from a
graphene sheet {5,5} containing 60 atoms by its rolling up. Rose-colored
spots are diagonal elements, green and blue show two types of bonds, rest

elements equal to zero, left and upper red bands contain atomic numbers.

{mi = —k(z,~ 2,,) - 0.25k(22, - 2, ~'2,5)

3)
Matrix structure of all equations (1-3) corresponding zigzag (n,0) case is shown in Fig.5.

Fig. 5 shows a zigzag tubulene matrix and vibration amplitudes. Atomic coordinates
become important when mode amplitude distribution is presented in the space.

The square of vibration mode s=1 of any type is shown in Fig.6. There are
considerable differences in amplitude distribution over the tube surface relative open carbon
net. The differences are caused by a change in the topology of the system. The difference
between mode frequencies and density of states at the same number of state exists but it is
not essential.

The calculations given are for eigenvectors |C; | which is a well known standing wave
picture with corresponding number of knot's lines depending on the number of state s.
Increasing the number of states leads to lateral (parallel to z-axes) divided by transversal
(circular) knot’s lines the tube’s surface.




Fig.6b. p-branch amplitude distribution
along zigzag tubulene created from a
graphene sheet {5,5} by rolling up
around marked direction. Sth state.
Transversal knot’s line is degenerated.

Fig.6a. Calculated p-branch amplitude distribution
along zigzag tubulene created from a graphene sheet
{8,10} by rolling up around marked direction.
Ground state.
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Fig.6¢. p-branch square amplitude distribution along zigzag tubulene created from a graphene sheet
{14,5} by rolling up around marked direction. Four transversal knot’s lines correspond to Sth-state.

The Low frequency ground state is shown in Fig.6a. The picture is typical for mean
amplitudes distribution: maximal amplitudes situates near the tube’s middle. The Fig.6b
illustrates amplitude distribution for 5™ (or r-4'") state where twice degenerated line of knots
crossing two non-degenerated lateral lines of knots.

Increasing the tube’s lenEth leads to a considerable change in the picture of

vibrations. The same 5 (or r-4™ ) state presented in Fig.6¢ has another combination of

knot’s lines. The transversal line vanishes and two additional lateral lines of knots arise.
The mean vibration amplitudes A4; averaged on the state populations ns decrease from
the lateral ends to the middle axes of the nanobridge.

Fig.6d. Calculated mean square amplitude distribution along
zigzag tubulene created from a graphene sheet {15,5} by
rolling up around marked direction. T=0.03 eV. Circular
arrows show rolling up of the structure.
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More free lateral atoms have bigger vibration amplitudes.

2
A PR Z IC g | nso >
N 4)

where n,, is the population of s, state, j numbers atoms situated on the tube surface and Cg;
is the s-state probability amplitude at j-position of the net. Mean square amplitudes
calculated for temperature T=0.03eV by expression (4) are shown in Fig.6d. The averaging
was made here on all phonon branches o. One can see that in contrary with flat carbon
terminated nets with free edge atoms the closed structure is harder near the edges and
greatest amplitudes of vibrations take place in the middle of the tube. The greater are
temperatures the lesser is this effect of hard tube ends. Tube ends are frozen at low
temperatures.

The density of states (DOS) for a zigzag tubulene spectrum is shown in Fig 7a.

Te . 3§
.04
.03
.02
.01

0

= A O < M - R o

Fig 7a. Radial mode spectrum of zigzag tubulene
created from a graphene sheet {5,15} by rolling up
around z-axes. The unity of frequency is @,

The density of states may be approximately defined by the expression :

1

g,y
a)so- —a)s—l.o
)

that transfers to an exact one if the number of degrees of freedom becomes big enough.
More correctly, the density of states function may be calculated providing preliminary state
grouping and density determination inside the each group. DOS calculation were made with
preliminary state grouping using dividing the whole frequency band interval into
h=Int[35r/50] sub-intervals (or near this value) where the number of eigenmodes was
counted. The integer numbers are present on vertical axes in figures 7b, 8b and 9b.
Frequency spectrum and DOS function in case of zero chirality are presented in Fig 7-9. The
figures 7a, 7b were obtained by numerical calculation in system (1) described by the matrix
of eigenvalues problem shown in Fig.5a
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Fig.7b Radial mode DOS function for Fig.7b
system. h=Int[351/50].

The comparison of these results obtained for the tube radial mode spectrum and DOS
function for a graphene fragment of the same number of atoms and zigzag orientation shows
the absence of any significant differences. Thus, the process of sheet rolling up into a tube
has no influence on spectrum and density of states in this type of vibration case. But
vibration amplitudes distribution (Fig.6) differs from that for graphene (see Report-1b,
Fig.3, Fig.9a, Fig.9b) where the mean vibration amplitudes of the sheet free edges were
bigger than that in the middle (Fig.9a). One can see that the tube has hard edges and soft

middle part (Fig. 6a, 6d)
phi mode
0.17S
0.15
D.125
0.1

0.078
D.05

0

Fig 8a. Azimutb mode spectrum of zigzag tubulene
created from a graphene sheet {5,15} by rolling up
around z-axes. The unity of frequency is o .

Calculated by system (2), the
frequency spectrum and DOS function for
azimuth mode are shown in Fig. 8a, 8b. Fig 8¢
presents the result of numerical calculation
for azimuth mode existing in graphene sheet
{15,5}, consisting 190 atoms.

prhi mode

. )

J\'WV\‘J | | |

o 0.05 0.1 0.15
Fig.8b Azimuthal mode DOS function (arbitrary
units) for tubulene fragment created from a
graphene sheet {5,15} by rolling around z-axes.
h=Int[351/50].

density
W
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The comparison of results in Fig.8b obtained for tube with azimuthal mode spectrum
and DOS function for graphene fragment of the same number of atoms Fig.8¢ shows some
differences. Thre tube’s number of bands is twice less than that of a plane sheet. The reason
lies in the double degeneration of athimuthal motion around the tube axes. For this type of
vibrations, the process of rolling a sheet into a tube has an influence on the spectrum and
density of states. The tube creating process is accompanied by subbands uniting due to the

fact that rotational symmetry arises.
Vibration amplitudes distribution or space
density distribution are similar for all types of
phonons as shown in Fig 6.

density

M L
0 0.05 0.1 0.15

Fig.8¢ Azimuthal mode DOS function
(arbitrary units) for graphene sheet {5,15} 0.0%
h=Int[351/50].

0.025

0

Fig 9a. Axial mode spectrum of zigzag tubulene
created from a graphene sheet {5,15} by rolling up
around z-axes. The unity of frequency is ¢ .

Calculated from the system of equations (3), the frequency spectrum for z-branch modes is
shown in Fig. 9a. The arising of a narrow subband near 0.1250, that plays the role of a
characteristic “mark” for the changed topology of the system is of great interest. The density
of states function for h=Int[35r/50] is shown in figure 9b. Superposition of two DOS
functions presented in Fig. 9c gives an opportunity to immediately compare the spectra of
open and closed graphene structures. In the case of z-type vibrations for zigzag tubulene, one
can say that the only consequence is the arising of a narrow subband containing 2*n levels in
the middle of the gap. This is because the new topology permits circular standing waves for
z-type vibrations that were forbidden before in the plane structure.
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Fig 9b. Axial mode DOS function (arbitrary units) for
tubulene fragment created from a graphene sheet {5,15}
by rolling around z-axes. Horizontal axes, frequency in ®g

There exist different opinions as to the spectrum transformation when a graphite
sheet is rolled up into a tube [3, 4]. These results show that only some of the graphene
spectrum characteristics change significantly (case ¢-mode and z-mode). As to the low-
frequency p-branch, one can talk about spectra similarity.

III.  Generalized equation of thermal conductivity in a single nanotube

il

P

Fig.10a. Heat transistor (4-polar contact)
on a flat carbon structure connecting four
baths at different temperatures 7;, 7, , T4
and 7r.
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The PQDM analysis, proposed in Report-1b, considered heat processes from “first
principles” using microscopic characteristic on a quantum level including phonon jump
probability, phonon-phonon interaction, calculated spectrum and amplitudes distribution
along the structure and macroscopic kinetic approach operating by length of phonon
decoherence /,; or phonon mean free path. The time of the phonon state establishing in area
Ipw X lpy is much less than the phonon lifetime. The latter is determined by phonon-phonon
scattering and may lay in interval (10°-107)s [???]. This supposition allows one to consider
propagation of phonons as a sequence of jumps from one fragment to another with relatively

long life on each one. Figures 10a, 10b
illustrate 2D phonon propagation by jumps
between mean free path-sized areas.
Neighboring areas play a role of leads
having some fixed temperatures. Taking
into account that phonon scattering
processes are weak ones we have obtained
generalized equation of phonon
dynamics.(Report-1b, paperzd-a.doc).

Temperature distribution along the tube

PP T
Fig.10b. Phonon jumps over a carbon armchair

structure (arrows). One-dimensional phonon
dynamics in tubulenes.

Tr

Fig.11. One dimensional phonon dynamics. Exact temperature
distribution along the tube given by (7). 7; .7.are end
temperatures, L is the tube length. End points come together all
modal (partial) temperatures for each sc.

g &

The phonon mean free path /,, decreases with increasing of temperature. Evaluations made
in different sources give interval from hundred Angstroms to several micrometers at room
temperatures. In any case azimuthal phonon motion may be considered as ballistic one and
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jumps or diffusion in tubes may occur only in axial direction. In relation to phonon
propagation nanotubes embody an ideal one-dimensional system. In stationary case it is ease
to write the exact solution of the 1D variant of equation (6).

o= *—i‘gﬁlf* -

a7 YRRy 0

Here L is tube’s length, z is axial coordinate along the tube, n; n, are population numbers
ns, taken at left and right temperatures of both tube ends 7; ,7,. Indeed on the macroscopic
level local populations n; n, obeys equilibrium Planck law. The approximate behavior of
temperature distribution is shown in Fig.11. The bundle of partial modal temperatures
comes together in end points. With increasing temperature, all modal dependences become
equal. The difference may be essential at low temperatures.

Thermal conductivity and phonon mean free path

Thermal conductivity was calculated here in PQDM approach for tubes of zigzag

geometry by expression
2l N@)N(@,,)H)
" |G G

: A'(lph) a —sz Szo-lGIs |2 IGrs |2 mfag(a)s

@)

where /,; is phonon mean free path, square modulus reflect connections of end atoms of the
tube fragment with the rest part of the tube.

Gls a IZGII C;IS

’ )

Left and right end atoms numbered i; and i; were taken into account with its bonds

orientations. Formula (8) is a partial case of obtained in Report-1b expression (16) for

thermal conductivity when left and right DOS functions coincides with own density of states
88k

The [y, is playing here in some sense the double role. From one side it dictates the

length of tube fragment where phonon states occur in ballistic regime. For a zigzag tube

made from a graphene sheet {n,m} we have /,;, =2ma, where a is the bond length. In

accordance with PQDM approach /,; coincides with the length of calculated fragment with

phonon standing waves inside. In contrary, DOS function g(a,) describes the left (=right)
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medium. From the other side /,;, depends on phonon-phonon collisions that in own turn
depend on the temperature.

It is worth to evaluate temperature dependence of /,,. General expression for phonon
mean free path is given by the surface density of phonons S/N.

N
(10)

b

2N >= ijn((o)g(a))da)

(48))
where § is the tube surface where phonons propagate, /; is the tube circle length, A is the
phonon band width and <N> is mean number of phonons. Taking into account that <N>ocT
we have

l 1

ph T
12)
Implicitly /,, is contained in upper limit of summation in (8), in |G’ and in g(@,). The size
dependence for zigzag tubes of given diameter and at given temperature was calculated by
(8). The Fig.12 presents typical picture of linear A increasing vs phonon mean free path.

Al

(13)
Relations (13), (14) contain an explanation for the well-known experimental fact of thermal

"
£ & (1] Q

thermal conductivity, arb.un.

[N

30

10 213 2
(L phf 2a)
Fig.12. One dimensional phonon dynamics. Thermal conductivity size dependence for axial
branch of vibrations. L, is phonon mean free path, a is carbon bond length. For radial and
athimuthal branches dependence has the same character.
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conductivity temperature damping at high temperatures by 1/T law. It is of interest also that
the PQDM gives a simple opportunity to connect heat propagation with the definition of
phonon mean free path.

The result of thermal conductivity numerical calculations for radial, azimuthal and
axial phonon branches (6=1,2,3) is presented in Fig.13. It is easy to see that the sum on all ¢
will be very close to curve 3 connecting with radial p-band. Unity Ay determined from (8) and
(16) from Report-1b is measured in W /K

27:an

ﬂl) ==
. (13)

where a=1.2 Angstrom is unity of length, £ is Boltzmann constant, oy is accepted here
phonon energy unity and Gj is the constant of phonon-phonon interaction. Evaluations [4-8]
give for characteristic phonon energy interval wo<[0.8-1.2]eV.

It should be marked that weak temperature dependence has also the structure
constant (bond length a) of the system. Thermal expansion of single walled nanotubes was
investigated in [9-12] but the result obtained there for radial expansion is not a reliable one.
Elastic constants and the constant of phonon-phonon interaction G, depend on the
temperature too.

(3]
(4}

nN
Q

A, arb.units
5 o

0.04
Tlog

Fig.13. Thermal conductivity temperature dependence. Zigzag NT. Curve 1 corresponds to z-
branch contribution, curve 2 to ¢-branch and p-branch contribution is presented by curve 3.
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The conclusion that radial mode contribution into heat transfer is dominating in
temperature interval under consideration is based on the supposition that phonon-phonon
interaction constant G, (see (8), (9), (13)) participating in end atoms constants G; does not
depend on the phonon type (p, ¢ or z). Then due to big density of states in narrow low-
frequency p-band comparatively with that for ¢- and z-vibrations essential prevail of p-
vibrations arises. So at actual temperatures p-branch of phonons determines heat
propagation through single-walled nanotube. One should wait the same effect and for
armchair geometry too. The problem of phonon-phonon constants for different vibration
types is open now and should be investigated in detail in following study.

Iv. Thermodynamics and statistics of zigzag nanotubes
Static thermodynamic characteristics of non-helical zigzag nanotubes of different

sizes have been calculated. If the system exists in equilibrium state, the atomic heat
capacitance C(7) and entropy S(7) are as follows,

="y Wyr )]

N (@ X N(@55)+1),

Vo oT  rT*; 2 2

(14)
where r=2n(m+1) is the number of atoms in a zigzag tube of length 2ma and radius

a/(2sin(n/n)).
S(7)= IC(T)dT 1 de

Z so'N (wSU )(N (wSO' ) + 1)




C(T) per atom

0.05 0.1 0.15
Tim,

Fig.14. Heat capacitance vs temperature dependence for zigzag nanotube. Dulong-Petit law and

W.Nernst theorem. ®o€(0.8, 1.2)eV.

The calculated temperature dependence for heat capacitance is shown in Fig.14. The curve
illustrates the third thermodynamical law (W.Nernst theorem) at low temperatures and
Dulong-Petit law at high temperatures (T>0.1m¢). The entropy behavior has similar
character at low temperatures and shows logarithmic growth at high temperatures.

V. Summary

A complex approach PQDM was applied to describe dynamics, kinetics and statistics
of phonons in carbon nanotubes with zero-chirality.

Atom vibration dynamics was considered for carbon nanotubes of zigzag geometry in
comparison with the results obtained for graphene sheets. Vibrational eigenmodes, density of
states and amplitude distribution for tube fragments of the length up to 40 hexagons were
calculated in linear approximation for three types of vibration: athimuthal or tangential -
mode, radial p-mode and longitudinal z-mode.

Thermal fluxes and thermal conductivity were considered in PQDM. Temperature
dependences were obtained. The mechanism of heat conductivity temperature damping was
analyzed.




The exact solution of generalized thermal conductivity equation was obtained for
nanotubes. Temperature distribution along the tube was derived analytically.

Size dependences were considered for thermal conductivity. It was shown the linear
increasing of heat conductivity with the growth of the phonon mean free path.

Statistical properties were investigated. Heat capacitance and the entropy of carbon
linear tubes were calculated as the function of temperature.
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VII. Attachment: Short investigation plan

1. Phonon(vibron) bands. Direct calculation in elastic approximation.
a) Graphene molecules of various kinds, free and contacting with two leads. Influence
of the number of bounding atoms on phonon structure.
b) Phonon structure of 3-polar and 4-polar molecular bridges.
¢) Carbon tubes of various radii. Short fragments. Free and contacting with leads.
d) BN- flat structures. Free and contacting.
e) BN-tubes of various radii. Short fragments. Free and contacting with leads.
f) More complicate geometry. Torus. Two wall C-tube as a heat conductor.
Heat transport investigation in PQDM.
b) Linear carbon chains connecting electrodes (analytical approach)
¢) Graphene molecules of various kinds contacting with leads. Calculation.
d) Carbon tubes of various radii. Short fragments. Free and contacting with leads.
e) BN- flat structures. Free and contacting.
f) BN-tubes of various radii. Short fragments. Free and contacting with leads
Macroscopic manifestations of phonon propagation in carbon nets.
a) Generalized 2D and 3D equation of thermal conductivity in carbon nets.
b) Boundary problem and temperature distribution in macroscopic carbon nets.
¢) Boundary problem for heat conductivity in carbon and BN tubulenes and
temperature distribution along tubulene bridge..
g) Carbon tubes of various radii. Short fragments. Free and contacting with leads.
Phonon-phonon effects in charge and heat transport.
a. Spectrum modification due to phonon-phonon processes;
b. Non-linear transport through flat carbon structures;
c. Non-linear transport along carbon tubulenes;
Thermodynamics and statistics of closed and open carbon nets
a. Statistical sum and entropy of carbon nets (graphene and tubulene).
b. Heat capacitance of graphene and tubulene structures

Heat-transistor effects.
a. Three pole systems;
b. Four pole systems;
Electron-phonon effects in charge and heat transport.
a. Transport through linear carbon chains connecting electrodes (analytical approach).
Dragging in linear bridges.
b. United transport in graphene molecules of various kinds, free and contacting with
leads. Calculation.
c. Electron-vibron interaction in carbon tubes of various radii. Short fragments. Free
and contacting with leads.




1.3.1b. Phonon dynamics and thermal properties of free armchair carbon nanotubes
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L Introduction

The content of Report-3a presents the third stage of the investigation of phonon fluxes
in carbon and BN nanostructures in the framework of the tasks for "Strategies to Increase
Thermal Conductivity. Enhancement by Optical Phonon Sub-Bands Engineering in 3-D
Nanostructures Based on C and BN Nanotubes".

Here, dynamics (planned point 1c, see attachment), heat transfer problem for closed
carbon nets — armchair tubes (point 2¢) and macroscopic manifestations (point 3c) are
presented. Two main tubulene geometries: zigzag and armchair are compared with respect
to phonon eigenstates, density of states, vibration amplitude distribution and thermal
conductivity.

The idea of the PQDM approach proposed before is to use a discrete microscopic
model for phonon dynamics of relatively small molecular fragments approximately of
phonon mean free path (MFP) sizes.

The dynamics of such a cluster may be described classically in Born approach [1, 2]
and all the important data may be obtained: eigenfrequences, density of states and phonon
amplitude distribution inside the molecular fragment during its lifetime. Neighboring parts
of the nanotube are in an uninterrupted process of exchange by phonons. Due to the weak
fragment-surrounding medium interaction, the process may be described by Fermi’s “golden

PHONON QUANTUM
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Fig.2.1. Structure of PQDM approach. I-II small scale processes, III-V rough scale processes. L is
phonon mean free path. I stage, classical dynamics, atomic scale; II stage, phonon jumps between
nanotube areas. III stage, transition to averaging, The notion of statistical temperature erases at I'V stage.

V stage . macrosconic thermodvnamics and kinetics.




rule” which determines the value of the transfer rate. This quantum characteristic is a
transport processes consideration that enables the introduction of a microscopic thermal
conductivity coefficient that depends on the temperature difference between opposite sides of
the fragment in contact with the baths. An averaged classical picture of phonon energy (heat)
transport and temperature distribution along pulled carbon nanotubes and other Kinetic and
statistical phenomena may be obtained in rough space scale. The rough scale leads to the
generalized phonon kinetics equation describing heat propagation in 2D molecular nets.

The general scheme of the developed PQDM approach is shown in Fig.1.1. The tiny
scale stages (I-II) involve classical dynamics on the atomic level and weak phonon-phonon
transformations and jumps. The parameters of this model are the elastic constants
determined from atom-atom quantum-mechanical potentials, the geometry and symmetry of
the system, the lattice constants, and the phonon-phonon interaction constant. At this level
processes are ballistic. The discrete system of contacting separate atoms vibrates and
the complicate motion is represented as the superposition of modes that group into three
branches. Each mode (=degree of freedom=standing wave) is described by the
eigenfrequency and distribution of atomic amplitudes inside the corresponding standing
wave. On the second stage, phonon standing waves jump between neighboring areas along
the nanotube. Due to the actual “compactification” of circular degrees of freedom () the
phonon motion is a purely one-dimensional process (Report-2a). The rough scale processes
occur on distances of the order of (or slightly greater than) phonon mean free path lengths
(Lyn) (stages III-V). The transition to averaging (stage III) gives a picture for phonon
population along the molecular system. If the phonon-phonon interaction is elastic, there
arise local or modal temperatures describing thermodynamic equilibrium between phonons
of a given mode. The notion of statistical temperature is erased at stage IV when the
averaging of different phonon mean free path lengths is performed. After the transition to a
macroscopic description (stage V), the ballistic processes vanish and macroscopic
thermodynamics and kinetics can be used.

Taking the phonon band structure and dividing by different phonon branches has
significant meaning in describing thermal conductivity. This investigation shows a
dominating contribution from the radial branch of vibration in heat propagation in zigzag
NT and graphene sheets. The radial breathing mode (RBM) was investigated experimentally
and theoretically in [3-5]. The mean frequency of RBM vibrations was estimated there within
the interval (100-300)cm™ that corresponds to estimations made here for the radial phonon
band width (0.004-0.007)eV for graphene and single walled zigzag nanotubes.

Phonon engineering of low-dimensional structures and heat conductivity properties of
nanotubes are actively discussed in physical literature [6-8]. Establishing a concrete law for
the temperature dependence of thermal conductivity at high temperatures as well as a law
for the increasing at low temperatures is among the most common current problems.
Different sources give the data for maximal thermal conductivity for a solitary carbon tube
in a wide interval from 200 W/mK to 3000 W/mK. The temperature of maximal thermal
conductivity for many carbon tubes also varies within a wide interval from 150 K to 300 K
from different authors. Another point of interest is the differences in thermal conductivity
for solitary carbon tubes depending on type (armchair or zigzag), chirality and size.

Phonon dynamics and Kinetics in tubes with armchair geometry and zero-chirality are
considered below and compared with data for zigzag nanotubes.




Phonon dynamics in an armchair carbon nanotube

Linear approximation in phonon dynamics is based on the supposition that small
atomic vibrations have harmonic character at least in the case of not too high temperatures.
It means that the potential iso-energy | surface in the vicinity of atomic equilibrium positions
has an ellipsoidal form. Classical motion of atoms near their equilibrium points is described
by elastic constant & that characterizes atom-atom bonds in the Born approximation. In this
investigation, nonzero elastic constant kK’ << k, from the framework of linear approximation,
is used for atomic shifts perpendicular to the bond. The symmetry of carbon structures
dictates three main types of vibration (radial p-mode, tangential p-mode and axial z-mode)

Fig.2.1 The problem’s geometry. Z-axes is
perpendicular to the figure plane. It’s shown
¢ and p shifts of an atom.




Fig.2.2. A fragment {9,9}of hexagonal
lattice. Shaded are two equivalent
conventional elementary cells containing
four atoms. Two types of bonds are
presented by different colors. Rolling around
horizontal axes could be implemented only
for even number horizontal rows {8,9}

It should be noted that the principal difference between the vibration branches
originates from the direction of bonds relative to the direction of the axes of symmetry
associated with the given degree of freedom (Fig.2.2). This difference manifests itself in the
phonon band structure for the tangential and axial branches in the case of pure zero-
chirality. In the presence of helicity the difference vanishes. In Fig.2.3 (the case with non-zero
chirality), the situation when the tangential p-mode and axial z-mode have approximately
equal orientation shifts relative to both red and blue bonds inside a chosen elementary cell is
presented.

Fig.2.3. Fragment of armchair tubulene (10,5) with non-zero
chirality created from a graphene sheet {14,10} by rolling up
around the armchair direction. Picked out is the conventional
elementary cell containing four atoms. Two types of bonds
are marked by different colors.

Dynamical equations for all three branches of vibrations can be calculated taking into
account that the motion of each atom is three-dimensional. The zero-approximation
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approach supposes that the radial p-mode, tangential p-mode and axial z-mode should be
considered independently.

Consider an armchair tube (n,0) produced from the fragment shown in Fig.2.2 by
rolling around horizontal direction without any shift. In this case each of the tube fragments
is connected with the same fragments. Therefore, contrary to the case of flat fragments
connected to the external media, all atomic positions along with their bonds are described by
the same dynamical equations. The difference exists between different vibration types or
branches only.

For shifts directed normal to the tube surface the equation is the following:

{m ,0, = —k'(3pi_ Pn~— Pix— pi3)s

2.1)
where i}, i i; are indexes for atom i neighbors. Atomic coordinates are not important here.
The universal atomic number i is defined using its position in the row and column of the
initial flat fragment creating the tube. This type of vibration is called the radial breathing
mode (RBM) in literature [3-5].

For tangential atomic shifts, taking into account the atom space coordinates on the
tube surface x=¢R , where R is the tube radius and ¢ is the azimuth angle, the armchair case
with the absence of chirality is described by the system:

fmi = -k(x, - x,)-0.25k(2x, - x,, — x,5)
2.2)
where coefficient 0.25 characterizes two weak bonds for this vibration.
For axial atomic shifts we have
{m ¥, = ~0.75% (2%, — z;;, - 2,,)- k'(z,~- 2,5)
2.3)
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The matrix structure of all equations (1-3) corresponding to the armchair (n,0) case is shown in

Fig.4.

Atomic coordinates become important when the mode amplitude distribution is
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Fig.2.4. Sketch of the dynamical matrix for armchair tubulene created from a graphene sheet {5,5}
containing 60 atoms by its rolling up. Rose-colored spots are diagonal elements, green and blue show
two types of bonds, rest elements equal to zero, left and upper red bands contain atomic numbers.

Fig.2.5. As in the case of zigzag NT, there are considerable differences in amplitude

distribution over the armchair tube surface compared to the open carbon net. The
differences are caused by the changed topology of the system. A difference exists between the

presented in the space. The vibration amplitudes for mode s=5 of any type are shown in
frequency of modes and density of states at the same state but it is not essential.

Armchair tubulene matrix and vibration amplitudes



Fig.2.5. Calculated p-branch amplitude
distribution s=5 along armchair tubulene
created from a graphene sheet {6,5} by
rolling up around marked direction.
Transversal knot’s lines are degenerated.
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Fig.2.6. p-branch amplitude distribution along
zigzag tubulene created from a graphene sheet
{6,5} by rolling up around marked direction. Sth
state. Longitudinal knot’s lines are degenerated.

The calculations performed with the system of equations (1-3) give |Cy |2 for
eigenvectors which is a well known standing wave picture with the corresponding number of
knot's lines depending on the state number s. Increasing the number of states leads to the
formation of lateral (parallel to z-axes) and transverse (circular) knot’s lines dividing the
tube’s surface. Fig.2.5 illustrates the well known knot’s theorem for the 5™ (or r-4™) state
where two twice degenerated knot's lines cross circularly to the tube's surface. Increasing the
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Fig.2.7. Calculated mean square amplitude
distribution along armchair tubulene created from a
graphene sheet {15,5} by rolling up around marked

direction. T=0.03 eV. Circular arrows show rolling up

of the structure.

Fig.2.8. Lower part. Three branches of phonon
spectrum for armchair tubulene created from a
graphene sheet {8,15} by rolling up around z-axes.
Upper part. Radial phonon band for zigzag {8,15}
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tube’s length leads to a considerable change in the picture of vibrations. The same 5t (or r-
4™) state in the zigzag case, presented in Fig.2.6, has knot’s lines perpendicular to those of
the armchair case.

The mean vibration amplitudes A4;, averaged for the state populations n,, are almost
constant and do not deviate sufficiently along the tube surface. There is a difference in zigzag
nanotubes where |C,;|* decreases from the lateral ends to the middle axes of the nanobridge.

2
A S Z IC sj I nso
e (2.4)
where ny, is the population of s, o state, j numbers atoms situated on the tube surface and
C;; is the s-state probability amplitude at j-position of the net. Coefficients C; are the
components of eigenvectors arising as the solution of systems (1-3). Mean square amplitudes
calculated for temperature T=0.03eV by expression (4) are shown in Fig.2.7. The averaging
was made here over all phonon o-branches. One can see that in contrast with flat carbon
terminated nets with free edge atoms (Report-1b) and to some extent zigzag carbon tubes
(report-2b), the closed armchair structure has almost constant amplitudes along all
directions over the surface of the tube.

Phonon mode frequencies are obtained from expressions (1-3) as eigenvalues. In
Fig.2.8, three branches of the phonon spectrum for an armchair tubulene having 8

honeycombs in the circumference are presented.

Armchair tubulene spectrum and DOS

The density of states may be approximately defined by the following expression.
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This transforms into an exact equation if the number of degrees of freedom becomes large
enough. Here, N;, numbers phonon states with frequency @ More correctly, the density of
states function may be calculated providing preliminary state grouping and density
determination inside each group.

0 0.01 0.02 0.03 0.04)0.05

0.03 0.04 0.05

2
(I]-an

Fig.2.9. Radial mode density of states for armchair tubulene created from a graphene sheet {8,15}
by rolling up around z-axes. Insertion the same for zigzag tubulene.

u] 0.01 0.0

DOS with preliminary state grouping have been calculated by dividing the whole
frequency band interval into h=Int[4r/5] sub-intervals (or near this value) within which the
number of eigenmodes were counted. The frequency spectrum and DOS function in the zero
chirality armchair nanotube case are presented in Figs. 9-11. Fig. 9 was obtained by
numerical calculation of system (1) described by the matrix of eigenvalues problem shown in
Fig.2.4.
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The comparison between results obtained for armchair tube radial mode spectrum
and DOS functions for a zigzag tube and a graphene fragment with the same number of
atoms shows the absence of any significant differences.
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0 0.025 0.05 0.075 0.1 0.125 0.15 0.175

Fig.2.10. Tangential -mode density of states for armchair tubulene created from a graphene sheet
{8,15} by rolling up around z-axes. Insertion is zigzag equivalent for this that is z-mode DOS.

Thus, the process of rolling a sheet up into a tube does not influence the spectrum and
density of states in this type of vibration case. But the distribution of vibration amplitudes
(Fig.7) differs from that for graphene (see Report-1b, Fig.3, Fig.9a, Fig.9b) where the mean
vibration amplitudes of the sheet's free edges were bigger than that in the middle.

The density of states frequency function for the tangential branch of vibrations
calculated with equation (2) is shown in Fig. 2.10. The insertion shows the result of numerical
calculations performed before for the ¢-branch in an armchair geometry equivalent to the z-
branch in a zigzag NT. Note the narrow subband near 0.125wy (see insertion) that plays the
role of a characteristic “mark” for the changed topology of the system. This subband
contains 2*n levels in the middle of the gap that occur because the new topology now permits
circular standing waves z-type vibrations that were forbidden before in the plane structure.
In the armchair geometry, circular atomic chains are absent (for ¢-type vibrations) and the
middle-gap subband vanishes again.

Comparing results obtained for zigzag and armchair tubes for the DOS function
shows some differences. The subband inside the gap (see insertion) originates from circular
chains of equivalent atoms in zigzag geometry while for armchir geometry the circles are
absent. On the other hand, graphene z-branch DOS is very similar to tangential armchair
due to the absence of circular symmetry.
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The frequency spectrum for z-branch modes calculated from the system of equations

(3) is shown in Fig.2.11.
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Fig.2.11. Axial z-branch density of states for armchair tubulene created from a graphene sheet
{8,15} by rolling up around z-axes. Insertion is zigzag equivalent for this that is ¢-mode DOS.
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Fig.3.1. One dimensional phonon dynamics. Exact

temperature distribution along the tube given by (4.4). 7;
.T,.are temperatures of baths connecting with tube ends, L
is the tube length. End points come together all modal
(partial) temperatures for each so.
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IL Generalized equation of
thermal conductivity in a
single nanotube

The PQDM analysis
proposed in Report-1b consider
heat  processes from  “first

principles” both using microscopic
characteristic on quantum level
including phonon jump
probability, phonon-phonon
interaction, calculated spectrum
and amplitudes distribution along
the structure and macroscopic




kinetic approach operating by length of phonon decoherence /,; or phonon mean free path.
The time of the phonon state establishing in area /,; x 2zR is much less than the phonon
lifetime. The latter is determined by phonon-phonon scattering and may lay in interval (10°-
10’7)8 [2]. This supposition allows one to consider propagation of phonons as a sequence of
jumps from one fragment to another with relatively long life on each one. In a tube of not too
big radius R the phonons propagate by jumps between mean free path-sized areas.
Neighboring areas play a role of leads having some fixed temperatures. Taking into account
that phonon scattering processes are weak ones we have obtained generalized equation of
phonon dynamics (Report-1b, paperzd-a.doc). In 1D case it has the form
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@3.1)

Temperature distribution along the tube

The phonon mean free path /,;, decreases with increasing of temperature. Evaluations made
in different sources give interval from hundred Angstroms to several micrometers at room
temperatures. In any case azimuthal phonon motion may be considered as ballistic one and
jumps or diffusion in tubes may occur only in axial direction. In relation to phonon
propagation nanotubes embody an ideal one-dimensional system. In stationary case it is ease
to write the exact solution of the one-dimensional equation (1) if to start from generalized
equation written for populations n,, (Report-2b).

T(Z)=a)sa/Ln(1+ L )
n(@,,)+[n(o,)-n(a,)lz
(3.2)

Here L is tube’s length, z is axial coordinate along the tube, n; n, are population numbers
ny, taken at left and right temperatures of both tube ends 7; ,7,. Indeed on the macroscopic
level local populations n; n, obeys equilibrium Planck law. The approximate behavior of
temperature distribution is shown in Fig.3.1. The bundle of partial modal temperatures
comes together in end points. With increasing of temperature all modal dependences become
equal. The difference may be essential at low temperatures.

Thermal conductivity and phonon mean free path

Thermal conductivity was calculated here in PQDM approach for tubes of armchair
geometry by expression obtained in previous reports 1b and 2b.
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where [, is phonon mean free path, square modulus reflect connections of end atoms of the
tube fragment with the rest part of the tube.

! (3.4)

Left and right end atoms numbered /; and /; were taken into account with its bonds
orientations. Formula (3) is a partial case of obtained in Report-1b expression (16) for
thermal conductivity when left and right DOS functions coincides with own density of states
88

The I, is playing here in some sense the double role. From the one side it dictates the
length of tube fragment where phonon states occur in ballistic regime. For an armchair tube
made from a graphene sheet {n,m} we have 12,,;. =3m’a’/4, where a is the bond length. In
accordance with PQDM approach /,;, coincides with the length of calculated fragment with
phonon standing waves inside. In contrary, DOS function g(a,) describes the left (=right)
medium. From the other side /,, depends on phonon-phonon collisions that in own turn
depend on the temperature.

It is worth to evaluate temperature dependence of /,;. General expression for phonon
mean free path is given by the surface density of phonons S/N.

/ ~ i = ———-Id .lp h l ~ ld

ph N N ph <N >
s 3.5)

<N >= ijn(a))g(a))da)

3.6)
where § is the tube surface where phonons propagate, /; is the tube circle length, A is the
phonon band width and <N> is mean number of phonons. Taking into account that <N>«T
we have

l 1

ph T
3.7
Implicitly /,, is contained in upper limit of summation in (3), in |Gss)’ and in g(@.). The size
dependence for armchair tubes of given diameter and at given temperature was calculated

by (3). The Fig.3.2 presents typical picture of quadratic increasing for A vs phonon mean free
path.
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3.8)
Relations (7), (8) contain an explanation for the well-known ex!)erimental fact of thermal
conductivity temperature damping at high temperatures by 1/T” law. This phenomenon is
observed both in 3D and low-dimensional systems. Proposed here PQDM approach gives a
simple opportunity to connect heat propagation with the definition of phonon mean free

p " N
o n o

thermal conductivity, arb.un.

400 > 600 2 800 1000
Lph .‘f (33 -“4) S —
Fig.3.2. One dimensional phonon dynamics. Calculated total thermal conductivity length

dependence that includes all vibration branches of armchair NT. L, is phonon mean free path, a
is carbon bond length.

path.
The thermal conductivity dependence on the radius of SWNT is also approximately
quadratic (Fig.3.2, insertion).

The result of thermal conductivity numerical calculations for radial, azimuthal and
axial phonon branches (6=1,2,3) is presented in Fig.3.3. It is easy to see that the sum on all ¢
will be very close to curve 1 connecting with radial p-band (Fig.3.4). The unity 1 determined
from (3) and formula (16) from Report-1b is measured in W-m/K

A, = 27aGq k
ho,

) (3.9
where a=1.2 Angstrom is unity of length, & is the Boltzmann constant, wy is accepted here
phonon energy unity and G is the constant of phonon-phonon interaction. Evaluations using
data of [8] and [9] give for
characteristic phonon energy very wide interval mg[0.8-1.6]eV.
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branch and p-branch contribution is presented by curve 3.
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Fig.6 . Thermal conductivity temperature dependence. Armchair NT. Curve 1 corresponds to z-branch contribution, curve 2 to ¢-

It should be noted that the weak temperature dependence also has the structure
constant (bond length a) of the system. Thermal expansion of single walled nanotubes was
investigated in [10] but the result obtained there for radial expansion is not a reliable one
and deviates from negative to positive values. Elastic constants and the constant of phonon-
phonon interaction G, depend on the temperature too.

The maximum is situated near 1.5ay both in armchair (Fig.3.4) and zigzag case
(Report-2b, Fig.13). It means that the difference between two geometries exists only on the
dynamical level of tiny scale processes and vanishes after the transition to rough scale
processes. The insertion to Fig.3.4 presents the law of initial temperature rising of thermal
conductivity at low temperatures. Our conclusion A~7° for an isolated SWNT coincides with

experimental data obtained in direct measurement for MWNT by [11] and is in contradiction
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Fig.3.4 . Total thermal conductivity temperature dependence. Armchair NT. Eight honeycombs
along the circumference. Insertion: the law of increasing at low temperatures: A~T%, Te(0,

45




with linear temperature law obtained in [12] for SWNT bundles.

The conclusion that the radial mode contribution to heat transfer is dominating in the
temperature interval under consideration is based on the supposition that the phonon-
phonon interaction constant Gy (see (3), (4), (9)) participating in end atoms constants Gj; does
not depend on the phonon type (p, ¢ or z). Then due to the large density of states in narrow
low-frequency p-band comparatively with that for ¢- and z-vibrations essential prevail of p-
vibrations arises. So at actual temperatures p-branch of phonons determines heat
propagation through single-walled armchair nanotube. The same effect was obtained before
and for zigzag geometry too. Of course, the problem of phonon-phonon constants Gy for
different vibration types exists now and should be investigated in detail in following study. It
should be mentioned also very important in PQDM starting constant ay that have to be
found from comparison with experimental data for isolated SWNT. As well the problem of
mean free path distribution function is open and should be investigated more detail.

IV Thermodynamics and statistics of armchair nanotubes

Static thermodynamic characteristics of non-helical armchair nanotubes of different
sizes have been calculated. If the system exists in equilibrium state, the atomic heat
capacitance C(T) and entropy S(7) are given by the following expressions,

1 ON (w,,)
C (T) £ e Z a)so' N Pt “2 Z a)sa' N (0) so )(N (wsa ) 2 l)
r s,o oT rT

4.1)
where r=2n(m+1) is the number of atoms in a armchair tube of length I.7ma and radius
a/sin(n/n).

Sy (SRMELL ‘j‘f}szo 2 N (@55 )(N(@55) +1),
4.2)
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The calculated temperature dependence for heat capacitance is shown in Fig.4.1.
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Fig.4.1. Heat capacitance vs temperature dependence for armchair nanotube. Dulong-Petit law and
W. Nernst theorem. 0o€(0.8, 1.2)eV.

The curve illustrates the third thermodynamical law (W.Nernst theorem) at low
temperatures and Dulong-Petit law at high temperatures (T>0.109). An absolutely equivalent
curve was obtained before for zigzag NT (Report-2b). This means that from a
thermodynamical point of view both NT symmetries, armchair and zigzag, are equivalent at
all temperatures.

The Dulong-Petit law is a tag in thermodynamics that embodies the classic systems. It
is clear from the Fig.4.1 that the notion “high temperatures=classical system” begin to act
from 0.1509, that is approximately 1400K, for carbon single-walled nanotubes. Thus, in real
temperature intervals, single-walled nanotubes are non-classical objects.

The entropy behavior has similar characteristics at low temperatures and shows
logarithmic growth at high temperatures both for zigzag and armchair nanotubes.

V. Summary and discussion

A complex approach PQDM applied gives an opportunity to describe dynamics,
kinetics and statistics of phonons in carbon nanotubes with zero-chirality. Fig.5.1 illustrates

no averaging - no wave cquation v

infinite speed of excitations = 20
classical dynamics . kazaa T ka?
{?”!‘x, -=--*-:k~,(2:x:,g--.x,.‘», = X3 ) st CPP g o & s 72
equations P
mean free path averaging = _ﬂ 4
2q

Fig.5.1. Averaging procedures and speed of propagation.
a is interatomic distance, <x> is mean atomic shift , x is extended coordinate of the freedom’s
degree, V is excitation velocity, m is atom mass, & is elasticity coefficient.
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the important role of averaging procedures in understanding of phonon, sound and heat
propagation in low-dimensional atomic nets. The classical dynamical equations don’t contain
retardation in non-relativistic approach. This causes the infinite speed of vibrational
excitation propagation along the net or nanotube (Fig.5.1, second column, upper row).

The first stage averaging is transition to presentation of dynamical equations in the
finite differences (second column, middle row). Evaluations by data [9,10] (k=4.65-10"*N/m)
and our data [13] give for second row velocity V=18.3 km/s. This value is close to sound
velocity in diamond (1,1,0) direction.

More rough averaging at the
phonon mean free path distances is
used to describe heat spreading
along carbon nets (Fig.5.1, second
column, lowest row). Found from
RBM frequency band width value of
phase velocity V= a-A/7 is more
than twenty times less (0.85km/s)
than for the pure sound.

Atom vibration dynamics
was  considered for carbon
nanotubes of armchair geometry in

WA,

e path ] comparison with the results
- obtained for graphene sheets.
Tieog Vibrational eigenmodes, density of

Fig.5.2. Temperature dependence of thermal | States and amplitude distribution for

conductivity  coefficient. =~ Two  competitive | tube fragments of the length up to
tendencies. 40 hexagons were calculated in

linear approximation for three types
of vibration: athimuthal or tangential p-mode, radial p-mode and longitudinal z-mode.

It’s shown that phonon propagation in actual nanotubes is characterized by a kind of
“compactification” of circular freedom’s degree due to the big phonon mean free path.
Nanotubes of actual diameters are ideal one-dimensional phonon qnd heat conductors.

Phonon band structure was investigated for armchair nanotubes on the base of
hierarchical law and system symmetry.

Thermal fluxes and thermal conductivity were considered in PQDM. Temperature
dependences were obtained. The mechanism of heat conductivity high temperature damping
is reflected in Fig.5.2. Two competitive tendencies produce thermal conductivity maximum at
intermediate temperatures (100-300)K.

The exact solution of generalized thermal conductivity equation was obtained for
nanotubes. Temperature distribution along the tube was derived analytically.

Size dependences were considered for thermal conductivity. It was shown the linear
increasing of heat conductivity with the growth of the phonon mean free path.

Statistical properties were investigated. Heat capacitance and the entropy of carbon
linear tubes were calculated as the function of temperature.

Our theoretical approach (Fig.1.1) explains the nature of good thermal conductivity in
carbon and carbon-like materials by existing of the soft vibration branch (low frequency
RBM phonons with high DOS at thermal energies) accompanied by structure hardness (high
frequency ¢- and z-branches) providing big mean free path for phonons (Fig.5.2).
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Adding of new layers or new walls to single-walled NT makes breathing p-branch of
vibrations harder. That causes the sharp decreasing of phonon density of states at the same
phonon mean free path. Phonons leave the active thermal zone and heat conductivity
decreases. Therefore, atomic monolayers and isolated single-walled nanotubes have to be
champions in thermal conductivity. Uniting SWNT into the tight bundles quenches breathing
mode too. PQDM approach predicts the sufficient worsening of thermal conductivity in
SWNT tight bundles comparatively with free SWNT. The way of thermal conductivity
enhancement in this case is “dissolving” of inter-tubes bonds and turning out tight bundles
into the system of almost free tubes.

Pressure decreases thermal conductivity [14]. The effect is connected with total
hardening of all bonds and phonon modes going away from active thermal zone.

Melting decreases thermal conductivity by another reason: the phonon’s mean free
path becomes small.

In conclusion we mark that the problem of creating “heat superconductors” may have a
perspective on the way of hardness-softness uniting. It seems, the natural limit is given by
isolated fragments of carbon-like structures: carbon sheets and single-walled nanotubes. The
question is in the existing of possibility to create more complicate artificial heat
superconductivity aimed systems.
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VIIL. Attachment: Short investigation plan

2. Phonon(vibron) bands. Direct calculation in elastic approximation.
a) Graphene molecules of various kinds, free and contacting with two leads. Influence
of the number of bounding atoms on phonon structure.
b) Phonon structure of 3-polar and 4-polar molecular bridges.
c) Carbon tubes of various radii. Short fragments. Free and contacting with leads.
d) BN- flat structures. Free and contacting.
e) BN-tubes of various radii. Short fragments. Free and contacting with leads.
f) More complicate geometry. Torus. Two wall C-tube as a heat conductor.
2 Heat transport investigation in PQDM.
a. Linear carbon chains connecting electrodes (analytical approach)
h) Graphene molecules of various kinds contacting with leads. Calculation.
i) Carbon tubes of various radii. Short fragments. Free and contacting with leads.
j) BN- flat structures. Free and contacting.
k) BN-tubes of various radii. Short fragments. Free and contacting with leads
3 Macroscopic manifestations of phonon propagation in carbon nets.
a. Generalized 2D and 3D equation of thermal conductivity in carbon nets.
b. Boundary problem and temperature distribution in macroscopic carbon nets.
c. Boundary problem for heat conductivity in carbon and BN tubulenes and
temperature distribution along tubulene bridge..
d. Carbon tubes of various radii. Short fragments. Free and contacting with leads.
4 Phonon-phonon effects in charge and heat transport.
a. Spectrum modification due to phonon-phonon processes;
b. Non-linear transport through flat carbon structures;
c. Non-linear transport along carbon tubulenes;
5 Thermodynamics and statistics of closed and open carbon nets
a) Statistical sum and entropy of carbon nets (graphene and tubulene).
b) Heat capacitance of graphene and tubulene structures
6 Heat-transistor effects.
a) Three pole systems
b) Four pole systems
7 Electron-phonon effects in charge and heat transport.




a) Transport through linear carbon chains connecting electrodes (analytical approach).
Dragging in linear bridges.

b) United transport in graphene molecules of various kinds, free and contacting with

leads. Calculation.

¢) Electron-vibron interaction in carbon tubes of various radii. Short fragments. Free

and contacting with leads.
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1.3.2. Carbon heat radiators in polymer surroundings

Here we consider the heat transfer problem for a solitary carbon nanotube (NT)
inserted into a solid matrix with low thermal conductivity. Phonon eigenstates, density of
states and vibration amplitude distribution along the molecule will be investigated for a NT
laterally in contact with the continuous external medium. The temperature distribution
inside a low-conducting medium containing a high-conducting channel will be calculated in
the framework of boundary problems (point 3d). Concentration dependences of the effective
conductivity of the composite will be evaluated. Also, the influence of the embracing polymer
molecule on the phonon dynamics and the heat spreading along the nanotube will be
calculated.

Heat conductivity properties of nanotubes are actively discussed in this literature. The
following is a list of questions and problems under investigation:

e the general features of the temperature dependence of thermal conductivity - the
mechanism of temperature damping at high temperatures and concrete law of
increasing at low temperatures.

e the maximum thermal conductivity for a solitary carbon tube has not been
measured reliably. Current values vary on a wide interval from 200 W/mK to 3000
W/mK from different authors.

e the temperature for maximum thermal conductivity for carbon tubes has not been
reliably measured and also varies on a wide interval from 150 K to 300 K from
different authors.

e the question is whether there exist differences in the thermal conductivity of
solitary carbon tubes depending on the type (armchair or zigzag), chirality and
diameter.

e are the differences between thermal conductivity of solitary carbon tubes, flat
carbon structures like graphene and graphite (in plane) essential?

Different authors give different answers to these questions. Another complex problem
arises in composites containing nanotubes as a mixture element. Experiments show that a
medium like epoxy, having very low thermal conductivity, may change its thermal properties
dramatically when a small amount of nanotubes is dissolved in it.

In [1], the single-walled carbon nanotubes (SWNTs) were used to augment the thermal
transport properties of industrial epoxy. It was shown that the thermal and mechanical
properties of SWNT-epoxy composites were improved significantly. Samples loaded with
1wt% unpurified SWNT material showed a 70% increase in thermal conductivity at 40 K,
rising to 125% at room temperature.

The phenomenon of SWNT thermal conductivity was discussed in [2]. The comparison
made in this article shows that the measured heat conductivity of single-walled nanotubes
differs from that of both 2D graphene and 3D graphite, especially at low temperatures,
where 1D quantization of the phonon band structure is observed. For aligned bundles of
SWNTs a thermal conductivity of more than 200 W/mK was obtained at room temperature.
A linear temperature dependence up to approximately 40 K was observed in [2] for SWNTs.
Contradicting results, between quadratic and linear laws at low temperatures, were obtained

52




for the T-dependence of thermal conductivity of multi-wall NT (MWNT) [3]. The thermal
conductivity of a MWNT bundle was measured in the interval Te[8-350] K and a maximum
of 1200 W/mK was reached at 300 K. In [4] it is shown that the heat processes of nanotubes
are similar to that of two-dimensional graphene at high temperatures but is sensitive to the
effects of rolling the graphene sheet into a small cylinder at low temperatures.

Measurements for tube bundles show that inter-tube coupling is relatively weak, and
the thermal conductivity of nanobundles reflects the on-tube phonon structure [4]. The
temperature dependence of electrical conductivity and thermopower were studied
theoretically in [5] for single-wall carbon nanotubes using a Green's-function theory. It is
shown that armchair and zigzag tubes exhibit quite different temperature dependencies of
transport coefficients. The thermal conductivity and thermoelectrical power of a single
carbon nanotube were measured in [6] using a micro-device. The observed thermal
conductivity is more than 3000 W/Km at room temperature. The temperature dependence of
the thermal conductivity exhibits a peak at 320 K. The molecular dynamics method was used
in [7] to simulate heat conduction along a single walled carbon nanotube with the Tersoff-B
Renner bond order potential [8]. SWNT models with different chiralities (5,5), (8,1), and
(10,10) were investigated for the typical length about 125 Angstroms. Thermal conductivity
values from 200-300 W/mK were obtained and the dependence on the length of the tube was
relatively small. The thermal conductivity for (8,1) chiral tube was measured to be a little
smaller than the armchair system. The phonon density of states were measured as the power
spectra of velocity fluctuations and compared with the experimental Raman spectra.

Measurements of the thermal conductivity made in [9] show graphite-like behavior for
MWNTs but a quite different behavior for SWNTs, specifically a linear temperature
dependence at low temperatures, which is consistent with one-dimensional phonons. The
room-temperature thermal conductivity of highly aligned SWNT samples is over 200 W/mK,
and the thermal conductivity of individual nanotubes is likely to be higher still. Carbon
nanotubes have very high thermal conductivity; comparable to diamond crystal and in-plane
graphite sheet [10]. The nanotube bundles show very similar properties to graphite crystal in
which dramatic differences exist in thermal conductivities along different crystal axis.

We will consider problems relevant to heat propagation in composites containing
nanotubes weakly connected with the surrounding medium. Only zigzag and armchair
single-walled nanotubes will be taken into account.

1.3.2a. Dynamics of carbon tubes laterally in contact with external medium

The idea of the phonon quantum discrete model (PQDM) is to use a discrete
microscopic model for phonon dynamics of relatively small molecular fragments that are
approximately of phonon mean free path sizes. The dynamics of such a cluster may be
described classically in the Born approach and all the important data may be obtained:
eigenfrequences, density of states and phonon amplitude distribution inside the molecular
fragment during its lifetime. Connected fragments of a molecular net are in an uninterrupted
process of phonon exchange. Due to the weak fragment-surrounding-medium interaction the
process may be described by Fermi’s “golden rule” that determines a value for the transfer
rate. This quantum characteristic is a transport processes consideration and enables us to
introduce a microscopic thermal conductivity coefficient that depends on the temperature
difference between opposite sides of a fragment that is in contact with the baths.
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The model developed here is based on fundamental data characterizing the structure
with elastic modulus and elastic coefficients &, describing forces acting along the main axes of
the bond potential ellipsoid. Thermal expansion coefficient, pressure coefficient,
characteristic frequency (or phonon band width) temperature and pressure dependences
may be included in the proposed model.

In this section, we consider a nanotube
inserted into the solid matrix — a continuous
medium of relatively small heat conductivity.
Suppose here that the tube-matrix bonds are
weak, that is, the bond is of a physical
adsorption type. An armchair nanotube of
radius r, that is weakly connected with the
walls of the channel by horizontal bonds is
presented in Fig. 1.4.

The vibration dynamics of the armchair
tube is represented by three equations for the
main types of atomic motion. The adsorption
bond will be described by elastic constant x if
the shift is directed along the bond and «’ if it
is in the perpendicular direction. We assume
that adsorption is weak and x ~k/5, K’ =~ x/10.

Fig.1.4: Armchair-nanotube inserted into solid
matrix. Horizontal blue lines show
tube-medium bonds. r, is tube radius,
medium is shown by green.

The equation for shifts, p;, directed normal to
the tube surface is as following:

mp,; =—Kp,~KX3P, =Py~ Pir=Pn)s (1.4)

where iy, is i; are indexes for the neighbors of atom i, x and &’ are the elastic constants of
external adsorption bond and intrinsic respectively. The united atomic number i is defined
using its position in the row and column of the initial flat fragment creating the tube.

For tangential atomic shifts we will take into account the atomic space coordinates on
the tube surface x=@R, where R is the tube radius and ¢ is the azimuth angle. The armchair
case with the absence of chirality is described by the system:

~ ,
ME, = =238 Zx 5 Xy — X )X — X}~ KX,

(1.5)
where coefficient 0.25 characterizes two weak bonds laying on the tube’s surface for

tangential atomic shift. Another bond directed along the atomic shift is most intensive. The
bond of adsorption connection with the external medium is relatively weak for this motion.
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For axial atomic shifts we have:
mz;, = ~k(z, ~2,)- 0I5k (22, - 2,, —2,3)— K2, (1.6)

where the coefficient 0.75 is connected with two strong bonds and «’ is the elastic constant
describing motion perpendicular to the absorption bond x.
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Fig.1.5: Calculated DOS function for radial-branch phonons in laterally adsorbed carbon NT.
x=0.2k, x’=x/10

Calculations show significant differences in phonon band characteristics for the radial
branch of vibrations compared to that of a free armchair tube. In Fig.1.5, we see the DOS
function for the p-branch of phonons found from (1.4) at x=0.2k and x’=x/10. The bottom of
this band rises at about 0.04@, though the top of the band remains almost at the same
position. The effect has its explanation in an interesting quality of atomic radial motion. For
radial shifts, even relatively weak adsorption bonds have elasticity coefficients bigger than
inner bonds. This means that the radial band for a free nanotube transforms to a band of a
system of almost non-connected atoms adsorbed onto the intrinsic medium surface.

The ecigenstates are grouped in this case near the characteristic frequency of the
adsorption bond. Radial vibrations occur as if each carbon atom is almost independent from
the neighboring carbon atoms in the nanotube. Due to the band narrowing, the mean density
of states becomes several times greater for a nanotube connected by adsorption bonds with a
medium surrounding the nanotube surface. Comparison with the data for a free armchair
tube shows that only the density of states of radial modes changes essentially with a shift and
redistribution.
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Fig.1.6: Calculated DOS function for tangential branch of phonons in armchair nanotube having 8

hexagons in circumference and laterally adsorbed by external medium. x=0.2k, x’=x/10.

The DOS function calculated for the ¢-branch of molecular vibrations found from (1.5
at x=0.2k and x’=«/10 is plotted in Fig.1.6. Minimal differences may be observed in the
density of states distribution for the lowest phonon modes that are shifted up by
approximately 0.01 @,. The upper part of the band density remains unchanged.

Similar small deviations are observed for longitudinal z-branch vibrations in a laterally
adsorbed armchair nanotube. The band bottom also shifts up by about 0.01@, at the
immovable band top. The calculated DOS function for the z-branch of molecular vibrations,
found from (1.6) at parameters given above, is plotted in Fig.1.7. Minimal differences in
comparison with free armchair nanotube may be observed as well.
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Fig.1.7 Calculated DOS function for axial branch of phonons in armchair nanotube having 8 hexagons
in circumference and laterally adsorbed by external medium. x=0.2k, x’=x/10
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It should be marked that considerable changes arise only for radial the branch of
vibration due to the direct influence of adsorbtion bonds on breathing modes. As radial
vibrations play the key role in heat transport processes through nanotubes one should wait
for a significant transformation of the thermal conductivity coefficient A(T).

The densities of phonon states for all three vibrational branches were found to have the
same shape for different NT radii (parameter n) and different lengths of fragment
(parameter m). The proportionality coefficient depends on the number of atoms in a
fragment.

1.3.2b. Phonon dynamics of carbon tubes embraced by polymer molecule

We have also undertaken the investigation of a two-molecule system: a single-walled
nanotube embraced by a polymer molecule like polyacetylene. The calculation of the system
was made in the PQDM
framework for two molecules:
an armchair NT {n,m} (created
from a graphene sheet {n,m})
and a polyacetylene chain
(CH)2m+1, adsorbed by the
outer surface parallel to the
tube axes. Here the index n
describes the hexagon number

4 th i
Fig.1.8 A polymer molecule absorbed by armchair nanotube. Slong the. ke circumiritios

Absorption bonds are shown by red lines, C-C bonds of the and index m is the same alon.g
polymer are shown by violet color. the tube axes. In the armchair

case the length of the tube
equals 2ma, where a is the
bond length. In zero-approximation, we consider carbon-hydrogen bonds in the polymer as
absolutely rigid which leads to an effective mass of the polymer carbon equal to 13. The
order of this problem’s dynamical matrix becomes equal to 2n(m+1)+2m+2 and for the
matrix shown in Fig.1.8 the (2m+2) subspace has to be added.

The most important for heat transport radial motion is described by equations for
shifts p; (nanotube atoms) and p; (polyacetylene atoms) directed normally to the tube surface

mp,=-x(p,—-pP)-k'Bp, = pPu~- P~ Pis)
m'p.jz—K(pj—.pi)—k'(zpj_pjl—ij)

(1.7)

where m’=13m/12, i; and j;, are indexes for the neighbors of NT-atom i and polymer atom j,
x and k’ are elastic constants of external adsorption bond and intrinsic respectively. The
united atomic number i is defined using its position in the row and column of the initial flat
fragment creating the tube. For tangential atomic shifts we will take into account that atomic
space coordinates on the tube surface x=¢R , where R is the tube radius and ¢ is the azimuth
angle.




The armchair case with the absence of chirality is described by the system:

Mmi; & -2 (2%)— X T X3) k(% - X3 ) =% (X~ X,)
xS -k (X, Sy X )k (E, = X))
(1.8)
where coefficient 0.25 characterizes two strong bonds for tangential atomic shift. Another
pair of bonds directed perpendicular to atomic shift is weak and includes a bond of

absorption connection with external medium.
For axial atomic shifts we have:

m'z; ==k(22,-2,~2,)-%k (£2,-2))
mz, =-k'(z,-2,)-0.75k(2z,-2,,-2,,)-x"'(2z,-2))
(1.9
where the coefficient 0.25 is connected with two weak bonds and x’ is elastic constant
describing motion perpendicular to absorption bond x
In Fig.1.9, we present the general view of all branches of phonon spectra. In all cases,

the spectrum is the superposition of nanotube and polyacetylene spectra deviated by
additional bonds.
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Fig.1.9: Calculated phonon spectra for radial (p), tangential (@), and axial (z) branches of NT-polyacetylene
system. 1 shows the nanotube modes, 2 and 3 are two halves of (CH), band. Here x=Kk/5, x’=x/10.
There are eight hexagons in NT circumference.
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1.3.3. Sound propagation in molecular nets

Molecular nets based on carbon and carbon-like systems provide the perfect natural
target for 2D and 1D systems that allow us to consider the relation between pure non-
thermodynamical sound, called hypersound (or nanosound), and atomic vibrations and the
structure of phonon band. Wave phenomena in small flat and closed carbon fragments,
films, fulerenes and nanotubes attract close attention now as they are an important part of
thermal and transport processes in nanoelectronic devices [1]. Bulk mechanical properties
expressed by elastic modules determine sound wave characteristics [2]. The most studied
carbon materials, both experimentally and theoretically, are 3D crystals and thin layers [3].
The elastic properties of separated low-dimensional nanosize carbon fragments, single-
walled nanotubes etc., give some theoretical troubles connecting the transformation of bulk
notions to 2D and 1D ones and with the influence of small sizes [1-4]. Structural and phonon
properties of carbon tubulenes were calculated in [5] with the tight binding approach and
comparison with flat graphene sheets and bulk graphite was made. The vibrational density
of states for 2D hierarchical quasicrystals has been calculated in [6] with the use of the Born
approximation [2]. Experimental study of the elastic modulus in a multi-wall nanotube was
performed in [7]. Thermal expansion of single-walled carbon nanotube bundles in X-ray
diffraction experiments was studied in [8].

The classical theory of sound passing through the interface relies on macroscopic
representations in regards to the nature of sound. The phenomenon characteristic sizes
(wavelength and the size of averaging) are big compared to the lattice constant. Classical
sound is the thermodynamic process uniting both time and space averaging and containing
many phonons. The boundary conditions (BC) are introduced into the theory as an external
term describing the contact type (strong or weak) between the media [9]. In that case, the
BCs are not connected immediately with the microscopic structure of the boundary and have
approximate characteristics. Really, for macroscopic rough boundary, the existing exact
conditions of the vibration wave passing through the boundary have to be averaged at the
distance of the sound wavelength. Now that nanoengineering technology is close to creating
hierarchical molecular nets consisting of regularly alternating fragments, the problem of
sound propagation in systems with sharp atomic contact boundaries has become the topic of
interest.

Carbon nanotubes may be modified by periodic liquid surrounding, periodic intrinsic
contain, periodic embracing by polymer, periodic other atoms adsorbed areas, periodic
alternating of zigzag and armchair NT, alternating of carbon and BN-tubes, periodic isotope
saturated areas and so on. A few pretenders where sound with extremely small wavelengths
could exist are presented in Fig.1.10.

59



Fig. 1.10: Nanosize periodic structures — pretenders to detect nanosound interfierence.
(a) Cross-linked binary graphene sheet with zigzag type boundaries. Conventional elementary cells
are shaded. (b) Carbine-polyethylene periodic linear chain. (c) Periodic fragments of a nanotube
differed by elastic constants and (or) atomic mass. 1and 2 are hypersound generator and receiver.

Such tailored structures may play the same role for the hypersound as photonic band
gap materials perform for electromagnetic waves [10]. One can suppose the existence of the
similarity between acoustic and electromagnetic wave phenomena is due to the band
structure and energy transport trough periodic systems [11].

It should be established that the connection between the nanostructure phonon
dynamics and sound waves of small wavelengths is not investigated in detail for mesoscopic
molecular nets, especially if it reaches the boundary condition problem in complex carbon
nets. To obtain the exact BC for sound wave we propose here the integral procedure that
starts from dynamical equations for atom vibrations in physically small areas near the
boundary. The procedure includes averaging of discrete dynamical equations and transfer to
a continuous description. The comparison of notions for native phenomena like phonons,
sound and hypersound is used to emphasize the nanosound specifics in molecular nets. The
hypersound band structure is calculated in linear approximation for periodically cross-
linked nets of different nature. The structure and angular-frequency diagrams describing the
sound band structure are obtained.

1.3.3a. Phonons and Hypersound in Low-dimensional Molecular Nets

The molecule vibrational eigenstates are called vibrons. In bulk crystals, the same are
defined as “phonons”. Low-dimensional molecular nets occupy an intermediate position
between small molecules and big macroscopic crystals. Nano-engineering allows the
production of complex molecular net systems containing alternating fragments [12, 13]. The
external geometry of such cross-linked systems is similar to well-known photonic crystals so
sound propagation should possess the same properties including frequency bands and gaps
[11]. Electron transport, light absorption and other impact processes in periodically cross-
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linked molecular nets may be accompanied by sound pulses of comparatlvely short
wavelength. Characteristic wavelengths of the sound must be about 10> nanometers with
frequencies of the order of terahertz.

The difference between crystal vibrational eigenstates, phonons and sound is illustrated
by the well-known solution for an isolated damped linear oscillator with external driving
force

X+2yx+w.x = F,e''
Foeia)t

o = A
x(t)= x,e cos(@ 1+ @)+

wol-0 +2iyo

(1.10)

where x;, is the vibration amplitude, @ and ®’) are eigenfrequency and shifted
eigenfrequency respectively, F, and ® are the external force amplitude and frequency
respectively, yis the damping constant, ¢ is the initial phase shift.

So, phonon modes have strongly determined frequencies and generally speaking they
disappear with time but the sound that is connected with the external source of energy may
be of any frequency. Principally, the same takes place for the net of linked oscillators. It is
worthwhile to note that the solution for the system of linked oscillators also has a linear
combination of partial solutions, like (1.10), and does not contain retardation or any sign of
propagating waves.

Several remarkable features are present in periodic molecular nets that differ from
bulk materials [9]. First, there exists a precise atomic scale of boundaries between the net
fragments with the absence of intermediate layers. The second feature is that phonon
branches participate in sound transportation independently in zero-approximation and obey
separate boundary conditions. The third one is the strongly non-macroscopic characteristic
of elastic waves in small molecular fragments containing a periodic net. This is the reason for
the term “nanosound” to differentiate nanometer sound waves from macroscopic sound.

The averaging procedure plays an important role in understanding phonon, sound
and heat propagation in low-dimensional atomic nets. Classical dynamical equations in the
non-relativistic Born approximation do not contain retardation. This causes the infinite
speed of initial vibrational excitation propagation along the net or nanotube.

The first stage of averaging is the presentation of dynamic equations in a finite
differences view. More rough-averaging of the phonon mean free path distances is used to
describe heat spreading along carbon nets.




Hypersound

Phonon standing
waves

Macro-sound

Frequency spectrum
type

Continuous

Discrete

Continuous

Wavelength diapason

0--10° nm

No wavelength

More than 1 mkm

Size of state

No

Mean free path(*)

No

Frequency diapason

(10"' N 1013) p

Phonon bandwidth

Less than 10" ¢

Size of averaging
range

1nm (elementary cell)

No averaging

1-10 mkm

Examples of activity

Impact effects, external

Raman effect

External sources

processes sources

Energy of atomic Heat

vibrations

Energy of elastic
deformation

Transmitting energy

Extending waves of
atomic vibration

Standing waves of
vibrations(eigenstates)

Extending
deformation waves

Nature of
phenomenon

Note: (*) determined from the phonon lifetime relatively the interaction with other particles and external medium.

Table 1: Sound, hypersound and phonons

Non-linearity may be presented directly in the dynamic equations as a consequence of
averaging and transfer to the rough scale of the phenomena. It should be noted that non-
linearity is not connected with the damping of whole phonon states. The energy dissipation
and the width of states arise formally when first derivatives are added into the system of
classical dynamical equations.

Hypersound waves occur as the result of averaging of classical equations of atomic
dynamics. The transfer from equations in finite differences to continuous representation
gives second derivatives in both space and temporal. As the averaging acts at very small
areas having sizes of an elementary (conventional) cell, the result depends on the concrete
symmetry of the elementary cell.

a. Periodic linear chain:

The simple case corresponds to waves in a linear chain with periodically alternating
fragments. Let us consider a molecular chain with regular alternation of equal fragments of
two types. There exists three vibrational branches that correspond to three degrees of
freedom for each atom s=1,2,3. Immediately, from atomic dynamical equations, we have

2
_Vsza <J2c>S=O v
0z ’

s

0% < x>,
ot?

(1.11)




where a is the interatomic distance, <x>; is the mean atomic shift in s-direction, z; marks the
extended coordinate of s degree of freedom. Evaluations by data [5,12] (x=330 N/m) give for
sound velocity along the carbon net ¥=18.3 km/s. This value is close to the velocity of sound
in diamond in the (1,1,0) direction.

b. Square lattice:
Waves in hypothetical simple quadratic 2D lattice are described by equation

2 2 2
0 <32c>s_Vs28 <§>’+(Vs')2a <J§>s
ot 0z oy

Here we are taking into account that the elastic constant for motion transverse to the
bond direction differs from that for motion along the band. In 2D structure it is convenient
to mark the degrees of freedom through the generalized coordinates. In quadratic lattice s=z,
¥, p, the latter describes vibrations perpendicular to the lattice plane. (1.12) is anisotropic for

separate branches s=z, y. The medium in-plane isotropy manifests in correlation V', = V y

=0 (1.12)

andV , =V .

¢. Honeycomb lattice zigzag nanostructure, Z-branch:

The dynamics of longitudinal motion along the net or nanotube z-axes may be written
for the whole elementary cell having two atoms. For any i—atom we have for s=1 degree of
freedom,

mx, = —k(2x; — xf —x;)—0.25k(2x; —x; — x,f’ ) L.13)

where the upper indexes mark coordinates of neighboring atoms in y- and z-directions. Two
brackets in the rlght-hand part of (1.13) are transformed into the space coordinate second
derivatives after averaging along z-direction and y-direction. In the zigzag case, the
averaging distance between neighboring elementary cells equals to 3a/2 along z-axes and 3"a
along y-axes. Inserting these distances into the finite differences derivatives gives the wave
equation:

62<x>_V262<x>_V262<x>

— — =0
at2 b 4 ay2 z azz (1.14)

where, due to the system anisotropy for z-branch of vibrations as to z- and y-directions, we
get different wave velocities along z- and y-directions:

Vz=\/§Vy/2=l.50\//;/m (1.15)
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d. Honeycomb lattice, zigzag nanostructure, ¢-branch:

This branch is connected with the s=2 circumferential degree of freedom in a tube-
like net and y-motion in plane structure. For all i-atoms, we have the system of connected
equations,

" e d [ '
ey - A Al o B 4 D A A (1.16)

that transforms after the transfer to the finite difference view into the wave equation:

8t x5 A x5 8 Xx>

g 3y W e o (1.17)
g TR
= 5 \am (1.18)

where v, is the p-wave velocity along z-direction.

1.3.3b. Sound Boundary Conditions

Boundary conditions arise in this approach as a consequence of integrating dynamical
equations and averaging in the vicinity of the boundary. In contrast to electromagnetic
waves, the vibrational dynamics has the exact meaning immediately for a non-homogeneous
range including both sides of the boundary. To take into account the exact bonds between
contacting nets of different nature, one has to perform integration or summing before the
averaging procedure. In a sense, the sound BCs are a more pure phenomenon than BCs for
electromagnetic waves that represent correlation between averaged fields in contacting
materials.

a. Periodic linear chain:

The illustration to the BC standards is given by linear chains with periodically
alternating fragments. Examples may be carbine fragments alternated by polyethylene or
polyacethylene fragments.

ds
d1 dz d]_ /

Fig.1.11: One-dimensional periodical chain. Tags d, and d, mark the length of alternating chain parts.
Brackets show the physically small ranges of integration near the boundary.

Consider the range on both sides near the boundary of two molecular chains: from /, to
the end atom / of the left fragment d; and from atom r to ry on the right chain 4; (Fig.1.11).




mx, =—q(x, —x,)— x(x, —X4)
mxr = q(xl _xr)— Z'(xr - xr+l)
mx,, =—x(2x,_, — X, —X._,)

mxr+l - —x '(2xr+l —xr i xr+2)

mx, =-=x (2%, —x, %, )

me-'o - _Z(zxro s xro—l 0 xro+l)

Summation gives:

[/ Ty
imxi +Zm'£i ok _x(xlo —xlo—l)_l'(xrb i r0+l) (1.20)

i=l i=r

The averaging of the finite difference expressions, on the right side of (1.20), leads to
continuous space derivatives. Besides, taking into account the balk wave equations, we
change the time derivatives on the left side of (1.20 to the corresponding space derivatives.

] B . O <x> o<x> o<x>
dSmyi—s"+> mVv® =—2( ), +2'( ) (1.21)

0
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On the left-hand side, we perform the transfer from summation to integration within
the same limits and after the cancellation of end derivatives we get the exact BC,

mV2(5<x>) _rﬁVz(6<x>)
P iy e e e (1.22)

where a and g are lattice constants on both sides of the boundary.
(1.23) gives the first of two BCs for near itinerant ranges on both sides of the boundary
between chains of two types.

-a46<x>‘ L +a+6<x>*
£ oz . oz (1.23

Clx >"=2g X >

Another condition arises from the continuity of displacement <x> during the wave
transition through the boundary.The first BC expression is a kind of material correlation
like in the case of electromagnetic waves (EMW) in a medium.




An essential difference arises between sound waves and EMW when we begin
considering the free edge of the molecular net. Sound waves are principally absent in the
surrounding empty space. This leads to a special case of end boundary equations.

O i o

( e )i, =0 (1.24)

Besides, in the EMW case, there is no need for a transfer from discreet equations to
continuous ones due to the fact that the classical electromagnetic field is principally a
continuous phenomenon.

b. Honeycomb lattice:

BCs in a honeycomb lattice may be obtained in an integral procedure similar to that
considered above for a 1D periodical chain. The operation uses a substantially small
summation range. The notion of an infinitely small range is a corner-stone of the
electromagnetic theory in condensed matter. Its size (1-100nm) determines the size of a
conventional point of continuous medium containing electromagnetic field. It is the same for
the acoustics of hypersound extending in molecular nets where this has to be introduced on
account of the reduced dimensionality and mechanical nature of sound waves. The left side of
this interval may be active for hypersound, but in both cases the physically small element
must contain many atoms. The summation of dynamical equations inside the small range on
both sides near the boundary gives,

Uy / N ) To " Uy 1o
Z meif + Z Z’_ﬁx'l ==X Z (x’o’.f —x’o‘l’l')—'?z (x’o,f _x’o”,f)

J=dy  i=l J=dy i=r J=dy J=d,

! To
—0.257) (X, — %10y 1)—0.25 fz (X = Xpt)

i=ly

' T
02573 (X, ~%,4, ) =025 D (Xrsy —%,0,1)

i=ly

(1.25)

The parameters y-bar and m-bar belong to the right-hand material. The averaging and
transfer to continuous forms of derivatives and sums give:
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Here Sy marks the half-area of left material elementary cell. Taking into account the
wave equation (1.14) connecting time and spatial second derivatives, we have for the left side
of (1.26),

pam J'uody((6<x>)l_(6<x>)lo)+Vy2ﬂJ'I'odz((6<x>)uo_(6<x>)doj

£ S, Y% 0z 0z So oy oy

— M U 0<x> g x> —, m h g<x>» 0 <ix >

CLT IS L P e

‘SOLO y(( R ), ySOI, M g
(1.27)

Using explicit expressions for V; and S, we may cancel edge z-derivatives in /, and ry
points of (1.26) and (1.27) after substituting the left part of (1.26) by the expression in (1.27).
Due to the fact that the boundary, in this case, is situated perpendicular to the z-axes and
taking into account the limits ly —1, ro — r, dg — ug, we obtain the boundary condition of the
type in (1.22):

mV} o<x> _mV} 0<x>
3 ( = ) = 5 ( P ) (1.28)

If the boundary is situated perpendicular to the y-axes (armchair-type boundary), then
the expressions for V, and Sy allow cancellation of the edge y-derivatives along the ug and do
lines in (1.26) and the boundary condition takes the form

mV; (6<x>) _ml} (6<x>)
s, = B ay (1.29)

(1.29) represents material correlation between contacting media. The kinematic part of
the BC is similar to the zigzag type of boundary for the continuity of the displacement <x>
when the wave transits through the boundary (see (1.23)). It should be noted that exact
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cancellations during the derivation of the BC in the integral procedure performed above is a
manifestation of the united nature of both itinerant 2D wave equation and boundary
condition procedures. Contrary to electromagnetic waves where BCs are derived from the
integral form of Maxwell equations, the analogous integral form of atomic dynamics
equations are not very popular. Another significant difference with obtaining EMW
boundary conditions consists of the direct presence of elementary cell parameters in material
BCs ((1.22), (1.28) and (1.29)) and the atomic bonds elasticity.

1.3.3¢c. The Hypersound Frequency Bands in Periodic Molecular Nets

The hypersound wave of frequency  is described by two amplitudes inside each net
band.

iot+ik,z+ik ,y iot—ik,z+ik,,y
<x>= Ae ' 4+ Be ’

(1.30)

There exist two z-projections of the wave vector k& in a periodic binary molecular net or
linear chain depending on the hypersound velocities in the separated materials.

The system of BC equations is described by the matrix presented in Table 2. The
intrinsic problem for hypersound eigenstates when external sources are absent and the
system is isolated from another sound conductor may be solved analytically as in the case of
EMW in layered structures [11, 12].

B, A% B; A, B, A5 B3 A; B A; By Ax Bn A%
Z_-1__-1.__0_0__0 0
Yo 'q2 n., 0 0 0 O
0 o2 O2 -1 -1 50 0
0 &% & m m 0 0
T SR SN Y i e TR
0 0 0 81 51’ Enz ‘nz. 0 0 E
0 0 0 0 0 :0'2 0'2* '1 -1 :
18 &% m om
'0 0 O1 c1

iz oy -1 -1 §

5 & n on

0.0 o 0 :Z |
& By

Note: Dotted lines show the minor u that is matrix element A4;,.

Table 2: The matrix of boundary condition equations
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The generalized dispersion equation is represented in row-matrix-column production

2af O
(Z,,-Y)A L =0 A= 1@ (1.31)

r

where n=N-1; matrix elements x4, i1, v and A are minors of the dynamical matrix (Tab.2),

index / corresponds to the left and index r corresponds to the right end of the net. The matrix
A describing the lattice period in turn, is the product of each material matrix 4=4; 4,. The
matrix elements for the first instance are as follows:

I =p =-2iyka coskd; v,=-2i(yka) sinkd; A =2isink.d,

Z,=coskd,; Z =-coskd,; Y =-7ka,sinkd, (132)

r

A

The n-degree for transfer matrix A is found by canonical transformation,® ’
diagonalizing the matrix A.

~ 1 Xp —le) A 1 (xn le) "
O=— .07 = . D =det(®)",
D (_xlz x, )’ X, Xp)’ ©);

A" = 1 [ %%nf) = Xgnly X% - K

n n n n|s (1.33)
D XX (i = 12) X X fo — XX i

A . t < I O+
where x, are elements of matrix A eigenvectors: X j . (xl 12X12 )and X g . (x12 > xzz)

Xy =Xy =Vs X, =f—H,Xy=f,—pu

The eigenvalues f;, /> are,

foo=(u+ @) 22 J(u- @)/ 2) +Av (1.34)

Taking into account (1.32)-(1.34) and (1.31), we obtain a generalized dispersion
equation for hypersound in periodic structures, describing sound wave frequencies and type
of state: local or band.

fln(yrxzz —Z X NZx,, —Yyx,) - fzn(erlz ~Zx NZx, —Yx,)=0 (1.35)
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Extended band states exist in the frequency range with a negative value of
discriminant in f; or f. In this case, there are two parts on the left side of (1.35) which are
conjugated and the partial dispersion equation for band states takes the form

visin(np+¢,+¢,)=0 (1.36)

where n,, ¢; and ¢, are complex phases of three multipliers in the first term of (1.35). A
positive discriminant corresponds to frequency gaps. The result of band calculations using
(1.35) is presented in Fig.4 for a 16-periodic carbine-polyethylene linear chain C-CH,.

The frequency is normalized.

Chain lattice C-C

M_M\W‘i‘;
\\

——“;*‘—k—b_‘

0. 00 — v v s I . . v -
S0 75 100

d 1 id o
Fig.1.13: One-dimensional 16-periodic elastic chain carbon-CH,. Frequency-size diagram.
dy/d, gives the dimensionless length of the “1-material” fragment, d, =80d,

dp=0.13nm is the accepted length unity (for normalizing) and w, =20.48 THz is the
accepted frequency unity.

A value of ®y = 20.48 THz was obtained using the elasticity coefficient of the carbon-
carbon bond y =330 N/m: oy = (x/m)m. The z-wave velocity of sound in pure 2D graphene
sheet or tubulene is V;,=16730m/s. The velocity of sound in a hydrogenised graphene sheet is
supposedly 7.5% less due to the bigger site mass. Characteristic frequencies are of the order
of terahertz for chosen fragment sizes of the order a ten nanometers. If the fragments of
chains that are in contact are taken to be near hundreds (10?) nanometers one may observe
the same picture in frequency range but ten times lesser.

Calculations undertaken for different frequency and size scales gave very high
similarity in the obtained band pictures at scale transformation o—co, d; ,d; — dy/c,d>/c.
With increasing frequency, the bands and gaps became smaller and the slopes of the lines
increase. Each frequency band contains the number of states (modes) that coincides with the
number of periods in the structure. Only the lower band consists of one less state due to the
absence of the trivial (zero-frequency) solution of (1.35). The width of the gap depends on the
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difference between relations y/m for contacting chains and it becomes approximately equal to
the band width at m;~6m;.

In two-dimensional systems consisting of alternating flat or tube fragments of different
kinds, the hexagonal lattices have a new parameter — the incidence angle of the hypersound
wave. Standing waves existing in the isolated periodical net depend on the direction of the
wave vector. Due to the principal anisotropy of the propagation of z-waves in the hexagonal
lattice, the constant velocities in the z- and y-directions are different. Therefore, the wave
vector depends on the angle @ of wave propagation.

k= - (1.37)

\/Vf cos’@+V, sin’ @

The same expression exists for the second material, for which the analogous notations
are O-bar and V-bar. The Snellius-Descartes law & = I?y gives for transition from medium-1

wave to medium-2 wave.

(1.38)

Z—branch, zig-zao Carbon—bihudrocarbon nanotube
1

Fig.1.14: Two-dimensional flat 14-period elastic graphene-CH, net angular-frequency
diagram. Calculated by Eqtns.1.35 and 1.36; d,=100d,, d,=200d,, ® = (0,0.1)c, .

The result of calculations by (1.36) for a 2D 14-periodic flat graphene-graphene or
closed tube-tube system is presented in Fig.1.14. Accepted unities are ®y =20.48 THz and
x =330 N/m for both media. The z-wave velocity of sound in medium-2 was taken to be
1.573V; and V;=1.388V in the acoustically less dense medium. Characteristic frequencies are
of the order of teraherzs. The scale transformation o—co, dy, d; — dy/c, d2/c does not change
the system band structure in the 2D case either. The number of modes inside each frequency
band coincides with the number of periods in the structure.
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Z—branch, zig—-zag N=12 Carbon—"Silicon™

0.0 O.1

o.05
co/ooo
Fig.1.15: Two-dimensional flat 12-period elastic graphene-Si net. Calculated by (26), (27) angular-
frequency diagram: d,=100d,, d,=200d,, ® = (0,0.1)wy

The width of the gaps depend directly on the difference between y/m and 7 /m. This
property and band structure may be illustrated by an imaginary system — acoustic crystal
with sound velocities differed four times: /, =1.53V, (Fig.1.15). In Fig.1.14, we see that both

bandwidth and gap width are almost regular at small incidence angles. Increasing the
frequency leads to bands touching one another and splitting again. A similar phenomenon
was observed in 1D photonic crystals [11, 14] for electromagnetic field structure.

The whole intrinsic reflection range occurs in periodic systems due to the difference in

wave velocities of different materials. Equation 1.38 illustrates this when o’ =kV,’ and the

formula gives unity. Then the angle of whole reflection in the acoustically less dense first
medium is determined by the expression,

V.

F4

sin =

= e (1.39)
ey

Waves from medium-1 that have the incidence angle bigger than 0,,., lose extending
character and become damping after the transfer into the acoustically less dense medium-2.
Wave vectors become complex I?, —)il?z and trigonometric functions in (1.32) become
hyperbolic. In the case under study, 0.« equals 1.22. The upper part of the frequency-angle
diagram was calculated by (1.35 over a wide frequency range. The obtained results show that
hypersound bands passing into the whole reflection range degenerate into nmarrow lines
separated by relatively wide gaps.

It is worthwhile to note a difference between sound waves and EM waves in periodic
structures that appears in the immediate vicinity of the BC - the boundary microscopic
structure parameters in case of hypersound. The other circumstance is the principal
presence of anisotropy in the sound wave equation for all vibration branches and all lattice
types. In a certain sense, the wave mechanics of hypersound is the theory of spatially
dispersed waves in anisotropic media [15]. Another peculiar property of sound waves in
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separated structures is the absence of exit waves when all solutions have the characteristics
of standing waves.

1.3.3d. Summary

The developed simple model of vibrational dynamics of “bulk” flat and closed carbon
and boron-nitride (BN) nanostructures allows immediate transition to the boundary
condition problem for sound of small wavelengths in tailored nets. As for the existence of flat
carbon or BN systems, we predict that they are geometrically stable and may bridge the
inter-electrode space in a strong external electric field. The reason is that negative charging
accompanies the process of structure adsorption onto the cathode surface. The affinity
electrons captured by the net may prevent its rolling up. The linear approximation used here
gives a possibility to consider the vibrations of teraherz frequencies in low-dimensional
molecular nets separate from other types of sound. All vibrational branches, z, ¢ and p, obey
BC of the same view. The first two branches are mutually complementary for zigzag and
armchair nanotubes [13, 16]. The third branch, called the radial mode p, is a slow elastic
wave compared with other branches. A bandwidth value of phase velocity V, = a-4,/7, found
from radial frequency, is more than twenty times less (0.85km/s) than for the z-branch. The
radial branch of vibrations plays a main role in heat transport but does not participate in
sound energy transport.

Hypersound accompanies fast processes that occur in molecular nets during the passing
of an electric current - the capture of an electron from the external medium, interaction with
high energy particles and photons. On the other hand, sound irradiation in such processes
may be used as the grounds for particle detecting. The periodical structures considered
possess non-trivial frequency band structure for hypersound that allows us to raise the
sensitivity of detection. Comparatively slow processes of adsorption also influence the
hypersound band structure because adsorption bonds modify host atomic dynamics. The
possible adsorption manifestation is the appearance of local states accompanied by a shape
transformation of bands. If the adsorption occurs in a mixed gaseous media, each of the gas
components matches the individual kind of local hypersound states. This may serve as a tag
for sensor devices.

1.3.4. Conclusions

e The PQDM proposed is able to describe complex interdependent phenomena in
open and closed molecular nets: phonon structure, phonon-phonon interaction, statistics,
kinetics and irradiation.

e Our arguments based on PQDM put in the forefront the eigenstates of weakly
bounded captured phonons participating in heat energy transport through the molecular
bridges.

e Our theoretical approach explains the nature of extremely good thermal
conductivity in carbon and carbon-like materials by the existence of the soft vibration

branch (low frequency p-branch of phonons with high DOS at thermal energies)

accompanied by structure hardness (high frequency ¢- and z-branches) providing large
mean free path for phonons. We conclude that the radial mode contribution to heat transfer
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is dominating in the temperature interval under consideration with the supposition that the
phonon-phonon interaction constant G, participating in the end atoms constants G; does not
depend on the phonon type (p, ¢ or z). Then, p-vibrations essentially prevail due to the large
density of states in narrow low-frequency p-band compared with the DOS for ¢- and z-
vibrations. So, at actual temperatures p-branch of phonons determines heat propagation
through the single-walled nanotube.

e Our results are in accordance with experiments for suspensions by David Cahill
et.al (Letters, (Oct. 2003)

If we add new layers or new walls to single-walled NT, it makes the radial p-branch of
vibrations harder (see Fig.1.5). This causes the sharp decrease in phonon density of states at
the same phonon mean free path. The phonons leave the active thermal zone and heat
conductivity decreases. Therefore, atomic monolayers and isolated single-walled nanotubes
have to be the best thermal conductors. If we unite SWNT into the tight bundles, the radial
mode quenches due to new inter-tube bonds arising. PQDM approach predicts the sufficient
worsening of thermal conductivity in SWNT tight bundles comparared with free SWNT. The
method of thermal conductivity enhancement in this case is “dissolving” of inter-tubes bonds
and turning out the tight bundles into the system of almost free tubes.

Intercalation may be a good way to do this “dissolving” of existing Van der Waals
interaction inside bundles. From F.R.Gamble et.al. (Science, 168,568(1970)), the distance
between atomic layers increases more than ten times after intercalation by organic
molecules. For our case it is enough to increase inter-SWNT distances three or more times
and we will obtain a really significant increase in thermal conductivity.

Our proposition is to modify the experimental technique of preparing NT bundles and
accompany it by intercalation. Intercalation conserves the large density of states (DOS) of
acoustic (radial) phonons in the actual temperature range of frequencies. Our results show
that the dominating contribution is from radial (breathing and bending) vibrational degrees
of freedoms. Maybe only bending modes are important it is not possible to tell with certainty
because all the degrees are present in a common sum. This we will hopefully clarify soon.

molecule or
rasarnoprmrticl

A

R X P SE- ::'6;:.. : e
Fig.1.16: A nanotube bundle intercalated by organic molecules or nanoparticles. Intercalation conserves big

acoustic (radial) phonon DOS in actual temperature range of frequencies. The distance in 10 or more
Angstroms will be enough to switch on radial acoustic phonons for thermal conductivity
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We also considered temperature dependencies for thermal coefficient in the entire
temperature range and investigate size effects for graphene and tubulene bridges.We studied
the transfer of vibration waves through the contact of differing carbon nets and nanometer
sound wave interference in periodically alternating 1D or 2D molecular nets of two types.
Boundary conditions for hypersound in tailored molecular nets are obtained ab initio by an
averaging procedure. The intrinsic problem of vibron egenstates is calculated for carbon net
periodic structures. It is shown that hypersound standing wave frequencies are grouped into
typical bands divided by frequency gaps. The whole intrinsic reflection effects are
considered. In both cases the boundaries between cross-linked fragments lay in the plane
perpendicular to z-axes.
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Chapter 2: SYNTHESIS OF NANOSTRUCTURES

2.1 Synthesis of Zeolite Encapsulated Nanotubes

Considerable progress has been made in the synthesis of multi-walled and single-walled
carbon nanotubes (SWCNT) by catalytic chemical vapor deposition (CVD) techniques.
However, a typical preparation may result in a complex mixture of nanotube sizes and types.
Between 1 and 3 nm in diameter there are 403 possible structures alone. To prepare one size
and a single type of carbon nanotube remains a challenge. There are only 3 pessible
structures ((5,0), (4,2), (3,3)) for the 0.40 £0.01 SWCNT, compared with the 403. To prepare
such small diameter SWCNTSs, one might employ a matrix to control the size during
synthesis. It was reported that mono-sized (0.4nm) single-wall carbon nanotubes (SWCNTSs)
can be formed in the channels of large single crystal AIPO4-5 by pyrolysis of the organic
template, tripropylamine (TPA), without any other external carbon source [Tang et al, Appl.
Phys. Lett., 73 (1998), 2287].

We have now prepared single-wall carbon nanotubes in the channels of UTD-1, UTD-
18 and UTD-12 (shown below) which are structurally related zeolites having one-dimensional
channels that run in parallel. All of these zeolites are made using various cobalticinium ions.
The thermal decomposition of these organometallic templates results in cobalt catalyst as
well as a carbon source for making carbon nanotubes. The dimensions of the pores dictate
the size of the resulting nanotubes such that we can systematically vary the CNT diameter by
using the 10, 12 or 14 MR structures.

12 MR

Fig. 2.1: 10, 12 or 14 MR structures

Fig. 2.2 shows the typical Raman spectra of the as synthesized UTD-1 (bottom - black)
and the SWCNTSs recovered after HF treatment of the UTD-1 crystals (top - purple). The
Raman spectrum of the as synthesized UTD-1 shows characteristic Raman-active modes of
CHj; symmetric stretching (2912 cm™), the CH; anti-symmetric deformation (1430cm™), C=C
stretching (1650 ¢cm™) and the symmetric metal-ring stretching vibration (365cm™) of
Cp*2Co" molecules. When the sample is pyrolyzed at 800°C for 5 hrs and then HF treated,
new Raman peaks appeared at 1600 cm™ and 432 cm” (shown in Figure 2 top purple). The
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strongest low-frequency Raman mode at 432 cm is expected to be the radial breathing A,,
mode. The radial breathing A;;, mode is not sensitive to nanotube structure but to the
nanotube radius. The observed frequency of 432 cm” indicates the radius of the carbon
nanotube is 0.54 nm.

60 x2 After heating and HF treatment

Intensity (a.u.)
3

As-synthesized UTD-1

30 o
20 4 n—w&

Y v v " v v v

0 500 1000 B00 2000 2500 3000
Raman Shift (cm-1)

Fig.2.2: typical Raman spectra of as synthesized UTD-1 and SWCNTS recovered after HF
treatment of the UTD-1 crystals

'SWNT from
UTD-1

20nm EMT = 10.00 & Signal A = InLens  Dete 14 Nov 2002
Mag = 20000K X }—| WD= Smm PhotoNo.=2198  Time 104858

Fig.2.3: SEM image of a SWCNT obtained after HF treatment
of calcined UTD-1

Fig. 2.3 shows the SEM image of a SWCNT obtained after HF treatment of calcined
UTD-1. It shows the size of the carbon nanotube is less than 1 nm and at least S500nm long,
consistent with the Raman spectrum. The SEM results also indicate that the SWCNTs
prepared in the UTD-1 channels are stable without the silica matrix. A high resolution TEM
image of the SWCNTs recovered from UTD-1 is shown in Fig.2.5. From this image an
estimate of the nanotube diameter is ~0.5nm. The exact type of carbon nanotube prepared in
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UTD-1 is uncertain but possible nanotubes might be the (4,4)-0.54nm, (7,0)-5.5nm and the
(5,3)-0.55nm.

Zeolite UTD-18 is structurally related to SSZ-31 (polymoph C) which is comprised of
elliptical 12 MR pores with dimensions of 8.6 x 5.7 A. Fig. 2.4 shows the typical Raman
spectra of the as synthesized UTD-18 (bottom - black) and the SWCNTSs recovered after HF
treatment of UTD-18 (top - purple). The Raman spectrum of the as synthesized UTD-18
shows characteristic Raman-active modes of C=C stretching (1650 cm™), the CH; anti-
symmetric deformation (1480 cm™), CH; wag (1235 cm™) and twist (1211 cm™), C-H in phase
bending (1052 ¢cm™) and out-of-plane bending (849 cm’) and the symmetric metal-ring
stretching vibration (332 cm™) of the (EtCp);Co’ template molecules. When the zeolite is
heated at 800°C for 5 hrs followed by HF treatment, new Raman peaks appear at 1606 cm™
and 445 cm™ (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 445
em” is expected to be the radial breathing A;, mode. The observed frequency of 445 cm™
indicates the radius of the carbon nanotube is ~0.52 nm. The higher frequency radial
breathing mode and smaller SWCNT diameter compared with UTD-1 is consistent with the
smaller pore size of UTD-18. Fig.2.6 shows the SWNTs recovered from UTD-18.

2000 «

- After heating and HF treat

1600 4
- 1400 4
: 12001
£ 100 4 *
W
s 800 4 ;
£ 6004 As-synthesized UTD-18

400 4

200

0 < . - = - %
0 500 1000 1500 2000 2500 3000

Raman Shift (cm-1)

Fig.2.4: Typical Raman spectra of the as synthesized UTD-18 (black) and the SWCNTSs recovered
after HF treatment of UTD-18 (purple)
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BII-200 from UTD-1 96179

D-11I-200 from UTD-1 96178

Fig.2.5: SWNT recovered from UTD-1
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Fig.2.6: SWNTs recovered from UTD-18

Zeolite UTD-12, closely related to ZSM-48, possesses non-interpenetrating linear
channels defined by 10 membered rings having dimensions of 5.3 X 5.6 A. Fig. 2.7 shows the
typical Raman spectra of as synthesized UTD-12 (bottom - black) and the SWCNTs
recovered from UTD-12 after HF treatment (top - purple). The Raman spectrum of the as
synthesized UTD-12 shows the characteristic Raman-active modes of C-C stretching
(1421cm™), the C-C ring breath (1113cm™), C-H in-phase bending (1069cm™) and C-H out-
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of-plane bending (849cm™), the symmetric metal-ring vibration (318cm™) and the ring
deformation (385cm™) of the Cp,Co* template molecules [30]. When the sample is pyrolyzed
at 800°C for 5 hrs followed by HF treatment, new Raman peaks appeared at 1597cm™ and
559c¢m™ (shown in Fig.2.7 top purple). The strongest low-frequency Raman mode at 559c¢cm™
is expected to be the radial breathing A;, mode. The observed frequency of 559cm™ indicates
the radius of the carbon nanotube is 0.41 nm. This could very well be the smallest carbon
nanotube ever made.

e After heating and HF treatment
000 «
000 «
10000 4

8000 <

6000 «

o As-synthesized UTD-12

2000 4

Raman Shift (cm-1)

Fig.2.7 typical Raman spectra of as synthesized UTD-12 (black) and the SWCNTs recovered from
UTD-12 after HF treatment (purple)
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D-111-188 from UTD-12 96168
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D-111-188 from UTD-12 96167

SWNTs
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from UTD-12

Fig.2.8: SWNTSs recovered from UTD-12

CNTs this small may be metallic and superconducting. Preliminary magnetic
susceptibility xT-dependence measurement of the UTD-12 (with SWCNTs) after HF
treatment is shown below. Some of the unusual magnetic properties of the SWCNTSs obtained

82




in the UTD-12 channels may be due to residual Co. However, there may be some evidence of

superconductivity.
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Deng, S.; Dalton, A.; Terasaki, O.; Balkus, Jr., K.J., “Carbon Nanotubes Synthesized
in Zeolites UTD-1, UTD-18 and UTD-12” Proc. 14™ Int. Zeolite Conf. 2004, 903-910

Deng, S.; Dalton, A.; Terasaki, O.; Balkus, Jr., K.J., “Carbon Nanotubes
Synthesized in Zeolites UTD-1, UTD-18 and UTD-12” Stud. Surf. Sci. Catal. 2004, 154.

An additional paper incorporating magnetic susceptibility data and synthesis

variations is possible.
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2.2  Synthesis of Conjugated Polymer-CNT Complexes

Poor heat dissipation in organic and polymeric electronic devices is a key problem that limits
their performance at high current loading. It is known that addition of quite small amounts
of nanotubes can improve the performance of organic devices, apparently due to improved

heat dissipation via the nanotube component.

Various CNT-CNT interactions that can compromise the spectacular thermal conductivity
properties of individual CNTs are shown in Fig. 2.10(a). The focus of this effort was to create
new types of donor (acceptor) polymers, which could provide better unbundling of CNTs
(Fig. 2.10(b)) to enhance dissipation of the heat generated in polymeric devices such as

OLEDs or solar cells.

CNT-CNT intersections

(a)

Fig. 2.10: Representative CNT-CNT interactions that compromise high thermal conductivity of CNTs (a),

Breaks in bundles

Bundle-bundle \
Bundle-
junctions

(b)

and reduction of these effects due to unbundling (b).
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Fig.2.11: Bundle exfoliation using conjugated polymers
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Several types of debundling polymer systems are known. Fig. 2.11 shows that CNTs can be
effectively debundled using a phenylene-vinylene (PPV) conjugated polymer. Conjugated
polymers (CP) afford the additional opportunity to introduce charge transfer to enhance CP-
CNT interactions that can be “tuned” by polymer design.

Several PPV-derivatives were synthesized to determine their abilities to debundle
CNTs with the goal toward enhancing thermal conductivities in CP-CNT composites. The
well-studied MEH-PPV was prepared according to literature procedures and used as a
reference material for the composites. The molecular weights of the samples used were
292,000 (Mn) with a polydispersity of 1.04 and 281,000 (Mn) with a polydispersity of <1.2.

a_
BEH-PPV BEHM-PPV MEH-PPV

Bis-ethylhexvloxy-PPV precursor
Synthesis
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HBr/HOAc B

OEH OEH

BEH-PPYV precursor monomer synthesis
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Fig. 2.11

The composites were prepared using the following protocol. SWNT's were added to a
solution of MEHPPYV (or other CP) in THF or CHClz. The resulting suspension was stirred
overnight and allowed to settle. The supernatant was then decanted and the composite film
was obtained by rotary-evaporation of the solvent.

L

Fig. 2.12: The dramatic effect of adding SWNT to MEH-PPV (or BEH-PPV) can be seen from the
accompanying figure. The pure polymer produces clear red films while the composite films exhibit a
blue-green metallic sheen.
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Fig. 2.13: Shows the solutions of BEHM-PPV mixed with SWNT in different concentrations. SEM images
of several composite film compositions are shown below
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Fig.2.16: Enhanced dispersion of 2% SWNT in BEHM-PPV compared to 5% MEH-PPV
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State Indicates high wetting of polymer
on lattice of tube

HRTEM of MEHPPV-CNT
Composite

Figure 2.17: Even with modest dispersion of SWNT with MEH-PPV, the nanotubes are
strongly wetted by the polymer composites as evidenced by the efficient
energy transfer (quenching) in the excited state.

The hydrophobic SWNT mixed with MEH-PPYV in chloroform solution gave rise to
the agglomeration shown above in Fig. 2.16 (left). Better distribution of SWNT was obtained
for BEHM-PPV polymer (Fig. 2.16, right). Strong anisotropy of A(T) (Fig. 2.18) in MEH-PPV
films mixed with SWNT indicates the in-plane distribution of nanotubes along the film.
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Figure 2.18: Temperature dependence of thermal conductivity of MEH-PPV conjugated polymer reinforced by
2% SWNT. Open circles shows the heat flow along the film and solid circle corresponded to the
thermal conductivity perpendicular to the film surface.
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The concentration dependence of the thermal conductivity perpendicular to the
MEH-PPYV film surface is shown below (Figure 2.19). The considerable enhancement of the
thermal conductivity is much below expectations, however, perhaps because of poor
distribution of SWNT in MEH-PPV matrix.
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Fig. 2.19: Concentration dependence of thermal conductivity of MEH-PPV + SWNT composite. Insert
shows the I-V curve for MEH-PPV +2% SWNT composite.

The high frequency dependence of the electrical conductivity shown in the insert
indicates the non-ohmic interconnection between carbon nanotubes. The agglomeration and
non-ohmic contacts are the main reasons causing the low thermal conductivity of the studied
composites.
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Chapter 3: CHARACTERIZATION AND OPTIMIZATION OF PHONON SPECTRA,
THERMAL CONDUCTIVITY AND SUPERCONDUCTIVITY

3.1. Thermal Conductivity Measurements on Nanocomposites with CNTs

3.1.1. Comparative method in PPMS

To eliminate the heat losses through lead wires the comparative method was used for
thermal conductivity measurements of thin CNT fibers and films. The PPMS (Quantum
Design) Thermal Transport circuit was modified for the comparative method as shown in the
schematic diagram below (Fig.3.1).

Heater
T,
Nickel standard
sample
Thermal contact
T,
Sample Smk

Fig.3.1: Schematic diagram of sample connection for comparative
measurement of thermal conductivity using the nickel standard sample.

This method is a variation of the methodology commonly known as the cut-bar
technique. In the cut-bar technique, a specimen of unknown thermal conductivity is
sandwiched between two pieces of material with known thermal conductivity using a thermal
grease and a pliable metal foil to eliminate interfacial thermal contact resistance between the
materials. Thermocouples placed along the lengths of the three material pieces yield
information on the rate of heat flow through the two reference-material sections of known
conductivity. The heat-flow rate can then be used to determine thermal conductivity of the
unknown specimen using the one-dimensional Fourier conduction equation:

Q=1A dT/dx 3.1

where Q is the rate of heat flow, 4 is the thermal conductivity, A is the cross-sectional area
through which the heat flows, and d7/dx is the temperature gradient. Experimentally, dT is
approximated by AT, the finite temperature difference, and dx is approximated by Ax , the
distance over which the temperature difference is measured.

4 |




In our measurement method, only one section of known material is used. Assuming
that the heat flux through both samples and the Ni-standard is the same, the thermal
conductivity of the unknown sample, 4; can be calculated as:

Qs = Qr = 4A; (ATJ/L;) = ARAR(ATR/Lg )- 3.2)
G= AA/L is the sample conductance.

The thin SWNT fibers shown in Fig.3.2, in comparison with human hair, were
arranged in parallel stack to enhance the sample conductance (see Fig.3.3). The fibers were
glued to gold covered copper leads by silver filled epoxy H20E (EPO-TEK) [1]. The four
probe assembly shown in Fig.3.3.

Fig.3.2: Bunch of 8 fibers prepared by coagulation method compared with human hair (vertical). The
PVA polymer concentration in bunch is 35%

Fig.3.3: Four probe assembly of 16 fibers each comprising 8 fibers with 35% PVA.
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3.1.2. Tunable thermal conductivity in carbon nanotube paper

Phonon transport in one-dimensional (1D) nanostructures such as carbon nanotubes
has recently received a lot of attention. The very high thermal conductivity (10,000 W/m-K)
predicted theoretically for single tubes [1.2] was not achieved experimentally. Due to the
phonon-phonon interaction between carbon nanotubes, the measured thermal conductivity
of a collection or a mat of carbon nanotubes was found to be much lower than predicted [3].

In disordered SWNT ‘mat’ samples, the room temperature thermal conductivity is

only~35 W/m-K [3]. However, in samples consisting of aligned SWNTs, the room-

temperature thermal conductivity normalized to crystalline nanotube arrangement is above
200 W/m-K [4]. On the other hand, the thermal conductivity of a 14 nm diameter multiwall
carbon nanotube (MWNT) measured by a microfabricated device [5] was about 3000 W/m-K
at room temperature, which is in close agreement with the prediction value [1]. However the
T° temperature dependence suggests that MWNT behaves rather like a 2D system thermally.
The very important result of this work, for our investigation, is a decrease in thermal
conductivity with an increase in the number of nanotubes in the bundle: an 80 nm diameter
MWNT bundle has the thermal conductivity of about ~1200W/m-K, and a 200 nm diameter
MWNT has about ~300 W/m-K respectively. The decrease mentioned above, compared to
thermal conductivity in single nanotubes, is a consequence of a phonon-phonon interaction
leading to the rise of umklapp processes between interconnected nanoubes in bundles or
mats.

In this part of the project, we will show that charge injection in carbon nanotube
bundles in bucky paper will decrease the phonon-phonon interaction between carbon
nanotubes by increasing the nanotube separation as was predicted in theoretical part 1.

3.1.2a Experiment

18 Techniques

To measure the change in thermal conductivity, the laser flash method was chosen to
measure the thermal diffusivity along a carbon nanotube paper. Thermal diffusivity D relate

to the thermal conductivity 4 by a simple equation,
l =p'Cv'D, (3'3)
where p is the density and C, is the heat capacity.




The design of laser flash method is very appropriate for in sifu measurements and D is
the most sensitive parameter, in (3.3, to structural changes in medium with low heat capacity
and density. A schematic view of the laser flash method used in this study is shown in Fig.
34.

A 135 mW IQ series laser module from Power Technology Inc., operated together
with a build-in modulator or chopper (model SR540 with Chopper Controller), radiate a 2
mm diameter modulated beam with 830 nm wavelength. The laser beam is focused onto the
sample with 50 mm focal length lens (or cylindrical lens for wide strip). The sample is
mounted between two gold standoffs on a ceramic sink. The heated spot is adjustable so that
it can be made occur at any position on the front surface of the prolonged specimen by using
three-axis translation stages to move the sample holder (or the vacuum cryostat) together
with the specimen. The periodic heating technique can provide two independent methods:
frequency-variation method when the position of the heated spot is fixed just opposite to the
sensing point and only the modulation frequency is changed and distance-variation method
when the modulation frequency is fixed and the distance between the heated spot and the
sensing point is changed. In the present study we are using distance-variation method.

Q x
Sample

Laser ﬂ" O >
Function ] 1
Generator

e Thermo| |couple
Preamp.

Digital Lock-in
osciloscope amplifier T

Fig.3.4: The instrumentation of laser flash technique used to measure the thermal diffusivity of SWNT
bucky paper.

The measurements are made by changing the distance x between the fixed
thermocouple tip and the laser spot in stationary conditions. This means that each
measurement is done when the temperature distribution has reached its steady state and no
dynamical problems arise. In our case, because of very thin and narrow bucky paper strip
and very sharp thermocouple tip (d<10pm), the relaxation time was less then 1s. To reduce
the thermal inertia of thermocouple we used only one (constantan) wire with additional
chemical treatment. The tip of 75pum constantan wire was etched by 50% HNO; water
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solution by dipping 1 mm end in solution for 1 min. The resulted tip diameter was less then
10pm. The other wire of thermocouple is the studied carbon nanotube strip.

The thermoelectrical signal from thermocouple constantan/carbon nanotube is
amplified with Tektronix differential preamplifier ADA400A with tunable band. Then the
resulted signal compared with reference signal from Agilent functional generator 33220A to
obtain the phase delay between two periodic signals with the same frequency: heat source
signal modulated with generator 33220A and signal of thermocouple tip outstanding on
distance x. The phase delay is read from the display of lock-in amplifier SR540 and the
magnitude of thermal signal from the two channel digital storage oscilloscope Tektronix TDS
2002.

If we have a periodic point heat source which liberates heat at the rate I,exp(iwt), the
temperature on a line at distance x from the heated point is related to the temperature
T(x=0) by

T(x) =T(0)-exp(-x/l,) 34)

where /; is the thermal diffusion length. The ratio of the two moduli M of the thermal signals
taken along the lines at x=0 and x is

M(x)/M(0) = 2 exp(-x/l;), or In A};Eg; =In(2)—x\7f /D 3.5)

and the phase ¢ of the thermal signal on the distance x is ¢ = -x(r-f/D)"?, where f is the

frequency of modulation of the laser beam intensity and D is the thermal diffusivity.

The calibration on the thin gold wire using phase shift measurement via distance
shows very linear dependence and excellent agreement of thermal diffusivity, D=128.9 mm?/s
with the data presented in the literature, D=130 mm?/s, [6]. However for CNT paper we have
to take into account the high surface area and radiation losses.

[ © Gold wire, d=200 ym |

Oy, =128.9 mm’/s

2

Phase shift, degree
g

5

1
0.6

Distance, mm

Fig.3.5: Phase shift of thermal signal chopped with the frequency 20 Hz as a function of offset between
laser beam and thermocouple tip.

Charge Injection




Small diameter lithium or sodium ions seem to be ideal for ion insertion between
nanotubes. 1M NaCl aqueous solution and platinum counter electrode was used to charge a
thin bucky paper strip (20x 0.5x 0.035 mm®) in cronoamperometry regime on CHI 660B
Electrochemical Station. The positive (CI') or negative (Na*) charges with current 0.1 mA
was applied to CWNT strip during 1h at 0.8V. Than the sample was washed in DI water and
dried in vacuum during 4 h.

3. Results and discussion

a. HipCO:

First, we measured the thermal diffusivity of bucky paper consisting of HipCo
SWNT. Fig.3.6 shows the phase shift of the thermal signal collected at different distances. To
make sure that dipping in electrolyte solution and washing in DI water do not change the
thermal properties of bucky paper, we first carried out the test measurement shown by green
solid circles.

© HipCO (15x0.5 mm), prisitine A
300 |- ® Wetted in 2M NaCl, washed DI 3’
® Charged, Na’, 1h, 0.8V o
- © Charged overnight, Na’, 0.8V i
® Charged overnight, repeated S
250 |- ® Charged overnight, repeated, 10 Hz /,r':-"
A Charged Cl, 10 Hz 8 e
. A Charged Cl, 5 Hz e
Q 2 el
8 200 - achargsd Na, 10Hz—1 2.6 mmz /s \,:/
on o =11.5mm’/s .7
(D) charged ClI, 10Hz >
o] - e
-“E 150 |- &
w2 s = 2
A B
Q B RS apvlstlne, 5Hz 10.8 mm /i
§ 100 = charged Na, 5 Hz =12.9 mm2 /s
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50 |-
1 1 1 1 1 i 1 A 1 1 1 1 1
0.0 09 1.0 1.5 2.0 2.5 3.0

Distance, mm

Fig.3.6: Thermal diffusivity of bucky-paper on the base of HIPCO SWNT.

b. Magnetically aligned bucky paper:

Magnetically aligned SWNT paper was obtained from National High Magnetic Field
Laboratory in Florida, USA. SWNTs prepared by laser ablation technique at 1100° C, were
purified and deposited by vacuum filtration from water suspension under high magnetic
field, 17T.
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To overcome the dominant role of contact resistance in SWNT bucky-paper,
multiple attempts were made to align disordered bunches. It is supposed that increasing the
paper density (and consequently contact surface area) and increasing the number of contacts
in the alignment direction will increase the conductivity of the oriented paper significantly.
Below, in Fig.3.7, the temperature dependence of resistivity for magnetically aligned “laser”
SWNT bucky-paper is shown.
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—o— 1, Sample 3 1 4 1”57
- | S ATD=4.5%10"*exp(200/T) ™
E \ e 102k .
oo (o]
%‘““o = . -
g e, S 141 T 1 g
2 10°f B
5 @
a 173
@
8 «
o,
oy
= =LImQc .
Nu“m.....,m “»‘i'::’:"”“w ol \M
Lo 3 1 1 1 1 1 1 10°F 1 A eiiAimicilih
) 50 100 150 200 250 300 10 100
Temperature, K Temperature, K

Fig.3.7: A. The temperature dependence of conductivity of magnetically aligned SWNT bucky-paper,
measured along and across alignment direction by four-probe method. The dimensions for sample 1:
15x1x0.012 mm’, the distance between potential electrodes is 10 mm; samples 2 and 3 have length 10
mm, distance between potential electrodes 8 mm.

B. The temperature dependence of conductivity along the nanotube alignment direction. The fitting by
Luttinger liquid and VRH models shown by dashed and dot lines, respectively.

Anisotropy of resistivity of Ry./Rp.r = 14 is temperature independent. R(T) curves
for samples 1 and 2 with different distance between electrodes actually have coincided.
Analysis of temperature dependence of resistivity (R,q.(7)) in the framework of VRH model
leads to following expression (see Fig.3.7 B),

R(T) = 4.5:10*exp(200/7)"/*" (3.6)

where the conductivity dimensionality has shifted toward a two-dimensional system. Such
behavior of R(T) could be explained by the increase in contact area for the aligned CNT.
However, it is important to mention that magnetically aligned samples were produced from
“laser” SWNT. It is recognized that “laser” SWNT is less defective.

The lowering of T, and new temperature dependences of hoping conductivity, InR ~
( TJT)2’5 was predicted in [23] for one-dimensional conductors with reduced concentrations of
defects [26]. Decreasing the concentration of defects, keeps the hopping mechanism in rare
short clusters, dissolved in long channels of one-dimensional conductors. However for the
system of one-dimensional conductors, the weak excitations of the charge density now leads
to the linear Coulomb gap with high shielding anisotropy of the Coulomb potential.

Fig.3.8 shows the thermal diffusivity measurement of magnetically aligned bucky-

paper.
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Fig.3.8: Thermal diffusivity of magnetically aligned bucky-paper.
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3.2. Thermal Conductivity of Thin-wall Carbon Inverse Opal

In the last decade, a new material called photonic crystal (PC) has attracted much
attention from both basic and applied science viewpoint. The behavior of photons in PCs is
very much like that of electrons in semiconductors [1, 2]: the photonic band structure may
show forbidden gaps in which photons cannot exist. Therefore, many of the devices and
concepts based on the band gap phenomena may be extended to PCs.

This novel concept was developed for various new applications of PCs such as
threshold-less lasers and optical transistors [3]. However, the obstacles to obtain this kind of
PCs with a complete gap in the desired spectral region represent a big challenge. PCs can be
defined as mesoporous materials with a periodic distribution of submicrometric pores.
Mainly, there are two parameters that determine the existence of a photonic gap. First, the
refractive index contrast, defined as the ratio between the refractive indices of the material
and the surrounding substance; secondly, the filling fraction, defined as the percentage
volume occupied by the voids, is a very important parameter. Also, the topology of the
structure will be decisive in explaining the band structure.

Among the various preparation methods of three-dimensional periodic structures, a
self-assembly method utilizing sedimentation of monodispersed nanoscale spheres is the
simplest. Silica opal is a type of naturally occurring photonic crystal that consist of well-
ordered three dimensional arrays of SiO; spheres, which have diameters in the wavelength
range of visible light [4]. As a consequence of periodicity they show opalescence colors that
come from Bragg diffraction by the periodic distribution of particles. Bragg diffraction
constitutes the fingerprint of photonic band gap (PBG) properties. However, theory predicts
that inverse opals would show much better PBG properties than direct opals. Inverse opals
that can be regarded as the negative replica of opals, have a well-ordered array of
nanometric spherical cavities surrounded by a high refractive index material, in which both
the cavities and the high refractive material is connected throughout the structure. To
achieve a complete PBG, many laboratories are trying to fabricate high quality inverse opals
with high contrast and filling factor [5-10].

At the same time, the unusual mesoscopic structure of the synthetic opal attracted a
large effort to improve the efficiency of thermoelectric materials [11, 12]. A good
thermoelectric material has low thermal conductivity x, high electrical conductivity o, and a
high Seebeck coefficient, in order to maximize the thermoelectric figure of merit,

Z=06S’/x 3.7)

where Z has units of inverse absolute temperature and is generally quoted as ZT.

For more than 40 years, the search for better thermoelectrics has not provided a
material with ZT significantly larger than one. ZT of about four would make thermoelectric
coolers able to compete with gas-compression technology. Assuming that the Seebeck
coefficient in opal where silicon spheres replaced by thermoelectric materials will not
affected by the opal structure, if the thermal conductivity is reduced much more than the
electrical conductivity, the opals could be useful thermoelectric materials. Unfortunately
many experimental works [7,13,14] and theoretical calculations [15] show that the overall
reduction for electrons and phonons in synthetic fcc opal structures will be the same.
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On the other hand such porous and highly ordered materials as inverse opals open up
new opportunities for further development of multifunctional nanodevices. Particularly, at
the low filling factor usually achieving by infiltration of pores by sol-gel route or Chemical
Vapor Deposition (CVD), inverse opals have two independent nets of pores divided by a very
thin shell: one resulting from removing SiO; spheres and the other consists of octahedral and
tetrahedral pores reduced by thin wall covered on SiO; spheres but still with interconnected
windows. Both nets could be tuned independently: first net by changing the SiO; sphere size,
second net by filling factor. Moreover, at some condition they could be filled by functional
materials divided by shell material.

In this part of the project we study the behavior of the heat flow through thin-wall
carbon inverse opals produced by two different methods.

3.2.1. Experiment

Porous silica opals were used as templates for infiltration and carbon inverse opal
synthesis as described in detail by Zakhidov ef al [7,8,16]. Briefly, the carbon inverse opals
were fabricated by infiltrating silica opal with a phenolic resin, thermally curing this resin at
low temperature, dissolving the SiO; from the infiltrated opal with aqueous HF, and
pyrolyzing the resulting phenolic inverse opal at progressively increased temperatures up to
1000°C. The graphitic carbon inverse opal was fabricated by CVD method using 1:3 molar
ratio of propylene and N, as the feed gas followed by silica removal with aqueous HF.

Thermal and electrical conductivity measurements were performed using Quantum
Design Physical Properties Measurement System (PPMS). For these measurements for both
inverse opals two samples with different geometry (4.5x1.8x12 mm’ and 6.0x2.0x17 mm’) and
lead distance (6 and 10 mm) have been prepared. The gold covered copper leads were glued
to sample by silver filled epoxy H20E (EPO-TEK) using four-probe design: heater -
thermometer T; - thermometer T, - sink. To eliminate the thermal radiation “tail”” in the
thermal conductivity data, usually appearing at high temperatures, the thermal conductivity
measurements above 200 K were confirmed by comparative method involving the series
connection of Ni-standard and studied samples. The electrical resistivity for some of samples
was measured by a conventional four-probe method using Agilent HP4284A milliohmmeter.
Heat capacity measurements were performed using Perkin Elmer Pyris Diamond DSC,. The
surface and fracture image of inversed opal were examined by a JSM-1500 (JEOL, Japan)
Scanning Electron Microscope (SEM).

3.2.2. Results and discussion
1. Structure

Fig.3.9 shows SEM images of cleft edges of (001) and (111) facet of the thin-walled
inverse opal lattice (250 nm spheres). For both glassy carbon inverse opal fabricated by a
phenolic route and graphitic carbon inverse opal fabricated by CVD route a highly periodic
structure throughout the volume have been obtained. The void structure consists of an FCC
arrangement of spherical carbon shells interconnected with 12 neighboring spherical shells
via windows, which result from the sintering process.
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Fig.3.9: The (100) and (111) planes of surface-templated inverse opal. The rough appearance of a cleaved edge
of carbon infiltrated inverse opal is due to the occurrence of fracture through hollow spheres (rather
than between spheres in silica opal). The large windows interconnecting the spherical cavities are due
to the sintering of the opal template.

2. Thermal conductivity

The temperature behaviors of thermal conductivity of both inverse carbon opals are
almost similar: the linear increase at low temperatures shown in the insert of Fig.3.10
illustrates the changed slope at 20 K and the slight exponential growth above 75 K. The
difference in absolute value of about 20% obtained for the whole measured range may be
attributed to the difference in crystalline structure of the shells. The X-ray diffraction
spectra show the higher crystallinity for CVD infiltrated samples. Moreover, SEM and TEM
electron micrographs [7] indicate that the thin wall shells consist of graphite sheets that are
preferentially oriented parallel to the void surface created by removal of the SiO; spheres.
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Fig.3.10: Temperature dependence of thermal conductivity of graphitic carbon (CVD) and glassy
carbon (pyrolitic amorphous carbon) inverse opals.

Effective thermal conductivity. There are a lot of approaches to calculate the thermal
conductivity of porous materials and composites using the known thermal conductivity of the
parent material. Within a continuum description, the effective thermal conductivity of a
composite with spherical voids (d=3) or infinite cylindrical voids (d=2) and the thermal
conductivity of host material x, can be given by the following equation [17].

(1-p)x,
SO £ 3.8
T 1+ pld-1) .

where p is the fractional volume of the voids often called the “porosity”.
Another equation, taking into account the thermal conductivity of the material in
pores, Kpores [18] were used in [19,20] for the FCC opal,

K 1
T —(1- p)1-p + ptv, 3.9
K

where v = Kpores/Ko.

The continuum approach to study the effective thermal conductivity of periodic
composites was examined by Albrecht ef al [21] for a number of two-dimensional and three-
dimensional lattices.

3 Porosity

To calculate the effective thermal conductivity, we have to first estimate the porosity
of the structure. The schematic representation of the face-centered cubic structure of inverse
opal is given below.

Fig.3.11: Schematic representation of surface-templated inverse opal.
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The volume of the FCC structure unit is V¢, = (2\/2-R)3 = 16\/2'R3, where R is SiO;
sphere radius. The unit comprises four spheres with volume Vgpere= 4+ (4/3) 2R = (16/3)
'R, For an opal structure we can find the commonly used filling factor F value, F = Vphere/
Nk, = n/3\2 = 0.74. For surface-templated inverse opal, the cubic volume filled only with
thin shells of thickness h = R;-R, depends on filling conditions (Fig.3.11).

For the sample presented in Fig.3.9, D = 250 nm, and the average layer thickness is
h = 10 nm. The volume of an empty sphere is, (4/3)nR;’ - (4/3)aR> = 0.26(4/3)xR’, where R,
was shifted by 1.08'‘R, R; = ((R+h)/R)R = 1.08R. The filling factor for surface-templated
inverse opal is F = 0.74:0.26 = 0.192, and the porosity is P = 1- F = 0.808.

In this calculation, we neglected the structure shrinkage at the first sintering which
provided the intersphere interconnection through which the SiO, spheres were removed
after infiltration, and we neglected the volume of these circular interfaces (12 holes per each
sphere). Subtraction of the volume of 24 holes with average diameter 76 nm results in a
reduction of the filling factor to 0.191. Consequently, P = (0.809.

Now we can calculate the thermal conductivity of the material of the shell (for
graphitic carbon). At room temperature (T=300 K), &g« = 0.33 W/m'K (Fig.3.10).
Considering that sphere voids and interstitials air filled, for (3.9 we can write,

Keﬂecr

By Albrecht approach for kpore/x,=0 (air filling) giving .5/ x,=0.09 for thermal
conductivity of shell material, we found very close result, x,=3.67 W/m-K.

The density of measured samples is 0.22 g/em’. Taking into account the
porosity of the studied inverse opal structure, P=19.1%, we calculate the density of the host
material to be p = 1.15 g/cm3 which is twice less than the density of crystalline graphite, p. =
2.21 g/cm3. Perhaps this difference is due to the porosity of the graphite layer and the
extended diameter of interconnected windows appeared for the volume change at pyrolysis.

The schematic representation of graphitic shell structure in Fig.3.12 shows that for
materials with high anisotropy of conductivity, both electric and thermal, the conducting
path would be strongly dependent on the anisotropy factor: y=k,/x, . For pyrolytic

graphite at room temperature y = 342 [22]. Heat flow from one sphere to another occurs only
perpendicular to graphitic layers with thermal conductivity 5.7 W/m-K. As far as heat
transferred to the surface layers of another sphere the high thermal conductivity along the
graphitic layers, 1950 W/mK, shorts the heat flow near the sphere surface preventing further
penetration of heat to deeper layers. In such structures, the thermal conductivity would be
independent of the thickness of shell walls.
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Fig.3.12: Schematic representation of heat flow through graphitic shell structure and real structure of
interconnecting windows.

Electrical conductivity. Since graphite has a high electronic conductivity, let us
estimate the electronic contribution to the thermal conductivity using the Wiedemann-Franz

law:
k/o=LT 3.11)

where L= 2.45-10® W-Ohn/K? is Lorenz number.

The temperature dependence of specific resistivity of the studied inverse opal,
measured by two-probe and four-probe methods, is shown in Fig.3.13. The slope of the curve
is in good agreement with the data for crystalline g<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>