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Ĕj Indicates state j within a Markov Chain Pmatrix . . . . . 326

W (x, x′) Computes the transition probability of state x → x′ . . . 328

µ̌ Indicates the total number of parents in an ES . . . . . 329

ρ̌ Marks the number of parents that are to be recombined in

an ES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

xliii



Symbol Page

λ̌ Stands for the number of offspring . . . . . . . . . . . . 329

γ̌ The isolation number within an ES . . . . . . . . . . . . 329

~di Represents one population member/vector within an ES’s

P′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

EVOP(S) Perform a set of evolutionary operators on the population

members in S . . . . . . . . . . . . . . . . . . . . . . . . . . 333

S An arbitrary selection operator . . . . . . . . . . . . . . 333

V An arbitrary selection operator . . . . . . . . . . . . . . 333

`′ Total number of genes . . . . . . . . . . . . . . . . . . . 337

m̂g Inverse of the probability for selecting a gene combination 337

Ng fmGA suggested subpopulation size . . . . . . . . . . . . 337

β Difference between sampled BB means . . . . . . . . . . 339

ps Probability of selection . . . . . . . . . . . . . . . . . . . 341

Ibest This is the set of —I— best population w.r.t.a SO function 341

p
(t)
i Number of individuals dominating individual i at genera-

tion t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

E′ External subpopulation set |E′| < |P′| . . . . . . . . . . . 354

T (P′ Indicates binary tournament selection operated on P′ . . 354

MP Indicates a multi-set union of populations . . . . . . . . 354

A Dynamically growing archive of solutions . . . . . . . . . 355

χ Used as a niche . . . . . . . . . . . . . . . . . . . . . . . 358

ΨN Group of sub niches . . . . . . . . . . . . . . . . . . . . 358

NEmax Capacity of elite pool for the IMOEA . . . . . . . . . . . 368

E Set of elite for IMOEA . . . . . . . . . . . . . . . . . . . 370

E ′ Set of temporarily elite for IMOEA . . . . . . . . . . . . 370

ϕ Predetermined or learned threshold value . . . . . . . . 381

P̄ Indicates that each set of decision variables in the popula-

tion is lined up into one long vector (assuming binary decision

variables) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381

xliv



Symbol Page

~nv Indicates a new vector resulting from the FFT on P̄ . . . 381

U Set of utility functions . . . . . . . . . . . . . . . . . . . 395

u A utility function . . . . . . . . . . . . . . . . . . . . . . 395

CS Coverage comparison metric . . . . . . . . . . . . . . . . 396

ι Distributed Spacing measurement . . . . . . . . . . . . . 396

q̂ Number of desired non-dominated vectors . . . . . . . . 397

i Number of individuals evaluating to non-dominated vec-

tors in the ith subregion (niche) of the non-dominated region 397

an Number of algorithm nodes in the EA farming model . . 401

fn Number of farming nodes for each an . . . . . . . . . . . 401

L Denotes the Latin Square operator . . . . . . . . . . . . 403

Exp Number of experiments . . . . . . . . . . . . . . . . . . 405

xlv



AFIT/DS/ENG/05-03

Abstract

This dissertation presents principles, techniques, and performance of evolu-

tionary computation optimization methods. Concentration is on concepts, design

formulation, and prescription for multiobjective problem solving and explicit build-

ing block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-

the-art explicit BB MOEAs are addressed in the innovative design, execution, and

testing of a new multiobjective explicit BB MOEA. Evolutionary computation con-

cepts examined are algorithm convergence, population diversity and sizing, genotype

and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm

(EA) models, robustness, visualization of evolutionary process, and performance in

terms of effectiveness and efficiency. The main result of this research is the devel-

opment of a more robust algorithm where MOEA concepts are implicitly employed.

Testing shows that the new MOEA can be more effective and efficient than previous

state-of-the-art explicit BB MOEAs for selected test suite multiobjective problems

(MOPs) and Untied States Air Force applications. Additional contributions include

the extension of explicit BB definitions to clarify the meanings for good single and

multiobjective BBs. A new visualization technique is developed for viewing geno-

type, phenotype, and the evolutionary process in finding Pareto front vectors while

tracking the size of the BBs. The visualization technique is the result of a BB

(solution) tracing mechanism integrated in the new MOEA to enable a researcher

to determine the required BB sizes and assign an approximation epistasis level for

solving a particular problem. The culmination of this research is explicit BB state-of-

the-art MOEA technology based on the MOEA design, BB classifier type assessment,

solution evolution visualization, and insight into MOEA test metric validation and

usage as applied to the following: test suite, deception, bioinformatics, unmanned

vehicle flight pattern, and digital symbol set design MOPs.
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EXPLICIT BUILDING BLOCK MULTIOBJECTIVE

EVOLUTIONARY COMPUTATION: METHODS AND

APPLICATIONS

I. Introduction

Finding optimal solutions to multicriteria problems requires a non-ambiguous

procedure (algorithm) to effectively implicitly or explicitly search all possibilities.

The choice of such an algorithm can depend upon a determination of the problem

domain characteristics as well as a study of all the various search techniques. For

low dimensional1 multicriteria problems, deterministic search techniques are able to

find optimal solutions efficiently (if they exist). For higher dimensional problems,

stochastic techniques are generally employed in order to find acceptable solutions.

Humans naturally optimize low dimensional tasks without specifically defining

the entire system, mathematically or symbolically. In fact, much is written about op-

timizing human tasks in scientific and non-scientific literature. In the novel Cheaper

by the Dozen, daily tasks for a household of 14 are attempted to be optimized by

parents Frank and Lillian Gilbreth [85]. It is the parents’ desire to optimize every

task in their lives in order to make their existences more harmonious and productive.

One of the most common tasks optimized in daily life is the route driven to and from

work. This optimization problem is easily accomplished given that it has a small set

of possible solutions that can be enumerated. However, most real-world optimization

problems are more complex as they have multiple objectives and a non-determinable

metric or measure of solution quality.

1A low dimensional problem is define as having a number of steps to solve the problem bounded
by a polynomial (see Definition 30 in Appendix M on page 419).
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This research is focused on solving or finding good solutions for higher di-

mensional multicriteria or multiobjective optimization problems (MOPs) such as

those found in relevant United States Air Force (USAF) real-world applications and

benchmark test suite MOPs using a stochastic multiobjective evolutionary search

algorithm.

1.1 Overview

Evolutionary Algorithms (EAs) are a part of a more general field of algorith-

mic study called Evolutionary Computation (EC). EC research consists of compu-

tational techniques that are based to some degree on the evolution of biological life

in the natural world. Today’s researchers use EAs to search single and multiobjec-

tive landscapes to find near optimal solutions for problems having many different

characteristics (continuous, discrete, multimodal, . . .)

In fact, EA design is employed in many fields of application study. Examples

include the use of EAs as a problem solver in Computer Science, Computer Engi-

neering, and Operations Research (OR). Each field classifies EAs in their own terms.

In the OR field, optimum seeking methods are classified as mathematical program-

ming techniques; thus, EAs as an Evolutionary Computation (EC) method are also

regarded as a subset of algorithms or heuristics [186] (see Table 82 in Appendix M

on page 420). Within the Computer Science and Computer Engineering fields, EAs

fall into the advanced algorithm techniques for complex problem solving. EAs have

a run time that is polynomial2; yet, the problems that EAs generally solve are NP-

Complete (NPC) problems (see Definitions 30, 31, 32, 33, and 34 in Appendix M

on page 420). Furthermore, EA designers accept that a suboptimal solution found

in polynomial time is an acceptable compromise to finding the optimal solution by

deterministically searching the entire solution space. The reason for the compro-

mise is because the search space is normally too large to exhaustively search due to

the exponential time characteristics of such problems. Examples of such problems

2Polynomial run times occur if and only if the EA has a stopping criteria.
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include the Travelling Salesman problem and the Graph Coloring problem; more ex-

amples are presented in Table 83 in Appendix M on page 421. These problems have

many different objective and decision variable characteristics ranging from discrete

quantities having a range of {0, 1} to continuous real valued quantities having ranges

limited only by the word size of the computer solving the problem.

1.2 Historical Overview of Multicriteria Optimization

Evidence of multiobjective optimization can be traced back to 1895 when

Georg Ferdinand Ludwig Philipp Cantor (1895-1906)3 and Felix Hausdorff (1906-

1919) forged the mathematical foundations for infinite dimensional ordered spaces.

Concurrently, in 1896, Vilfredo Pareto defined Pareto optimal and labelled solutions

evaluating to vectors found on the Pareto optimal front as The Edgeworth-Pareto

optimum. William Karush, in 1939, completed his thesis work on multiple variable

function optimization with side constraints which led to Harold W. Kuhn and Albert

W. Tucker’s introduction of the vector maximum problem (VMP). Equation 1 de-

scribes Kuhn and Tucker’s VMP where k denotes the number of objective functions

to be maximized. In some cases, objective functions for the VMP are required to

be constrained prior to being optimized. These other objectives, for convenience,

represent some other technical constraints and are represented by gj(X) ≤ 0 in

Equation [193]. It should be noted that this same problem can be called the vec-

tor minimization problem when minimizing for {f1(X), f2(X), . . . , fk(X)}4 [186].

Kuhn and Tucker’s VMP made multiobjective optimization a mathematical disci-

pline.

3These years indicate research years within the field.
4A value from fj(X) is called within the objective space or phenotype5. domain whereas the X

used in fj(X) is called within the decision variable space or genotype domain.
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Find X =



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x1

x2

...

xn





which optimizes f1(X), f2(X), . . . , fk(X)

subject to gj(X) ≤ 0, j = 1, 2, . . . ,m (1)

Kuhn and Tucker’s seminal paper describing the concept of proper efficiency6

proved that the multipliers of all components of the objective function in the neces-

sary optimality conditions are strictly positive [139]. With this research, Kuhn and

Tucker then came to be known as having the first attempt to derive a multiobjective

optimization theory. Their work derived necessary and sufficient conditions for the

optimal solution of programming problems and laid the foundations for many nonlin-

ear programming and multicriteria studies such as Kenneth Arrow et al. who, in 1953

used the term admissible instead of efficient points. In 1951, following Kuhn and

Tucker, Tjalling C. Koopmans published a paper concerning an activity analysis of

production and allocation theory. Then, in 1960, Leonid Hurwicz generalized Kuhn

and Tucker’s results for vector spaces. Multicriteria optimization research continued

and began to shift to bigger applications. In 1951, Koopmans applied multiobjective

optimization to production theory, Zadeh claimed the first engineering research in

the early 1960s, and Marglin optimized water resource plans in 1967. At the same

time that Zadeh is claimed the first multicriteria engineering research, Rosenberg had

6w.r.t. the VMP a point, x0, is said to be efficient if x0 ∈ X and there exists no other feasible
point x such that f(x) ≥ f(x0) and f(x) 6= (x0). Furthermore, x0 is properly efficient if it meets
the efficient condition (above) and if there exists a scalar J > 0 such that, for each i, the result is

fi(x)− fi(x0)
fj(x0)− fj(x)

6 J

for some j such that fj(x) < fj(x0) whenever x ∈ X and fi(x) ≥ fi(x0). [84]
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thoughts on EA multiobjective applications. His foresight is brought to a reality by

Schaffer in the 1980s (the actual multiobjective EA implementation was the Vec-

tor Evaluated Genetic Algorithm (VEGA)). The VEGA research launched a quest

for good evolutionary computation methods to solve extremely difficult multicrite-

ria problems. The following sections outline the goal and supporting objectives of

this dissertation research that extends state-of-the-art Multiobjective Evolutionary

Algorithms (MOEAs) research. [31,34,144]

1.3 Research Goal and Objectives

This research builds on previous building block (BB)7 MOEA research [222,244]

and embraces the conjecture that every optimization problem (both single and mul-

tiobjective) has an inherent set of BBs that can be combined together to create all

optimal solutions for a particular problem. In addition, explicit BB based MOEAs

have shown to be a good choice for solving many different multicriteria applica-

tions [41, 125, 244]. It is for these reasons that the goal of this research is to extend

BB multicriteria evolutionary algorithm understanding, develop a more robust algo-

rithm capable of solving a larger range of NPC applications, and apply the newly

designed algorithm to several USAF applications. Table 1 lists a shortened version

of this main goal and supporting objectives.

Goal Development of a more robust multiobjective evolutionary algorithm capable

of solving larger range of NPC applications, which are relevant to United States

Air Force’s real-world applications. In addition, to advance the understand-

ing design and application of BB based MOEAs. This goal is met using the

following objectives.

Objective 1: Using accepted MOEA techniques and an innovative design, a new

more robust and scalable algorithm is developed. The new algorithm is tested

7A building block is composed of pieces of an entire solution.

5



using test suite problems of a variety of characteristics to show it is scalable over

previous designs. In addition, state-of-the-art MOEA metrics are evaluated.

Objective 2: There are many Air Force applications requiring multiobjective prob-

lem solving. Sensor management and vehicle routing are just two exam-

ples of military applications that have been positively affected by MOEA re-

search [50,51,53]. The explicit BB MOEA is applied to some of these problems

to cover the range of different fitness landscapes identified in Table 84 in Chap-

ter IV.

Table 1: Goal continued and supporting Objectives

Goal Objectives
Development of a 1: Develop a new algorithm that is
more robust multiobjective more robust (effective) in solving
evolutionary algorithm capable of a larger range of MOPs.
solving larger range of NPC Test and valid metrics
applications, which are relevant to and statistical methods are
United States Air Force’s real selected for comparing MOEAs.
world applications.

2: Indicate how MOEA
research advantageously applies to
Air Force applications

To advance the understanding, 3: Extend MOEA understanding
design and application of by extending the meaning
BB based MOEAs. of BBs in an

explicit search algorithm
4: Indicate that explicit
BB MOEA approaches
are statistically similar
in solving deception problems;
however, different in search methods.
5: Use MOEA generic objectives
as preserve, progress, and diversity
for extending an explicit BB MOEA.
6: Develop possible MOEA
techniques that can be employed in an
efficient parallel design and implementation.
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Objective 3: Previous BB definitions are evaluated and new, more precise, def-

initions are derived. New BB definitions are tied to defining what a good

BB definition is for different multiobjective explicit BB algorithms. Following

these, a new definition for an Optimal BB set is suggested.

Objective 4: Current innovative MOEA techniques include a Bayesian network in-

tegration to probabilistically distinguish good BBs associated with a prescribed

search space for specified objective functions. The multiobjective messy genetic

algorithm (MOMGA-II) has a similar technique for identifying good BBs and

has at least the same or better effectiveness when solving deception problems

than the Bayesian Optimization Algorithm. Results show a limitation of the

MOMGA-II when solving larger scaled deception problems. However, with

the addition of an innovative competitive template management system into

the MOMGA-II, the new MOEA (MOMGA-IIa) exceeds results found by the

multiobjective Bayesian approach algorithm.

Objective 5: MOEA fundamentals are the following: an MOEA design must pre-

serve good solutions, progress toward the optimal solutions, maintain diversity,

and provide the best, but limited, set of solutions to the decision maker (DM).

The new MOEA design follows these fundamentals allowing for the new explicit

BB MOEA to become more robust. New competitive template modifications

are applied. The multiple competitive template generation techniques have

been studied; however, often times generation of many competitive templates

in the wrong area within the objective space cements the search into a spe-

cific area because the generated competitive templates are too close in the

phenotype domain. It is thought that competitive template generation should

encompass a check for phenotype distribution to be sure that multiple com-

petitive templates are not locking the search into one area. Objective space

value normalization and an even partitioning of the known space is used to

accomplish phenotype and genotype domain diversity. Competitive template
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spacing is then tied to the reduction of the actual size of BBs required for a

good search. In addition, an archive is added to the MOEA to preserve and

allow for an acquired diversity. Finally, the MOEA is allowed to progress to-

ward the optimal solution or solutions by preserving solutions that evaluate to

non-dominated vectors - especially those solutions evaluating as the best found

for each objective.

Objective 6: Many design issues exist when parallelizing an EA [24]. The follow-

ing are three general parallel models that are common in the MOEA field:

island, diffusion, and master-slave. Deciding on which model to implement

within an EA is dependent upon the hardware architecture employed. Many

different hardware attributes are important; including processing and memory

capabilities. Some possible hardware configurations include multi-computer,

multi-processor, homogeneous, and heterogeneous systems. The memory may

be shared or distributed and the network topology may be a mesh, hyper-

cube, or ring structure. The parallelization may be of the GA itself, operators,

fitness evaluation, or the population pool, with synchronous or asynchronous

communication calls. Finally, choosing the parallel library to use is also of

importance, with the Message Passing Interface (MPI) [174] and Parallel Vir-

tual Machine (PVM) being just two possibilities. Previous research into high

performance computing [157,164] led to the decision to use MPI with an island

model implementation on many different applications. This was decided due

to the variety of heterogeneous and homogeneous systems that are utilized in

conjunction with this research. Most of our parallel fast messy Genetic Algo-

rithm (pfmGA) research has concentrated on the use of distributed and het-

erogeneous systems where MPI allows for somewhat easy portability between

systems. The genetic operators were not parallelized due to the minor improve-

ments in performance [80]. The parallelization instead centers on the fitness
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evaluations and an island model implementation that yields good speedups in

conjunction with use of the pfmGA.

This research builds on the previous implementation of a farming and island

model by adding a preprocessing technique that reduces the run time associated

with calculating a computational intensive fitness function; namely the Protein

Structure Prediction force field approximate model based on the Chemistry at

HARvard Molecular mechanics (CHARMm) model ver 22 and the Monte Carlo

Simulation model for digital symbol set design testing. These preprocessing

techniques approximate the fitness functions using a neural network and other

mathematical models. Results show that these are efficient time savers; how-

ever, the modeling loss due to neural network fitness function replacement is

not an acceptable and the mathematical models do not accurately represent

the Monte Carlo simulation model. Mach-up timing reveals that these meth-

ods, once implemented, in some cases yield more than 16 times speedup over

the normal fitness function. However, due to the lack of periodicity within

the Protein Structure Prediction problem’s fitness function and limitations of

the mathematical models the approximation techniques tested are observed to

mislead the new MOEA to incorrect areas in the search space resulting is less

effectiveness and suboptimal solutions.

Also, a new parallel model is suggested for implementation using the new

MOEA designed. The new model is based on a recently tested Hierarchical

Fair Competition (HFC) framework for parallelizing evolutionary algorithms

in [108]. The new model suggests more divisions of chromosomes into factions

determined by a normalized objective space, as well as a hierarchical fitness

level subpopulation for bettering an EA’s future civilizations.

This section summarized the goal and supporting objectives of this research. The

following section provides the research approach and scope.
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1.4 Approach and Scope

The approach taken for this research includes the analysis of previous devel-

oped MOEAs in comparison with a newly developed MOEA. Test suite MOPs and

selected Air Force applications are used to test both the previous state-of-the-art

MOEA and the new innovative MOEA described in this research in support of the

objectives. MOEA metrics and statistics are used to support or compare to initial

test hypotheses and final results. Tentative explanations are given where possible,

and insight gained through this research is then employed in future algorithm design.

Experiments are designed and executed using state-of-the-art metrics. Results are

analyzed statistically.

The research goal and supporting objectives are defined in Section 1.3. The

following chapters support these objectives and ultimately meet the goal of this re-

search. A few assumptions are made about the background of the readers of this

document. Readers should have a undergraduate level understanding of evolution-

ary algorithms, supporting operators, high performance computer parallel concepts,

chemistry, biology, probability theory, digital communications, and mathematics.

Many innovative ideas new to the MOEA research field are addressed in this study

– each in support of meeting the supporting objectives. Also addressed are several

real-world and pedagogical MOPs. Next, background definitions are presented. It

is suggested that the reader reference these definitions as needed while reading this

document.

1.5 Basic Definitions

The reader may resort to these definitions when needed to clarify discussions.

The basic definitions required for an understandable reading are the general MOP,

Pareto dominance, Pareto optimality, Pareto optimal set, Pareto front, and Pareto

epsilon (ε) dominance. Each are defined as the following:
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Definition 1 (General MOP [31, 34, 216]): A general MOP minimizes (or

maximizes) F (~x) = (f1(~x), . . . , fk(~x)) subject to gi(~x) ≤ 0, i = {1, . . . , m}, ~x ∈ Ω.

An MOP solution minimizes (or maximizes) the components of a vector F (~x) where

~x is a n-dimensional decision variable vector ~x = (x1, . . . , xn) from some universe

Ω. It is noted that gi(~x) ≤ 0 represents some other technical constraints that also

must be met while minimizing (or maximizing) F (~x) and Ω contains all possible ~x

that can be used to satisfy an evaluation of F (~x). 2

Definition 2 (Pareto Dominance [31, 34, 216]): A vector ~u = (u1, . . . , uk) is

said to dominate another vector ~v = (v1, . . . , vk) (denoted by ~u ¹ ~v) if and only if ~u

is partially less than ~v, i.e., ∀i ∈ {1, . . . , k}, ui ≤ vi ∧ ∃i ∈ {1, . . . , k} : ui < vi. 2

Definition 3 (Pareto Optimality [31, 34, 216]): A solution ~x ∈ Ω is said to

be Pareto Optimal with respect to (w.r.t.) Ω if and only if (iff) there is no ~x′ ∈ Ω

for which ~v = F (~x′) = (f1(~x′), . . . , fk(~x′)) dominates ~u = F (~x) = (f1(~x), . . . , fk(~x)).

The phrase Pareto Optimal is taken to mean with respect to the entire decision

variable space unless otherwise specified. 2

Definition 4 (Pareto Optimal Set [31,34,216]): For a given MOP, F (~x), the

Pareto Optimal Set, P∗, is defined as:

P∗ := {~x ∈ Ω | ¬∃ ~x′ ∈ Ω F (~x′) ¹ F (~x)}. (2)

2

Definition 5 (Pareto Front [31,34,216]): For a given MOP, F (~x), and Pareto

Optimal Set, P∗, the Pareto Front (PF∗) is defined as:

PF∗ := {~u = F (~x) | ~x ∈ P∗}. (3)

2
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Definition 6 (Pareto epsilon (ε) Dominance): A vector ~u = (u1, . . . , uk) is

said to epsilon-dominate another vector ~v = (v1, . . . , vk) (denoted by ~u ¹ε ~v) if for

some ε > 0 ui is partially less than vi + ε, i.e., ∀i ∈ {1, . . . , k}, ui ≤ (vi + ε) ∧ ∃i ∈
{1, . . . , k} : ui < (vi + ε) where ε > 0. 2

Definition 7 (Pareto epsilon (ε) Optimality): A solution ~x ∈ Ω is said to be

Pareto epsilon Optimal with respect to Ω if and only if there is no ~x′ ∈ Ω for which

~v = F (~x′) = (f1(~x′), . . . , fk(~x′)) epsilon dominates ~u = F (~x) = (f1(~x), . . . , fk(~x)).

The phrase Pareto epsilon Optimal is taken to mean with respect to the entire

decision variable space unless otherwise specified. 2

Definition 8 (Pareto epsilon (ε) Optimal Set): For a given MOP, F (~x), the

Pareto epsilon Optimal Set, P∗ε , is defined as:

P∗ε := {~x ∈ Ω | ¬∃ ~x′ ∈ Ω F (~x′) ¹ε F (~x)}. (4)

2

Definition 9 (Pareto epsilon (ε) Front): For a given MOP, F (~x), and Pareto

epsilon Optimal Set, P∗ε , the Pareto epsilon Front (PF∗
ε) is defined as:

PF∗
ε := {~u = F (~x) = (f1(~x), . . . , fk(~x)) | ~x ∈ P∗ε }. (5)

2

The assumption that P∗ and PF∗ represent sets of values having infinite word

length makes strictly using these sets as the goal set of Pareto optimal solutions and

associated optimal PF vectors difficult for all MOPs mainly due to the computa-

tional limitation gap between using an uncountable infinite set (theoretical values)

and countable/finite set (computational values) to represent decision variables and

associated objective vector values.
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Table 2 lists the three types of theoretical relationships between the P∗ and

PF∗ set sizes that must be addressed depending upon MOP characteristics.

Table 2: Relationships between the P∗ and PF∗ set size.
|P∗| |PF∗| Mappings of sets having size 1, n̈a, and üb

1. Countable → Countable {(1 → 1), (n̈ → 1), (n̈ → n̈)}
2. Uncountable → Countable {(ü → 1), (ü → n̈), (ü → n̈)}
3. Uncountable → Uncountable {(ü → ü)}

an̈ represents a countable/infinite or finite set.
bü represents an uncountable set.

P∗ and PF∗ can represent the goal sets for a MOEA search algorithm in cer-

tain circumstances. Any goal set having an uncountable |PF∗| cannot be solved by

a deterministic Turing Machine; thus, #3 above cannot be solved by digital com-

puters because of word length restriction. Furthermore, only under certain circum-

stances can a deterministic Turing Machine find the right solutions that evaluate to

a countable |PF∗| set when the |P∗| is uncountable infinite; thus, #2 can be solved

only under certain circumstances by digital computers. Finally, if the set of values

contained in |P∗| and |PF∗| are subsets of values8 that can be represented by a

deterministic machine used to solve an MOP then relationship #1 can be solved by

digital computers. Therefore, when defining the goal set it is important to have a

set that can be found by the MOEA. The goal set is referred to as Ptrue.

The following terminology is used to distinguish between the real-world’s and

mathematical world’s representation of solutions and associated PF vectors when

solving MOPs. In the cases where Ptrue 6⊆ P∗, Ptrue and PFtrue are in the proximity9

of P∗ and PF∗ respectfully. The three cases listed under each term are related to

the relationships found in Table 2.

8These values must be a computational number ; otherwise, a digital computer could not repre-
sent the goal sets. A computational number is a number that can be represented within a digital
computer.

9Distance of optimal solutions and associated PF vectors to the theoretical true depends upon
word length restriction and characteristics of the problem domain.
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Ptrue This term is given as the MOP’s computational true Pareto Optimal Set (deci-

sion variables). Under the following conditions Ptrue is a subset of P∗ because

the decision variables are to be discrete.

1.





All computational numbers in P∗, Ptrue ⊆ P∗

At least one non-computational number in P∗, Ptrue 6⊆ P∗
2. Ptrue 6⊆ P∗

3. Ptrue 6⊆ P∗

PFtrue This term is given as the MOP’s computationally true Pareto Front set (objec-

tive values). Under the following conditions PFtrue is a subset of PF∗ due to

the discrete decision variables and associated PF vectors within the computer.

1.





All computational numbers in PF∗, PFtrue ⊆ PF∗

At least one non-computational number in PF∗, PFtrue 6⊆ PF∗

2. PFtrue 6⊆ PF∗

3. PFtrue 6⊆ PF∗

Pknown This term defines the Pareto Optimal set best found by the MOEA (decision

variables). Pknown often times does not represent true Pareto Optimal Set;

however, it represents the best set found by an MOEA for a particular MOP.

PFknown This term, PFknown, defines a Pareto Front set found by the MOEA that may

be an intermediate Pareto Front optimal set for the MOEA (i.e. objective

values are not as good as objective values in the final Pareto Front set found

by the MOEA).

The following terminology is used to distinguish between the real-world’s and

mathematical-world’s representation of solutions and associated Pareto epsilon front

vectors when solving MOPs. In the cases where Pε
true 6⊆ P∗ε , Pε

true and PFε
true are in

the proximity of P∗ε and PF∗
ε respectfully. The three cases listed under each term

are related to the relationships found in Table 2.
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Pε
true This term is given as the MOP’s computational true Optimal epsilon Set (deci-

sion variables). Under the following conditions Pε
true is a subset of P∗ε because

the decision variables for the MOP must be discrete.

1.





All computational numbers in Pε
∗, Pε

true ⊆ Pε
∗

At least one non-computational number in Pε
∗, Pε

true 6⊆ Pε
∗

2. Pε
true 6⊆ Pε

∗

3. Pε
true 6⊆ Pε

∗

PFε
true This term is given as the MOP’s computationally true Pareto epsilon Front set

(objective values). Under the following conditions PFε
true is a subset of PF∗

ε

due to making the decision variables and objective vectors of the MOP discrete

within the computer.

1.





All computational numbers in PFε
∗, PFε

true ⊆ PFε
∗

At least one non-computational number in PFε
∗, PFε

true 6⊆ PFε
∗

2. PFε
true 6⊆ PFε

∗

3. PFε
true 6⊆ PFε

∗

Pε
known This term defines Pareto epsilon Optimal Set found by the MOEA (decision

variables). Pε
known often times does not represent the true Pareto epsilon Op-

timal Set; however, it should represent the best Pareto epsilon Optimal Set

found by an MOEA for a particular MOP.

PFε
known This term defines Pareto epsilon Front set found by the MOEA. PFε

knowns may

be an intermediate Pareto epsilon Front for the MOEA (i.e. a set that is not

as good as the final Pareto epsilon Front set found by the MOEA).

A good discussion of these definitions and terminology can be found in Ap-

pendix H on page 391 [34]. The last section in this chapter summarizes what was

covered and outlines by chapter upcoming discussions .
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1.6 Reader Qualifications

It is assumed that the reader has a fair background in optimization techniques

and in particular evolutionary computation including genetic algorithms, evolution-

ary strategies, evolutionary programming, and genetic programming. A summary of

these optimization techniques is provided in Appendix E on page 324; however, this

appendix is only an introduction to each method and thus other references are rec-

ommended [5, 89, 227]. Exposure to multicriteria optimization is also advantageous

for understanding of concepts and problems discussed.

1.7 Summary of Contributions

Enumerated in this section are the contributions achieved by this research.

Each contribution is briefly summarized, but this is by no means a replacement for

the detail summary found in Chapter IX on page 261. Yet, it does provide the reader

with a contributions path to facilitate in the understanding of this document.

1. Explicit BB definitions are extended in Chapter II to include clarifying the

meaning of good single and multiobjective BBs.

2. A more robust algorithm is developed where MOEA concepts are implicitly

designed within the new algorithm.

3. A BB (solution) tracing mechanism is integrated within the new algorithm to

enable a BBB researcher to evaluate required BB sizes for solving a particular

problem.

BB size is not all that can be measured, but also the stability of variables

within a problem can be measured. This includes identifying the usefulness

and sensitivity within each decision variable.

4. The tracing mechanism allows for the development of a new metric serving the

explicit BB MOEA community with a epistasis metric.
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5. A new visualization technique is developed for the viewing of the genotype,

phenotype and evolutionary process of the new algorithm finding solutions

evaluating to Pareto front vectors while tracking the size of the BB required

for finding each solution.

6. A new way to display metric results is identified. This method should be picked

up by future MOEA researchers for quick and easy analysis between MOEA

metric results.

7. Application of this MOEA on Air Force applications during this research and

in future research is also a contribution.

8. software is written in a way that can be useful. New MOPs can be Plugged into

the algorithm without integrating the new code directly into the algorithm.

Matlab code is written to assist in the post mortem visualization of the

BB trace.

This section is provided only to give a quick summarized list of each contribu-

tions provided by this research.

1.8 Summary

In this chapter, the research goal and supporting objectives are introduced.

This document is organized as follows. Chapter II describes BBs and extends BB

understanding by analyzing and revising the accepted single and multiobjective BB

definitions. In Chapter III, a detailed description of MOEA development is given –

Appendix II on page 19 directly supports this chapter by giving a brief summary

of today’s state-of-the-art EAs and MOEAs. MOEA fundamentals are presented

and related to the development of the new MOEA. Chapter IV discusses MOEA

metrics, MOP test suites, and a short design-of-experiments section. Within this

chapter, the MOMGA-II and MOMGA-IIa are compared using the MOP test suites.

This comparison leads to the application of the newly designed MOEA to real-world
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Air Force Applications. Chapters V-VIII describes the problem domain including

all the applications and pedagogical problems used in this investigation. Finally,

Chapter IX concludes with a summary of the results, research contributions, future

design ideas, and future applications.
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II. Building Blocks and Building Block Builders

Today, optimization researchers have many different search algorithms available for

solving a variety of problems including single and multiobjective. Each and every

algorithm can be classified either as an implicit or explicit BB builder (BBB)1.

Furthermore, these BBBs search for good BBs for each particular problem - but

not the complete solution all at once. In addition, each problem has associated

with it a set of BBs that can be juxtaposed in some way to build each and every

optimal solution for that particular problem. It is the position of this research that

explicit BBBs can find these good BBs better than implicit BBBs. This statement

begs the question, “How can one determine if one BBB is better than another?”

It can be said that a good BB building algorithm is one that can statistically, over

time and for a number of different problems, identify more good BBs than the

competitors. Researchers require BB metrics in order to measure a BB building

algorithm’s capabilities - making a measurement of this kind difficult. This chapter

describes BBs in a novel approach to define exactly what it means to be a good BB

with respect to a BBB. Using previous BB definitions, new more rigorous definitions

are delineated to formulate a more precise set of criteria for labeling a BB as good or

bad. In addition, the significance of a BB definition to BBB designers is considered.

It is shown that old BB definitions do not precisely fit any of today’s explicit BBB’s

BB decision criteria; in fact, it is conjectured that good BBs should be identified

using a classifier system specific to each BBB.

This BB investigation is important to many researchers because many assume

that the solving ability within an evolutionary computation method comes from its

ability to improve solutions by assembling “partial solutions,” the so-called building

1The term building block builder is describing stochastic evolutionary search algorithms. It is the
position of this document that algorithms search either implicitly or explicitly for good building
blocks that make up the optimal solutions (optimal solutions that evaluate to non-dominated
vectors).
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blocks [231]. Formally, this conjecture is known as the Building Block Hypothe-

sis (BBH)2 and it suggests that beneficial properties of a parent are aggregated in

(relatively) small code blocks at several locations within the chromosome. The BBH

does not specify how to identify BB having these beneficial properties providing

motivation for this avenue of study.

2.1 Overview

This chapter begins by presenting the previous state-of-the-art BB definitions.

These definitions are clarified with alternative, more rigorous, definitions that allow

for mathematical testing of the definition. Testing of these definitions concludes

that the previous definition does not accurately define good BBs with respect to the

focal explicit BB search algorithm (MOMGA-IIa). A suggested correction to the

definition is given to make it work better when applied to deception problems; how-

ever, even the suggested modification does not describe the MOMGA-IIa’s process

by which it identifies good BBs. Discussed are the concepts of optimal BB sets, BBB

operating modes, MOEA convergence, and real-world BBBs (MOEAs). In relation

to these real-world examples of explicit BBBs, conjectures on BB classification sys-

tems are given as a replacement to the good BB definitions previously accepted by

BB researchers. The BB Hypothesis is reviewed and an advancement of a Multiob-

jective BB Hypothesis is then presented right before new good BB definitions are

delineated. The chapter ends with the No Free Lunch Theorem emphasizing the fact

that no single BBB is better than another across all MOPs.

2.2 Introduction

BBs are elements that represent only part of a whole solution. BBs are made

up of sub-elements and can be any size smaller than the whole. When BBs are

2A detailed discussion of the Building Block Hypothesis and Multiobjective Building Block
Hypothesis can be found in sections 2.11 and 2.12 on pages 63 and 65 respectfully.
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put together, they can make up a complete entity. In this study, a binary solution

representation is chosen; therefore, the BBs are sets of bits, and the sub-elements are

the bits making up the BBs. To that end, a few assumptions are made: a builder’s

alphabet, A, is the set {0, 1}, a complete solution has ` locus3 positions and only

one allele value assigned to each locus position (allele values are assigned from the

alphabet). Complete solutions are fully specified solutions where every locus position

in the bit string is assigned a value from the alphabet. It follows that a BB is a non-

empty set of o locus positions (li) each assigned an allele value (ai) subject to these

three conditions:

1. 0 < o < `;

2. ∀{i∈(1,...,o)}li ∈ {1, . . . , `}

3. ∀{i∈(1,...,o)}ai ∈ {1, 0}

An example of BB b̃ is given in Equation 6.

b̃ ≡ {(a1, l1), . . . , (ao, lo)} (6)

This BB representation suggests how a complete solution might be formulated

and gives rise to the idea that bits need not necessarily be contiguous4. Other

builders use a contiguous representation of BBs [102]; however, their representation

hinders their capability to identify a high epistasis associated with non-contiguous

bits.

Finally, a BB cannot be evaluated by itself. A BB needs a helper to fill un-

specified loci positions. To evaluate a BB, a BB borrows a complete solution’s alleles

that are specified at loci positions matching the missing loci positions within the BB.

3A locus, li, position is a number specifying the bit location within a string of bits representing
the solution.

4According to the definition, a BB’s bits using the representation given here do not need to be
located next to each other.
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This is formally known as overlaying a BB onto a complete solution and is defined

in Definition 12 on page 25. Decision variables produced by overlaying a BB onto a

complete solution and associated objective vectors are assumed to be computational

numbers. Furthermore, it is assumed that an optimal BB is a BB that, once over-

laid onto a complete solution, is an optimal solution that can be found in Ptrue and

must evaluate to a vector in PFtrue (see footnote 8 on page 13 for a description of

computational number).

2.3 Building Block Definitions

Previous research has produced a few BB definitions [243]. In fact, in 1996, an

order-o potential BB definition was published by Larry Merkle (see Definition 10 on

page 23) [155]. The structure of this definition fits well in the description of how a

particular BB is represented. This definition also reveals that the representation may

result in an over-specification of bit positions (i.e., the same locus position might be

defined twice in the same BB). This particularity is overcome by setting each over-

specified locus position to the same value (i.e., for all li and lj, i = j ⇔ li = lj). It is

important to notice that the structure of the constraints allows for flexibility in a BB

object, but the definition described by Merkle is indeed more rigorous. Therefore,

a final constraint is added, #4 (listed below), to make BBs described in this study

consistent with Merkle’s5.

4. ∀i∀j {i = j ⇔ li = lj}{(ai,li),(aj ,lj)}⊆b̃

Juxtaposed6 BBs (see Figure 2.3 on page 24 for an illustration of a juxtaposition

operator juxtaposing BBs) that are overspecified in one locus position must also be

5The definition of BB within this chapter is restricted to not have loci positions specified more
than once within that same BB (i.e., {(1, 1), (1, 2), (0, 1)} is not a valid BB within this chapter.) It
should be noted that in the real-world of explicit BBBs this is not realistic and a rule to take the
first allele value specified at loci value i when scanning a BB from left-to-right is kept - all other
alleles specified at loci value i are ignored. Using this rule, the BB example within this footnote
becomes {(1, 1), (1, 2)} which consequently is a valid BB for this chapter.

6Juxtaposing BBs means to put different BBs together into a larger BB continuously until finally
the BB becomes a complete solution (fully specified solution).
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adjusted. The adjustment made is a simple one. BBs are scanned from left-to-

right, and the first value for any locus position is kept for BB determination. This

particular fix to adhere to this final BB constraint is a simple fix; however, it is not

to say that this is the best method for fixing overspecified strings.

Definition 10 (Order-o Potential Building Block): Let A be a non-empty

set (the genic alphabet), ` ∈ Z+ ( the nominal string length), Λ , {1, . . . , `} ( the

loci), and b̃ , {(a1, l1), . . . , (ao, lo)} ∈ P(AxΛ) a set of genes. If the loci of b̃ are

distinct, i.e., b̃ satisfies i = j ⇐ :li = lj, then it is called an order-o potential building

block or simply a potential building block. 2

Following Merkle’s order-o potential BB definition, Jesse Zydallis developed

two general definitions describing good single objective BBs and good multiobjective

BBs [243]. Definitions 11 on page 23 and 15 on page 39 present his account of what

comprises a good BB in both single and multiobjective problems.

Definition 11 (Good Single Objective Building Block (SBB)): A good

single objective BB meets the requirements of Definition 10 on page 23 and the mean

fitness value of the BB evaluates to a good fitness value over a number of different

allelic combinations placed in the unspecified loci. 2

Zydallis’ aim was to generally give meaning to a good BB; however, he does not

attempt to include a rigorous method, or a mathematical definition, for identifying

how to distinguish a good BB from a bad BB. This missing method or definition

is vital in determining on what side of the fence a particular BB might lie. Thus,

the next section more rigorously revises Zydallis’ good BB definitions. In addition,

these extended definitions set up the frame work for the expansion of understanding

to even more definitions and the proposal of an alternative idea that good BB iden-

tification may lie in both the particular BBB algorithm and the optimal solutions

for a particular problem.
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1 0 0 0 0 1 Complete solution, C

1 x 1 x 0 x

x x 1 1 1 1

x 1 0 x x x

BB 1 = {(1,1),(1,3),(0,5)}

BB 2 = {(1,3),(1,4),(1,5),(1,6)}

BB 3 = {(1,2),(0,3)}

J(BB 3, BB 2, BB 1) = 1 1 0 1 1 1

J(BB 2, BB 1, BB 3) = 1 1 1 1 1 1

J(BB 1, BB 3, BB 2) = 1 1 1 1 0 1

Juxtaposition Operator, J, Example

Overlaying BB1 (shaded area) onto C Example

1 0 1 0 0 1 R(BB1,C) � {B a C}

Given: Complete Solution C and BBs BB 1, BB 2, and BB 3

Figure 1: Illustrated are the results of creating a fully specified solution using a
left-to-right static juxtapositional operator, J , on three BBs. When J is applied
to a list of BBs, the first allele values specified for loci i are kept no matter how
may future alleles are specified to loci i by BBs that come later in the list. BBs are
scanned from left-to-right in terms of which to process first with J . In addition, an
example of overlaying a BB onto a complete solution is illustrated.

2.4 Extended Good Building Block Definitions

In extending the good BB definition, it is essential to develop a more rigorous

definition to be able to test BBs for goodness. Decidedly, there are two types of good

BBs: true and sampled. A true order-o good BB (GBBtrue) is one that is good with

respect to the entire population of complete solutions and order-o BBs. A sampled

good BB (GBBsampled) is a BB that is good with respect to a sampling of the entire
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population of complete solutions7 and order-o BBs8. Definition 13 defines how to

mathematically determine if a BB is truly good and Definition 14 defines if a BB is

sampled as good.

2.4.1 True Good Building Block. Some assumptions have been made to

develop these extended definitions. First, a higher fitness value equates to a better

solution. Secondly, fitness values associated with the entire population have no par-

ticular distribution. The third assumption is that the average fitness of a particular

BB, b̃, is the average fitness obtained from overlaying9 b̃ onto each member within

the entire population of complete solutions, P10 (see Table 3 for an example of over-

laying). In addition, the value that defines the border between good and bad BBs is

the average fitness11 value of all BBs having the same number of loci as b̃, excluding

b̃, after being overlaid onto each member of P. Finally, if b̃’s average fitness value is

above the good-bad BB boundary12, it is declared as a true good BB.

Definition 12 (Overlaying): Let a BB be b̃ , {(a1, l1), . . . , (ao, lo)} where b̃ is

called the order-o BB to be overlaid. Let Λ , {1, 2, . . . , `} where ` is the length of a

7The entire population of complete solutions is defined as every possible combination that can
occur given the string size, `, of a complete solution and the alphabet set A. The matrix of the entire
population of complete solutions is generated using a Cartesian product of ` copies of the alphabet
set, A`, and denoted P. For example, if ` = 2, then P = A` = A2 = A × A = {0, 1} × {0, 1} =
{(0, 0), (0, 1), (1, 0), (1, 1)}.

8The entire population of order-o BBs, denoted BB(o), is defined as every possible combination
of bit patterns that can be formed using o bits placed at every combination of o bit locations in a
string of size ` such that o < `.

9Overlaying consists of copying allele values from a complete solutions that have loci positions
in common with those that are missing within the BB. The copied allele values do not remain
within the BB subsequent to its evaluation (see Figure 2.3 on page 24 for a graphical example or
Table 3 on page 27 for a written example).

10P normally illustrates the power set; however, within this document it is considered to be every
possible solution within the search space of a particular problem. This includes infeasible and
feasible regions. The power set is indicated by P.

11The average fitness values is used because the extended definitions use the original definitions
as a base. The idea to extend the original definitions into a mathematically rigorous definition is
to show that the original and extended definitions do not hold (not true) in all situations.

12The good-bad BB boundary for BB b̃ of order-o is located at the mean of all finesses resulting
from overlaying all order-o BBs onto every possible complete solution.
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complete solution and ` > 0. Let M be a matrix having ‖A‖o rows and o columns.

Each row of M is an element of Ao (see footnote 7 on page 25 for an example of

‖A‖o.). Let BB(o) be the set of all order-o BBs and defined as the following:

BB(o) ,
⋃

λ′⊆Λ,‖λ′‖=o





⋃

j∈{1,...,‖λ′‖}





⋃

i∈{1,...,‖A‖o}

{
(Mi,j, λ

′
j)

}








Let the overlaying operator, R, be defined as

R : BB∗ × P→ P

Given: C is a complete solution such that C ∈ P. Let C , {(ã1, l1), . . . , (ã`, l`)},
C∗ , {l1, l2, . . . , l`} and b̃∗ , {l`1 , l`2 , . . . , l`℘} where |b̃∗| = o.

R(b̃, C) = b̃ ∪
(
C \ Ć

)

where Ć =
{

(ã´̀, l´̀) ∈ C : l´̀ = l`i
for some l`i

∈ b̃∗, ´̀∈ Λ
}

For an English definition and an example, see Table 3 on page 27. 2

It is important to note that when applying this definition, a BB sometimes

overlays several different population members and the overlay function causes the

new member to be the same as a previously observed member because the BB has

replaced the bits making these population members different. In these cases, the

BB is causing a pattern to be formed on these different population members and

must be evaluated as if it is a new solution regardless of the fact that it is a repeat.

This repeated member pattern makes the resulting average value gravitate toward

the genuine good or bad nature of the specific BB under inspection. In addition, it

would be a mistake to overlook the fact that a BB may cause the new member to

become infeasible. In most cases, infeasible regions are unwanted and it is better

to decode chromosomes around these areas; however, sometimes infeasible instances
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Table 3: Example: Overlaying Order-3 BB, b̃, onto a Complete Solutions, C.

The BB, b̃, meets the requirements of Definition 10. The Order-3 BB is overlaid
onto the complete solution, C. C has 5 loci, ` = 5. Let the overlaid BB be

b̃ , {(a1, 2), (a2, 4), (a3, 5)}

and the complete solutions be

C , {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5)}.

Let the replacement operator R and operator 7→ be defined as the following:

R : BB(o) × P→ P;
{

R(γ, ρ) , {γ 7→ ρ}
}

where γ meets the requirement of Definition 10, ρ is a complete solution, and the
7→ operator indicates that the left side alleles replace the right side alleles at the
specified loci positions of the left side BB ρ; otherwise, the right side complete
solution alleles remain unchanged. Thus, overlaying BB, b̃ onto C results in the
following equality:

R(b̃, C) , {(1, 1), (a1, 2), (1, 3), (a2, 4), (a3, 5)}

are unavoidable and must be handled differently. Within this chapter, it is assumed

that all solutions are feasible13.

Definition 13 (True Good order-o Building Block (GBBo
true)): A true

good BB meets the requirements of Definition 10 and the following: Let a potentially

true good BB be b̃ , {(a1, l1), . . . , (ao, lo)} where b̃ is called the BB under inspection.

Let Λ , {1, 2, · · · , `} where ` is the length of a complete solution and ` > 0. Let

M be a matrix having ‖A‖o rows and o columns. Each row of M is an element of

13It may seem to the reader that the assumption of having all feasible solutions in the search
space is not realistic; thus, it is also acceptable to assume that BB overlaying that cause infeasible
solutions warrant a non-existence clause or hole for that particular evaluation in the definition to
determine BB classification. This means that no fitness values are held and that particular solution
instance is removed completely from any good/bad/ugly BB calculation. In the case where that
evaluation was going to be used as a sampling it does not count and another sample must be made.
In the case where that evaluation is required for true BB classification, the evaluation is ignored
and all BB summations using that evaluation is reduced by one.
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Ao (see footnote 7 on page 25 for an example of ‖A‖o.). Let BB(o) be the set of all

order-o BBs and defined as the following:

BB(o) ,
⋃

λ′⊆Λ,‖λ′‖=o





⋃

j∈{1,··· ,‖λ′‖}





⋃

i∈{1,··· ,‖A‖o}

{
(Mi,j, λ

′
j)

}








Let W = BB(o)\b̃ where W is the set of all order-o BBs with the BB under inspection

removed. Let P , A` where P is all combinations of possible complete solutions. Let

f1(~x) and eval be defined as the following function:

f1(~x) ∈ R; {f1(~x) : f1(~x) = eval(~x)}∀~x∈P where eval : P→ R

where f1(~x) is assigned to each complete solution, ~x, in P. Defined for completeness,

eval identifies that there exists an arbitrary function (related to the MOP) that maps

a complete solution from the genotype to phenotype domain: existence of the eval

function and resultant is assumed. Let the replacement operator R and operator 7→
be defined as the following:

R : BB(o) × P→ P;
{

R(γ, ρ) , {γ 7→ ρ}
}

where γ meets the requirement of Definition 10, ρ is a complete solution, and the 7→
operator indicates that the left side element parts replace the right side complete solu-

tion where the left side element is specified; otherwise, the right side complete solution

remains unchanged. b̃ is a true good BB if and only if
(∑

k∈P f(R(b̃,k))

‖P‖ >
∑

k∈P
∑

j∈W f(R(j,k))

‖W‖·‖P‖

)

which is the same as saying (µb̃ > µW)14 where R(b̃, k) and R(j, k) are fully specified

solutions. 2

14µb̃ is the mean of all fitness values resulting from overlaying b̃ onto each member of the entire
population P and µW is the mean of all fitness values resulting from overlaying µW onto each
member of the entire population P
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As it is, Definition 13 yields a concrete mathematical definition for identifying

truly good and bad BBs. However, as the complete solution string size increases,

it becomes infeasible to test if a BB is truly good. Instead, an alternate method

for identifying good and bad BBs is required - one that is less laborious. Scientists,

engineers, and cooks often sample a large group to get information about the entire

group without checking each and every member of the group - for any respectable

cook knows someone only need sample a spoonful of soup to know how the entire pot

tastes. Being a cook myself, it is easy to recognize the merit to this methodology so

in the next section a method for tasting the BB soup is statistically described and

from it, one can determine a BB’s goodness without checking the entire population.

2.4.2 Sampled Good Building Block. Given a set of complete solutions,

the test for identifying a true good BB is uncomplicated; however, when using a

sampling technique goodness testing becomes complicated because the calculations

are estimates of what the entire population might yield resulting in confidence inter-

vals (CIs) about the mean of the sampled data. These confidence intervals present

an extra category for a tested BB to be labeled. For now, this category is called

equivalent15. To summarize, a BB under inspection can now be labeled as good, bad

or equivalent. As an example of how confidence intervals change the landscape for

how to label (good, bad or equivalent) BB under inspection, Figure 2 is provided.

In Figure 2, two different BBs, BB1 and BB2, are tested for goodness against

other same sized (order-o) BBs. The three possible cases are represented in this

figure. In the first case, confidence intervals overlap the mean value of the other

sample. This case is presented where BB1 is compared to W ′
1 in Figure 2. Although

it may look as if BB1 is worse thanW ′
1, because at least one of the confidence intervals

overlaps the mean of the other, these two means are considered to be equivalent. The

second case, where the confidence intervals overlap, but the confidence intervals do

15Equivalent BBs are BBs that are no worse than the mean or sample mean. For multiobjective
BBs, equivalent is synonymous to the Pareto dominance (for non-dominance) definition.
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not cross the mean value barrier of the other is illustrated in Figure 2 when BB2 is

compared to W ′
1. In this second case, it seems that BB2 is better than W ′

1; however,

a student t-test must be accomplished to establish the goodness of BB2. The final

case, where no confidence interval overlaps the other, is presented in Figure 2 when

BB2 is compared with W ′
2. Here, BB2 visually looks better than W ′

2 and because

the confidence intervals do not overlap, BB2 is declared a sampled good BB.
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Figure 2: Example of confidence interval tests for differences between means.
Within the graph, BB1 andW ′

1 are equivalent, a student-t test must be accomplished
to show a different of BB2 with respect to (w.r.t.) W ′

1, and BB2 is said to be better
than W ′

2.
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The calculation of the confidence intervals is essential for Definition 14 to

be used. Thus, a confidence interval for a sampled population16 mean within a

significance level, α, is calculated according to Equation 7. cκ1 is the lower confidence

interval value and cκ2 is the upper confidence interval value. The significance level

translates to a confidence level 100(1 − α) for a particular interval w.r.t.a sampled

mean. This can also be called the confidence coefficient. Equation 7 presents the

confidence interval calculation required at a parameterized significance level, α.

(
xκ − z1−α

2

σxκ√N ′ , xκ + z1−α
2

σxκ√N ′

)
≡ (cκ1 , cκ2) (7)

In Equation 7, xκ is the sample mean and σxκ is the sample standard deviation

with respect to κ; κ is either the BB under inspection, b̃, or the other sample BBs

of the same size, W ′. Furthermore, N ′ is the sample size and z1−α
2

is the (1 − α
2
)-

quantile of a unit normal variate. When κ ≡ b̃, N ′ = ‖P′‖ and when κ ≡ W ′ then

N = ‖P′‖ ∗ ‖W ′‖.

In addition, a finite population size factor is applied to the variance because

the population size of all possible ∀i∈W∀j∈P{i 7→ j} is known to be ‖W‖∗‖P‖ for W
and ‖P‖ for b̃. Equation 8 represents this correction where N is the entire population

size and N ′ is the sample size taken. When the entire population of order-o BBs is

consulted with respect to one BB, b̃, the variance correction goes to zero. This is a

good check because at the point of taking every sample possible the sampled good

BB definition becomes the same as the true good BB definition.

σ2
c =

σ2

N ′ ·
N −N ′

N − 1
(8)

16Without loss of generality, confidence intervals are determined from the fitness values obtained
by overlaying a BB (partial solutions) on top of at least 29 different complete solutions. Taking a
sampling of 29 (29 degrees of freedom) makes the average of the tα-distribution for the gathered
data tend to be zα-normal, even when the distribution from which the average is computed is
decidedly non-normal. [166]
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For an example of a 90% confidence interval (i.e., α = 0.1) the mean variance

determination within the Good Sampled BB definition would have z1−α
2

= 1.645.

This confidence coefficient, α, is parameterized within the definition for sampled

good BBs.

2.4.3 Student t-test for sampled BBs. Upon encountering overlapping con-

fidence intervals having neither means of b̃ orW ′ overlapped by the other’s confidence

interval, a student t-test is required to identify if the b̃ is a sampled good, a bad, or

an equivalent BB.

An example of this is presented in Figure 2 when comparing BB1 and W ′
2.

To conduct the test on the sample population, P′, and sample BBs, W ′, the sample

means of each must be calculated. Equation 9 can be used to evaluate the two

sample means µb̃ and µW ′ . Note that the notation for f1R(b̃,P′i) and f1(R(W ′
j,P′i))

is defined in Definition 13.

µb̃ =
1

‖P′‖
‖P′‖∑
i=1

f1

(
R(b̃,P′i)

)
µW′ =

1

‖W ′‖ · ‖P′‖ ·
‖W′‖∑
j=1

‖P′‖∑
i=1

f1

(
R(W ′

j,P′i)
)

(9)

Next is required the calculation of the sample standard deviations for both b̃

and W ′: σb̃ and σW ′ . Equations 10 and 11 both are used to calculate the sample

standard deviations. In addition, the finite population correction factor for this

sampled standard deviation must also be applied. See Equation 8 for the corrective

factor equation. Following the sample standard deviation calculations, the mean

difference (Equation 12), standard deviation of the mean difference (Equation 13),

and the effective number of degrees of freedom needs to be calculated (Equation 14).
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σb̃ =





(∑‖P′‖
i=1 f1

(
R(b̃,P′i)

)2
)
− ‖P′‖ ∗ µ2

b̃

‖P′‖ − 1





1
2

(10)

σW ′ =





(∑‖W′‖
j=1

∑‖P′‖
i=1 f1

(
R(W ′

j,P′i)
)2

)
− ‖W ′‖ · ‖P′‖ · µ2

W ′

‖W ′‖ · ‖P′‖ − 1





1
2

(11)

µdiff = µb̃ − µW′ (12)

σdiff =

√
σ2
W ′

c

‖ W ′‖ · ‖P′‖ +
σ2

b̃c

‖P′‖ (13)

ν =

(
σ2
W′c

‖W ′‖·‖P′‖ +
σ2

b̃c

‖P′‖

)2

1
‖W ′‖·‖P′‖+1

·
(

σ2
W′c

‖W ′‖·‖P′‖

)2

+ 1
‖P′‖+1

·
(

σ2
b̃c

‖P′‖

)2 − 2 (14)

(µdiff − t[ 1−α
2

;ν] · σdiff , µdiff + t[ 1−α
2

;ν] · σdiff ) = (ct1, ct2) (15)

Finally, the confidence interval for the mean difference is required. Equation 15

presents the equation used to calculate this interval. The t[ 1−α
2

;ν] is the (1 − 1
α
)-

quantile of a t-variate with ν degrees of freedom. In conclusion, if the confidence

interval (ct1,ct2) includes zero, the difference is not significant at 100(1− α)% confi-

dence level. Otherwise, the BB can be considered a sampled good BB if µb̃ > µW ′

or bad BB if µb̃ < µW′ . This process is summarized in Definition 14.

Definition 14 (Sampled Good Building Block (GBBo,α
s )): A sampled

good BB meets the requirements of Definition 10 and the following: Let a potential

good BB be b̃ , {(a1, l1), . . . , (ao, lo)} where b̃ is labelled BB under inspection. Let

Λ , {1, 2, · · · , `} where ` is the length of a complete solution and ` > 0. Let M be a
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matrix having ‖A‖o rows and o columns. Each row of M is an element of Ao. Let

BB(o) be the set of all order-o BBs, λ’ is an ordered set and defined as the following:

BB(o) ,
⋃

λ′⊆Λ,‖λ′‖=o





⋃

j∈{1,··· ,‖λ′‖}





⋃

i∈{1,··· ,‖A‖o}

{
(Mi,j, λ

′
j)

}








Let BB′ ⊆ BB(o) where BB′ is the sampled set of order-o BBs. Let P , A` where

P is the entire population of complete solutions. Let P′ ⊆ P where P′ is a subset, or

sampled set, of the entire population of complete solutions. Let f1(~x) and eval be

defined as the following function:

f1(~x) ∈ R; {f1(~x) : f1(~x) = eval(~x)}∀~x∈P where eval : P→ R

where f1(~x) is assigned to each complete solution, ~x, in P. Defined for completeness,

eval identifies that there exists an arbitrary function (related to the MOP) that maps

a complete solution from the genotype to phenotype domain: existence of the eval

function and resultant is assumed. Let the replacement operator R and operator 7→
be defined as the following:

R : BB(o) × P→ P; R(γ, ρ) , {γ 7→ ρ}

where γ meets the requirement of Definition 10, ρ is a complete solution, and the

7→ operator indicates that the left side element parts replace the right side complete

solution where the left side element is specified; otherwise, the right side complete

solution remains unchanged. b̃ is defined as follows:
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b̃ =





possible good : (µb̃ > µW ′)

possible bad : (µb̃ < µW ′)

equivalent : otherwise

(16)

possible good =





good :
(
cb̃1

> cW′
2

)

equivalent :
(
cb̃1

> µW ′ > cb̃2

)
or

(
cW ′

1
> µb̃ > cW′

2

)

ugly(good) : otherwise

possible bad =





bad :
(
cb̃2

< cW′
1

)

equivalent :
(
cb̃1

< µW ′ < cb̃2

)
or

(
cW ′

1
< µb̃ < cW′

2

)

ugly(bad) : otherwise

ugly(x) =





equivalent : (ct1 < zero < ct2)

x : otherwise

2

Two more examples of comparing b̃ and W ′ are illustrated in Figures 3 and 4.

These figures illustrate a µb̃ having a non-overlapping (Fig 3) and an overlapping

(Fig 4) confidence interval when compared to µW ′ . These illustrations are important

because they label the objective (fitness) area associated with good and bad BBs. If

a BB falls into the good BB area, its confidence interval does not overlap the mean

of the good-bad marker and it passes the student-t test requirement for having a

different mean and it can theoretically be called a good BB. Conversely, if a BB

falls into the bad BB area, its confidence interval does not overlap the mean of the

good-bad marker and it passes any student-t test requirement for having a different

mean, it can be called a bad BB.

One final sanity check for this definition would be to let ‖W ′‖ → ‖W‖ and

‖P′‖ → ‖P‖ which is exactly what the true good BB definition reflects. The resulting

sampled good BB test becomes identical to the true good BB test because the
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Figure 3: This figure presents an example of a sampled single objective1 BB test
where the confidence intervals of the mean of order-o BBs and the BB under test do
not overlap.
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Objective space graph of good and bad BB Areas 
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Figure 4: This figure presents an example of a sampled single objective2 BB test
where the confidence intervals of the mean of order-o BBs and the BB under test
overlap.

finite population correction factor reduces the confidence intervals to zero making

(cκ1 = cκ2 = µκ). In this case, µb̃ is a good BB if and only if µb̃ > µW .

Finally, there is an adjustment to be made to the confidence coefficient because

the confidence level is shared by k confidence intervals. Thus, the α is multiplied
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by the number of objective values, k, associated with each solution. Accordingly, if

a 90% confidence and α is set to 0.1, the z values change to account for the shared

confidence level. The new z values become: z1− kα
2

= (1.960, 2.326, 2.576, · · · ) where

k = (2, 3, 4, · · · ).

This concludes the single objective true and sampled good BB definitions sec-

tion. Next, the multicriteria good BB definition is discussed.

2.5 Good Multiobjective Building Blocks

Multicriteria problems make selecting a best solution more difficult. In fact,

instead of having a single best solution17, multiple solutions are declared as the best

or declared optimal (equivalent) solutions. These equivalent solutions are said to be

Pareto optimal and evaluate to be in the non-dominated set of Pareto front vectors.

Definition 2 on page 11 describes what it means to be a non-dominated vector.

Similar to the single objective good BB definitions cited in Definitions 13 and 14),

new multiobjective good BB definitions are now more rigorously defined.

It is the position of this research that there are two forms of good order-o

BBs: true and sampled. Sampled order-o BBs have similar qualities as the solutions

evaluating to the PFknown vectors. True order-o BBs are non-dominated w.r.t. all

other order-o BBs and have similar properties to solutions evaluating to PFtrue

vectors. The decision variable set mapping to these PFtrue are denoted as the true

Pareto optimal set (see Definition 3). The members of the true Pareto optimal set

are akin to the true good multiobjective BBs for this chapter. Identifying these true

good multiobjective BBs requires a more rigorously extended Good Multiobjective

BB definition because the current definitions, written by Zydallis in 2002 [243], say

nothing of true or sampled BBs.

17This is not to say that some single objective problem do not have multiple optimal solutions.
The difference lies in the fact these multiple single optimal solutions all have the same exact
objective value (making it easy for one to declare all solutions evaluating to this optimal objective
value to be optimal).
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Figure 5: Presented is an example of a true multiobjective BB test. Individually,
each objective is shown in its single objective form in Figures 3 and 4. The areas to
the upper right of W ′’s centroid indicates the area where good BBs are found, and
the area to the bottom left of W ′’s centroid indicates the bad BBs. The other two
unshaded areas indicate an area where equivalent BBs are found. These equivalent
BBs are neither good nor bad - in fact, they represent all BBs that, after being
overlaid into a complete solution, evaluate to have a non-dominated status w.r.t.W ′’s
centroid, but they are labelled equivalent.
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Definition 15 (Good Multiobjective Building Block (GMBB)): A good

multiobjective BB, meets the requirements of Definition 10 and the mean fitness

value of the BB dominates (evaluates to a good fitness value as compared to) the

fitness values of other BBs or population members in comparison testing based on

Pareto dominance criteria. The evaluation of a multiobjective BB is conducted over

a number of different allelic combinations placed in the unspecified loci. 2

Definition 15 generally describes the meaning of a good multiobjective BB;

however, there is no attempt to have a rigorous description of how to test a BB for

multiobjective goodness, in fact this definition needs to be modified to show how a

mean fitness value is defined for a multicriteria BB (i.e., one with more than one

fitness value).

2.5.1 True Good Multiobjective Building Blocks. Several assumptions are

required to provide a basis for the development of the revised definitions found in this

section. First, a higher objective value equates to a better objective evaluation for a

solution. Secondly, k is the number of objectives being optimized. Third, objective

values associated with the entire population have no particular distribution. The

fourth assumption is that the average fitness of BB, b̃, is calculated by taking the

centroid of the objective values resulting from overlaying b̃ onto each member of

the entire population of complete solutions (P). In addition, the good-bad centroid

(marker) is found in a similar manner. The centroid of the objective values resulting

from evaluating each order-o BB, except b̃, after being overlaid on each member of

the entire population of complete solutions is considered to be the good-bad marker.

There are two important differences between the single objective good-bad bor-

der and the multiobjective good-bad marker. First, the un-sampled single objective

border divides the objective space into two distinct regions where the multiobjective

marker divides the space into four regions or three distinct regions. Second, BBs can

evaluate to be only good or bad in a single objective space where as BBs can evaluate
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to be good, equivalent (evaluates to be non-dominated), or bad in a multiobjective

space. Figure 5 illustrates a bi-objective good-bad marker where the centroid divides

the objective space into good, equivalent, and bad BBs. Finally, when the centroid of

the evaluation of b̃, once overlaid into a complete solution, dominates the good-bad

marker, the BB is identified as truly a GMBB. Definition 16 mathematically defines

the criteria of what it means to be a truly good, bad or equivalent order-o BB.

Definition 16 (True Good Multiobjective Building Block (GMBBo)):

A true good MBB meets the requirements of Definition 10 and the following: Let

a potentially true good BB be b̃ , {(a1, l1), . . . , (ao, lo)} where b̃ is labeled the BB

under inspection. Let Λ , {1, 2, · · · , `} where ` is the length of a complete solution

and ` > 0. Let ζ , {1, 2, · · · , k} where k is the number of optimization objectives.

Let M be a matrix having ‖A‖o rows and o columns. Each row of M is an element

of Ao. Let BB(o) be the set of all order-o BBs and defined as the following:

BB(o) ,
⋃

λ′⊆Λ,‖λ′‖=o





⋃

j∈{1,··· ,‖λ′‖}





⋃

i∈{1,··· ,‖A‖o}

{
(Mi,j, λ

′
j)

}








Let W = BB(o) \ b̃. Let P , A` where P is all combinations of possible complete

solutions. Let fτ (~x) and eval be defined as the following function:

fτ (~x) ∈ R; {fτ (~x) : fτ (~x) = evalτ (~x)}~x∈P,τ∈ζ where evalτ : P→ R

where fτ (~x)s are assigned to each complete solution, ~x, in P. Let the replacement

operator R and operator 7→ be defined as the following:

R : BB(o) × P→ P; R(γ, ρ) , {γ 7→ ρ}

where γ meets the requirement of Definition 10, ρ is a complete solution, and the

7→ operator indicates that the left side element parts replace the right side complete
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solution where the left side element is specified; otherwise, the right side complete

solution remains unchanged. Let η
(b̃)

τ =
{∑

~x∈P fτ (~x)

‖P‖

}
τ∈ζ

where ~η (b̃) is called b̃’s

centroid. Let η
(W)

τ =
{∑

~x∈P
∑

j∈W fτ (R(j,~x))

‖W‖∗‖P‖

}
τ∈ζ

where ~η (W) is the centroid for W.

b̃ =





good : ∀τ∈ζ

(
η

(b̃)
τ > η

(W)
τ

)

bad : ∀τ∈ζ

(
η

(b̃)
τ < η

(W)
τ

)

equivalent : otherwise

(17)

2

2.5.2 Sampled Good Multiobjective Building Blocks. Delineating decision

boundaries for sampled good multiobjective BBs (GMBB) is not quite as simple as

it is for the single objective case; however, the student-t test still applies. The large

difference is in the confidence coefficient α being applied to the distribution. Equa-

tion 18 describes the confidence level adjustment that must be made for calculating

confidence intervals for simultaneous confidence intervals with a family confidence

coefficient 1 − α. This adjustment is called Bonferroni’s inequality and is a lower

bound on the true (but often unknown) family confidence coefficient and is correct

more than (1− α)100 percent of the time.

P

(
k⋂

i=1

Āi

)
≥ 1− kα (18)

(
xκτ − z1− kα

2

σxκτ√N , xκτ + z1− kα
2

σxκτ√N

)
≡ (cκτ1

, cκτ2
) (19)

Confidence intervals for k objectives are calculated using Equation 19 where τ

indicates the objective number (see footnote 16 on page 31 for the minimum sample

size requirement). The result of calculating k confidence intervals is a k dimensional

shape representing an area that includes, with 100(1−kα)% confidence, the centroid

of either b̃ or W ′ (κ = b̃ or W ′). The sampled MGBB is illustrated in Figure 6.
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Figure 6: This figure presents an example of a sampled multiobjective BB test
where the confidence intervals of the centroid of order-o BBs and the BB under test
overlap are only in objective 2. Individually, each objective is shown in its single
objective form in Figures 3 and 4. To the upper right and outside of the circle
made by the confidence intervals of W ′’s centroid indicates the area where good
BBs are found, and the area to the bottom left and outside of the circle made by the
confidence intervals of W ′’s centroid indicates the bad BBs. The other two unshaded
areas indicate an area where equivalent BBs are found. These equivalent BBs are
neither good nor bad - in fact, they represent a BB that, after being overlaid onto
a complete solution, evaluates to be non-dominated w.r.t. the good-bad centroid
marker. These BBs evaluating to a non-dominated state are labelled equivalent.
Note also that the area closed in by the confidence intervals is an equivalent area
because the centroid’s confidence interval would overlap anything found inside the
circle.
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There is one drawback to using the multidimensional confidence intervals in

deciding if two centroids are different. The drawback comes in the form of how to

decide if there is an overlap of confidence intervals. A researcher may use one of the

following two methods to determine if an overlapped confidence interval exists. The

first is a quick and dirty method and the second is a long method. In using either

method, one must have the centroid of the BB under inspection located in the good

BB area if attempting to call the BB good. This is illustrated by the big X in the

upper right gray area of the objective space in Figure 7. Otherwise, the BB is either

an equivalent BB or bad BB and does not make the requirements of a sampled good

BB.

The two methods available to determine confidence interval overlap are dis-

cussed next. First, the quick method is discussed and a recursive mathematical

definition is given that can be used for any objective space dimensionality. Secondly,

the long method is given. The second method is the more rigorous and accurate

method. Following the descriptions of these two methods, the sampled good multi-

objective BB definition is given.

Quick

The quick and dirty method makes the assumption that the direct path (di-

agonal) confidence interval is an aggregate confidence interval that is equivalent to

checking each objective dimension simultaneously for difference of centroids (means).

The first step is the determining of each objective’s confidence interval from sam-

pling for the good-bad marker and incoming BB under inspection (b̃). This step uses

Equation 19. The second step is determining the length of each confidence interval

in the direction of each centroid. If either of the confidence intervals from W or b̃ is

larger than the distance between the two centroids, it can be immediately concluded

that there is no difference between the two centroids. In addition, if the sum of the

confidence intervals is less than the distance between the two centroids then there is

a difference between the centroids and b̃ can be said to be a good BB.
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r2(τ) =
Tu(τ)

Tb(τ)
(20)

Tu(τ) = Tu(τ − 1) ∗ a2
1, Tb(1) = 1

Tb(τ) = Tb(τ − 1) ∗ a2
τ sin2(θτ−1) +

(
τ−1∏
j=1

a2
j

)
∗ cos2(θτ−1)

where aτ = z1− kα
2
∗ σxτ√

n
, θτ = arctan

(
xWτ+1 − xb̃τ+1

xWτ − xb̃τ

)
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Figure 7: Example of objective space good, bad and equivalent regions for a bi-
objective problem. The good-bad centroid marker is represented with a small circle
at the intersecting point for all regions. The large X marks the possible placement
of a BB that would evaluate to being good by Definition 16 on page 40.
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In order to calculate the direct path confidence interval, a recursive equation for

calculating the outer radius of a k-dimensional ellipsoid must be used. Equation 20

represents such a formula. The confidence interval values, cκτ2
, minus the sampled

mean, x̄κτ , are used as the aτ values in Equation 20. Figure 8 illustrates the direct

path confidence interval between the BB under inspection, b̃, and the good-bad

marker’s, W ’, centroid. Notice that in the figure the direct path confidence intervals

indicated by the ellipse drawn around the centroids do not overlap. Yet, if each

objective is taken individually, the confidence intervals overlap in objective 2. It

is for this reason that the long method is the more developed and more accurate

method.

Long

This method is the same as the single objective test, except that the test is

repeated for each of the k objectives. If b̃’s centroid is located within the good BB

area and it fails to be different in any one objective, it is called an equivalent BB

- failing to be a sampled good BB. This method is also assumed to be the more

accurate of the two difference checks discussed in this document. Furthermore, it is

included in the sampled good multiobjective BB definition (Definition 17). Finally,

Equations 21-27 are added to extend the single objective calculations to k dimen-

sions. Each BB under inspection has k different confidence intervals of which the

final calculation can be found in Equation 19. In the equations to calculate the k

confidence intervals, τ is used as the distinguishing objective. Note that in these

equations, Bonferroni’s inequality is applied (see Equation 18), as well as the finite

population correction factor found in Equation 8.

µb̃τ
=

1

‖P′‖
‖P′‖∑
i=1

fτ

(
R(b̃,P′i)

)
µW′

τ
=

1

‖W ′‖ · ‖P′‖ ∗
‖W ′‖∑
j=1

‖P′‖∑
i=1

fτ

(
R(W ′

j,P′i)
)

(21)
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Figure 8: This figure presents the ellipsoid confidence intervals that can be gen-
erated when solving an MOP. In addition, presented is the direct path confidence
interval that would result between two centroids. The length of each interval is indi-
cated by where the straight line distance line between the two centroids crosses the
ellipse.
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σb̃τ
=





(∑‖P′‖
i=1 fτ

(
R(b̃,P′i)

)2
)
− ‖P′‖ ∗ µ2

b̃τ

‖P′‖ − 1





1
2

(22)

σW ′
τ

=





(∑‖W ′‖
j=1

∑‖P′‖
i=1 fτ

(
R(W ′

j,P′i)
)2

)
− ‖W ′‖ ∗ ‖P′‖ ∗ µ2

W ′
τ

‖W ′‖ ∗ ‖P′‖ − 1





1
2

(23)

µdiffτ
= µb̃τ

− µW′
τ

(24)

σdiffτ =

√
σ2
W ′

τc

‖ W ′‖ ∗ ‖P′‖ +
σ2

b̃τc

‖P′‖ (25)

ντ =

(
σ2
W′τc

‖W ′‖∗‖P′‖ +
σ2

b̃τc

‖P′‖

)2

1
‖W ′‖∗‖P′‖+1

∗
(

σ2
W′τc

‖W′‖∗‖P′‖

)2

+ 1
‖P′‖+1

∗
(

σ2
b̃τc

‖P′‖

)2 − 2 (26)

(µdiffτ
− t[ 1−kα

2
;ντ ] ∗ σdiffτ , µdiffτ

+ t[ 1−kα
2

;ντ ] ∗ σdiffτ ) = (cτt1 , cτt2) (27)

The equations above are used in the Sampled Good Multiobjective Building

Block Definition (Definition 17). Next, the definition is given and following this

definition declaration are a few examples.

Definition 17 (Sampled Good Multiobjective Building Block (GMBBo,α
s )):

A good multiobjective BB meets the requirements of Definition 10 and the following:

Let a potentially sampled good BB be b̃ , {(a1, l1), . . . , (ao, lo)} where b̃ is labeled the

BB under inspection. Let Lambda , {1, 2, · · · , `} where ` is the length of a complete
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solution and ` > 0. Let ζ , {1, 2, · · · , k} where k is the number of optimization

objectives. Let M be a matrix having ‖A‖o rows and o columns. Each row of M is

an element of Ao. Let BB(o) be the set of all order-o BBs, λ’ is an ordered set and

defined as the following:

BB(o) ,
⋃

λ′⊆Λ,‖λ′‖=o





⋃

j∈{1,··· ,‖λ′‖}





⋃

i∈{1,··· ,‖A‖o}

{
(Mi,j, λ

′
j)

}








Let W = BB(o) \ b̃. Let W ′ ⊆ W. Let P , An where P is all combinations of possible

complete solutions. Let P′ ⊆ P. Let fi,τ and evalτ be defined as the following

function:

F(X) = fτ~x : R; {fτ~x : fτ~x = evalτ (~x)}τ∈ζ,~x∈P where evalτ : P→ R

where k f~xs are assigned to each complete solution, ~x, in P. Let the replacement

operator, R, be defined as follows:

R : BB(o) × P→ P; R(γ, ρ) , {γ 7→ ρ}

where γ meets the requirement of Definition 10, ρ is a complete solution, and the

7→ operator indicates that the left side element parts replace the right side complete

solution where the left side element is specified; otherwise, the right side complete

solution remains unchanged.
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b̃ =





possible good : ∀τ∈ζ

(
µb̃τ

> µW′
τ

)

possible bad : ∀τ∈ζ

(
µb̃τ

< µW′
τ

)

equivalent : otherwise

(28)

possible good =





good : ∀τ∈ζ

(
cb̃τ1

> cW′
τ2

)

equivalent : ∃τ∈ζ

(
cb̃τ1

> µW′
τ

> cb̃τ2

)
or∃τ∈ζ

(
cW ′

τ1
> µb̃τ

> cW ′
τ2

)

ugly(good) : otherwise

possible bad =





bad : ∀τ∈ζ

(
cb̃τ2

< cW′
τ1

)

equivalent : ∃τ∈ζ

(
cb̃τ1

< µW′
τ

< cb̃τ2

)
or∃τ∈ζ

(
cW ′

τ1
< µb̃τ

< cW ′
τ2

)

ugly(bad) : otherwise

ugly(x) =





equivalent : ∃τ∈ζ (cτt1 < zero < cτt2)

x : otherwise

2

The sampled good MBB definition (Definition 17) ends with the inequality

presented in Equation 28. The confidence intervals calculated from sampling the

data represent most of the values within the final test cases. The confidence intervals

do add to the equivalence area because the area is overlapped with the confidence

intervals. Figure 5 illustrates the change in the good, equivalent, and bad BB areas.

The entire inequality in Equation 28 is elegant in that it relates back to the

single objective case when the number of samples approaches the total number avail-

able. Furthermore, this final definition in its current state can be called the sampled

good single and multiobjective BB definition because it works for all values of k > 0.

In the following section, these definitions are used to extend BB and BB builder

classification.
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2.6 Adjusting the Fitness

A researcher using non-adjusted fitness values might run into problems when

directly embedding these definitions within a BBB’s BB selection operator. The

reason is that the identification of good BBs is based on a fitness centroid which

relies on the fact that the optimal fitness is located in a region where the majority

of good fitness can be found. This can be the cause of problems with any algorithm

that relies mostly on definitions that are using an averaging function to draw the

line between good and bad solutions. To alleviate this, a ranking of solutions based

on the fitness values is needed. Equation 29 defines, RF , a way to adjust the fitness

landscape in a way to make the definitions work toward identifying BBs that are

within the optimal solution as good BBs.

RFτ (~x having worst fτ (~x)) = 1 (29)

RFτ

(
~x having jthbest fτ (~x)

)
= N ∗RFτ

(
~x having (j + 1)thbest fτ (~x)

)

RF indicates Ranked Fitness.

Equal fτ (~x)s are grouped as the same jth best.

N number of distinct ~x s being evaluated.

fτ (~x) is defined in Definition 13 on page 27.

To explain this phenomenon further, a three-bit example can be found in Ap-

pendix L on page 407. The examples provide support and understanding of how

to use these new GSBB and GMBB definitions in identifying if a BB is single or

multiobjective good, equivalent, or bad. In addition, it is necessary to know the def-

inition of a good BB even if these definitions are not used within a particular BBB.

Certainly, there are many computations required to classify a BB when using these

definitions. In some cases, it could be useful to know if a BBB algorithm is operating

with good, equivalent or bad BBs. This ends the evaluation of the previous good

BB definitions. Next, a supposition about the meaning of good and optimal BB sets

is discussed.
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2.7 Minimal of Maximal ordered BBs

BBBs are search algorithms that specifically look for good BBs. These good

BBs are then put together to construct good complete solutions. BBBs, like these

are working on the premise that a set of good BBs can be spliced together to build

good solutions (see Figure 2.3 for an example of BBs being spliced together). In

addition, the assumption is made based on the findings earlier in this chapter that it

is better for a BBB to find larger good BBs than smaller BBs if the builder is using

a non-modified fitness. From this, the conjecture can be made that a BBB is seeking

the optimal BB set that can be used to build all optimal solutions for a problem.

Definition 18 (Optimal Building Block Set): Let there be a set of BBs, O, of

various orders (sizes), oi, that can be put together using an operator, J , in such a

way to build the optimal set of solutions for a particular problem, P. The optimal BB

set is the minimal set of maximally ordered BBs that can be put together using the

operator J to build every optimal solution for P. Equation 31 minimally describes

this definition.

Or = max

{∑
i∈O

exp(‖i‖)
}

J (O)=P∗
(30)

where J is a juxtapostional operator that

builds complete solutions from a set of BBs,O.

O∗ = min {‖j‖}j∈Or (31)

where Or is defined in Equation 30

2
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Definition 18 on page 51 abstractly defines what is meant when a BB set is

said to be an Optimal BB Set. A Juxtapositional operator, J , is defined to take a

set of BBs, O, and spliced them together to make a complete solution. Figure 2.3

illustrates an example of a left-to-right static juxtapositional operator. It is used

to show the mapping of a set of BBs to complete solutions in the genotype space.

Clearly, there exists a set of BBs, Or, that can be put together using the operator

J in some way to make up the set of all optimal solutions. BB sets that can be put

together to build all optimal solutions are called jBB sets. The optimal solution set

may be unique or it may not. Next, in Equation 30, a maximally ordered jBB set, O∗,

is described to be better than lower ordered jBB sets based on the earlier discussion

demonstrating how smaller BBs might be wrongly identified as good, when indeed

they cannot be used to make the optimal solution. Thus, a set of larger good BBs

is better than having smaller BBs. Therefore, as the order of jBBs go up for this

Optimal jBB set, the better the set’s contrived merit. Finally, the set of jBB sets

that contain the minimal number of BBs within the entire set also becomes attractive

because then the builder does not need to find as many BBs as a larger set; thus,

Equation 31 defines the optimal set of BBs as the minimal set of Maximal ordered

BBs. This Optimal BB Set may not be unique; however, each set that satisfies the

definition is a smaller set of sub-elements. Hence, it can be expected that if a BBB

algorithm seeks to find one of these Optimal BB sets, it results in a smaller number

of required sets of sub-elements for the creation of all optimal solutions.

Using the definitions declaring good, equivalent and bad BBs in conjunction

with what it means to be an Optimal BB set, some basic conclusions about the

operations of BBBs can be drawn. The following is a list of conjectures about

BBBs:

1. The meaning of a good BB is different within different BBBs. This depends on

the statistical foundation of the algorithm. It is not the attempt of this research
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to devise the different statistical models for BBBs; however, it is recognized

that different models do exist.

2. BBBs are seeking at least one complete Optimal BB Set, jBB, contained in

O∗.

3. Once a builder has a jBB set, it must splice together the items in the set until

it constructs the optimal solutions.

4. The success of a BB building algorithm is determined in two aspects:

(a) Effectiveness in finding good BBs.

(b) Effectiveness in putting good BBs together to make the Pareto optimal

set of solutions.

Among these conjectures, there are two BB performance metrics that are re-

vealed. The first, flagged above by 4.a, is the effectiveness of a BBB in finding good

BBs. The second, flagged above by 4.b, is how well the BBB constructs optimum

solutions from the good BB set found by the builder during the search procedure.

These BBB gain metrics can be used to evaluate the operating mode or rate of good

BB gain of a BBB algorithm.

In the next section, a definition for what it means to have positive BB gain

is given. In addition, the gain can be used as an indicator to terminate a search or

allow for an adaptive operator adjuster if the gain drops below a positive level.

2.8 BB Builder Operating Modes

BBB algorithms search mainly for good BBs. These BBs are then combined

to find good complete solutions; however, the focus of a BBB’s selection operator

is specifically to select good BBs over bad ones. Furthermore, in accordance with

Definition 18, if the algorithm finds only one of these optimal BB sets, the probability

of putting together these BBs to make every optimal solution is increased.
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BB gain is defined as a generational metric or a fluid18 metric. Assume that a

BBB discovers Ωt total unique19 BBs and ωt unique good BBs in generation t.

The available BB gain is the possible number of unique BBs that can be found

after an infinite number of generations over the number of unique BBs discovered

after t generations. This stresses the importance of how many unique BBs can be

expected given that a number of BBs are generated. This is significant sine the

expected number of unique BBs limits the available gain a BBB can achieve in its

search. The available BB gain given in Equation 32 as Gaina(t)
20 and Equation 33

specifies the limj→∞ for ωj (E(∞))21, thus, also limiting the available gain of the

BBB.

Gaina(t) =

∑∞
j=1 ωj∑t
h=1 ωh

(32)

E(q) =

q∑
i=1

∀ui∈Ui
1 ∗ p(ui) (33)

This implies that there must exist an optimal set of BBs that is smaller than

E(∞); if not, the BBB has a zero probability to succeed. Furthermore, it implies

that BBBs should concentrate on the total number of BBs created generation after

generation instead of the number of population members to create during a gener-

ation. Although this is a conjecture, it may have an impact on BBB design in the

future.

18Fluid in this case is defined as: subject to change; variable; “a fluid situation fraught with
uncertainty”.

19A unique BB is a BB that has not been constructed by the builder in the current generation
or any previous generation.

20More clearly stated, when the available BB gain is greater than one (Gaina(t) > 1) the BBB
still has a probability of finding more unique BBs and thus the probability to find more solutions.

21E(q) is the expected number of unique BB a BBB can find after checking q BBs. As q → ∞,
E(q) must be larger than the minimum Optimal BB set size (E(∞) < min(Or)).
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Equation 33 is a generic formula for calculating the number of unique BBs for

a BB population of size q. Ui is the number of ways to select a unique BB after

picking i BBs. Figure 9 is provided to give an example of how to calculate the

expected number of unique BBs if a population of size 4 is generated in a problem

having q BBs. The expected value, E(q), is equivalent to Ωt.

Conjecture of static and temporal operating modes for a BBB at generation t

are the following:

Static Mode(BBBt) =





RED, log(Gaina(t)) = 0

GREEN, log(Gaina(t)) ≥ 0
(34)

Temporal Mode(BBBt) =





IDLE, Gaina(t) −Gaina(t−1) = 0

ACTIVE, Gaina(t) −Gaina(t−1) Otherwise

(35)

Clearly, the desired mode of operation for any BBB that has not completely

solved a problem at generation t is ACT IVE GREEN , meaning that there are plenty

of unique good BBs yet to be found and the BBB has progressed in finding at least

one good unique BB after generation t− 1. Any BBB operating in mode RED and

having not solved the problem is undoubtedly not going to solve the problem. In

addition, mode RED indicates that the BBB should stop executing or dynamically

adjust BBB parameters (i.e., including population size, rates of crossover or muta-

tion). No proof is provided for this conjecture for the mode of operations; however,

Equations 32, 34, and 35 can be used as a BBB dash board idiot light to indicate a

change in parameters is required for when BBB progression is stagnant.

2.9 Convergence and/or Stopping Criteria

BBBs much like any other EA have the underlying theory that they do converge

over time with a probability of 1 as time goes to infinity [5]. In other words, a single
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Figure 9: This figure illustrates the calculation for the expected number of unique
BBs generated by a builder having q number of BBs available |BB∗|.
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objective evolutionary algorithm converges to the optimal solution if the algorithm

is allowed to run for an eternity. The same has been shown to be true with MOEAs;

however, an MOEA converges not to a single optimal solution but to Ptrue solutions

or multiple optimal solutions. [31]

Today’s state-of-the-art BBBs are based on the same fundamental principles

as the past EAs and MOEAs; thus, BBBs must also converge with the probability

of 1 when time goes to infinity. [31,34]

2.10 Building Block Builders

There are two types of BBBs: implicit and explicit. Implicit BBBs evolve the

entire chromosome in search of good BBs. Implicit BBBs use common evolutionary

operators like crossover and mutation. These implicit BBB are known to have trouble

finding good solutions because their operators tend to destroy good BBs when mating

solutions [243]. It is for this reason that explicit BBB are better than implicit BBBs.

Explicit BBBs are algorithms that explicitly search for good BBs. Upon gathering a

group of “so-called” good BBs, these are then juxtapositioned together to construct

good complete solutions.

In this chapter, a few BBBs are introduced and a brief description of each

is given. The purpose of this discussion is to bring the point out that each BBB

has its own good BB definition imbedded within its coding. A few single objective

algorithms are discussed: messy Genetic Algorithm (mGA), fast messy Genetic Algo-

rithm (fmGA), and Intelligent Evolutionary Algorithm (IEA). Then, a few MOEAs

are discussed including MOMGA, MOMGA-II, MOMGA-IIa, and Intelligent Multi-

objective EA (IMOEA). Similarities existing between the MOEAs are highlighted.

Finally, a brief discussion of two Probabilistic Model-Building GA (PMBGAs) are

discussed: Estimation of Distribution Algorithms (EDA) and Bayesian Optimization

Algorithm (BOA).
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2.10.1 messy Genetic Algorithm (mGA). The original mGA was designed

specifically to solve deceptive problems; problems where the simple Genetic Algo-

rithm (sGA) and steady state Genetic Algorithm (ssGA) get caught in suboptimal

trenches in the fitness landscape without hope of climbing out [18,154]. This brings

to light the fact that crossover and mutation may not be flexible enough to find

optimal solutions to deceptive problems, causing the need for the mGA.

The mGA consists of the initialization, primordial and juxtaposition phases.

The use of partially enumerative initialization builds a population of all combinations

of BBs of size o, BBo. The idea for this is that the optimal solution is guaranteed

to exist within the population of these BBs. The problem is using the selection and

juxtapositional operator to find it. BBs survive by being selected using tournament

selection through the primordial phase. Then, BBs are put together in the juxtapo-

sitional phase. This algorithm is designed to rely more heavily on the juxtapositional

phase because it begins with a set of BBs that make up at least one set of BBs in Or.

Unfortunately, keeping all the BBs of one size has its limitations because population

sizes for higher ordered BBs require an exponential increase in memory. For this

reason, the fast messy Genetic Algorithm (fmGA) was developed.

2.10.2 fast messy Genetic Algorithm (fmGA). The fmGA is designed to

reduce the complexity of the mGA by replacing the initialization phase and primor-

dial phase with a probabilistic complete initialization (PCI) and primordial phase

consisting of selection and BB filtering (BBF). During the PCI and BBF phases, BBs

survive by passing a tournament selection operator. Furthermore, PCI and BBF are

alternate means to providing the juxtaposition phase with highly fit BBs [93]. When

comparing the complexity of the fmGA to that of the mGA, the fmGA is lower.

Again, this is a BBB algorithm having much success in solving difficult problems

(e.g., see [50–53,81,83,156,164,165].)
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2.10.3 Intelligent Evolutionary Algorithm (IEA). The IEA is based on an

older smaller algorithm called the Intelligent Gene Collector (IGC). The uniqueness

of the IGC is in its orthogonal experimental design (OED). IGC has three phases:

division phase, conquest phase and combination phase. It is much like the fmGA

where the IGC uses a divide-and-conquer approach by first chopping up fully speci-

fied solutions into smaller segments. One big difference between the fmGA and the

IGC is that the IGC uses contiguous genes and the fmGA can use genes in any se-

quence. A second major difference is in the division phase of IEA. Where the fmGA

randomly deletes bits from chromosomes until all chromosomes are of the same size,

designers of the IGC make the assumption that it has a population of good pop-

ulation members from which to extrapolate good BBs. Extrapolation or good BB

determination is accomplished in the conquest phase where good gene segments are

identified using the IGC. This phase has a huge memory/space advantage over the

fmGA because the IGC can only look for contiguous bit segments, where the fmGA

looks for all combinations of non-contiguous bit segments. Finally, in the combina-

tion phase, the IGC differs from the fmGA’s juxtapositional phase in that the IGC

works to combine a set of Latin Square combinations of the divided chromosomes

together until two children are created; one having the better gene segment from

the derived corresponding parents where selection is based on the factor with the

smallest main effect difference (MED). Child two is selected from the second best set

of factor settings when comparing the combinations of a Latin Square set of factor

settings (avoiding a full factorial test set) [102].

2.10.4 Multiobjective messy GA (MOMGA). The original Multiobjective

messy GA (MOMGA) is a multiobjective implementation of the mGA. It works in

three phases: partially enumerative initialization (PEI), primordial, and the juxta-

positional phase [94, 216]. In the primordial phase, partial strings22 are initialized.

22BBs are sometimes referred to as partial string, partial chromosome or a partial solution.
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However, it differs from the original mGA in that the MOMGA uses k competitive

templates23 each corresponding to an individual objective function. MOMGA’s com-

petitive templates are used to fill in missing allele values just before evaluation of

a BB. The MOMGA begins with random templates and then evolves templates by

replacing old templates with the best complete solution associated with each objec-

tive as future templates. Updates to competitive templates are done at the end of

each era.

2.10.5 MOMGA-II. The MOMGA-II is the multiobjective version of the

fmGA and consists of the following three phases: initialization, BB filtering, and

juxtapositional. The MOMGA-II differs from the MOMGA in the initialization

and primordial phase. The primordial phase within the MOMGA-II is referred to

as the BB filtering (BBF) phase. The initialization phase of the MOMGA-II uses

probabilistically complete initialization (PCI) instead of the partially enumerative

initialization (PEI) implementation used in the mGA and randomly creates the ini-

tial population. The MOMGA-II had the capability to run in both mGA and fmGA

mode; however, the PEI phase is changed to PCI for both algorithms. Additionally,

MOMGA-II also deviates from the fmGA and MOMGA in calculating a lower re-

quired population size. The decrease is largely due to the use of a sample standard

deviation population sizing equation.

The MOMGA-II maintains k competitive templates to evaluate BBs. The k

competitive templates are replaced by the best complete solutions found with respect

to each of the k objectives after the completion of the inner loop. Furthermore, only

one of the k competitive templates is randomly chosen for BB evaluation. In addition,

the MOMGA-II is implemented as a parallel MOEA having ability to run in generic

23A competitive template (CT) is a fully specified chromosome or complete solution. A CT
evolves as the EA or MOEA proceeds by the copying of the best found solutions onto the last
generation CT.
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master-slave, island, and diffusion model mode (see Appendix J on page 398 for a

description of each). However, speedup for each model has not been tested [243].

2.10.6 MOMGA-IIa. The MOMGA-IIa is also a multiobjective version of

the fmGA and consists of the following three phases: initialization, BB filtering, and

juxtapositional. The MOMGA-IIa differs from the MOMGA in the initialization and

primordial phase, which is referred to as the BB filtering phase. The initialization

phase of the MOMGA-IIa uses probabilistically complete initialization (PCI) instead

of the partially enumerative initialization (PEI) implementation used in the mGA

and randomly creates the initial population. The MOMGA-IIa can run in single and

multiobjective fmGA mode. Additionally, the MOMGA-IIa adopts the calculation

sizing equation from the MOMGA-II, decreasing the population size due to the use

of a sample standard deviation in the population sizing equation.

MOMGA-IIa BBs are evaluated against competitive templates much in the

same way that the MOMGA and MOMGA-II does. However, the MOMGA-IIa

maintains three types of competitive templates: r̂ regular CTs, î inverse CTs, and

ô orthogonal CTs. The added CTs keep a genotype and phenotype diversity as

the algorithm proceeds to search. The number of regular CTs are calculated by

taking the user specified number of CTs, û, and multiplying them by the num-

ber of objectives, k. In total, the number of CTs maintained by the MOMGA-

IIa is
(
û ∗ k + î + ô

)
=

(
r̂ + î + ô

)
. Furthermore, each population member has(

r̂ + î + ô
)
∗ k fitness values associated with it – corresponding to the k objective

functions to optimize, r̂ regular competitive templates, î inverse templates (this num-

ber is equal to r̂), and ô orthogonal templates. Competitive template replacement

is done by consulting a competitive template managing system (CTMS). [47]

2.10.7 Intelligent Multiobjective EA (IMOEA). IMOEA incorporates elitism

with a capacity of NEmax to maintain diversity and improve the performance of the

IMOEA. The IMOEA is similar to the IEA in that a Latin Square of combinations is
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created to produce children from one IGC operation; however, within the IMOEA,

multiple objective values representing each member makes for different selection and

mating operators. Moreover, the IMOEA’s selection and mating operators result

in the increase from two to eight offspring - including two parents, two children,

and four by-products. Finally, the IMOEA is a generational explicit BB MOEA,

with a unique design where it does not specifically hunt for linkages within the chro-

mosome in order to find optimal solutions. IMOEA’s pseudocode can be found in

Algorithm 38 on page 370.

2.10.8 Estimation of Distribution Algorithms (EDAs). The Estimation of

Distribution Algorithms (EDAs) alternatively sample and update a distribution on

the search space. Generated individuals are evaluated and the best individuals more

heavily impact the updating of the developing distribution. These algorithms are

shown to not perform well when a problem has optimal solutions that lie on the

edges of the search space [202]. However, regularization heuristics, which calibrate

the eigenvalues of this distribution, were shown to successfully overcome such limi-

tations. EDAs can either be variable-based or bit-based. This study is focused on

bit-based EDAs because they fit the BBB algorithm model. A few examples of these

types of algorithms are the following: Bit-Based Simulated Crossover (BSC) [210],

Population-Based Incremental Learning (PBIL) [8], compact Genetic Algorithm, and

the Univariate Marginal Distribution Algorithm (UMDA) [153].

2.10.9 Bayesian Optimization Algorithm (BOA). The Bayesian Optimiza-

tion Algorithm (BOA) evolves a population of complete solutions. BOA begins by

generating a random set of complete solutions as the initial population. Updates

to the population after initialization come from a selection and variation operator.

Selection makes multiple copies of better solutions eliminating the worst ones. Vari-

ation consists of constructing a model based on a Bayesian network for the promising

solutions that survive the selection process. Sampling the Bayesian network results
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in a new set of candidate solutions. New solutions are then incorporated into the

existing population by eliminating old candidate solutions. The algorithm iterates

until the termination criteria are met [182].

This section briefly discussed several of today’s state-of-the-art explicit BBBs.

Appendix F on page 366 discusses a detailed comparison between these explicit BBBs

and Appendix E on page 324 has a detailed discussion of implicit BBBs. Next,

the BB hypothesis is discussed. A short discussion about the BBBs and the BB

hypothesis is given suggesting that a compromise of efficiency may indeed increase

effectiveness in terms of robustness.

2.11 Building Block Hypothesis

The building block Hypothesis states that GAs works well when short, low-

order, highly-fit schemas recombine to form even more highly fit higher-order schemas.

The evident problem with this hypothesis is in deciding what is a good low-ordered

highly-fit schema (or BB). Empirically, it has been shown that weighted fitness func-

tions (deception problem) might cause the misclassification of a small BB. In fact, a

good BB could be identified as bad depending on the classifier used. According to

the original good BB definitions by Zydallis [243], this problem might throw an ex-

plicit BB search algorithm into peril. Misclassification of BBs would definitely have

a dampening effect on a BBB’s ability to solve problems. This leads us to the fact

that a BBB classification system must be good and overcome the bad classifications

discussed earlier. In fact, the dependency of the success of the BBB hinges on the

ability for it to identify these good BBs as such.

This dependency brings to light the fact that there must be different BB clas-

sification systems built within each BBB that allows for the best BBs to be found

over time. It is suggested that there are at least two types of BB classifier systems;

L∞Norm and statistical BB classifiers. The L∞Norm BB classifier is an adaptive

or progressive BB classifier that, over time, can identify good BBs over bad ones
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by using a maximization function on randomly selected BBs. The statistical BB

classifier uses adaptive statistical measures to identify good BBs over time by using

either independent or dependent statistical models.

The relevance of this is that BBBs can be classified in this study as either

L∞Norm or statistical BBBs. Within the category of statistical BBBs, two different

models are identified; independent or dependent. Table 4 lists single objective BBBs

previously discussed and identifies their BB classifying system.

Table 4: Summary of single objective BBBs and associated BB classifier system.
GA BB classification system
mGA Adaptive L∞-Norm
fmGA Adaptive L∞-Norm
IEA Statistical Independent
BOA Statistical Dependent

With these classifications in mind, it is apparent that BB classification, be

it good or bad, is dependent upon which type of BB classifier a BBB is using.

Furthermore, BB identification approaches within each BBB may be tied to the

classifier a designer wants to use within the BBB, adding another layer of complexity

to BBB design for achieving the best possible search results.

It is important to note that the classifier (whatever it may be) within the BBB

does not change the actual BBs within the solution. The BBs within the solution are

problem dependent and never change. It is up to the algorithm to classify or identify

these BBs correctly in hopes of being able to put them together in a way to build an

optimal solution. Moreover, implicit GA schemata tests have been performed and

have shown that the fitness landscape plays an important role for the implicit BBB

algorithm [78] to find good BBs. With this said, the problem domain has specific

BBs within the optimal solutions that algorithm (implicit and explicit) BB seekers

seek. The BBs in the solution for a particular problem do not change; however, the

fitness landscape of the problem can make it more difficult to find these BBs. It is

up to the builder to choose the optimal BB classifier. Furthermore, there may not
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be one optimal BB classifier. In fact, just like in racing, depending on the weather

on race day, a driver might want to change the type of tire he/she uses on his/her

car to optimize performance for a wet or dry surface, it is advantageous to marry

the landscape and the classifier in the BBB for an effective search to take place.

2.12 Multiobjective building block hypothesis

The single objective building block Hypothesis states that the GA works well

when short, low-order, highly-fit schemas recombine to form even more highly fit

higher-order schemas. It is a conjecture of the multiobjective building block hypoth-

esis that larger BBs are required for finding extremes and discontinuities along the

Pareto front vectors while the short, low-ordered, highly-fit schema can be used to

find Pareto front vectors within the interior of a Pareto front set. In most cases, large

BB sizes are found to make up vectors found on the extremes of the Pareto front.

Although an algorithm may generate low-ordered highly-fit schemas, these must be

put together to form a larger-ordered BB to find these breaks along the Pareto front.

The Pknown set contains solutions that evaluate to vectors that are moving

toward or onto the true Pareto front. Within each solution making up each vector,

BBs exist. Thus, if multiple vectors are moving outward toward the Pareto front,

BB sizes can be associated with placement of points on the front. Therefore, the

complexity of BB sizes when talking about how well an MOEA might work is high.

Thus, it can be said that sizes for BBs within the MOEA field of study have a

different meaning than within the EA field of study.

2.13 Good Building Block Classification Approach Definitions

To reiterate, the original good BB definitions 11 on page 23 and 15 on page 39

and the revised good BB definitions 13 on page 27, 14 on page 33, 16 on page 40, & 17

on page 47 are adequate BB definitions for the time that they were developed. How-

ever, sufficiency of such definitions should be gauged against how these definitions
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are used. Each algorithm judges a BB as good or bad according to a different set of

rules; therefore, each algorithm inherently has an implicit definition to distinguish

between good and bad BBs. For this reason, the following three different definitions

are produced to reflect what is thought to be current state-of-the-art BBB good BB

definitions.

2.13.1 L∞-Norm good building block classifier. In this section, the L∞-

Norm Good BB definition is given. Definition 19 reflects how the mGA, fmGA,

MOMGA, MOMGA-II and MOMGA-IIa classify good and bad BBs using a memory-

less BB classification system (i.e., the classifier does not keep track of previously good

BBs.). However, it is a conjecture that these algorithms actually have an adaptive

good L∞-Norm BB mechanism where each generation of the algorithm becomes more

accurate as to selecting which BBs are the best. The reason for this conjecture is for

the competitive templates guiding the search to become closer to optimal solutions

(closer to the PFtrue set). This can mean that first generational good BBs might be

tenth generational bad BBs. It all depends on the competitive templates and the

BBs being compared to one another.

Definition 19 (Good L∞-Norm Building Block (MBB)): Given a set of

BBs, BB∗, and a set of complete solutions, C, BBs having the maximum number

of objectives recording better fitness values when overlaid onto each of the complete

solutions in the set C are said to be good BBs. For example, given two BBs, b̃1 and

b̃2, one complete solution, C1 ∈ C, and a problem having k objective functions, if

fτ (R(b̃1, C1)) is better than fτ (R(b̃2, C1)) in more objectives, then b̃1 is called a good

BB. If fτ (R(b̃2, C1)) is better than fτ (R(b̃1, C1)) in more objectives, then b̃2 is called

a good BB. Otherwise, each BB has a probability of 0.5 of being identified as a good

BB. 2

2.13.2 Statistical Independent Good Building Block Classifier. A statisti-

cally independent good BB refers to a BB that meets the requirements of Defini-
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tion 10 and the mean ranked fitness value of the BB evaluates to a good fitness value

over a number of different allelic combinations placed in the unspecified loci. This

definition example is the same as what can be found in Definition 11 except for the

ranking fitness which can be found in Equation 29 on page 50.

Definition 20 (Good Statistical Independent Building Block (MBB)): A

good single objective BB meets the requirements of Definition 10 and the mean ranked

fitness value of the BB evaluates to a good fitness value over a number of different

allelic combinations placed in the unspecified loci. The ranked fitness is defined by

Equation 29. 2

2.13.3 Good Bayesian Building Block Classifier. Bayesian good BBs refer

to BBs that are identified as to have conditional probability dependencies between

allele values and a variety of loci. This type of BB is more complex than previous

BBs discussed because it heeds the notion that bit linkages are conditionally depen-

dent. The Bayesian BBB has a good BB classifier that incorporates the notion of

conditional dependencies between both loci and allele values.

Definition 21 (Good Bayesian Building Block (GBaBB)): Let the Directed

Acyclic Graph G be defined as the set of E, edges, and V , vertices. Let each loci

and possible allele value in a solution space represent the vertices in graph G. Let

Ei,j represents the edge from vi to vj indicating a linkage relationship between bit

vi and vj where vh , {a, l} such that a ∈ A and l ∈ {1 · · · `}. A Bayesian Build-

ing Block (BaBB) is a set of edges representing an acyclic path of connected bits

contained in G. A good BaBB is found when the score of the Bayesian Building
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Block24 metric before adding the BaBB in G is worse than the score after the BaBB

is included. 2

2.14 Utility of GBB definitions

The identification of GBB definitions or GBB classifiers within state-of-the-art

BBBs is important because it identifies fundamental BB classifying techniques that

make for successful explicit BBBs. Utility-wise, underlying BB classification systems

making up a good explicit BBB can be aggregated or designed together in a manner

to synergistically find GBBs that ultimately find optimal solution to a variety of

difficult problems.

2.15 No Free Lunch Theorem (NFL) Considerations

The No Free Lunch (NFL) Theorem states that for any two search algorithms,

over the set of all mathematical problems, each search algorithm will do on average

as well as the other. This theorem supports the fact that different algorithms are

better at solving different problems [230]. In an attempt to add robustness, it may

be better to include every BB classification system within the same algorithm in

the BBB design. When doing so, this implies that an algorithm having multiple

algorithms might be better at searching. Unfortunately, nothing is free, and this

type of implementation suffers from efficiency problems in the end, hence NFL. Still,

a thoughtful design with respect to only adding classifiers known to perform well

on particular problems may be useful to decision makers needing different problems

solved by the same optimization heuristic. Thus, a BBB having different types of

BB classifiers should be more robust at solving a variety of problems at a decrease

in efficiency.

24One such Bayesian Building Block metric is the Bayesian-Dirichlet (BD) metric. The BD as-
sumes that the conditional probabilities follow Bayesian-Dirichlet distribution and makes a number
of additional assumptions. Yet another Bayesian Building Block metric is the minimum description
length (MDL) metric. BOA uses a two-part MDL metric called the Bayesian information criteria
(BIC) which is also used in the extended compact genetic algorithm (ECGA).
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2.16 Quality of Building Block Builders

Ultimately, finding the optimal solutions for a problem defines if an algorithm

is successful. In answering the questions posed in the beginning of this chapter, the

NFL theorem must be consulted as it is stated above.

“How can one determine if one BBB is better than another?” A BBB A may

be better than BBB B at finding solutions for problem Z, but there is always a

problem W where BBB B is better than A. Thus, BBBs with successful approaches

at finding good BBs are similar and in most cases cannot be called better than one

another. This is shown to be true by many researchers [71]. Finally, BB metrics

could be a good way to measure the BB finding performance of a BBB; however,

they only show the performance of a builder for a particular problem – not the entire

set of problems in the world (simply put, an example does not prove anything).

This is not to say that the total performance cannot be measured for a BBB

on a given problem over a finite set of quality metrics - because this can be done.

However, there is no BBB that is more robust than another BBB over the totality

of all MOPs (e.g., NFL).

2.17 Summary

In this chapter, there is a revision and extension of good BB definitions to

include algorithm specific BBB classifiers or approaches. Also recognized is that re-

searchers should marry algorithm BB classifiers with the problem domain landscapes

to make a successful search. Also defined is an optimal BB set, which suggests that

a BBB seeks to have at least one optimal BB set. Once this optimal set of BBs

is found, there is still the problem of putting them together. Techniques like the

cut-and-splice operator and sampling are currently used in today’s state-of-the-art

algorithms. However, one can imagine that the combinatorics for putting all good

BBs together may be time prohibitive. Still, if the researcher chooses an explicit
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BBB, then the algorithm must put these blocks together either by a cut-and-splice

operator or a sampling procedure.

In addition to the BB merge mechanism, a choice of BB classifier must also

be done. When referring to the NFL theorem, it can be conclude that without the

insertion of domain information, each algorithm independently must perform equally

good/bad on a random problem. Finally, this suggests that a multiple classifier

design should work better than one that has a single classifier. Next, in Chapter III,

MOMGA-II design changes and justification for these enhancements are discussed.
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III. MOMGA-IIa Design

This chapter is dedicated to describing the new MOEA resulting from this research.

Design changes and justification for these enhancements. These changes add a new

active archive that enhance the preservation of good solutions and maintain a dis-

tributed collection of good solutions for evolving, a new competitive template man-

agement system, and a BB solutions tracing system with a new visual analysis tool.

Built upon the scalar fast messy GA (fmGA), the MOMGA-II uses the competitive

template (CT) for finding good BBs. Described is the design of a critical adjustment

during CT generation, replacement, and evolution required to unleash the full po-

tential of the MOMGA-series algorithm. The design includes a partitioning of both

the phenotype and genotype, allowing for the algorithm to find good multiobjective

BBs (MBBs) explicitly.

The chapter begins with an introduction describing a brief background on the

mechanics of the MOMGA-series algorithm. It shortly moves to describing in detail

each MOMGA algorithm in chronological order. Within the detailed description of

the latest algorithm, MOMGA-IIa innovative enhancements are described enough to

allow for reproduction of each novel mechanism. The chapter ends with a summary

of the design discussion.

3.1 Introduction

The latest MOMGA algorithm is MOMGA-IIa. MOMGA-II originates from

a single objective mGA extended to handle MOPs [74, 222] (see Section 3.2.1 on

page 72). Many different MOEAs were produced when the first MOMGA was de-

veloped; however, the MOMGA is the only MOEA explicitly using good BBs to

solve problems. Unfortunately, the MOMGA has a population size limitation; as

the BB size increases, so does the population size during the Partially Enumerative

Initialization (PEI) phase. This renders the MOMGA less useful on large problems.
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To overcome this problem, the MOMGA-II, which like the fmGA explicitly uses BBs

to find solutions; however, it requires smaller population sizes and has a lower run

time complexity when compared to the mGA. MOMGA-II includes many different

repair, selection, and crowding mechanisms. Unfortunately, the MOMGA-II is found

to be limited when solving large problems due to speciation [46]. This called for the

development of a Competitive Template Management System (CTMS) to ensure di-

versity measures are instantiated within the MOMGA-IIa. The design achieves a

better BB search in both the genotype and phenotype domains. Next, the history

of the MOMGA-series MOEA is given.

3.2 Structure of multiobjective explicit BB MOEAs

The following is a detailed description of the development and history of the

MOMGA-IIa.

3.2.1 Multiobjective messy GA (MOMGA). The multiobjective messy

Genetic Algorithm (MOMGA) is an explicit BB-based MOEA created by David

Van Veldhuizen and Gary Lamont in 1999 [218]. It is built on the single objective

mGA. The authors of the MOMGA took the BB searching mechanism of the mGA

and extended it to solve MOPs. At the time of its creation, the MOMGA different

from other MOEAs mainly in that it was the only MOEA that explicitly manipulated

BBs when searching for solutions.

Like the mGA, MOMGA, consists of three phases: the partial enumeration

initialization, primordial, and juxtapositional phases [94]. In the PEI phase, the

MOMGA completes a total enumeration of all user-specified BB sizes for its first

population. The population is generated through a process of analyzing the spec-

ified BB size, generating all of the BBs necessary, and evaluating all the objective

functions for each and every population member. Thus, the starting population size

is based upon the BB size, chromosome string length, and cardinality of the alpha-
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bet. BBs are created under-specified, meaning that they are partial strings. BBs

can have contiguous and noncontiguous bits, and must have at least one missing

allele. Equation 36 defines the size, N , of the population should be according to

the variables A, o, and `. Let N be the population size, ‖A‖ the cardinality of the

alphabet that is used in the GA (for a binary alphabet, ‖A‖ = 2), ` the length in

bits of the chromosome and o is the BB size.

N = ‖A‖o
(

`

o

)
(36)

The MOMGA makes use of k competitive templates to evaluate BBs. Tem-

plates are fully specified chromosomes that transcend modification during a single

iteration. These templates allow for a good comparison basis when evaluating pop-

ulation members (partial strings) - in fact, future references to the competitive tem-

plate may be as a basis function. The competitive template is the critical element

of the mGA, fmGA, MOMGA, MOMGA-II and MOMGA-IIa; without it, preserva-

tion of past good found solutions is not accomplished unless an elitism technique is

added.

The initial population of BBs are overlaid onto a randomly selected CT, chosen

from the k CTs, just before evaluating the BB’s k objective values. The objective

values are then stored with the BB. The overlaying process is described in detail

within chapter II.

Following the initialization phase, the primordial phase executes. Generations

for the primordial phase are dynamically determined based on the proportion1 of

good BBs in the population. The primordial phase process is presented in Algo-

rithm 1 as steps 7 through 13. Binary tournament thresholding2 selection is used

1The primordial phase runs until a certain portion of the BB population is deemed good. Gen-
eration of primordial phase includes tournament selection with thresholding to select good BBs for
survival.

2Selection using thresholding requires that two chromosomes have a certain number of genes in
common to be compared. Having this requirement prevents the competition of BBs belonging to
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Algorithm 1 MOMGA algorithm

1: procedure MOMGA(N ,G, fk(~x))I N members evolved G gens to solve fk(~x)
2: Randomly initialize k Templates
3: for j = 1 to o do
4: \\\\\\ PEI Phase \\\\\\

5: Perform Partially Enumerative Initialization
6: Evaluate each BB w.r.t.k Templates
7: \\\\\\ Primordial Phase \\\\\\

8: for i = 1 to Max Primordial Generations do
9: Perform Tournament Thresholding Selection

10: if Appropriate number of generations accomplished then
11: Reduce Population Size
12: end if
13: end for
14: \\\\\\ Juxtapositional Phase \\\\\\

15: for i = 1 to Max Juxtapositional Generations do
16: Cut-and-Slice
17: Evaluate Each Population member’s fitness w.r.t.k templates
18: Perform Tournament Thresholding Selection and Fitness Sharing
19: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
20: end for
21: Update k templates I Using best known value in each objective
22: end for
23: end procedure

during this phase along with a population reduction method to enrich the population

with good BBs (i.e., bad building blocks are left behind when the BB population is

reduced).

Finally, the juxtapositional phase (see steps 14-20 of Algorithm 1) is used

to perform recombination. This phase consists of using a cut-and-splice operator

alternated with tournament thresholding selection (this is the selection operator or

the BB classifier identified in Definition 19 on page 66 as the L∞Norm BB classifier

system). Thresholding in conjunction with selection is used to select similar good

BBs over bad ones as the population members grow. Mutation is not used in the

different subfunctions (or hyperplanes). When comparing BBs on two separate hyperplanes, it is
called cross-competition.
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MOMGA. The cut-and-splice operator is considered to be a crossover operator for

variable length strings. The operator is used to build up strings from their under-

specified BB size to a fully specified chromosome length. A cut-and-splice operator

randomly chooses a point to cut a string, then subsequently splices the string with

another cut string. This process is repeated allowing for all population members to

grow in length.

Population member string growth is dependent on the splice probability set-

tings of the algorithm. During the intermediate evaluations, competitive templates

are used to evaluate the under-specified strings. The templates are fully specified

population members that are not modified until the completion of the juxtapositional

phase.

Following the juxtapositional phase, the competitive templates are updated

with the best individuals found with respect to each objective function and the

process repeats itself utilizing the next user-specified BB size. During this phase,

chromosomes can become larger than what is required for a single solution. These

larger individuals are over-specified individuals and they contain an allelic value for

a particular gene multiple times. Resolution of over-specified individuals is currently

fixed by using the first allele value encountered for a specific locus (gene), when

scanning the bit string. Because the MOMGA follows the mGA so closely, Figure 10

is a good diagram for illustrating the program flow and illustrating the population

member size growth throughout each phase of the algorithm. Finally, an archive

combines the new population with the population found within the archive and all

solutions evaluating to dominated vectors are removed.

During all of the selection routines, Pareto dominance-based selection is used.

In order to expand the mGA to multiple objective functions, k competitive tem-

plates for k objective functions are used [216]. Templates are randomly selected

when evaluating a population member so as to avoid convergence to one objective

function. In addition, niching is implemented based on Horn’s Niched Pareto Ge-
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Figure 10: Illustrated in this figure is the program flow of the messy genetic
algorithm and the population of BBs and their growth while the algorithm progresses.
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netic Algorithm (NPGA) [105, 106]. The MOMGA achieves favorable performance

when compared to a limited set of other MOEAs [216]. MOMGA pseudocode can

be found in Algorithm 1.

Discussed next is the design and implementation history of the multiobjective

version of the fmGA - MOMGA-II. There are population size advantages for having

an fmGA-based MOEA, MOMGA-II, instead of the mGA-based MOEA, MOMGA.

However, the mGA is guaranteed to have all good BBs of a particular size, while the

MOMGA-II probabilistically creates a population size of order-o BBs to overcome

noise created by objective functions. With a lower population size, the fmGA is

shown, in the literature, to be better than the mGA on selected SOPs. Further, it

is shown that the MOMGA-II is better than the MOMGA on select MOPs [244].

3.2.2 Multiobjective Messy GA (MOMGA-II). The MOMGA-II mirrors

the fmGA (see Section E.4.6.2 on page 336 for a short discussion of the fmGA) and

consists of the following phases: probabilistic complete initialization (PCI), BB fil-

tering (BBF), and juxtapositional. Thus, the MOMGA-II differs from the MOMGA

replacing the primordial phase, with the BB filtering phase in the MOMGA-II, and

the PEI with PCI phase. The PCI randomly creates the initial population using the

size of the population suggested to obtain good results for the fmGA is calculated

using Equation 37 where ` is the total number of genes, `′ is the string length, o

is the BB size, ĉ(α) is used to determine the acceptable amount of error, β2 is the

signal-to-noise ratio and k is the number of subfunctions [93]. This population sizing

equation fixes the mGA’s population size problem of having an exponential rising

population size as the searched building block size increases (see Equation 36 on

page 73). However, a more recent study has shown that this equation is based not

on a sampling of the population, but on the entire population. In 2002, Zydallis de-

veloped a better population sizing equation for the fmGA and the MOMGA-II using

a sample variance calculation. Equations 38, 39, 40, 41, 42 and 43 describe the calcu-

lation required for the new population sizing equation in the MOMGA-II. The new
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equation takes into consideration noise produced by k different objective functions.

See [243] for a detailed discussion about the new population sizing equation.

N =

(
`
`′
)

(
`−o
`′−o

) ∗ 2ĉ(α) ∗ β2 ∗ (k − 1) ∗ 2o (37)

µdiff = µb̃1
− µb̃2

‡a (38)

σ2
µdiff

= (σ2
b̃1

+ σ2
b̃2

) (39)

z2(α) =
µ2

diff

σ2
µdiff

N ′

, where N ′ =
N
k

(40)

ε2
Ni

=
σ2
Ni

σ2
M

†b (41)

ε2
T =

k∑
i

ε2
Ni

(42)

N = 2 ∗ z2 ∗ σ2
M

σ2
µdiff

2 ∗ k ∗ (1− ε2
T ) ∗ |A|o (43)

a‡ ub̃j
is the mean fitness for each objective found for BB b̃j evaluated after being over-

laid into an unspecified number (not specified by Zydallis; suggest 29) different population

members.
b† σ2

M is used instead of σ2
diff to indicate that the calculation uses a sample variance -

not an entire population variance

The PCI phase creates population members of string size `. The generation

of the initial population is different than that of the MOMGA where all possible

combinations of order-o BBs are created. Algorithm 2 presents the pseudocode for

the MOMGA-II’s PCI phase in steps 3-5. It is important to note that the MOMGA-

II population members are generated randomly where allelic values are randomly

selected, as well as the positions (loci) to place these values. Again, the number

of population members to create is determined by Equation 43. After the initial

population is created, members are evaluated with respect to each of the k objective

functions. The MOMGA-II also follows the mGA (k = 1), fmGA (k = 1), and
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MOMGA having k competitive templates for the k objective functions. Furthermore,

selection of one of the k CTs to evaluate a BB is done randomly - only one is selected

per evaluation. The function of CTs within the MOMGA-II is the same as within

the mGA, fmGA and MOMGA. Initially, CTs are generated randomly. Once each

BB size is executed, the MOMGA-II updates each of the competitive templates with

the best solution found with respect to each objective function.

Algorithm 2 MOMGA-II algorithm

1: procedure MOMGA-II(fk(~x)) I Solve fk(~x)
2: for j = 1 to epoch do
3: \\\\\\ PCI Phase \\\\\\

4: Perform Probabilistically Complete initialization
5: Evaluate each pop member’s fitness w.r.t.k templates
6: \\\\\\ BBF Phase \\\\\\

7: for i = 1 to Max BBF generations do
8: if BBF schedule requires cutting at this generation then
9: Perform BBF

10: else
11: Perform Tournament Thresholding Selection
12: end if
13: end for
14: \\\\\\ Juxtapositional Phase \\\\\\

15: for i = 1 Max Juxtapositional generations do
16: Cut-and-Splice
17: Evaluate each population member’s fitness w.r.t.k templates
18: Perform Tournament Thresholding Selection and fitness Sharing
19: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
20: end for
21: Update k templates I Using best known value in each objective
22: end for
23: end procedure

The BBF phase (pseudocode shown in Algorithm 2 steps 6-13) reduces the

string lengths of the population members generated in the PCI phase by follow-

ing a user-specified filtering schedule. This BBF schedule specifies the generations

to conduct a random deletion of bits and the number of bits to delete from each

chromosome. Additionally, the schedule also specifies the number of juxtapositional
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generations to execute and can be automated by the MOMGA-II. The MOMGA-II

uses the filtering schedule where the strings are halved in length with each filtering

operation until they are reduced to the specified BB size. As far as mutation, the

MOMGA-II does not have a mutation operator; however, the BBF operator has been

classified as a mutation operator. The reason the BBF operator has been classified

as a mutation operator is because it slowly alters the chromosomes within the pop-

ulation by randomly removing bits. To reduce confusion, the BBF operator is called

filtering - not mutation. The MOMGA-II’s BBF operator filters each string with

the probability of filtering (pf ) equal to one. The probability of mutation (pm) for

the MOMGA-II is zero.

The filtering process consists of a random deletion of d̂ bits from each of the

population members. After the first filtering operation, the strings are reduced

in length from ` bits to ` − di bits, where di is the number of bits to remove in

filtering step i. Each subsequent filtering operation continues to randomly delete

additional bits from all population members. Typically, each filtering operation

does not delete the same number of bits. The number of bits to delete during each

filtering generation is user specified in the BBF schedule3. Filtering is alternated

with tournament selection. Tournament selection within the MOMGA-II fosters

competition between same hyperplaned BBs, provisioning the next population with

the best BBs by selecting the winners from the tournament for advancement into the

next population. The reason for using tournament selection is to keep more copies of

the best BBs from one generation to the next because it is expected that these BBs

generate better solutions. At the conclusion of the BBF phase, the entire population

consists of individuals having a specified BB length.

At this point in the algorithm, the population consists of the best BBs found.

The end goal of the BBF process is to yield a similar result to the primordial phase

3A good BBF schedule has filtering step sizes that are no more than 20% of the string size (`)
of the chromosome [155]; however, you must still have BB sizes in the schedule where your BBF
phase stops (user specified BB size for each epoch).
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of the MOMGA, a population consisting of a sufficient number of good BBs to be

recombined in the juxtaposition phase of the algorithm.

The juxtapositional phase proceeds in the same manner as in the MOMGA.

Steps 14-20 in Algorithm 2 on page 79 present the pseudocode for the juxtapositional

phase. BBs found through the initialization phase and BBF phase are recombined

through the use of a cut-and-splice operator alternated with tournament selection

with thresholding. Again, the reason for using tournament selection is to be sure

that the best is combined with other best BBs within the population. Gradually,

population members’ length grow toward becoming fully specified – having an allelic

value stored in each locus position. The cut-and-splice operator is alternated with

tournament selection maintaining a population of the best individuals found.

As in the MOMGA, competitive templates are used to evaluate the fitness

values of underspecified population members. In the event of overspecification, where

a loci location has multiple allele values, a scan from left-to-right is conducted of

the population member and the first value encountered to specify the gene location

becomes the allele value for that gene - dropping all right most overspecified allele

values. But as the juxtapositional phase advances, population members become

less dependent on the competitive templates to fill in missing alleles because of the

growth of the individual members.

Following the juxtapositional phase, the BB size is incremented and each τ th

competitive template is updated with the best individuals found with respect to the

τ th objective function. The MOMGA-II also uses this model of population sizes and

program flow, thus it is a good representation of a single BB size for the MOMGA-II.

The MOMGA-II executes all three phases for each BB size and presents solu-

tions and the associated PF vector set generated. Theoretically, the MOMGA-II can

be applied to MOPs with any number of decision variables and objective functions

- constrained only by the system resources. The MOMGA-II’s better performance

over the MOMGA is similar to the increased performance of the fmGA over the mGA
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Figure 11: Illustrated in this figure is the program flow of the fast messy genetic
algorithm and the population of BB and their growth while the algorithm progresses.

and was to be expected. However, improvements to the MOMGA-II are required

for it to be able to solve larger problems and those having a higher epistatic level.

In fact, the MOMGA-II was shown to not perform well when solving some larger

deception problems having a high epistatic level [43]. Discussed next is a detailed

outline of the development of the MOMGA-IIa.
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3.2.3 Design Modification Rationale. MOEA research has resulted in some

solid objectives the multicriteria heuristic designer or architect must consider in

designing a new or optimizing a former algorithm. These objectives are referred to

as the “PPDPs” of MOEA design. PPDP stands for Preserve, Progress, Diversity

and Provide. The PPDPs and description for each are outlined as follows:

Preserve Preservation of solutions that evaluate to non-dominated vec-
tors is required so a strategy can use these former solutions in some
manner to find better next generation solutions.

Progress Next generation solutions must evaluation to forward pro-
gressing PF vectors - moving toward the PFtrue.

Diversity Maintaining diversity within the phenotype is paramount;
however, diversity within the genotype domain is also important.
Diversity yields a more extensive non-dominated set of vectors along
the Pareto front.

Provide Provide the decision maker with a reasonable number of dis-
tributed Pareto front vectors and related Pareto optimal solutions.

These MOEA design fundamentals are found in each MOEA design. More-
over, each essentially compliments the others to meet the end goal for any MOEA,
which is to find the complete set of Pareto optimal solutions (Ptrue) with respect to
the allowable resolution of the algorithm. Built on these design fundamentals, the
following design concepts guide MOEA development:

1 Fitness based on dominance ranking (Preserve)
2 Diversity strategies: Kernel, Nearest neighbor, Histogram (Diversity)
3 Uniform/Diverse Uniformly spaced PFknown (Diversity))
4 Convergence to PFtrue, PFtrue (Progress)
5 Generating non-dominated phenotype points (Progress)
6 Archiving plus elitism of chromosome population (Preserve)
7 Niching or Crowding on Pareto front (Provide and Diversity))
8 Visual comparisons (Provide)
9 Quantitative performance metrics (Provide)
10 Evolutionary Visualization (Provide)
11 Explicit/Non-Explicit BB manipulation (Expected Progress toward PFtrue)
12 Probabilistic models (Expected Progress toward PFtrue)
13 Non-Pareto vs. Pareto approaches (Preserve, Progress, Diversity, and Provide)

The new MOEA structure uses a proven MOEA heuristic. The fmGA is proven

to be a good EA and has been shown to perform well for Zydallis as the base line EA
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from which the MOMGA-II is built. Thus, the fmGA is selected as the base line EA.

Although MOMGA-II code was available, due to the amount of structural changes

that were planned for the MOMGA-II it was decided that the MOMGA-IIa would

not share any code with the MOMGA-II. Furthermore, a re-write of the fmGA to

MOMGA-IIa resulted allowing for easier problem integration because the code has a

definite separation between algorithm and problem domain code. MOMGA-II design

concepts (not code) recognized and needing to be modified to create the MOMGA-IIa

are bolded above. Modifications are largely due to the limitation of the MOMGA-II

to scale well and the lack of space (genotype and phenotype) partitioning within the

MOMGA-II [43].

Secondly, the MOMGA-II should be analyzed for usefulness and levied against

the MOEA fundamentals listed. In fact, the MOMGA-II is found to meet funda-

mental MOEA design concepts. However, the question remains, how well are these

fundamentals met and can it be done a better way based on algorithmic knowledge?

Just patching an algorithm with added mechanisms is often not enough to make the

algorithm the best it can be. An algorithm needs to be analyzed for what makes

it perform well; then, a suitable modification should be forged, enhancing strengths

while either fixing or replacing weak mechanisms. This must include the finding of

the BB classifier to identify good BBs identified in Definition 19 on page 66. Anal-

ysis can either be accomplished with metrics or reverse engineering techniques. In

some cases, a break down of algorithm processes may reveal shortcomings. A list of

the MOMGA-II characteristics can be found in Table 5. Next, justification is given

for identifying these concepts and associated specifications to be changed within

MOMGA-II.

The underlying algorithm is validated to be a good BBB - both in the single

and multiobjective field of study [41, 243]. In fact, the underlying EA has the same

fundamental GBB classifier, identified in Table 4 on page 64, as a state-of-the-art

BBB classifier. Therefore, the BB classifier is not suspect and is not to be changed.
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Table 5: MOMGA-II Characteristics
Design Concept MOMGA-II specifications:
Single objective base algorithm fmGA
Archive File Store of previously non-dominated vectors
Elitism Percentage of good BBs preserved from one

generation to next
Repair/Penalty function MOP specific operators are used for

the ALPa and MMOKPb MOPs.
Niching or Crowding None
Visual comparisons Post mortem visualization
Evolutionary process Analysis None
Explicit/Non-Explicit BB Explicit
Probabilistic model None

aThe Advanced Logistics Problem (ALP) is a real-world problem involving logistics research in
resource allocation. See Appendix G section G.8.2 on page 386 for a brief explanation.

bThe Modified Multiobjective Knapsack Problem (MMOKP) is modeled from the single objec-
tive knapsack problem. See Appendix G section G.8.1 on page 385 for a brief explanation.

However, upon analyzing how the MOMGA-II meets major design concepts corre-

sponding to the objectives for an MOEA architect, it becomes clear how to enhance

the new MOEA for an improved performance. Based on the design concepts of the

MOMGA-II and the MOEA design requirements, the two MOEA design objectives

that need focus are the Preserve and Diversity mechanisms within the MOMGA-II

which is why Table 5 bolded the concepts relating to these concepts.

The original fmGA used the competitive template as a means to preserve past

best solution, as does the MOMGA-II. It is here where a divergence of architecture

lies. In the strictest sense of preserving past-found solutions evaluating to non-

dominated vectors to the next generation, the MOMGA-II does not keep the total

number of competitive templates required if the algorithm were to perform as its

single objective form. This is noted in [216] where Van Veldhuizen suggests the

combinatorics for having a template for each PFknown vector would be too cost pro-

hibitive. Thus, the number of templates applied equals the number of MOP objec-

tives. Furthermore, the MOMGA-II employs regular elitism. The elitism mechanism

manufactures (copies) good results into the population just before these results are
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cut down to a single BB size. This design goes against the idea of the original design

of the algorithm, stifling it from capturing a range of overlapping good BBs within

the same single complete solution and finding better BBs from this amassed set of

good BBs found within a complete solution. With this conclusion, a design having

more than k competitive templates is utilized. The reason for this modification is

due to the belief that, within an fmGA-based algorithm, a single complete solution

carries more BB information than what can be copied over into the population be-

fore filtering. The first enhancement is the adding of more competitive templates

to the MO version of the fmGA. This modification comes at the price of space be-

cause it takes more computer memory to store each template. The expected benefits

outweigh the cost of implementation.

Fundamentally, adding competitive templates is easy - but adding them in an

advantageous way can decidedly meet more than one design concept is ideal. Many

researchers have illustrated that a diverse elitism approach is a type of niching or

crowding [58, 222, 236, 242] and helps keeps a diverse Pareto front resolution. Thus,

a group of basis functions having a diversity along the Pareto front in a distributed

manner is one way to solve the elitism and crowding/niching problem within the

MOMGA-II. In addition, it solves the problem in a way that is fashioned after the

original designer’s idea for use of competitive templates in the fmGA. Finally, this

design meets three MOMGA-II design gaps at once: diversity population strategy,

archiving elite, and implicit niching.

A memory-based archive is used to update the basis function mechanism in

keeping diverse phenotypic basis functions4 (CTs). These enhancements adjust the

MO fmGA to meet two important MOEA fundamentals: preservation of solutions

and keeping diversity along the Pareto front extremes. The avoidance of a mem-

4A phenotypic basis function refers to the competitive templates used as guides from which the
explicit BBB bases its BB search. The term basis function is taken to mean that these competitive
templates are diverse in the objective space and provide a diversity guide to base further good BB
searching - it is more related to the genotype locality of the solution when the phenotypic vectors
associated with these solution are kept diverse.
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ory based archive to preserve good solutions is done in the MOMGA-II; however,

eventually elitism is performed post-mortem in an off-line file storing solutions and

associated objective values from the previous experiment.

The next modification requires more CPU time than the previous MOMGA-II.

Consider for a moment that the algorithm is in search for the absolute best BBs.

To identify a good BB, an evaluation must be conducted with respect to at least

one basis function. MOMGA-II has k basis functions, but it only selects one at

random to evaluate that particular BB. This results in the possibility of having a

good BB, but misses the opportunity to identify it as such because the algorithm

did not evaluate each BB against all k competitive templates. The significance of

this is high because the algorithm can only expect to create less than half of the

number of available unique BBs in the entire BB space. The modification comes in

the way that each individual is evaluated against each and every basis function and

all values are kept for future reference. Efficiency is important; however, finding the

best BBs is the only way the algorithm can find at least one optimal BB set, O∗ (see

Definition 18 on page 51); therefore, effectiveness is a priority over efficiency when

making changes.

Notice that the specifications for the MOMGA-IIa, presented in Table 6, show

the explicit absence of the elitism and repair mechanisms. The repair mechanisms are

MOP specific and the elitism is replaced with a competitive template management

system. Designs that can incorporate many tools and enhancements into a single

mechanism can be more advantageous to algorithm performance than patching an

algorithm with historically good mechanisms. The next section describes in detail

the MOMGA-IIa design, focusing on the archival store and competitive template

management system which is the unique modification that allows for an enhanced

performance over the MOMGA-II.
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3.3 Multiobjective fast messy GA (MOMGA-IIa)

The MOMGA-IIa is based on the fmGA and consists of four phases: prepara-

tion, initialization, BB filtering, and juxtapositional. It differs from the MOMGA’s

initialization and primordial phases. Where the MOMGA uses the PEI for ini-

tialization the MOMGA-IIa uses PCI and where the MOMGA uses the primordial

phase the MOMGA-IIa has the BB filtering phase. In addition to these changes,

the MOMGA-IIa adds a Preparation Phase that establishes the environment before

the MOMGA-IIa begins its search for good BBs and solutions. The MOMGA-IIa

differs from both the MOMGA and MOMGA-II by including three types of CTs:

regular, inverse, and orthogonal. In addition, MOMGA-IIa’s selection operator in-

stantiates the L∞Norm Good BB definition (see Definition 19 on page 66). Finally,

the MOMGA-IIa has a Competitive Template Managing System (CTMS) to evolve

(manage) the various types of competitive templates and an evolutionary solution

tracing mechanism (ESTM).

The CTMS is made up of a Pareto front structure (PFS) and target vector (TV)

slot assignment mechanism that allows for the evolving regular competitive templates

to partition the phenotype space; thus, lowering the BB size requirement for the

MOMGA-IIa. The inverse and orthogonal competitive templates are mainly used to

partition the genotype space. The evolutionary solution tracing mechanism5 keeps

track of the evolutionary process for each particular BB that, once overlaid into

a CT, evaluates to a non-dominated vector. The recorded trace allows for a post

mortem partial epistatic level measurement for a particular MOP.

3.3.1 Preparation Phase. Before the probabilistic complete initialization

phase, the MOMGA-IIa prepares the environment for operations. First, it partitions

5This evolutionary tracing function tracks by tagging the trail of each solution. Each time a
solution is cut down to a particular BB size, selected for tournament selection, and put together
with another BB, it is recorded within the tracking system. This is called the Birth-to-PF (BP)
tracing mechanism for a solution.
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Table 6: MOMGA-IIa Design Specification
Design Concept MOMGA-IIa specifications:
Single objective base algorithm fmGA
Archive PF object to maintain ε

solutions evaluating to
non-dominated vectors (PFε

known)
Elitism Implicit
Repair/Penalty function Implicit
Niching or Crowding Target Vectors
Visual comparisons Post mortem visualization
Evolutionary process Analysis Birth to PF visualization
Explicit/Non-Explicit BB Explicit
Probabilistic model None

the phenotype domain by adjusting a grid over a 0-1 normalized objective space

Figure 12 illustrates how a two dimensional (two objective) grid would be affixed

over the objective space. The intersecting lines of the grid designate a point or target

vector that partitions the space uniformly with respect to the number of available

regular competitive templates, âr.

Objective space grid resolution is based on the number of regular competi-

tive templates, r̂, available to partition the objective space. The number of regular

competitive templates is determined by the number of competitive templates spec-

ified by the user, û, multiplied by the number of objectives in the MOP, k. The

number of user specified competitive templates are identified within a parameters

file - an input file called “CT config.dat”. The best optimal solutions found w.r.t.

each objective are saved in k regular competitive template slots, like the MOMGA

and MOMGA-II; however, the rest of the regular competitive template slots become

known as available regular competitive templates, âr. Target vector slots are gener-

ated in excess sometimes to capture a good objective space distribution of optimal

solutions. Note that a target vector slot maintains both genotype and phenotype

vector values for a solution, but the partitioning of target vector slots is done within

the phenotype domain. Optimal solutions that evaluate to objective space values
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that first, once normalized, evaluate closest to a particular target vector and second

are furthest away from the origin are assigned to target vector slots. The number of

target vector slots, ˆtvs, is equal to or greater than the number of available regular

competitive templates, âr. Where the number of available regular competitive tem-

plates is calculated by taking the number of regular competitive templates, r̂, and

subtracting the number of objectives, k.

For example, if the user specifies a total of five competitive templates for a two

objective MOP. The number of regular competitive templates is ten, the number of

available regular competitive templates is eight because two are dedicated to the two

worst/best competitive template slots for each objective, and the number of target

vector slots available must be equal to or greater than eight.
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2 Dimensional Objective Space Partitioned

f1(~x)

f2(~x)

Grid Intersection Points designating target vector slots

Figure 12: This figure illustrates a two-dimensional grid affixed over a 0-1 normal-
ized objective space. The boxes indicate the cross hairs for target vector direction.

Next, within the preparation phase, the user can indicates the use of a set of

inverse competitive templates during a MOMGA-IIa search. An inverse competi-

tive template is simply the mirror image (bit flipping) of each regular competitive
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template. For example, if regular competitive template one is 1101, the inverse com-

petitive template one is 0010. The number of inverse competitive templates, î, is the

same as regular competitive templates, r̂.

Continuing in the preparation phase, an orthogonal bank of ô chromosomes is

created. This bank is to be used later to filter a randomly selected regular competitive

template. The number of chromosomes in the bank, ô, is specified by the user within

a parameter file, an input file called “in.s”. The bank of orthogonal chromosomes is

based on the Latin Square; therefore, these chromosomes are not truly orthogonal

in the mathematical sense of the word, but this Latin Square competitive template

is still referred to as orthogonal throughout this dissertation. Section 3.4.3 describes

how this bank of orthogonal chromosomes is created. Table 7 lists each competitive

template type used within MOMGA-IIa and how many of each is generated.

Table 7: Competitive Template Specifications for MOMGA-IIa

Competitive Template (CT) type Number
User Specified CTs û

Regular CTs r̂ = û ∗ k
Available reg CTs âr = r̂ − k
Target vector slots ˆtvs ≥ âr

Inverse CTs î = r̂
Orthogonal CTs ô

The implementation of target vectors involves fitting the objective space with

a grid that has, at the minimum, âr intersecting vectors partitioning a normalized

0/1 objective space - where âr is the number of available regular competitive tem-

plates. It is important to distinguish that k templates have been left out of this

grid specifically so that the best solution w.r.t. each objective can be copied into

the k left over regular competitive template slots. The distinction here between the

number of available competitive templates, âr, and the number of target vector slots,

ˆtvs, is made here. The objective space grid (target vector partitioning) is used to
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preserve a good phenotype distribution using the PF vector values from evaluating

the optimal solutions for next generation BB searching.

Section 3.4.2 describes how the grid is discerned and how many target vector

slots ( ˆtvs) are available ( ˆtvs ≥ âr), where âr is calculated as in Table 7. Once

the target vector slots are gauged, they are copied to a mobile target vector for

the application of jitter6 as the algorithm proceeds. The jitter function randomly

moves target vectors within the space a specific amount to guide competitive tem-

plate selection to different parts of the objective space within a specified normalized

objective space regions7.

3.3.2 Competitive Template Generation. After fitting a grid over a nor-

malized objective space and creating the regular, inverse, orthogonal template space,

as well as an orthogonal bank of chromosomes, the algorithm begins by randomly

generating all regular competitive templates. Inverse competitive templates are then

generated by inverting each regular competitive template. Finally, a set of orthog-

onal competitive templates is generated by filtering a randomly selected regular

competitive template through the bank of orthogonal chromosomes. Table 8 illus-

trates an example of how a regular competitive template is filtered through a bank

of orthogonal chromosomes to generate a set of orthogonal competitive templates.

The selected regular competitive template is listed in the left most column. For each

row within the bank of orthogonal chromosomes each bit within the selected regular

competitive template is XORed8 with that row’s orthogonal chromosome bit in the

same loci position to produce that row’s orthogonal competitive template (listed in

the right most column).

6Jitter is a term used for the mechanism that applies a random drift from the absolute target
vectors calculated in the beginning of the algorithm.

7The specified region is bounded in a way to prevent target vector objective space area overlap
(i.e., no two target vectors can be mapped into the same region).

8XOR is the logical complimented exclusive OR function.
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Altogether, the total number of competitive templates used by the MOMGA-

IIa, ˆcts, is calculated as ˆcts = û ∗ k + î + ô. Originally, only a set of k regular

competitive templates were used during algorithm execution, but it was conjectured

that using only k regular competitive templates would result in speciation9 within

this explicit BBB. Design modifications are made to specifically avoid this problem

and, to guarantee better exploration of the genotype space, inverse and orthogonal

competitive templates are added.

3.3.3 Probabilistic Complete Phase. The MOMGA-IIa, like the MOMGA-

II, uses a modified version of PCI where the population is initialized randomly.

The size of the population suggested to obtain good results for the fmGA is shown

in Equation 43 on page 78. The difference between the original MOMGA-IIa’s

population sizing equation and the new equation is that the variance is modified to

use a sample variance, and noise interjected by k objective functions is regarded.

The population-sizing equation calls for limiting the population size; thus, only

a subset of combinations of sized o BBs are generated. In fact, the population is

a randomly generated pool of `-o sized strings. Allelic values are randomly picked

as well as the loci. After the generation of the initial population, each population

member is evaluated with respect to each of the k objective functions and ˆcts com-

9Speciation occurs when two similar reproducing chromosomes evolve to become too dissimilar
to share genetic information effectively or correctly.

Table 8: Illustrated is a toy example of orthogonal competitive template generation
using the orthogonal bank of chromosomes generated in the preparation phase of
running MOMGA-IIa. See section 3.4.3 on page 108 for a description of how the
orthogonal bank of chromosomes is generated.

Selected regular CT Orthogonal Bank Orthogonal CTs
of Chromosomes

{0100}



1 1 0 0
1 0 1 1
0 0 1 0







0 1 1 1
0 0 0 0
1 0 0 1



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petitive templates. Storage of each fitness value is done in an N by k ˆcts matrix of

double precision variables.

A MOMGA-IIa solution evaluation for one individual generates k ∗ ˆcts objec-

tive values. Having this many objective values per population member impacts the

selection mechanism for the MOMGA-IIa. Instead of selecting individuals based on

a single fitness value for each objective, the best objective value for each competitive

template is used for comparison. This adds (ûk + î + ô− k) fitness comparisons, not

function evaluations, to each tournament selection designed with Definition 19 on

page 66. Upon a complete evaluation of a single member, the member is submitted

to a global Pareto front structure maintaining solutions evaluating to non-dominated

vectors and the target vector slot object. The next section describes this Pareto front

structure object.

 

Best list 

Worst list 

Distributed point list 

Pareto Front point list 

Duplicates 

Duplicates 

PF 

Figure 13: This figure illustrates the Pareto front structure that dynamically holds
all the information found by the algorithm. This includes the normalization values,
Pareto front vectors, duplicates, and target vector slot assignments. Pointers to
linked list objectives are designated with an arrow and linked lists are designated
with a multi-documents picture.

3.3.4 Pareto front structure. The Pareto front structure (PFS) object is

one of the major differences between the MOMGA-II and the MOMGA-IIa. The

PFS is designed to keep track of Pareto front vectors, best/worst solutions for each

objective, and target vector assignments. The original MOMGA-II kept the non-
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Juxtaposition Phase 

 

 

Probabilistic Complete Initializations Phase 

 

 

For ERA = min_era  
to max_era 

 

For curr_bs = min_bs 
to max_bs 

For curr_gen = 1 
to max_gens 

 

curr_gen > max_gen 

CUT AND SPLICE 

curr_gen <= max_gen 

For i = 1 to primodial_gens 

i =cut generation 

i <=primordial_gens 

curr_bs > max_bs 

curr_bs <= max_bs 

End 
ERA = max_era 

ERA < max_era 

= Tournament Selection 

r̂ regular CTs, î inverse CTs, vtcˆ TVs, 
and ô orthogonal CT generation (based on 

Latin square) 

Assign r̂  regular CTs from the new population based on a balance of normalized distance from TVs and PF dominance.  Set 
î inverse, and ô  orthogonal templates based on assigned CTs. Jitter TVs. 

r̂ is the product of number of objectives multiplied by number of identified competitive templates (CTs).  
svt ˆ Target Vectors  (TVs) partition the phenotype (fitness) domain by generating vectors running from the origin to positive normalized fitness space and smartly partition the Objective space.  
vtcˆ Orthogonal CTs - a bank of vectors are generated using a Latin square based on the all zeros vector (this set does not change).    When the regular set of CTs is updated, one regular CT is randomly selected from which to build the set of orthogonal CTs based on the bank of Latin squared vectors. 

Filtering 

i > primordial_gens 
Building Block 
Filtering Phase 

Preparation Phase 

Start 

Figure 14: Illustrated in this figure is the program flow of the MOMGA-IIa. Note
the placement of each phase and where tournament selection is performed. Addition-
ally, the MOMGA-IIa exploits and partitions in both the phenotype and genotype
domains by updating and generating regular, inverse, and orthogonal competitive
templates. Section 3.3 on page 88 describes the algorithm and Algorithm 4 on page
100 reflects its pseudocode.

dominated population pool found after each outer look unsorted between consecutive

experiments (this was observed when solving the mQAP in [126]). Within each

experiment, the MOMGA-II does keep an archive between the inner and outer loop.

95



In the case where the MOMGA-II used elitism, the Pareto dominance sort (see

Algorithm 3 on page 96) is completed before the elite solutions are transferred to

the new population. In contrast, the MOMGA-IIa, submits solutions to the PFS

after the evaluation of each BB during all phases of algorithm execution. The PFS’s

job is to keep track of optimal solutions and associated Pareto front vectors. This

is MOMGA-IIa’s so-called archive of solutions evaluating to non-dominated vectors

(optimal known solutions). As new objective bests and worsts are found, these values

update the normalizing factor for each objective (see Section 3.4.1 on page 102 for

a description of the normalization process). The PFS keeps track of the genotype,

phenotype (fitness), evolution trace, and (if unique or copies) duplicates for each

solution. In addition, the PFS counts the number of times a particular copy has been

found and the size of the BB (partial string) when discovered. Figure 13 illustrates

the object storage components of the PFS in computer memory. The MOMGA-II

used a different technique for finding solutions evaluating to non-dominated vectors

- when able, it loads every single solution into memory before beginning the sort.

This technique was not memory efficient and became prohibitively expensive as the

number of acquired solutions increases.

Algorithm 3 Kung et al.’s algorithm (1975) [143]

1: procedure Kung’s dominance sort(P′, fk(~x)) I Population P′ evaluated
with k objective functions: fk(~x)

2: Sort population in descending order of importance of f1

3: Front(P′)
4: if (|P′| = 1) then
5: Return(P′)
6: else
7: T = Front(P′(1)

--P′(|P
′|/2)) ∧ Front(P′(|P

′|/2+1)
--P′(|P

′|))
8: if (ith solution of B evaluates to a vector that is not dominated by the

evaluated vector for any solution in T) then
9: M = T ∪ {i} I Create a merged set M

10: Return(M)
11: end if
12: end if
13: end procedure
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The real gain of the PFS is the added feature to capture good BBs from the

PCI, BBF, and juxtapositional phases. During these phases, BBs are created accord-

ing to a filtering schedule. Thus, BBs of all sizes are generated. The MOMGA-II also

created BBs in these phases, but the previous versions did not attempt to capture

solutions evaluating to non-dominated vectors within each phase as the MOMGA-IIa

does. Storage of solutions are only considered in the juxtapositional phase of the

MOMGA-I and MOMGA-II when the MOEA has reduced every population member

to a particular BB size (user-specified) before splicing the BBs back together.

3.3.5 Target Vector Slot ( ˆtvs) Assignments. Upon completing solution

evaluation, the population member and associated objective values are passed to

the Competitive Template Managing System (CTMS) where they are appraised for

Pareto front classification and then target vector slot assignment. The MOMGA-

IIa has the capability to keep standard solutions evaluating to (weak and strong)

non-dominated vectors and non-ε-dominated vectors. [34,148].

Upon processing a solution’s evaluated objective values for Pareto dominance

or Pareto ε dominance, the un-normalized objective values are used. However, when

processing a solution’s evaluated objective values for target vector slot assignment

the normalized objective values are used. Once all processing is complete for the

incoming solution, no alteration is done to that solution’s associated objective values

(un-normalized fitness values are kept). The reason for not storing the normalized

fitness values is because the normalizing factors are not stable10. This is especially

true for the first epoch and BB size. Once the normalizing factors become stable, the

same fitness value may map onto the same spot within the 0-1 normalized objective

space.

10Stable factors are ones that do not change over time. As the search proceeds solutions evaluating
to better objective values than found in the last generation change the best/worse normalizing
factors for the target vector assignment mechanism. Thus, the normalization factors are unstable
in most cases from one generation to the next.
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Figure 15: 2D example of the partitioning of the phenotype, objective, space. This
figure also illustrates how point selection is accomplished. These target vectors are
unrelated to the vectors used for the utility functions R2 and R3 in section 4.3.2.10
on page 138. However, the origin reference point is the worst of each objective value
found and can be used when determining the utility with respect to the quality
indicators R2 and R3.

When a solution is being processed for target vector assignment, both the

assigned vector and the incoming solution’s objective values are normalized to the

values of the best and worst for each objective found. See Section 3.4.1 on page 102
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for a complete description of how the normalizing is accomplished in the MOMGA-

IIa. Figure 15 on page 98 illustrates the normalized objective space having eight

target vectors. The normalization of the points coming into the region are marked

by an x and o; however, if the best and worst fitness values change for the objective

values, then the mapping of the same two points may place them into a different

region in the 0-1 normalized space. The idea of this technique is to uniformly spread

the competitive templates selected for the next generation - thus achieving an indirect

niching11 relative to the basis function for the algorithm.

An example of evaluating an incoming (just evaluated) solution for assignment

into a target vector i, ( ~tvi)
12, is determined by the following short list of rules. If ~tvi

is not filled, the incoming solution and associated PF vector is assigned to slot ~tvi. If

~tvi is assigned a solution, the incoming solution’s objective values are tested to see if

it target dominates the currently assigned solution’s objective values. If the incom-

ing point is target dominate over the currently assigned vector, the incoming vector

is assigned to that target slot. Previously assigned points are only removed when

target dominated (see Definition 22 on page 107) by another point, but they are not

completely deleted from the PFS if these points are also held as a non-dominated

vector or assigned to another target vector slot. Target dominance assignment con-

sists of steps 15 and 29 in Algorithm 4 on page 100. After each individual in the

population is evaluated, processed for Pareto dominance, and assessed for target slot

assignment, the BB filter phase begins.

3.3.6 Building Block Filtering (BBF) and Juxtapositional Phase. The

BBF and the Juxtapositional phase for the MOMGA-IIa is exactly the same as it

11This indirect niching is similar to crowding where the PF vectors guide a local GBB search
around a phenotypic partitioned space. This is similar to how the MOEAs OMOEA and PAES
maintain diversity by recursively dividing the objective space. See section E.5.9 on page 358 for a
discussion of the OMOEA and section E.5.6 on page 355 for a discussion of the PAES.

12The symbol, ~tvi, is used to reference a target vector i having coordinates and a place where a
solution may be assigned according to the rules given in the paragraph above. Each ~tvi is a vector
having a number of coordinates equivalent to the number of MOP objectives, k, being solved.
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Algorithm 4 Detailed MOMGA-IIa
1: procedure MOMGA-IIa algorithm(P, fk(~x))
2: \\\\\\Preparation Phase\\\\\\ I lA
3: Initialize r̂ Competitive Templates (CTr̂

1,··· ,r̂)
4: †Generate ˆtvs Target Vectors (~tv1,··· , ˆtvs)
5: †Generate ô orthogonal bank of chromosomes (CTô

1,··· ,ô)
6: if (Using Inverse Templates) then
7: †Generate î inverse CTs where î = r̂ (CTî

1,··· ,r̂)
8: end if
9: for (epoch = 1 to 4) do

10: for (bbsize = BBmin to BBmax) do
11: \\\\\\PCI Phase\\\\\\ I kB
12: Probabilistic Complete Initialization
13: Evaluate Each Member with respect to ˆcts CTs
14: †Submit each solution and objective values to PFS for evaluation I Update

Best/Worst norm factors and PFknown in PFS
15: †Assign Target dominant vectors to ˆtvs slots
16: \\\\\\BBF Phase\\\\\\ I kC
17: for (h = 1 to Max BBF generations) do
18: if (h is a BBF cut generation) then
19: Conduct filtering on all population members
20: else
21: Conduct Tournament selection with Thresholding
22: end if
23: end for
24: \\\\\\Juxtapositional Phase\\\\\\ I lD
25: for (j = 1 to Max Juxtapositional Generations) do
26: Cut-and-Splice
27: Evaluate Each Member with respect to ˆcts CTs
28: †Submit each solution and objective values to PFS for evaluation I Update

Best/Worst norm factors and PFknown in PFS
29: †Assign Target dominant vectors to target vector slots
30: Conduct Tournament selection with Thresholding
31: end for
32: end for
33: †Jitter Target Vectors I kE
34: †Update CTr̂s I Use slotted TV solutions
35: if (Using Inverse Templates) then
36: †Update î inverse CTs
37: end if
38: q ← rand{1, r̂} I q is randomly assigned one integer from the set {1, 2, · · · , r̂}
39: †Filter CTr̂

q through bank of orthogonal chromosomes (CTô)
40: end for
41: end procedure
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is for the MOMGA-II except that after an evaluation of a population member; that

individual is submitted to the Pareto Front Structure for classification and Target

Vector Dominance check.

3.3.7 Evolutionary Solution Tracing Mechanism. The Evolutionary Solu-

tion Tracing Mechanism (ESTM) is a process that tags special characters onto a

solution as it is shaped (evolves) throughout the MOMGA-IIa algorithm. This BB

tracing mechanism allows for post-mortem analysis of BB sizes when used within the

competitive templates to find solutions evaluating to non-dominated vectors. Solu-

tions found using a particular BB size can gain insight into how an explicit BBB

algorithm in conjunction with the multiple CTs solves MOPs. In addition, BB ma-

terial identified by the ESTM as being significant can be used to gain knowledge

about decision variables stability within MOP. This can become useful in finding de-

cision variable resolution issues and significance w.r.t. the objective functions being

solved. Details of this mechanism and how it can help researches gain insight into

the problem domain can be found in Section 3.4.4.

3.4 MOMGA-IIa Enhancements

The following sections decompose major enhancements found within the MOMGA-

IIa. The first section begins with an explanation of how the objective space (phe-

notype) is normalized using incoming fitness values. This process is important for

the assignment of points to target vector slots. Target vector slot building and point

assignment is described in detail to include pseudocode for each algorithm used. In-

cluded are the algorithms for building the target vector grid and target vector slot

assignment. Next, a discussion on the generation of the orthogonal bank of chro-

mosomes follows. Lastly, a detailed discussion of the evolutionary solution tracing

mechanism and a justification for using competitive templates that partition the both

the genotype and phenotype space. This includes the inverse competitive template

justification as well. The genotype and phenotype partitioning discussion includes
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a description about how closer genotype boundaries facilitates a faster convergence

for the MOMGA-IIa.

3.4.1 Normalizing Objective Fitness Values. Solutions, after evaluation,

are passed to the CTMS. Steps within Algorithm 2 on page 79 marked with † directly

relate to the CTMS. In addition, Figure 14 on page 95 also identifies part of the

CTMS marked by mA , lE and the upper left hand box. The CTMS rates a point’s

Pareto dominance merit and then evaluates it for target vector assignment. The

target vector evaluation begins with the normalization of each objective value for

that particular solution. The normalization function for MOMGA-IIa is much like

any other normalizing function. The CTMS keeps track of all book keeping required

for objective normalization. The best, fτ (~xmax), and worst, fτ (~xmin), for the τ th

objective are stored accordingly. These values are used to evaluate incoming points

for the best fit into a target vector slot. Equation 44 describes the normalization

function where τ is the objective number and fτ (~xmin) = fτ (~xmin) + 4 such that

4 is a predetermined void-factor to move the points away from the origin and

consequently add separation between target vectors with respect to an incoming

point. Figure 16 illustrates how the void-factor works. In the corner of the cube, a

quarter circle void area of 1
5

is shown to illustrate how the 4 actually makes for an

infeasible region near the origin. This void-factor is added to ensure that a single

vector does not target dominate all other vectors when in competition for a target

vector slot. Vector selection is described next in Section 3.4.2.

Norm(fτ (~x)) =
fτ (~x)− fτ (~xmin)

fτ (~xmax)− fτ (~xmin)
(44)
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Algorithm 5 Partition Objective Space
1: procedure PartitionOS(k, r̂, &divisions)
2: k is the number of objectives; r̂ is the number of regular CTs; âr = r̂ − k is the

number of available regular CTs;
3: division[all] = 1; g = 1;h = 1;j = 1; finished = False;
4: while (!finished) do I When enough target vector slots are produced with the

imaginary grid, stop
5: g=1;
6: for (i = 1 to k-1) do I Count up the current amount of cross points on the

grid
7: g=g*divisions[i-1];
8: end for
9: if (g < âr) then

10: divisions[j-1]=h+1; I Division vector has the number of partitions are in
each objective space

11: j=j+1;
12: if (j > (k − 1)) then
13: j=1; h=h+1;
14: end if
15: else
16: divisions[j-1]=h+1; I Add the last division to ensure the partitioning of

the space is complete
17: finished = True;
18: end if
19: end while
20: Build TV Coordinates(divisions); I Complexity O(k2)
21: end procedure

3.4.2 Target Vector (TV) Slots. The number of target vector slots is based

on the number of regular competitive templates, r̂, and the number of optimization

objectives. A problem having k objectives has at the minimum r̂ − k target vector

slots available to partition the objective space. The following two sections describe

how to build target vector slots (or coordinates) and the selection rules used for

assigning incoming solutions to these target vector slots. It should be noted here

that sometimes the generation of more ˆtvs than r̂ − k is required to keep an even

partitioning of the objective space. Algorithm 6 is given as a procedure to count

how many ˆtvs slots are required for an even partitioning of the objective space while

at the same time keeping the number of ˆtvs to a minimum. The procedure to count
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Figure 16: 3D example of the partitioning of the phenotype space.

ˆtvs is included in Algorithm 7 on page 118 but because Algorithm 7 also builds the

target vector coordinates it is neatly embedded and difficult to find.

Building Distributed Target Vector Slots: Each target vector slot is character-

ized by a unique target vector. A target vector is an imaginary line in space starting

from the origin leading out to another point in space exactly 1 unit away from the

origin. Target vector end points not located on the origin may lie only in the ob-
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Algorithm 6 Counting ˆtvs

1: procedure Count ˆtvs(int k, âr)
2: for (i = 1 to k) do
3: ai = 1;
4: end for
5: j = 1;
6: while ( ˆtvs < âr) do
7: aj = aj + 1;
8: if (j > k) then
9: j = 1;

10: end if
11: ˆtvs ← ∏k

i=1 ai

12: end while
13: end procedure
14: Return( ˆtvs)

jective space with coordinates having non-negative values. The dimensions of the

objective space directly correspond to the number of optimization objectives. Thus,

each target vector has k− 1 angles defining its direction - where each angle range is

[0, · · · , π
2
].

Building a distributed bank of target vector slots that evenly partitions the

objective space is challenging - but required if evolving competitive templates are to

perform both as elitism and as an implicit niching mechanism. Algorithms 5 and 7

present the pseudcode that can be used to build the target vectors for an MOP. This

method generates a partitioning of the objective space using the number of available

regular competitive templates, âr, and the number of optimization objectives, k.

The number of target vectors must be equal or greater than the number of available

regular competitive templates, âr. Each set of target vectors for any two problems

are the same if the number of objectives and specified regular competitive templates

are the same. Figure 15 on page 98 represents a bi-objective problem having ten

regular competitive templates but having only eight available target vector slots.

The last two regular competitive templates are reserved for solutions evaluating

to points found on the objective extremes. Figure 16 on page 104 represents a

three objective problem having 52 regular competitive template slots, but only 49
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available target vectors. In Figure 16, the target vectors spread (distribution) works

for algorithm settings of 46 to 52 regular competitive templates or 43 to 49 available

regular competitive templates - when reducing by k objectives.

Selecting Points to place in TV Slots: Incoming solutions are evaluated and

selected for target vector slot assignment if the incoming solution’s normalized objec-

tive values target dominate the currently assigned solution. For clarity, a definition

for target vector dominance is given in Definition 22 on page 107.

Definition 22 on page 107 mathematically describes how to determine target

point dominance or how to select one point over another point for target vector slot

assignment. Equations 45, 46 and Figure 17 on page 107 can be used to explain

how target vector slot appointment is accomplished. It is assumed that all vectors

represented in Definition 22 are normalized using Equation 44.

Target vector slot point assignment starts with defining half the minimum

angular distance between any two target vectors - the angles to choose from are

defined as the ~θ in Algorithm 7. This angle value, ∠min, becomes the border between

selecting points that are closer to a particular target vector and points that are

closer to the Pareto front. All incoming points are normalized to the space of non-

dominated vector objective bests and worsts found at that time of slot assignment.

This normalizing method is described in Section 3.4.1. Finally, each target vector

is checked to see if the incoming point, ~w, target dominates the currently assigned

point, ~ati, at a particular target vector i. Initially, this caused a single point to be

assigned to multiple target vector slots; however, a rule was later added to allow

only unique points to a single target vector slot13.

13An incoming solution evaluating to a objective space point is unique in that no two pointers
within the target vector assignment object can point to the same solution; however, if duplicates
of this point are found later then each duplicate is also considered unique and may be assigned to
a different target vector slot if it meets the target dominance requirements.
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Figure 17: This figure illustrates the area of dominance if the point, marked by
an ’+’, is assigned to each of the four target vector slots available. In this example,
the shaded area represents the target dominate area for incoming vectors, ~w, and
the ’+’ represents the target dominated vector, ~ati in accordance with Definition 22
on page 107.

Definition 22 (Target Vector Dominance): Vector ~w = (w1, . . . , wk) tar-

get vector dominates ~ati = (ati1 , . . . , atik) with respect to target vector slot ~tvi =

(tvi1 , . . . , tvik) (denoted by ~ati ≺t ~w) if and only if one of the following two condi-

tions holds:
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1) ∠ ~ati ≤ ∠min ∧ ∠~w < ∠min ∧ len(~w) > len( ~ati)

2) ∠ ~ati > ∠min ∧ ∠~w < ∠ ~ati

with the follow constraints: ∀j ∈ {1, . . . , k}, (wj ≥ 0)

where ∠min = Minimum(θ(1), . . . , θ(k));

Equation 45 and 46, and Figure 17 are required to complete this definition and give

a visual illustration of its meaning.

len(~ξ) =

√√√√
k∑

j=1

ξ2
j (45)

∠(
−→
ξ ~tvi

) = arccos

( −→
ξ · ~tvi

|−→ξ || ~tvi|

)
(46)

2

3.4.3 Building Orthogonal Arrays. This section has a description of the

methodology to build a bank of orthogonal bit arrays. The design is based on a Latin

Square design where variables are allowed to have a variety of levels in [232]14. The

orthogonal arrays generated in [232] are constructed for the MOEA, Orthogonal Mul-

tiobjective Evolutionary Algorithm for Multiobjective Optimization (OMOEA)15.

The orthogonal arrays generated in the OMOEA are used for assembling a niche-

population. Other approaches for building a good distribution of orthogonal arrays

were examined; however, no comparison is made16. The Latin Square design, after

a slight modification, yields suitable results for the purposes of the MOMGA-IIa.

The string size, `, is associated with the string size for a complete solution. The

number of orthogonal arrays in the bank is determined by the user-specified param-

14See Algorithm 1 in the journal article “Construction of Orthogonal Array” [232]
15A description of OMOEA can be found in Appendix E, Section E.5.9 on page 358. An example

of a bank of 5 orthogonal 20 bit chromosomes (bit indicates 2 levels for each variable) can be found
in Table 70 on page 404.

16These other approaches for building orthogonal arrays include Taguchi arrays, Plackett-Burman
arrays, and full factorial. Appendix K on page 403 discusses these methods.
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eter, ô. A summary of how the Latin Square function, Lô(|A|`), works can be found

in Appendix K, Section K.2 on page 403. The function Lô(|A|`) builds a bank of

orthogonal arrays for the MOGMA-IIa and Table 70 in Appendix K on page 404

presents an example used when solving MOP 6 (VL6).

There are two reasons for having a set of orthogonal competitive templates.

The first, is to ensure the algorithm has a mechanism that allows for exploration

within the genotype domain without regard to the specific decision variables17. So-

lutions assigned to target vector slots are not guaranteed to be well distributed

w.r.t. the genotype domain even though their evaluated objective values are w.r.t.

the normalized objective space.

Moreover, solutions assigned to target vector slots might have a Hamming code

distance of one; meaning they are only one bit apart and concentrated to a specific

location within the genotype. Thus, there needs to be both a controlled group that

is on the PFknown front and a group that explores based on at least one solution

evaluating to a non-dominated point on the PFknown front. The second reason for

having an orthogonal bank of arrays is in that the maximum Hamming code distance

between each orthogonal competitive template can bound the maximum BB size

required for a BBB search. This new idea in bounding the maximum BB size is

discussed in Section 3.5 on page 114. See Figure 18 on page 113 for an example of

how the space BB size requirements are reduced. Next, the evolutionary solutions

tracing mechanism is discussed in detail.

3.4.4 Evolutionary Solution Tracing Mechanism. The Evolutionary So-

lution Tracing mechanism (ESTM) tags special characters onto a solution’s object

in memory as it travels through the MOEA. The major phases each have a label

17Although often times the genotype domain is considered to be one in the same with the decision
variables, here the distinction is made that a decision variable might be made up of several bits yet
the orthogonal design is concerned with the entire set of bits when making an orthogonal array,
not the specific decision variables which is made from combining several bits together.
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so the postmortem processing can tell how that particular solution evolved. Most

importantly, the BB sizes and epistasis are recorded as the solution is tracked. A

typical trace might produce the coded line given below.

F 11001111110000000000 0.4698 -0.8115 p 1831 Cs2.p.0(19)(19)E1.BS1

The first character identifies if the solution is the first solution found having

the same phenotype merit of being a non-dominated vector. An F indicates that the

point is listed as a first point. A D indicates that the point is a duplicate of the first.

Please note that the evolutionary trace still applies the same for duplicates as it does

for solutions found first. The next run of characters, 11001111110000000000,

indicate the solution’s genotype (or decision variable). In the example, solutions

have 20 loci positions and {0, 1} as the alphabet. This is followed by the solutions

evaluated phenotypical (objective) values. The number of phenotype values depends

on the number of objectives in the MOP. In this example 0.469849 and -0.811523

are the objective space values representing this particular point. The character

following the fitness (phenotype) values is a letter identifying if the solution came

from a competitive template, c, or a BB, p. The number following this solution type

identifier indicates how many times this solution has been found (or observed). Note,

other traces also leading to this exact objective space point and genotype solution

are not kept - only the fact that the genotype solution has been found several times

is recorded. Following the number of times this genotype is found, the evolutionary

trace is recorded. A second example presenting a longer evolution is the following:

F 0· · ·0 -0.767 -0.274 p 48 CtB9B8B7B6B5B4ttB3ttu.p.o.1(10)(12)E1.BS3

This second example is presented to illustrate different trace lengths for differ-

ent evolutionary paths taken by a solution; note that most of the genotype solution is

left out due to page width constraints. The first example has a short path, whereas

the second example has a longer path. The C represents the PCI phase ( lB in

Figure 14 on page 95), or point of inception for this particular solution. Characters

after this point in the trace can mean different things. As this BB proceeds through
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the MOEA search, different characters are added to the trace indicating where the

BB traveled. A t indicates that at least one tournament selection is performed on

this solution at that injunction. A B# indicates that the solutions is reduced to

a size # of bits. In the second example, the solution is first filtered down to 9

then 8,7,6,5,4, and finally 3 bits. These filtering operations have a few tournament

selection operators, t, mixed within the filtering operations. Finally, if the string is

spliced together, a u appears in the trace. If m appears, the solution was mutated.

At the end of the evolutionary trace, the solution is submitted to the PFS for storage

- a “.” in the trace indicates the evolutionary process for this solution is complete.

Once inside the PFS, more tags are added to the solution to specify exactly

the type and construction of the solution. Each tag from this point on is divided by

a delimiter of some kind. A p indicates a population member and a c indicates a

competitive template. In both the first and second example, the solution is found

within the population so a p appears. Next, if the solution is a population member,

the evaluation of the member is overlaid onto a competitive template regardless of

size. Clearly, if the solution is not a partial string, the competitive template plays no

role in its makeup, yet the competitive template type and number are still recorded.

If the competitive template is something type other than a regular template, it is

indicated directly after the solution type indicator. An o indicates an orthogonal

template, and i indicates an inverse template. Following the template type is the

template number used for this solution. In the first example, the number 0 regular

competitive template is used. Note that array indices start at 0 rather than 1 -

thus, this is the 1st regular competitive template in the list of regular templates.

In the second example, the number 1 orthogonal template is used to evaluate the

partial solution. This is indicated by the o.1 in the trace. Next, the partial string

size is recorded and found within parenthesis. This is the size of the string or BB

that is overlaid onto the competitive template. These are 19 and 10 for examples

1 and 2, respectfully. Following the string size, the space between the extreme loci
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positions of specified bits is given within parenthesis. These are 19 and 12 for

examples 1 and 2, respectfully. Finally, the tracing mechanism records when within

the entire MOMGA-IIa evolutionary search this particular solution is found. It is

important to note that the algorithm is run ten times for each experiment and the

archive stays active the entire time, so solution and associated objective value vector

transfer occurs between each experiment. Therefore, the experiment number and

the BB stage are recorded. As a check, a partial string should never be smaller than

the BB stage recorded at the end of the trace. In the examples, the first solution is

found in BB stage 1 of experiment 1 and the second solution is found in BB stage 3

of experiment 1.

Traces for each solution are dumped to a points file (containing the first solution

found for each member) and a duplicates file (containing the first and all duplicates

for each member). In addition to these two files, there are files used for storing the

competitive templates and the slotted target vector solutions after each BB stage.

For the post mortem analysis, the point and duplicate files are used.

The post mortem analysis is important because it is desirable to know the sizes

of BBs and epistasis used to make resulting solutions. Figures 95, 96, 97, 98, 99,

100, 101, 102, and 103 in Appendix D on page 312 illustrate the epistasis found in

Test Suite MOPs and deception problems of size 60. Because of the newness of this

type of graphical analysis (recording the BB sizes used in finding solutions evaluating

to non-dominated vectors), the only metric that can say something about results is

the level of epistasis a problem may contain. There is another BB analysis done

in [125]; however, this analysis assumed much away, did not trace solution evolution,

or waited to the end of a generation to use the same sized BBs to create each solution.

Traces are run on many different problems, each having different character-

istics. One example is presented in Figure 19 on page 120. Insight can be drawn

from these illustrations relating BB sizes to Pareto front vectors for problems having

different characteristics. Each problem describes BB size w.r.t. PF vectors within

112



Regular CTs Hamming Global Optimum Hamming Inverse CT Min Distance

Distance Distance

1 0 0 0 0 0 0 0 0 0 0 5 0 1 0 1 1 0 0 1 0 1 5 1 1 1 1 1 1 1 1 1 1 5

2 0 0 0 0 0 0 0 0 0 1 4 0 1 0 1 1 0 0 1 0 1 6 1 1 1 1 1 1 1 1 1 0 4

3 0 0 0 0 0 0 0 0 1 0 6 0 1 0 1 1 0 0 1 0 1 4 1 1 1 1 1 1 1 1 0 1 4

4 0 0 0 0 0 0 0 0 1 1 5 0 1 0 1 1 0 0 1 0 1 5 1 1 1 1 1 1 1 1 0 0 5

5 0 0 0 0 0 0 0 1 0 0 4 0 1 0 1 1 0 0 1 0 1 6 1 1 1 1 1 1 1 0 1 1 4

6 0 0 0 0 0 0 0 1 0 1 3 0 1 0 1 1 0 0 1 0 1 7 1 1 1 1 1 1 1 0 1 0 3

7 0 0 0 0 0 0 0 1 1 0 5 0 1 0 1 1 0 0 1 0 1 5 1 1 1 1 1 1 1 0 0 1 5

8 0 0 0 0 0 0 0 1 1 1 4 0 1 0 1 1 0 0 1 0 1 6 1 1 1 1 1 1 1 0 0 0 4

9 0 0 0 0 0 0 1 0 0 0 6 0 1 0 1 1 0 0 1 0 1 4 1 1 1 1 1 1 0 1 1 1 4

10 0 0 0 0 0 0 1 0 0 1 5 0 1 0 1 1 0 0 1 0 1 5 1 1 1 1 1 1 0 1 1 0 5

11 1 1 1 1 1 1 1 1 1 1 5 0 1 0 1 1 0 0 1 0 1 5 0 0 0 0 0 0 0 0 0 0 5

Orthogonal Bank

oa1 1 1 1 1 1 1 1 1 1 1

oa2 1 1 1 1 1 1 1 0 0 0

oa3 0 1 1 0 0 0 0 1 1 1

oa4 1 1 1 0 0 0 0 0 0 0

oa5 0 0 0 1 1 0 0 1 1 0

Orthogonal CTs

Filtering Regular CT #1

o1 0 0 0 0 0 0 0 0 0 0 5 0 1 0 1 1 0 0 1 0 1

o2 0 0 0 0 0 0 0 1 1 1 4 0 1 0 1 1 0 0 1 0 1

o3 1 0 0 1 1 1 1 0 0 0 6 0 1 0 1 1 0 0 1 0 1

o4 0 0 0 1 1 1 1 1 1 1 4 0 1 0 1 1 0 0 1 0 1

o5 1 1 1 0 0 1 1 0 0 1 7 0 1 0 1 1 0 0 1 0 1

o6 1 1 1 0 0 1 1 1 1 0 8 0 1 0 1 1 0 0 1 0 1

o7 0 1 1 1 1 0 0 0 0 1 2 0 1 0 1 1 0 0 1 0 1

o8 1 1 1 1 1 0 0 1 1 0 4 0 1 0 1 1 0 0 1 0 1

o9 0 0 1 0 1 0 1 0 1 0 7 0 1 0 1 1 0 0 1 0 1

o10 1 0 1 0 1 0 1 1 0 1 5 0 1 0 1 1 0 0 1 0 1

Min Distance 2

Figure 18: This figure illustrates an example of how the inverse or orthogonal com-
petitive templates make a difference in lowering the BB size required to move from a
competitive template to a global optimum. The Hamming code distance between the
competitive template and global optimal solution represents how large a BB would
have to be to get to the global optimal solution when using a particular competitive
template. The upper matrices illustrate that by using 11 regular CTs, the minimum
BB size required to get to the global optimal is 3 bits and the maximum BB size re-
quired is 6; however, when adding inverse CTs the minimum BB size stays the same
at 3 bits, but the maximum BB size drops to 5 bits. The bottom matrices indicate
that by filtering a selected regular CT through 5 orthogonal CTs, the minimum BB
size drops to 2 bits. This is a simple example of BB size requirement reduction by
using carefully generated CTs. Unfortunately, adding orthogonal templates does not
guarantee such a reduction each time, but the adding of inverse CTs does.

the respective MOP’s result and analysis section if the EST is used when solving

that MOP. Note that along the back wall of the bottom plot is the epistatic level for

each PF vector found. The lower the epistatic level, the more difficult that solution

is to find for an implicit BBB. Next, genotypic space partitioning is discussed related

to BB theory and BBBs.
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3.5 Advantages in Partitioning the Genotype Space

BB theory is based on the assumption that if a BBB finds at least one optimal

set of BBs, then the builder has a better probability to put these BBs together to

find all optimal solutions - be they single or multiobjective. However, if a BBB

has an operator that destroys good BBs, the builder is limiting the possibility for

finding an optimal set of BBs. Furthermore, considered in the set of destructive BB

operators, like crossover, is the inverse operator. Within the design of the MOMGA-

IIa there is an inverse operator used for competitive template generation. Moreover,

the mechanism for orthogonal competitive template design can also be considered

a partial inverse operator. This being said, it must be for good reason that these

operators are included in a state-of-the-art BBB, like the MOMGA-IIa.

There are two reasons for implementing these operators in the MOMGA-IIa.

The first goes back to the reason for the original design of the mGA as an algorithm

developed to defeat deception. The population sizing equation for the mGA identi-

fies the number of BBs of size o that are needed to construct every possible solution

- including all optimal solutions. Now, as o increases, so does the population size

for the mGA. Looking forward to the new population sizing equation used in the

MOMGA-II and MOMGA-IIa, the BB size is still a factor in the size. Thus, by

reducing the highest BB size required for finding the optimal set of BBs, the popula-

tion size can also be reduced while keeping the same probability for finding optimal

solutions.

The second reason, as was mentioned in Section 3.4.3, is that there is a need

for a balance of exploration and exploitation within any evolutionary algorithm. The

orthogonal and inverse operators are good operators for partitioning the space and

allowing exploration to occur within the MOMGA-IIa.

‖A‖o ∗
(

`

o

)
(47)
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To show the reason why a reduction of the required BB size results from using

inverse and orthogonal templates, an example is used. First, suppose there is a

gain of a competitive template (possibly a local minimum) having a Hamming code

distance ` − 1 away from the global optimal solution. Based on the optimal BB

set definition, the optimal BB set is the BB that places the solution on the global

optimal solution using a single `−1 BB. One might be able to find several smaller BBs

that may place the combination of these blocks on the same global optimal solution;

however, it is less likely that someone may first find many smaller BBs and then put

these blocks together in such a way to discover the global optimum. Unfortunately,

it would require a single BB of size ` − 1 to find this global optimal. Yet, if an

inverse competitive template is used, the inverse is only a Hamming code distance

of 1 away from the solution. Unfortunately, this is the best case example. The

worse case example is when the regular competitive template is a Hamming code

distance of `
2

away from the global solution. Inverting this competitive template

makes no difference in the distance from the global solution (remaining `
2

Hamming

code distance). So, the advantage to having an inverse competitive template is that

one halves the required BB size. In other words, the builder only needs to search

for BB sizes 1 to `
2

– bringing the genotype space boundaries closer. The orthogonal

competitive templates are also designed to bring the boundaries of optimal solutions

closer; however, because there are not a full factorial number of orthogonal arrays in

use, it is not possible to give an exact BB size reduction for the number of orthogonal

templates. Moreover, for some global solutions, orthogonal templates may reduce

greatly the required BB size while other, orthogonal templates may not reduce this

required size at all. Furthermore, the inverted templates are the only guaranteed

reduction template.

A final advantage to using inverse templates comes from possibly figuring out

how much emphasis should be given to certain good BBs that are embedded within

the template. This is called triangulation. Triangulation works like this. First a
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regular competitive template, C, is inverted, C̄. As the algorithm proceeds, good

BBs for both the C and C̄ are collected. Making the assumption that C is definitely

found to be adaptively good in the phenotype, BBs - representing good schema -

found for C̄ and also having commonality in C are said to be uniformly good.

Current understanding of what to do with uniformly good BBs is not recog-

nized; however, duplication of these uniformly good schema within the population

may help to keep continuously good BBs in a healthy supply.

3.6 Advantages in Partitioning the Phenotype Space

While the advantages are many for partitioning the genotype space, there are

several advantages to keeping a partitioned phenotype space, as well. First, the

original thought behind keeping CTs distributed across the phenotype space is that

it allows for an even search across the Pareto front – this is called implicit niching.

In addition, when the PFknown vectors are presented to the decision maker, a shorter

distributed list (possibly made of the competitive templates) can be given as a smaller

list18 of, well objective space distributed, solutions from which to choose. Even if

the full list is given to the decision maker, the portioning of the phenotype space

helps make the distribution along the Pareto front evenly spaced. The Orthogonal

Multiobjective Evolutionary Algorithm I and II (OMOEA) are two other MOEAs

in which the entire structure of the algorithm is based on keeping a distributed

phenotype search – it is called niching within these MOEAs. These MOEAs are

discussed in Appendix E on page 324. The MOMGA-IIa is not as rigorous at keeping

a partitioned phenotype space search as the OMOEA because it is willing to select

a search vector off the Pareto front (dominated) that is closer to the target vector

guide to keep a good phenotype distribution of competitive templates.

One final advantage of the MOMGA-IIa for a decision maker is the fact that

the algorithm can be made to keep solutions that evaluate to be Pareto epsilon

18The smaller list of optimal solutions represents a subset of the entire list of optimal solutions.
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non-dominated vectors. Definition 6 on page 12 describes the decision criteria for

keeping these epsilon non-dominated vectors. Figure 20 presents a Gaussian ridged

distribution that could have been calculated from a band of vectors that are Pareto

epsilon non-dominated, giving the decision maker (DM) more PF points to choose

from and a weight on possible points that might be close to the mean of the band.

Next, the MOMGA-IIa’s serial and parallel implementation is discussed.

3.7 MOMGA-IIa Extras

As presented earlier, the MOMGA-IIa has many enhancements from the orig-

inal MOMGA-II. In addition to these enhancements, there are a few extras that

also follow this design. First, the MOMGA-IIa can operate in MOMGA-II mode

by setting the MOMGA-IIa flag to false and adding only one competitive template

in the CT config.dat file. MOMGA-IIa can operate in single objective mode. This

operating mode is a modified fmGA when the MOMGAII-a flag is set to true and

a traditional fmGA when the MOMGAII-a flag is set to false. In addition to the

innovative design, the software is written in a way that can be useful. New MOPs

can be Plugged into the algorithm without integrating the new code directly into the

algorithm. Finally, Matlab code is written to assist in the post mortem visualization

of the BB trace.

3.8 Parallel versus Serial Implementation

One of the first design decisions in rebuilding an algorithm is deciding if the

data structure representation is adequate for a projected application. The original

MOMGA is directly modified from the mGA’s C code. Zydallis took the MOMGA

code and integrated the fmGA to make the MOMGA-II; keeping a bit-wise repre-

sentation for each chromosome. The MOMGA-II cut down on storage space require-

ments for the population sizes using a bit-wise chromosome. The MOMGA-IIa is

designed from the fmGA used in the PSP problem [41]. In the old fmGA code,
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Algorithm 7 Build TV Coordinates
1: procedure Build TV Coordinates(float &divisions)
2: ˆtvs = 1
3: for (i = 1 to k) do I Each obj. func. is parted using π

2 radians
4: θ[i− 1] = PI

2∗(divisions[i−1]+1) ;
5: ˆtvs = ˆtvs ∗ divisions[i− 1];
6: end for
7: for (i = 1 to ˆtvs) do I Assign unique parts for each obj. to each TV
8: for (j = 1 to k − 1) do
9: Tvector[i][j] = 1

10: end for
11: end for
12: for (i = 1 to ˆtvs) do
13: h = i− 1; j = k − 1;
14: while (h < i) do
15: if (i = 1) then
16: Tvector[i− 1][j − 1] = 0 + 1
17: else
18: Tvector[i− 1][j − 1] = Tvector[i− 2][j − 1] + 1
19: for (g = 1 to j − 1) do
20: Tvector[i− 1][g − 1] = Tvector[i− 2][g − 1]
21: end for
22: end if
23: if (Tvector[i− 1][j − 1] > divisions[j − 1]) then
24: Tvector[i− 1][j − 1] = 1; j = j + 1;
25: else
26: h = h + 1
27: end if
28: end while
29: end for
30: for (i = 0 to k − 1) do
31: for (j = 0 to ˆtvs) do
32: TV angles[i][j] = Tvector[i][j] ∗ θ[j]
33: end for
34: end for
35: for (i = 0 to ˆtvs− 1) do I Create Cartesian coordinates for the tv vectors
36: for (h = 0 to k − 2) do
37: for (g = 0 to h− 1) do
38: TV cc[i][g] = TV cc[i][g] ∗ cos(TV angles[i][g]);
39: TV cc[i][h + 1] = sin(TV angles[i][h]);
40: end for
41: end for
42: end for
43: end procedure

118



Algorithm 8 Orthogonal Arrays

1: procedure Orthogonal Arrays(ô, Q, `) I ô: Number of vectors, Q: Range
of Levels, `: String Length

2: Q is always set to 2 for a binary alphabet; Qj = ô
3: zeros(oa[ô][`])

4: J = d log(`∗Q−`+1
log(Q)

e
5: for (ρ = 1 to J) do

6: j = Qρ−1−1
Q−1

+ 1

7: for (i = 1 to Qj) do
8: if ((i− 1 > ô) OR (j − 1 > ` ∗ ô)) then
9: Skip

10: else
11: oa[i− 1][j − 1] = b i−1

QJ−ρ c modulo Q
12: end if
13: end for
14: end for
15: for (ρ = 2 to J) do

16: j = Qρ−1

Q−1
+ 1

17: for (s = 1 to j − 1) do
18: for (t̃ = 1 to Q− 1) do
19: for (g = 0 to ô− 1) do
20: if ((g > ô) OR (j + ((s− 1 ∗ (Q− 1)) + t̃− 1) > `)) then
21: Skip
22: else
23: oa[g][j + ((s − 1) ∗ (Q − 1)) + t̃ − 1] = (t̃ ∗ (oa[g][s − 1]) +

oa[g][j − 1]) modulo Q
24: end if
25: end for
26: end for
27: end for
28: end for
29: Return(oa)
30: end procedure
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Figure 19: This figure illustrates an example of a short analysis for MOP 6 (VL
6) in [34]. The top left plot presents the genotype domain where the PFtrue vectors
lie. The top right plot shows the MOMGA-IIa finding the solutions evaluating to
non-dominated vectors. The bottom contour illustrates the BB sizes used in finding
these points. The PF points axis sequentially lists (in order) the PF vectors from
upper left to bottom right of the top plot. In other words, the left most PF vector
on the bottom plot maps the best solution found for F2 and the right most PF point
on the bottom plot maps directly to the best solution for F1. Notice that the BBs
sizes are generally under size 10. The overall string size is 20 and it is noticeable
that the extremes are illustrating a larger BB size for finding solutions evaluating to
non-dominated vectors. Empty triangles (although difficult to see) indicate PFtrue

vectors, while filled in circles represent PFknown found by MOMGA-IIa.
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Figure 20: Graphic illustrating how a noisy fitness function might cause the ap-
pearance of a distribution for the decision maker (DM) when selecting solutions that
evaluate to vectors that are epsilon non-dominated.
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bit representation is done using strings of characters called alleles, and bit position

representation is given in the form of a vector of integers. The step away from code

shared by the MOMGA and MOMGA-II is indeed a big one; however, the idea to

go from the old MOMGA-II code to the MOMGA-IIa was calculated as being over-

whelming due to the projected enhancements. Therefore, a slim lined fmGA having

a different chromosome representation (described above) is used as the base EA to

build the MOMGA-IIa.

 

Figure 21: Graphic illustrating a layered design approach for the MOMGA-IIa to
allow easy MOP integration and removal. The base folder, “MOMGA-IIa”, holds
the algorithm code. Three parameter files and two header files need editing when
changing between MOPs. Subfolders hold MOP files including all global variables,
external variables, special structures, and functions (including local searches) specific
to that MOP. Illustrated in this figure is a list of files that are required for each and
every MOP, even if that file remains empty.

3.9 Decomposing the MOMGA-IIa into a parallel implementation (low level design

Parallelization of a new MOEAs can be difficult depending on the parallel

model implemented. Commonly, parallel implementations are married with the

hardware architectures intended to saddle the algorithm. Clearly, old MOEA paral-
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lel models can be used for parallelizing the MOMGA-IIa. These models include, but

are not limited to, the Island model, Master-slave model, and diffusion model. Ap-

pendix J on page 398 reviews these models for completeness. These are well known

and have been used by many researchers in the past [31, 53, 223, 244]. A relatively

new parallel MOEA model is called the Hierarchical Fair Competition (HFC) Paral-

lel Model. This model is based upon a change in algorithm structure the HFC used

to combat an EA’s premature convergence [108, 110]. The HFC structure is based

on an assembly line structure (see Figure 22 on page 123 for an illustration). It is

thought that, by using this model, the small BBs are connected together to form

larger, more tightly linked BBs as the algorithm proceeds where, finally, end solu-

tions gain the full benefit of intermediate levels of BBs. This model is interestingly

similar to the MOMGA-IIa’s juxtapositional phase.

 

Randomly Generated 
Population 

Individuals containing 
intermediate level of BBs 

Final Solutions 

Low High Building blocks from low to high order 

Figure 22: The assembly line structure of the continuing EA model – how the
model is used as the HFC Model [189].

The parallel version of this model has multiple subpopulations organized in

a hierarchy, where each subpopulation can only accommodate individuals within a

specified range of fitness values (phenotype partitioning). Each subpopulation has

an admission buffer that determines member admission - allowing for only qualified

candidates to be collected from other subpopulations. Each subpopulation maintains
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only a range of fitness values assigned to individuals. Individuals can evolve out of

a subpopulation to a subpopulation with a better fitness range, but never to a

subpopulation of lower fitness ranges.

Another way to look at this type of model within a multicriteria problem do-

main would be the following: suppose you have a population of solutions each eval-

uating to two or more values. Each population member is then ranked according to

non-dominance - similar to the ranking that occurs within the NSGA-II (see Section

E.5.4 on page 350). All population members having the same dominance rank are

assigned to the same subpopulation for further development using appropriate MO

EVOPs. As population members evolve in the subpopulations they tend to get bet-

ter fitness values and move up into subpopulations holding members having a better

dominance ranking. This is called migration or population member exchange. Each

subpopulation has assigned an export threshold that is like an escape velocity where,

after meeting this threshold, the member can migrate to a new subpopulation. Mi-

gration only occurs in one direction. The number of levels in the hierarchy (number

of subpopulations) can be fixed (predefined up front) or adaptively as needed.

A new MOEA called the HEMO is constructed and tested using the HFC model

inside components of the PESA, SPEA, and extending the NSGA-II’s controlled

elitism. It is expected that HEMO is to perform better on multi-modal real-world

problems where pre-convergence is known to hinder the PESA, SPEA and the NSGA-

II [109].

Paralleling the MOMGA-IIa can be done in a similar manner, where the main

difference would lie in ranges and thresholds of the subpopulations. The parallel

version of HFC uses a vertical approach to partition subpopulations, but by changing

the partitioning to a lateral19 approach, the phenotype space can be subdivided to

19Lateral in this case might be in the form of a wedge (2 dimensions) or cone (3 dimensions)
coming from the origin where the origin is the two lowest values found during the entire search
process.
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have only fitness values that fall within a fitness range of values associated with

the target vector guides described earlier in this chapter. If these two models are

used together, there would be vertical and lateral partitions of the phenotype space

leading to a grid of populations and many different exchange thresholds for members

to be able to cross to escape into another subpopulation. Although neither of these

models are implemented within the MOMGA-IIa, either the vertical, lateral or both

are viable parallel models.

3.10 Summary

In conclusion, the MOMGA-IIa is much like the MOMGA and MOMGA-II

in that it is an explicit BBB. However, the MOMGA-IIa gets a massive design re-

construction of the competitive template generation, updating, and evolving system.

Additionally, the archive that is updated in all phases helps trap good BBs before

they become disrupted within the BBF phase. The MOMGA-IIa’s new design has

shown to compete well with the mBOA and MOMGA-II when solving several decep-

tion problems and the mQAP. Redesign of an algorithm is sometimes an uncertain

venture - the no free lunch theorem always applies. As many researchers know, it is

much easier to add proven mechanisms from the single or multi-objective optimiza-

tion field into incomplete algorithm for added performance because it takes much

of the risk away from achieving desired results. This path is not taken when de-

signing the MOMGA-IIa. This chapter described the development of the MOMGA

from its single objective origins to its latest state-of-the-art form. Descriptions in-

clude justification and details for each new mechanism. The CTMS, PFS, and BB

tracing mechanism are all described in detail. Enhancements to this algorithm are

accomplished with two objectives in mind. The first objective is to allow for the

MOMGA-X to compete well with other explicit BBBs. Many new mechanisms to

solve the limitations of the MOMGA-II are added and, in the next chapter, validated

to work well. The second objective is to design the algorithm in such a way that
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allows for a BB researcher to identify how the BB sizes are related to solving each

problem. This is successful, and insight is drawn from each problem solved by the

MOMGA-IIa.

Discussed in this chapter are the design details for the MOMGA-IIa. Justi-

fication for each enhancement is given as well as a detailed description of how the

implementation is accomplished. In the next four chapters, these enhancements are

shown to improve performance of the MOMGA-series MOEA in both effectiveness

and efficiency on selected MOPs. In addition to the performance analysis, experi-

mental design and problem set characteristics are also discussed.
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IV. MOEA Design of Experiments

Measuring efficiency1 and effectiveness2 of MOEAs as applied to MOPs is no simple

task. The purpose of this chapter is to justify and discuss the MOEA metric and

MOPs used for testing the MOMGA-IIa. This chapter clearly applies a statistically

correct method and standardized metrics to determine how well the MOMGA-IIa

performs in comparison to at least the previous implementation (MOMGA-II). Also,

where possible, comparisons to other MOEAs are made. In addition to experimental-

finding comparisons, MOEA metric validation is addressed, as well as MOMGA-IIa

BB size findings from the BB tracing mechanism via visualization techniques.

4.1 Design of Experiments

There are several approaches used in conducting a scientific method of exper-

imentations for MOEAs. In the past, seven metrics were identified for an accurate,

reliable, consistent and non-arbitrary representation of MOEA performance on an

MOP. These seven metrics can be found in section 4.3.2 on page 133. In addition, a

set of MOPs were also selected as a benchmark suite to test an MOEA’s performance

over a range of MOPs having different characteristics [31–33,39,55,76,128,129,132,

196,208,220,235]. The test suite of MOPs is described in section 4.7 on page 4.7. In

this section, the following plan of attack is formulated:

1. State experimental Goal

2. Make hypothesis and/or prediction

3. Choose metrics to measure aspects of each MOEA

4. Design and Execute Experiment (gather data) “test”

1Efficiency is the measuring of computational time (or wall clock time given all things equal -
computer hardware related) to obtain solutions. [34]

2Effectiveness measures the accuracy and convergence of obtained solutions. Researchers often
include robustness, scalability, and ease of use qualities into the effectiveness; however, this effort
mainly focuses on measuring the accuracy and convergence of MOEA found PF vectors to the set
of vectors in PFtrue. [34]
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5. Analyze results

6. Draw Conclusions and Conjectures

7. Report results

This approach is consistent with outlines presented by Barr [9], Jackson [111],

and Jain [112]. The scientific method as a more generic approach has four steps:

observation3, hypothesis, predict using hypothesis, and testing [10, 140, 229]. These

steps are implicitly followed.

4.2 Focus for each experiment

The main focus of this chapter is the comparison of MOEA performances over

a variety (class-wise) of MOPs. Both effectiveness and efficiency are studied where

possible; however, in some instances, effectiveness is the only performance measured.

The two algorithms under test are MOMGA-II and MOMGA-IIa. In some cases,

test data from other algorithms illustrates an idea or conclusion. Algorithm settings

are kept the same for most experiments (see Appendix A on page 272 for parameter

settings of each MOEA for each experiment). The main difference separating the

algorithms is the competitive template management system and the active archive

(see section 3.3.4 on page 94). Also note that the analysis does not attempt to say

that one MOEA is better than another across each and every MOP (i.e., respect

NFL theorem). It simply recognizes an MOEA’s performance on a particular MOP.

4.3 MOEA Metrics

Similar to previous studies when comparing MOEAs [222,244], seven standard-

ized metrics identified by Van Veldhuizen and Zydallis are used. Many researchers

have studied MOEA metrics [32–34,39,55,76,128,132,196,208,220,235] and a sum-

mary of good metrics that can be used to statistically compare MOEA is found

3Observation in this case is used as a foundation to design or model to the problem from the
real-world.
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in [34] on page 155. In addition and at the same time, Zydallis recognized that the

metrics identified by [34] were a good start to comparing MOEAs and allowed for

a statistical comparison. Today, researchers add a satisfiability4 tied to the met-

rics used when comparing two MOEAs. Knowes recommends two complementary

approaches for comparing MOEA results [129]. It is suggested that an empirical

attainment function and set of dominance-compliant quality indicators be used to

evaluate and compare the approximation sets from multiple runs for two or more

stochastic MOEA optimizers. The attainment function is discussed but not used;

however, the rigorous dominance-compliant quality indicators suggested are heeded.

Ziztler also supports this suggestion of having certain quality indicators and adver-

tises that it is advantageous to have metrics that are both complete and compatible

to make good comparisons between MOEA results [240]. These three additional

metrics are the following: ε indicator and the R2 and R3 utility indicators. Thus,

in addition to the seven standardized metrics used by Van Veldhuizen and Zydallis,

three more metrics are added to obtain a complete and compatible comparison for

stochastic multiobjective algorithms [129,239]. There are many other metrics within

the MOEA field; however, the ones chosen for use are thought to be adequate for

this testing. Appendix I on page 395 addresses other metrics that can be used for

analyzing two MOEAs.

Definition 23 (Approximate Set): Let Â ⊆ Ω be a set of all objective vectors. Â
is called an approximation set if any evaluated individual of Â evaluates to a vector

that does not weakly dominate (see Table 9 on page 133 for the definition of weak

domination) any other objective vector produced by evaluating individuals in Â. The

set of all approximation sets is denoted as Ω. 2

4A formula is called satisfiable if it takes at least one true value in some interpretation.
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Definition 24 (Quality indicator (metric)): A h-ary quality indicator is a

function Ii : Ωḣ 7→ R, which assigns each vector (Â1, Â2, · · · , Âḣ) of ḣ approximation

sets a real value Ii(Â1, · · · , Âḣ). 2

The rest of this section describes the complete set of dominance relationships,

attainment function, quality indicators, the ten MOEA metrics, and the Kruskal

Wallis/Mann-Whitney Test. The following definitions are used to prepare the reader

for some of the terminology used within this chapter. First, the approximate set is

defined in Definition 23. The approximate set is a set of solutions (PFknown) found by

an MOEA when solving any MOP. The approximate set represents a set of solutions

and the associated objective values that are evaluated by a quality indicator and/or

metrics used to determine how good the MOEA is at solving that MOP under test.

The second and third definitions describe these quality indicators (Definition 24) and

a comparison method using the quality indicators (Definition 25). Finally, compat-

ibility and completeness is defined in Definition 26 on page 131. To be compatible

and complete a comparison, C̈, must, when operating on the approximate sets A and

B; first, be able to describe or measure the difference between approximation sets

(i.e., C̈(A,B) V A I B) and, second, if given a difference be able to indicate the

order within the comparison (i.e., A I B V C̈(A,B)).

Definition 25 (Comparison method): Let A,B ∈ Ω be two approximate sets, I
= (I1, I2, · · · , Ij) a combination of quality indicators, and E:RjxRj 7→ {false, true}
a Boolean function which takes two real vectors of length j as arguments. If all

indicators in I, the comparison method C̈I,E defined by I and E is a Boolean function
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of the form

C̈I,E = E(I(A), I(B)) (48)

= E(I(A1, · · · , Aí), I(B1, · · · , Bj́))

= E( {I1(A1, · · · , Aí), · · · , Ij(A1, · · · , Aí)} ,

{I1(B1, · · · , Bj́), · · · , Ij(B1, · · · , Bj́)
}

)

2

4.3.1 Dominance Relations. To begin, see Table 9 on page 133 for the

definition of new dominance symbols used within this section. Let there exists the

MOP having k objective functions: F1 = {f1(~x), · · · , fk(~x)}. F1 is to be minimized.

Assume also that each objective function assigns every solution ~x in the search space

Ω a real value zi = fi(x) reflecting the merit according to the ith criteria for a

particular solution ~x. Thus, every ~x ∈ Ω is mapped to a vector ~z = {z1, · · · , zk} ∈
Ω. Accordingly, the approximation set or PFknown, is defined in Definition 23 on

page 129.

Ideally, selection of quality indicators that are both compatible and complete

is something that MOEA statisticians strive for when selecting metrics for compar-

ing MOP optimization heuristics; however, Zitzler proved that one metric cannot

possibly have this quality [239].

Definition 26 (Compatibility and Completeness): Let I be a binary relation

on approximation sets. The comparison method C̈I,E is denoted as I-compatible if

either for A,B ∈ Ω

C̈I,E:A I B

or for any A,B ∈ Ω

C̈I,E:B I A
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The comparison method C̈I,E is denoted as I-complete if either for any A,B ∈ Ω̂

A I B:C̈I,E

or for any A,B ∈ Ω

B I A:C̈I,E

Thus, if a set of indicators, I, operating on two approximation sets, A and B, are

said to be compatibility and completeness then the following is true:

C̈I,E:A I B ⇔ A I B:C̈I,E and C̈I,E:B I A ⇔ B I A:C̈I,E

2

Furthermore, he showed the best one can possibly have is compatibly without

any completeness (i.e., ÂÂ-compatibility without any completeness, or 6 .-compatibility

in combination with .-completeness.). That means either a strong statements can be

made (the evaluated individuals of A strongly dominates the evaluated individuals of

B) for only a few pairs of evaluated members of A . B; or weaker statements can be

made (the evaluated individuals of A are not worse than the evaluated individuals

of B (i.e., A ºB or A ‖B) for all pairs A ÂB [240]). See Table 9 on page 133 for

definitions of symbols described within this paragraph.

Knowles presented a similar idea in his EMO 2005 tutorial on the performance

assessment of stochastic multiobjective optimizers. Knowles recommends having

quality indicators that are dominance compliant, ., to guarantee that one algorithm’s

results are at least better than another before calling that algorithm itself better.

This test is presented within Table 9 and called the Better relation. It is from

Knowles’ research that the quality indicators are chosen to compare MOMGA-II

and MOMGA-IIa. Indicators are chosen to reduce the dimension of approximation
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Table 9: Dominance relations on objective vectors and approximation sets when
working with compatibility and completeness. For a graphic illustration of how these
relations are used, please refer to Figure 23 on page 134.

Relation Objective Vectors
Strictly Dominates fτ (~x

1) ÂÂfτ (~x
2) ∀i∈F , (fτ (~x

1) is better than fτ (~x
2))

Dominates fτ (~x
1) Âfτ (~x

2) fτ (~x
1) is not worse than fτ (~x

2) in all objs
and better in at least one objective

Weakly Dominates fτ (~x
1) ºfτ (~x

2) fτ (~x
1) is not worse than fτ (~x

2) in all objs
Incomparable fτ (~x

1) ‖fτ (~x
2) neither fτ (~x

1) weakly dominates fτ (~x
2)

nor fτ (~x
2) weakly dominates fτ (~x

1)

Approximation Sets
Strictly Dominates A ÂÂB every a2 ∈ B is strictly dominated

by at least one x1 ∈ A
Dominates A ÂB every x2 ∈ B is dominated by

at least one x1 ∈ A
Bettera A . B every a2 ∈ B is weakly dominated by

at least one x1 ∈ A and A 6= B
Weakly Dominates A ºB every x2 ∈ B is weakly dominated by

at least one x1 ∈ A
Incomparable A ‖B neither A weakly dominates B nor

B weakly dominates A

aIndicates that the indicator is dominance compliant and the left side results
w.r.t. the indicator is better than the right side

sets while respecting the dominance compliance. Next, the chosen quality indicators

are given, as well as the reason for these indicators.

The hypervolume indicator, described in Section 4.3.2.8, can be used as the ba-

sis of a dominance compliant comparison [129,239]. In fact, given the results of two

algorithms, E and F , it is shown that all cases where E is better than F are detected

by this indicator while respecting the dominance compliance. Also, suggested indi-

cators are the epsilon indicator, R2, and R3 indicators, described in Sections 4.3.2.9

and 4.3.2.10. Each indicator is based on different preference information; therefore,

using them all provides a range comparisons rather than just one.
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4.3.2 Quality Indicators. The ten selected metrics/indicators used are

discussed this section. Appendix I on page 395 presents other metrics that can be

used when comparing MOEAs; however, these are selected to not be used due to

measurement overlap. It should be noted here, there is also a convergence metric

presented within the additional metrics appendix (Appendix I on page 395); however,

convergence within this analysis means that the MOEA found each and every optimal

PFtrue vector available to be found using the limited word length of variables in the

MOP.

Dominance Relations on Objective Vectors and Approximate Sets 
 

 

B A 

P 
A1 
A2 
A3 

a 
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f1 f1 

f2 f2 

Figure 23: Graphic examples of minimization dominance relations on objective
vectors and approximation sets. From the symbols defined in Table 9 and Figure
A the following objective vector relationships hold: a Â b, a Â c, a Â d, b Â d, c Â d,
a ÂÂ d, a º a, a º b, a º c, a º d, b º b, b º d, c º c, c º d, d º d, and b || c. Also
from the symbols defined in Table 9 and Figure B the following approximation set
dominance relationships hold for algorithm results A1, A2, and A3 having a PFtrue

of P: A1 Â A3, A2 Â A3, A1 ÂÂ A3, A1 º A1, A1 º A2, A1 º A3, A2 º A2, A2 º A2, A3

º A3, A1 . A2, A1 . A3, and A2 . A3.

4.3.2.1 Error Ratio (ER): The Error Ratio (ER) metric reports the

number of vectors in PFknown that are not members of PFtrue. This metric requires

that the researcher knows PFtrue. Mathematically, this metric is represented in

Equation 49:

ER ,
∑|PFknown|

i=1 ei

|PFknown| (49)
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where ei is a zero when the ith PFknown vector is an element of PFtrue or ei is one if

the ith vector is not an element of PFtrue. [34]

So when ER = 0, the PFknown is the same as PFtrue; but when ER = 1, this

indicates that none of the points in PFknown are in PFtrue. A lower ER is better.

4.3.2.2 Generational Distance (GD): The Generational Distance (GD)

reports how far, on average, PFknown is from PFtrue [34, 217]. This metric requires

that the PFtrue be known. It is mathematically defined in Equation 50.

GD
4
=

(
∑n

i=1 dp
i )

1/p

|PFknown| (50)

where |PFknown| is the number of vectors in PFknown, p = 2, and di is the Euclidean

phenotypic distance between each member, i, of PFknown and the closest member in

PFtrue to that member, i. When GD = 0, PFknown = PFtrue.

4.3.2.3 Hyperarea and Ratio (HA,HR): The hyperarea (hypervolume)

and hyperarea ratio metric is the area of coverage of PFknown with respect to the

objective space [34, 241] for a two-objective MOP. This equates to the summation

of all the rectangular areas, bounded by some reference point and (f1(~x), f2(~x)).

Mathematically, this is described in Equation 51:

HA ,
{⋃

i

areai|veci ∈ PFknown

}
(51)

where veci is a non-dominated vector in PFknown and areai is the area between

the origin and vector, veci. It is important to note that if PFknown is not convex,

the results may be misleading [217]. It is assumed that the reference point for the

hyperarea is the minimum value for each objective. Note, the Hypervolume (HV)

and hyperarea measurements are similar, except the HV can be used with dimension

above two.
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Mathematically, the hyperarea ratio metric definition is shown in Equation 52:

HR , HA1

HA2

(52)

where HA1 is the PFknown hyperarea and HA2 is the hyperarea of PFtrue. Implemen-

tation of the hyperarea metric is considered only for maximization MOPs because

the MOMGA-II and MOMGA-IIa only solve maximization MOPS5. Thus, HR val-

ues less than one indicate a found Pareto front that is not as good as the true Pareto

front. When HR equals one, then PFknown = PFtrue. Finally, this metric requires

that the researcher knows PFtrue.

4.3.2.4 Spacing (S): The spacing (S) metric numerically describes the

spread of the vectors in PFknown [34]. This metric measures the distance variance of

neighboring vectors in PFknown. Equations 53 and 54 define this metric.

S ,

√√√√ 1

|PFknown| − 1

|PFknown|∑
i=1

(d̄− di)2 (53)

and

di = minj(|f i
1(~x)− f j

1 (~x)|+ |f i
2(~x)− f j

2 (~x)|) (54)

where i, j = 1 . . . , |PFknown|, d̄ is the mean of all di. When S = 0, all members are

spaced evenly apart. Note that this becomes important in the deception problems

where all Pareto front vectors are equally spaced. This metric does not require the

researcher to know PFtrue.

5All problems coded for the MOMGA-II and MOMGA-IIa within this work are considered
maximization problem. If there is an objective function that requires minimization, the negative
of the objective function values is used (i.e., if fi(~x) is a minimization objective then f̂i(~x) is
substituted for fi(~x) where f̂i(~x) = fi(~x).)
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4.3.2.5 Overall Non-dominated Vector Generation (ONVG): The Over-

all Non-dominated Vector Generation (ONVG) measures the total number of non-

dominated vectors found during MOEA execution and is defined as:

ONVG , |PFknown| (55)

4.3.2.6 Overall Non-dominated Vector Generation Ratio (ONVGR):

Overall Non-dominated Vector Generation Ratio (ONVGR) measures the ratio of

the total number of non-dominated vectors found PFknown during MOEA execution

to the number of vectors found in PFtrue. Coello [34] defines this metric as shown in

Equation 56:

ONVGR , |PFknown|
|PFtrue| (56)

When ONV GR = 1 ,this states only that the same number of points have

been found in both PFtrue and PFknown. It does not infer that PFtrue = PFknown.

This metric requires that the researcher knows PFtrue.

4.3.2.7 Maximum Pareto Front error (ME). The Maximum Pareto

Front error (ME) measures how well a set of vectors compares to another. More

specifically, it measures the largest minimum distance between each vector in PFknown

and the corresponding closest vector in PFtrue. Equation 57 presents this metric

mathematically.

ME , maxj







mini

(
m∑

k=1

|f i
k(~x)− f j

k(~x)|p
) 1

p







 (57)

where i = {1, · · · , |PFknown1|} and j = {1, · · · , |PFknown2|} index vectors in PFknown

and PFtrue respectively. A resultant of 0 indicates PFknown ⊆ PFtrue. Any other

resultant value indicates that at least one vector of PFknown is not in PFtrue.
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Next, the four newer quality indicators are discussed.

4.3.2.8 Hypervolume (HV). The hypervolume indicator is defined

as the area of coverage of PFknown with respect to the objective space [34, 241]

for a two-objective MOP. This equates to the summation of all the rectangular

areas, bounded by some reference point and (f1(~x), f2(~x)). Mathematically, this is

described in Equation 58:

HV ,
{⋃

i

voli|veci ∈ PFknown

}
(58)

This indicator is the same as the hyperarea metric discussed above, but this

indicator does go beyond two dimensions and substitutes voli for the areai in Equa-

tion 58. Figure 24.A illustrates how the hyperarea is calculated for a minimization

MOP from two approximation sets, A and B. All MOPs are translated to maxi-

mization MOPs if not already defined as such; therefore, the areas are summed up

from the bottom left.

4.3.2.9 ε-indicator. Given two approximate sets, A and B, this ε-

indicator measures the smallest amount, ε, that must be used to translate the set,

A, so that every point in B is covered. Figure 24.B illustrates how far A must move

to cover B.

4.3.2.10 RR Indicators. The final two indicators used are the R2

and R3 utility indicators [98]. Note, there is a third indicator, R1, in this same

class; however it is not utilized within this analysis (see Appendix I, Section I.1 on

page 395 for more information on the R1 indicator). The utility, u(A, λ̃), of the

approximation set A, on scalarizing vector, λ̃, is the minimum distance of a point

in the set, A, from the reference point. Equations 59 and 60 mathematically define

these two indicators.
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Figure 24: Illustrated in this figure are the hypervolume, R2, R3 and ε indicators
as [129] described in the presentation at EMO 2005. Graphic “A” indicates a mini-
mization MOP and an example of how the hypervolume is calculated. Graphic “B”
shaded area indicates how the epsilon indicator calculates how far Pareto front A
must move in each objective to cover Pareto front B (i.e., How far must the vectors
resulting from evaluating individuals of A be moved to dominate the vectors result-
ing from evaluating individuals of B in all objectives). Finally, graphics “C” and
“D” illustrate how the utility functions of R2 and R3 are rendered. Graphic “C”
illustrates how the vectors are evenly spread out from the worst reference point to
the best reference point. Graphic “D” illustrates the difference is calculated with
respect to each vector.

IR2 =

∑
λ̃∈A u(λ̃, B)− u(λ̃, A)

|λ̃| (59)

IR3 =

∑
λ̃∈A[u(λ̃, B)− u(λ̃, A)]/u(λ̃, B)

|λ̃| (60)139



Graphically, R2 and R3 are illustrated in Figure 24.C and 24.D. These utility

functions, u, require a reference point and a user-specified number of scalarizing

vectors, λ̃. Vectors are uniformly distributed across the objective space. The distance

of the point (in each set) that is closest to the reference point is measured and the

differences in these distances are added up. In order to obtain an indicator from these

two indicators, the set, B, is replaced with a reference set containing the true Pareto

front points, R. These indicator functions then effectively measure the difference in

the mean distance of the attainment surfaces A and R from a user-defined reference

point.

Table 10 lists the seven MOEA metrics and three indicators used when com-

paring MOEAs. The table indicates whether each metric/indicator requires PFtrue

and explicitly compares results from one generation to another. Discussed next is

a more natural metric requiring no calculation because it is a visual comparison

between two approximation sets.

Table 10: Summary of the ten MOEA Metrics/Indicators used in comparing
MOEAs.

Metric Name PFtrue Generational
required? Metric?

1 Error Ratio (ER) Yes No
2 Generational Distance (GD) Yes Yes
3 Hyperarea Ratio (HR) Yes No
4 Spacing (S) No No
5 Overall Non-dominated Vector Generation (ONVG) No Yes
6 ONVG Ratio (ONVGR) Yes Yes
7 Max PF error Yes No
I1 ε indicator No No
I2 Utility R2 indicator Yes/No No
I3 Utility R3 indicator Yes/No No

4.3.3 Visualization. Visualization is considered to be one of the elementary

ways to distinguish the difference between two approximation sets. When using

this technique the researcher visually looks at the graphically representation of the
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PFknown and PFtrue set and determined if the results are good/bad or indifferent.

For example, graphical analysis can help the researcher determine the cardinality of

the set, total number of disjoint fronts, and structure of the front. Advantages of

this method are many and can be concluded faster than statistically analyzing the

approximation sets.

Many MOEA researchers recognize that visualization of MOEA results pro-

vides an easy mechanism to see the general MOEA performance when compared to

another reference set. A more detailed analysis using other metrics, like the ones

selected within this chapter, is necessary to statistically compare the performance

of multiple MOEAs. One disadvantage to using visualization techniques is that as

the dimensionality increases so does the ability to visually see difference between

approximation sets. Since three dimensions is typically the maximum that one can

easily visualize (3D is also difficult to recognize differences), it is suggested that

visual analysis is limited to three objectives.

This concludes the study of MOEA metrics and selection; next, a discussion

of non-parametric statistics is presented as a way to compare these chosen metrics

when applied to the approximation sets found by the two MOEAs under test.

4.3.4 Attainment Function. The attainment function approach gathers

statistic data on generational results from a MOEA. The data provides detailed

information about how and where the performance difference occurs between two

MOEAs. Since the concern of this dissertation is focused on MOEA performance in

terms of efficiency and effectiveness and not in where the performance differences lie,

the attainment function is not considered within this document. However, it would

be a mistake not to mention such a function. Next, the non-parametric statistical

test used to compare metrics is discussed.

4.3.5 Non-Parametric Statistics (Analysis of Variance). Required for com-

parisons of MOEA performance is a non-parametric inference test because the distri-
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bution of the population for metric results is unknown. Furthermore, if the popula-

tion for metric results does turn out to be a normal distribution, other methods may

be more accurate at deciding if there is a difference; however, the non-parametric

statistics are inaccurate only in errors on the side of caution. Thus, there is no error

made if the nonparametric statistic concludes that there is a difference between the

two algorithms.

There are many statistical tests that can be used when comparing if two or

more algorithms are different (better or worse) from one another. One of the most

common non-parametric tests is the Wilcoxon Rank-Sum (Mann-Whitney) test for

two independent samples. The more general form of this test is called the Kruskal-

Wallis Statistic where h independent samples can be compared. This statistical test

is performed on each comparable metric using gathered experimental data. The next

section discusses how to apply this nonparametric statistic.

The Kruskal-Wallis H test (KWtest) is the main statistical method used in the

determination if two samples are from the same population. An alternative to the

one-way independent-samples Analysis of Variance (ANOVA) is the Kruskal Wallis

Test. This test is primarily used when no knowledge of the type of distribution is

known; however, it can be shown that the sampling distribution of H is nearly a

chi-squared6 distribution with h − 1 degrees of freedom, given that N1,N2, . . . ,Nh

sum to at least 5 [206]. In all KWtests accomplished, both the Chi-squared-statistic

and the F-statistic7 are evaluated. The definition of the Kruskal-Wallis H Test is

the following:

H =
12

N (N − 1)

h∑
i=1

R̃2
i

Nj

− 3(N + 1) (61)

6Under the null hypothesis that the positive and negative values are equally likely, the test
statistic follows the chi-square distribution with h− 1 degree of freedom.

7The F test assumes known population variances of approximately normal distribution and the
population variances are homogeneous.
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• Given

h sample sizes N1,N2, . . .Nh ∴ N =
∑h

i=1Ni

h samples are ranked together according to size, therefore the ranks are

R̃1, R̃2, . . . ,R̃h

Upon calculation of H using Equation 61, this value, H, is treated as though

it were a value of chi-square sampling distribution with the degrees of freedom (df)

= h− 1. This nonparametric method for analysis of variance is used for a one-way

classification, or one-factor experiments, and generalizations can be made [206].

4.4 Other Metrics

Certainly other metrics can be used because there are 30 experimental tests.

The mean and standard deviation is collected on each metric for each set of results

found by both MOEAs. The central limit theorem allows for the assumption that,

after 30 measurements are taken, a normal distribution for a particular measurement

can be assumed (see footnote 16 on page 31). Once a normal distribution is assumed

either a student-t or z test may be performed to compare results. These tests were

not accomplished within this chapter because the KWtest errs on the side of caution

and can be used in their place.

4.5 Applying the Statistical Methods

The statistical method used to determine if two metrics are different than

one another is the following: 30 experiments are performed (using different random

seeds for each), each metric is applied to the final results found by each MOEA,

then a non-parametric test is applied to the data from each MOEA for each metric.

Finally, the different metrics are listed as being better or worse for each MOEA and

a decision is made about if the MOEA is better or worse according to how many

metrics statistically record a difference between the algorithms. Clearly, the metric

determining how many true Pareto front points found by an algorithm outweighs
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Table 11: Table summarizing Test Suite MOPs and associated characteristics.
Genotype Phenotype

Function C
on

n
ec

te
d

D
is

co
n
n
ec

te
d

S
y
m

m
et

ri
c

S
ca

la
b
le

S
ol

u
ti

on
T

y
p
e(

s)

O
b
je

ct
iv

es

S
id

e
C

on
st

ra
in

ts

G
eo

m
et

ry

C
on

n
ec

te
d

D
is

co
n
n
ec

te
d

C
on

ca
ve
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VL1:MOP 1 X X 1R 2 0 Curve X X
VL2:MOP 2 X X 2R 2 0 Curve X X
VL3:MOP 3 X 2R 2 2 Curves X
VL4:MOP 4 X X X n̂R 2 0 Curve X X
VL6:MOP 6 X 2R 2 0 Curves X
VLC4:Tanaka X 2R 2 2+2S Curves X
DTLZ3 X 3R 3 Surface X X

other metrics. However, the final decision on each MOP for data gathered from each

MOEA test is different and must be analyzed separately.

The PFtrue set is obtained by running an exhaustive search on a selected chro-

mosome size used for experiments for each test suite MOP. Chromosome sizes, `,

were all equal to or less than 30, ` ≤ 30, due to the computational time to ex-

haustively search a search space having more then 30 bits. In some cases, careful

ranging of variables was heeded to ensure the PFtrue could be obtained by both the

exhaustive search and the MOEAs. Metrics used the PFtrue set found by the exhaus-

tive search to compare generational MOEA results using the ten metrics described

earlier. Metric calculations are embedded within both MOEAs except for the three

extra metrics added from research findings by Knowles [129]. These metrics were run

separately on results, using performance metric code from Zitzer [129]. Efficiency

was also tested using wall clock time to completely solve the MOP. An MOEA solved

the MOP when PFknown = PFtrue. At the time that this occurred during a search,

this time is recorded as the convergence time. The convergence time is compared for

the efficiency metric results.
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4.5.1 Reading Table Results. Metric results using KWtest comparison

between algorithms MOMGA-II and MOMGA-IIa are listed in several tables within

this chapter. The symbol, ∈, indicates that groups (experimental runs) are the same

and 6∈ indicates that the groups are different. Upon an indication of different, 6∈,

the researcher must go back to the visualization of the statistical data to determine

which is indeed better. Unless otherwise specified, it is found that 6∈ indicates that

the MOMGA-IIa performs better than MOMGA-II.

4.6 Experimental Hypothesis

Each experiment begins with the hypothesis that the MOMGA-IIa outper-

forms the MOMGA-II effectiveness-wise. As for the efficiency of the algorithms, it

is thought that the MOMGA-IIa must be less efficient. However, in certain circum-

stances, the MOMGA-IIa becomes more efficient than the MOMGA-II. Each MOP

has a section describing and analyzing results from the experiments.

4.7 MOEA Test Suites

This section describes the test MOPs used to test the validity that the MOMGA-

IIa is indeed a better algorithm than the MOMGA-II. This is the hypothesis. Ta-

ble 11 lists the names and characteristics of the MOPs picked for evaluation. First,

it is expected that effectiveness should increase and it is desired, but not totally ex-

pected, that efficiency (faster convergence) is also observed. Table 12 lists all MOP

test suite functions and associated characteristics and constraints.

The MOMGA-II and MOMGA-IIa are tested and compared against each se-

lected test suite MOP to illustrate if there is a statistical difference between the

two algorithms on MOPs of different characteristics. The following sections describe

each test suite MOP experiment and results. Although algorithm development is

accomplished on Cluster 1, 2 and 3, only Cluster 1 is used for MOP test suite ex-

periments (see Table 13 on page 147 for hardware configurations of these Clusters).
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Table 12: MOEA Test Suite Functions
MOP Definition Constraints

VL1:MOP 1 F = (f1(x), f)2(x)), where −105 ≤ x ≤ 105

f1(x) = x2

Ptrue connected f2(x) = (x− 2)2

Ptrue convex

VL2:MOP 2 F = (f1(~x), f2(~x)), where −4 ≤ xi ≤ 4, i = 1, 2, 3

f1(x) = 1− exp
(
−∑n

i=1(xi − 1√
n

)2
)

Ptrue connected f1(x) = 1− exp
(
−∑n

i=1(xi + 1√
n

)2
)

Ptrue concave,
number of decision vars

VL3:MOP 3 Max(F), where F = (f1(x, y), f2(x, y)) −π ≤ x, y ≤ π

f1(x, y) = −[1 + (A1 − B1)2 + (A2 − B2)2]

Ptrue disconnected f2(x, y) = −[(x + 3)2 + (y + 1)2]
Ptrue disconnected A1 = 0.5sin(1)− 2cos(1) + sin(2)− 1.5cos(2)
(2 Pareto curves) A2 = 1.5sin(1)− cos(1) + 2sin(2)− 0.5cos(2)

B1 = 0.5sin(x)− 2cos(x) + sin(y)− 1.5cos(y)
B2 = 1.5sin(x)− cos(x) + 2sin(y)− 0.5cos(y)

VL4:MOP 4 F = (f1(~x), f2(~x)) −5 ≤ xi ≤ 5, i = 1, 2, 3

f1(x) =
∑n−1

i=1

(
−10e

−0.2∗
√

(x2
i
+x2

i+1)
)

Ptrue disconnected f2(x) =
∑n

i=1

(
|xi|a + 5sin(xi)

b
)

a = 0.8,

Ptrue disconnected b=3
(3 Pareto curves) number
of decision var scalable

VL6:MOP 6 F = (f1(x, y), f2(x, y)), where 0 ≤ x, y ≤ 1,
f1(x) = x,

Ptrue disconnected f2(x) = (1 + 10y) ∗ [1−
(

x
1+10y

)α − q = 4,

Ptrue disconnected
xsin(2πqx)

1+10y
] α = 2

(4 Pareto curves) number
of Pareto curves scalable

VLC4:Tanaka F = (f1(x, y), f2(x, y)), where 0 < x, y ≤ π,

f1(x, y) = x, 0 ≥ −(x2)− (y2) + 1 + (acos(atan( x
y

)))

f2(x, y) = y
a = 0.1
b = 16

DLTZ3 Min(F ) 0 ≤ xi ≤ 1, for i = 1, 2, · · · , n

f1(x) = (1 + g(xM ))cos(
x1π
2 )cos(

x2π
2 ) · · ·

· · · cos(xM−2
π
2 )cos(xM−1

π
2 )

f2(x) = (1 + g(xM ))cos(
x1π
2 )cos(

x2π
2 ) · · ·

· · · cos(xM−2
π
2 )sin(xM−1

π
2 )

f3(x) = (1 + g(xM ))cos(
x1π
2 )cos(

x2π
2 ) · · ·

· · · sin(xM−1
π
2 )

.

.

.

.

.

.

.

.

.

.

.

.
fM−1(x) = (1 + g(xM ))cos(x1

π
2 )

fM (x) = (1 + g(xM ))sin(x1
π
2 )

g(xM ) = 100[|xM | + ∑
xi∈xM

(xi − 0.5)2−
· · · cos(20π(xi − 0.5))]
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Both efficiency and effectiveness of both algorithms are studied. Each MOEA is run

30 times for good statistical analysis.

Each metric is analyzed separately and compared in both a regular statistical

analysis and a Kruskal Wallis test. It is assumed that the Kruskal Wallis test is a

better test to compare metrics for each algorithm because it is a non-parametric test.

Zydallis and Van Veldhuizen both used seven statistical measures in determining

algorithm performance comparison to another. Here, ten different metrics are used.

The three added metrics are the R2, R3, and epsilon indicators [129]. Fonseca,

Knowles, Thiele and Zitzler assumed that the three metrics along with the HR

metric (part of the Zydallis and Van Veldhuizen set) are the only metrics necessary

to determine if one algorithm is better than another. Each metric is talked about

separately and conclusions are drawn based on separate metric statistical findings.

Table 13: System Configuration
Cluster 1 (TAHOE) Cluster 2 (ASPEN)

OS Fedora Core 2 Redhat Linux 9.0
Processors Dual Opteron 2.2 ghz Athlon XP 3000+ 2.1ghz

Cache(L1 I,D/L2) (64,64/1024)KB (64,64/512)KB
Backplane Gb Ethernet Fast Ethernet

RAM 4 GByte 1 GByte
Switching Crossbar Switch Crossbar Switch
Disk I/O RAID 5 RAID 5

Memory type Distributed Distributed
Node Specifics 48 node,2 CPUS/node 48 node,2 CPUS/node

Cluster 3 (Polywells)
OS Redhat Linux 7.3

Processors Athlon XP 2800+ 2.0ghz
Cache(L1 I,D/L2) (64,64/512)KB

Backplane Gb Ethernet
RAM 1 GByte

Switching Crossbar Switch
Disk I/O RAID 5

Memory type Distributed
Node Specifics 16 node,1 CPU/node
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MOP 1 (VL1): MOP 1 is published by Van Veldhuizen and Lamont in

1998 [221] as an easy test suite MOP. It is also known as Schaffer’s first (uncon-

strained) two-objective function. The characteristics of this MOP can be found in

Table 11 on page 144. Settings for the MOMGA-II and MOMGA-IIa are kept the

same with the exception of the use of more competitive templates for the MOMGA-

IIa. Table 44 in Appendix A on page 272 lists all settings used for both MOEAs

when solving MOP 1. As a general note, all parameter settings, including chromo-

some size indicating solution resolution, for each statistical experiment conducted

between the MOMGA-II and MOMGA-IIa can be found in Appendix A on page

272.

Results for this MOP are not surprising in that both MOEAs solve this problem

easily because this is the easiest of all test suite MOPs [34]. Figure 25 on page 149

illustrates the phenotypic results for these experiments. Note that the MOMGA-II

has an unequal spacing of results, while the MOMGA-IIa has a good distribution

and an equal spacing of results. This is not to say that MOMGA-II cannot solve this

problem totally and have the equal spacing like what is found by MOMGA-IIa; but,

when limited with the population sizing, BB search sizes, BB filter settings provided,

and primordial and juxtapositional generations these results are observed.

Effectiveness: Visual results of the statistical analysis for the 30 runs on

MOP 1 for each algorithm are illustrated in Figure 26. It is difficult to make a call

on if one algorithm performs better than another according to this figure. The only

two metrics glaringly different visually are the ONVG and ONVGR. The ONVG

is based on |PFknown| and the ONVGR is the ratio of the |PFknown| to |PFtrue|
found. Moreover, the ONVGR may be a good metric to rely on for the analysis

of algorithm goodness because it reflects what is illustrated when looking at the

visual graphic in Figure 25 where MOMGA-II does not cover the Pareto front true

points completely. However, this single metric is not on the qualified list of metrics
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Figure 25: This figure illustrates typical results from running MOMGA-IIa (top
left) and MOMGA-II (top right) using the same parameter setting except the added
archive and number of competitive templates for MOP 1 (VL1). The bottom figure
shows one graph overlaid on the other. Open circles represent optimal solutions
evaluating to PFtrue vectors not found by MOMGA-II. The size differences between
the upper and lower graphs are to allow for a better visual of missing PF vectors.
These figures are created using Matlab’s subplot function call and the bottom plot
is considerably larger to allow for a closer look at the comparison of results for each
MOEA.
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Figure 26: Illustrated are the statistical results of the MOMGA-II versus
MOMGA-IIa over the 10 metrics used. The mean and standard deviation is gen-
erated using 30 experimental runs. The MOP under test is VL1. Results indicate
visually that these MOEAs perform similarly over all metrics except ONVG and
ONVGR where the MOMGA-IIa found more PFtrue vectors than MOMGA-II on
MOP 1. Results for each MOEA and all metric have error bars on the mean, but in
most cases the variance is too small to visualize on the plots.

to determine if one algorithm is better than another according to Fonsea, Knowles,

Thiele and Zitzler [129].
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Table 14: MOP 1 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups (experimental
runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ ∈
F ∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ ∈

Kruskal Wallis results for each metric are listed in Table 14. It is concluded

that too many of these metrics report that the algorithms are the same. Therefore,

there is not enough evidence to say that one algorithm is better than another.

Efficiency: The final conclusion is that these two algorithms are not that

much different in solving this problem. In fact, MOMGA-IIa takes ∼51 seconds to

completely solve the problem while the MOMGA-II takes ∼26 seconds to come close

to solving this problem with these algorithm settings.

Table 21 on page 166 lists MOEA timing for this MOP. This evaluation of

algorithm timing is another point of evaluation for these two algorithms. The results

of MOMGA-IIa at or just before the time MOMGA-II completes are conclusively not

worse (or better) than the MOMGA-II. For MOP 1, MOMGA-IIa is more efficient

than MOMGA-II because at the time the MOMGA-IIa finds all PFtrue, its data is

recorded as more effective for every metric except ER and ME, R3 and ε than the

MOMGA-II’s. Lastly, MOP 1 MOMGA-IIa BB size visualizations are presented in

Figure 95 in Appendix D on page 313. Next, the results for test MOP 2 are discussed.

MOP 2 (VL2): This MOP is similar to MOP 1, but the input has three

real variables (scalable) and the phenotype has a convex Pareto front curve vice

MOP 1 has a single variable and concave Pareto front. MOP 2 is considered to be

more difficult to solve than MOP 1. Parameter settings used for MOMGA-II and

MOMGA-IIa when solving MOP 2 are listed in Appendix A in Table 45 on page

273.
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Figure 27: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa using the same parameter setting except the added archive and number
of competitive templates on MOP 2.
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Effectiveness: Figure 27 illustrates the results found for a typical MOMGA-

IIa and MOMGA-II run on MOP 2. Statistical analysis of 30 runs for both algorithms

can be found in Figure 76 in Appendix B on page 292. Once again, metrics ONVG

and ONVGR stand out as being different. KWtest, listed in Table 15 on page 153,

also reveals that in many of the metrics present there is a difference in algorithm

results. In fact, metrics that are tested as different according to the KWtest are GD,

HR, ONVG, ONVGR, R2, and R3.

Efficiency: Run times for both algorithms for this particular MOP are dissim-

ilar. MOMGA-II puts up a ∼14 minute run time where as MOMGA-IIa clocks in at

∼320 minutes. These run times seem somewhat unbalanced because the algorithm

must evaluate each individual more times according to the number of competitive

templates added to the algorithm. In this particular case, MOMGA-IIa is not more

efficient than MOMGA-II; however, it does find all the solutions evaluating to all

PFtrue vectors upon completion. The final efficiency comparison is to evaluate the

results of MOMGA-IIa at ∼14 minutes, when MOMGA-II completed. MOMGA-II

and MOMGA-IIa performs, efficiency wise, similarly on this particular MOP. Ta-

ble 21 on page 166 lists MOEA timing for this MOP.

Table 15: MOP 2 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups (experimental
runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ 6∈ 6∈ ∈
F ∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ 6∈ 6∈ ∈

It is important to note for this MOP that, when using the same setting minus

the modifications for MOMGA-IIa, MOMGA-IIa finds every solution evaluating to

each and every PFtrue vector upon completion in every experiment and MOMGA-II

does not. Finally, it is the conclusion that MOMGA-IIa does become more effective

on MOP 2, but at the cost in overall efficiency. Lastly, MOP 2 MOMGA-IIa BB size

153



visualizations are presented in Figure 96 in Appendix D on page 314. Next, MOP 3

results are discussed for both MOEAs.

MOP 3 (VL3): The third MOP visited in this investigation is Poloni’s MOP

(VL3). This is a maximization problem having two objectives with disconnected

areas on the PFtrue. Figure 28 illustrates results for both algorithms. Parameter

settings used for the MOMGA-II and MOMGA-IIa when solving MOP 3 are found

listed in Table 46 on page 274.

Effectiveness: Statistical results conclude that there is a difference in the

MOEA results for this experiment. By visual observation (see Figure 77 on page 293)

it is concluded that ER, ONVG, and ONVGR are different in favor of MOMGA-IIa.

KWtest concludes that R2, R3 and ε indicator results are from the same population

and are the same (see Table 16 on page 154). Otherwise, all other metrics are

found to be different. Student-t testing also supports these results (see Figure 89 in

Appendix B on page 305 for box plots of the applied student-t test).

Efficiency: MOMGA-II’s runs took on average ∼3 hours to converge, while

the MOMGA-IIa took ∼40 minutes to converge on all solutions that evaluate to

each and every PFtrue vector. This indicates that the MOMGA-IIa actually is more

effective and efficient at solving this particular MOP. Table 21 on page 166 lists

MOEA timing for this MOP.

Table 16: MOP 3 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups (experimental
runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈
F 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈

In conclusion, the MOMGA-IIa is more effective and efficient when solving

MOP 3 using the specified settings. Although many metrics appear to be the

same, PFtrue tallies are quite different for these two algorithms, indicating that the
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Figure 28: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa on MOP 3 using the same parameter setting except the added archive
and number of competitive templates.
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MOMGA-IIa is better. Lastly, MOP 3 MOMGA-IIa BB size visualizations are pre-

sented in Figure 97 in Appendix D on page 315. Next, MOP 4 (VL4) is discussed.

MOP 4 (VL4): Kursawe defined this bi-objective MOP to have several

disconnected and non-symmetric areas in the phenotype space [31]. This is another

scalable variable MOP. Parameter settings used for MOMGA-II and MOMGA-IIa

when solving MOP 4 are listed in Table 47 on page 275. Typical resultant Pareto

fronts from MOMGA-IIa and MOMGA-II are illustrated in Figure 29. Notice within

the figure that MOMGA-II solutions evaluate to vectors that are not quite on the

PFknown vectors found by MOMGA-IIa. In addition, the MOMGA-II results are

unevenly distributed, where MOMGA-IIa found all solutions evaluating to each and

every vector in PFtrue. Lastly, MOP 4 MOMGA-IIa BB size visualizations are pre-

sented in Figure 98 in Appendix D on page 316.

Effectiveness: Using visual statistical inferences from Figure 78 on page 294

GD, S, and R3 are quite similar. Table 17 lists the KWtest results where all metrics

are found to not be from the same population; thus, are different. This concludes

that final results for MOMGA-IIa are better than that of MOMGA-II.

Efficiency: Efficiency for MOMGA-IIa when solving this MOP is not as good

as previous tests. In fact, the difference in overall run time is 11 times longer when

comparing a complete MOMGA-IIa run to a MOMGA-II run. Fortunately, sampling

the results of the MOMGA-IIa at the time that the MOMGA-II completes, it is found

that the MOMGA-IIa results are still more effective.

After analyzing the algorithms at the time of completion of the MOMGA-II, it

can be said that for MOP 4 (VL4), MOMGA-IIa is both more effective and efficient.

Next, results from experiments for the MOMGA-IIa and MOMGA-II when solving

MOP 6 are discussed.

MOP 6 (VL6): MOP 6, from Coello, Van Veldhuizen, and Lamont [34],

is constructed using Deb’s methodology using single-objective functions having de-
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Figure 29: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa using the same parameter setting except the added archive and number
of competitive templates on MOP 4.

sired characteristics [54, 61]. This MOP has four disconnected Pareto curves in the

objective space and two variables for optimizing. Figure 30 illustrates a typical set

of results from the MOMGA-IIa and MOMGA-II solving this MOP. Parameter set-

tings used for the MOMGA-II and MOMGA-IIa when solving MOP 6 are listed in

Table 48 on page 276.
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Effectiveness: Visual analysis of statistical results of 30 experiments conclude

that effectiveness results are no different (see Figure 79 on page 295). KWtest

indicates similar results (see Table 18).

Efficiency: Table 21 on page 166 lists MOEA timing for this MOP. Both

MOEAs solve this problem to completion (PFknown = PFtrue); however, MOMGA-

IIa converges before MOMGA-II in many cases. Although the effectiveness of both

algorithms is the same, the MOMGA-IIa has an average running time that is more

efficient than MOMGA-II, and the KWtest concluded that these run times are indeed

not from the same population (different). Lastly, MOP 6 MOMGA-IIa BB size

visualizations are presented in Figure 99 in Appendix D on page 317. Next, a MOP

having side-constraints is discussed.

Tanaka (VLC4): The Tanaka MOP, also found as MOP-C4 (VLC4) within [34]

is a side-constrained MOP having two objective functions with two non-linear con-

straints. Figure 31 illustrates an exhaustive search over the original Tanaka MOP.

The Pareto front is darkened on the minimized edges of the objective space. Figure 32

illustrate the comparison of results found by both the MOMGA-IIa and MOMGA-II.

Finally, Table 21 on page 166 indicates that the MOMGA-IIa finds these solutions at

Table 17: MOP 4 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups (experimental
runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈
F 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈

Table 18: MOP 6 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
F ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

158



0 0.2 0.4 0.6 0.8

0

0.5

1

F
1

F 2
MOMGA−IIa Results

0 0.2 0.4 0.6 0.8

0

0.5

1

F
1

F 2

MOMGA−II Results

0 0.2 0.4 0.6 0.8

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
MOMGA−II/MOMGA−IIa Results

F
1

F 2

MOMGA−IIa
MOMGA−II

Figure 30: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa using the same parameter setting except the added archive and number
of competitive templates on MOP 6.

a more efficient rate. Parameter settings used for the MOMGA-II and MOMGA-IIa

when solving VLC4 can be found listed in Table 49 on page 277.

Effectiveness: Visual analysis of statistical data represented in Figure 81

on page 297 indicates that these two MOEAs perform similarly in effectiveness.

Finally, KWtest indicates (results listed in Table 19) that these algorithms are similar
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Figure 31: This figure illustrates search space and the Pareto front found for the
Tanaka MOP. Darker areas represent the Pareto front.

only for R2, R3, and ε indicator metrics. In conclusion, the seven metrics used in

previous AFIT MOEA studies actually indicate that these algorithms are different,

but recently added MOEA metrics indicate that they are not different. By studying

the data, MOMGA-IIa always finds all solutions evaluating to each and every PFtrue

vector and, on average, MOMGA-II finds them, as well. Being that there is no one

single metric that measures the overall effectiveness of a solution set when compared

to another, it is concluded for the Tanaka MOP that these MOEAs perform similarly.

Table 19: Tanaka metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈
F 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈
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Figure 32: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa for MOP VLC4 (Tanaka) using the same parameter setting except the
added archive and number of competitive templates.

Efficiency: In conclusion, results for this MOP are closely similar but the

KWtest indicates that MOMGA-IIa is more efficient at finding all PFtrue points

than MOMGA-II. Lastly, Tanaka MOMGA-IIa BB size visualizations are presented

in Figure 100 in Appendix D on page 318. Next a three dimensional MOP, DTLZ3,

is discussed. Variations of this test function can be found here [62].
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Figure 33: This figure illustrates PF vectors representing the evaluation of found
solutions when solving DTLZ3 using MOEAs NSGA-II and SPEA 2. The graph on
the left illustrates PFknown vectors found by the NSGA-II and the graph on the right
are results found by the SPEA 2. [62]

DTLZ3: DTLZx (x = 1 · · · 9) is designed by Deb et al. [62] to meet the

following five criteria:

• Easy to construct.

• Scalable to have any number of decision variables.

• Scalable to have any number of objectives.

• The resulting Pareto-optimal front (continuous or discrete) must be easy to

comprehend, and its exact shape and location should be exactly known. The

corresponding decision variable values should also be easy to find.
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• Test problems should introduce controllable hindrance to converge to the true

Pareto optimal front and also to find a widely distributed set of Pareto-optimal

solutions.

There are many of these test problems that are created with these criteria

including DTLZ1, · · · , DTLZ9. DLTZ3 has three objectives and the PFtrue set is a

mesh quarter sphere with radius 1. Figures 33 and 34 both illustrate the true Pareto

front and PF vectors of evaluated solutions found by two implicit MOEAs: NSGA-II

and SPEA 2.

 

Figure 34: This figure illustrates the PFknown vectors representing the evaluation
of found solutions when solving DTLZ3 using MOEAs NSGA-II and SPEA 2. The
graph on the left illustrates PFknown vectors found by the NSGA-II and the graph
on the right are results found by the SPEA 2. [62]

Figure 35 illustrates the comparison of solutions evaluating to PFknown vectors

found by both MOMGA-IIa and MOMGA-II. Notice the difference in the spread

and symmetry found by the explicit BBBs (MOMGA-II(a)) and the implicit BBBs
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(NSGA-II and SPEA 2). Parameter settings used for MOMGA-II and MOMGA-IIa

when solving DTLZ3 can be found listed in Table 50 on page 278. MOMGA-IIa BB

size findings for each dimension of DTLZ3 can be found in Figure 101 in Appendix D

on page 319 .

Effectiveness: Visual analysis of statistical data represented in Figure 80 on

page 296 indicates that these two MOEAs perform similarly in effectiveness. Finally,

KWtest indicates (results listed in Table 20 on page 164) that these algorithms are

similar for all but the GD, ONVG, S, and ONVGR metrics. Therefore, it can be

concluded that these MOEAs perform similarly in effectiveness for this particular

MOP. However, it should be noted that MOMGA-II only solved the problem com-

pletely 17 times out of 30 experiments, while MOMGA-IIa solved it completely for

all experiments.

Table 20: DTLZ3 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa.

Metrics
KWtest ER GD HV ONVG S ONVGR ME R2 R3 ε

χ2 ∈ ∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈ ∈
F ∈ ∈ 6∈ 6∈ 6∈ 6∈ ∈ ∈ ∈ ∈

Efficiency: Lastly, the efficiency of the MOEAs is checked. Although the

MOMGA-II did not solve the MOP for each experiment, an extra loop is added to

the MOMGA-II to allow it to solve this problem to it entirety over 30 experiments.

This modification is used only to gain insight to how much time would it take the

MOMGA-II to solve this MOP completely. Listed in Table 21 are the results from

extending the algorithm’s run time until its PFknown vectors, resulting from the

evaluation of found solutions, converged onto every PFtrue vectors. In conclusion,

the MOMGA-II is more efficient on this MOP than the MOMGA-IIa.

Covered within this section is the evaluation of effectiveness and efficiency

for each MOEA under evaluation and test suite MOP considered. Although many

more test MOPs exist [63, 219, 239], these are considered a good representation of
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Figure 35: This figure illustrates typical results from running MOMGA-II and
MOMGA-IIa using the same parameter settings except the added archive and num-
ber of competitive templates.
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the complete set available to test MOEAs. The next section concludes this chapter

with a summary of the findings. Table 22 includes a summary of all findings from

experiments and the statistical analysis.

4.8 Limitations and Rationale for Applications

Several studies attempt to measure the goodness of certain multiobjective ap-

proximation solution sets. In fact, there have been several presentations given sug-

gesting a few carefully crafted indicators that should yield results that present results

that measure one approximation set against another. However, as it is shown in the

chapter, there is no one discrete set of metrics that can describe totally the merit of

Table 21: Summary of timing for MOEAs solving test suite MOPs
MOP MOMGA-II MOMGA-IIa KWtest
VL1 25.77± 7.63 51.20± 24.83 6∈
VL2 832.06± 6.036 19396.85± 8089.18 6∈
VL3 10712.54± 96.53 2433.71± 1593.42 6∈
VL4 148.38± 0.84 1673.18± 481.00 6∈
VL6 95.72± 53.11 74.371875± 38.71 6∈

VLC4 (Tanaka) 2374.25± 647.30 1153.83± 389.17 6∈
DTLZ3 250.51± 54.69 387.82± 141.54 6∈

Table 22: Summary of Effectiveness and Efficiency results for the MOMGA-II and
MOMGA-IIa run on the test suite MOPs identifying favorable metrics for MOMGA-
IIa (ER, GD, HR, ONVG, S,ONVGR, ME, R2, R3, and epsilon) indicating the
difference in MOEAs.

MOP Effectiveness Efficiency Favorable Metrics
VL1 none none
VL2 IIa none GD, HR, ONVG, ONVGR, R2

and R3
VL3 IIa IIa ER, GD, HR, ONVG, S,ONVGR,

and ME
VL4 IIa IIa ER, GD, HR, ONVG, S, ONVGR,

ME, R2, R3, and ε
VL6 none IIa

VLC4 (Tanaka) none IIa
DTLZ3 ∼IIa II HV, ONVG, S, ONVGR
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one approximation set to another. This is stated within a proof by Zitzter in [239].

The ten metrics (indicators) selected within this document are done so for the pur-

pose of a better measurements of the approximation sets found by the two MOEAs

under test. It is thought that these measurements, when used and analyzed together,

capture the merit of each approximation set with respect to the PFtrue reference set.

Given that test suites themselves have limitations, there is a need for evaluat-

ing an MOEA’s performance in real-world applications having higher complexities.

Table 83 on page 421 lists examples of each problem to which an application might be

mapped. Table 84 in Appendix M on page 421 specifies the type of fitness landscapes

expected for each problem. Finally, Table 11 on page 144 lists test suite MOPs used

to round off the good subset of MOP characteristics which might be faced in any

real-world application.

4.9 Summary

Although it is difficult to definitively determine if one MOEA is better than

another, an attempt is made using state-of-the-art metrics on a subset of test suite

MOPs. The best MOEA metrics known to MOEA researchers are used within this

study; however, it is not to say these are the only metrics available. Numerous

metrics are available, but these are selected as good metrics to use in comparing these

two MOEAs. The two MOEAs under test are the MOMGA-IIa and the MOMGA-

II. Fortunately, these algorithms are similar, thus most of the algorithm settings

are kept constant between the two. Design changes improve the effectiveness of the

MOMGA-IIa on some MOPs; however, this comes at a cost in efficiency. Table 22 on

page 166 lists the MOPs and the corresponding better MOEA. It can be surmised

from this Table 22, MOMGA-IIa is at least as good, if not better, at solving all

the MOPs tested (in terms of time to convergence). For VL2, VL3, VL4, and

DTLZ3, MOMGA-IIa is more effective, although not totally more efficient. For

VL3, VL4, and VL6, MOMGA-IIa is more efficient. In cases where MOMGA-II
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did not completely solve the problem using the parameter settings the MOMGA-II’s

runs were extended to let the MOMGA-II run time extend past the MOMGA-IIa’s

convergence time for a second effectiveness check.

Considering the problem size of these MOPs are somewhat small (< 30), the

following chapters more thoroughly test these MOEAs. Beginning with deception

problems ranging in sizes from 30 to 90, MOEA scalability is tested. Next, the

following real-world problems are tested: the protein structure prediction problem,

multiple quadratic assignment problem and m-ary symbol set design problem.

To conclude, it is apparent that MOMGA-IIa is no worse and better in most

cases in effectiveness for the test MOPs studied. Furthermore, it is expected that the

explicit BB MOEA must perform better on the range of MOPs that the MOMGA-II

has shown to perform well on because these are indeed similarly structured algo-

rithms. Finally, it is a conjecture that the MOMGA-IIa scales well and will perform

better on the upcoming deception problems and real-world applications.
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V. Deception Problems

Deception problems are among the hardest problems to solve using ordinary genetic

algorithms. Designed to simulate a high degree of epistasis1, deception problems

imitate extremely difficult real-world problems [188]. Studies show that Bayesian

optimization and explicit BB manipulation algorithms, like the fmGA, solve these

problem faster [122]. This chapter compares the results acquired from MOMGA-IIa,

MOMGA-II, mBOA, and the non-dominated sorting genetic algorithm-II (NSGA-II)

when applied to three different deception problems. The three deceptive problems

studied are: interleaved minimal deceptive problem, interleaved 5-bit trap function,

and interleaved 6-bit bipolar function [122]. The unmodified MOMGA-II explicitly

learns BB linkages, a requirement if an algorithm is to solve these hard deception

problems. Results using MOMGA-IIa are exceptional when compared to the implicit

BBB results of both the NSGA-II and good when compared to another explicit BBB,

the mBOA.

5.1 Introduction

Algorithms that solve problems by realizing good BBs are useful in solv-

ing extremely difficult problems: Protein Structure Prediction [41], 0/1 Modified

Knapsack [243], Multiple Objective Quadratic Assignment Problem [42, 125], Digi-

tal Amplitude-Phase Keying Signal Sets with M-ary Alphabets and many academic

problems [34, 46]. As discussed in Chapter III, MOMGA-IIa originated as a single

objective mGA. It evolved from being a single objective mGA into a multiobjective

mGA called the MOMGA [74]. Many different Multiobjective Evolutionary Algo-

rithms (MOEAs) were produced during this time period; however, the MOMGA is

1Evolutionary Computation researchers use the term epistasis when referring to any kind of
strong interaction among genes, not just masking effects. According to http://www.cs.bham.
ac.uk/Mirrors/ftp.de.uu.net/EC/clife/www/Q99_E.htm, epistasis is the interaction between
different genes in a chromosome. It is the extent to which the contribution to fitness of one gene
depends on the values of other genes.
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the only MOEA explicitly using good BBs to solve problems. The MOMGA has a

population size limitation: as the BB size increases so does the population size during

the PEI phase. This renders MOMGA less useful on large problems. To overcome

this problem, MOMGA-II, based on the single objective fmGA, is designed. The

fmGA is similar to the mGA in that it specifically uses BBs to find solutions; how-

ever, it has a reasonable population size and lower run time complexity (see Table 23)

when compared to the mGA. MOMGA-II includes many different repair, selection,

and crowding mechanisms. Unfortunately, the MOMGA-II is found to be limited

when solving large deception problems [46]. This called for the development of basis

function diversity measures in the MOMGA-IIa which are designed for smart BB

searching in both the geno- and pheno-type domains.

Table 23: Complexity Estimates for serial EAs and MOEAs
Single Objective Algorithm MOEAs

Phase sGAb ssGA mGA fmGA NSGAII mBOAc IIad

Initial O(`N ) O(`N ) O(`o) O(`)
Recomb O(tN q) O(t)

Primordial O(∅) O(∅) O(`2)e

Juxtapos O(` log `) O(` log `)
Overall O(`N ) O(`N ) O(`o) O(`2) O(kN 3) O(N 3.5) O(ketN 2)

bq is group size for tournament selection
cThis complexity is problem specific and in this case has been

taken from the spin glass problem. [181]
de = number of eras
eBuilding Block Filtering

The next section discusses mBOA and NSGA-II. The mBOA and NSGA-II

have been used to solve these three multiobjective problems (MOPs) in previous

research [46, 122]. The interleaved minimal deceptive problem, interleaved 5-bit

trap function, and interleaved 6-bit bipolar function [122] are described in detail in

Section 5.2. Next, experimental design, resources, parameter settings, and algorithm

efficiency are discussed briefly in Section 5.3. Finally, in the results section, the

mBOA, NSGA-II, MOMGA-II and MOMGA-IIa results are compared and analyzed.
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5.1.1 Non-dominated Sorting Algorithm-II. The NSGA-II is an implicit

BB MOEA based on the original design of NSGA (see Section E.5.4 on page 350 for

a description of the NSGA). NSGA-II builds a population of compete individuals,

ranks and sorts each individual according to non-domination level, applies EVolu-

tionary OPerations (EVOPs) to create a new pool of offspring, and then combines

the parents and offspring before partitioning the new combined pool into fronts. The

NSGA-II then conducts niching by adding a crowding distance to each member. It

uses this crowding distance in its selection operator to keep a diverse front by mak-

ing sure each member stays a crowding distance apart. This keeps the population

diverse and helps the algorithm to explore the fitness landscape. For a more detailed

summary of the NSGA-II see Section E.5.4 on page 350.

5.1.2 Multiobjective Bayesian Optimization Algorithm (mBOA). The mBOA

was also used to solve these MOPs in previous research [121]. mBOA is identical to

the single objective Bayesian Optimization Algorithm (BOA) [121] minus the selec-

tion procedure. The BOA’s selection procedure is replaced by the non-dominated

sorting and selection mechanism of NSGA-II. The BOA generates a child population

of size N ′ from a parent population. The child and parent population is then merged

and the combined population is Pareto ranked. Based on the Pareto ranking and

crowding distance function, a new population is created from which BOA builds a

new probabilistic model to generate children again.

5.2 Deception Problems

In 1987, Goldberg’s research group introduced deception to test the abilities

of current genetic algorithms to solve high epistatic leveled problem [88]. They

designed problems having specific difficulties which genetic algorithms might face in

problem solving. These deception problems are often challenging to optimize and

involve some degree of deception – resulting in conflicting objectives (e.g., the k-

arm bandit competitions between hyperplanes [228]). Later, Whitley [228] proved
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deceptive attractors must have complementary bit patterns to the global optimum

pattern in order to be either fully deceptive or consistently deceptive problems. He

then defines a deceptive problem at least one more relevant lower order hyperplane

competitor that guides a genetic search away from the global winner. Imagine a

hill climbing search algorithm starting anywhere except with the bit configuration

111x. The hill climbing algorithm always finds the suboptimal fitness of 9 as a

solution. This example illustrates how a competitor hyperplane might guide a GA

away from the optimal solution. Furthermore, it is every GA engineer’s desire to

build an algorithm that finds proper linkages within a problem, overcoming this type

of deception.

We evaluate the following five objective functions in this chapter:

1. T1 - Interleaved minimal deception problem

2. T2 - Complement of T1

3. T3 - Interleaved 5-bit trap function

4. T4 - Complement of T3

5. T5 - Interleaved 6-bit bipolar deception function

These test functions are difficult in four respects: deception, loose linkage,

multimodality, and combinatorially - having a large search space [59, 60, 92]. Sec-

tions 5.2.1 through 5.2.3 included a detailed discussion of these deceptive problems.

In addition to solving these five test functions, difficulty is added by combining

these functions together to make three multiobjective problems. By aggregating

these test functions together, the order of deception is increased because the functions

are paired in a manner that adds a relevant lower order hyperplane competitor to

guide a genetic search away from the global winner. The following is the list of the

MOPs investigated in this chapter:

1. MOP 1: T1 and T2 (T1T2)
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2. MOP 2: T3 and T4 (T3T4)

3. MOP 3: T2 and T5 (T2T5)

Note, do not get confused with MOP 1, 2 and 3 previously defined. Throughout

this chapter, MOP 1 refers to T1T2, MOP 2 refers to T3T4 and MOP 3 refers to

T2T5.
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Figure 36: These figures illustrate the fitness landscape for each function. Sub-
figure a illustrates deception problems T1 and T2, subfigure b illustrates deception
problems T3 and T4, and subfigure c illustrates deception problems T5 and T2

5.2.1 Interleaved Minimal Deceptive Problem (T1 & T2). The interleaved

minimal deceptive problems are designed to test an algorithm’s ability to discover

loosely linked bits by dividing the string into two halves and coupling one bit from

each half. Figure 37 illustrates how the bits are correlated. Bits having the same

pattern are rewarded, while alternating couplets are not. Additionally, Figure 36.a

illustrates the bit couplet fitness for T1 and T2.
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Figure 37: This figure illustrates bit linkage in an eight-bit solution. Notice that
every ith and ( `

2
+ i)th bit is linked such that i ≤ `

2
, `=length of string, and the 1st

bit is bit 1.
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5.2.2 Interleaved 5-bit trap function (T3 & T4). The interleaved 5-bit

trap function is devised to test an algorithm’s ability to find loose linkages having

non-consecutive bits. Bits in problems T3 and T4 both have correlated bits with

a distance of `
5

from one another. Figure 39 illustrates how the bits in groups of

five are coupled. Additionally, Figure 36.b graphically illustrates how the fitness

behavior varies according to the number of bits that are set in the described 5-bit

linkage pattern. Notice that T3 in Figure 36.b is similar to the classical deception

problem example illustrated in Figure 38.
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indicating which bits contribute to each term of the fitness summation.
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5.2.3 Interleaved 6-bit Bipolar Function (T5). The interleaved 6-bit Bipo-

lar function is constructed as a loose linkage problem having correlated bits in vari-

able placement in the string (see Figure 40). The first three bits and the last three

bits are correlated, then the 4th, 5th, 6th, (`− 4)th, (`− 5)th, and (`− 6)th and so on

until the middle 6 bits of the string are left. Graphically, the fitness function for T5

is illustrated in Figure 36.c.

5.3 Experiments

The experiment for all MOMGA-II MOPs were run simultaneously on the two

computational clusters (ASPEN and Polywells) listed in Table 13 in Chapter IV. The

MOMGA-IIa ran in serial on one computational cluster (TAHOE). The MOMGA-II

is given 30 to 50 experiments to solve the three MOPs while MOMGA-IIa is run

for ten experiments or less. The MOMGA-II is given more experimental loops in

an attempt to allow for it to find all Pareto front vectors for the larger deception

problems. Unfortunately, even with the extra experimental loops, MOMGA-II still

did not find all Pareto front vectors.

5.3.1 Resources. Table 13 in Chapter IV lists the resources used for these

experiments. Each MOMGA-II experiment took approximately one week to com-

plete including the time to process all data for presentation. Each MOMGA-IIa

experiment took approximately two days. This includes the time jobs sat idle in the
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Figure 40: This figure illustrates 6-bit bipolar linkage in an ` bit solution. The
bit string is broken in the middle to enhance the idea that string can be of any size
as long it is a multiple of 6.
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scheduler queue and the post mortem collection of data for analysis. NSGA-II and

mBOA run times were not found in previous publications [122].

Table 24: Summary of Era parameters settings for each experiment using
MOMGA-II(MOMGA-IIa)

Experiment Start ERA End ERA Runs CTs Inverse CTs Orthogonal CTs
MOP 1(30) 1 10(4) 30(3) 4(18) 0(18) 0(41)
MOP 1(60) 1 10(4) 30(9) 4(18) 0(18) 0(45)
MOP 1(90) 1 10(4) 30(10) 4(18) 0(14) 0(9)
MOP 1(120) 1 10(4) 30(10) 4(18) 0(14) 0(9)
MOP 2(30) 1 10(4) 30(10) 4(18) 0(18) 0(41)
MOP 2(60) 1 8(4) 50(10) 4(18) 0(18) 0(45)
MOP 2(90) 1 6(4) 50(10) 4(18) 0(18) 0(10)
MOP 2(120) 1 4(4) 30(8) 4(14) 0(14) 0(49)
MOP 3(30) 1 10(4) 10(1) 4(14) 0(14) 0(41)
MOP 3(60) 1 12(4) 10(1) 4(14) 0(14) 0(41)

5.3.2 Parameter Settings. The MOMGA-II(a) has many parameters for

proper program execution. BB sizes must be determined, elitism percentages, cut

probability, splice probability, mutate probability, population sizing variable, n a, era

generations, and BB filtering schedule. The program is run x times and Pareto front

members are collected from each solution set. Table 24 indicates the number of times

the program is run on each MOP. In some cases, the experiments were terminated

early if all Pareto front vectors were found. All MOMGA-II(a) experiments are

executed using a multiple objective fmGA. Unless otherwise specified, Tables 25
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Figure 41: This figure illustrates the Pareto front findings for the T1 versus T2
and T3 versus T4 experiment using a string length of 30, 60, 90, and 120 bits.
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Table 25: Summary of static parameters set for each experiment regardless of
MOP and problem size. MOMGA-II(MOMGA-IIa)

Static parameter settings for each MOP
Parameter Setting Parameter Setting
Maximization 1(n/a) Thresholding 0(n/a)
mGA(0)/fmGA(1) 1(n/a) Shuffle Number 2(2)

Tiebreaking 0(n/a)
Overflow 2.0(2.0) Reduced initial pop 0(n/a)
Elitism % 25(0) Extra pop members 0(n/a)
Prob cut 0.02(0.02) Stop criteria factor 1.00(n/a)
Prob splice 1.0(1.0) Partition file 0(n/a)
Prob mutation Plotting file 0(n/a)

allelic 0.0(n/a) Pop record file 0(n/a)
genic 0.0(n/a) Copies 5 1 1(n/a)

Inverse Template n/a(Y) CT Guesses n/a(1)

and 24 list all the parameters used for the experiments conducted in this chapter.

The n a values for the MOMGA-II can be found in [46] while n a values were set

to 500 for the MOMGA-IIa. Table 25 lists the constant parameter settings, while

Table 24 identifies parameters that were varied for each MOP. In the cases where the

programs were run for less than 30 times, this is because the MOMGA-II(a) found

the optimal Pareto front before each run completed.

BB size selection for these problems is tricky because the identification of the

length of one particular linkage (say five bits long) may not be enough to transform

solutions out of the search basis provided by the resident competitive templates.

This is prominent for MOMGA-II when solving the MOP 2 of size 90 where the

competitive templates used constrict the search into a space where the small BB

sizes cannot overcome the competitive template basis. Normally, a BB size can be

selected upon knowing the length of these linkages; however, in MOP 2, there are

multiple linkages of five bits long each magnifying the difficulty and requiring a larger

BB size to allow the MOMGA-II to find more PFtrue points. It should be noted that

when the BB sizes increase, population size is also increased, as well as run time for

the algorithm to complete. MOMGA-II’s limitation was found in MOP 2 with a size
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greater than or equal to 90. This limitation is overcome by MOMGA-IIa by using

specially chosen competitive templates for search after each BB generation.

5.3.3 Efficiency Finding Pareto-front points. Reduction of relative execu-

tion time for MOMGA-IIa is achieved by keeping the Pareto front points (including

duplicates) in memory. The MOMGA-IIa benefits from a creatively designed struc-

ture maintained as a dynamic linked list object which holds all Pareto front members.

Solutions evaluating to dominated vectors are deleted from the structure and from

memory including all duplicates for that particular point. As the program runs, the

Pareto front point listings can become long. This is a disadvantage; however, elitism

selection is O(PFknown) run time as all PF vectors, PFknown, are readily listed. In

addition to this enhancement, epsilon dominance, crowding techniques and domi-

nance linkage can be instantiated. The MOMGA-IIa also has the ability to trace

BB evolution. This enhanced feature comes at a cost in space (memory or disk) and

efficiency. All experiments in this chapter are run with an active trace feature to

allow for post mortem analysis of Pareto front point conception.

5.4 Results and Analysis

The MOMGA-IIa results are superior. In every case, the MOMGA-IIa has

either found more Pareto front vectors or more unique solutions than all other al-

gorithms tested on these three MOPs. As expected from the last investigation [46],

this investigation found MOP 2 to be the most difficult to solve. Difficulty comes in

the form of time to find all Pareto front members.

The following sections describe, in detail, the experiment results for each MOP.

Notice that the Pareto front for MOP 1 and MOP 2 is linear. This is due to the

linear slopes of the individual objective functions making up each of these MOPs.

It is also worth noting that each point on the MOP 1 and MOP 2 Pareto front may

have many unique strings (solutions) equating to that particular Pareto front point.
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Table 26: Summary of Results for all experiments. Included in this table are the
number of optimal Pareto front points, number of unique strings making up these
optimal points, and the number of points each algorithm (MOMGA-IIa (M-IIa),
MOMGA-II (M-II), mBOA, and NSGA-II) have found in each category.

MOP 1
T1 versus T2 - Sizes: (30/60/90/120)

Unique Strings: {(215/230/245/260)} Pareto front strings: (16/31/46/61)
Algorithm Unique Strings Found Pareto front pts found

30 60 90 120 30 60 90 120
M-IIa 32768 300776 57661 32876 16 31 46 61
M-II 596 21364 28 138 16 31 16 56
mBOA 224 591 16 46
NSGA-II 7 5 6 3

MOP 2
T3 versus T4 - Sizes: (30/60/90/120)

Unique strings: {(26/212/218/224)} Pareto front strings: (7/13/19/25)
Algorithm Unique Strings Found Pareto front pts found

30 60 90 120 30 60 90 120
M-IIa 64 565 1280 3594 7 13 19 25
M-II 32 98 54 31 7 12 6 14
mBOA 30 102 327 7 13 19
NSGA-II 0 1 0 0 1 0

MOP 3
T5 versus T2 - Sizes: (30/90)

Unique strings: (1/1) Pareto front strings: (1/1)
Algorithm Unique Strings Found Pareto front pts found

30 90 30 90
M-IIa 1 1 1 1
M-II 1 1 1 1
mBOA 1 1 1 1
NSGA-II 0 0 0 0

This phenomenon is illustrated in Table 26 where both the number of Pareto front

points and unique strings are listed.

5.4.1 T1 versus T2 (MOP 1). Figures 41a-d reflect the results of the

MOP 1 of sizes 30, 60, 90, and 120. Diamonds indicate the Pareto front vectors

found. Notice that these points are linear and discrete. For problem sizes 30, 60,

90, and 120, there are 16, 31, 46, and 61 total Pareto front points. Not only does
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MOMGA-IIa find the same or more true Pareto front points for MOP 1 than every

other algorithm tested, it also finds more unique strings making up each of these

Pareto front points. Table 26 numerically shows in bold that MOMGA-IIa is the

front runner in this experiment. In the problem size 30, the MOMGA-IIa has actually

found all unique strings corresponding to each of the 16 Pareto front vectors.

5.4.2 T3 versus T4 (MOP 2). Figures 41e-h illustrate the results of the

MOP 2 experiment. Similarly, diamonds indicate the Pareto front vectors found.

Notice that these points are linear and discrete. For the problem sizes 30, 60, 90,

and 120, there are 7, 13, 19, and 25 total Pareto front points in the entire search

space. Not only does MOMGA-IIa find the same or more true Pareto front points for

MOP 1 than every other algorithm tested, it also finds more unique strings making

up these Pareto front points. Specifically, MOMGA-IIa overcomes the problem size

issue and finds more Pareto front points than its predecessor, MOMGA-II. Table 26

numerically shows in bold that MOMGA-IIa is the front runner in this experiment.

In addition to finding all the Pareto front vectors for MOP 2 size 30, the MOMGA-IIa

finds all corresponding unique strings.

5.4.3 T5 versus T2 (MOP 3). No figures in this chapter reflect the result

of MOP 3 for it is rather uninteresting. See [46] for an example. There is only one

point on the Pareto front. All algorithms but the NSGA-II found the one and only

Pareto front point and the only unique string representing this PF vector.

5.4.4 Non-statistical Comparison. MOMGA-IIa results are excellent. The

MOMGA-IIa finds all Pareto front members in every MOP and at every size. Addi-

tionally, the MOMGA-IIa also finds more unique strings than any other algorithm

tested. Clearly, MOMGA-IIa outperforms MOMGA-II and is able to scale up to

solve larger deception problems by having a pool of better competitive templates.
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5.4.5 Statistically Comparing MOMGA-II versus MOMGA-IIa. For a sta-

tistical comparison between MOMGA-II and MOMGA-IIa, there must be some pa-

rameter consistency in order to have a somewhat fair comparison. These settings are

given in Appendix A in Tables A.9, A.10, A.11, A.12, A.13, and A.14 on page 272

corresponding to MOP 1:30, MOP 1:60, MOP 1:90, MOP 2:30, MOP 2:60, and MOP

2:90. Also, statistical results for the ten metrics (ER,GD,HR,ONVG,S,ONVGR,ME,R2,R3,ε)

used previously can be found in Figures 82, 83, 84, 85, 86, and 87 in Appendix B on

page 290:

Metric results using KWtest comparison between algorithms MOMGA-II and

MOMGA-IIa are listed in several following tables. The symbol, ∈, indicates that

groups (experimental runs) are the same and 6∈ indicates that the groups are different.

Upon an indication of different, 6∈, the researcher must go back to the visualization of

the statistical data to determine which is indeed better. Unless otherwise specified,

it is found that 6∈ indicates that the MOMGA-IIa performs better than MOMGA-II.

MOP 1, (30, 60, 90) (T1T2:30:60:90): The deception problem T1T2

was introduced earlier in this chapter. This particular MOP is a difficult test prob-

lem; however, it has certain qualities that make it easier to solve than T3T4. Evalu-

ated is the effectiveness and efficiency of the two MOEA: MOMGA-II and MOMGA-

IIa. The 30, 60, and 90 are evaluated. 30 experimental runs on each MOP are

accomplished, and the mean and standard deviations (error bars) are given in the

specified figures above.

Effectiveness: Visually, the statistical results for the T1T2:30 MOP look very

much the same. The KWtest for this MOP also concludes that both MOEA findings

are the same (see Table 27). The increase from size 30 to 60 changes the results a bit.

MOMGA-II findings begin to drop off and becoming degraded due to not finding

all the Pareto front points. The characteristics of the Pareto front make for metrics

like ER, GD, S, and ME rather useless. Once on the Pareto front, there is really no

progression; it becomes just a test of finding more points along that line. Therefore,
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Table 27: MOP 1 (T1T2:30) metric results using KWtest comparison between
algorithms MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups
(experimental runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈
F ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

Table 28: MOP 1 (T1T2:60) metric results using KWtest comparison between
algorithms MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups
(experimental runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈
F ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈

evaluation of these MOEAs should rely more heavily upon the other six metrics that

are not as deceived by this type of Pareto front. In the problem of size 60, the KWtest

reveals that the other size metrics do indicate a difference between algorithms (see

Table 28). It is concluded that MOEA effectiveness is different and in favor of the

MOMGA-IIa for MOP 1 of size 60. Finally, similar results can be found in Table 29

for MOP 1 of size 90. In fact, the visual comparisons really illustrate a huge difference

between these two algorithms for these larger sized deception problems. Next, the

efficiency of these problems is discussed.

Efficiency: Efficiency results for each size of this MOP can be found in Ta-

ble 30. It is apparent that the MOMGA-IIa is more efficient than the MOMGA-II

Table 29: MOP 1 (T1T2:90) metric results using KWtest comparison between
algorithms MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups
(experimental runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈
F ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈
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for MOP 1 size 30; however, this changes for size 60 and 90. With these larger

sized MOPs, the effectiveness cannot be ignored. For these larger sized MOPs, the

MOMGA-II does not completely solve the problem in the allotted time; thus, re-

ported is that for MOP 1 (60) the MOMGA-IIa is more efficient and for the MOP

1 (90) it is unknown which algorithm is more efficient. Listed in Table 31 are the

results stated. Next, all sizes of MOP 2 are discussed and conclusions are drawn.

Table 30: Summary of timing for MOEAs solving T1T2 and T3T4 MOPs
MOP MOMGA-II MOMGA-IIa KWtest

T1T2:30 617.48± 164.87 8.01± 4.79 6∈
T1T2:60 290.58± 0.75 286.90± 59.50 ∈
T1T2:90 584.94± 2.07 2386.53± 469.80 6∈
T3T4:30 655.43± 111.51 255.03± 463.09 6∈
T3T4:60 333.58± 3.05 2980.26± 3092.08 6∈
T3T4:90 741.78± 190.91 41047.72± 678.09 6∈

Table 31: Summary of Effectiveness and Efficiency results for the MOMGA-II
and MOMGA-IIa run on the T1T2/T3T4 MOPs identifying favorable metrics (ER,
GD, HR, ONVG, S,ONVGR, ME, R2, R3, and epsilon) indicating the difference in
MOEAs.

MOP Effectiveness Efficiency Favorable Metrics
T1T2:30 none IIa
T1T2:60 IIa IIa GD, HR, ONVG, ONVGR, R2,

R3, and ε
T1T2:90 IIa none GD, HR, ONVG, ONVGR, R2,

R3, and ε
T1T2:30 IIa IIa GD, HR, ONVG, ONVGR, R2,

R3, and ε
T1T2:60 IIa none GD, HR, ONVG, ONVGR, R2,

R3, and ε
T1T2:90 IIa none GD, HR, ONVG, ONVGR, R2,

R3, and ε

MOP 2, (30, 60, 90) (T3T4:30:60:90): The deception problem T3T4

is introduced earlier in this chapter. This particular MOP is the most difficult test

problem utilized. Evaluated is the effectiveness and efficiency of the two MOEA:

MOMGA-II and MOMGA-IIa. The 30, 60, and 90 are evaluated. 30 experimental
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Table 32: MOP 2 (T3T4:30:60:90) metric results using KWtest comparison be-
tween algorithms MOMGA-II and MOMGA-IIa. ∈ indicates that groups (experi-
mental runs) are the same and 6∈ indicates that the groups are different.

KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε
χ2 ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈
F ∈ 6∈ 6∈ 6∈ ∈ 6∈ ∈ 6∈ 6∈ 6∈

runs on each MOP are accomplished and the mean and standard deviations (error

bars) are given in the specified figures above.

Effectiveness: Visually, the statistical results for T3T4 of sizes 30, 60 and 90

are different. Starting with T3T4 size 30, there is enough of a difference to call the

effectiveness to be better for the MOMGA-IIa. This difference increasingly becomes

greater as the string size increases. The KWtest for all sizes for this MOP also

concludes that both MOEA findings are different (not from the same population).

Table 32 lists results for all T3T4 experiments. Characteristics of the T3T4 Pareto

front make metrics like ER, GD, S, and ME rather useless. Once on the Pareto front,

there is really no progression; it becomes just a test of finding more points along that

line. Therefore, evaluation of these MOEAs should rely more heavily upon the other

six metrics that are not as deceived by this type of Pareto front.

It is concluded that MOEA effectiveness is different and in favor of the MOMGA-

IIa for all sizes of MOP 2. In fact, the visual comparisons really illustrate a huge

difference between these two algorithms for these larger sized deception problems.

Next, the efficiency of these problems is discussed.

Efficiency: Efficiency results for each size of this MOP can be found in Ta-

ble 30. It is apparent that the MOMGA-IIa is more efficient than the MOMGA-II for

MOP 1 size 30; however, this changes for size 60 and 90. It is apparently that because

the MOMGA-II does not solve this MOP no matter the number of increased loops;

it is rather difficult to describe the efficiency for it to solve T3T4:60 and T3T4:90.

That being said, efficiency for T3T4:60 and T3T4:90 is not addressed; however, it
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can be said that after 50 experiments using the settings identified in Appendix A on

page 272, the MOMGA-II could not solve this problem. A suggestion is to either

increase the population size or BB search sizes.

Listed in Table 31 on page 183 are the results found by comparing the MOMGA-

II versus MOMGA-IIa. Next, conclusions are drawn and suggestions are made about

future work in this area.

5.5 Evolutionary Trace for BB Visualization

Interest in why these deception problems are difficult exists among MOEA

researchers. In addition, a long standing conjecture that larger BB are required to

find Pareto front points along the extremes of the front [245] is unproven. The new

innovative tracing visualization technique designed in this research can be consulted

for possible answers to these conjectures or inquiries by researchers.

T1T2: Two evolutionary traces for solving T1T2 of size 30 and 60 are

presented within Figures 42 and 43. Deduced by these graphics is that the phenotype

is linear and equally spaced. The genotype has patterns; however, it is nevertheless

not held to a small area. In fact, it looks well distributed. Finally, the BB sizes for

both T1T2:30 and T1T2:60 show a more dominant amount of smaller BBs used to

find solutions evaluating to PF vectors across the entire Pareto front, while larger

BBs are used to find solutions evaluating to PF vectors more centered along the

Pareto front.

The fact that the required BB sizes are evenly distributed along the Pareto

front illustrates how this problem is easier to solve than a deception problem like

T3T4 and mQAP. BB sizes arbitrarily distributed along the Pareto front indicate a

more difficult problem to solve because the problem has a larger variety of BBs sizes

making up the good BBs required. Next, a T3T4 evolutionary trace is discussed.

T3T4: Two evolutionary traces for solving T3T4 of size 30 and 60 are pre-

sented within Figures 44 and 45. It is shown again that the phenotype Pareto front
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Figure 42: Illustrated within this figures is genotypic, phenotypic and the associated BB sizes
found for each PFknown vector for T1T2 30. The lower figure represents tallies for the size of BBs
found for each PF vector. Pareto front vectors are ordered from the best function 2 to the best
function 1 and partially ordered along the PF Points axis of the plot. Notice that more solutions
evaluating to PF vectors found are within the middle of the Pareto front than on the extremes.
This is no coincidence – the number of solutions evaluating to PF vectors that can represent the
inner part of the Pareto front are greater than the extremes.

is linear and equally spaced. The genotype has patterns; however, it is nevertheless

not held to a small area. In fact, it looks well distributed. Finally, the BB sizes for
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Figure 43: Illustrated within this figures is genotypic, phenotypic and the associ-
ated BB sizes found for each PFknown vector for T1T2 60. The lower figure represents
tallies for the size of BBs found for each PF vector. Pareto front vectors are ordered
from the best function 2 to the best function 1 and partially ordered along the PF
Points axis of the plot. Notice that more solutions evaluating to Pareto front vectors
within the middle of the Pareto front than on the extremes. This is no coincidence
– the number of solutions evaluating to PF vectors can represent the inner part of
the Pareto front are greater than the extremes. Notice that number of middle sized
BBs3 increase from T1T2 30 to T1T2 60.

both T3T4:30 and T3T4:60 show a variety of BBs sizes required to find solutions

that evaluate to PF vectors across the entire Pareto front. In fact, there seems to be

an area where the required BBs are longer. It is near the function 2 extremes where
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the longer BBs are required to find duplicates on the Pareto front. This is different

than T1T2, where the found BB sizes are more uniform along the Pareto front.
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Figure 44: Illustrated within this figures is genotypic, phenotypic and the associ-
ated BB sizes found for each PFknown vector for T3T4 30. The lower figure represents
tallies for the size of BBs found for each PF vector. Pareto front vectors are ordered
from the best function 2 to the best function 1 and partially ordered along the PF
Points axis of the plot. Notice that more solutions evaluating to PF vectors are
found to be within the middle of the Pareto front than on the extremes. This is
no coincidence – the number of solutions evaluating to PF vectors representing the
inner part of the Pareto front are greater than the extremes. For an example of how
the PF vectors are partially ordered along the PF Points axis on the lower plot see
Figures 104 and 105 on pages 322 and 323 respectfully.

The evolutionary trace reveals why the T3T4 is more difficult a problem, re-

quiring variable sizes of BBs in various places along the Pareto front. It is apparent
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Figure 45: Illustrated within this figures is genotypic, phenotypic and the associ-
ated BB sizes found for each PFknown vector for T3T4 60. The lower figure represents
tallies for the size of BBs found for each PF vector. Pareto front vectors are ordered
from the best function 2 to the best function 1 and partially ordered along the PF
Points axis of the plot. Notice that more solutions evaluating to PF vectors are
found within the middle of the Pareto front than on the ends. This is no coincidence
– the number of solutions evaluating to PF vectors that represent the inner part of
the Pareto front are greater than the extremes. Notice that number of middle sized
BBs are increased from T3T4 30 to T3T4 60.

that in this particular type of problem, the MOMGA-II has difficulty in finding the

correct BBs to solve the problem. It is believed that having multiple competitive

templates allows for the MOMGA-IIa to overcome this limitation.
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5.6 Summary

In conclusion, this experiment illustrates an explicit BB genetic algorithm’s

ability to solve deception problems. MOMGA-IIa’s capabilities to explicitly find

and use good multiobjective BBs (MOBBs) is illustrated. MOMGA-IIa can find

the loosely linked bits in deceptive problems using its manipulation of BBs and

has been shown to scale when multiple good competitive templates are selected. The

MOMGA-IIa implicitly solves problems by identifying good MOBBs when iteratively

selecting good competitive templates that partition both the geno- and pheno-type

domains. Important aspects of this algorithm are the BB size, BB schedule and

competitive template numbers (regular, inverse, and orthogonal). An important

conjecture learned from this experimentation is the fact that, as the search space

increases, it is important to increase the number of competitive templates - thus

limiting the largest required BB size and ultimately limiting the population size

generated by the MOMGA-IIa.
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VI. Application: Protein Structure Prediction

This chapter discusses the analysis of replacing a highly computational fitness func-

tion with a neural network. The applied algorithm is MOMGA-IIa and the highly

computational fitness function to replace is the energy calculation used in solving

the Protein Structure Prediction problem (PSP) which is a Grand Challenge prob-

lem [35,138]. Previous studies have shown the PSP’s fitness function to be a major

hindrance in finding good solutions, forcing the development of creative parallel

computing programs (including an MOfmGA) [41]. Solving this problem involves

finding a methodology that consistently and correctly determines the geometrical

conformation of any fully folded protein without regard to the folding process. How-

ever, one must study the entire complexity of the problem to admire this Gor-

dian knot1. For details of this problem and the definition of the fitness function

see [18,50–53,65,82,83,115–119,156,158–160,164,165].

In addition to the neural network fitness function emulation, it is also interest-

ing to see how well a BBB, like MOMGA-IIa, solves this particular problem in single

and multiobjective mode operation. Finally, a BB size study is completed on the

multiobjective case study and efficiency gains are compared with parallel farming

model findings.

6.1 Protein Structure Predication (PSP) problem

Protein structure prediction has been previously addressed using various com-

puter modeling methods. For example, Chemistry at HARvard Molecular mechanics

(CHARMm) version 22 has been used at the Air Force Institute of Technology to

model protein potential energy when searching for good protein structures. Apply-

ing CHARMm is computationally expensive; therefore, an alternative to CHARMm

1A knot tied by Gordius, king of Phrygia, held to be capable of being untied only by the future
ruler of Asia, and cut by Alexander the Great with his sword [72]
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is needed to expedite search results. In this chapter, results of modeling CHARMm

with a multilayered perceptron neural network conclude that this is a viable speedup

tool, but effectiveness must be more carefully addressed. In building a neural net-

work to emulate the CHARMm, many parameter settings are studied. One such

parameter is the number of generations to train the neural network. Under and over

training of the neural network using test data is a concern. In this study, special

attention has been paid to the training of the neural network. Finally, the accuracy

with which a neural network can mimic CHARMm and the time savings realized

when using a neural network in place of CHARMm (effectiveness and efficiency) are

investigated.

6.2 Force Field Approximation Using Artificial Neural Networks

Protein modeling is a major problem in bioinformatics studies. In this chapter,

the focus is on reducing the computation time spent evaluating a protein’s potential

energy given a particular conformation. The idea is not to entirely replace the

potential energy function with a neural network. The neural network is to work

as a fast search parser. It is to identify good conformations quickly - steering the

genetic algorithm through massive numbers of solutions while identifying a small

subset of these for further analysis using the more computationally expensive, yet

more accurate, fitness function.

The Air Force Institute of Technology (AFIT) has had interest in protein struc-

ture prediction since 1990. AFIT began by designing a protein potential energy

function. AFIT’s protein energy evaluation software is based on the Chemistry at

HARvard Molecular mechanics (CHARMm) version 22 [17, 19]. To evaluate a pro-

tein’s potential energy, the program requires that the protein be specified by dihedral

angles. A dihedral angle is the angle formed by four atoms connected in a chain-like

manner. The dihedral angle itself is developed when the two planes (formed by the
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first three and last three atoms in the chain) make an angle. Figure 46 illustrates a

dihedral angle. This particular dihedral angle is called ψ angle.
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Ni+1 

Dihedral 
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Figure 46: This figure illustrates the ψ angle in a small section of backbone atoms
within a protein. This angle representation is the same at each C-N-Cα-C instance in
any protein. To uniquely identify angles having the same symbol, angles are indexed
according to how many times they appear in a particular protein. This method
ensures that every angle is uniquely specified.

The entire process for specifying a protein is more involved than just identifying

dihedral angles of a protein. Assumptions and domain information are also included

in the specification process to make the search space more reasonable [41]. After the

protein is specified with dihedral angles, each atom is locatable in a three-dimensional

space allowing for a potential energy program, like CHARMm, to calculate energy

between each atom. It takes approximately 6.8ms to calculate the potential energy

for a single conformation on an Intel PIII 800Mhz machine. It would take more than

a lifetime for us to expect to find the absolute lowest energy conformation for even

a tiny protein (by calculating the energy for each conformation after discretizing all

angles to 1024 bit degrees [41]). The protein used in this study is the Met-Enkephalin

(MET). The fully specified MET has 24 adjustable dihedral angles. For each set of

values for these 24 input angles, there is an associated potential energy value. As a

graphical example of the energy calculation - the following is given:

• Energy Calculation

Figure 47 illustrates numerous positions bonded atoms might have in a protein.
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In addition, it plots how these configurations influence the potential energy

calculation. The balls represent atoms and graphed curved lines (on the right

of each position) identifying the interacting variable affecting the potential

energy for that conformation. Each of these conformations occurs between

each bonded atom within a protein. Each of these six functions make up the

energy function used to calculate the fitness of a particular conformation.

 

Figure 47: Graphical description of energy functions and how they are translated
from physical atom-bond relationships to Potential Energy Functions.

First, other approximations methods are described. Then, the PSP fitness

function is described. Following the PSP fitness function and other PSP type energy

function descriptions, Section 6.5 on page 200 explains how the neural network in-

put data is generated using the MOMGA-IIa in single objective mode. Section 6.6

on page 203 then describes the experiments conducted in finding the best parame-

ter setting for the Multilayered Perceptron Neural Network (MLPNN) and Radial
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Basis Function Neural Network (RBFNN). Results and analysis of using an ANN

to replace CHARMM are then discussed. The chapter then discusses a single and

multiobjective experiment using the MOMGA-IIa to analysis the problems BB sizes

and results are related to other methods used within the field. Finally, conclusions

are then drawn based on results.

6.3 Other Approximation Methods

Within this chapter, an artificial neural network is selected to replace the highly

computational CHARMm fitness function used for solving the PSP problem. There

are other mathematical models which can be used to approximate the relationship

between a set of inputs (independent variables) and outputs (responses or evaluation

resultants). These models can be called behavior models in some instances; however,

their main purpose is not just to mimic behavior but to reduce the evaluation time

for the exact computation (by a factor of 2-10). A few of these other approximation

models are the following: response surface models, Kriging model, and variable

complexity modeling [70].

Response Surface Models: This model approximates using simple algebraic

functions (lower order polynomials). This model is effective for linear, quadratic,

cubic, and quartic type fitness functions. Chaotic fitness landscapes cannot benefit

from this approximation model because the maximum order model is quartic (4th).

Furthermore, the data points (response) are not guaranteed to be on the response

surface. Closeness of the response relies heavily on the regression technique used in

matching the input/output data with the model. [70]

Kriging model: The Kriging model attempts to account for a global and local

response. The model’s mathematical form is y(x) = f(x) + Z(x) where f(x) is a

function representing a global response of the design space and Z(x) is a function that

represents the localized response of the design space at that particular global location.

Creation of an accurate Kriging model can be computationally expensive. [70]
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Variable complexity model: A variable complexity model has different fidelity

code: high and low. The low fidelity code is less accurate, but has a shorter run time

and the higher fidelity code is more accurate but has a higher run time. The high

fidelity code might even be the exact code or function. This actually might work

with the PSP problem because some of the fitness functions can be easily removed

from the function call. However, this model was not used because some research

already had been accomplished using this type of approximation model by Steven

Michaud in 2000 [163]. [70]

6.4 Evolutionary Computation (EC) techniques applied to PSP problem

In 1991, AFIT launched an effort to solve the PSP problem using EC tech-

niques. The first EC techniques applied were the simple GA (sGA) and messy GA

(mGA) [154]. Later, binary and real valued hybrid GAs were tested. Next, Linkage

learning and Immunological Computation algorithms were used. Finally, the fmGA

and generic Multiobjective fmGA(MOfmGA) were found to be better than the other

GAs at finding good protein conformations [41]. In addition to applying these differ-

ent EC techniques to solving this problem, most techniques were also implemented in

serial, parallel, single and multiobjective. This effort uses the MOMGA-IIa in single

objective mode. In Chapter III on page 71, a detailed description of MOMGA-IIa is

given.

Search algorithms rely solely upon the ability to be able recognize good solu-

tions. For the PSP problem, this recognition comes in the form of a fitness model,

energy function or fitness function. A solution’s objective values found to be non-

dominated by one model/function may be found to be weaker by others. This is why

it is extremely important to have the most suitable fitness function or model for the

problem. This suitability is particularly difficult to achieve for the PSP problem.

Many factors are involved in choosing a suitable energy function. Potential en-

ergy [120], quantum mechanical energy, chemistry of the protein [6, 86, 87, 192, 224],
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empirical force fields energy, energy surface with the largest statistical weight [86]

and entropy [169] are just a few of the fitness function ingredients that may be used.

Essentially, the selected CHARMm energy function, Ei, sums the internal

terms or bonded atom energy and external terms or non-bonded atom energy of

a particular protein in a specific conformation.

Etotal =
∑

(i,j)(connect)

E(bonded) +
∑

(i,j,h,...,g)(!connect)

E(non− bonded) (62)

Bonded energy is the sum of bond stretching, bond rotation, bond bending, improper

torsion and hydrogen bonding energy reduction between each connected or bonded

atom.

Estretching =
∑

(i,i+1)

Kb(b− b0)
2 (63)

where Kb is the force constant determining the strength of the bond, b is the actual

bond length and b0 is the ideal bond length. The bending energy is similar to that

of the stretching energy where Kθ is the force constant, θ is the actual measured

angle, and θ0 is the ideal angle. This is primarily a penalty function and represented

in Equation 64.

Ebending =
∑

angles(i,j,h)

Kθ(θ − θ0)
2 (64)

The third term in the bonded energy calculation representing a reduction in the Van

Der Waals term for the interaction between the hydrogen atom and the acceptor

atom is Equation 65 [20] .

Ehydrogen =
∑

i

(
A′

ri
AD

− B′

ri
AD

)
cosN (θA−H−D) ∗ cosN (θAA−A−H) (65)

The fourth term in the bonded energy calculation representing the torsion angle po-

tential function which models the presence of steric barriers between atoms separated
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by three covalent bonds (1,4 pairs) is shown in Equation 66.

Etorsion =
∑

(i,j,h)∈D

Kθ(1− cos(gφ)) (66)

EImproper−torsion =
∑

ω

Kω(ω − ω0)
2 (67)

Equations 63, 64, 65, 67 and 66 make up the energy for bonded atoms:

Ebonded = Etorsion + Ebending + Ehydrogen + Estretching + EImproper−torsion (68)

The final terms for the calculation of energy are the non-bonded related terms,

electrostatics, water-water interaction and Van-Der-Waals. These terms may be

combined into the following sum:

Elennard−jones =
∑

(i,j)∈N

[(
Aij

rij

)12

−
(

Bij

rij

)6
]

(69)

Constants A and B are interaction energy using atom-type properties. D is the

effective dielectric function for the medium and r is the distance between two atoms

having charges qi and qk.

Eelectrostatics =
∑

(i,j)∈N
[

qiqj

Drij

]
(70)

Ewater−water1 =
∑

i Ki(ri − ri0)
2 (71)

Ewater−water2 =
∑

i Ki(θi − θi0)
2 (72)

Contributions of water-water constraints of distance and dihedral angles are shown

in Equations 71 and 72, respectively. Furthermore, the entire contribution of non-

bonded energy is given by equation 73.

Enon−bonded = Elennard−jones + Eelectrostatics + Ewater−water1 + Ewater−water2 (73)
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The CHARMm energy function is computationally expensive. For example, the

search landscape with this model for the polypeptide [Met]-Enkephalin has been

experimentally generated using parallel random search [163] over an immense number

of dihedral angles. In this case, the PSP landscape structure is an extremely dense

set of points at relatively high energy levels over a wide energy band versus the

range of possible dihedral angles. Few points are close to the minimized energy

levels. These points are reflected at the bottom of narrow phenotype energy wells

with cascading sides. These optimal points are difficult to find even with integrated

local search techniques.

Within Table 33, a comparison of CHARMm, AFIT CHARMm, Amber, ECEPP,

and Optimized Potentials for Liquid Simulations (OPLS) is illustrated. Notice

that CHARMm covers each one of the possible energy equations; however, AFIT’s

CHARMm has reduced this function due to the insignificance of these other forces.

AFIT’s version of CHARMm was used in our investigations because it has been

found to be a valid model [147].

In addition to these energy models many other models, have been used in

other studies. The Random Energy Model (REM) was applied to the PSP problem

by Bryngelson and Wolynes [22]. This energy model was originally used in spin glass

theory [67]. Other such fitness function models have been applied to the PSP prob-

lem using enthalpy [169], conformational entropy, hydrophobic/hydrophilic [184],

and distance matrix models employing Frobenius norm of differences, Hoeffding in-

equality keeping corrected distances for fitness function terms [184], and ring closure

on local conformations [87]. Moreover, all these models have the same theme in

trying to define the properties a protein has when folded. Currently, there is no

single model that has prevailed and thus, the search for the perfect energy model

continues.
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Table 33: Comparison of common energy functions used in solving the PSP prob-
lem.

Eq# −→ 63 64 66 67 69 70 65 71 72
Acronym Name
CHARMm Chemistry at X X X X X X X X X

Harvard using
Molecular
Mechanics

CHARMm at X X X X X X
AFIT [64,120,190]
Amber Assisted Model X X X X X X

Building with
Energy Refinement

ECEPP/3 Empirical X X X X
Conformational
Energy Program
for Peptides

OPLS Optimized X X X
Potentials for
Liquid Sim.

6.5 Generating Data

It is important to have a balanced set of good and bad solutions to train the

neural network in hopes of getting a system to approximate the energy function

well. Unfortunately, ensuring that a researcher has a group of data representative of

both good and bad solutions is challenging because the PSP problem has a sparse

distribution of good conformations in the search space. So, the use of the MOMGA-

IIa is required to allow for a fast accumulation of good solutions. If a random set

were taken, the data set might have one good solution for every 100, 000 solutions

evaluated.

The first data set is formed by letting MOMGA-IIa generate conformations

(protein structures) for evaluation. After evaluation of each conformation, the angles

and associated energy values are written (24 angles plus the fitness value calculated

by CHARMm) to a file. As expected, this data set is not a realistic representation of
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the entire data set because the MOMGA-IIa finds good solutions and discards bad

ones. Figure 48 illustrates a histogram of the records found using the GA.
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Figure 48: Data records generated by the genetic algorithm and then categorized
by fitness value. The highest frequency of records is reportedly near or at zero.
Because the fitness function is a minimization function, this figure is illustrating
how MOMGA-IIa only acquires and populates itself with good solutions.

In order to get a better representation of the record set, the GA is allowed only

to randomly evaluate conformations. This resulted in a realistic data set, having

mostly bad solutions. Figure 49 illustrates the energy distribution of data records.

At this point, there is a record set larger than what Matlab can load into memory.

Over 43,000 data records are from the MOMGA-IIa produced data set and over

4,000,000 were from the random selection data set.

After gathering the training and test data, it is important to select useful data

in training and testing possible neural network configurations. Several preliminary

classification tests using a RBFNN were run on randomly selected data records from
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Figure 49: Data records generated randomly and then categorized by fitness value.
The highest frequency of records is reportedly near or higher than 5 × 109. This
illustrates what the actual search space is like.

each set yielding extremely bad mean squared error results (+50). In order to work

toward having a system with a suitable mean squared error, it was then determined

that this experiment should concentrate on data records that are localized to a

certain angular area (protein structure wise). Therefore, records closest to the root

mean squared difference from the average dihedral angle values should be ranked and

the top 1, 000 records were selected. In addition, the top 200 records were used for

parameter determination to reduce run time during experimentation. See Figure 50

for an illustration of the fitness distribution of these 200 selected records.

Finally, the data is normalized to zero mean unit variance. This included

normalizing the output data. Originally, the log base 10 of the output data was

taken to keep the variance of the energy values from making the normalized output

202



−1 0 1 2 3 4 5 6

x 10
5

0

20

40

60

80

100

120

140
Distribution of the fitness for 200 GOLD PLATED data records produced by the GA

Fitness Bins

F
re

q
u

e
n

c
y

Figure 50: 200 Data records categorized by fitness value. The highest frequency
of records is reportedly near or higher than 5× 109. This illustrates the distribution
of our working data set.

data small; however, after taking only records from the GA produced output, this

was not necessary. Therefore, the output data was also normalized to zero mean and

unit variance without first taking the log base 10 before normalization.

6.6 Experimentation

Two neural networks are studied to replace the potential energy program. The

goal is to gain efficiency and maintain a system that has 99% correct classification.

The first neural network is a Radial Basis Function Neural Network (RBFNN) and

the second is a Multilayered Perceptron Neural Network (MLPNN). Both networks

have 24 inputs to 1 output. In the case of the MLPNN, many experiments were run

to select the best parameters for optimized results. According to [14], an attempt
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to get an estimate for the number of neurons required for 99% effectiveness can be

made.

Nmin
∼= W

ε
=

24 ∗Neurons + Neurons + 1

0.01
(74)

Equation 74 is the relationship between the total number of weights (W ),

the number of data records (Nmin), and the fraction of correctly classified fitness

values (1− ε) [14]. This equation is mainly for discrete output values or categorized

outputs; therefore, it can only be applied loosely to this problem. When applying the

equation to this experiment having 1, 000 data records coupled with a 99% correct

classification requirement, this conclusion is that each neural network should have

only one neuron. Being that this number neurons is not realistic to use in a neural

network, it is decided to used 3, 4, 10 and 100 neurons in each network for this

experiment. Using Equation 74, the theoretical fraction of correctly classified fitness

values to be 90, 88, 74, and 0 percent ,respectively, can be calculated.

6.7 Parameter Determination

Results of testing for the best training parameter can be found in Figure 51

on page 205. Training parameter traingdx is selected as training method for these

data records. Illustrated in Figure 51 on page 205 is the best half of the parameters

– containing the results of parameters (a-f).

The results of the experiment showed that both the hyperbolic tangent sigmoid

transfer function (tansig) and Log-sigmoid transfer function (logsig) were both good

choices for this data set; however, tansig was the overall better choice having a lower

means squared error and variance.
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trainrp  Resilient backpropagation      0.953 / 0.058935 / 0.001073
trainbr  Bayesian regularization        1.1876 / 0.081182 / 0.00046369
trainlm  Levenberg−Marquardt            2.0033 / 0.10284 / 0.0095378
traingd  Basic gradient descent         2.9947 / 0.17434 / 0.014519
traingdm Gradient descent with momentum 3.1115 / 0.1847 / 0.014365
traingdx Adaptive learning rate         0.56894 / 0.034901 / 0.00040238

Figure 51: Experiments testing the training parameter for 200 data records and
500 epochs. The x-axis is the record number left out in the leave one out, train,
test-routine.

6.8 Approximating the Force Field Function with ANN

This section primarily discusses the force field function being approximated

with an ANN. Advantages and disadvantages are covered, as well as the description

of analyzing what kind of ANN to choose for application.

6.8.1 Training Generations for a MLPNN. There are many benefits to

using multilayered ANNs in emulating a high run time fitness function. First, multi-

layered ANNs have nonlinearity problem solving capabilities. The artificial neurons

can be programmed to be either linear or nonlinear depending on what type of prob-

lem is being solved. In some cases, one can have a mixture of neuron types. Secondly,

multilayered ANNs have a popular paradigm of learning, called supervised learning,

where a training set teaches the multilayered ANN by modifying the synaptic weights
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making up the connections of the neural network. A third advantage to using neural

networks is adaptability and their ability to cope well with noisy data. multilay-

ered ANNs, by design, have a built-in capability to adapt their synaptic weights to

changes. Finally, multilayered ANN have an ability to respond quickly (fast calcu-

lation) to a changing environment. Studies on systems producing high amounts of

data quickly show that a neural network can process this data in a timely manner –

keeping up with the high influx of data. One example of this is studies on commu-

nication network congestion control that found the structure of a neural network is

such that it can calculate (base on inputs) quickly and determine an operating mode

or classify the pattern just as fast. [29, 180]

Drawbacks for using NNs come in the form of training the network and deter-

mination of the size and type of the network to use. Fortunately, studies have been

accomplished where estimates are derived of how many neurons should be used in

a neural network. These estimates are dependant on the required accuracy of the

network, restricted to two layer networks, and are normally designed to work for a

particular type of problem (usually integer based) [14]. Unfortunately, determining

the right amount of training is still required for the best results. Over-training, or

over-fitting, a NN is just a harmful as under-training. Figure 120 on page 427 illus-

trates an example of what happens when a researcher over-trains a NN. People in the

pattern classification field using NNs stop the training when a validation set reaches

its first minimum [69]. Finally, the data used to train the NN must be somewhat

accurate. It is true that a NN works well with noisy data; however, if the data set

used to train the NN is not even close to the actual pattern sought to imitate, then

the trained NN is ill-trained and is not expected to perform well.

In this section, tests are conducted with a three layered MLPNN. The first two

layers have 25 neurons each and the third layer has a single linear neuron. According

to the results listed in Table 87 on page 424, selection of the number of generations

to train the two-layered 25-neuron neural network should be between 300 to 500
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generations. Notice that the table is not completely filled with values. These test

results have not completed or need to be tested further to pin-point the best number

of generations to train the network.

6.8.2 Results and Analysis. A successful analysis of any added feature

solving a problem must include both a comparison between effectiveness (indicating

that the new algorithm now has either better precision or accuracy) and efficiency

(indicating that the new algorithm now completes sooner than it did before). Mech-

anisms that excel under both criteria are a positive change and should be adopted.

The following sections evaluate how the neural network fairs in both the effectiveness

and efficiency categories when replacing the CHARMm energy fitness function in the

MOMGA-IIa. It should be noted again that the plan was not to replace CHARMm

completely, for the algorithm must still use CHARMm to search in areas identified

by the neural network as having possible good conformations. In addition, in some

cases it may be acceptable to accept a lower effectiveness from the neural network

in order to speed up the search process.

Effectiveness: The first experiment discussed is for the RBFNN implementa-

tion. The RBFNN software tuned the ANN for the user [66] automatically, making

parameter selection null and void. The RBFNN found the best effectiveness results

overall with a mean squared error of 0.54. See Table 34 on page 207 for the summary

of results. Notice also that the RBFNN has the lowest variance.

Table 34: Summary of Effectiveness results
Neurons Training Transform MSE MEAN (µ) Var (σ)

25 RBF RBF 0.54 0.0171 0.000001
3 traingdx tansig 2.10 0.0461 0.0228
3 trainrp tansig 10.16 0.0699 0.0984
4 trainrp tansig 10.27 0.0559 0.1024
10 trainrp tansig 5.01 0.0074 0.0251
100 trainrp tansig 1.84 0.0102 0.0033
100 traingdx tansig 1.52 0.0396 0.0007
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(a) Results of the MLPNN using (b) Results of the MLPNN using
3 neurons. 10 neurons.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
1000 specially selected pts (100 neurons).  absolute value of MSE = 1.8413  mean = 0.010246  variance = 0.0032886

Record Left out

D
if
fe

re
n
c
e
 b

e
tw

e
e
n
 k

n
o
w

n
 a

n
d
 n

e
u
ra

l 
n
e
tw

o
rk

 v
a
lu

e

Quadratic polynomial fit of error

(c) Results of the MLPNN using 100 neurons.

Figure 52: Results of the Multi Layered Perceptron Neural Network using 3, 10,
and 100 neurons, 2000 training generations, and 1000 “gold plated” data points.
Figures a and b illustrate the use of a low number of neurons in the neural network
and also results in a high mean squared error. Figure c illustrates the results of a
neural network having 100 neurons and a lower (approximately 1.8) mean squared
error. Notice the larger data set (1000) utilized in this experiment and the larger
number of training generations (2000). This experiment illustrates a more realistic
experiment than the earlier ones having only 200 data records.

It is also prudent to test the validity of Equation 74 on page 204 from [14].

Therefore, several ANN having different ranges of neurons are tested to find the

best configuration and check the neuron formula for accuracy. Figures 52.a, 52.b,

and 52.c each have 3, 10 and 100 neurons respectively. The four-neurons graph is

not shown because it is similar to the three-neurons graph. Each also trained the

network using 1,000 gold plated data records, 500 epochs, hyperbolic tangent sigmoid

transfer function and used a resilient training parameter. It is interesting that in
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Figure 53: Results of the Multi Layered Perceptron Neural Network using 3 and
100 neurons, trangdx, tansig, 2000 epochs, and 1000 good points.
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Figure 54: Run time after 20 evaluations using each configuration in Table 35.

Figure 52.c, it shows that the neural network having 100 neurons outperforms the

three neuron case contradicting Equation 74. Results from each of these experiments

can be found in Table 34 on page 207.
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Figure 55: Least squares line fit to the data points showing the increase in time
as the number of neurons are added.

The final MLPNN experiment tested an aggregate configuration of validated

parameter settings found in previous experiments. Figure 53.a illustrates the results

of this experiment. While it was able to perform better than previous tests, it failed

to outperform RBFNN. One final test was conducted to compare MLPNN using 100

neurons with RBFNN; even in this configuration MLPNN was unable to outperform

RBFNN. Figure 53.b illustrates results of such a test.

Table 35: Average time for evaluations on PIII 800Mhz (Efficiency results)
Application msec

CHARMm 6.211
1 Layer 3 Neurons 0.007
1 Layer 4 Neurons 0.008
1 Layer 10 Neurons 0.012
1 Layer 100 Neurons 0.068
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Efficiency: Efficiency measurements were taken from run times of the original

MOMGA-IIa using the CHARMm code versus a mach-up neural network code in

place of the CHARMm function. Table 35 on page 210 summarizes the results.

The neural networks have been shown to provide an increase in efficiency over the

CHARMm code. Figure 54 on page 209 graphically illustrates this speedup. Notice

the 25 neuron RBFNN is not listed. It can be approximated to take 0.021ms, which

is easily more efficient than the CHARMm code and better than speedup found using

a parallel farming model [53]. Additionally, Figure 55 on page 210 is provided to

illustrate the increase in calculation time spent as the number of neurons is added

to the neural network.

6.9 ANN Study Summary

The results of this experiment are inconclusive in that a suitable approximation

to the CHARMm fitness function may have been found; however, more testing needs

to be completed to ensure that the difference between outputs of the neural network

is acceptable compared to the CHARMm. Large differences in the approximation

function may mislead an EA into areas of the search space that do not have good

solutions; therefore, effectiveness must be accurate. Future testing needs to show

that the neural network can identify areas in the search space where, once evaluated,

good protein conformations are confirmed by empirical methods.

6.10 Single and multiobjective PSP experimentation

An interesting case study of solving the PSP problem with a fmGA and

MOfmGA can be found in [41]. Interesting enough, there is also a study of what

sized BBs are required to find the best solutions; however, this study is done by

varying the important cut BB size within the algorithm – it is not a direct study of

what sized BBs make up these good solutions (which consequently is done for the
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first time in this PhD thesis). The following two sections describe the single and

multiobjective results found solving these problems using MOMGA-IIa.

Single objective experiments are consistent with previous findings using a

fmGA [41]. This is without using any additional features for seeding the population

with good individuals or limiting the range of variables by implementing a feasibility

or range mapping for each dihedral angle. Thus, the single objective implementation

of MOMGA-IIa is similar to running just the fmGA with no frills.

The multiobjective experiment is feature experiment in this section. The fit-

ness function is decomposed into two meaningful subsets: Physics (Objective 1)

and Chemistry (Objective 2). The Physics subset represents the non-bonded en-

ergy functions of the CHARMm fitness model. This objective targets the coulomb

interactions and steric anatomy of the protein are kept correct. Additionally, it

can be understood that objective 1 focuses on keeping good topology of the pro-

tein. Whereas, the Chemistry subset represents the bonded energy functions of the

CHARMm fitness model due to the fixed model characteristics. This objective helps

keep the classical description of Chemistry for a protein correct. Moreover, dihedral

angle, bond lengths, and bond angle energies are optimized with this objective. For

a complete breakdown of the objective functions into energy functions see [41].

6.10.1 Evolutionary Trace for BB Visualization. One important result

to dissolving the fitness function into a MOP is that it allows for an evolutionary

trace to be performed for BB visualization and insight to needed BB sizes for finding

Pareto front vectors.

Met-Enkephalin:

The first evolutionary trace is accomplished on the Met-Enkephalin protein.

Figure 56 presents these results. One detail to notice is that genotype only presents

visualization for 150 bits of data. This is due to the limitation of Matlab’s binary to

decimal function requiring less than 53 bits for evaluation. The graphic illustrates
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that there are regions on the Pareto front requiring similar BB sizes. It is also

important to note that the Pareto front point closest to the corner of the Pareto

front requires a large BB, this particular position on the Pareto front point must

represent an edge where slight changes in the genotype cause significant changes in

the phenotype. Finally, BB sizes between 80 and 200 are absent indicating that

either extremely large BB sizes or BB sizes less than 80 are required to find good

solutions to this MOP.

Polyalanine14:

The second BB visualization is for the Polyalanine14 protein. Figure 57 rep-

resents the results of this evolutionary trace and BB size analysis. Results for this

particular protein are similar to the MET-Enkephalin BB size graph in that there

are patches or regions along the Pareto front that require larger BB sizes. In ad-

dition, points found close to the corner of the Pareto front require these large BB

sizes indicating this edge referred to above. Again, there seems to be a lack of BB

sizes between 100 and 500. This could be an indicator that BB sizes for this MOP

are either very large or less than 1
5

of a full chromosome length.

Previous BB size experiment for Polyalanine14:

Previous experiments attempting to find the best BB sizes for a particular

protein are presented in Figure 58 on page 216 [41]. BB sizes of 30-32 yielded the

best results for POLY. Although this BB size is specific for POLY, it should apply to

other proteins having an alpha helix structure. Additionally, BB size 30-32 yielded

the best overall fitness value found during all of the BB testing of -140 kcal, which

is in the neighborhood of the accepted CHARMm fitness for this protein.

These previous results are not different than the experiments conducted be-

cause BB sizes larger than 40 were not tested in the past experiments. Furthermore,

if previous experiments were to increase the BB size to the sizes found by the method

purposed, the computation time would be costly. In fact, those researchers may be

213



Figure 56: Illustrated within this figure is genotypic, phenotypic and the associated
BB sizes found for each PFknown solution for MET as an MOP. The lower figure
represents tallies for the size of BBs found for each solution. Pareto front vectors are
ordered from the best function 2 to the best function 1 and partially ordered along
the PF Points axis of the plot. These are interesting results because BB sizes are
variable throughout the Pareto front with areas concentrated with larger BB size
requirements.

still waiting on the results of experiments having larger BB sizes because the popu-

lation size for the fmGA would increase exponentially when the BB size is increased

- as previously discussed in Chapter III on page 71. However, if BB sizes larger than

100 are used, it is quite possible the results would indicate a lower BB size is more

effective because this is indicated by the BB size analysis done here.
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Figure 57: Illustrated within this figure is genotypic, phenotypic and the associated
BB sizes found for each PFknown solution for Polyalanine14 as an MOP. The lower
figure represents tallies for the size of BBs found for each solution. Pareto front
vectors are ordered from the best function 2 to the best function 1 and partially
ordered along the PF Points axis of the plot. These are interesting results because
BB sizes are variable throughout the Pareto front with areas concentrated with larger
BB size requirements [41].

6.11 Summary

This chapter studied the advantages and disadvantages of approximating a

computationally expensive fitness function with an artificial neural network. Of the

neural networks studied, it is decided that the RBFNN is the best choice among the

approximation method tested; however, other approximation methods not tested in
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Figure 58: Time versus BB Test plot of BB sizes and associated best fitness found
from each experiment.

this chapter may be a better choice. Certainly, it is important to reduce the calcula-

tion cost a function that must be evaluated over and over again within the algorithm;

however, at the same time, an evolutionary computation researcher must be aware

that approximating the fitness function may actually mislead the algorithm into re-

gions that have no optimal solutions to find. Finally, an evolutionary trace to study

the BB sizes required to find good solutions for the PSP once transformed into an

MOP is also given. Findings from the trace are similar to those conducted earlier

using a different technique. The advantages of the new technique are accentuated by

the fact that all BB sizes can be watched during one experiment where the old tech-

nique required many experiments to be run for evaluation of BB size effectiveness.

The next chapter continues the study of the MOMGA-IIa as an effective explicit
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BB MOEA by solving the multiple quadratic assignment problem and conducting

evolutionary traces on one MOP for a BB size visual analysis.
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VII. Application: Organic Air Vehicle Flight Formation Problem

Intelligence gathering is a crucial part of military operations. Today’s urban war-

fare has defined a new battleground for conducting military operations, making the

identification of military targets on the battlefield more difficult. Further, sensitivity

toward destroying non-military targets is extreme – normally followed by negative

public relations. Incidents like the accidental bombing of the Chinese embassy in

Belgrade [73], the wedding party bombing [36] in Kabul, Afghanistan, and finally

the bombing of the command and control center in Iraq that was filled with civil-

ians [96] must be avoided in the future. These incidents indicate a need for small

spy Organic Air Vehicles acting as a tool for validation of military targets within an

urban environment.

7.1 Urban Environment

One of the most adverse environments for targeting and maneuvering is urban

territory. For soldiers, this environment is hostile and dangerous to traverse when

attempting to gather intelligence. Sniper fire, ambushes, booby traps, and guerrilla

warfare are only a few of the obstacles that are significantly more easily hidden in

a city environment. Small flying objects have a better chance of survival and going

unnoticed than a soldier infiltrating a city. Furthermore, the New York Times has

reported the following with regards two US services:

United States Army and Marine Corps doctrine recommends isolating
and bypassing urban areas when possible, because cities are difficult,
dangerous and costly to fight in. [27]

7.2 Interrogation of Indoor Facilities

Interrogation of indoor facilities may be required for intelligence gathering or

target clarification. There are many problems associated with a procedure having Or-

ganic Air Vehicles (OAVs) gathering intelligence from a possible military target. In
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partitioning the problem, three major areas of concern can be seen: 1) the aeronau-

tical problem associated with designing vehicles capable of transporting equipment

and flying in a controlled stealthy manner, 2) designing radar, and 3) components on

the unmanned aircraft to be able to find the target and learning information leakage

points.

7.3 Organic Air Vehicle (OAV) designs

Design of OAVs to be capable of identifying a building’s information leakage

points and then exploiting those points is a complicated task. Stationary vehicles

or vehicles with a hovering or slow loitering capability are similar to a helicopter

OAV class of spy vehicles. Figure 59 is an illustration of this class of OAV – called

the Interrogator UAV1 (IUAV) in this document. The helicopter in the figure is a

vehicle currently being used as a camera OAV.

 

Figure 59: This is an example of a helicopter OAV currently being used.
AFRL/SNRR has a helicopter OAV for radar testing purposes; however, the ac-
tual OAV is not provided.

7.4 Building Interrogation and Exploiting Techniques

For an OAV to interrogate a military target, the OAV must travel to the target

or structure before gathering information. The assumption is made that the OAV

1OAV and Unmanned Aerial Vehicle (UAV) are synonymously used throughout this chapter
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makes the trip to the target via a Transport OAV (TUAV). The OAVs are assumed to

have autonomous control with preprogrammed objectives to interrogate the specified

target and extract information of possible intelligence value. Once dropped from the

transport, the OAVs fly to the predetermined target location and begin negotiating

the structure searching for leak points. Communication between OAVs is vital to the

success of the mission. In addition to control and coordination communication, target

leakage information should also be aggregated to help identify the best positioning

of the OAVs. Algorithm 9 specifies the sequence of events.

Algorithm 9 Place OAVs on Target

1: procedure OAVsonTarget(Number,Target) I OAVs on Target Events
2: Transport OAVs to target
3: I MOEA optimizes OAV flight formation positioning
4: OAVs Map leakage points of target
5: I Positional and leak intensity are reported to a control OAV
6: Leak points are prioritized according to some rule set.
7: Position OAVs at least cost position to relay information
8: I MOEA optimizes spy OAV positioning around building
9: OAVs loiter at these high leakage points and relay information back

10: end procedure

This chapter focuses on using an MOEA for the optimizing of OAV flight for-

mation positioning to reduce power consumption when OAVs communicate during

the flight to the target. This is an important step in putting OAVs on target for

military operations using OAVs for reconnaissance (see step 2 of Algorithm 9). This

approximated real-world problem is formally called the OAV flight formation prob-

lem OAVFFP). Fortunately, a modified version of this optimization maps directly to

the multiobjective quadratic assignment problem. However, first the single objective

quadratic assignment problem is discussed.

7.5 Quadratic Assignment Problem (QAP)

The QAP was originally designed to model a plant location problem [26]. Map-

ping the OAV problem into a QAP is accomplished with replacement. By inserting
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OAVs for plants, flight formation positions for plant locations, and communication

traffic for supply flow, the OAVs problem is mapped directly onto the QAP. The

mQAP is similar to the scalar QAP2, with the exception of having multiple types of

flows (communications) coming from each object (OAV).

The plant location problem is quoted as follows:

A fixed number plants, N , are placed at a fixed number of locations, N (one
and only one at each location). Each plant has a specified supply flow between
one another. The goal of the QAP is to find the best placement of the plants
at locations such that the product of the distances and flows are minimized.
(see Equation 75).

min



C(π) = min

π∈P (N )

N∑

i=1

N∑

j=1

aijbπiπj



 (75)

where N is the number of plants/locations, aij is the distance between location
i and location j, bij is the flow from plant i to plant j, and πi gives the location
of object i in permutation π ∈ P (N ) where P (N ) is the QAP search space,
which is the set of all permutations of {1, 2, . . . ,N} [134]. This problem is not
only NP-hard and NP-hard to approximate, but is almost intractable. Optimal
solutions for N ≥ 20 cannot be found within a reasonable time frame [26,179].

Once OAVs are substituted for plants, flight formation locations are substituted

for plant locations, and multiple lines of communication traffic to-and-from each

OAV is substituted for multiple supply flows the OAVFFP is mapped to mQAP. For

example, the OAVs may use one communication channel for passing reconnaissance

information, another channel for target information, and yet another channel for

OAV received radar signatures. The end goal is to minimize all the communication

flows between OAVs. The mQAP3 is defined mathematically in Equations 76 and 77.

min{C(π)} = {C1(π), C2(π), . . . , Ck(π)} (76)

2See http://www.seas.upenn.edu/qaplib/ for more info about the QAP.
3See http://dbk.ch.umist.ac.uk/knowles/mQAP/ for more info about the mQAP.
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Cg(π) =
min

π∈P (n)

n∑
i=1

n∑
j=1

aijb
h
πiπj

such that h ∈ {1..k} (77)

where n is the number of objects/locations, aij is the distance between location
i and location j, bh

ij is the gth flow from object i to object j, πi gives the location
of object i in permutation π ∈ P (n), and ’min’ means to obtain the Pareto
front [134].

Many algorithm approaches have been used on the QAP. QAP researchers can

only optimally solve for problems that have less than 20 plants/locations. Further-

more, problems having 15 plants/locations are extremely difficult [26]. When feasi-

ble, optimal solutions are found using branch and bound methods [26,97]. However,

since many real-world QAPs have more than 20 plants/locations, other methods

need to be employed in order to find a good solution in a reasonable amount of

time. The use of stochastic local searches and ant colony optimization have been

explored and found to perform well when compared to some of the best heuristics

available for the QAP and mQAP [79, 151, 175]. Evolutionary algorithms have also

been applied [107, 125, 162]. Additionally, several researchers have compared the

performance of different search methods [161,212].

7.6 Algorithms Solving mQAP

Five different approaches are applied to mQAP. The first two are stochastic

population based explicit BBB called MOMGA-II and MOMGA-IIa. The third is a

local search method created by Knowles and Corne in [134]. The fourth approach is

simply an exhaustive search algorithm and the fifth is another local search method

developed by Luis Paquete in 2004 [178].

Other algorithms have been used to solve the QAP [23, 150] but only a few

have been applied to mQAP [125]. mQAP test instances developed in [134] are

used to test the five algorithms. Table 36 lists all MOP instances solved except
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Table 36: List of mQAP MOPs numbered and listed according to size and number
of objectives. There are real like (#rl) and uniform (#uni) instances. The size of
each problem is indicated by the two digit number following the KC (KC##). The
number of objectives for each problem is indicated by the number preceding the fl
(#fl). Each column lists the sizes of MOPs used: 10, 20, and 30. The shaded area of
the table is identifying the MOPs with three objectives - others have two objectives.

(MOP #) Name (size 10) (#) Name (size 20) (#) Name (size 30)
1 KC10-2fl-1rl 9 KC20-2fl-1rl 17 KC30-2fl-1r1
2 KC10-2fl-1uni 10 KC20-2fl-1uni 18 KC30-3fl-1rl
3 KC10-2fl-2rl 11 KC20-2fl-2rl 19 KC30-3fl-1uni
4 KC10-2fl-2uni 12 KC20-2fl-2uni 20 KC30-3fl-2rl
5 KC10-2fl-3rl 13 KC20-2fl-3rl 21 KC30-3fl-2uni
6 KC10-2fl-3uni 14 KC20-2fl-3uni 22 KC30-3fl-3rl
7 KC10-2fl-4rl 15 KC20-2fl-4rl 23 KC30-3fl-3uni
8 KC10-2fl-5rl 16 KC20-2fl-5rl

one. The last test MOP comes from a test instance generated by Paquete having 25

locations/plants and 2 flow.

MOMGA-II: The MOMGA-II is a stochastic population based explicit building

block multiobjective evolutionary algorithm that is discussed in detail in Chap-

ter III in section 3.2.2 on page 77.

MOMGA-IIa: The MOMGA-IIa (extended MOMGA-II) is a stochastic popula-

tion based explicit building block multiobjective evolutionary algorithm that

is discussed in detail in Chapter III in section 3.3 on page 88.

Local search approach: The Local Search (LS) method employed for the mQAP

is where positions of facilities (or objects) are switched (called 2-opt) [133]. The

new positioning is kept if the new configuration yields a lower fitness value.

This search method works well for solving the QAP [209]; however, the mQAP

makes employing a strict LS approach difficult for the deceptive hyperplanes

that accompany multiobjective problems. Specifically, a researcher is faced

with how to initialize the LS method. Knowles and Corne concluded that the

starting points would randomly be selected out of a basin of attraction [134,

209]. After a new point is picked, the LS method is applied for a specified
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number of generations. This is the technique used by [134] finding most, if not

all, Pareto front (PF) vectors. The solutions and Pareto front vectors for the

larger problems have not been published, making comparisons difficult.

Complete iterative approach: The complete iterative approach is an exhaus-

tively deterministic approach that can be accomplished on MOPs 1-8 (see

Table 36). The number of solutions that must be evaluated is calculated by

Equation 78, where N is the number of facilities and N ′ is the number of

locations. Consequently, for the mQAP, N = N ′.

x ≈ n!

(n− k)!
(78)

Function calculations for each MOP are k∗10!, k∗20!, and k∗30! or k∗3628800,

≈ k∗2.43e18 and ≈ k∗2.65e32. These numbers are not to be confused with the

search space size. For each search space solution, k calculations must occur.

Paquete’s Local search approach: Paquete uses two stochastic search techniques.

The first technique is a component-wise ordering of objective value vectors of

neighboring PF vectors along the PF front and the second is based on using

different scalars for the objective function vectors. Paquete takes advantage

of the matrix constructs reducing the problem, thus, reducing the amount of

search required to find these good solutions.

7.7 Design of Experiments

Experiments for MOMGA-II were conducted on Clusters 2 and 3 listed in

Table 13 on page 147. Experiments for MOMGA-IIa were done on Cluster 1 in

the same table. The MOMGA-II was run 10 times in parallel and the data was

then processed incrementally so as to show better solutions gradually being found.

The MOMGA-IIa ran 10 experiments in serial and kept one pool of PF vectors and

associated decision variables at all times. The MOMGA-II was run using BB sizes 1
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through (10, 10, and 10) while the MOMGA-IIa was run using BB sizes 1 through

(10, 15, and 20) for each MOP sized (10, 20, and 30). These experiments are run

to determine how well each algorithm can solve the MOPs. This research group’s

hypothesis is that MOMGA-II’s CT generation and evolution mechanism limited the

exploration and BB finding ability of the algorithm, while the MOMGA-IIa now has

the enhancement required to overcome this limitation.

7.8 MOEA and LS Settings

This section lists settings used for each search heuristic. Settings for the

MOMGA-II and MOMGA-IIa are kept the same over the same sized mQAP.

7.8.1 MOMGA-II and MOMGA-IIa. For mQAP problems of size 10, 20,

and 30 Tables 59, 60, and 61 on pages 287, 288 and 289 list are setting used for

experimentation results listed in Tables 37 and 38. [43,125].

7.8.2 Local Search. Knowles and Corne [133] collected results by running

1000 local searches from each of 100 (for two-objective instances) or 105 (three-

objective instances) different vectors, thus giving them ≈ 200000 records.

7.9 Effects of Feasibility Function on the Solution Space

The main obstacle to implementing the mQAP into a binary string is in the

decoding of a chromosome for evaluation. Each chromosome has a number of vari-

ables each having SLICE4 bits. A conversion from a binary to an integer number

is accomplished for each set of SLICE bits. Thus, each SLICE of bits must be able

to represent at least the same number of facilities or OAVs.

All of the mQAP experimentation done use a 10-bit SLICE and, although

this might seem to be in excess, this number of bits is used for good reason. The

4A SLICE of bits is the number of bits representing one variable within the chromosome.
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reason is to even out the probability each solution arises in the solution space. The

lack of uniformity in solution representation within the search space is caused by the

feasibility function implicitly defined with the decoding function. For each variable,

SLICE bits are decoded making a set ofN integer numbers. The feasibility function

checks the set of N numbers for duplicates. When a set of duplicate numbers is lo-

cated, the feasibility function rank orders them from left-to-right as highest-to-lowest

– but maintaining the overall rank of this set of numbers with respect to all other

numbers in the set. The setup of this function in this manner has two implications:

1) some sequence appears more than others, 2) the number of bits for one SLICE

becomes a factor in making the probability of the appearance of each solution uni-

form. In fact, when using this feasibility function, as the number of SLICE bits

rise, the more uniformly distributed the solution representation becomes. However,

the disadvantage to increasing the number of bits for SLICE comes at an increase

in search space size. In fact, for each added SLICE bit, there is a 2 ∗ N factor

increase in the search space. Next is a short description and graphical illustration of

how the probability of each solution appears within the search space.

Effects of SLICE on Solution Representation: Using the left-to-right sort

feasibility function makes for some sequences to be represented more often than

others. In fact, the sequence {1, 2, 3, · · · ,N} can be represented many more ways

than any other sequence, thus, automatically hindering the search algorithm before

it even begins the search for optimal solutions. The reason for this phenomenon is

because any repeated set of numbers is automatically sequenced from left-to-right,

but kept in the same overall position, hence {1, 1, 3, 4, · · · ,N} and {2, 2, 2, 4, · · · ,N}
both evaluated back to {1, 2, 3, · · · ,N}. Hence, a reduction of repeated values with

respect to the entire possible solution space is sought. One good example of using

extra SLICE bits to more uniformly distribute the representation of each solution

in the search space is given in a 4 OAV mQAP. SLICE bits are 2, 3, 4 and 5, making

the chromosome length for each bit setting 8, 12, 16, and 20 bits. This translates to
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a total search space of 28, 212, 216, and 220. However, the decoded genotype domain

search space still remains the same at PN
N .

Figure 60 illustrates the point discussed above where a greater number of bits

used to represent a variable evens out the representability of each solution within

the search space. Next, a few local search techniques are discussed that are used

in conjunction with the MOMGA-IIa in an attempt to compete well with the local

search technique used by Luis Paquete in 2004 [176–178].
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Figure 60: Illustrated are the probability of solution representation when using
a different number of bits to represent each solution. It is assumed that a binary
search algorithm is used and the left-to-right feasibility sort function (discussed in
the text) is embedded within the search algorithm to decode genotypic solutions.
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KC20-2fl-3uni (MOP 14)
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Figure 61: Results for MOP 14 illustrating that the MOMGA-IIa’s CT generator
is superior at finding good BBs.

7.10 Results and Analysis

Overall the results of MOMGA-IIa are good. Tables 37 and 38 list results of

the Air Force application experiment. In the MOP of size less than 20, MOMGA-IIa

found all optimal solutions evaluating to all Pareto front vectors in PFtrue in a short

amount of time (under 16 minutes in some cases). MOMGA-II did not. Additionally,

in MOPs of size 20, MOMGA-IIa solutions evaluating to Pareto front vectors that

dominated MOMGA-II’s in every case (illustrated by Figure 61). Finally, in MOPs

of size 30, MOMGA-IIa found more PFknown vectors than MOMGA-II. In addition,

all solutions found by MOMGA-IIa were found to evaluate to vectors that dominated
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evaluated solutions found by MOMGA-II’s in all except for the MOP 20 case where

ten MOMGA-II solutions evaluated to PF vectors that were non-dominated when

compared to MOMGA-IIa’s PFknown. The reader should also note that MOPs of size

20 and 30 all took several days to solve. As far as the results for the LS method, these

results are good in quantity, but without the actual data to compare, no claim that

either algorithm LS or MOMGA-IIa is better at solving these MOPs. In conclusion,

the reason for the dominance of MOMGA-IIa over MOMGA-II is due to the CT

generation and selection mechanism. In addition, MOMGA-II’s limited number

of CTs might be causing it to destroy some good BBs. Lastly, the CT selection

mechanism for MOMGA-IIa allows for better multiobjective BBs to be found - thus,

MOMGA-IIa is a better BBB. This phenomenon is reflected in the results of each

MOEA for each MOP.

Table 37: Summary of results for all mQAP of size 10. Included in this table
are the number of optimal Pareto front points (when known), and the number of
PF points found by each algorithm {MOMGA-IIa (M-IIa), MOMGA-II (M-II), and
Local Search (LS)}. The diameter (dia) and entropy (ent) is calculated for M-II’s
and M-IIa’s vectors/solutions.

mQAP Number, Size 10, (Deterministic PF True vectors)
MOEA (True PF Pts Found/Total PF Pts Found)=(|PFtrue = PFknown|)/|PFknown|

1(58) 2(13) 3(15) 4(1) 5(55) 6(130) 7(53) 8(49)
LS 58/58 13/13 15/15 1/1 55/55 130/130 53/53 49/49
M-II 57/59 11/12 11/17 0/3 50/53 122/122 25/34 36/45
M-IIa† 58/58 13/13 15/15 1/1 55/55 130/130 53/53 49/49
†Time(mins) 21.5 62.3 29.8 10.9 45.5 68.1 45.4 15.8

7.11 Problem Domain Information Based Heuristics

A second local search technique was accomplished by Luis Paquete in 2004.

Problem sizes of N=25, 50, and 75 are studied by Paquete. He produced 105 test

problems using the mQAP generator created by Knowles and Corne [131]. For each

mQAP size, Paquete generated five problems for each of the following correlation
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Table 38: Summary of results for all mQAP of size 20 and 30. Included in this
table are the number of optimal Pareto front points (when known), and the number
of PF points found by each algorithm {MOMGA-IIa (M-IIa), MOMGA-II (M-II),
and Local Search (LS)}. u indicates that it is unknown how many PFknown vectors
a particular algorithm found when compared to the PFbest set found by all MOEAs
considered. In addition, diameter (dia) and entropy (ent) is calculated for M-II’s
and M-IIa’s vectors/solutions.

mQAP Number, Size 20, (Best PFknown vectors found)
MOEA (Best PF Pts Found/Total PF Pts Found)=(|PFbest = PFknown|)/|PFknown|

9 10 11 12 13 14 15 16
LS u/541 u/80 u/842 u/19 u/1587 u/178 u/1217 u/966
M-II 0/17 0/24 0/12 0/5 0/29 0/51 0/28 0/17
(dia/ent) 11.6/0.43 11.4/0.48 11.01/0.45 7.2/0.25 12.1/0.54 12.3/0.55 10.39/0.43 11.76/0.46

M-IIa† 36/36 33/33 31/31 7/7 63/63 139/139 48/48 44/44
(dia/ent) 13.0/0.58 13.7/0.69 11.17/0.47 3.67/0.16 14.1/0.73 15.5/0.88 12.76/0.60 11.37/0.50

†Time 9.8 8.3 8.3 8.3 8.8 8.3 8.3 1.7
†days

mQAP Number, Size 30
17 18 19 20 21 22 23

LS - u/1329 u/705 u/1924 u/168 u/1909 u/1257
M-II n/a 0/507 0/552 10/552 0/104 0/795 0/755
(dia/ent) - 24.1/0.79 20.1/0.50 24.3/0.78 22.3/0.64 21.2/0.57 20.4/0.56

M-IIa† 40/40 507/507 552/552 542/552 104/104 795/795 755/755
(dia/ent) 17.2/0.42 23.9/0.80 23.2/0.76 23.1/0.74 21.9/0.59 24.0/8.11 25.1/0.90

†days

†Time 8 ∼8 8 8 8 8 8

settings5: ±0.75,±0.50,±0.25, and 0.00. Only one test problem is selected for eval-

uation as a comparison against the latest MOMGA-IIa. Paquete does not discuss

run time associated with finding solutions; however, the quality of solutions is good

for the selected mQAP test problem: N=25, -0.75, instance 1. The selected problem

instance can be found on his web site6, as well as the solutions and associated PF

vectors. PF vectors found by Paquete on this selected problem are shown to be

much better than those found by MOMGA-IIa. In fact, two different local search

techniques are added to MOMGA-IIa, making a memtic algorithm, in an attempt to

5The mQAP generator created by Knowles and Corne [131] has correlation settings to allow for
mQAP test MOP matrices to be correlated (+) or uncorrelated (-).

6http://www.intellektik.informatik.tu-darmstadt.de/~lpaquete/
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best Paquete’ PFknown; however, the local search devised by Paquete prevails. Fig-

ure 62 illustrates how the PF vectors found by the local search designed by Paquete

dominate the entire PFknown front found by MOMGA-IIa.

mQAP (n=25, n0.75, & instance 1)
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Figure 62: This graph illustrates MOMGA-IIa results versus Luis Paquete’s local
search results for the first instance of N=25 and -0.75 problem.

It is apparent that MOMGA-IIa does not solve every problem better than all

other search techniques. In fact, the local search optimization heuristic applied to

an NPC problem outperforms the applied MOEA. Although, using Paquete’s local

search technique in conjunction with the MOEA might make the total search more

efficient, this is a good example where the MOEA does not necessarily find the best

solutions and the application of problem domain information can boost performance

substantially.

7.12 Statistically Comparing MOMGA-II vs. MOMGA-IIa mQAP 1, (10) (KC10-

2fl-1rl)

For a statistical comparison between MOMGA-II and MOMGA-IIa, there must

be parameter constants in order to have a somewhat fair comparison. These settings

are given in Appendix A in Table A.8 on page 279 corresponding to MOP mQAP 1.
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Also, statistical results for the ten metrics (ER, GD, HR, ONVG, S, ONVGR, ME,

R2, R3, ε) used previously can be found in Figures 88 in Appendix B on page 304:

Effectiveness: Visual analysis of the mean and standard deviations for the

results of 30 experiments for both the MOMGA-II and MOMGA-IIa present differ-

ences between metrics ER, HA, ONVG, S, ONVGR, and ME. Significant visual test

differences are illustrated by metrics HA and ONVGR. KWtest results in finding

that each and every metric is different in favor of MOMGA-IIa (see Table 39).

It can be concluded from the data, both using visual analysis and the KWtest

results that the MOMGA-IIa is more effective at solving the MOP mQAP 1 with

the settings in Table A.8 on page 279.

Efficiency: Efficiency results for this experiment are listed in Table 40. There

is a noticeable difference in the wall clock time taken by the MOMGA-IIa when

compared with MOMGA-II. If the effectiveness of the algorithms is over looked

(MOMGA-II did not solve the problem), then it can be concluded that MOMGA-II

is more efficient than MOMGA-IIa. However, further tests conclude that MOMGA-

II still does not solve this MOP even when given more experiment loops (enough to

double the run time listed in Table 40).

Therefore, it can be concluded that MOMGA-IIa is both more effective and

efficient on the mQAP 1 problem. Next, the evolutionary trace visualization is

discussed.

Table 39: mQAP 1 metric results using KWtest comparison between algorithms
MOMGA-II and MOMGA-IIa. The symbol, ∈, indicates that groups (experimental
runs) are the same and 6∈ indicates that the groups are different.

Metrics
KWtest ER GD HR ONVG S ONVGR ME R2 R3 ε

χ2 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈
F 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈ 6∈
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Table 40: Summary of timing for MOEAs solving MOP mQAP 1
MOP MOMGA-II MOMGA-IIa KWtest

mQAP 1 1238.43± 7.91 3810.93± 1851.13 6∈

7.13 Evolutionary Trace for BB Visualization

One evolutionary trace for solving mQAP 1 of size 100 is presented in Fig-

ure 63. The Pareto front is shown to be convex. The genotype representation of

the PF vectors found have definitive patterns, but exact locations within the geno-

type evaluating to vectors in PFtrue do not represent the only genotype pattern that

can evaluate to each vector in PFtrue. There are many genotype patterns that can

map to the same PFtrue vector (many to one) due to solution representation (dis-

cussed above). The many to one phenomena is mainly due to the feasibility function

(left-to-right sort) used in decoding the chromosome to be evaluated by the fitness

function.

BB sizes for mQAP 1 are variable across the Pareto front. This is similar

to the T3T4 problem discussed in Chapter V where the BB sizes are variable and

spread out throughout the entire Pareto front. This type of BB size requirement is

indicative of a more difficult problem (possibly having a higher epistasis). Further-

more, this type of MOP is more difficult to solve for MOMGA-II while MOMGA-IIa

statistically is shown to be more effective and efficient at solving an MOP having

these characteristics.

7.14 Summary

In summary, MOMGA-IIa statistically performs better than MOMGA-II. How-

ever, it is less effective than Paquete’s LS method using domain information. In

general, it is apparent that mQAPs are difficult problems to solve when the sizes

run over 20 facilities. This is confirmed both by algorithm performance and BB

size analysis. However, the new MOMGA-IIa does indeed show improvement in

both effectiveness and efficiency over MOMGA-II. The reason for the improvement
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Figure 63: Illustrated within this figure is genotypic, phenotypic and the associated
BB sizes found for each PFknown vector for mQAP 1. The lower figure represents
tallies for the size of BBs found for each PF vector. Pareto front vectors are ordered
from the best function 2 to the best function 1 and partially ordered along the PF
Points axis of the plot. Note that the BB sizes are variable across the Pareto front,
indicating that this is a more difficult problem for MOMGA-series algorithm to solve.

must be caused by the combination of the added active archive and the additional

competitive templates partitioning of the genotype and phenotype space.

This chapter analyzed the use of MOMGA-IIa on a futuristic military applica-

tion (approximate real-world problem) of optimizing OAV flight formation position-

ing to reduce power consumption when OAVs communicate during the flight to the

target. MOMGA-IIa is good at finding flight formations in a short period of time,

and it is statistically shown that MOMGA-IIa performs better than MOMGA-II.

However, visual tests reveal that MOMGA-IIa may still not be as good as some of

the local search techniques using domain information to reduce the search space.
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However, there was no timing data associated with the local search/ant colony opti-

mizations results found by Luis Paquete, so a fair comparison on efficiency between

these two approaches cannot be made. This concludes this chapter on the application

of MOMGA-IIa on the OAVFFP. Next, MOMGA-IIa is applied to a third military

application in designing a digital amplitude-phase keying symbol set with m-ary Al-

phabets. Usage of MOMGA-IIa as both a single and multiobjective evolutionary

algorithm, like in the PSP problem, is conducted.
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VIII. Application: Design of Digital Amplitude-Phase Keying

Symbol Sets

Optimal digital symbol set constellation design is important in digital communica-

tions for Quadrature Amplitude Modulation (QAM). Optimization realizes a reduced

probability of bit error (Pb) while keeping the same bandwidth and power for trans-

mitting the signal. Constellation shapes currently used in QAM include rectangle,

triangle, hexagonal, and concentric circles. In this study, two dimensional (4, 8,...,

and 256)-ary constellations at specific normalized signal-to-noise ratios
(

Eb
No

)
having

lower Pb are sought. Various models are designed to provide an MOEA with a near

exact model to utilize as a fitness function. MOEA-found solutions are tested for

merit using a Monte Carlo simulator. Comparisons of Eb
No

versus Pb between the

rectangular constellation and new designs are illustrated. New designs are shown to

be different and comparable to the standard constellations used today.

8.1 Introduction

Bandwidth efficient modulation techniques using bounded bandwidth are sought

in the digital communications field. Symbol set design is a step towards minimiz-

ing the probability of bit error (Pb) at a specific normalized signal-to-noise ratio
(

Eb
No

)
[213]. Optimal constellations with lower Pb at specified Eb

No
have numerous ap-

plications in digital communications. Lowering the inter-symbol interference reduces

Pb, but normally this comes at cost of increased signal power or decreased noise in-

terjection. Unfortunately, typical links have distortion elements in channel filters

and amplifier nonlinearities that cannot be eliminated or, in some cases, reduced.

Therefore, optimizing symbol set constellations is absolutely necessary for lowering

this inter-symbol interference.

The ability for a Multiobjective Evolutionary Algorithm (MOEA), more specif-

ically the multiobjective fast messy GA (MOMGA-II) to optimize symbol set design
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for a decreased Pb at a certain
(

Eb
No

)
is studied. The combinatorics of this problem call

for a stochastic search algorithm that can be used in optimizing both single [93,243]

and multiobjective [47] problems because the models generated to capture this sym-

bol set design problem can be constructed as both single and multi-criteria problems.

First, the algorithm of choice is justified, as well as a detailed discussion of

the algorithm domain. This discussion is followed by an overview of the problem

domain. The problem domain section includes a detailed description of five models

constructed for this optimization problem. Next, algorithm parameters are discussed.

Then, the best MOMGA-IIa constellations and standard rectangular constellations

are presented. Comparisons with existing rectangular constellations are drawn where

able. Finally, an analysis and future work discussion concludes.

8.2 Problem Domain Considerations

Five different models have been constructed for this investigation in search

of the best balance between lower computation complexity and model correctness;

however, results from only one model are presented. When encoded, the problem

seems simple. Symbols are placed in a unit circle. Each symbol has a location

that is identified by an amplitude (distance from the origin) and a phase angle

(angle from positive x -axis counter clockwise around the unit circle). This equates

to two variables for each symbol, which is easy to encode in our binary string;

however, the evaluation of a constellation makes this problem orders of magnitude

more difficult. Each constellation has a different Pb associated with each Energy per

Bit (Eb) to the Spectral Noise Density (No) or Eb
No

tested, causing the problem to

become multiobjective. Figure 66.a illustrates a typical Eb
No

versus Pb graph that is

used to determine if a MOMGA-IIa 2 bit constellation is better than the standard

rectangular constellation. The Pareto front that forms naturally is concave down.

Even though the encoding of the problem may seem to alleviate some of this

problem’s difficulty, this is just a mirage. Every solution can be rotated around the
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circle one radius step1 and maintain itself as the same solution because it evaluates to

the same fitness. This results in each solution having 2SLICE

2·π different configurations.

An algorithm with the capability to capture the high epistasis caused by multi-

ple constellations having the same fitness, solve single and multi-objective problems,

and converge on good solutions for problems having high complexity (see Table 13 in

Chapter IV for System Configuration2 of each configuration) is required. MOMGA-

IIa is selected because it possesses these capabilities.

MOMGA-IIa is a linkage learning algorithm that uses explicit BBs to solve

difficult problems. MOMGA-IIa is different than most other genetic algorithms be-

cause it can be used to solve single objective problems (SOP) as well as multiobjective

problems, and it specifically searches for good BBs from which to generate new solu-

tions. Moreover, in previous studies, this algorithm solved hard single objective [41]

problems better than both the simple and messy genetic algorithms [154]; it also

solved many multiobjective problems better than the Vector Evaluated Genetic Al-

gorithms (VEGA), Non-dominated Sorting Genetic Algorithm (NSGA), NSGA-II,

and multiobjective Bayesian Optimization Algorithm (BOA) [47, 243]. See Chap-

ter III on page 71 for a complete description of the MOMGA-IIa. Next, the problem

domain is described in detail.

Chromosome in 2 dimensions having 4 symbols (8 variables) 

 

Symbol 1 (00) 

R 
�

 
 

Symbol 2 (01) 

R 
�

 
 

Symbol 3 (10) 

R 
�

 
 

Symbol 4 (11) 

R 
�

 
 

Figure 64: Illustrating a genotype solution (chromosome) for a two-bit symbol set.
Each smaller box would contain a number of bits according the precision required
for each variable.

1A single radius step has the resolution, ( 2·π
2SLICE ), limited by the encoding a symbol’s radius

into a binary number - where SLICE is the number of bits allowed to represent the radius variable.
2To illustrate how complexity plays a role, using the analytical mode, it would take a computer

in Cluster 1 (listed in Table 13 in Chapter IV) 0.0159 ∗ 22560 seconds to check every combination
and 33.93 ∗ 22560 seconds using the simulation model. In either case, it would take more than a
lifetime to check every combination for configuration 7 (see Table 41).
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8.3 Problem Domain Analysis

The domain for this problem is complex, consisting of reducing the overall

Pb for a constellation over a range of Eb
No

s. Constellations are built by arranging

2Signal bits symbols3 inside a unit circle4 in a way that optimizes Pb versus Eb
No

. Sym-

bol location is described by d̂ variables where d̂ is the number of dimensions5; fur-

thermore, d̂ = 2 for this investigation. Each variable used to describe the location

of a symbol has SLICE bits of resolution.
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Figure 65: Illustrating two-bit example of constellation and associated symbols.
Symbol positions are identified with a six pointed star. Symbol bit patterns are
identified right beside each position.

3Signal bits (Sbits) are the number of bits that are used to make up each symbol.
4The unit circle is used in this investigation; however, if the number of dimensions changes, so

does the dimension of the unit circle (i.e., unit sphere when d̂ = 3).
5Applications for higher dimensional symbol set design is needed, but when (d̂ > 2), this problem

becomes extremely difficult to solve.
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Table 41: Configuration Specifications
Sbits # of String Slice Search

Config symbols Length Space
1 2 4 80 10 280

2 3 8 160 10 2160

3 4 16 320 10 2320

4 5 32 320 5 2320

5 6 64 640 5 2640

6 7 128 1280 5 21280

7 8 256 2560 5 22560

Table 41 lists the Sbits, String length, SLICE, and Complexity associated with

each configuration. The String length is the SLICE multiplied by the number of

symbols, 2Sbits , and the dimensions, d̂, in a constellation. Finally, the Complexity

is the size of the search space. Notice, that the SLICE is reduced when going

from three to four Sbits. This is done to reduce the complexity of larger symbol set

configurations; however, this is achieved at the cost of variable resolution.

8.3.1 Fitness function or model designs. Previous researchers either use

different coding6 methods or symbol positioning to get better Pb at a particular

Eb

No
[28, 113, 213]. In the models, the MOMGA-IIa optimizes both of these at the

same time by assigning each symbol its bit-wise representation while assigning it a

location in space. However, the challenge was found not to be what to optimize or

how to represent the problem, but what model (fitness function) best represented

the Monte Carlo simulation used to check constellations for goodness.

Normally, new constellations would be tested using a Monte Carlo simulator,

where a random stream of symbols is encoded into a signal, s, using the amplitude

and phase of symbols identified in a designed constellation. Next, noise is added to

the generated signal, (s+No), to simulate the transmission process. The amount of

noise added to the signal is related to the Eb
No

under test. Then, the signal is decoded

6Different coding methods can include n-ary or hybrid gray encoding.
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and a reconstructed symbol stream is generated from the noisy signal. Finally, the

number of bit errors is calculated by comparing the reconstructed symbol stream to

the originally transmitted symbol stream. This test is re-run until enough data is

collected to assign a Pb rate to that particular constellation at the Eb
No

under test. As

discussed earlier, this kind of simulation takes too long to evaluate7. Therefore, four

different analytical models are designed in search of the optimal balance between

computational time and model correctness. This marks the simulation model re-

placement with a less computational approximation model to reduce fitness function

computational time. Five models are described in the next section (Section 8.3.2 on

page 241). The first four designs are analytical approximates for this digital system

and the fifth design is the Monte Carlo simulation.

Each model uses symbols placed inside a unit circle for amplitude and phase

characteristics for each symbol [68]. Each symbol bit pattern is defined to be in one

and only one place within the genome. Placement is in binary order, {00, 01, 10, 11},
and each symbol has d̂ = 2 degrees of freedom to define its location in the space.

Figure 64 illustrates the genome solution for a two bit symbol set and Figure 65

illustrates an example of a two bit decoded constellation.

8.3.2 Four Analytical models and One Simulation. The analytical models

are simple and fast compared to the simulation model, for they are designed for

minimal number of calculations while having a close approximation to the real model.

These fitness functions have many pre-calculated measures to help speed compute

time. For all of these models, each symbol is defined in binary fashion and placed

into a bit-matrix like the one found in Equation 79. Furthermore, each symbol’s

Hamming code distance from one another is calculated and placed into a separate

d̂× d̂ matrix called H. A three bit H matrix is presented in Equation 80. The

7One complete simulation (fitness evaluations) of a constellation takes 33.93 seconds on Cluster
1 in Table 13 in Chapter IV.
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Figure 66: Presented is the best constellations found for 2 bit symbol set.242



Figure 67: Illustration of the fitness landscape of two symbols having a Hamming
code distance of 2, K = 5, symbol distances = [0,2] and constellation energy = [0,16].
A higher fitness value is better than a lower (more negative) value.

Hamming code distance matrix keeps track of the amount of bit errors made when

reconstructing the noisy signal and an incorrect symbol is selected.

A complete constellation fitness computation for each and every fitness func-

tion begins with a Polar-to-Cartesian coordinate conversion on the entire symbol

set. Then, a distance calculation on each symbol, i, to each other symbol, j, fol-

lows. Symbol distance calculations are stored in a distance matrix, Di,j. Once the

calculations listed are finished, each model’s remaining calculations differ slightly.
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Symbols =




s1 = 0 0 0

s2 = 0 0 1
...

...
...

s8 = 1 1 1




(79)

Hi,j =




0 1 1 2 1 2 2 3

1 0 2 1 2 1 3 2
...

...
...

...

3 2 2 1 2 1 1 0




(80)

1. Brute force model :

The first model is called the brute force model because it takes into account

the intuitive approach about how to represent this problem using only a high

level of understanding of the problem domain. A maximization constellation

fitness function is sought; therefore, a negative exponential decay of the dis-

tance is used to emphasize that it is better to have symbols further apart. The

exponential decay is modified using a constant K value to increase or decrease

the rate of decay depending on the number of symbols in the constellation.

Finally, to account for the bit error increasing when encountering a high Ham-

ming code distance between symbols, the exponentially decaying distance is

multiplied by the Hamming code distance, found in the H matrix, of the two

symbols. The resulting equation can be found in Equation 81 on page 244.

fs(~x) = −
N∑

i=0

N∑
j=i

Hi,j ∗ exp(−K ∗D2
i,j) (81)
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This model worked well for finding solutions that competed with the standard

rectangular constellations. However, the thought was that by accounting for

symbol energy an improvement would be seen over this fitness function. This

resulted in Equation 82. The new fitness function describes the same fitness

calculation as before, but the symbol set energy is used as a damping (dividing)

factor – where energy is the sum of the squared radii for each symbol. An

example of the landscape between two symbols using this new fitness function

is illustrated in Figure 67.

fs(~x) = −
∑N

i=0

∑N
j=iHi,j ∗ exp(−K ∗D2

i,j)

exp(−√energy)
(82)

Results of the modified brute force model were not as good as expected, re-

sulting in development of the Volumes and False Alarm Rate models.

2. Volumes model :

The volumes model is based on the principle that the probability of bit er-

ror landscape changes with respect to each symbol. Therefore, an k-objective

model is designed to account for each new landscape that occurs when in-

specting the transmission and reconstruction of each symbol with respect to

every other symbol. A Hamming code distance scaled Gaussian distribution

is placed on each symbol (i.e., the higher the Hamming code distance, the

larger the Gaussian) to represent each symbol’s error footprint. Next, a grid is

placed on the unit circle and at each grid position the maximum value found

with respect to all Gaussian distributions are summed for a fitness value. Equa-

tions 83 and 84 represent the calculations used for this model where S contains

the symbols in the entire constellation and G contains the values in the set

[−1,−0.95, · · · , 0.95, 1] when using the step resolution of 1
20

for this problem.
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Perr(i, j, h) =





exp

(
−

∑d̂
w=1(g

(w)
i,j −s

(w)
h )2

2∗σ2

)

(2πσ)





(83)

∀v∈S

{
fv =

∑
i∈G

∑
j∈G

Max (∀h∈SHv,h · Perr(i, j, h))

}
(84)

s.t. Hv,v = 1 and (
√

i2 + j2 ≤ 1)

Unfortunately, this model also did not prove to be a good representation of

the Monte Carlo simulation. Moreover, hundreds of solutions evaluating to PF

vectors along the Pareto front were found, so determination of good solutions

still required a simulation evaluation for each.

3. False Alarm Rate model :

The false alarm rate model is designed with the premise that each symbol

has the same probability of selection, but the error associated with selection

changes. Furthermore, the error found using a minimum selection formula

should be used as the fitness of a constellation. This model is similar to the

volumes problem in that it is an k-objective problem, un-scaled Gaussian dis-

tributions are placed on each symbol, a grid is placed on the unit circle, and

Equation 83 can be used to calculate the probability of error when symbol v is

transmitted and symbol h is reconstructed at grid position (i, j), P(v)
err(i, j, h).

The main differences are the fact that the Gaussian distributions are not scaled

and the problem uses the minimum of the sum of the probability of error mul-

tiplied by the Hamming code distance as the selection criteria at each grid

point.
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f(v) =
∑
i∈G

∑
j∈G

Min

(∑

h∈S

H(v, h) · Perr(i, j, h)

)
(85)

s.t. Hv,v = 0 and (
√

i2 + j2 ≤ 1)

Equation 85 mathematically describes the fitness calculation for the false alarm

rate model. This is a minimization problem; in order to use this fitness function

as a maximization function, a (-) sign is added to the final value. This model

remains untested.

4. Minimize probability of error by calculating intersection point for

error distribution model :

This model is designed to include the Pb, overall constellation energy (Es) and

the Eb

No
parameter into the same fitness function. Much like the Volume model,

calculations are based on the error associated with selecting the wrong symbol

and the assumption that the noise added to the incoming signal has a Gaussian

distribution. To sum the error associated with selecting the wrong symbol, it

is advantageous to find the distance of the point where the two distributions

(one on each symbol location) intersect. If the two symbols have the same

distribution, the same scale for the distribution, and the same standard devi-

ation, the intersecting point is the mid-point between the locations of the two

symbols. However, if the distributions are scaled differently, but still maintain

the same standard deviation and type of distribution, there is a adjustment

that can be made to find the new intersecting point. Furthermore, this adjust-

ment is calculated in Equation 86 where the Gaussian distribution scaling is

the Hamming code distance between symbols. Finally, given that the distri-

bution of error and the standard deviation of that distribution is the same for

each symbols is the same, the probability of false alarm can be calculated by

summing up the tail of the Gaussian away from this intersection point. This
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final calculation can be found in Equation 87. In addition, this model can

also be a multiobjective model. However, the objectives are in the form of the

parameter Eb

No
requiring optimization (i.e., for a two bit or 4ary constellation,

Eb

No
= {0, 1, · · · , 8}, making for a nine objective problem. See Figure 66.a for

an illustration of why this range of Eb

No
s is selected for a 4ary constellation.)

The relationship of Eb

No
to the standard deviation, σ, is given in Equation 88.

Thus, for each objective, the Gaussian distributions changes shape as the Eb

No

changes - making the Pb different for each different Eb

No
even when the constel-

lation remains the same.

K(i, j) =
Di,j

2
− σ2 · ln (Hi,j)

Di,j

(86)

fe = |Es − Sbits|+
‖S‖∑
i=1

‖S‖∑
j=i+1

erfc

(
K(i, j)√

2 · σ

)
(87)

Let, Eb = 1 and σ =

√
1

No

=

√
Eb

No

Eb

(88)

Es =
1

‖S‖
∑
i∈S

R̂2
i (89)

Finally, the power calculation is found in Equation 89 where R̂i is the Ampli-

tude, or radius, of Symbol, i, and it is used in Equation 87. When Es = Sbits,

Es is optimal. It is unfortunate that this model also proved to not be as good

as the first model. A modification to this model followed and Equations 90,

where Q(x), is defined and Equation 91 are the result. This version of the

model in this area has not been fully tested.

Q(x) =
1

2
· erfc

(
x√
2

)
(90)
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fe = |Es − Sbits|+
‖S‖∑
i=1

‖S‖∑
j=i+1

Hi,j · Q
(

Di,j

2 · σ
)

(91)

5. Simulation model :

The simulation model acts as a correlation receiver described in the Detection

of Signals in Gaussian Noise section of [205]. The number of symbols in a

constellation is 2Sbits . The simulation generates (10000 ∗ log2(symbols)) bits

randomly. These random bits are converted to 10000 symbols. The 10000

symbols are then converted to their respective coordinates in the constellation.

These coordinates are then multiplied by the basis functions (see Equation 92)

and the results are transmitted. Next, a specific amount of Gaussian noise is

added to match the required Eb

No
for a particular evaluation. The noise and

signal are then correlated with the basis functions. Based on the output of

the correlators, symbols are estimated according to their distances from each

symbol in the constellation. Although this particular model showed to be more

accurate, it is much more computationally prohibitive. Moreover, it takes this

fitness calculation 33.93 seconds, as opposed to the 15.6 ms for an 8-bit symbol

analytical model calculation on Cluster 1 listed in Table 13 in Chapter IV. This

model is used to validate constellations found by MOMGA-IIa and results are

used for comparisons drawn in Section 8.5.

basis function(h, time) =
cos

(
2∗π∗h∗time

samples

)
√(

samples
2

) (92)

The next section discusses the design of experiments, including system hardware and

algorithm parameters.
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8.4 Design of Experiments for m-ary Digital Symbol Set Design Problem

The Brute Force fitness model is used in the results of this study. Therefore,

MOMGA-IIa is run in single objective mode; although, analysis of each constellation

has two objectives no matter the technique used to find the constellation. For each

configuration, the algorithm is run ten times. Algorithm settings can be found in

Section 8.4.2. Solutions are presented in two manners: symbol set constellation and

resulting Pb for each Eb

No
. Comparisons are made using the Monte Carlo simulation

model for determining Pb.

8.4.1 System Configuration. All experiments in this investigation were

completed on Cluster 1 in Table 13 in Chapter IV. However, testing and develop-

ment was conducted on Clusters 2 and 3, as well. The use of 64-bit compilers and

linkers are used to take advantage of Cluster 1’s 64-bit architecture. In addition, all

experiments were run in serial mode (modified fmGA).

8.4.2 Algorithm Parameter Selection. MOMGA-IIa has many parame-

ter settings – including a primordial phase schedule which by itself has numerous

settings. Parameters addressed in this investigation are configuration, experiments,

string size, Sbits, BB sizes, encoding, cut-and-splice probability, CTs, and generations

for the primordial and juxtaposition phases. Tables 41 and 42 list the settings used.

In most cases, settings for all variables are the same for each configuration. However,

as the problem size increases, string size is adjusted to allow for the algorithm to

scale and find solutions in a reasonable amount of time. Table 41 lists the string

sizes and SLICE8 values for each configuration.

BB sizes are also a factor in these experimentations. The sizes are kept the

same (1-20) throughout each configuration. These sizes have shown in past experi-

ments [41] to be good for difficult problems. The random seed is set for each experi-

8A SLICE of bits is the number of bits representing one variable within the chromosome.
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Table 42: Algorithm Settings
Variable Setting

Random Seed = 987654321
Experiments = 10

Block Size (Min and Max) = 1 20
Genic Alphabet = 01

Encoding = BINARY
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0

Orthogonal Templates = 32
Primordial Generations = 200 · · ·

Total Generations = 300 · · ·
n a = 500 · · ·

ment for solution repeatability. Population size is calculated according to Goldberg’s

population sizing equation [91]. Multiple competitive templates are used to increase

algorithm effectiveness [47] – in these experiments seven competitive templates are

used as well as 32 orthogonal competitive templates generated using a Latin Square.

The orthogonal templates are built by filtering a randomly selected regular template

through a bank of pre-generated orthogonal arrays.

8.5 Results and Analysis

In this section, first the MOMGA-IIa-found constellations are graphically pre-

sented and discussed. Then, the results of a Monte Carlo simulation (see Sec-

tion 8.3.2.5 on page 241) evaluation of MOMGA-IIa’s constellations are discussed.

Finally, the Monte Carlo simulation results are then compared, where able, to rect-

angular theoretical best.

8.5.1 MOMGA-IIa Discovered Constellations. 2-, 3-, 4-, and 5-bit solutions

(constellations) found by MOMGA-IIa are illustrated in Figure 66, 68, 69, 70, 71, 72,

and 73. Another interesting observation is that, other than the 4ary constellation,

MOMGA-IIa constellations are not as symmetric as one might expect.
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b) 8ary MOEA solution compares well to the 8ary rectangle constellation.

Figure 68: Presented is the best constellations found for 3-bit symbol set.
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b) 16ary MOEA solution compares well to the 16ary rectangle constellation.

Figure 69: Presented is the best constellations found for 4-bit symbol set.
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b) 32ary MOEA solution and evaluated SNR plot.

Figure 70: Presented is the best constellations found for 5-bit symbol set.
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b) 64ary MOEA solution compared to the 64ary rectangle constellation.
Note the increase in Pb due to lack of model accuracy.

Figure 71: Presented is the best constellations found for 6-bit symbol set.
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Figure 72: Presented is the best constellations found for 7-bit symbol set.
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Figure 73: Presented is the best constellations found for 8-bit symbol set. Al-
though it is busy, the symbols are getting closer to one another, where the Pb in-
creases due to inter-symbol interference.
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8.5.2 Rectangular Constellations. The x-rectangular constellations have

a different pattern than the EA found constellation patterns. A few examples of

x-rectangular9 constellations are illustrated in Figure 74. Note that all rectangular

constellations are symmetric along both axes and there is no wheel spoke patterns

like those found by the EA.

Evaluation of x-rectangular constellations can be accomplished with a Monte

Carlo simulator; however, researchers using x-rectangular constellations have approx-

imated the best Eb

No
versus Pb with Equation 93. In this equation, L represents the

number of amplitude levels in a single dimension and can be calculated as Log2L bits.

This is the accepted formula to calculate Pb for any given allowable x-rectangular

constellation [205]. Furthermore, this formula is used to evaluate MOMGA-IIa con-

stellations.

PB ' 2(1− L−1)

log2L
∗Q

[√(
3log2L

L2 − 1

)
2Eb

N0

]
(93)

 
  

 
a. b. c. d. 

 
Figure 74: Illustrating x-rectangle constellation symbols.

8.5.3 Analysis. MOMGA-IIa constellations having two, three, four, and

five bits all compete well with the x-rectangular constellation theoretical best. The

comparisons are graphically presented in Figure 66. Unfortunately, comparisons with

9The x in x-rectangular represents the number of symbols in the constellation.
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only rectangular constellations having 4, 16, 64, and 256 symbols can be made due to

the limitation of the theoretical best equation. The only MOMGA-IIa constellation

that did not come within 1 dB of the rectangular constellation theoretical best is

the eight-bit or 256ary constellation.

In conclusion, the MOMGA-IIa has found comparable constellations using the

brute force model described in 8.3.2.1. Although MOMGA-IIa solutions did not

beat the x-rectangular constellation theoretical best, they did compete rather well.

This is validated using standard Amplitude Modulation techniques in use today.

Theoretically, there exists a constellation that has lower Pb than the x-rectangular

constellations at certain Eb

No
s; however, those constellations evade researchers in the

field today and the MOMGA-IIa so far.

8.6 Summary

This chapter discussed the employment of MOMGA-IIa onto a digital symbol

set design problem and the replacement of a highly computational simulation model

with lower complexity mathematical model. The efficiency gain is well worth the

employment of these mathematical models (see Section 8.2 on page 237 for time

reduction when using an approximation model). MOMGA-IIa is used both as an

EA (single objective) and MOEA (multiobjective). The algorithm finds good results

for the model given to it; however, the models within this chapter do not represent

well the Monte Carlo digital signal simulation they are meant to replace. It is for

this reason that the results are not beating the rectangular QAM symbol set. It

should be noted that all models are wrong, but some are useful [149]. In protein

structure prediction, many different models have been used in hopes of more precisely

capturing a sliver of the real work problem, so the solutions may make more sense.

In addition, often times previously labeled good models are tested for validation

with new equipment to ensure that an algorithm is solving the right problem. New

discoveries or new equipment may lead to modifications in an old model or the
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development of an entirely new model that is more accurate in representing the

problem. In the problem within this chapter, the model requires modification and

possibly more theoretical development. It is for this reason that the MOMGA-IIa

does not find better solutions. Next, the dissertation summary, conclusions and

contributions are given.
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IX. Contributions and Conclusions

This chapter concludes the body of this document with a discussion about con-

tributions, the summary of how the goal and supporting objectives are met and

future work. This research resulted in the development of a state-of-the-art explicit

BB MOEA that solved or found good solutions for higher dimensional MOPs such

as those found in relevant USAF real-world applications and benchmark test suite

MOPs. The Protein Structure Prediction (PSP) Problem, Digital Symbol Set De-

sign problem (DSSDP), and the futuristic OAV flight formation problems are the

real-world applications studied. The new MOEA is thoroughly tested and compared

to yesterday’s state-of-the-art explicit BB MOEAs. In all experiments, it is shown

that the new MOEA is statistically the same or better in effectiveness and efficiency

than the previous algorithm.

On the way to the final development of this new technology, many research

milestones produced additional contributions to the field. The document begins

with a discussion of standardized definitions that are used throughout the MOEA

field starting with the theoretical representation of an MOP, its solutions (decision

variables) and associated objective vectors as values having infinite word length. A

relationship is drawn between the theoretical representation and the computational-

world representation of solutions and associated objective vectors. This discussion

bridges the computational gap between the theoretical world and the computation

world. It emphasizing the fact that the computational model of problems may be a

altogether a different problem than the theoretical one it is intended to represents.

Still, solutions relating to the computational model are related to the theoretical one

in some manner that is problem specific.

The dialogue then moves away from the theoretical representation terminol-

ogy embracing the computation model terminology. A short list of computational

terms are presented to accent the fact that there are two domains considered when
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attempting to solve an MOP. These domains are called the solution space and ob-

jective space. The solutions space domain contains sets of decision variables while

the objective space domain contains sets of vectors having values that are produced

when a solution is evaluation. Furthermore, optimal solutions (decision variables)

are said to be solutions that, once evaluated, have objective vectors that are non-

dominated. It is then conjectured that the set of optimal solutions are built from a

optimal set of smaller units called BBs. Contributions begin with the analysis of the

process by which the optimal set of BBs can be identified. Previous research ended

with approximate definitions for good BBs (computational good partial solutions).

The limitation of these approximate good BB definitions is identified

and new good BB definitions are forged. In addition, a new Optimal

BB Set definition is developed as well as a upper bound to the expected

number of unique BBs observed during a BBB search. Finally, the new

good BB definitions are redefined as BB classifying systems and real-

world BBB are characterized by the computational BB classifier they

employed . This concluded the BB analysis chapter and began the construction of

a new MOEA based on these findings.

State-of-the-art explicit BBBs are hypothesized to perform better than im-

plicit BBBs. This is also supported by the literature for a limited set of MOPs.

Therefore, using the knowledge of what makes for a good BBB, its BB classifying

system, a foundation EA is chosen for augmentation. The fmGA was picked because

of its good BB classifying system. Although a multiobjective fmGA already did

exist (MOMGA-II), it had been shown to be limited in scaling to large deceptions

problems. Still, because it contained a good BB classifying systems it was hypothe-

sizing that this type of EA should be as good, if not better, than any other explicit

BBB. The previous version’s code of construction was not consulted for augmenta-

tion except for the population sizing equation. This research contributions continue

with the development of the new MOEA. Augmented into the new MOMEA are
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several new features. An active archive, a competitive template manage-

ment system and a BB solutions tracing mechanism is added into the

new MOEA, now called the MOMGA-IIa . The radical change in how an

active archive and competitive template management system work together makes

the MOMGA-IIa more efficient and effective. In fact, the new MOEA is shown to

outperform the previous version over every MOP tested; however, this achievement

was not as exciting as the new tracing mechanism allowing for the development of

several new-to-the-field analysis tools. This marked the achievement of major con-

tributions. The BB evolution tracing allowed for a partial computational

BB size assignment associated with PFknown vectors. This included a

first ever, BB size assignment visualization of evolving BBs. In addi-

tion a first ever MOP partial epistatic level measurement and decision

variable stability assessment contrived using a post mortem analysis

of optimal solution findings.. The innovative design of the MOEA allowed for

these additional payoff contributions.

Once developed, testing of the MOEA using test suite MOPs was conducted.

Although the metrics, test suite MOPs, and statistical methods used to identify

differences between the two MOEAs metric results are not new, the non-graphical

analysis of a complete set of outcomes for each metric is new . Most

researchers actually show the data values associated with each test in a table or an

elaborate comparison chart but never has someone concluded with the final outcomes

in one table. This contribution is simple, effective, and easily understood if one knows

what each metric measures. Future MOEA researchers are urged to use this metric

summary table as a means to quickly illustrate effectiveness of tested MOEAs.

Other testing is accomplished using harder test problems called deception prob-

lems. In addition two USAF real-world application problems and one futuristic ap-

plication problem is tested. Finally, two new approximation techniques are

tested to replace MOEA parallelization models . The first is the replace-
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ment of a highly computational model using a neural network. The second is the

replacement of a highly computational simulation using four mathematical models.

Although replacement produced a negative result, these approximation model il-

lustrated more than 16 times the speedup from the computation model. The final

real-world problem tested is the first ever attempt for an MOEA to optimize

a m-ary digital symbol set design that can be generalized, once a solid

model is found, to optimize symbol set designs according to channel

noise characteristics . This is a contribution in the digital communications field.

In summary, this research has advanced technology in this field of study with a broad

range of achievements. This dissertation serves as documentation of original work for

extending the state-of-the-art MOEA research within the optimization research field.

This research represents original ideas based in part from concepts of appropriately

cited authors. Next, a summary of contributions are enumerated for quick identifi-

cation. Following the summary of contributions, the goal and supporting objectives

are reviewed with a brief statement conveying how each was met.

9.1 Contributions

Listed within this section is a brief summary of contributions achieved by this

research. This summary is by no means a replacement for the detail summary found

above; however, it does give the reader a quick reference from which to check while

reflecting on the research stated within this document.

1. Explicit BB definitions are extended in Chapter II to include clarifying the

meaning of good single and multiobjective BBs.

2. A more robust algorithm is developed where MOEA concepts are implicitly

designed within the new algorithm.

3. A BB (solution) tracing mechanism is integrated within the new algorithm to

enable a BBB researcher to evaluate required BB sizes for solving a particular

problem.
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BB size is not all that can be measured, but also the stability of variables

within a problem can be measured. This includes identifying the usefulness

and sensitivity within each decision variable.

4. The tracing mechanism allows for the development of a new metric serving the

explicit BB MOEA community with a epistasis metric.

5. A new visualization technique is developed for the viewing of the genotype,

phenotype and evolutionary process of the new algorithm finding solutions

evaluating to Pareto front vectors while tracking the size of the BB required

for finding each solution.

6. A new way to display metric results is identified. This method should be picked

up by future MOEA researchers for quick and easy analysis between MOEA

metric results.

7. Application of this MOEA on Air Force applications during this research and

in future research is also a contribution.

8. software is written in a way that can be useful. New MOPs can be Plugged into

the algorithm without integrating the new code directly into the algorithm.

Matlab code is written to assist in the post mortem visualization of the

BB trace.

This section is provided only to give a quick summarized list of each contri-

butions provided by this research. Next, the goal and supporting objectives are

restated accompanied by a summary of how each is met.

9.2 Meeting the goal and supporting objectives

This research effort did meet the intended objectives. This section describes

how each supporting objective is achieved - thus meeting the final overall goal of

this research. Table 43 is provided as a review of what is purposed in Chapter 1 as

goal and supporting objectives.
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Goal Development of a more robust multiobjective evolutionary algorithm capable of

solving larger range of NPC applications, which are relevant to United States

Air Force’s real-world applications. In addition, to advance the understanding

design and application of BB based MOEAs. The following objectives are met

to attain the stated goal.

Objective 1: Develop a new, more robust, algorithm to solve a larger range of

MOPs. Test and validate MOEA metrics and statistical methods associated

with comparing MOEAs. Chapter III is dedicated to the design of a new, more

robust algorithm. The new algorithm (MOMGA-IIa) offers better exploration

and exploitation through the use of a competitive template management sys-

tem (CTMS) than previous versions. The algorithm is shown to be more robust

by being statistically more effective and efficient (never worse) on particular

MOPs and applications than the previous version.

MOMGA-IIa statistically outperforms MOMGA-II when applied to all of the

MOPs selected for study. The addition of problem domain knowledge can be

easily integrated in an MOEA like this; however, it is thought that with the

CTMS, this type of modification may be unnecessary in the future unless it

is to bring more resolution to more feasible regions. The code is generalized

enough to allow for easy addition of other MOPs; indeed, it can be said that

the addition of new problems is as easy as filling out a template. The excel-

lent performance and versatility of the MOMGA-IIa is an attractive tool for

attempting to solve real-world MOPs. This illustrates that the MOMGA-IIa

meets objective 1.

Objective 2: Indicate how MOEA research advantageously applies to Air Force ap-

plications.

Three Air Force applications are selected to apply this new robust algorithm

toward. The first is the Protein Structure Prediction problem. Although this

algorithm is used mainly as a tool to gather good records for the use in training
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a neural network for fitness function replacement, the algorithm itself solves

this problem using both its multiobjective and single objective capabilities.

The second application is the Organic Air Vehicle (OAV) problem where un-

manned vehicle fight patterns are organized according to communication re-

quirements between a group of heterogeneous OAVs. The final application of

this MOEA is used to design digital symbol sets for lowering the probability

of bit error rate during transmission through Gaussian white noise.

Although these problems are not completely solved (especially NPC problems)

by any measure, it is illustrated within this document that MOMGA-IIa is

statistically better than the earlier version of MOMGA series (MOMGA-II)

and that MOMGA-IIa finds good solutions to these difficult real-world Air

Force application problems. This being said, clearly MOMGA-IIa meets the

objective 2.

Objective 3: Extend MOEA understanding by extending the meaning of BBs in an

explicit search algorithm.

Within Chapter II on page 19, previous state-of-the-art BB definitions are ex-

plored. Newly forged definitions and perspectives redefine the state-of-the-art

BB definitions through the use of more rigorous definitions and conjectures. A

new different view of BBBs, what it means when someone references good BBs,

and categories of types of good BBs are formed within. Moreover, conjectures

and definitions are stated proposing a new reasoning for the underlying goals

of today’s state-of-the-art BBBs (a “how things work” for these BBBs). A

division between good algorithm domain BBs and good problem domain BBs

is delineated. Finally, the concept of an upper bound limit is derived that

defines the limitation, in terms of available gain, for any explicit BBB. Finally,

the concept of what an optimal BB set is defined, couched with the idea that

the basic goal for every explicit BBB is seeking a set of BBs to put together

to build the optimal solution - be they single or multi-objective.
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The new definitions for describing good BBs and delineation of how BBs are

defined in both the problem and algorithm domains extend the understanding

of what BBs are for an explicit BBB, thus, meeting Objective 3.

Objective 4: Indicate that explicit BB MOEA approaches are statistically similar

in solving studied deception problems; however, different in search methods.

Search method differences between the mBOA and the top-down BB MOEA

approach, like MOMGA-IIa, are discussed in Chapter II where the underlying

rules for both BBBs are well defined. Statistical similarities are empirically

Table 43: Goal continued and supporting Objectives

Goal Objectives
Development of a 1: Develop a new algorithm that is
more robust multiobjective more robust (effective) in solving
evolutionary algorithm capable of a larger range of MOPs.
solving larger range of NPC Test and valid metrics
applications, which are relevant to and statistical methods are
United States Air Force’s real selected for comparing MOEAs.
world applications.

2: Indicate how MOEA
research advantageously applies to
Air Force applications

To advance the understanding, 3: Extend MOEA understanding
design and application of by extending the meaning
BB based MOEAs. of BBs in an

explicit search algorithm
4: Indicate that explicit
BB MOEA approaches
are statistically similar
in solving deception problems;
however, different in search methods.
5: Use MOEA generic objectives
as preserve, progress, and diversity
for extending an explicit BB MOEA.
6: Develop possible MOEA
techniques that can be employed in an
efficient parallel design and implementation.
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validated in Chapter V, when solving the deception problems. Finally, other

publications within the EC field are used in comparison with the Bayesian

approach to further illustrate the similarities between these approaches. The

IEA, a single objective explicit BBB, are described and compared to the BOA

within Appendix F section F.3 on page 368 and all other BBB approaches can

be found in Appendix E in section F.5.1 on page 372. These sections describe

the major BBB approaches: single and multiobjective, plus past and present

state-of-the-art. The IEA study statistically shows that the IEA and BOA are

also similar in effectiveness. This is a second example making the point that

these two approaches are similar in effectiveness. This reasoning is submitted

to meet objective 4.

Objective 5: Use MOEA generic objectives extending the preserve, progress, and

diversity within an explicit BB MOEA.

Researchers in the MOEA field recognize that every successful MOEA has four

fundamental principles: preserve, progress, maintain diversity, and provide.

Each of these MOEA principles has an impact on how well an MOEA might

perform given a particular MOP. It is challenging to insert the best form of

each of these principles within an MOEA without disrupting the harmony of

the search process. Within the new MOEA, a few principles are met with an

innovative design that makes for a compatible fit within the original design

of the EA and then the previous versions of this MOEA. Mainly, the preserve

and maintain diversity principles are enhanced within MOMGA-IIa by a unique

and innovative design of an archived competitive template management system.

The progress and provide principles are also implicit in design of the algorithm

where final optimal solutions and related PF vectors are listed, along with

statistical data, in files.

Clearly, the previous MOMGA-series algorithms were missing some fundamen-

tals of MOEA technology. The MOMGA-IIa meets the shortfalls and is statis-
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tically shown to outperform the MOMGA-II on certain MOPs. This innovative

design meets the requirement for objective 5.

Objective 6: Develop possible MOEA techniques that can be employed in an effi-

cient parallel implementation.

The first fitness function approximation method studied is the replacement of

the force field fitness function as a way to reduce the computational cost for

evaluating a protein conformation. Fitness function replacement has been stud-

ied before; however, a function having this complexity and lack of oscillations

has not. Chapter VI is dedicated to an evaluation on replacing the CHARMm

force field model fitness function with a neural network. Although, it is decided

that this not be implemented due to the low quality in solution reproduction,

other methods are suggested to try. For the CHARMm it is thought that the

lack of oscillation pattern within the function hinders the ANN in accuracy.

An approximation function that is not accurate enough may actually misguide

the MOEA to areas not having good solutions at all. Thus, it is thought that

this particular ANN replacement is not ideal.

The second simulation model approximation method studied is the replacement

of the Monte Carlo simulation used for testing digital symbol set designs. Four

different approximation models are tested. Each are found to be more efficient

than the simulation mode; however, none are found to be accurate enough to

replace the Monte Carlo simulator. Furthermore, new symbol set designs did

not best rectangular QAM designs.

These two studies along with the literature review of other approximation

methods meets objective 6 requirements.

This section described how each objective is met in regards to attaining the overall

goal of this research. Next is the conclusions drawn from this dissertation.
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9.3 Summary

By meeting each supporting objective, this research has met the goal. This

MOEA research is useful for both the Air Force and civilian applications. This

research extends state-of-the-art explicit BB MOEA research and contributes to

optimization research fields of study in several application areas: bioinformatics, un-

manned vehicle flight patterns, and digital communication symbol set design. Test

problems of many characteristics are used to illustrate that a new algorithm design

is never worse and scales better than an earlier version of the MOMGA series ex-

plicit BB MOEA. This research is sponsored by Abel S. Nunez in the Air Force

Research Laboratory, Sensors Directorate, (RF) Sensor Technology Division, Elec-

tronic Warfare Technology Branch, Dr. Robert L. Ewing in the Air Force Research

Laboratory, Embedded Information Systems Engineering and Technologies Branch,

and Dr. Ruth Pachter in the Air Force Research Laboratory, Materials Directorate.

9.4 Future Work

Future implementations for MOMGA can use an EDA and/or BOA for an ad-

ditional BB selection method much like the operator selection mechanism in GEN-

MOP that statistically selects operators according to their past performance. Fur-

thermore, many new avenues of research may proceed from the development of this

novel MOEA design: new parallel techniques, BB classifiers, co-evolutionary ap-

proaches applied to a new set of applications. Appendix G on page 378 is provided

to give MOEA researchers some ideas for furthering this research.
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Appendix A. MOEA Parameter Settings

This appendix contains all the parameter settings for each experiment within this

document. Each section is label according to the MOP tested. The MOMGA-II and

MOMGA-IIa are the algorithms under test.

A.1 MOP 1

Table 44: MOP 1 MOMGA-II and MOMGA-IIa settings for experimentation.
Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 24

Block Size (Min and Max) = 1 5
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 100 100 100 100 100
Total Generations = 200 200 200 200 200

na = 100 100 100 100 100
Cut gen Str len Threshold

5 24 22

6 14 11

7 10 5

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

15 3 2

22 2 1

24 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.2 MOP 2

Table 45: MOP 2 MOMGA-II and MOMGA-IIa settings for experimentation.
Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 27

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 400 400 400 400 400 400 400 400 400 400

na = 50 50 50 50 50 50 50 50 50 50
Cut gen Str len Threshold

5 27 22

6 23 11

7 20 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

22 3 2

23 2 1

27 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.3 MOP 3

Table 46: MOP 3 MOMGA-II and MOMGA-IIa settings for experimentation.
Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 27

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 400 400 400 400 400 400 400 400 400 400

na = 50 50 50 50 50 50 50 50 50 50
Cut gen Str len Threshold

5 20 22

6 14 11

7 11 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

15 3 2

19 2 1

20 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.4 MOP 4

Table 47: MOP 3 MOMGA-II and MOMGA-IIa settings for experimentation.
Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 24

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 30 30 30 30 30 30 30 30 30 30
Total Generations = 50 50 50 50 50 50 50 50 50 50

na = 40 40 40 40 40 40 40 40 40 40
Cut gen Str len Threshold

5 24 20

6 20 11

7 10 5

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

15 3 2

19 2 1

24 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.5 MOP 6

Table 48: MOP 6 MOMGA-II and MOMGA-IIa settings for experimentation.
Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 20

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 20 20 20 20 20 20 20 20 20 20
Total Generations = 40 40 40 40 40 40 40 40 40 40

na = 50 50 50 50 50 50 50 50 50 50
Cut gen Str len Threshold

5 20 12

6 14 11

7 11 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

15 3 2

19 2 1

20 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.6 Tanaka

Table 49: MOP tanaka MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 24

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 20 20 20 20 20 20 20 20 20 20
Total Generations = 40 40 40 40 40 40 40 40 40 40

na = 50 50 50 50 50 50 50 50 50 50
Cut gen Str len Threshold

5 24 12

6 14 11

7 11 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

15 3 2

19 2 1

24 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.7 DTLZ3

Table 50: MOP dtlz3 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 28

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 20 20 20 20 20 20 20 20 20 20
Total Generations = 40 40 40 40 40 40 40 40 40 40

na = 50 50 50 50 50 50 50 50 50 50
Cut gen Str len Threshold

5 28 12

6 23 11

7 20 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 2

13 5 2

14 4 2

22 3 2

23 2 1

28 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 20 t r 0 c 200 t r 0
c 20 t r 0
c 20 t r 0
c 20 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
m 3 0 0 0 0 m 3 0 0 0 0
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A.8 mQAP 1

Table 51: MOP mQAP MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 50

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 500 500 500 500 500 500 500 500 500 500

na = 100 100 100 100 100 100 100 100 100 100
Cut gen Str len Threshold

5 50 30

6 48 30

7 37 25

8 35 20

9 33 20

10 32 20

12 29 9

13 25 8

14 14 7

15 13 7

17 12 5

18 11 5

19 10 5

20 9 5

21 8 4

22 7 3

25 6 2

30 5 2

33 4 2

35 3 2

48 2 2

50 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 20 t r 0 c 200 t r 0
c 20 t r 0
c 20 t r 0
c 20 t r 0
c 20 t r 0
c 20 t r 0
o 20 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.9 T1T2 30

Table 52: MOP T1T2 30 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 30

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(11)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 100 100 100 100 100 100 100 100 100 100
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 10 10 10 10 10 10 10 10 10 10
Cut gen Str len Threshold

5 30 20

6 29 10

7 28 10

8 27 10

9 25 10

10 23 10

11 13 7

12 12 5

13 11 5

15 10 5

17 9 5

19 8 4

20 7 3

21 6 2

22 5 5

23 4 4

25 3 3

28 2 2

30 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.10 T1T2 60

Table 53: MOP T1T2 60 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 60

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(11)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 250 250 250 250 250 250 250 250 250 250
Cut gen Str len Threshold

1 60 45

3 50 35

4 40 31

6 35 26

8 30 21

9 25 10

10 15 5

12 10 3

13 9 3

14 8 3

25 7 3

26 6 3

27 5 3

38 4 3

49 3 3

53 2 2

60 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.11 T1T2 90

Table 54: MOP T1T2 90 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 90

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(15)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 500 500 500 500 500 500 500 500 500 500
Cut gen Str len Threshold

1 90 25

2 80 25

3 70 25

4 60 21

5 40 9

9 12 5

10 10 5

12 9 2

13 8 2

14 7 2

25 6 2

26 5 2

27 4 2

38 3 2

59 2 2

90 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.12 T3T4 30

Table 55: MOP T3T4 30 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 30

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(11)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 100 100 100 100 100 100 100 100 100 100
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 100 100 100 100 100 100 100 100 100 100
Cut gen Str len Threshold

5 30 12

6 23 11

7 20 5

8 10 2

9 9 2

10 8 2

11 7 2

12 6 3

13 5 2

14 4 2

22 3 2

23 2 1

30 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.13 T3T4 60

Table 56: MOP T3T4 60 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 60

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(15)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 250 250 250 250 250 250 250 250 250 250
Cut gen Str len Threshold

1 60 45

3 50 35

4 40 31

6 35 26

8 30 21

9 25 10

10 15 5

12 10 3

13 9 3

14 8 3

25 7 3

26 6 3

27 5 3

38 4 3

49 3 3

53 2 2

60 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.14 T3T4 90

Table 57: MOP T3T4 90 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 90

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(20)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 500 500 500 500 500 500 500 500 500 500
Cut gen Str len Threshold

1 90 25

2 80 25

3 70 25

4 60 21

5 40 9

9 12 5

10 10 5

12 9 2

13 8 2

14 7 2

25 6 2

26 5 2

27 4 2

38 3 2

59 2 2

90 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.15 PSP

Table 58: MOP PSP MET MOMGA-II and MOMGA-IIa settings for experimen-
tation. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 90

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(20)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 200 200 200 200 200 200 200 200 200 200
Total Generations = 300 300 300 300 300 300 300 300 300 300

na = 500 500 500 500 500 500 500 500 500 500
Cut gen Str len Threshold

2 240 210

4 230 200

6 220 180

7 215 148

8 210 138

9 200 128

10 190 118

11 180 108

13 150 102

19 139 100

20 83 17

32 58 10

33 20 9

34 19 8

35 18 7

37 17 6

38 16 5

39 15 5

55 14 6

67 13 6

70 12 5

80 11 5

95 10 5

100 9 2

150 8 2

165 7 2

210 6 2

215 5 2

220 4 2

225 3 2

230 2 1

240 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 200 t r 0 c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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A.16 Multiple mQAP MOPs of size 10, 20, and 30

Table 59: mQAP size 10 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 100

Block Size (Min and Max) = 1 10
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(10)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 300 300 300 300 300 300 300 300 300 300
Total Generations = 500 500 500 500 500 500 500 500 500 500

na = 500 500 500 500 500 500 500 500 500 500
Cut gen Str len Threshold

5 100 60

6 95 40

7 90 35

8 85 30

9 60 20

10 45 20

12 25 9

13 15 8

14 14 7

15 13 7

25 12 5

40 11 5

65 10 5

70 9 5

71 8 4

72 7 3

75 6 2

77 5 5

80 4 4

85 3 3

88 2 2

100 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 50 t r 0 c 200 t r 0
c 50 t r 0
c 50 t r 0
c 5 t r 0
c 5 t r 0
c 5 t r 0
c 2 t r 0
c 200 t r 0
o 100 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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Table 60: mQAP size 20 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 200

Block Size (Min and Max) = 1 10(15)
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(22)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 300 300 300 300 300 300 300 300 300 300 (... 300 300 300 300 300)
Total Generations = 500 500 500 500 500 500 500 500 500 500 (... 500 500 500 500 500)

na = 500 500 500 500 500 500 500 500 500 500 (... 500 500 500 500 500)
Cut gen Str len Threshold

2 200 110

4 190 100

6 180 80

7 175 38

8 170 38

9 150 38

19 139 27

20 83 17

32 58 10

34 20 6

34 19 6

35 18 6

37 17 6

38 16 5

39 15 5

55 14 6

67 13 6

70 12 5

80 11 5

95 10 5

100 9 2

150 8 2

165 7 2

170 6 2

175 5 2

180 4 2

185 3 2

190 2 1

200 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 50 t r 0 c 200 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 5 t r 0
c 5 t r 0
c 5 t r 0
c 2 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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Table 61: mQAP size 30 MOMGA-II and MOMGA-IIa settings for experimenta-
tion. Listed are the MOMGA-II setting and beside them are listed, in parenthesis,
MOMGA-IIa setting.

Parameters File

Random Seed = random setting
Monte Carlo function calls = 0

Monte Carlo time out (seconds) = 0
Exhaustive Search = N

Experiments = 10
String Length = 300

Block Size (Min and Max) = 1 12(20)
Genic Alphabet = 01

Encoding = 0
Shuffle Number (> 1) = 2

Cut Probability = 0.02
Splice Probability = 1.0
Overflow (> 1.0) = 1.6

Competitive Template Guesses = 1
Inverse Template = N(Y)

Orthogonal Templates = 0(22)
Energy Farms = 0

Conjugate Gradient = 0.02
Probablity Baldwinian = 0.5

Primordial Generations = 300 300 300 300 300 300 300 300 300 300 300 300 (... 300 300 300 300 300 300 300 300 300)
Total Generations = 500 500 500 500 500 500 500 500 500 500 500 500 (... 500 500 500 500 500 500 500 500 500)

na = 500 500 500 500 500 500 500 500 500 500 500 500 (... 500 500 500 500 500 500 500 500 500)
Cut gen Str len Threshold

2 300 210

4 290 200

6 280 180

7 275 148

8 270 138

9 250 128

10 230 118

11 210 108

13 150 102

19 139 100

20 83 17

32 58 10

34 20 9

34 19 8

35 18 7

37 17 6

38 16 5

39 15 5

55 14 6

67 13 6

70 12 5

80 11 5

95 10 5

100 9 2

150 8 2

165 7 2

200 6 2

275 5 2

280 4 2

285 3 2

290 2 1

300 1 1

Competitive Template File
MOMGA-IIa (MOMGA-II)

c 50 t r 0 c 200 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 50 t r 0
c 5 t r 0
c 5 t r 0
c 5 t r 0
c 2 t r 0
c 200 t r 0
o 200 t r 0

m 1 0 0 0 0 m 1 0 0 0 0
m 2 0 0 0 0 m 2 0 0 0 0
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Appendix B. Raw Statistical Results

This appendix presents metric results for all experiments run. The algorithms under

test are the MOMGA-IIa (IIa) and the MOMGA-II (II). Displayed in each graph

are the mean (*) and standard deviation (bar) results of 30 experiments for each

MOP solved. The 10 metrics are the following: Error Ratio (ER), Generational

Distance (GD), Hyperarea Ratio (HA), Spacing (S), Overall Non-dominated Vector

Generation (ONVG), Overall Non-dominated Vector Generation Ratio (ONVGR),

Max PF error, epsilon indicator (ε), the utility R2 indicator, and the utility R3

indicator. Final statistical analysis between each of these algorithms is done using

a Kruskal Wallis test1. Chapter IV presents the final results of the Kruskal Wallis

test on the data for each MOP tested.

1This method is approved as being a good way to determine if two algorithms are different.
The assumptions made are that each algorithm is given a different random seed for each of the
30 experiments, the algorithm itself is a random process, output or responses from the MOEA are
continuous and the function or metric responses are also continues. Also, using the KWtest records
differences in the medians of the results for each metric, but results that are claimed to be different
under the KWtest certainly must also be concluded as different under the student-t and z test.
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Figure 75: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is VL1. Results indicate visually that these MOEAs perform
similarly over all metrics except ONVG and ONVGR where the MOMGA-IIa found
more PFtrue vectors than MOMGA-II.
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Figure 76: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is VL2. Results indicate visually that these MOEAs perform
similarly over all metrics except ONVG and ONVGR where the MOMGA-IIa found
more PFtrue vectors than MOMGA-II.
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Figure 77: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is VL3. Results indicate visually that these MOEAs perform
similarly over all metrics except ER where the MOMGA-IIa found all PFtrue vectors
while the MOMGA-II did not.
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Figure 78: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is VL4. Results indicate visually that these MOEAs perform
similarly over all metrics except ER, ONVG, ONVGR, and ME where the MOMGA-
IIa found all PFtrue vectors and is overall closer to the true Pareto front than the
MOMGA-II.
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Figure 79: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is VL6. Results indicate visually that these MOEAs perform
similarly over all metrics indicating that these two algorithms (after 30 experiments)
on average have the same effectiveness on MOP 6.
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Figure 80: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is DTLZ3. Results indicate visually that these MOEAs perform
similarly over all metrics indicating that these two algorithms (after 30 experiments)
on average have the same effectiveness on DTLZ3. Not that the HA really indicates
a hypervolume (HV) calculated by the performance package provided by Knowles
and Ziztler (www.tik.ee.ethz.ch/pisa/). In addition R2, R3 and ε indicators are all
measured using 3 dimensions.
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Figure 81: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is Tanaka. Results indicate visually that these MOEAs perform
similarly over all metrics indicating that these two algorithms (after 30 experiments)
on average have the same effectiveness on Tanaka.
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Figure 82: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs. The
MOP under test is T1T2:30. Results indicate visually that these MOEAs perform
similarly over all metrics indicating that these two algorithms (after 30 experiments)
on average have the same effectiveness on T1T2:30.
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Figure 83: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs. The
MOP under test is T1T2:60. Results indicate visually that these MOEAs perform
similarly over all metrics except HA, ONVG, ONVGR, and ε where the MOMGA-IIa
found more PRtrue vectors than MOMGA-II.
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Figure 84: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs. The
MOP under test is T1T2:90. Results indicate visually that these MOEAs perform
similarly over all metrics except GD, HA, ONVG, ONVGR, R2, R3, and a large
ε. Differences occur in the metrics because the MOMGA-IIa found more PRtrue

vectors than MOMGA-II and is much closer to the Pareto front than MOMGA-II. It
is apparent that the MOMGA-II has a problem solving large stringed MOPs. This
is an example where the MOMGA-II could not find on average even half the PFtrue

vectors.
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Figure 85: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 met-
rics used. The mean and standard deviation is generated using 30 experimental
runs. The MOP under test is T3T4:30. Results indicate visually that these MOEAs
perform similarly over all metrics except GD, HA, ONVG, ONVGR, R2, R3 and ε.
Differences occur in the metrics because the MOMGA-IIa found more PRtrue vectors
than MOMGA-II and is much closer to the Pareto front than MOMGA-II. Being that
T3T4 is a particularly nasty deception problem, it is apparent that the MOMGA-II
has a problem solving small and large deception MOPs of this type. Once again,
this is an example where the MOMGA-II could not find on average even half the
PFtrue vectors.
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Figure 86: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 met-
rics used. The mean and standard deviation is generated using 30 experimental
runs. The MOP under test is T3T4:60. Results indicate visually that these MOEAs
perform similarly over all metrics except GD, HA, ONVG, ONVGR, R2, R3 and ε.
Differences occur in the metrics because the MOMGA-IIa found more PRtrue vectors
than MOMGA-II and is much closer to the Pareto front than MOMGA-II. Being that
T3T4 is a particularly nasty deception problem, it is apparent that the MOMGA-II
has a problem solving small and large deception MOPs of this type. Once again,
this is an example where the MOMGA-II could not find on average even half the
PFtrue vectors.
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Figure 87: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 met-
rics used. The mean and standard deviation is generated using 30 experimental
runs. The MOP under test is T3T4:90. Results indicate visually that these MOEAs
perform similarly over all metrics except GD, HA, ONVG, ONVGR, R2, R3 and ε.
Differences occur in the metrics because the MOMGA-IIa found more PRtrue vectors
than MOMGA-II and is much closer to the Pareto front than MOMGA-II. Being that
T3T4 is a particularly nasty deception problem, it is apparent that the MOMGA-II
has a problem solving small and large deception MOPs of this type. Once again,
this is an example where the MOMGA-II could not find on average even half the
PFtrue vectors.
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Figure 88: Statistical results of MOMGA-II vs. MOMGA-IIa over the 10 metrics
used. The mean and standard deviation is generated using 30 experimental runs.
The MOP under test is mQAP. Results indicate visually that these MOEAs perform
similarly over all metrics except for metrics ER, HA, ONVG, S, ONVGR, ME, and
ε. Differences occur in the metrics because the MOMGA-IIa found all PFtrue vectors
and MOMGA-II did not. This is another illustration of the MOMGA-II not scaling
well.
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Figure 89: Illustrated are the statistical (student t-test) box plot results of the
MOMGA-II vs. MOMGA-IIa over the five metrics showing a difference from the
Kruskal Wallis testing. Results are generated using data collected over 30 experimen-
tal runs and student-t/box plot software found at http://www.physics.csbsju.

edu/. The MOP under test is VL1. Results indicate visually that these MOEAs
perform differently over all five metrics. Differences occur in the metrics because
the MOMGA-IIa found all PFtrue vectors and MOMGA-II did not. This is another
illustration of the MOMGA-II not scaling well.
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Appendix C. Implicit vs. Explicit BBB results on Test Suites

This appendix is provided to present statistical results for implicit BB MOEAs

(MOGA, NSGA, NPGA) and explicit BB MOEAs (MOMGA, MOMGA-II, MOMGA-

IIa) when solving the test suite MOPs (VL) 1, 2, 3, 4, and 6.

C.1 Implicit vs. Explicit BBB results

Figures 90, 91, 92, 93, and 94 illustrate data collected by Dr David Van Veld-

huizen [222], Dr Jesse Zydallis [244], and Richard Day to illustrate the differences

between implicit and explicit MOEAs when solving test suite MOPs. In these fig-

ures, data is collected over 10 experiments suggesting a normal distribution. This is

in contrast to the 30 experimental runs collected when comparing the MOMGA-II

and MOMGA-IIa in the testing chapter of this dissertation.
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Figure 90: This figure illustrates results from MOGA, NSGA, NPGA,
MOMGA (I), MOMGA-II (II) and MOMGA-IIa (IIa) when solving VL1. Experi-
mental data is taken over 10 runs and error bars illustrate 1 standard deviation away
from the mean. This graphical illustration is given to connect three generations of
dissertations together to illustrate the progression of the MOMGA series MOEA.
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Figure 91: This figure illustrates results from MOGA, NSGA, NPGA,
MOMGA (I), MOMGA-II (II) and MOMGA-IIa (IIa) when solving VL2. Experi-
mental data is taken over 10 runs and error bars illustrate 1 standard deviation away
from the mean. This graphical illustration is given to connect three generations of
dissertations together to illustrate the progression of the MOMGA series MOEA.

308



    MOGA I   II  IIa NPGA NSGA
80

90

100

110

(a)

E
rr

o
r 

R
a

ti
o

 (
%

)

    MOGA I   II  IIa NPGA NSGA
0

0.5

1

(b)

S
p

a
c
in

g
     MOGA I    II   IIa  NPGA NS   NS−IIPAES 

−1

0

1

2

(c)

G
e

n
e

ra
ti
o

n
a

l 
D

is
ta

n
c
e

    MOGA I   II  IIa NPGA NSGA
−2

0

2

4

(d)

M
a

x
im

u
m

 E
rr

o
r

    MOGA I   II  IIa NPGA NSGA
1

1.02

1.04

(e)

H
y
p

e
ra

re
a

 R
a

ti
o

    MOGA I   II  IIa NPGA NSGA
0

0.5

1

1.5

(f)

O
N

V
G

R

    MOGA I   II  IIa NPGA NSGA
0

500

1000

1500

(g)

O
N

V
G

Figure 92: This figure illustrates results from MOGA, NSGA, NPGA,
MOMGA (I), MOMGA-II (II) and MOMGA-IIa (IIa) when solving VL3. Experi-
mental data is taken over 10 runs and error bars illustrate 1 standard deviation away
from the mean. This graphical illustration is given to connect three generations of
dissertations together to illustrate the progression of the MOMGA series MOEA.
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Figure 93: This figure illustrates results from MOGA, NSGA, NPGA,
MOMGA (I), MOMGA-II (II) and MOMGA-IIa (IIa) when solving VL4. Experi-
mental data is taken over 10 runs and error bars illustrate 1 standard deviation away
from the mean. This graphical illustration is given to connect three generations of
dissertations together to illustrate the progression of the MOMGA series MOEA.

310



    MOGA I   II  IIa NPGA NSGA
0

50

100

150

(a)

E
rr

o
r 

R
a

ti
o

 (
%

)

    MOGA I   II  IIa NPGA NSGA
0

0.2

0.4

(b)

S
p

a
c
in

g

    MOGA I   II  IIa NPGA NSGA
−0.5

0

0.5

1

(c)

G
e

n
e

ra
ti
o

n
a

l 
D

is
ta

n
c
e

    MOGA I   II  IIa NPGA NSGA
−5

0

5

10

(d)

M
a

x
im

u
m

 E
rr

o
r

    MOGA I   II  IIa NPGA NSGA
0.5

1

1.5

(e)

H
y
p

e
ra

re
a

 R
a

ti
o

    MOGA I   II  IIa NPGA NSGA
0

0.5

1

(f)

O
N

V
G

R

    MOGA I   II  IIa NPGA NSGA
0

200

400

600

(g)

O
N

V
G

Figure 94: This figure illustrates results fromMOGA, NSGA, NPGA, MOMGA (I),
MOMGA-II (II) and MOMGA-IIa (IIa) when solving VL6. Experimental data is
taken over 10 runs and error bars illustrate 1 standard deviation away from the
mean. This graphical illustration is given to connect three generations of disserta-
tions together to illustrate the progression of the MOMGA series MOEA.
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Appendix D. Explicit BBB Epistasis Results

This appendix is provided to present epistasis and schemata size associated with each

BB found along the Pareto front. For each illustration, provided is the genotype,

phenotype, epistasis and schemata size associated with Pareto front vectors found

using the MOMGA-IIa. Results are illustrated for MOP 1, 2, 3, 4, 6, Tanaka,

DTLZ3, T1T2:60, and T3T4:60.
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Figure 95: This figure illustrates the MOMGA-IIa tracing of BB sizes and epistasis
when solving the MOP 1 (VL1).
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Figure 96: This figure illustrates the MOMGA-IIa tracing of BB sizes and epistasis
when solving the MOP 2 (VL2).
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Figure 97: This figure illustrates the MOMGA-IIa tracing of BB sizes and epistasis
when solving the MOP 3 (VL3).
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Figure 98: This figure illustrates the MOMGA-IIa tracing of BB sizes and epistasis
when solving the MOP 4 (VL4).
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Figure 99: This figure illustrates the MOMGA-IIa tracing of BB sizes and epistasis
when solving the MOP 6 (VL6).
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Figure 100: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the Tanaka (VL-C4).

318



0

10

20 BB Size

String Size Histrogram for Pareto Front Point (DTLZ3 28)

BB Size

P
F

 P
o

in
ts

0
5

0

5

0

2

4

6

F
1

DTLZ3

F
2

F
3

200
400

600
800
1000 200 250 300

200

300

400

c
2

DTLZ3 Chromosome Mapping (10x9x9)

c
1

c
3

Figure 101: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the DTLZ3.
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Figure 102: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the deception problem T1T2 of size 60 (T1T2:60).
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Figure 103: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the deception problem T3T4 of size 60 (T3T4:60).
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D.1 Graphical Representation of Partial ordering of Non-dominated vectors
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Figure 104: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the T1T2 60. Additionally, lines are draw to illustrate how the
PF vectors are partially ordered on the lower BB size plot.
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 Figure 105: This figure illustrates the MOMGA-IIa tracing of BB sizes and epis-
tasis when solving the Tanaka. Additionally, lines are draw to illustrate how the PF
vectors are partially ordered on the lower BB size plot.
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Appendix E. Optimization Techniques

There are many optimization techniques available to researchers, and no single tech-

nique is better at solving every problem [230]; however, some are said to be more

robust, efficient or effective on particular problems. It is not the purpose of this

appendix to include every single optimization technique, but to give a brief overview

of a few optimization techniques and then go into a thorough history of implicit

and explicit BB single and multi objective Evolutionary Algorithms (MOEAs). In

addition, since the focus of this research is BBBs, comparisons between implicit and

explicit search structures and operators are given.

The layout of this appendix is as follows: a short discussion of some opti-

mal resource allocation techniques used by the Operational Research community1.

Mathematical programming, linear programming, Monte Carlo Analysis and Markov

Models topics are touched upon. These techniques are useful but have limitations

when solving multiobjective problems. This is the justification for using evolutionary

algorithms in their stead. Discussed next are single objective explicit BB evolution-

ary algorithms. This background is required for the extensive discussion of some

multiobjective evolutionary algorithms (MOEAs).

E.1 Mathematical Programming

Mathematical programming has its roots from planning or scheduling of activ-

ities within a large organization [21]. Programmers found that they could represent

the level of activities within the organizations as variables - which are to be solved

for later. The constraints in the scheduling or planning are described mathemati-

cally with a set of equations or inequalities having the variables adjustable. Thus a

solution meeting all the constraints is considered an acceptable plan.

1The operational research community is large and include groups concerned with optimizing
systems. Included in this community is the Military Operations Research society.
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In the beginning of using this method history showed that it was difficult

to model a complex operation simply by specifying constraints. Plus, success of

this method was dependent on the number of constraints to be inserted, too few

constraints allowed for inferior solutions to satisfy them, and too many constraints

would cause the method to rule out desirable solutions. Many times, the success of

the programming depended on some key insight that provided a way around this

complication.

As the mathematically programming field matured, an objective function was

added to the mathematical constraint modeling. The objective function allowed for

the programmer to label a particular solution with a cost or profit (merit). Solu-

tions meeting the mathematical criteria were then ranked according to some objec-

tive function. Objective functions could either be a maximization or minimization

function.

Today, there are many mathematical programming methods for solving mul-

ticriteria problems (see Table 82 on page 420); however, many of these generate

Pareto optimal members, one at a time. In addition, most of the mathematical pro-

gramming methods fail when the Pareto front is concave or facing a discontinuous

front. [201] In addition, it is found that EAs efficiency increases with the problem

size [142].

One particular example of an application of mathematical programming is lin-

ear programming. This is when all the costs, requirements and other interested

quantities are formed strictly proportional to the levels of the activities, or sums of

these terms. Often times this kind of mathematical programming is used within an

evolutionary method. This is called a hybridize evolutionary method. Other exam-

ples of methods used to hybridize evolutionary methods are cutting-plane algorithms,

branch-and-cut, branch-and-prize, and branch-and-cut-and-prize. It is important to

understand that although these optimization techniques do not perform as well as
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an evolutionary heuristic, they can help in a manner where they are applied later in

the evolutionary search.

E.2 Markov Chains

A Markov chain in the strict sense of the mathematics is a collection of random

variables (where the index i runs through {0, 1, ...}) having the property that, given

the present, the future is conditionally independent of the past [225]. There are many

problem that can be modeled as a Markov Chains where the structure of the chain is

dependent upon the parameter values chosen. These are called Parameter Dependent

Markov Chain Optimization (PDMCO) problems and are normally solved by finding

the optimal Markov Chain which essentially gives the optimal parameter values to

solve the problem.

A Markov Chain can be thought of as a state diagram with probabilities as-

signed to transitions from one state to another. In addition, a chain my be adaptive

or non-adaptive depending on the design. The fundamental property of Markov

Chains are the following:

P {Future/Present and Past} = P {Future/Present}

Conditional probabilities pi,j assigned to transitions from one state to the next

are called transitional probabilities. The matrix Pmatrix=[pi,j] defines the probability

of transitions from state Ĕi to state Ĕj - the following matrix is an example of Pmatrix:

(j)

Ě1 Ě2 · · · Ěn

Ě1 p1,1 p1,2 · · · p1,n

(i) Ě2 p2,1 p2,1 · · · p2,n

...
...

... · · · ...

Ěn pn,1 pn,2 · · · pn,n
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Transitions from state i to j that do not exist between states have a probability,

pi,j, of zero. An example of a Markov Chain used in solving the following equation

x = Bx + f can be found [25].

Markov chains, or Random Walks on Graphs are probably one of many impor-

tant concepts in computer science. They appear in other fields of study as well, such

as the following: statistical physics, biology, ecology, economy and the stock market,

the study of the web, and have been useful in combinatorial applications such as

approximation, optimization and counting algorithms. [1] One of the drawback to

using Markov chains is in developing a probability model that represents the problem

accurately; however, this optimization method is used for weather predication [171]

and other applications.

E.3 Monte Carlo

A Monte Carlo analysis is sometimes called a Monte Carlo simulation. This

simulation is named for Monte Carlo, Monaco. This is a place where the primary

attractions are casinos. These casinos provide games of chance like roulette wheels,

dice, and slot machines that exhibit the randomness found in a Monte Carlo sim-

ulation. Furthermore, the Monte Carlo simulation referred to in this investigation

is one where values for independent variables are generated many times to simulate

finding solutions randomly. This simulation is used in each and every experiment to

show that the evolutionary technique under test is performing better than a random

search. The general algorithm for a Monte Carlo simulation [101] is presented in

Algorithm 10.

This algorithm is presented to provide background as to what it means to

run a Monte Carlo simulation. The focus evolutionary algorithm developed within

this research is better than a simple Monte Carlo simulation. Most, if not all, test

functions evaluated in this study are compared against solutions found by the Monte

Carlo simulation with the same number of function calls as the EA.
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Algorithm 10 General algorithm for a Monte Carlo simulation.

1: procedure Markov-process(g (number of specified generations))
2: Select a pointa in phase spaceb, x (initialization)
3: for i = 1 to g do
4: Create a new state from x, x’ (Markov processc)
5: Compute the transition probability of state x → x′ , W (x, x′)
6: Generate a (pseudo) random number, R, uniformly distributed in [0,1]
7: if (W ≥ R) then
8: x ← x′

9: end if
10: end for
11: end procedure

aA point in the algorithm could be either a group of atoms’ or a single atom’s position
bPhase space could be selected subspace within the entire area (select few atoms) to optimize

or it could be the entire space itself (all atoms)
cA first order Markovian process is when a random event or next event is dependant on only

the most recent observation [204].

This ends the non-evolutionary optimization technique discussion. Next, the

single objective Evolutionary Algorithm discussion beginning with Evolutionary Strate-

gies.

E.4 Single Objective Evolutionary Algorithms (SOEA)

The EAs presented in this section are the foundation to most of the multiob-

jective evolutionary algorithms presented in Section E.5.

E.4.1 Evolutionary Strategies. Evolutionary Strategies (ES)s were devel-

oped in 1964 at the Technical University of Berlin (TUB). ES optimization is based on

the hypothesis that during the biological evolution, generational replacement causes

slight changes to better the populace. ES based algorithms imitate, in contrast to

the genetic algorithms (GAs), the effects of genetic procedures on the phenotypic

domain using mutation operators.

Furthermore, it is assumed that ES variable coding is accomplished with the

idea that small changes in cause achieve small changes in the effect (i.e. epsilon
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changes over time results in epsilon improvements over time). The climax of ES

theory is the discovery of the so-called Evolution Window where the evolutionary

progress is said takes place only within a narrow band of mutation steps. These

mutation steps are small in nature and self-adaptable within the algorithm to provide

better results over time. ES notation is as follows:

(1 + 1)-ES: Two membered ES. A child is generated from its parent and then when

comparing parents and child the two most fit survived to the next generation.

(1 + λ̌)-ES: Multimembered ES. Children are generated from parents. Selection for

next generation of EVOPs is accomplished with parents and child.

(1, λ̌)-ES: Multimembered ES. Children are generated from parents. Parents are

discarded and selection for next generation of EVOPs is accomplished children.

(µ̌/ρ̌, λ̌)-ES: Multimembered ES. All the parents have the same mating probabilities

and as with the two-membered ES, the least fit member of the population

including all the parents and the one offspring is eliminated in each generation.

where the µ̌ is the total number of parents, ρ̌ marks the number of parents, which

is recombined, and λ̌ stands for the number of offspring. Selection from among

the offspring (comma notation) or among the offspring and parents together (plus

notation) is represented. Nested ESs are written in the form [µ̌, λ(µ, λ̌)γ̌]-ES; where

the outer brackets the λ̌ populations are judged according to their convergence speed,

after each of these population has run γ̌-times through a (µ̌, λ̌)-selection scheme. γ̌

is called the isolation number. The nested ES forms the basis for the evolutionary

self-adaptation of strategic parameters. Furthermore, a nested ES is qualified for

multimodal and multiobjective optimization [11,12]. [187,197–200]

The pseudocode for an Evolutionary Strategy is given in Algorithm 11 on page

330. The main focus of this EA is the use of the mutation operator. Furthermore,

any statistical model can be used to represent the allowable step size for each vari-

329



Algorithm 11 Evolutionary Strategy Algorithm

1: procedure ES(g, h, j) I g gens, h - (, +), j - 2 or multimembered ES

2: Initialize population, P′0, = {~d1, ~d2, ..., ~dµ̌}εPµ̌

3: ~di : are filtered with a feasibility function using constraints
4: Evaluate P′0 :where each member of the population is evaluated
5: for i = 1 to g do
6: recombine
7: mutate
8: evaluate
9: select

10: end for
11: end procedure

able. Next, Evolutionary Programming, which uses both crossover and mutation, is

discussed.

E.4.2 Evolutionary Programming. Evolutionary Programming (EP) is sim-

ilar to that of ES. Mutation is normally distributed and has some self-adaptation

schedule into genotype mutations. Again, a state-of-the-art implementation of EPs

are meta-EP.

Mutation: The asexual mutation operator mutates the population member

with a standard deviation that is obtained for each component of the variable vector

as the square root of a linear transformation of the fitness function. In overcoming

tuning problems as the algorithm runs, they have added a vector of variances per

individual. This vector is much similar to the parameter variables for the ES.

Recombination: EP does not use crossover or recombination, but relies heavily

upon the mutation operator discussed.

Selection: The asexual essence of the mutation operator the offspring become

the size of the population. Additionally, tournament selection is applied with ranking

(in descending order).
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E.4.3 Genetic Programming. It is most challenging to get a computer

to accomplish a task without coaching it in how to achieve that task. Genetic

Programming (GP) embodies this concept of a computer learning how to program

itself, or auto programming. GP does this by genetically developing or allowing

a population to evolve using Darwinian’s natural selection along with biologically

understood operations. These operations include, but are not held exclusively to the

following: reproduction, crossover, mutation, and architecture-altering operations

patterned after gene duplication and deletion.

E.4.3.1 Population Creation. The auto programming begins by ran-

dom generation of many computer programs. These computer programs may be

in the form of mathematical logic (represented by reverse polish) or in the form of

program modules or sections. In the case of applying GP to any problem, including

MOPs, modules can be thought of other search algorithms: local search algorithms,

GAs, or EPs, to name a few. To begin the algorithm massively produces combi-

nations of GAs that can work on a similar problems for each objective separately.

Each search algorithm, GAs (simple GA, messy GA, fast messy GA, etc), can use

different operators like conjugate gradient, local twist, or sweep, to swap out after a

conclusive run for a particular configurations and objective.

Hierarchical GPs can be used to manage each configuration for each objec-

tive separately - keeping track of what configurations gives the best result for each

objective.

Reproduction: This operator simply selects the next generation based on fit-

ness values. Once all population member have been evaluated and other operations

have been applied – configurations finding the best fitness are moved to the next

population pool.

Crossover: This operator is sexual reproduction after the selection of two

parental programs. When using crossover, it would be the selection of two config-
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urations, and then swapping part of a configuration for the part of another config-

uration. Crossover points are randomly chosen in each parent. The subtree at the

crossover point for the first parent is deleted and replaced with that at the second

parent’s crossover point subtree.

Mutation: The mutation operator selects a configuration to mutate based on

fitness. It randomly selects a mutate point, deletes the subtree at that point, and

grows another subtree at the mutation point to replace it.

Architecture-Altering Operations: This operator dynamically allows the re-

moval and insertion of sub-routines within programs genetically. This operator al-

lows for the actual program to be modified or shaped in a way so that is may adjust

to solving the problem. Ultimately, this operator relieves the programmer from writ-

ing concrete specifications for a program. This operator mutates sub-routines that

are already being wholly crossed and mutated in and out of population members.

E.4.4 Classical Genetic Algorithm. There are many variations on the

Genetic Algorithm. The simple Genetic Algorithm and the steady state GA (ssGA)

are two good examples of such algorithms. All are rooted back to the Darwin’s

theory of evolution, natural selection, and genetics [103]. Described in detail in this

section is the simple Genetic Algorithm.

A Simple Genetic Algorithm (sGA) is at the foundation of genetic algorithm

designs. It evolves a population of complete solutions using the basic operators of

crossover and mutation. Algorithm 12 presents the pseudocode for the sGA.

This is a single objective generational GA. Evolutionary Operators (EVOPs)

for this particular genetic algorithm are basic including crossover and mutation. The

inverse operator is added by Holland [104] in an attempt to correct breaking linkages

using single-point crossover. The operator mimics the property from nature where

the function of a gene is independent of its location on the chromosome.
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Algorithm 12 Simple Genetic Algorithm

1: procedure sGA(N , g, fk(~x))
2: P ′new ← rand(P) I Population Randomly Initialized.
3: P ′old ← P ′new

4: S ← ⋃h
i=1P ′old(rand) I Selection h members for recombination.

5: P ′new = EVOP(S) I Conduct (EVOPs) on S to produce new members.
6: if (size(Pnew) < p) then
7: step 4.
8: end if
9: P ′old ← P ′new

10: Stop if termination criteria met; otherwise, step 3.
11: end procedure

An advantage of this algorithm is that it is easy to implement. Disadvantages

of this algorithm may include that it tends to get stuck in local minima/maxima.

Additionally this is an implicit BB building algorithm because it manipulates and

seeks complete solutions – not partial solutions. Other types of regular Genetic Algo-

rithms that modify the crossover operator or mutation operator also exist; however,

this document places all that evaluate complete solutions as a single unit in this

category. Next the messy Genetic Algorithm and fast messy Genetic algorithms are

discussed.

E.4.5 EA Summary of GPs, ESs, EPs, and GAs: Most, if not all, EAs

can be characterized by Equation 94 where S and V represent the selection operator

and evolutionary variation operators respectively [16].

X [t + 1] = S (V (X [t])) (94)

However, major differences are illustrated within algorithm structure and prob-

lem solution attainment. These difference are tied together with BB search method:

implicit and explicit. This phenomenon is more relevant and apparent when solv-

ing more difficult multicriteria problems (MOPs). Implicit BBBs tend to record

lower effectiveness performance than the explicit BBBs. Some extra data collected

333



and presented illustrating the lower performance for MOEAs when solving test suite

MOPs VL1, VL2, VL3, VL4, and VL5 can be found in Appendix C on page 306 in

Figures 90, 91, 92, 93, and 94.

Algorithm 13 mGA algorithm

1: procedure mGA(o) I o is the size of BBs
2: Randomly Create Competitive Template (CT)
3: for i = 1 to epoch do
4: Initialize BB Population P′bbo I PEI Phase
5: Evaluate BBs in P′bbo I each BB is overlaid onto the CT before eval
6: I Begin Primordial Phase
7: for j=1:primordial generations do
8: Dope P′bbo with good BBs
9: end for

10: I End Primordial Phase
11: I Begin Juxtapositional Phase
12: for j = 1 to Max Juxtapositional Generations do
13: Cut-and-Slice
14: Evaluate Each BB’s fitness using CT
15: Perform Tournament Thresholding Selection
16: end for
17: I End Juxtapositional Phase
18: Update CT I Best known value becomes CT
19: end for
20: end procedure

E.4.6 Explicit Building Block Search Genetic Algorithms. Over the last

decade, some radical new ideas genetic algorithm design have solidified. Among

these ideas is that idea that genetic algorithms, BBB, specifically seek good BBs for

combining together to make good solutions. Discussed are five such algorithms, the

messy GA, fast messy GA, Intelligent Evolutionary Algorithm, Extended Compact

GA, and the Bayesian Optimization Algorithm BOA.

E.4.6.1 messy Genetic Algorithm (mGA). The mGA consists of an

initialization (PEI), primordial and juxtaposition phases. The main difference be-

tween the mGA and a simple GA is in the fact that the mGA uses varying string
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lengths. The encoding of a chromosome is the same as what is described in Equa-

tion 6. The partially enumerative initialization builds a population of BBs consisting

of all possible partial solutions of a specified length. Algorithm 13 presents the pseu-

docode for the mGA and Figure 10 on page 76 illustrates the program flow of one

epoch as well as how the population members grows for one iteration of each phase.

|A|o ∗
(

`

o

)
(95)

The differences between a mGA and a sGA are many! The initial populations

are much different. The mGA produces a population of partial solutions (BBs of a

specified length) whereas the population of the sGA is a group of chromosomes or

complete solutions. The fitness function for the mGA is modified (uses a competitive

template (CT)) to handle partial solutions (BBs); on the other hand, a sGA can only

evaluate an entire chromosome’s fitness for comparison. Associated with the type of

population members held in the population is the population size itself. The mGA

has a larger initial population size than that of a sGA. The mGA’s population size can

be calculated using Equation 95 where o is the block size, ` is the length of the string,

and |A| is the cardinality of the alphabet [82]. The idea for such a large population

size is to have every combination of a particular block size to be present for the

insurance of having the answer to the problem held in the population. Furthermore,

the mGA enriches the population pool (pop-pool) with good BBs in some cases

allowing duplicate stings to reside and periodically reduces the total population

size during selection. Finally, the mGA has variable length strings maintained in

the population where the sGA population members are essentially always the same

length - that of the original fixed string length. This is a generational algorithm

that focuses on generations as steps within the algorithm itself. It is also a single

objective explicit BB genetic algorithm.
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Next, the fast messy Genetic Algorithm is discussed as a follow on to the mGA.

Designers sought to improve the memory requirement and the BB search phase of

the mGA. The result is the fast messy GA.

Algorithm 14 fmGA algorithm

1: procedure fmGA(N ′,BBF schedule) I N ′ members evolved using BBF
scedule

2: Randomly Create Competitive Template (CT)
3: for t = 1 to epochs do
4: I PCI Phase
5: Perform Probabilistically Complete initialization
6: Evaluate each BB’s fitness using CT
7: I Building Block Filtering (BBF) Phase
8: for i = 1 to Max BBF generations do
9: if BBF schedule requires cutting at this generation then

10: Perform BBF
11: else
12: Perform Tournament Thresholding Selection
13: end if
14: end for
15: I Juxtapositional Phase
16: for i = 1 Max Juxtapositional generations do
17: Cut-and-Splice
18: Evaluate each BB’s fitness using CT
19: Perform Tournament Thresholding Selection
20: end for
21: Update Competitive Template I Using best known value
22: end for
23: end procedure

E.4.6.2 fast messy Genetic Algorithm. The mGA’s advantage over

the sGA is its ability to explicitly create tightly linked BBs for the optimization of

deception problem - basically, insuring it has all good BBs somewhere in the popu-

lation of order o BBs. However, the mGA’s insurance policy does not come at cost;

indeed, it is extremely expensive to build every combination of a particular BB size

to put into a population. This initialization dominates the entire algorithm [90]. The

fmGA is designed to reduce this complexity by replacing the initialization phase and
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primordial phase with a probabilistic complete initialization and primordial phase

consisting of selection and BB filtering. PCI and BBF are an alternate means to

providing the juxtaposition phase with highly fit BBs [93]. The fmGA pseudocode is

provided in Algorithm 14 and Figure 106 illustrates the program flow and chromo-

some sizes during program execution. When comparing the complexity of the fmGA

to that of the mGA in Table 23 on page 170, it can be concluded that the fmGA has

lower complexity.

2o

(
`
`′
)

(
`−o
`′−o

)2|A|(α)β2(m̂− 1) (96)

The PCI phase creates an initial pop-pool size of n described by Equation 96,

which is probabilistically equivalent to the pop-pool size at the end of the primordial

phase of mGAs2.

p(`′,o, `) =

(
`−o
`′−o

)
(

`
`′
) (97)

It is accepted as true that the population size is the multiplication of three

equations: The gene-wise probability equation, the allele-wise combinatoric equation,

and the BB evaluation noise equation [93]. Furthermore, it can be shown that the

probability gene-wise equation is the probability of selecting a gene combination

of size o in a string of length `′ having the total number of genes, `, is given as

Equation 97. If, m̂g, is assigned to the inverse of Equation 97, it is suggested that

each subpopulation of size Ng has one needed string, on average, gene combination of

size o. Equation 98 definesNg. If this equation suggests that one of the required gene

combinations for a particular BB size o is obtained, then it can also be expected that

each and and every possible combination of o BB size is also sought, which makes

for 2o allelic combinations or allele-wise combinatoric population size multiplier.

2The MOEA version of population sizing equations can be found in Section 3.2.2.
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Figure 106: Illustrated in this figure is the program flow of the fast messy genetic
algorithm and the population of BB and their growth while the algorithm progresses.
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A second multiplier is then defined in Equation 99 called the BB evaluation noise

equation. This equation makes for a population size calculation where the selection

error between two competing BBs is no more than an α different and a difference

between sampled BB means is β. Finally, the result is a simpler, more manageable,

population sizing calculation Equation 100. [93]

Ng =
1

( `−o
`′−o)
( `

`′)

(98)

Na = 2|A|(α)β2(m̂− 1) (99)

N = NaNg (100)

Once the population size is determined, the initial population is created and

the algorithm begins. The length of strings, `′, is set to `-o. The primordial phase

performs several tournament selection generations to build up copies of highly fit

strings followed by BBF to reduce the string length toward the BB size o. It should

be noted that building block filtering is nothing more than randomly deleting genes

from a particular string effectively reducing it [81]. To conclude, instead of having

a huge initialization cost as with the mGA, the fmGA allows a more optimal initial

population mechanism that is statistically equivalent to that of the mGA.

Algorithm 15 IGC algorithm

1: procedure IGC(P′) I P′ is the population.
2: Divide large chromosomes into smaller segments I Division Phase
3: Identify potentially good smaller segments I Conquest Phase
4: Combine all potentially good smaller segments into fully specified solutions

I Combination Phase
5: end procedure
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E.4.6.3 Intelligent Evolutionary Algorithm (IEA). The Intelligent

Evolutionary Algorithm is based on an older smaller algorithm called the Intelligent

Gene Collector. The claim to fame for the IGC is in its orthogonal experimental

design. IGC has three phases: division phase, conquest phase, and combination

Phase. It is much like the fmGA where the IGC uses a divide and conquer approach

by first chopping up fully specified solutions into smaller segments. One big difference

between the fmGA and the IGC is that the IGC uses contiguous genes and the fmGA

can use genes in any sequence. A second major difference is in the Division phase.

Where the fmGA randomly deletes bits from chromosomes until all chromosomes are

of the same size, the IGC makes the assumption that it is dealing with a population of

good population members and tries to identify common genes within the population.

Next, in the Conquest Phase, good gene segments are identified in the IGC. This

phase has a huge memory/space advantage over the fmGA because the IGC can

only look for contiguous bit segments, where the fmGA looks for all combinations

of non-contiguous bit segments. Finally, in the combination phase, the IGC differs

from the fmGA’s juxtapositional phase in that the IGC tries to combine a set of

Latin Square combinations of the divided chromosomes together until two children

are created: one having the better gene segment from the derived corresponding

parents, and the second child is selected in a similar manner except that the factor

with the smallest MED adopts the other level. Child two is selected from the second

best set of factor settings when comparing the combinations of a Latin Square set

of factor settings (avoiding a full factorial test set).

On small variable problems the IEA using IGC does not perform vs. simple GA

with elitist strategy and one point crossover (OEGA), uniform crossover (UEGA),

two-point crossover (TEGA), BLX-α3 (BLXGA), and BOA. However, on large test

3BLX-α is called a blend crossover operator and has an interesting property: the location of the
child solution depends on the difference in parent solutions. If the difference between the parent
solutions is small, the difference between the child and parent solutions is also small. Basically, the
crossover or movement of variables creates two children that are moved (1−γ) and γ distance from
the original values: γ is uniformly distribution for a fixed value of α.
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variable problems, the IEA using IGC is found to be better than all other algorithms

but the BOA.

Algorithm 16 IEA algorithm

1: procedure IEA(N′, ps, pc, pm) I prob of selection, ps and prob of crossover,
pc, probability of mutation pm

2: Randomly Generate Population of size N′
3: repeat
4: Evaluation each member of the population
5: Update elite sets
6: Selection: I Perform a conventional selection operation. (i.e. Elitism on

100(1− ps)% of the population)
7: Randomly select pc ∗ N ′ parents including Ibest for IGC operation
8: Mutation with probability of pm : pm = 0 for the best pop member
9: until Termination Criteria Met

10: end procedure

The IGA is a generational EA that explicitly searches for good BBs. In fact

this algorithm is no doubt a good competitor to both the fmGA and the BOA. The

pseudocode for IEA is given in Algorithm 16.

E.4.7 Probabilistic model building GAs. In addition to the explicit BB GAs

designs, there is a competing group of Probabilistic Model Building GA (PMBGA)

or Iterated Density Estimation Algorithms (IDEAs) designs that also perform well

on difficult problem. In fact, one of these algorithms, Bayesian Optimization Algo-

rithm (BOA), is the flag ship for genetic algorithm research done at Illinois Genetic

Algorithms Laboratories at the University of Illinois at Urbana-Champaign. This

section discusses the following single objective probabilistic model building GAs: Ex-

tended Compact GA (ECGA), Estimation Distribution Algorithm (EDA) and the

BOA. The following is an outline for a general PMBGA [203]:

1. Generate initial population of N members

2. Select N ′ good solution where N ′ <= N

3. Calculate the joint probability distribution of selected individuals
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4. Generate offspring according to the calculated probability distribution and

replace parents

5. Go to step 2 unless the termination criteria are meet

Crossover and mutation is not involved in the process of generating offspring

being completely replaced by the sampling of probability distribution. Furthermore,

in contrast with implicit BBs builder GAs, PMBGAs process explicit BBs by using

a probability model.

Algorithm 17 Extended Compact Genetic Algorithm

1: procedure ECGA(N ′, pc)
2: Initialize Population, P′, Randomly
3: repeat
4: Evaluate Fitness of population members
5: Tournament Selection
6: Build MPM model using MDL
7: if Population has not Converged then
8: for (i = 1 to N ′ · pc) do
9: Randomly choose subsets from the current individuals where the

gene groups are identified by the current MPM
10: end for
11: for (i = 1 to N ′ · (1− pc)) do
12: Pnew = Pcrossed ∪ best (N ′ · (1− pc)) individuals in P′
13: end for
14: end if
15: until Population Converges
16: end procedure

E.4.7.1 Extended Compact GA (ECGA). The ECGA is proposed

by [99] in 1999. Its success hinges on the supposition that the probability distribution

matching the problem’s is equivalent to learning the linkage. The metric used for

measuring the goodness of a probability distribution match is based on a minimum

description length (MDL) model [191]. The concept behind using MDL models is

that, given all things equal, a simpler distribution is better than a complex one.
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The probability distributions used in the ECGA with the MDL are marginal

product models (MPMs). The MPM models are advantageous to those found in the

Compact GA (cGA) [100] and Population Based Incremental Learning (PBIL) [8]

because the MPM models can represent probability distributions for more than one

gene at a time by facilitating a direct linkage map with each partition separating

tightly linked genes. The pseudocode for this particular algorithm is presented in

Algorithm 17.

The ECGA is shown to be effective in literature on some toy problems like

the following: One Max, Trap, Folded Trap I and Folded Trap II. However, it is

difficult to have an MDL evaluation for multidimensional distributions; therefore, it

is doubtful that this particular technique can be brought to the multiobjective field

of study without difficulties.

E.4.7.2 Estimation of Distribution Algorithm. Estimation of Dis-

tribution Algorithms (EDAs) is an area of Evolutionary Computation where the

algorithms use neither crossover nor a mutation operator. New populations are gen-

erated by sampling the probability distribution. Distributions are estimated from a

bank or database of individuals kept from the previous generation. Approaches for

estimating the probability distribution for the bank of individuals are many.

Algorithm 18 Estimation of Distribution Algorithms

1: procedure EDA(N ′,g) I M is the size of the population, g is generations
2: D0 ← generate N ′ individuals at random
3: for i = 1 to g do
4: Dse

i−1 ← Select j from Di−1

5: pi(x) = p(x|Dse
i−1) ← est the prob distribution of an individual being

among the selected individuals
6: Di ← Sample N ′ individuals (the new population) from pi(x)
7: end for
8: end procedure

There are three different EDA approaches, as expressed above: independent

variable, bivariate dependencies, and multiple dependencies case. For each of the
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Table 62: Summary of EDA research findings [141]

EDA Description of Results Problems
UMDA Good for linear problems having independent Feature selection

variables. However, requires memetic and Classifier
heuristics for combinatorial Systems etc.
optimization.

PBIL Excellent on problems having independent Optimal weights
variables in a binary search space. between Neural
Vector probabilities instead of Network nodes, GP,
population. and Intelligent

Vehicle Domains
MIMIC A generation search on the best Applied to problems

permutation of variables matching the with variables
problem’s probability distribution using having at most two-order
Kullback-Leibler distance. dependencies

COMIT Estimation of probability distributions ”
using a tree structured Bayesian Network ”
by way of the Maximum Weight Spanning Tree ”
(MWST) Algorithm. ”

BMDA Construction of an acyclic dependency ”
graph. Can be connected or disconnected ”

FDA Requirement: Additively Decomposed Function Additively decomposable
(ADF) and the factorization of the joint problems
probability distribution remains same for all
iterations. Combination of EA and (SA)

BOA Bayesian Network PBM and Bayesian Decomposable problems
Dirichlet (BD) metric to estimate joint of bounded difficulty
probability distribution. Incorporation of prior
information about the problem.

ECGA Factorization of joint probability distribution as Silicon Cluster
a product of variable size marginal Optimization problem
distributions.

EBNA A Bayesian Network is used for factorizing Feature Subset
the joint probability distribution. It uses the Selection, featuring
BIC score, K2+Penalized score or PC algorithm weighting in k-NN, Job
for guiding the search of a good model structure Shop Scheduling and TSP
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approaches there are different models that have been employed to capture the correct

distribution for the problem being solved. The following descriptions gives some

examples each employed:

Independent Variables All variables considered as univariate

1. Univariate Marginal Distribution Algorithm (UMDA) by Mühlenbein in

1998 [152]

2. Population Based Incremental Learning (PBIL) by Baluja in 1994 [8]

3. Compact Genetic Algorithm (cGA) by Harik et al. in 1998 [100]

Bivariate Dependencies Pairwise interaction among variables

1. Mutual Information Maximizing Input Clustering (MIMIC) algorithm by

De Bonet et al. in 1997 [15]

2. Combining Optimizers with Mutual Information Tress (COMIT) by Baluja

and Davies in 1997 [7]

3. Bivariate Marginal Distribution Algorithm (BMDA) by Pelikan and Mühlenbein

in 1999 [183]

Multiple Dependencies Multiple dependencies among variables

1. Factorized Distribution Algorithm (FDA) (Mhlenbein et al. 1998)

2. Extended Compact Genetic Algorithm (ECGA) (Harik, 1999)

3. Bayesian Optimization Algorithm (BOA) (Pelikan et al., 2000)

4. Estimation of Bayesian Network Algorithm (EBNA) (Larranaga et al.,

2000)

These types of algorithms combine an algorithm search with a statistical sam-

pling of findings from the search space. They attempt to find inter-bit relationships

or dependencies within a chromosome bit-wise or variable-wise. These algorithms
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have met with much success (see Table 62) and must be heeded as good competitors

in the single and multiobjecitve field of EA study. Next, a more detailed description

of the BOA is considered.

E.4.7.3 Bayesian Optimization Algorithm BOA. Although this al-

gorithm is listed in the EDA section, its importance is emphasized by the fact that

it is mentioned three times in this appendix. This particular algorithm has shown

to solve difficult problems and parallelize with nearly linear speedup [172]. For a

statistical model it uses a depend probabilistic model by building a Bayesian net-

work to represent the inter-bit relations found from a discovered good population of

complete solutions. The pseudocode for BOA is presented in Algorithm 19.

Algorithm 19 BOA algorithm

1: procedure BOA(N ′,g)) I N ′ members evolved g gens
2: Randomly generate a Population, P′, of candidate N ′ solutions
3: for t = 1 to g do
4: Use selection operators to build candidates
5: Use variation operator to Build a Bayesian network from selected candi-

dates
6: Draw new candidate solutions by sampling the constructed Bayesian net-

work
7: end for
8: end procedure

In addition this algorithms is used as a competitor for the algorithm developed

in this study - the MOMGA-IIa. The description of this algorithm completes this

section on SOEAs. These are the basis from which most of the MOEAs are developed;

therefore, it is vital to have a good background of the SOEAs before venturing into

discussions about MOEAs.

E.5 Multiobjective Evolutionary Algorithms (MOEAs)

This section outlines, chronologically, the development of major MOEAs over

the years. A general discussion of each algorithm is given as well as pseudocode. Each
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Table 63: Summary of EVOPs, fitness, and representation for discussed SOEAs.
The notation within the table is as follows: m is mutation, c+m is crossover plus
mutation, div-comb is divide and conquer, and pdf is probability distribution func-
tion

SOEA EVOPS R or Explicit or
{0, 1} Implicit BBs

ES m R Implicit
GP c+m R Implicit
sGA c+m {0, 1} Implicit
mGA cut-splice {0, 1} Explicit
fmGA cut-splice {0, 1} Explicit
IEA div-comb {0, 1} Explicit
ECGA pdf {0, 1} Explicit
EDAs pdf {0, 1} Explicit
BOA pdf {0, 1} Explicit

MOEA is classified as being either an explicit or implicit BBB algorithm. Generally,

the roots of each algorithm come from an earlier, single objective, implementation

discussed above.

E.5.1 Vector Evaluated Genetic Algorithm (VEGA). One of the first

MOEAs developed was called the Vector Evaluated Genetic Algorithm (VEGA)

- designed by Schaffer in 1985 [194, 195]. Schaffer’s design is also referred to as cri-

terion selection because the algorithm bases population selection independently for

each objective function. Furthermore, it was designed as an implicit generational

Genetic Algorithm and uses similar EVOPs to those used in a single objective GA.

Algorithm 20 presents the pseudocode for this MOEA.

The algorithm begins by making a population of N ′ complete solutions. Then,

k sub-populations are created by selecting out of the N ′ original individuals good

individuals with respect to each of the k objectives. A shuffling of these sub-

populations is then achieved to evenly prioritize each member. The k sub-populations

become one big population again. Finally, EVOPs are applied to the single popula-

tion and the process starts all over again. This algorithm was found to suffer from
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Algorithm 20 VEGA algorithm

1: procedure VEGA(N ′, g, fk(~x)) I N ′ members evolved g gens to solve fk(~x)
2: for t = 1 to g do
3: Initialize Population P′ of size N ′

4: Create k sub-populations I Each sub population has N ′
k

members
5: Fill each jth sub-population by selecting from P ′ the best individuals

w.r.t.jth objective
6: Shuffle entire population to mix individuals
7: Apply EVOPs on mixed individuals
8: end for
9: end procedure

speciation4. The problem occurs because this MOEA’s selection mechanism picks

individuals who excel in one objective space, without regard to any other objective

spaces. This is an undesirable effect because it opposes the goal of finding a balanced

or compromised solutions set. Protection of the middling chromosomes is vital and

can be fostered by adding a selection mechanism that encourages crossbreeding be-

tween different spiciest instead of the random mate selection of a tradition GA. [34]

Many researchers have found speciation as a real problem [38, 170] in VEGA and

used a k-branch tournaments to allow for the preservation of diversity [114].

Although the VEGA suffers from speciation, it is easy to implement and has

been found to be useful in other domains. The next MOEA discussed is the Multi-

objective Genetic Algorithm (MOGA) - first suggested by Goldberg in 1989.

E.5.2 Multiobjective Genetic Algorithm (MOGA). Fonseca and Fleming

in 1993 redesigned Goldberg’s Multiǒbjective Genetic Algorithm (MǑGA). The new

MOGA ranks a certain individual corresponding to the number of chromosomes in

the current population by which it is dominated. In other words, an individual ~xi

at generation t, is dominated by p
(t)
i individuals in the current generation, thus an

4Speciation is a technical term for the evolution of a particular species within a populace. In
genetic algorithm terms, it can be referred an algorithm getting caught in a local minimum by
continuously generating similar population members - i.e. population members of a similar species.
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individual is assigned a rank by the following rule: rank(~xi, t) = 1 + p
(t)
i [75]. The

Algorithm 21 presents the pseudocode for the MOGA.

Algorithm 21 MOGA algorithm

1: procedure MOGA(N ′, g, fk(~x)) I N ′ members evolved g gens to solve fk(~x)
2: Initialize Population P′
3: Evaluate Objective Values
4: Assign Rank based on Pareto Dominance
5: Compute Niche Count
6: Assign Linearly Scaled Fitness
7: Shared Fitness
8: for i=1 to g do
9: Selection via Stochastic Universal Sampling

10: Single Point Crossover
11: Mutation
12: Evaluate Objective Values
13: Assign Rank Based on Pareto Dominance
14: Compute Niche Count
15: Assign Linearly Scaled Fitness
16: Assign Shared Fitness
17: end for
18: end procedure

The fitness assignment for this algorithm is modified to support the rank based

fitness assignment. First, the population is sorted according to rank. Next, fitness

is assigned from best to worst according to some function. Finally, the average of

fitness of individuals with the same rank so that all can be sampled at the same rate.

Using this procedure, keeps the global fitness constant and maintains appropriate

selective pressure. This algorithm is not in large use in the community and has been

shown to not perform as well as the multiobjective simulated annealing [214].

E.5.3 Niched-Pareto Genetic Algorithm 1 and 2 (NPGA). In 1993 Horn

and Nafpliotis proposed a tournament selection MOEA based on Pareto dominance

and called it the Niched-Pareto Genetic Algorithm (NPGA) [105,106]. The original

NPGA takes two individuals and compares them against a sampling of the popula-

tion. If one of the individual evaluates to be dominated while the other evaluates
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Algorithm 22 NPGA algorithm

1: procedure NPGA(N , g, fk(~x)) I N ′ members evolved g gens to solve fk(~x)
2: Initialize Population P
3: Evaluate Objective Value
4: for i=1 to g do
5: Specialize Binary Tournament Selection
6: Begin
7: if Only Candidate 1 dominated then
8: Select Candidate 2
9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are Dominated or Non-Dominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

to be non-dominated, the individual evaluating to be non-dominated is declared the

winner. Ties are decided using a fitness sharing technique [95]. Algorithm 22 present

the NPGA pseudocode.

Erickson et al. launched a new NPGA in 2001. This new design is called the

NPGA-2 and uses Pareto ranking but keeps tournament selection. Niche counting is

achieved by using the so-called continuously updated fitness sharing technique where

individuals in the partially filled next generation as opposed to using the current

generation [173]. The algorithm for NSPG-2 is presented in Algorithm 23. Both of

these algorithms are generational implicit BBBs.

E.5.4 Non-dominated Sorting Genetic Algorithm I and II (NSGA). The

Non-dominated Sorting Genetic Algorithm (NSGA) is another modification to the

proposed Goldberg approach [207]. The pseudocode for this MOEA is given in

Algorithm 24.
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Algorithm 23 NPGA-2 algorithm

1: procedure NPGA-2(N ′, g, fk(~x))I N ′ members evolved g gens to solve fk(~x)
2: Initialize Population P′
3: Evaluate Objective Values
4: for i=1 to g do
5: Specialize Binary Tournament Selection using rank as domination de-

gree
6: Begin
7: if Only Candidate 1 dominated then
8: Select Candidate 2
9: else if Only Candidate 2 dominated then

10: Select Candidate 1
11: else if Both are dominated or non-dominated then
12: Perform specialized fitness sharing
13: Return Candidate with lower niche count
14: end if
15: End
16: Single Point Crossover
17: Mutation
18: Evaluate Objective Values
19: end for
20: end procedure

Algorithm 24 NSGA-I algorithm

1: procedure NSGA-I(N ′, g, fj(~xk))I N ′ members evolved g gens to solve fk(~x)
2: Initialize Population P′
3: Evaluate Objective Values
4: Assign Rank Based on Pareto dominance in Each Wave
5: Compute Niche Count
6: Assign Shared Fitness
7: for i=1:g do
8: Selection via Stochastic Universal Sampling
9: Single Point Crossover

10: Mutation
11: Evaluate Objective Values
12: Assign Rank Based on Pareto dominance in Each Wave
13: Compute Niche Count
14: Assign Shared Fitness
15: end for
16: end procedure

351



The MOEA strips off layers of individuals evaluating to be non-dominated,

one layer at a time, within the population. Each layer is assigned a rank and all

individuals within that layer assumes an adjusted fitness value associated with this

assigned rank as its fitness value. Before selection is performed, the entire population

is ranked according to dominance. Thus, all solutions evaluating to non-dominated

vectors are ranked together and given dummy fitness value which is proportional to

the entire population size. Diversity is maintained within the population by sharing

dummy fitness values among population individuals classified together. Each level of

non-dominated vectors are taken separately until all members of the population are

classified. Before selection, individuals with the highest rank always get more copies

than the rest of the population. This allows for a better search of the PFknown regions.

As a result, one might think that this MOEA converges rather quickly; however,

this is prevented with the fitness sharing mechanism. This MOEA is shown to be

successful in research; however, a modification to reduce computational complexity

was completed by [56,57]. Elitism and a crowded comparison operator that achieves

parameterless diversity are added to the new MOEA called NSGA-II.

The non-dominated sorting algorithm-II (NSGA-II) is a generic non-explicit

BB MOEA applied to multiobjective problems (MOPs) – based on the original design

of NSGA. It builds a population of compete individuals, ranks and sorts each indi-

vidual according to non-domination level, applies Evolutionary Operations (EVOPs)

to create new pool of offspring, and then combines the parents and offspring before

partitioning the new combined pool into fronts. The NSGA-II then conducts niching

by adding a crowding distance to each member. It uses this crowding distance in

its selection operator to keep a diverse front by making sure each member stays a

crowding distance apart. This keeps the population diverse and helps the algorithm

to explore the fitness landscape. Presented in Algorithm 25 is its pseudocode. This

MOEA is used in most MOEA comparisons. It has also been used as a foundation

for other successful algorithm designs like the multiobjective BOA [122].

352



Algorithm 25 NSGA-II algorithm

1: procedure NSGA-II(N ′, g, fk(~xk)) I N ′ members evolved g gens to solve
fk(~x)

2: Initialize Population P′
3: Begin
4: Generate random population - size N ′

5: Evaluate Objective Values
6: Assign Rank (level) Based on Pareto dominance - sort
7: Generate Child Population
8: Binary Tournament Selection
9: Recombination and Mutation

10: End
11: for i = 1 to g do
12: for each Parent and Child in Population do
13: Assign Rank (level) based on Pareto - sort
14: Generate sets of non-dominated vectors along PFknown

15: Loop (inside) by adding solutions to next generation starting from the
first front until N ′ individuals found determine crowding distance
between points on each front

16: end for
17: Select points (elitist) on the lower front (with lower rank) and are outside

a crowding distance
18: Create next generation
19: Binary Tournament Selection
20: Recombination and Mutation
21: end for
22: end procedure

E.5.5 Strength Pareto Evolutionary Algorithm I and II (SPEA). The

Strength Pareto Evolutionary Algorithm (SPEA) uses the dominance criterion for

the fitness assignment and selection of solutions. One of the major problems with

this algorithm is when a noisy fitness function is introduced, solutions evaluating to

dominated vectors may evaluate to non-dominated vectors misleading the selection

operator. This MOEA was introduced by Zitzler and Thiele in 1999 and has the

flavor of a mixture of several MOEAs. The Algorithm pseudocode is specified in Al-

gorithm 26. The algorithm begins by initializing a population. At each generation,

individuals evaluating to non-dominated vectors are copied to a so-called external
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Algorithm 26 SPEA algorithm

1: procedure SPEA(N ′, g, fk(~x))
2: Initialize Population P′
3: Create empty external set E′
4: for i:=1 to g do
5: E′ = E′ ∪ND(P′) I Copy members evaluating to be non-dominated of

P to E
6: E′ = ND(E) I Keep only member evaluating to non-dominated vectors

in E
7: Prune E′ (using clustering) if max capacity of E′ is exceeded
8: ∀i∈P′ Evaluate(P′i) I Evaluate fitness for all member of E′ and P′
9: ∀i∈E′ Evaluate(E′i)

10: MP ← T (P′ ∪E′) I Use binary tournament selection with
11: I replacement to select individuals from P′ + E′
12: I (multiset union) until the mating pool is full
13: Apply crossover and mutation on MP
14: end for
15: end procedure

set. Strength values are given to each individual within the external set. Diversity

is kept by the average linkage method [167], which is a cluster pruning technique.

Algorithm 27 SPEA-II algorithm

1: procedure SPEA-II(N ′, g, fk(~x))
2: Initialize Population P′
3: Create empty external set E′
4: for i=1 to g do
5: Compute fitness of each individual in P′ and E′
6: Copy all individual evaluating to non-dominated vectors P′ and E′ to E′
7: Use the truncation operator to remove elements from E when the capacity

of the file has been extended
8: If the capacity of E′ has not been exceeded then use dominated individuals

in P′ to fill E′
9: Perform binary tournament selection with replacement to fill the mating

pool
10: Apply crossover and mutation to the mating pool
11: end for
12: end procedure

The follow-up MOEA to the SPEA is the SPEA-II. Pseudocode can be found in

Algorithm 27. The redesign called for a fitness adjustment, crowding mechanism and
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boundary preservation mechanism [237, 238]. Listed, the following briefly describes

each:

1. The fitness assignment is improved by taking into account how many individ-

uals are dominate to and dominated by each individual. [238]

2. A nearest neighbor density estimation technique allows for a more precise guid-

ance of the search process. [238]

3. Archival truncation methods guarantee the preservation of boundary solu-

tions. [238]

The SPEA-II and NSGA-II seem to be the two of the most prominent MOEAs

used when comparing a newly designed MOEA. Prevalent in these generational

MOEA are the fact that they are implicit BBBs and they reply heavily on some

kind of niching, crowding or fitness sharing scheme.

Algorithm 28 PAES algorithm

1: procedure PAES(fk(~x))
2: repeat
3: Initialize Single Population parent, C, and add to archive, A
4: Mutate C to produce child C ′ and evaluate fitness
5: if C Â C ′ then
6: discard C ′
7: else if C Â C ′ then
8: replace C with C ′, and add C to A
9: else if ∃C”∈A(C” Â C ′) then

10: discard C ′
11: else
12: apply test (C, C ′,A) to determine which becomes the new current so-

lution and whether to add C ′ to A
13: end if
14: until termination criteria is met
15: end procedure

E.5.6 Pareto Archived ES I and M-PAES. The Pareto Archived Evolution

Strategy PAES) was designed and implemented by Knowles and Corne in 2000 [135].
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This MOEA uses Pareto based selection combined with an ES (described in Sec-

tion E.4.1). Using a (1 + 1)-ES in combination with a historical archive that holds

old solutions evaluating to non-dominated vectors. Comparisons are made to the

historical archive when new individuals are created. In addition, PAES contains a

crowding procedure that divides the objective space up in a recursive way to achieve

diversity. The algorithm is presented in Algorith 28.

Other implementation,(1+λ)-ES and (µ+λ)-ES,of this MOEA were proposed

by authors of the PAES; however, these were deemed to not improve the overall

performance of this MOEA. A memetic5 version of PAES, called M-PAES was de-

veloped as a follow up to this algorithm in 2000 [130]. Finally, this MOEA is a

convergent implicit BB MOEA.

Algorithm 29 PESA algorithm

1: procedure PESA(N ′, fk(~x))
2: Initialize Population P′i of size N ′ Randomly
3: Evaluate each member of P′i
4: Initialize the external population P′e to the empty set
5: repeat
6: Incorporate individuals evaluating to non-dominated vectors from P′i into

P′e
7: Delete the current contents of P′i
8: repeat
9: With probability pc, select two parents from P′e I pc is the

probability of crossover
10: Produce a single child via crossover
11: Mutate the child created in the previous step
12: With probability (1− pc), select one parent
13: Mutate the selected parent to produce a child
14: until P′i is filled
15: until termination criteria is met
16: Return(P′e) I Return the members of P′e as the result
17: end procedure

5A memetic algorithm donotes the use of local search heuristic with a population-based strategy.
The word memetic has its roots in the word meme - which is introduced in 1990 by Richard Dawkins
in his book ”The Selfish Gene.” [34]
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E.5.7 Pareto Envelop-based Selection Algorithm I and II (PESA). The

Pareto Envelop-based Selection Algorithm (PESA) is suggested by Corne et al. in

2000 [136]. The pseudocode for the method is given in Algorithm 29. The method

consists of a small internal population and a larger external population. A hyper-grid

division of phenotype space is used to maintain selection diversity (application of a

crowding measure) as the MOEA runs. Furthermore, this crowding measure is used

to allow solutions into the external population via an archive of solutions evaluating

to non-dominated vectors. A revised version of this MOEA is called PESA II. The

difference between the PESA-I and II is that selection is region-based and selection

becomes a hyperbox, not just an individual (i.e. first select a hyperbox, then select an

individual within that hyperbox). The motivation behind this approach is to reduce

computational cost associated with Pareto ranking [137]. Finally, these MOEAs are

convergent implicit BB MOEAs.

Algorithm 30 MOSGA [3]

1: procedure MOSGA(N ′, g, fk(~x))
2: Initialize Population P′
3: repeat
4: for (i = 1 to g) do
5: Randomly Select p parents from P′
6: Apply EVOPs to create a child
7: Calculate the rank of the child
8: Rank the entire population with the new child
9: Locate the most similar individual

10: if New childs ranking is better than the similar individual then
11: Replace the similar individual with new child
12: Update the ranking of the entire population
13: end if
14: end for
15: until Stopping criterion is met
16: end procedure

E.5.8 Multiobjective Struggle GA (MOSGA). The Multiobjective Strug-

gle Genetic Algorithm (MOSGA) [2] combines the struggle crowding genetic algo-

rithm [211] with a Pareto based ranking. The algorithm has the same pattern as
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the struggle algorithm where two parents are chosen at random from the population,

and the normal crossover and mutation is performed to create a child. The child

then competes with the most similar individuals in the entire population. The child

replaces similar individuals if the child has a better ranking - counteracting genetic

drift. The ranking method employed is the same as what is presented by Fonseca

and Fleming in 1993 [75].

Although this MOEA has the flavor of being the MOGA, this algorithm is

devised to counteract genetic drift which is known to spoil population diversity [2].

An advancement to this algorithm is a technique to assess the robustness of optimal

solutions generated by the MOEA. Generational information is extracted from the

MOEA to construct a response surface and a good estimate of the robustness of the

Pareto front. Again, this algorithm is a generational MOEA and also an implicit BB

MOEA.

Algorithm 31 OMOEA [232]

1: procedure OMOEA I(N ′, fk(~x)) I N ′ members evolved until a specified
precision is found for fk(~x)

2: Input decision space χ as initial niche.
3: Evolve niches into P′N (1)
4: Split the niche into a group of ΨN sub-niches.
5: Initialize P′ and Ψ
6: P′ ← P′N (1); Ψ ← ΨN
7: gen=1
8: repeat
9: for (Each χ

(s)
N ∈ χ) do

10: Evolve χ
(s)
N and yield P

(s)
N (1)

11: Split the niche into a group of ΨN niches.
12: end for
13: Ψ ← ⋃

ΨN ;P′:P′ ← ⋃
P′(s)N (1)

14: gen = gen + 1
15: until (current P′ does not reach the required precision, and the solution

number of P′ is not more than a critical value)
16: Output P′ as the satisfying close-to-Pareto-optimal set of MOP
17: end procedure
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E.5.9 Orthogonal Multiobjective Evolutionary Algorithm I and II (OMOEA).

The Orthogonal Multiobjective Evolutionary Algorithm (OMEA) process begins

with a strict definition of the MOP constraints involved for a particular problem

to solve. These constraints are considered when Pareto dominance is defined. The

algorithm starts by defining a single niche in the decision space χ. This niche is

recursively split into a group of sub-niches over and over again until a stopping

criteria is satisfied. This partitioning forces a uniform search. The pseudocode for

OMOEA is given in Algorithm 31 where P′ denotes the global population and Ψ

denotes the set of all sub-niches. [234]

Generally, this MOEA performs well; however, a couple of short comings were

found [233]:

1. Strong interaction (high epistasis) between variables degrades the performance

of OMOEA in both precision and distribution of the PFknown vectors.

2. As the number of objective increase, the number of solutions increase expo-

nentially.

Algorithm 32 OMOEA-II [30]

1: procedure OMOEA-II(N , fk(~x))
2: Randomly create population P0 with size N .
3: Counter t ← 0
4: repeat
5: Apply Crossover Operator on Pt resulting in P′t offspring I |Pt| = |P′t|
6: P”t = Pt ∪ P′t
7: Perform Selection on P”t resulting in Pt+1

8: t = t + 1
9: until Stopping Criteria Satisfied

10: Output Pt

11: end procedure

These short comings listed above are not unheard of for MOEAs. As a matter of

principle, MOEA designers must recognize both of these problems when developing

a new MOEA. The answer to these problems is purposed in [233] and called the
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OMOEA-II. The modification to the OMOEA is to reduce the size of the orthogonal

array in order to exploit optimality within a relatively small space. The pseudocode

for OMOEA-II is presented in Algorithm 32. Finally, this is a convergence MOEA

that implicitly seeks BBs.

Algorithm 33 GENMOP algorithm

1: procedure GENMOP(N , g, fk(~x))
2: Initialize Parent Population Pp of size N
3: Evaluate, Rank, Normalize and Save Parent Population
4: for i=1 to g do
5: Initialize Children and Mating Pool
6: Fill Mating Pool with Parents by Rank
7: for j = 1 to size(children pool) do
8: Statistically select EVOP (weighted section based on previous

good/bad children record)
9: Apply selected EVOP on Children and Mating Pool once

10: Store EVOP used with new child
11: end for
12: Mutate new Children
13: Evaluate new Children
14: Combine Parents with new Children into a new Parent Pool
15: Rank, Normalize and Save new Parent Pool
16: end for
17: end procedure

E.5.10 General Multiobjective Evolutionary Algorithm (GENMOP). The

General Multiobjective Evolutionary Algorithm (GENMOP) is a general MOEA de-

signed at the Air Force Institute of Technology AFIT). GENMOP employs numerous

operators to select from when conducting EVOPs. As the search progresses, it more

often chooses EVOPs that repeatedly produce better solutions. The algorithm works

on the supposition that operators that continuously produce better solutions will, in

the future, continue to produce good solutions. The pseudocode for this is given in

Algorithm 33. In addition to the pseudocode a program flow/population growth dia-

gram is presented in Figure 107 to illustrate the flow population members throughout

execution of the MOEA. GENMOP is a generational implicit MOEA that can be
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Figure 107: Illustrated is the program flow of the GENMOP. Population of vari-
able length solutions and the evolution process while the algorithm progresses is
illustrated. GENMOP pseudocode can be found in Algorithm 33.
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used on generic problems because it can adapt its operator use to those that provide

better solutions.

Algorithm 34 MOMGA algorithm

1: procedure MOMGA(N , g, fk(~x))
2: for i = 1 to epoch do
3: I PEI Phase
4: Perform Partially Enumerative Initialization
5: Evaluate each each population member’s fitness w.r.t.k templates
6: I Primordial Phase
7: for i = 1 to Max Primordial Generations do
8: Perform Tournament Thresholding Selection
9: if Appropriate number of generations accomplished then

10: Reduce Population Size
11: end if
12: end for
13: I Juxtapositional Phase
14: for i = 1 to Max Juxtapositional Generations do
15: Cut-and-Slice
16: Evaluate Each Population member’s fitness w.r.t.k templates
17: Perform Tournament Thresholding Selection and Fitness Sharing
18: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
19: end for
20: Update k templates I Using best known value in each objective
21: end for
22: end procedure

E.5.11 Multiobjective messy GA (MOMGA). The Multiobjective messy

GA (MOMGA) is a multiobjective implementation of the messy GA. It works in

three phases: initialization to build a pool of BBs, primordial phase for finding im-

portant BBs, and the juxtapositional phase for combining these BBs to form optimal

or near-optimal solutions [94, 216]. In the primordial phase, partial strings are ini-

tialized. However, it differs from the original messy GA in that the MOMGA uses

multiple competitive templates, each correspond to an individual objective function.

MOMGA begins with random templates and then finds best templates for each ob-

jective from the best solutions obtained at the end of each era, thereby finding the

competitive template for each objective for an era, a matter which is important for
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Table 64: Summary of EVOPs, fitness, sharing, and representation for discussed
implicit BB MOEAs.

MOEA EVOPS Fitness Sharing R or Explicit or
{0, 1} Implicit BB

VEGA c+m - Phenotypic {0, 1} Implicit
Fitness σshare

MOGA c+m Linear interpolation Phenotypic R Implicit
using Fonseca and Fitness σshare {0, 1}
Fleming’s Pareto
ranking [75]

NPGA 1 c Tournament Phenotypic {0, 1} Implicit
Fitness σshare R

NPGA 2 c Rank Phenotypic Implicit
Dominance Continuously R

Update fit.
Technique

NSGA I c Dummy fitness Phenotypic {0, 1} Implicit
using Goldberg’s (σshare - R
Pareto ranking [89] Fitness)

NSGA II c+m - Phenotypic {0, 1} Implicit
Fitness σshare R

SPEA I c+m Dummy fitness Phenotypic {0, 1} Implicit
using Goldberg’s Fitness σshare

Pareto ranking [89]
SPEA-II c+m Strength value Density Prog Implicit

base on dominance function Tree
niching

PAES-I m (1+1)single grid Phenotypic {0, 1} Implicit
Fitness σshare R

M-PAES m (1+1)single grid Phenotypic {0, 1} Implicit
Fitness σshare R

PESA c+m - Phenotypic {0, 1} Implicit
(Region -
sharing)

PESA-II c+m - Phenotypic {0, 1} Implicit
(Hyperbox -
sharing)

MOSGA c+m Linear interpolation Phenotypic {0, 1} Implicit
using Fonseca and Fitness σshare

Fleming’s Pareto
ranking [75]

OMEA - Niching R Implicit
OMEA-II - Niching R Implicit
GENMOP c+m - Phenotypic R Implicit

Fitness σshare
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proper evaluation of partial solutions in an era. Tournament selection and cut-and-

slice operators are also inherited from the original messy GAs. Finally, the dominance

measure used for selection and diversity preserving mechanism of NPGA is used, the

resulting algorithm has both the desired properties of a multiobjective optimizer.

This algorithm has also been suggested as a parallel MOEA. In fact, if the cardinal-

ity of this set is not the same as the desired population size, other individuals from

the offspring population can be included. This strategy shows that convergence of

this algorithm to the Pareto-optimal set - which is fantastic. A parallel version of the

MOMGA lack the second task of maintaining diversity of Pareto-optimal solutions.

Thus, explicit diversity preserving mechanism should be added to the MOMGA to

make it more usable in practice.

This MOEA is a generational explicit BB building algorithm. The pseudocode

for the MOMGA is presented in Algorithm 34.

E.6 Summary

This appendix discusses a broad variety of MOEAs. For completeness the

rooted SOEAs are given as well to illustrate the design development process and

thoughts between having a single objective algorithm and making it a multiobjective

algorithm. In addition, these algorithm are classified with respect to the different

being either an implicit or explicit BBB. Plus, if the algorithm is an implicit BBB, is

it an interior or exterior BBB. The focus of this research is on implicit exterior BBs

builders because it is the thought that this particular type of BBB is just as good,

if not better, than any other type of builder.
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Algorithm 35 MOMGA-II algorithm

1: procedure MOMGA-II(fk(~x))
2: for i = 1 to epoch do
3: I PCI Phase
4: Perform Probabilistically Complete initialization
5: Evaluate each pop member’s fitness w.r.t.k templates
6: I Building Block Filtering (BBF) Phase
7: for i = 1 to Max BBF generations do
8: if BBF schedule requires cutting at this generation then
9: Perform BBF

10: else
11: Perform Tournament Thresholding Selection
12: end if
13: end for
14: I Juxtapositional Phase
15: for i = 1 Max Juxtapositional generations do
16: Cut-and-Splice
17: Evaluate each population member’s fitness w.r.t.k templates
18: Perform Tournament Thresholding Selection and fitness Sharing
19: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
20: end for
21: Update k templates I Using best known value in each objective
22: end for
23: end procedure
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Appendix F. Comparison of explicit building block MOEAs

This appendix is dedicated to describing and comparing explicit BBBs. Statistically,

the mBOA and MOMGA-IIa are shown to effectively be the similar on deception

problems; however, these two explicit BBBs classify BBs differently. A comparison

of the mBOA to the MOMGA-IIa can be found within Section F.5.1 on page 372.

Single objective explicit BBBs and implicit BBBs are discussed in Appendix E on

page 324. A brief discussion of the MOMGA, MOMGA-II(a), IMOEA, and prob-

abilistic model building algorithm are given before the main comparison between

the multiobjective probabilistic model genetic algorithm and other multiobjective

explicit BBBs is given. This appendix’s main objective is to present a complete de-

scription of today’s state-of-the-art explicit BBBs and delineate differences between

each.

F.1 Multiobjective messy GA (MOMGA)

The Multiobjective messy GA (MOMGA) is a multiobjective implementation

of the messy GA. It works in three phases: initialization to build a pool of BBs, pri-

mordial phase for finding important BBs, and the juxtapositional phase for combin-

ing these BBs to form optimal or near-optimal solutions [94,216]. In the primordial

phase, partial strings are initialized. However, it differs from the original messy GA

in that MOMGA uses multiple competitive templates, each corresponding to an in-

dividual objective function. MOMGA begins with random templates and then finds

the best templates for each objective from the best solutions obtained at the end of

each era/epoch, thereby finding the competitive template for each objective for an

era/epoch, a matter which is important for proper evaluation of partial solutions in

an era/epoch. Tournament selection and cut-and-slice operators are also inherited

from the original messy GAs. Finally, the dominance measure used for selection

and diversity-preserving mechanism of NPGA is used; the resulting algorithm has
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both the desired properties of a multiobjective optimizer. This algorithm has also

been suggested as a parallel MOEA. In fact, if the cardinality of this set is not the

same as the desired population size, other individuals from the offspring popula-

tion can be included. This strategy shows that this algorithm must convergence to

the Pareto-optimal set given enough time. A parallel version of MOMGA lacks the

second task of maintaining diversity of Pareto-optimal solutions (either within the

genotype or phenotype domain). Thus, an explicit diversity-preserving mechanism

should be added to the MOMGA to make it more usable in practice.

This MOEA is a generational explicit BBB. The pseudocode for MOMGA is

presented in Algorithm 34 on page 362.

Algorithm 36 MOMGA-II algorithm

1: procedure MOMGA-II(fk(~x)) I Solve fk(~x)
2: for h = 1 to epoch do
3: I PCI Phase
4: Perform Probabilistically Complete initialization
5: Evaluate each pop member’s fitness w.r.t.k templates
6: I BB Filtering (BBF) Phase
7: for i = 1 to Max BBF generations do
8: if BBF schedule requires cutting at this generation then
9: Perform BBF

10: else
11: Perform Tournament Thresholding Selection
12: end if
13: end for
14: I Juxtapositional Phase
15: for i = 1 Max Juxtapositional generations do
16: Cut-and-Splice
17: Evaluate each population member’s fitness w.r.t.k templates
18: Perform Tournament Thresholding Selection and fitness Sharing
19: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
20: end for
21: Update k templates I Using best known value in each objective
22: end for
23: end procedure
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F.2 Multiobjective fast messy GA MOMGA-II and MOMGA-IIa

A brief introduction to these explicit BBBs is given in Sections 2.10.5 on page

60 and 2.10.6 on page 61. The next appendix is spent exclusively on a brief history of

MOMGA, detailed history of design of MOMGA-II and a detailed design description

of MOMGA-IIa. Thus, this section is vacant of a discussion about the details of

MOMGA-II and MOMGA-IIa. However, the pseudocode for the algorithms is given

in Algorithms 36 on page 367 and 37 on page 369. MOMGA, MOMGA-II and

MOMGA-IIa are alike in many ways. Each is an explicit BBB that has three phases

within. The difference is that the phases of the MOMGA differ slightly from the

phases of MOMGA-II and MOMGA-IIa, plus, MOMGA-IIa has an extra phase.

Table 65 presents the corresponding phases between these three MOEAs.

Table 65: Listed is each phase of MOMGA and the corresponding phases in
MOMGA-II and MOMGA-IIa.

MOMGA Phase MOMGA-II/MOMGA-IIa Phase
−→ /Preparation

PEI −→ PCI
Primordial −→ BB Filtering

Juxtapositional −→ Juxtapositional

Phases for these MOEAs are renamed due to a redesign brought about by the

high population size requirement of MOMGA. MOMGA is originally based upon

the mGA, and it inherited the population sizing problem associated with that single

objective algorithm.

F.3 Intelligent Multiobjective EA (IMOEA)

Intelligent Multiobjective Evolutionary Algorithm (IMOEA) incorporates elitism

with a capacity of NEmax to maintain diversity and improve the performance of the

IMOEA. The IMOEA is similar to the IEA in that a Latin Square of combinations is

created to produce children from one IGC operation; however, within the IMOEA,
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Algorithm 37 MOMGA-IIa algorithm

1: procedure MOMGA-IIa(fk(~x)) I Solve fk(~x)
2: for h = 1 to epoch do
3: I PCI Phase
4: Perform Probabilistically Complete initialization
5: Evaluate each pop member’s fitness w.r.t.(k ∗ r̂ + î + ô) templates
6: I BB Filtering (BBF) Phase
7: for i = 1 to Max BBF generations do
8: if BBF schedule requires cutting at this generation then
9: Perform BBF

10: else
11: Perform Tournament Thresholding Selection
12: end if
13: end for
14: I Juxtapositional Phase
15: for i = 1 Max Juxtapositional generations do
16: Cut-and-Splice
17: Evaluate each pop member’s fitness w.r.t.(k ∗ r̂ + î + ô) templates
18: Perform Tournament Thresholding Selection and fitness Sharing
19: PKnown(t) = Pcurrent(t) ∪ Pknown(t− 1)
20: end for
21: Update k ∗ r̂ templates I Using the Competitive Template Management

System
22: Filter î and ô templates based on k ∗ r̂ updated templates
23: end for
24: end procedure

multiple objective values representing each member makes for different selection and

mating operators. Moreover, the IMOEA’s selection and mating operators result in

the increase from two to eight offspring - including two parents, two children, and

four by-products.

The IMOEA is tested against SPEA, SPEA-II, NSGA, NSGA-II, NPGA,

VEGA using the MOPs ZDT [135]. The IMOEA is illustrated visually to out-

perform all the competitor MOEAs on these test problems in [102]. Furthermore,

this algorithm is shown to work well without linkage learning. However, parameter

encoding to lower the degree of epistasis can help the results of the IMOEA. Finally,

the IMOEA is a generational explicit BB MOEA, with a unique design where it does
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Algorithm 38 IMOEA

1: procedure IMOEA(P′, fk(~x)) I fk(~x)
2: Randomly generate population P′ members
3: Create empty elite set E
4: Create empty temporary elite set E ′
5: repeat
6: Evaluate each pop member w.r.t.each objective function
7: Re-assign fitness values for each member using GPSIFF
8: Add the solutions evaluating to non-dominated vectors in E ′ to E
9: Empty E ′

10: Remove dominated members in E
11: if (size(E) > NEmax) then
12: Randomly remove members in E until size(E) == NEmax

13: end if
14: Select P′ − P′ps individuals from the population using binary tournament

selection and randomly select P′ps individuals from E to form a new
population, where P′ps = P′p ∗ ps.

15: if (P′ > NE) then
16: P′ = NE
17: end if
18: for (Each IGC operation on the P′ ∗ pc selected parents) do
19: Add individuals evaluating to non-dominated vectors derived from by-

products OA combinations (by-products) and two children to E ′
20: end for
21: Apply mutation operation with pm to the population.
22: until Termination Criteria Met
23: end procedure

not specifically hunt for linkages within the chromosome in order to find optimal

solutions. IMOEA’s pseudocode can be found in Algorithm 38.

F.4 Multiobjective Probabilistic model building GAs

Multiobjective Probabilistic model building Genetic Algorithms (MOPMB-

GAs) are few in the field of evolutionary computation. Much like the single objective

equivalent, MOPMBGAs are motivated by an idea of building a probabilistic model

of the population to preserve important (good) BBs in the subsequent generations.

One such approach is the Multiobjective Bayesian Optimization Algorithm (mBOA)
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where the BOA is placed inside the NSGA-II for probabilistic model building before

the population building purposes. Selection is still performed by the NSGA-II. In

this section, a discussion of the mBOA is given.

Algorithm 39 mBOA algorithm

1: procedure mBOA(N , g, fk(~x))
2: Initialize Population P′ where |P′| = N
3: Begin
4: Generate random population - size N ′

5: Evaluate Objective Values
6: Assign Rank (level) Based on Pareto dominance - sort
7: Generate Child Population
8: Binary Tournament Selection
9: Recombination and Mutation

10: End
11: for t = 1 to g do
12: for each Parent and Child in Population do
13: Assign Rank (level) based on Pareto - sort
14: Generate layers of sets vectors that are non-dominated
15: Loop (inside) by adding solutions to next generation starting from the

first front until N ′ individuals found determine crowding distance
between points on each front

16: end for
17: Select points (elitist) on the lower front (with lower rank) and are outside

a crowding distance
18: Create next generation
19: Binary Tournament Selection
20: Recombination and Mutation
21: end for
22: end procedure

F.5 Multiobjective Bayesian Optimization Algorithm (mBOA)

The mBOA was also used to solve deception MOPs in previous research [121].

mBOA is identical to the single objective Bayesian Optimization Algorithm (BOA) [121]

minus the selection procedure. The mBOA’s selection procedure is replaced by the

non-dominated vector sorting and selection mechanism of NSGA-II. The BOA gen-

erates a child population of size N ′ from a parent population. The child and parent

371



population is then merged and the combined population is Pareto ranked. Based on

the Pareto ranking and crowding distance function, a new population is created from

which BOA builds a new probabilistic model to generate children again. The mBOA

pseudocode is presented in Algorithm 39 on page 371. Furthermore, the mBOA is a

generational MOEA having an explicit BBB flavor.

F.5.1 MOPMBGA and Explicit MOBBB Statistical Similarities. Statisti-

cal similarities between multiobjective probabilistic model building algorithms and

explicit BBBs must be accomplished empirically through testing and evaluation of

solutions. Two such experiments exist where direct comparisons of final results from

these algorithms exist. The first is within this document, where in Chapter V on

page 169, a discussion of the mBOA and the MOMGA-IIa is used to solve deception

problems with high epistasis. In this example, MOMGA-IIa and mBOA both find all

PFtrue vectors successfully; however, MOMGA-IIa finds a larger number of duplicate

vectors representing the same final Pareto front vectors but having a different geno-

type makeup. Table 66 lists the number of duplicates found. The duplicate-finding

ratios are given below each MOP. For each experiment, MOMGA-IIa finds many

more genotypically unique duplicate optimal solutions representing the same Pareto

front vector set than the mBOA. In some respects, it can be said that MOMGA-IIa

performed better on these test problems; however, the overall results show that both

perform equally well in finding the Pareto front vectors - not in the number of op-

timal solutions. Thus, the effectiveness of these MOEAs are statistically similar for

solving the deception problems T1T2, T3T4, and T5T2.

The second example is from [102] where a comparison of several EAs is pre-

sented. BOA is within the group of EAs tested. BOA, in Ho et ed. [102] finding

is found to be extremely computationally expensive. Solutions found by BOA are

only superior to those of SGA, OEGA, AGA, and SAGA. Furthermore, BOA takes,

on average, about 1, 115.95sec for a single run on the functions presented in Ta-

ble 67, while the other EAs take less than 1sec using the CPU AMD 800 MHz. It
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Table 66: Number of genotypically unique optimal solutions evaluating to dupli-
cate Pareto front vectors (PFtrue) for the Deception problems using the MOMGA-IIa
and mBOA.

MOEA T1T2 30 T1T2 90

MOMGA-IIa 32768 57661
mBOA 224 591

Dupe Ratios 146.3 to 1 97.6 to 1
(IIa to mBOA)

T3T4 30 T3T4 60 T3T4 90

MOMGA-IIa 64 565 1280
mBOA 30 102 327

Dupe Ratios 2.1 to 1 5.5 to 1 3.9 to 1
(IIa to mBOA)

reveals that BOA takes much longer to solve large parameter optimization problems

(LPOPs). This is a serious limitation when considering that EAs are generally used

to solve NPC problems in a short period of time. Table 68 lists the results of Ho’s

testing.

By these experimental examples, the BOA is considered a good explicit BBB if

ample time exists to solve a problem. In fact, it is shown to be ranked 1st when solving

all the benchmark functions selected by Ho. However, it is also illustrated that other

explicit BBBs perform similarly on many problems, as well - at lower computational

cost. This leads a researcher to identify that the top-down BB approach of the BOA

is effectively statistically similar, over time, to the bottom-up approaches of the IEA

and MOMGA-IIa. It may even be the case that the bottom-up approaches (IEA

and MOMGA-IIa) might be, on average, more efficient than the top-down approach

of the BOA; however, this is offered as a conjecture - not a proof. It should be

emphasized that although these BBBs do perform statistically similarly, there is a

definite difference in the manner in which they find good BBs. These differences

are presented in Chapter II on page 19, where each BBB is identified as having a
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Table 67: Benchmark functions used by [102] in his investigation on EA perfor-
mance on LPOPs.
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Table 68: Lists a summary of EA performance on LPOPs [102].
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different type of BB classifier rule (see Table 4 on page 64 for the list of types of

classifiers identified for each BBB).

F.6 MOEA Summary

A good summary of specifications for the SOEAs examined is in Appendix E

on page 324 and listed in Table 63 on page 347. Also, a summary of specification for

implicit and explicit MOEAs discussed in this appendix is given in Tables 69 and 64.

The trend for each is that implicit BBBs came first, followed closely behind by explicit

BBBs. The coding complexity of algorithms using explicit search techniques seems

to be more difficult than that of the implicit methods. Furthermore, more structural

emphasis on managing partial solutions and determining goodness of these partial

solutions can become a maintenance nightmare; however, EAs like the mGA, fmGA,

IEA and other MOEAs based on the structure of these have found ways to manage

this complexity problem. In addition, explicit BB builders have numerous methods

for seeking these good BBs. Researchers that design BB builders must be aware of

the two major ways to search for good BBs: interior and exterior. An interior BB

search first finds a good complete solution and then segments that solution seeking

for the good BBs within. An exterior BB search builds BBs and subjects these BBs

to tests for goodness, normally by placing them within another complete solution.

The thought process behind having an interior BB search begins with an implicit BB

search, which is rather like having a mixture of both implicit and explicit interior

BB search algorithms.

The difference between implicit and explicit BBBs is in how these builders seek

BBs within a chromosome. The implicit or implicitus BBBs use EVOPs in hopes of

shuffling bits together in a manner to create BBs within the entire chromosome. This

is an implied BB recognized only within the chromosome but not directly identified as

a BB by the algorithm. BBs in an implicit BBB are capable of being recognized but

they are unexpressed, whereas, an explicit BBB fully and clearly expresses the BBs
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Table 69: Summary of EVOPs, fitness, sharing, and representation for discussed
explicit BB MOEAs.

MOEA EVOPS Fitness Sharing R or
{0, 1}

MOMGA cut-splice Tournament Phenotypic {0, 1}
(σshare -
Fitness)

MOMGA-II cut-splice Tournament Phenotypic {0, 1}
(σshare -
Fitness)

MOMGA-IIa cut-splice Tournament Phenotypic {0, 1}
(σshare -
Fitness)

IMOEA div-comb MED Phenotypic {0, 1}
(weighted σshare -
Fitness)

mBOA none Bayesian Phenotypic {0, 1}
Dirichlet (σshare -
(BD) Fitness)

leaving nothing implied. Hence, each BB that is found can be presented separately,

outside of the full chromosome, where it was overlaid to make a good solution that

evaluated to a non-dominated vector.

F.7 Summary

This appendix discusses a broad variety of MOEAs. For completeness, the

rooted SOEAs are given, as well, to illustrate the design development process and

thoughts between having a single objective algorithm and making it a multiobjective

algorithm. In addition, these algorithms are classified with respect to the difference

being either an implicit or explicit BBB. Plus, if the algorithm is an implicit BBB,

it is an interior or exterior BBB. The focus of this dissertation is on implicit exterior

BBBs because it is thought that this particular type of BBB is just as good as any

other type of builder in finding good BBs.
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Appendix G. Future Work

This appendix is provided to give insight to future design modifications and appli-

cations that can be used in conjunction with MOEA research.

G.1 MOMGA-IIa selection operator change

MOMGA-IIa stores all values associated with each competitive template; how-

ever, it only uses the best of these values when determining selection. A study of

selecting either based on an averaging these values for each objective when select-

ing the best BB within the tournament selection might show to improve the overall

performance of the MOMGA-IIa.

G.2 BB deception avoidance

MOMGA-IIa has three types of competitive templates. Each embodies what

you want from an evolutionary algorithm: exploration and exploitation (in both

genotype and phenotype domains). However, there may be problems structured to

take advantage of certain weaknesses of this design (if there are any). Let’s call

this problem, if it exists, a BB deception problem. As described by Dr Peterson, a

BB deception problem is a problem where two solutions, having different genotypes,

map to the exact same phenotypic vector. To make this problem different than

the deception problems already solved within this research, let us also say that two

solutions mapping to the same phenotypic vector do not have linkages in common

(even shifted linkages). The MOMGA-IIa would keep track of the second incoming

solutions mapping to the same phenotypic vector if the duplicate flag is set on or

weak dominance is used within. Although it is conjectured that this problem can still

easily be solved by an unmodified MOMGA-IIa, to ensure these types of solutions

are kept around for later BB searching on that solution a new mechanism to keep

a new type of competitive template would need to be added. The new competitive
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template might be called the shadow template because it evaluates to the same

phenotypic vector as an already stored template and thus defeating the fabled BB

deception problem.

G.3 Sorting of Non-dominated vectors

The MOMGA-IIa Pareto front structure advances the state-of-the-art in ex-

plicit BBBs by sorting according to objective values as solutions are found; however,

the search must stop while the sort commences. A suggested alternative implemen-

tation using a parallel sorting node is given here to allow the search algorithm to

continue without a hiccup when processing new solutions for target vector slot as-

signment and non-dominance. One such implementation might use a resident Com-

mon Object Request Broker Architecture (CORBA) Object Request Broker (ORB)1

handle all sorting and incoming solution/vectors.

Another BB search technique using the DFT is described here, but not tested.

This method is good at finding inter-bit linkages.

G.4 Linkage Learning within any Genetic Algorithm

Learning the linkages is important when solving problems using genetic algo-

rithms. In fact, linkage learning is considered to be a large concern of most MOEA

researchers. Even for single objective evolutionary algorithms linkage learning is

challenging; however, when you add multiple dimensions (objectives) to the prob-

1The Object Request Broker (ORB) provides a mechanism for transparently communicating
client requests to target object implementations. It simplifies distributed programming by cou-
pling the client from the details of the method invocations. Client requests then appear to be
local procedure calls. The ORB is responsible for finding the object implementation where the
client has invoked an operation, transparently activating it if necessary, delivering the request to
the object, and returning any response to the caller. See http://www.cs.wustl.edu/~schmidt/
corba-overview.html for more details.
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lem, linkages for each dimension can make identification of patterns difficult. When

difficult to learn, problems are said to have high epistasis2.

The following method is the first ever proposed using a Discrete Fast Fourier

Transform (DFFT) as a device to identify both inter-bit and intra-bit patterns.
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Figure 108: The plot illustrates the FFT results of a randomly generated popula-
tion of 100 chromosomes of length 10.

Finding Inter-bit Linkages:

The linkage identification method is similar for both the inter-bit and intra-

bit linkage detection; however, a modification of the population to find linkages is

necessary. The inter-bit linkage identification method (FFT-IFFT method) is as

follows:

2An interaction between nonallelic genes, especially an interaction in which one gene suppresses
the expression of another - www.dictionary.com.
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Figure 109: The plot illustrates the results of the inverse FFT after selecting values
having meaningful interactions.

P =





b0,0, : · · · , b0,n

bN ,0, : · · · , bN ,n



 (101)

P̄ =
{

b0,0, : · · · , b0,n, · · · , · · · , bN ,0, · · · , bN ,n

}
(102)

Correlations are identified by the values of the bit positions in FFT-IFFT

method breaking a predetermined or learned correlations threshold value, ϕ. An

example of an expected output from an FFT of P̄ is given in Figure 108. Moreover,

an example of expected output from the IFFT of the new vector ~nv is given in
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FFT-IFFT method

1. The entire population, P, is lined up in one long vector, P̄. (Eq. 101)
2. An FFT is taken of the vector, P̄. (Eq. 102)
3. Every j ∗ n value from the FFT is made into a new vector, ~nv

where j = 1, · · · ,N
4. An Inverse FFT (IFFT) is then taken of the new vector, ~nv
5. A threshold is determined to identify if a correlation exists.

Figure 109. Finally, degradation of frequency of correlated bits and results of the

IFFT are given in Figure 110.
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Figure 110: This plot illustrates the degradation of IFFT values resulting 100%
and less values associated with particular values in a population of chromosomes.

Finding Intra-bit Linkages:

A modification of the population to find linkages is accomplished in the form

of Xoring each bit of each member with itself. The linkages are then identified by
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Figure 111: This plot illustrates the capabilities of the Xor-FFT-IFFT method

transposing the matrix and the IFFT of the FFTed vectorized transposed matrix.

The inter-bit linkage identification method (Xor-FFT-IFFT method) is as follows:

Figure 111 illustrates an example of the resultant matrix found using the Xor-

FFT-IFFT method. Note that the row/columns of the matrix identify the bits

interacting with each other and the matrix does not identify what the bits are set

too. This can be found using a mean value method on the original population, P,

for one bit – the rest can be derived after one correlated bit setting is identified.

Drawbacks to this approach are mainly in the fact that extra computation may

be unnecessary because there may not be any linkages to find. Also determining the
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Xor-FFT-IFFT method

1. Each member within the population is Xored with each of its own bits
This generates a new population of N 2 x m bits, P′.

2. The population, P′, is then transposed, P”.
3. The transposed population, P”, is then lined up in one long vector, P̄”. (Eq. 101)
4. An FFT is taken of the vector, P̄”. (Eq. 102)
5. Every j ∗m value from the FFT is made into a new vector, ~xv

where j = 1, · · · ,N 2

6. An Inverse FFT (IFFT) is then taken of the new vector, ~xv
7. The result of the IFFT is then placed into an adjacency matrix.
8. A threshold is determined to identify if a correlation exists3.

threshold at which decide that bits are correlated may be a point of contention or

problem specific.

G.5 Future Fitness Function Replacement

Future consideration for replacing the fitness function of the PSP problem

should look into more suitable neural networks like the bipolar neural network that

specifically can be trained to emulate spike filled landscapes such as what the PSP

problem has. In addition, additional models or revalidation of the current PSP model

may need to be addressed. Possible algorithm domain alternatives may be the BOA

or the mBOA; however, beware of the computational time associated with running

such an algorithm on this type of difficult problem.

G.6 Future Work m-ary signal symbol set design

Since this is a new angle on an old problem, many different techniques to

increase the effectiveness of MOMGA-IIa in solving this problem. Right now, the

model needs to be modified to yield maximum fitness value at the same constella-

tion that the Monte Carlo simulation validates to be the lowest Pb. So far, a better

model escapes us. Our current models show little correlation to the current simula-

tion model. Once a model is found for finding good constellations for use on signals

subject to additive White Gaussian Noise, a new model can be derived to find con-
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stellations for noisy signals having other types of noise. In fact, the ultimate goal

would be to have a channel noise probe identify the noise over a channel and back

propagates this information to an EA that searches for an optimal symbol set for

that channel. Once the symbol set was defined for the unknown noise in the channel,

communicators would have the best symbol set for that digital system.

G.7 Publications

The research completed in support of this document has led to several publi-

cations [41, 44–53, 126, 127, 145, 146] in four different problem domain areas. These

publications are of interest to the Air Force as they illustrate an efficient and ef-

fective means of solving real-world Air Force MOPs that when used in conjunc-

tion with other approaches. Other real-world applications having different charac-

teristics (different dimensionality: {2, 3, · · · , k} and/or fitness landscapes {rugged,

smooth, multimodal, · · · } or pareto front characterizations { disconnected, concave,

discrete,· · · }).

G.8 Application Overview

This section describes different applications where MOEA research can be ap-

plied. Discussion includes numerous pedagogical and real-world applications. Exam-

ples of past and present applications being solved using MOEAs are the following:

Modified Multiobjective Knapsack Problem, Advanced Logistics Problem, Protein

Structure Prediction Problem, Organic Air Vehicle (OAV) problem, Deception prob-

lem, MOEAs on Field Programmable Gate Array (FPGAs), Sensor Management,

Digital Amplitude-Phase Keying with M-ary Alphabets, Signal Identification Prob-

lem, Signal Jamming Problem, and Network Security to name a few.

G.8.1 Modified Multiobjective Knapsack Problem. The Modified Multiob-

jective Knapsack Problem (MMKP)is modeled from the single objective knapsack

problem. The single objective knapsack problem is a classical problem where an Air-

385



man is faced with filling his chemical bag with items – maximizing the total value

of items carried in the bag. To make the problem more difficult, each item has a

specified weight and value associated with it; furthermore, the chemical bag also

has a specific capacity which it cannot exceed [37]. The MOP formulation of this

problem has a variable number of bags and each item must be placed in all or none

of the knapsacks – thereby keeping with military uniformity so each bag has exactly

the same contents. Zydallis used the MOMGA-II to solve this problem in 2003 [244].

G.8.2 Advanced Logistics Problem. The Advanced Logistics Problem

(ALP) is a real-world problem involving logistics research in resource allocation.

According to [124], ALP is developing advanced information technology to support

planning, execution, monitoring and replanning throughout the logistics pipeline,

enabling the warfighter to project and sustain overwhelming combat power sooner

and with less reliance on large Department of Defense (DoD) inventories. This re-

search is advantageous to Battlefield Awareness Data Dissemination (BADD)4 and

has been solved using MOEA technology [244].

G.8.3 Protein Structure Prediction Problem. The Protein Structure Pre-

diction (PSP) problem is a Grand Challenge problem among biochemists, computer

scientists and engineers alike. Solving this problem involves correctly predicting

the geometrical conformation of a fully folded protein. Past research focused on

CHARMm energy minimization and the use of a genetic algorithm, fast messy ge-

netic algorithm (fmGA), to obtain good solutions to this optimization problem.

Research continued in this field by applying a Multiobjective approach to solving

this problem using a modified fast messy GA - MOEA. By dividing the CHARMm

energy model into separate objectives, it is shown in [41] that an MOEA can find

4BADD is providing warfighters at echelons from the Task Force Commander down to Battalion
level or lower, and especially mobile warfighters, with advanced battlefield awareness applications
that are driven by near-real time data that is delivered by advanced data dissemination methods.

386



structural configurations of a protein that yield lower energy values and ultimately

more correct conformations.

G.8.4 Organic Air Vehicle (OAV) requirements. The Organic Air Vehicle

requirement problem maps nicely to the Multiobjective Quadratic Assignment Prob-

lem (mQAP). The mQAP is an NP-complete problem with a multitude of real-world

applications. The specific application addressed in this paper is the minimization of

communication flows in a heterogenous mix of unmanned aerial vehicles. Developed

is a multiobjective approach to solving the general mQAP for this UAV application.

The combinatoric nature of this problem calls for a stochastic search algorithm;

moreover, the multiobjective fast messy Genetic Algorithm (MOMGA-IIa) [43, 243]

is used for experimentation. Results indicate that many of the pareto optimal points

are found; however, again the MOMGA-II is limited by the archive and competitive

template generation technique. The MOMGA-IIa shows better results overall.

G.8.5 Deception Problem. Deception problems are among the hardest

problems to solve using ordinary genetic algorithms. Recent studies show that

Bayesian optimization can help in solving problems such as these. This investigation

compares the results acquired from the new multiobjective fast messy genetic al-

gorithm (MOMGA-IIa), multiobjective fast/messy genetic algorithm (MOMGA-II),

multiobjective Bayesian optimization algorithm (mBOA), and the non-dominated

sorting genetic algorithm-II (NSGA-II) when applied to three different deception

problems. The three deceptive problems are: interleaved minimal deceptive prob-

lem, interleaved 5-bit trap function, and interleaved 6-bit bipolar function. Problem

sizes are increased to show how the MOMGA-IIa can scale up to solve even larger

problems more easily than the MOMGA-II.

G.8.6 MOEAs on FPGAs Problem. Placing an MOEA on a Field Pro-

grammable Gate Array (FPGA) for the purposes of solving a problem has interest in

387



many fields. Sensor Management, Signal Identification, Signal Jamming, and UAV

coordination control are just a few that would require this type of integration. How-

ever, the integration task for putting an MOEA on a FPGA is not easy. Areas of

concern are memory availability, computational power and mapping of problem to

a discretized computer problem via digital logic design for a computer chip. The

technology trend of chips is moving fast and support for larger programs is here

today; however, much technology is still required to make this effort a reality.

G.8.7 Sensor Management. Sensor management is a large field. UAVs

having autonomous control and coordination techniques to accomplish a mission

need sensor management modules to govern fuel consumption, battery conservation,

compromises between mission success and loss of equipment, coordinated intelligence

gathering, effective formation patterns, enemy assault and target recognition. The

entirety of the problem can be consolidated into a discretized computer solvable

problem for an MOEA to solve; however, this is still a wide open optimization

problem and field of study for MOEA application.

G.8.8 Digital Amplitude-Phase Keying with M-ary Alphabets. Signal sets

employing amplitude and phase keying (APK) with large alphabets conserve band-

width and do not require as high a signal-to-noise ratio (SNR) as phase-shift key-

ing (PSK). Optimum designs are sought for alphabets containing 4 to 128 symbols.

Designs are based on symbol-error-probability bound for both average and peak SNR.

To lower symbol-error-probability a design placing symbols at farther distances from

one another is best.

By means of an error probability bound, APK signal sets have been compared

in an empirical search for the optimum design as a function of alphabet size. For all

alphabet sizes greater than 4, new designs have been presented [213] that outperform

previously proposed sets on the basis of both peak SNR and average SNR. For

Number of Symbols > 8, APK offers an advantage in average and peak SNR relative
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to PSK that increases with alphabet size. Given an accurate model to optimize,

MOEAs can be used to design these symbol sets to be placed in optimal positions to

acquire comparatively good peak and average SNR values. This problem is solved

using the MOMGA-IIa; however, the goodness of solutions to the problem are limited

by the model design – not due to the limitation of the algorithm. Further model

development is required in this area; however, results presented are comparable to the

rectangular symbols set positions used in everyday digital communication systems.

G.8.9 Signal Identification Problem. There is military interest in identify-

ing M -ary signals for exploitation. Signals are normally broadcasted in Phase or Am-

plitude Shift keying modes. In addition, these signals can be shifted in N increments

to provide more or less transmission bandwidth. Exploiting enemy transmission, on

the fly, can be advantageous to the air force for intelligence gathering. To exploit a

intercepted transmission the signal must be identified as either a Phase or Ampli-

tude shift keying signal; then, the signal bandwidth or bit level must be identified.

Much study has been accomplished on identifying each component of a transmitted

signal. A researcher using each of these pattern recognition techniques to identify a

transmitted signal while maximizing correlation of the transmitted signal with the

expected results of each type of test for signal identification, this problem then be-

comes a pattern classification problem which can be solved by an MOEA. Again,

this problem is wide open to MOEA research.

G.8.10 Signal Jamming Problem. Signal jamming interests military op-

erations to prevent communication between enemy units (be they ground units or

aircraft operators/equipment). Stand alone devices built primarily for the purpose

of matching and then jamming an enemy signal in the field is not unimaginable.

Field Programmable Gate Arrays can be integrated with other components to small

programs in an attempt to match and then jam these signals. MOEA FPGA inte-

gration can become involved in this process; however, the MOEA must be designed
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with the limited memory and signal adaptation in mind. This problem area too is

open for MOEA research.

G.8.11 Network Security. Attacks against computer networks today are

sophisticated. Adversaries are exploiting weaknesses by using new attacks or mod-

ifying existing ones. Past research used two types of multiobjective approaches,

lexicographic and pareto-based, in an evolutionary programming algorithm to de-

velop a new method for detecting these attacks. MOEA development can extend

the Computer Defense Immune System: an artificial immune system for virus and

computer intrusion detection. The approach vaccinates the system by evolving an-

tibodies as finite state transducers to detect attacks; this technique may allow the

system to detect attacks with features similar to known attacks. Testing indicates

that the algorithm performs satisfactorily in generating finite state transducers ca-

pable of detecting attacks. Further testing of this algorithm can include a MOEA

having a preprocessing mechanism for the developing of antibodies. A study of this

kind remains an area needing to be studied.
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Appendix H. Multiobjective Discussion [216]

This appendix is used mainly for a brief discussion of Pareto terminology. The more

detailed discussion can be found in [216] where this is drawn.

H.1 Multiobjective Optimization

The method for finding the global maximum or minimum of any function is

referred to as Global Optimization. In general, this is presented in Definition 27 as

stated in Bäck [4]:

Definition 27 (Global Minimum): Given a function f : Ω ⊆ Rn → R, Ω 6= ∅,
for ~x ∈ Ω the value f ∗ , f(~x∗) > −∞ is called a global minimum if and only if

∀~x ∈ Ω : f(~x∗) ≤ f(~x) . (103)

Then, ~x∗ is the global minimum solution(s), f is the objective function, and the set

Ω is the feasible region. The problem of determining the global minimum solution(s)

is called the global optimization problem. 2

This formulation must be modified to reflect the nature of multiobjective prob-

lems where there may not be one unique solution but a set of solutions found through

the analysis of associated Pareto Optimality Theory. Many times multiobjective

problems force the decision maker to make a choice which is essentially a tradeoff of

one solution over another in objective space.

Multiobjective problems are those where the goal is to optimize k objective

functions simultaneously. This may involve the maximization of all k functions, the

minimization of all k functions or a combination of maximization and minimization

of these k functions. A MOP and a MOP global minimum (or maximum) is formally

defined by Van Veldhuizen as [216]:
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Definition 28 (MOP Global Minimum): Given a function F : Ω ⊆ R` → Rk,

Ω 6= ∅, k ≥ 2, for ~x ∈ Ω the set PF∗ , F (~x∗i ) > (−∞, . . . ,−∞) is called the global

minimum if and only if

∀~x ∈ Ω : F (~x∗i ) ¹ F (~x) . (104)

Then, ~x∗i is the global minimum solution set ( i.e., P∗), F is the multiple objective

function, and the set Ω is the feasible region. The problem of determining the global

minimum solution set is called the MOP global optimization problem. 2

This MOP consists of k objectives reflected in the k objective functions, m

constraints on the objective functions and n decision variables. The k objective

functions may be linear or nonlinear in nature. The evaluation function, F : Ω −→
Λ, is a mapping from the decision variables (~x = x1, . . . , xn) to output vectors

(~y = a1, . . . , ak) [216].

It is necessary to define additional terminology to remain consistent with the

terminology used in the EA field. The term objective is used to refer to the goal of

the MOP to be achieved and objective space is used to refer to the coordinate space

within which vectors resulting from the MOP evaluation are plotted [216].

H.1.1 Pareto Terminology. The concept of Pareto Optimality is integral

to the theory and analysis of MOPs. A way to determine if one solution is better

than another is a necessity as well as in all problems. Pareto concepts allow for

the determination of a set of optimal solutions in MOPs. Although single-objective

optimization problems may have a unique optimal solution, MOPs usually have a

possibly uncountable set of solutions, which when evaluated produce vectors whose

components represent trade-offs in decision space. Some key Pareto concepts, for

minimization MOPs, are defined mathematically by Van Veldhuizen as [216]:

Pareto optimal solutions are those solutions within the search space whose

corresponding objective vector components cannot be all simultaneously improved.

These solutions are also termed non-inferior, admissible, or efficient solutions, with
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the entire set represented by P∗. Their corresponding vectors are termed non-

dominated; selecting a vector(s) from this vector set (the Pareto front set PF∗)

implicitly indicates acceptable Pareto optimal solutions, decision variables or geno-

types. These solutions may have no clearly apparent relationship besides their mem-

bership in the Pareto optimal set. It is simply the set of all solutions whose associated

vectors are non-dominated; it is stressed that these solutions are classified as such

based on their phenotypical expression. Their expression (the non-dominated vec-

tors), when plotted in criterion phenotype or objective space, is known as the Pareto

front [216,246].

A MOEA’s complex structure can lead to confusion in discussing the algo-

rithmic process that takes place. To prevent further inconsistencies in discussions

of MOEAs, Van Veldhuizen [216] developed Pareto terminology to clarify MOEA

discussions. He stated at any given generation of a MOEA a “current” set of Pareto

optimal solutions (with respect to the current MOEA generational population) exists

and is termed Pcurrent (t), where t represents the generation number. There are also

a number of MOEAs that use a secondary population, also referred to as an archive

or an external archive, to store non-dominated solutions found through the genera-

tions [216, 218]. Since this secondary population contains Pareto optimal solutions

generated at a certain point in time, each time another point is considered for ad-

dition to the secondary population, the point must be looked at for non-dominance

with respect to the points currently in the secondary population. This secondary

population is denoted Pknown (t). The t reflects the potential changes to the sec-

ondary population as the MOEA executes. Additionally, Pknown (0) is defined as the

empty set (∅) and Pknown alone as the final set of Pareto optimal solutions returned

by the MOEA at termination [216,246].

Different secondary population storage strategies exist; the simplest is when

Pcurrent (t) is added at each generation (i.e., Pcurrent (t)
⋃

Pknown (t−1)). At any given

time, Pknown (t) is thus the set of Pareto optimal solutions yet found by the MOEA
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through generation t. Of course, the true Pareto optimal solution set (termed Ptrue)

is not explicitly known for problems of any difficulty. Ptrue is defined by the functions

composing an MOP; it is fixed and does not change. Because of the manner in which

Pareto optimality is defined Pcurrent(t) is always a non-empty solution set [216].

Pcurrent (t), Pknown , and Ptrue are sets of MOEA genotypes where each set’s

phenotypes form a Pareto front. The associated Pareto front terms for each of these

solution sets is PFcurrent (t), PFknown , and PFtrue . Thus, when using an MOEA to

solve MOPs, the implicit assumption is that one of the following holds: Pknown =

Ptrue, Pknown ⊂ Ptrue, or PFknown ∈ PF ε
true over some norm (Euclidean, RMS, etc.).

Solutions on the Pareto Front represent optimal solutions in the sense that

improving the value in one dimension of the objective function vector leads to a

degradation in at least one other dimension of the objective function vector. This

forces the decision maker to make a tradeoff decision when presented with a number

of optimal solutions for the MOP at hand, i.e. the Pareto Front. There exists a

difference in terminology between an acceptable compromise solution and a Pareto

Optimal Solution [77]. The decision maker typically chooses only one of the as-

sociated Pareto Optimal solutions, ~u ∈ PF∗, as being the acceptable compromise

solution, even though all of the Pareto Optimal solutions are optimal. The decision

maker bases this solution choice off of which solutions take into account the human’s

preference. The human preference factor forces engineers and scientists to attempt

to find all of the points on the Pareto front since all points are not weighted equally

in the decision maker’s mind.

Definition 29 (Pareto Front width distribution): The width of the Pareto

front created by the Pareto epsilon Dominance factor is described by the Pareto front

width distribution. By placing 3D Gaussian distributions (Parzon Windows) on each

vector on a Pareto epsilon front, a distribution can be illustrated having a multidi-

mensional Gaussian Distribution Characteristics. See Definition 6 on page 12 for a

definition of Pareto epsilon dominance. 2
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Appendix I. Additional metrics

This appendix is added to describe some of the metrics/indicators that are not used

to describe the merit of MOEA found approximation sets. These additional sections

are not an attempt to list each and every metric available to an MOEA research,

but only to list the other metrics considered.

I.1 R1 Indicator

The R1 metric calculates the probability that an approximation set A is better

than a set B over a set of utility functions, U, and R1R is identical to R1 when it is

used with a reference set [88].

R1(A,B,U, p) =

{∫

u∈U

C(A,B, u)p(u)du, subject to Equation 105

}

˜¨
u(A,B)C =





1 : if u(A) > u(B)

1/2 : if u(A) = u(B)

0 : if u(A) < u(B)

(105)

Let A and B be two approximation sets, U is a set of utility functions, u :

Rk 7→ R. This function maps each point in objective space into a measure of utility,

p(u) is the probability density of the utility u ∈ U, and u(A) = maxz∈A{u(z)} and

also for u(B). Joshua Knowles suggests that the R1 indicator requires a set of utility

functions which must be defined. Recently, Fonseca et ed’s presented a method for

defining the utility function for R1 at EMO [129]. Furthermore, Zydallis stated

that an indicators such as RR use low computational resources and can differentiate

between different levels of complete out performance if given a reference set. In
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addition he stated that these indicators are somewhat complex to understand and

require the use and determination of utility functions, reducing the attractiveness of

the metric. [244]

I.2 Two Set Coverage (CS)

The two set coverage metric is an MOEA comparison metric which can be

called a relative coverage comparison of two approximation sets. Consider A, B ⊂ A

as two sets of phenotype decision vectors. CS is defined as the mapping of the order

pair (A, B) to the interval [0,1] according to equation 106.

CS(A,B) , |{a′′ ∈ B; ∃a′ ∈ A : a′ º a′′}|
|B| (106)

If all solutions in A evaluate to vectors that are (weak) non-dominated by

vectors resulting from evaluating solutions in B, then by definition CS = 1. CS = 0

implies the opposite. In general, CS(A, B) and CS(B,A) both have to be considered

due to set intersections not being empty. This metric can be used for A = Pknown or

PFknown. The advantage of this metric is that it is easy to calculate and provides a

relative comparison based upon dominance numbers between generations of MOEAs.

Observe that it is not a distance measure of how close these set are as that is a

different metric. [31]

I.3 Distributed Spacing (ι)

A measure expressing how well an MOEA maintained a distributed set of

PFknown vectors over a non-dominated region is (ι). This metric is defined as:

ι ,
(

q̂+1∑
i=1

(
i − ̄i

σi

)2

) 1
2

(107)
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where q̂ is the number of desired non-dominated vectors and the (q̂ + 1)th subregion

is the dominated region, i is the number of individuals evaluating to vectors in

the ith subregion (niche) of the non-dominated region, ̄i is the expected number of

individuals evaluating to vectors in the ith subregion of the non-dominated region,

and σ2
i is the variance of individuals evaluating to vectors serving the ith subregion of

the non-dominated region. They show that if the distribution of points is ideal with

̄i number of points in the ith subregion, the performance measure ι = 0. Thus, a low

performance measure characterizes an algorithm with a good distribution capacity.

This metric may be modified to measure the distribution of vectors within the Pareto

front. In that case both metrics (S and ι) then measure only uniformity of vector

distribution and thus complement the generational distance and maximum Pareto

front error metrics.

I.4 Generational Non-dominated Vector Generation (GNVG)

This metric tracks how many non-dominated vectors are produced at each

MOEA generation and is defined as:

GNV G , |PFcurrent(t)| (108)

I.5 Non-dominated Vector Addition (NVA)

As globally non-dominated vectors are sought, one hopes to add new non-

dominated vectors (that may or may not dominate existing vectors) to PFknown each

generation. This metric is then defined as:
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Appendix J. Parallel Computing

This appendix is provided to give an explanation and references for other parallel

computing models used within the MOEA field. These models are not unique and

well known throughout the field.

J.1 Parallel Models

Another advantage to using the new design of strings of characters and a

vector of integers plus allocating the storage of fitness values in a separate array of

doubles is the ease of parallel implementation. Furthermore, it has been shown that

MOEA efficiency improves when using any one of the parallel models [222]. The

following three models are possible parallel implementations of the MOMGA-IIa:

Island model, Master-slave model, and diffusion model.

J.1.1 Island model. The island model is based on the setting where islands

in the ocean are close, but out of direct evolutionary contact. However, because

the islands are close, once in while exchange of species occurs. The pMOEA model

resembles this by separately evolving EA populations on separate nodes with the

random or generational exchange of percentage of good population members. Island

models can be implemented on any cluster type architecture including distributed

or shared memory clusters. Communication occurs in logical or physical geometric

structures like rings, meshes, toruses, triangles, and hypercubes.

Within the island model each processor (or island) in this paradigm, executes

a MOEA simultaneously with other processors. A single sub-population evolves

on each processor. On occasion, processors randomly exchange or send the best

solutions (or BBs) to other islands based on the neighborhood structure. Each

processor evolves a population using either the same or a different MOEA. After

completion of generations on each island, populations are combined and the best
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population member (or BB) is presented as the solution. The five different types

of island models are the following: homogeneous, heterogeneous, a combination of

different optimization approaches, a partitioning of the genotype region, and finally,

a different distribution or layout scheme of the new competitive template target

vector scheme discussed in this chapter. The first four listed are covered in depth in

Zydallis’ dissertation [244].

J.1.2 Farming (Master-Slave) model. The farming model code modifica-

tion is motivated by having the need for two parallel models working as one. The

farming model is a simple dynamic load balancing implementation of the juxtapo-

sition phase’s evaluation function. Upon start-up, the fmGA initializes a pool of

processors that is used in parallel to evaluate the fitness function of all new par-

tial population members during phase of the algorithm. The only stipulation is

that the total number of compute nodes must divide evenly by the number of al-

gorithm nodes. For example, in the Figure 112 each Algorithm node is represented

by a square, and circles represent compute nodes. The configuration on the left is

showing a configuration of one Algorithm node (which runs the fmGA) and three

compute nodes. When this Algorithm node reaches the cut and splice phase within

the juxtaposition phase, it builds the new population, and then dynamically (accord-

ing to the currently population size) divides up the evaluations between the three

compute nodes, all left over evaluations are performed by the Algorithm Node. The

configuration on the right side of Figure 112 shows how the communication occurs

between Algorithm nodes as well as from Algorithm node to Compute nodes. This

communication is essential when the Algorithm nodes are working together from a

common population. In addition, there is another stipulation that no two Algorithm

nodes can have a common compute node.

The farming model, built in code using Message Passing Interface (MPI), fol-

lows the visual representation discussed above. The most important part is initializ-

ing the groups correctly. Once this is complete, all following MPI calls are the same
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Figure 112: Farming model visualization of communication between algorithm
nodes and farm or compute nodes. Algorithm nodes are represented by the square
boxes and Compute nodes are the ovals.

with one modification to the “group” identifier. Normally, all sends and receives

are channeled to the entire group, MPIWORLD. Now, all calls are either to the a

configured Algorithm Group or Farm Group. Furthermore, each farm group can

only communicate with one algorithm node. Figure 113 illustrates how the nodes

are grouped. Communication only occur within a group. It is this restriction that

forces the group relationships defined for this model. Further, it is easy to see that

Algorithm nodes communicate only with Algorithm nodes and Farm nodes within

that Algorithm node’s farm group. Furthermore, farm nodes can only communicate

with nodes that are within its own farm group – this always includes one Algorithm

node.

0 4 8 12 
1 5 9 13 
2 6 10 14 
3 7 11 15 

 

Algorithm Group 

Farm Groups 

Figure 113: Visualization of nodes grouped into Algorithm and Farm arrays.

Consequently, the farming model code is contained inside the MOfmGA and

consequently does come with the MOMGA-IIa package; however, it is untested.
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Algorithm 40 Initialize Farms

1: procedure init farming model(an,fn) I an is number of algorithm nodes
and fn is the number of farming nodes for each an.

2: NumNodes = (an + (an ∗ fn))
3: NumFarms = (an ∗ fn)
4: NumFarmsPerAlg = fn
5: for (i = 0;i < NumFarmsPerAlg;k + +) do
6: alg proc[i] = i*(fn+1)
7: if (i∗(fn+1) == this node’s world number) then
8: my group = i
9: IamBoss = TRUE

10: end if
11: for (j = 0;j < (fn + 1));j + +) do
12: farm proc[i].ranks[j] = i*(fn+1) + j
13: if ((i*(fn+1)+j) == this node’s world number) then
14: j > 0
15: my group = i
16: IamFarm = TRUE
17: end if
18: end for
19: end for
20: end procedure

J.1.3 Diffusion model. The diffusion model, sometimes referred to as the

local population model, constrains the selection of parents to a local neighborhood

– normally the processor on which the algorithm runs. Each individual is handled

separately; selection and mating partners are always selected within the local neigh-

borhood by local selection. A diffusion of information through the population takes

place. Another model would be an overlapped diffusion model having a shared mem-

ory architecture where the memory is marked in such a way that it is overlapped

in certain areas. Individuals located in the overlapped area are actually used for

selection purposes in two or more algorithm contained regions. Figure 114 on page

402 presents a visual example of regionalistic chromosomes and the overlapped areas

discussed above. In this model, the overlapped chromosomes require a lock bit for

use when being replaced with offspring. Zydallis also has a more in depth description

of the diffusion model [244].
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Figure 114: This figure illustrates the fitness landscape of the diffusion model
where patches of good chromosomes may be. Notice that the selection regions
marked by bold. In this figure, selection regions do overlap and can effect the overall
evolution of the separated regions.

J.2 Summary

This appendix sole purpose is to describe MOEA parallel design already tested

and used within the MOEA field. In fact most of these models are not much different

than the parallel models purposed for single objective evolutionary algorithms.
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Appendix K. Alternative methods for producing orthogonal arrays

This appendix is provided to present brief descriptions of methods for acquiring

well distributed orthogonal vectors. Most of these methods are used for design

of experiments (DOE) when deciding how many experiments to run and how to

change the levels (settings) for variables for a good representation (subset) of the full

factorial design that would be required if one where to test every possible experiment

combination.

K.1 Full factorial

The full factorial method is one where each and every combination of the

incoming vector is developed. This is the method that is too computationally cum-

bersome and unrealistic to use on problems having greater than 20 variables each

having levels greater than 2.

K.2 Latin Square

The term Latin Square was first coined by Euler in 1782. Normally, Latin

Squares are used for factors having more than two levels and interactions between

factors are nonexistent. The following equation denotes L as the Latin Square op-

erator that generates an ô by ` matrix of values that are a series or orthogonal rows

(arrays).

Lô(|A|`) = [ai,j]ô by `

where the jth factor in the ith combination has the level ai,j ∈ A

For example: assume there is a problem having four factors, ` = 4, and each

factor has three levels: A = {0, 1, 2}. Notice that the alphabet is now changed to

include an extra level (i.e., trinary instead of binary). The ortogonal bank of array
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that would be created if the user specified nine, ô = 9, chromosomes to be created

would be the following:

L9(3)4




1 1 1 1

1 2 2 2

1 3 3 3

2 1 2 3

2 2 3 1

2 3 1 2

3 1 3 2

3 2 1 3

3 3 2 1




Table 70: Bank of orthogonal templates generated using Algorithm 8 with ô = 5,
` = 20, and Q = 2. 



00000000000000000000
00000000000000011111
10000001111111100000
00000001111111111111
10011110000111100001




K.3 Taguchi arrays

A Japanese engineer named Genichi Taguchi proposed a handful of approaches

to experimental designs referred to as the “Taguchi Methods.” These methods utilize

two-, three-, and mixed-level fractional factorial designs. One set of designs called

large screening seemed to be particularly favorite of Taguchi. This method is called

“off-line quality control” because it can be used to ensure good performance in the

design stage of products or processes. Figure 115 presents a visualization of how the

experiments are factored. The inner array is indicated by ~vi and the outer ~zj arrays

for a equally partitioned factored experiment. [13]
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Figure 115: This figure illustrates a 8x4 experimental settings (or orthogonal
vectors) using the Taguchi methods. Notice the inner and outer array. Designs like
these are developed to repeatedly test noisy factors (outer array) and while testing
each design factors (inner array).

Table 71: Plus and Minus Signs indicating templates used for Plackett-Burman
two-level Design of Experiments.
K = Exp-1 vars, Exp runs Plus and Minus Signs for two-level Plackett-Burman Designs

11/12 ++-+++- - -+-
19/20 ++- -++++-+-+- - - -++-
23/24 +++++-+-++- -++- -+-+- - - -
35/36 -+-+++- - -+++++-+++- -+- - - -+-+-++- -+-

K.4 Plackett-Burman arrays

Another common two-level fractional factorial designs via fold over are at-

tributed to Plackett and Burman (1946) [185]. Table K.3 lists templates used by

Packett and Burman for creating designs for Exp = 12, 20, 24, 28, and 36. To create

these designs the procedure is as follows:

1. Take the template ± row from the Table for the appropriately sized run, Exp,

and write it in a table row (or column).
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2. The next row (or column) is generated from the previous one by moving the

elements of the row (or column) to the right (or down) one position and placing

the last element in the first position.

3. Repeat step 2 until the table is complete.

4. Finally, a row of minus signs is then added to complete the design.
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Appendix L. 3-bit Examples Using BB definitions

The following 3-bit problem to illustrate the application of the definitions and the

need for a fitness ranking. To begin, Figure 116 illustrates the fitness functions used

in this example.

 

1 

2 

3 

F1(x) 

000 111 001 
010 
100 

011 
101 
110 

1 

2 

3 

000 111 001 
010 
100 

011 
101 
110 

F2(x) 

a
. 

b. 

Figure 116: Presented is the 3-bit bi-objective fitness functions used in the follow-
ing two examples illustrating the problem with using unmodified fitness values.

P = {000, 001, 010, 011, 100, 101, 110, 111} (109)

BB1 = {0xx, x0x, xx0, 1xx, x1x, xx1} =
{

b̃1,1, · · · , b̃1,6

}
(110)

BB2 = {00x, 0x0, x00, 01x, 0x1, x01, 10x, 1x0, x10, 11x, 1x1, x11}
=

{
b̃2,1, · · · , b̃2,12

}
(111)

This is not to say that a BBB having the good BB definition 11 on page 23

combined with this fitness ranking adjustment contains the necessary components

to be called the optimum BBB. The ranking fitness adjustment only ensures that if

the true optimal solution is found (using a BB), that particular BB is identified as a

good BB and not lost by definition. Without the fitness ranking, optimal BBs can

be missed. The upcoming example in the next section illustrates the point.
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L.1 Un-adjusted fitness example

Two fitness function examples have been contrived here, F1(~x) and F2(~x) (see

Figure 116), to assist in explaining how the weighting of fitness can misguide these

good BB definitions into labeling a BB as good when it is not really a part of building

an optimal solution. This ultimately means that the BBB is misguided and cannot

put its set of identified good BBs together to build the optimal solution or solutions.

Table 72: Mean objective 1 value for BB1 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃1,1,1
= ( 2+0+2+0+0+1+0+1)/8 = 0.75

µb̃1,1,2
= ( 2+0+2+0+0+1+0+1)/8 = 0.75

µb̃1,1,3
= ( 2+2+0+0+0+0+1+1)/8 = 0.75

µb̃1,1,4
= ( 0+1+1+3+0+1+1+3)/8 = 1.25

µb̃1,1,5
= ( 0+1+0+1+1+3+1+3)/8 = 1.25

µb̃1,1,6
= ( 0+0+1+1+1+1+3+3)/8 = 1.25

Wobj,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW1,1,1 = (2*0.75 + 3*1.25)/5 = 1.05 > 0.75 b̃1,1 is bad

µW1,1,2 = (2*0.75 + 3*1.25)/5 = 1.05 > 0.75 b̃1,2 is bad

µW1,1,3 = (2*0.75 + 3*1.25)/5 = 1.05 > 0.75 b̃1,3 is bad

µW1,1,4 = (3*0.75 + 2*1.25)/5 = 0.95 < 1.25 b̃1,4 is good

µW1,1,5 = (3*0.75 + 2*1.25)/5 = 0.95 < 1.25 b̃1,5 is good

µW1,1,6 = (3*0.75 + 2*1.25)/5 = 0.95 < 1.25 b̃1,6 is good

• BB inspection with respect to function F1(~x)

The first example illustrates how to calculate and test a selected BB for good-

ness in F1(~x) (Objective 1). Every BB of size 1 and 2 in the three-bit solution

space is evaluated for goodness. In order to test for BB goodness, first a BB

size, o, is chosen. Then a BB of size o is picked for inspection. Each possible

BB of size o ∈ {1, 2} is given in Equations 110 and 111. Next, the BB under

inspection is overlaid onto each and every population member. The resultant

of the overlaying function is evaluated for fitness. Every population member in

the three-bit solution space is given in Equation 109. The mean value, µb̃, of
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the BB under inspection after being overlaid onto each and every population

member is stored. This value is then compared to the mean fitness value, µW ,

of every other BB being overlaid onto the entire population. If the µb̃ is greater

than µW then the BB is said to be a true good BB and a g appears in the BB’s

row in the table. If the means are equal, the BB is equivalent and a e appears

in the BB’s row within the table; otherwise the BB is bad and a b appears in

Table 73: Mean objective 1 value for BB2 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃1,2,1
= ( 2+0+2+2+0+0+2+0 )/8 = 1.0

µb̃1,2,2
= ( 2+2+0+2+0+2+0+0 )/8 = 1.0

µb̃1,2,3
= ( 2+2+2+0+2+0+0+0 )/8 = 1.0

µb̃1,2,4
= ( 0+1+0+0+1+1+1+1 )/8 = 0.625

µb̃1,2,5
= ( 0+0+1+1+1+0+1+1 )/8 = 0.625

µb̃1,2,6
= ( 0+0+0+1+0+1+1+1 )/8 = 0.5

µb̃1,2,7
= ( 0+1+0+0+1+1+0+1 )/8 = 0.5

µb̃1,2,8
= ( 0+1+1+0+1+0+1+1 )/8 = 0.625

µb̃1,2,9
= ( 0+0+0+1+0+1+1+1 )/8 = 0.5

µb̃1,2,10
= ( 1+3+1+1+3+3+1+3 )/8 = 2.0

µb̃1,2,11
= ( 1+1+3+1+3+1+3+3 )/8 = 2.0

µb̃1,2,12
= ( 1+1+1+3+1+3+3+3 )/8 = 2.0

Wi,j,k P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW1,2,1 = (2*1.0 + 3*0.625 + 3*0.5 + 3*2.0)/11 = 1.0341 > 1.0 b̃2,1 is b

µW1,2,2 = (2*1.0 + 3*0.625 + 3*0.5 + 3*2.0)/11 = 1.0341 > 1.0 b̃2,2 is b

µW1,2,3 = (2*1.0 + 3*0.625 + 3*0.5 + 3*2.0)/11 = 1.0341 > 1.0 b̃2,3 is b

µW1,2,4 = (3*1.0 + 2*0.625 + 3*0.5 + 3*2.0)/11 = 1.0682 > 0.625 b̃2,4 is b

µW1,2,5 = (3*1.0 + 2*0.625 + 3*0.5 + 3*2.0)/11 = 1.0682 > 0.625 b̃2,5 is b

µW1,2,6 = (3*1.0 + 3*0.625 + 2*0.5 + 3*2.0)/11 = 1.0795 > 0.5 b̃2,6 is b

µW1,2,7 = (3*1.0 + 3*0.625 + 2*0.5 + 3*2.0)/11 = 1.0795 > 0.5 b̃2,7 is b

µW1,2,8 = (3*1.0 + 2*0.625 + 3*0.5 + 3*2.0)/11 = 1.0682 > 0.625 b̃2,8 is b

µW1,2,9 = (3*1.0 + 3*0.625 + 2*0.5 + 3*2.0)/11 = 1.0795 > 0.5 b̃2,9 is b

µW1,2,10 = (3*1.0 + 3*0.625 + 3*0.5 + 2*2.0)/11 = 0.9432 < 2.0 b̃2,10 is g

µW1,2,11 = (3*1.0 + 3*0.625 + 3*0.5 + 2*2.0)/11 = 0.9432 < 2.0 b̃2,11 is g

µW1,2,12 = (3*1.0 + 3*0.625 + 3*0.5 + 2*2.0)/11 = 0.9432 < 2.0 b̃2,12 is g
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the BB’s row within the table. Tables 72 and 73 represent the results of a full

factorial calculation of BB sizes one and two.

This example illustrates the calculation and the fact that the function, F1(~x),

works nicely for the definitions as they are prescribed to work. However, the

next function, F2(~x), is an example where the definitions do not work as pre-

scribed because the weight of the total fitness function misguides the definitions

into identifying a BB as good when in fact it is not (i.e., The identified good

BB is not found within the optimal solution.)

• BB inspection with respect to function F2(~x)

This second example illustrates how to calculate and test a selected BB for

goodness in F2(~x) (Objective 2). In the same manner as the first example, every

BB of size one and two in the 3-bit solution space is evaluated for goodness.

Listed in Tables 74 and 75 is the mean value, µb̃, found for each BB of sized

o. Tables 72 and 73 list the mean value associated with every other BB, µW .

Classification of a good, equivalent, and bad BB is done in the same manner.

If the mean value of the BB under inspection is greater than that of the other

same sized BBs, the BB is considered good, g. If the means are equal, the BB

is equivalent, e. Finally, if the mean value of the BB under inspection is lower

than the mean values of the other BBs, it is considered to be a bad, b, BB.

The major difference is presented in Tables 74 and 75 where the good and bad

classified BBs do not reflect BBs that make up optimal solutions w.r.t. the

fitness function F2(~x). Moreover, these BBs may evaluate, on average, to a

better fitness value than all other BBs of the same size; but, w.r.t.the optimal

solution for the fitness function, the BBs are wrongly identified as good BBs.

These wrongly identified BBs are indicated with a ] in Tables 74 and 75.

An interesting consequence from using these definitions in this manner is that

the weighting is self correcting or appears to be self correcting. The results of

every single size one BB tested are listed in Table 74. Within this table, each
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Table 74: Mean objective 2 value for BB1 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃2,1,1
= ( 3+0+0+3+2+0+0+2 )/8 = 1.25

µb̃2,1,2
= ( 3+0+3+0+0+2+0+2 )/8 = 1.25

µb̃2,1,3
= ( 3+3+0+0+0+0+2+2 )/8 = 1.25

µb̃2,1,4
= ( 0+2+2+2+0+2+2+2 )/8 = 1.5

µb̃2,1,5
= ( 0+2+0+2+2+2+2+2 )/8 = 1.5

µb̃2,1,6
= ( 0+0+2+2+2+2+2+2 )/8 = 1.5

Wobjective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW2,1,1 = (2*1.25 + 3*1.5)/5 = 1.4 > 1.25 b̃1,1 is bad]

µW2,1,2 = (2*1.25 + 3*1.5)/5 = 1.4 > 1.25 b̃1,2 is bad]

µW2,1,3 = (2*1.25 + 3*1.5)/5 = 1.4 > 1.25 b̃1,3 is bad]

µW2,1,4 = (3*1.25 + 2*1.5)/5 = 1.35 < 1.5 b̃1,4 is good]

µW2,1,5 = (3*1.25 + 2*1.5)/5 = 1.35 < 1.5 b̃1,5 is good]

µW2,1,6 = (3*1.25 + 2*1.5)/5 = 1.35 < 1.5 b̃1,6 is good]

BB is wrongly classified as good or bad; however, as the BBs under inspection

become larger (closer to the size of a complete solution), the effects of the

distribution of fitness over the entire landscape becomes less influential to the

evaluation on a particular BB. This self correction is illustrated in Table 75

where the good BBs are indeed identified as good. The reason for this is because

the BB becomes close to being the fully instantiated solution and evaluation of

a BB is almost like evaluating the whole solutions (minus a few bits which are

provided by the complete solution used for the overlaying function). Finally,

if the BB size become as large as the size of a complete solution, overlaying

the BB into each population member becomes pointless because the BB is the

same size as each population member. Thus, the average fitness of the BB (as a

complete solution) can be had by just evaluating the BB itself. This is another

reason for defining BBs as having at least one allele position unspecified.
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Table 75: Mean objective 2 value for BB2 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃2,2,1
= ( 3+0+3+3+0+0+3+0 )/8 = 1.5

µb̃2,2,2
= ( 3+3+0+3+0+3+0+0 )/8 = 1.5

µb̃2,2,3
= ( 3+3+3+0+3+0+0+0 )/8 = 1.5

µb̃2,2,4
= ( 0+2+0+0+2+2+2+2 )/8 = 1.25

µb̃2,2,5
= ( 0+0+2+2+2+0+2+2 )/8 = 1.25

µb̃2,2,6
= ( 0+0+0+2+0+2+2+2 )/8 = 1.0

µb̃2,2,7
= ( 0+2+0+0+2+2+0+2 )/8 = 1.0

µb̃2,2,8
= ( 0+2+2+0+2+0+2+2 )/8 = 1.25

µb̃2,2,9
= ( 0+0+0+2+0+2+2+2 )/8 = 1.0

µb̃2,2,10
= ( 2+2+2+2+2+2+2+2 )/8 = 1.5

µb̃2,2,11
= ( 2+2+2+2+2+2+2+2 )/8 = 1.5

µb̃2,2,12
= ( 2+2+2+2+2+2+2+2 )/8 = 1.5

Wi,j,k P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW2,2,1 = (2*1.5 + 3*1.25 + 3*1.0 + 3*1.5)/11 = 1.2955 < 1.5 b̃2,1 is g

µW2,2,2 = (2*1.5 + 3*1.25 + 3*1.0 + 3*1.5)/11 = 1.2955 < 1.5 b̃2,2 is g

µW2,2,3 = (2*1.5 + 3*1.25 + 3*1.0 + 3*1.5)/11 = 1.2955 < 1.5 b̃2,3 is g

µW2,2,4 = (3*1.5 + 2*1.25 + 3*1.0 + 3*1.5)/11 = 1.3182 > 1.25 b̃2,4 is b

µW2,2,5 = (3*1.5 + 2*1.25 + 3*1.0 + 3*1.5)/11 = 1.3182 > 1.25 b̃2,5 is b

µW2,2,6 = (3*1.5 + 3*1.25 + 2*1.0 + 3*1.5)/11 = 1.3409 > 1.0 b̃2,6 is b

µW2,2,7 = (3*1.5 + 3*1.25 + 2*1.0 + 3*1.5)/11 = 1.3409 > 1.0 b̃2,7 is b

µW2,2,8 = (3*1.5 + 2*1.25 + 3*1.0 + 3*1.5)/11 = 1.3182 > 1.25 b̃2,8 is b

µW2,2,9 = (3*1.5 + 3*1.25 + 2*1.0 + 3*1.5)/11 = 1.3409 > 1.0 b̃2,9 is b

µW2,2,10 = (3*1.5 + 3*1.25 + 3*1.0 + 2*1.5)/11 = 1.2955 < 1.5 b̃2,10 is g]

µW2,2,11 = (3*1.5 + 3*1.25 + 3*1.0 + 2*1.5)/11 = 1.2955 < 1.5 b̃2,11 is g]

µW2,2,12 = (3*1.5 + 3*1.25 + 3*1.0 + 2*1.5)/11 = 1.2955 < 1.5 b̃2,12 is g]
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Figure 117: Presented is the 3-bit bi-objective fitness functions used in the two
examples illustrating the problem having modified fitness values to a ranked fitness
values.

This self-correcting adds support for use of a ranked fitness value. The next

set of examples are used to illustrate the effects of using a modified fitness previously

described in Equation 29 on page 50.

L.2 Adjusted fitness example

Adjusting any finite set of fitness values to a set of ranked based fitness values

is not difficult. Suppose you have N ′ fitness values, having any range. Each fitness

value is associated to a particular entity or population member. Then, each fitness

value is ordered from best (max) to worst (min). Finally, each fitness is then mapped

recursively using the following rule in Equation 29. This ranking guarantees that

the better level always out-weighs any next best finite set containing at most N ′− 1

members.

The following two examples use the same 3-bit functions; however, the fitness

values associated with each function are modified to reflect the ranked based fitness

described by Equation 29 on page 50. Figure 117 illustrates the new fitness land-

scape. In the following examples, the definitions are reapplied to each BB in the

same manner as it was in the previous two examples.

• BB inspection with respect to function RF (F1(~x))
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Table 76: Mean objective 1 value for BB1 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃1,1,1
= ( 64+1+1+8+64+1+1+8 )/8 = 18.5

µb̃1,1,2
= ( 64+1+64+1+1+8+1+8 )/8 = 18.5

µb̃1,1,3
= ( 64+64+1+1+1+1+8+8 )/8 = 18.5

µb̃1,1,4
= ( 1+8+8+512+1+8+8+512 )/8 = 132.25

µb̃1,1,5
= ( 1+8+1+8+8+512+8+512 )/8 = 132.25

µb̃1,1,6
= ( 1+1+8+8+8+8+512+512)/8 = 132.25

Wobjective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW1,1,1 = (2*18.5 + 3*132.25)/5 = 86.75 > 18.5 b̃1,1 is bad

µW1,1,2 = (2*18.5 + 3*132.25)/5 = 86.75 > 18.5 b̃1,2 is bad

µW1,1,3 = (2*18.5 + 3*132.25)/5 = 86.75 > 18.5 b̃1,3 is bad

µW1,1,4 = (3*18.5 + 2*132.25)/5 = 64 < 132.25 b̃1,4 is good

µW1,1,5 = (3*18.5 + 2*132.25)/5 = 64 < 132.25 b̃1,5 is good

µW1,1,6 = (3*18.5 + 2*132.25)/5 = 64 < 132.25 b̃1,6 is good

The results of this example are found to be the same as the example where

the fitness is left unmodified. If the results became different, the rank based

fitness would be changing a good example to bad.

• BB inspection with respect to function RF (F2(~x))

As listed in Tables 76-79, the wrongly good/bad BBs indicated by ] are cor-

rected in this example. The ranked fitness function allows for the original good BB

definitions to work properly. The definitions, using the ranked based fitness, identify

the correct good BBs regardless of the deception present in the function.

Illustrating the Multiobjective good BB definition use, the following two exam-

ples are provided. Both examples use the ranked fitness adjustment. Furthermore,

the first has the BBs of size 1 and the second as BBs of size 2.

• Order-1 MBB inspection with respect to function RF (F1(~x)) and RF (F2(~x))
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Table 77: Mean objective 1 value for BB2 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃1,2,1
= ( 64+1+64+64+1+1+64+1 )/8 = 32.5

µb̃1,2,2
= ( 64+64+1+64+1+64+1+1 )/8 = 32.5

µb̃1,2,3
= (64+64+64+1+64+1+1+1 )/8 = 32.5

µb̃1,2,4
= ( 1+8+1+1+8+8+8+8 )/8 = 5.375

µb̃1,2,5
= ( 1+1+8+8+8+1+8+8 )/8 = 5.375

µb̃1,2,6
= ( 1+1+1+8+1+8+8+8 )/8 = 3.625

µb̃1,2,7
= ( 1+8+1+1+8+8+1+8 )/8 = 3.625

µb̃1,2,8
= ( 1+8+8+1+8+1+8+8 )/8 = 5.375

µb̃1,2,9
= ( 1+1+1+8+1+8+8+8 )/8 = 3.625

µb̃1,2,10
= ( 1+512 +1+1+512 +512 +1+512 )/8 = 256.5

µb̃1,2,11
= ( 1+1+512 +1+512 +1+512 +512 )/8 = 256.5

µb̃1,2,12
= ( 1+1+1+512 +1+512 +512 +512 )/8 = 256.5

Wi,j,k P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW1,2,1 = (2*32.5+ 3*5.375+ 3*3.625+ 3*256.5)/11 = 78.3182 > 32.5 b̃2,1 is b

µW1,2,2 = (2*32.5+ 3*5.375+ 3*3.625+ 3*256.5)/11 = 78.3182 > 32.5 b̃2,2 is b

µW1,2,3 = (2*32.5+ 3*5.375+ 3*3.625+ 3*256.5)/11 = 78.3182 > 32.5 b̃2,3 is b

µW1,2,4 = (3*32.5+ 2*5.375+ 3*3.625+ 3*256.5)/11 = 80.7841 > 5.375 b̃2,4 is b

µW1,2,5 = (3*32.5+ 2*5.375+ 3*3.625+ 3*256.5)/11 = 80.7841 > 5.375 b̃2,5 is b

µW1,2,6 = (3*32.5+ 3*5.375+ 2*3.625+ 3*256.5)/11 = 80.9432 > 3.625 b̃2,6 is b

µW1,2,7 = (3*32.5+ 3*5.375+ 2*3.625+ 3*256.5)/11 = 80.9432 > 3.625 b̃2,7 is b

µW1,2,8 = (3*32.5+ 2*5.375+ 3*3.625+ 3*256.5)/11 = 80.7841 > 5.375 b̃2,8 is b

µW1,2,9 = (3*32.5+ 3*5.375+ 2*3.625+ 3*256.5)/11 = 80.9432 > 3.625 b̃2,9 is b

µW1,2,10 = (3*32.5+ 3*5.375+ 3*3.625+ 2*256.5)/11 = 57.9545 < 256.5 b̃2,10 is g

µW1,2,11 = (3*32.5+ 3*5.375+ 3*3.625+ 2*256.5)/11 = 57.9545 < 256.5 b̃2,11 is g

µW1,2,12 = (3*32.5+ 3*5.375+ 3*3.625+ 2*256.5)/11 = 57.9545 < 256.5 b̃2,12 is g
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Table 78: Mean objective 2 value for BB1 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃2,1,1
= ( 64+1+1+64+8+1+1+8 )/8 = 18.5

µb̃2,1,2
= ( 64+1+64+1+1+8+1+8 )/8 = 18.5

µb̃2,1,3
= ( 64+64+1+1+1+1+8+8 )/8 = 18.25

µb̃2,1,4
= ( 1+8+8+8+1+8+8+8 )/8 = 6.25

µb̃2,1,5
= ( 1+8+1+8+8+8+8+8 )/8 = 6.25

µb̃2,1,6
= ( 1+1+8+8+8+8+8+8 )/8 = 6.26

Wobjective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW2,1,1 = (2*18.5+ 3*6.25)/5 = 11.15 > 18.5 b̃1,1 is good

µW2,1,2 = (2*18.5+ 3*6.25)/5 = 11.15 > 18.5 b̃1,2 is good

µW2,1,3 = (2*18.5+ 3*6.25)/5 = 11.15 < 18.5 b̃1,3 is good

µW2,1,4 = (3*18.5+ 2*6.25)/5 = 13.6 > 6.25 b̃1,4 is bad

µW2,1,5 = (3*18.5+ 2*6.25)/5 = 13.6 > 6.25 b̃1,5 is bad

µW2,1,6 = (3*18.5+ 2*6.25)/5 = 13.6 > 6.25 b̃1,6 is bad

Using the data in Tables 76 and 78, classification of each BB is accomplished.

The results of each BB is plugged into the inequality cited in Equation 17,

which result in the final multiobjective classification of each BB.

Notice that all BBs of size 1 are equivalent in the multiobjective formulation

of these two functions. Table 80 lists the results of BBs being evaluated in

the single objective case and then carries the findings over into the multiobjec-

tive case. This is important, although expected. Small BBs of each type are

required for solving both objective function; therefore, identification of each

is helpful for the future juxtapositioning these BBs together to build optimal

solutions. In this case, an equivalent BB ultimately should be called good.

The equivalent label is just to denote the fact that it is not really a totally

dominate BB (good for all functions).

• Order-2 MBB inspection with respect to function RF (F1(~x)) and RF (F2(~x))

Table 81 presents the finding of the single and multiobjective size 2 BB inspec-

tion results for the ranked fitness functions. These results are also expected
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Table 79: Mean objective 2 value for BB2 after being overlaid onto P.
b̃objective,BB size,BB no. P = (p1, p2, p3, p4, p5, p6) µb̃i,j,k

µb̃2,2,1
= ( 64+1+64+64+1+1+64+1 )/8 = 32.5

µb̃2,2,2
= ( 64+64+1+64+1+64+1+1 )/8 = 32.5

µb̃2,2,3
= ( 64+64+64+1+64+1+1+1 )/8 = 32.5

µb̃2,2,4
= ( 1+8+1+1+8+8+8+8 )/8 = 5.375

µb̃2,2,5
= ( 1+1+8+8+8+1+8+8 )/8 = 5.375

µb̃2,2,6
= ( 1+1+1+8+1+8+8+8 )/8 = 4.5

µb̃2,2,7
= ( 1+8+1+1+8+8+1+8 )/8 = 4.5

µb̃2,2,8
= ( 1+8+8+1+8+1+8+8 )/8 = 5.375

µb̃2,2,9
= ( 1+1+1+8+1+8+8+8 )/8 = 4.5

µb̃2,2,10
= ( 8+8+8+8+8+8+8+8 )/8 = 8.0

µb̃2,2,11
= ( 8+8+8+8+8+8+8+8 )/8 = 8.0

µb̃2,2,12
= ( 8+8+8+8+8+8+8+8 )/8 = 8.0

Wi,j,k P = (p1, p2, p3, p4, p5, p6) µW <, =, > g/e/b

µW2,2,1 = (2*32.5+ 3*5.375+ 3*4.5+ 3*8.0)/11 = 10.7841 < 32.5 b̃2,1 is g

µW2,2,2 = (2*32.5+ 3*5.375+ 3*4.5+ 3*8.0)/11 = 10.7841 < 32.5 b̃2,2 is g

µW2,2,3 = (2*32.5+ 3*5.375+ 3*4.5+ 3*8.0)/11 = 10.7841 < 32.5 b̃2,3 is g

µW2,2,4 = (3*32.5+ 2*5.375+ 3*4.5+ 3*8.0)/11 = 13.25 > 5.375 b̃2,4 is b

µW2,2,5 = (3*32.5+ 2*5.375+ 3*4.5+ 3*8.0)/11 = 13.25 > 5.375 b̃2,5 is b

µW2,2,6 = (3*32.5+ 3*5.375+ 2*4.5+ 3*8.0)/11 = 13.3295 > 4.5 b̃2,6 is b

µW2,2,7 = (3*32.5+ 3*5.375+ 2*4.5+ 3*8.0)/11 = 13.3295 > 4.5 b̃2,7 is b

µW2,2,8 = (3*32.5+ 2*5.375+ 3*4.5+ 3*8.0)/11 = 13.25 > 5.375 b̃2,8 is b

µW2,2,9 = (3*32.5+ 3*5.375+ 2*4.5+ 3*8.0)/11 = 13.3295 > 4.5 b̃2,9 is b

µW2,2,10 = (3*32.5+ 3*5.375+ 3*4.5+ 2*8.0)/11 = 13.0114 > 8.0 b̃2,10 is b

µW2,2,11 = (3*32.5+ 3*5.375+ 3*4.5+ 2*8.0)/11 = 13.0114 > 8.0 b̃2,11 is b

µW2,2,12 = (3*32.5+ 3*5.375+ 3*4.5+ 2*8.0)/11 = 13.0114 > 8.0 b̃2,12 is b

Table 80: MBB results for BB1

b̃objective,BB size,BB no. i=1 i=2 Classification

b̃i,1,1 is bad good equivalent

b̃i,1,2 is bad good equivalent

b̃i,1,3 is bad good equivalent

b̃i,1,4 is good bad equivalent

b̃i,1,5 is good bad equivalent

b̃i,1,6 is good bad equivalent
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Table 81: MBB results for BB2

b̃objective,BB size,BB no. i=1 i=2 MBB Classification

b̃i,1,1 is bad good equivalent

b̃i,1,2 is bad good equivalent

b̃i,1,3 is bad good equivalent

b̃i,1,4 is bad bad bad

b̃i,1,5 is bad bad bad

b̃i,1,6 is bad bad bad

b̃i,2,7 is bad bad bad

b̃i,2,8 is bad bad bad

b̃i,2,9 is bad bad bad

b̃i,2,10 is good bad equivalent

b̃i,2,11 is good bad equivalent

b̃i,2,12 is good bad equivalent

because the chosen functions together are classified as a deception problem.

Thus, the BBs remain in the equivalent category because the solutions for the

hyperplane are on the opposite end of the BB spectrum. Furthermore, a num-

ber of bad BBs are identified correctly because their patterns do not make up

any of the good solutions.
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Appendix M. Miscellaneous Figures and Tables

This appendix is added only to support the document and allow for non-

essential graphs and tables to be added for the reader’s convenience. Presented is

a set of definitions describing Nondeterministic Polynomial Time Problems. Also

listed are the major categories of operational research and subcategories within1.

The word Programming used within Table 82 is used as planning ; the necessary

relationship to computer programming was incidental to the choice of name [40].

Definition 30 (Deterministic Turing Machine Polynomial Time Prob-

lems): A problem is assigned to the P (polynomial time) class if the number of

steps is bounded by a polynomial. (i.e. the problem is in Ptime if it has a determin-

istic Turing machine polynomial time solution.) 2

Definition 31 (Nondeterministic Turing machine): The word Nondetermin-

istic in the definition for a Nondeterministic Polynomial Time Problems (Defini-

tion 32) is referring to the number of parallel Turing machine which can take many

computational paths simultaneously required to evaluate every possible instance of a

solutions in a particular problem space. The restriction for this is that the parallel

Turing machines cannot communicate. [226] 2

Definition 32 (Nondeterministic Turing Machine Polynomial Time Prob-

lems): A problem is in NPtime if it has a nondeterministic Turing machine polyno-

mial time solution; this means that the solution can be checked within polynomial

time. [123] 2

1A problem is NP-complete, it means that a particular solution can be checked in polynomial
time, but to solve the whole problem (which often requires checking many possible solutions)
requires an exponential time algorithm. Because an exponential function increases at a much more
rapid rate than a polynomial, these problems are said to be intractable. For a (reasonable) problem
size of 20, a polynomial algorithm might require t ∼ 20c time steps, compared with t ∼ c20 for an
exponential time algorithm (where c is a constant). [123]
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Definition 33 (Nondeterministic Polynomial Time Hard Problem ): An

NPTime problem is NP-hard if a data structure can be translated into one for solving

any other NP-problem. [226] 2

Definition 34 (Nondeterministic Polynomial Time Complete Problems):

A problem which is NP and NP-hard (NP-hard) is called an NP-complete problem.

2

Table 82: Methods of Computer Science/Engineering and Operations Research
Mathematical Programming Stochastic Process
Techniques Techniques
Nonlinear programming Statistical decision theory
Geometric programming Markov processes
Quadratic programming Queueing theory
Linear programming Renewal theory
Integer programming Simulation methods
Stochastic programming Reliability theory
Separable programming
Multiobjective programming
Fractional programming

Algorithms Statistical
Methods

Calculus methods Regression analysis
Calculus of variations Cluster analysis, pattern recognition
Dynamic programming Design of experiments
Network methods: Discriminate analysis

CPM and PERT (factor analysis)
Game Theory
Neural networks
Evolutionary Computation

Genetic Algorithms
Genetic Programming
Evolutionary Programming
Evolutionary Strategies

Simulated Annealing [168]
TABU search
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Table 83: NPC applications and implementation example
NP-Compete Problem Example
Traveling Salesman (laundry van problem) Minimize distance
Graph Colouring Minimize colors to one another
Maximum Independent Set (Max Clique) Max set size; Min geometry
Vehicle Routing Min Time, energy, and/or geometry
Scheduling Min Time, missed deadlines,

waiting time, resources used
Layout Min space, overlap, costs
NP-Complete Problem Combinations Vehicle routing and scheduling
0/1 Knapsack - Bin Packing Max profit, Min weight
Protein Structure Prediction Min energy and min entropy
Multiobjective Quadratic Assignment Min energy for static patterns

Problem
Boolean satisfiability problem (SAT) Evaluate True
Hamiltonian cycle problem Minimize distance
Subgraph isomorphism problem Min Time to Match Pattern

Table 84: Fitness Landscape Characteristics
NP-Compete Problem Landscape (Chapter VIII)
Deception Problems Smooth (Chapter V)
Protein Structure Prediction Sparse and Spiked (deltas) (Chapter VI)
MO Quadratic Assignment Problem Rough with shallow wells (Chapter VII)
m-ary Digital symbol set design problem Fitness Function Dependent
Traveling Salesman (laundry van problem) Rough but not deep
Graph Colouring - O(2n)
Maximum Independent Set

(Max Clique O(3
n
3 ))

Vehicle Routing (TSP)
Scheduling Depends (various problems)
0/1 Knapsack - Bin Packing Smooth
Boolean satisfiability problem (SAT) spikes (deltas)
Hamiltonian cycle problem (TSP)

M.1 Results CHARMm energy function approximation using an ANN

This section is mainly here to support Chapter VI on page 191. Supporting

procedures and results are presented here in a effort to unencumber the reader when

reading the body of the chapter.
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M.2 Parameter Determination

The Matlab 6.5 neural network toolbox is used to build both the RBFNN and

the MLPNN used in this study. The following are the command lines used to build,

train, and test the neural networks.

1. Newrb2 command was used for the RBFNN

• net = newrb(a1’, b1’, 10)

• Y(r) = sim(net, norm data(1:24,data set size))

• X(r) = norm data(25,data set size)

2. Newff command was used for the MLPNN

• net = newff(minmax(a1’), [3 1],

’tansig’ ’purelin’,’traingdx’)

• net.trainParam.epochs = 500

• net.trainParam.goal = 1e-4

• [net, tr] = train(net, a1’, b1’)

• test = sim(net,norm data(1:24,data set size))

Training Parameters: The training parameter is chosen to be selected first.

Matlab 6.5’s neural network toolbox has many different settings for this parameter.

Training parameters tested are listed in Table 85.

Transform parameter: The transfer parameter is chosen to be selected second.

Matlab 6.5’s neural network toolbox has many different settings for this parameter.

Among those tested for selection are listed in Table 86.

2The Newrb command creates a RBFNN and auto calculates parameter settings including the
number of neurons required for optimal effectiveness – including the optimal hidden layers with the
specified number of neurons.
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Table 85: This table lists all tested training parameters. The best training pa-
rameter is indicated by bold face type.

# Training Parameter: Description

a trainrp: Resilient backpropagation
b trainbr: Bayesian regularization
c trainlm: Levenberg-Marquardt
d traingd: Gradient Descent (GD)
e traingdm: GD with momentum
f traingdx: Adaptive learning rate
g traincgf: Fletcher-Reeves conjugate gradient
h traincgp: Polak-Ribiere conjugate gradient
i traincgb: Powell-Beale conjugate gradient
j trainscg: Scaled conjugate gradient
k trainscg: BFGS quasi-Newton method
l trainoss: One step secant method

Table 86: This table lists all tested transfer parameters. The best training param-
eter is indicated by bold face type.

# Transfer Parameter: Description

a compet: Competitive xfer fnc
b hardlim: Hard-limit (HL) xfer fnc
c hardlims: Symmetric HL xfer fnc
d logsig: Log-sigmoid xfer fnc
e poslin: Pos linear xfer fnc
f purelin: HL xfer fnc
g radbas: Radial basis xfer fnc
h satlin: Saturating linear xfer fnc
i satlins: Symmetric saturating linear xfer fnc
j softmax: Soft max xfer fnc
k tansig: Hyperbolic tangent sigmoid xfer fnc
l tribas: Triangular basis xfer fnc

The transfer parameter is used to simulate the network when the sim command

is called. More simply put, the behavior of this parameter, mathematically, is placed

in the position of the neuron in the network.

M.2.1 Overtraining ANN Example. In the pedagogical example of training

data to fit a noisy sine wave, like what is illustrated in Figure 120, it is essential
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to notice when the network begins to become overtrained. In Figure 120.d, the

divergence of good training is apparent after the 3rd-order polynomial. A closer

analysis of the training and variance of the RMS error reveals that, as the training

increases past the 5th-order, even the RMS variances of the test and training data

no longer overlap – indicating the system is overtrained. This constitutes a definite

divergence for the system to be able to classify future incoming data into the original

sine wave signal. One could argue that if the points landed directly on the x values,

the system would not only accurately classify the data, but it would get an exact

match for the y value. However, if the incoming data fell in between x values, a

system of 5th-order or higher would not classify properly.

Table 87: Summary of Training Generations Results
Generations Neurons Layers (1/2/3) MSEa Variance

10 (25/25/1) 4.73 0.0093
100 (25/25/1) 2.07 0.0017
200 (25/25/1) 1.76 0.0013
300 (25/25/1) 0.63 0.00019
400 (25/25/1) **** ****
500 (25/25/1) 1.84 0.0032
600 (25/25/1) **** ****

aMean squared error - This mean squared error is evaluated using the leave one out technique
for the entire data set. Moreover, each point gets a turn at being the test set while the rest of the
data becomes the training set.

Figure 118 illustrates the deep wells of energy fitness found by inserting ran-

domly generated dihedral angles for evaluation in the CHARMm energy function.

The low fitness areas in the energy landscape are sparse, and it cannot be discerned

in this image if the wells have a sloped area leading into the wells. Figure 119 illus-

trates the fitness landscape as it has deep wells when associated with certain dihedral

angle positions. Note that the deep wells are in areas where the protein conforma-

tion is good. This is indicated by a lower energy fitness value for that combination

of dihedral angles. Figure 119 illustrates a simplified version of the model that this
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Figure 118: This figure illustrates the fitness of the CHARMm energy function
when applying random values for dihedral angles. This is not a true surface plot of
the fitness landscape. It reveals the fact that the lowest energy values are sparsely
located in the landscape. [163]

neural network must learn to be effective. It is vital not to overtrain the network

else results are expected not to represent the low energy areas.
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Figure 119: This figure illustrates a simulation of the CHARMm energy fitness
landscape when changing only two dihedral angles. Notice the sparseness of good
fitness values and the deep wells with rugged edges and rugged tight slopes leading
into each one.
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point of over training occurs after
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Figure 120: Figures a-c illustrate the fitting of a line to noisy sine wave data.
Figure a fits a least-square line to the data. Figure b fits a cubic line to the data.
Figure c fits a tenth order line to the data. Figure d illustrates that the higher the
polynomial, the lower the RMS difference between the noisy data and the fitted data
becomes. However, at the same time, the difference between the real data and the
fitted data drops at first, but then it actually begins to grow as the fitted line becomes
close to fitting the noisy data. This is similar to overtraining a neural network. There
is a point where the continued training actually works against representing the true
data.
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Figure 121: This figure illustrates the variance observed in the RMS error when
fitting polynomials to data of a noisy sine wave function. Notice the divergence and
separation of overlapping variance bars at the 5th order polynomial. This figure is a
closer analysis of RMS error originally shown in Figure 120.d.
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