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1 Abstract

Projectiles follow parabolic paths and planets move in elliptical orbits. Circles, hyperbolas,

parabolas and ellipses are curves that are so abundant in nature, engineering, and art that

we cannot help but notice them. Each of these curves is an example of a conic. In 1848,

the mathematician Jacob Steiner posed a famous question: “How many conics are tangent

to five fixed conics?” Steiner claimed to have solved the problem and he gave the answer

7776. This solution was accepted as valid for sixteen years. When the problem was revisited

in 1864, the mathematician Michel Chasles realized that Steiner had miscounted the true

number of conics that satisfied the conditions. Not all conics are smooth plane curves.

Singular conics are curves whose defining polynomials are reducible to the product of two

linear factors. These conics can be represented as either a pair of crossed lines or a line of

multiplicity two. Steiner failed to account for the degenerate conics that can be represented

as a double line. He fell victim to what algebraic geometers call excess intersection. This

Trident project is centered on understanding how excess intersection affects problems of

enumeration involving plane conics. Research was focused on finding the solutions to twenty-

one variations of Steiner’s problem. These problems were solved by examining the blowup

of the space of conics along the set of double lines and executing computations in what is

known as the Chow Ring. These methods provide not only tangible numerical results but

help to illuminate the rich underlying geometry of these fundamental problems.
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3 Introduction

3.1 Mathematical Introduction

A conic is the simplest geometric object that possesses curvature. Circles, hyperbolas,

parabolas and ellipses are conics that are so abundant in nature and engineering that we can

not help but notice them. Projectiles follow parabolic paths and planets move in elliptical

orbits. For our purposes, a conic is a degree-two curve. We will examine various examples

of conics in section 4.2.

The defining equation for a projective conic is ax2+by2+cz2+dxy+exz+fyz = 0. That

is, a curve in the projective plane is a conic if it is of this form. By varying the six coefficients

in this equation we shift from one conic to another. In fact, if we keep this defining equation

consistent then the variables x, y and z become unimportant and we can drop them. Every

conic can be described with a coordinate of the form [a : b : c : d : e : f ]. This coordinate is a

point in five dimensional projective space which we denote by the symbol P5. In projective

space six coordinates define a five dimensional point. This is a powerful observation, a conic

in the plane can be represented as a simple point in P5. We can answer many questions

involving conics by working only with points in P5. Also, surfaces in P5 correspond to large

sets of conics in the plane. For example, the set of all conics that pass through a fixed point

in the projective plane form a four dimensional hyperplane in P5.

The most famous example of an enumerative problem in algebraic geometry is Steiner’s

Problem. Steiner asked the following question, “How many conics are tangent to five fixed

conics?”[FS] This problem has an interesting history. Steiner claimed to have solved the

problem and gave an answer of 7776. For a large portion of the nineteenth century, his

answer was accepted as valid. Steiner went wrong when he incorrectly applied a powerful

result known as Bezout’s theorem. The discrepancy between the actual number of conics

satisfying the given conditions and the number that Bezout’s Theorem returned, was a result

of what is know as excess intersection. Not all conics are smooth curves like parabolas or

circles. There is a type of conic called a singular conic that looks very different from the
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smooth curves that we are used to thinking about. Singular conics can be visualized as a

pair of lines in the plane. More often than not these lines simply cross at a single point, but

sometimes the two lines come together and lie on top of each other. This special type of

conic is known as a double line conic. It not only looks very different from most degree-two

curves, it creates difficulties in our ability to solve enumerative problems. Two conics are

tangent to each other if they intersect in fewer than four distinct points. When given a

smooth conic such as a circle, and a double line, the two will always intersect in fewer then

four distinct points. Thus every double line conic is tangent to every other possible conic.

Since there are infinitely many double line conics, we can see how they might interfere with

our counting when solving enumerative problems. Before we can set out to actually answer

questions such as the one Steiner posed, we need to develop a method of describing the set of

all double line conics. From there we will be better able to avoid these particular algebraic

varieties when solving problems.

Every conic in the plane corresponds to a point in P5 and double lines are no exception.

The set of all double line conics form a two-dimensional surface in the parameter space of

all possible conics. We refer to this large group of double lines as the Veronese surface

and it plays a crucial role in understanding enumerative problems involving conics. We

mentioned earlier that the set of all conics passing through a point form a four dimensional

plane in P5. Similarly, the set of all conics tangent to a fixed line form a higher dimensional

surface in P5. However, since every double line is tangent to a fixed line, this surface in P5

completely contains the Veronese surface. So when we ask the question, “How many conics

are tangent to five fixed lines?” we can’t try to solve the problem by simply intersecting the

five corresponding surfaces in P5.

We resolve this problem by what is known as blowing up the space. P5 is stretched

along the set of points that correspond to double line conics in the plane. The part of

P5 that lies outside of the Veronese surface is left intact after this stretching. Our new

space that is formed by blowing up P5 is much larger. By stretching out the space of all

conics along the Veronese surface, we are better able to examine the surfaces that initially
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caused problems. Four-dimensional surfaces that completely contained the Veronese in P5

no longer do so in the blowup of the space. In addition, the troublesome double line conics

no longer prevent us from correctly intersecting surfaces in P5. In order to work with our

special algebraic varieties inside of the blowup of P5 we introduce what is known as the Chow

ring. The Chow ring provides us with a set of algebraic operations that give insight into

the underlying geometry. These techniques allow us to correctly answer a wide variety of

enumerative problems, including Steiner’s problem.

For any projective space of dimension n the set of n− 1 dimensional linear subvarieties

are parameterized by the points in Pn. In the paper we will examine the deep relationship

between the blowup of P5 along the Veronese and this property of duality that is innate to

projective space.

With the help of modern algebraic geometry and the concept of the moduli space we

can revisit some problems in geometry that originated in ancient Greece, in particular the

Appolonius Circle Problem. Appolonius of Perga posed the question, “Is it possible to

construct all circles that are tangent to three given circles?” Although this problem was

solved by the French geometer Francois Viete during the Enlightenment, we can verify his

results quite elegantly with some modern methods.

3.2 Overview of the Report

In Chapter 4 we formally introduce the reader to projective space and projective varieties.

We define the complex projective conic and establish the correspondence between conics in

the projective plane and points in five dimensional projective space. We also discuss the

concept of duality in projective space and define the notion of degree. The last part of the

chapter is dedicated to familiarizing the reader with the difficulties that arise when apply-

ing naive counting methods to enumerative problems. In Chapter 5 we discuss important

subvarieties that lie within the moduli space of conics. We introduce the Veronese surface

as a space of double line conics and describe how it affects our counting methods. We also

examine the Segre variety, the space of crossed line conics.
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Chapter 6 is dedicated to developing a method to solve the variations of the Steiner

problem. We discuss the blowup of the space of all conics along the Veronese surface and

the relationship between the blowup and the concept of duality. In Chapter 7 we define

the Chow ring and the concept of rational equivalence. We derive a powerful identity that

relates important surfaces in P5.

Appolonius’ circle problem is a famous problem in classical geometry. In Chapter 7 we

revisit this classical problem with the aid of techniques from modern algebraic geometry.

4 Projective Varieties

4.1 Complex Projective Space

The world that we live in is three dimensional. Every point in space can be pinpointed

with three spacial coordinates. To a mathematician, we live in what is known as three

dimensional Euclidean space. Objects in this space look and intersect one another just as

they would in nature. Another attribute that is commonly associated with Euclidean space

is the coordinate system. Once we establish a consistent way of measuring distance and

an agreed upon origin, the location of every point within the space can be charted. Affine

space can be thought of as our familiar Euclidean space without the luxury of a fixed origin.

A plane in three dimensional Affine space looks just like a flat region of the Earth, but if

you were to stand on that plane you would not be able to identify your location. As with

Euclidean space, if you were to walk on top of a plane in Affine space you would be able to

walk forever in any direction. Everything would appear to be just boring open space that

continues on as far as the eye can see.

Algebraic geometers frequently work with a more counterintuitive space. Projective space

is what is known as a compactification of Affine space. We can visualize the compactification

as a compression of this large infinite expanse of space into something more manageable. No

matter how far you walk in Affine space you will never make any progress, since you are

inside a void that continues on forever. But when you walk within projective space, you will
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see yourself gradually approaching points that are infinitely far away. In fact, points that

are infinitely far away are actual tangible points that can be reached in projective space.

Why would we want to study geometry in such a counterintuitive space? The answer is

that when we consider more difficult problems, it makes work easier. For example, we know

that two lines in a plane in Euclidean or Affine space will intersect each other in at most

one point. The only time that the two lines will not intersect is when they are parallel. In

projective space however, two parallel lines will actually meet each other at a point which is

infinitely far away. This simplifies matters somewhat since we are now able to say that two

distinct lines lying in the projective plane will always intersect at one point.

Definition 1. Complex projective space, denoted by Pn, is the set of all one-dimensional

complex subspaces of the complex vector space Cn+1. That is, Pn is the set of all complex

lines through the origin in Cn+1.

Example 2. A line through the origin in C3 is a point in two-dimensional projective space.

The set of all such lines forms P2, or the projective plane.

A good general reference for projective space is [SKKT] while [C] and [SC] treat the

projective plane in great detail.

We can fix a reference plane in C3 that does not pass through the origin and identify

each point on the the reference plane with a point in P2. Each point on this affine plane

is identified with a line in C3 that passes through both the point and the origin. The only

points in P2 not identified in this manner are the points corresponding to lines in C3 running

through the origin, parallel to our reference plane. These points in P2 form a one-dimensional

projective space and are referred to as the line at infinity [SKKT]. These points are added

to our reference plane to give a natural compactification of two dimensional affine space.

We can generalize these ideas to all higher dimensional projective spaces and express the

concepts formally with the following mapping

Pn = Cn ∪ Pn−1
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[x0 : x1 : · · · : xn] 7→




(x1

x0
, . . . , xn

x0
), for x0 6= 0,

[x1 : · · · : xn], for x0 = 0

When x0 is nonzero, the point in Pn is taken to a point in Cn. When x0 is equal to zero,

then our map takes the corresponding point in Pn to a point on the Pn−1. We refer to the

points in Pn that lie in our reference plane Cn as points in the finite part of Pn and points

on Pn−1 as points at infinity.

When we choose a point p in n dimensional projective space Pn, we are in fact dealing

with an equivalence class of points in Cn+1. There is a one to one correspondence between

lines through the origin in Cn+1 and points in Pn. We can represent a point in projective

space formally as

[(x0 : x1 : · · · : xn)] = {(λx0, λx1, . . . , λxn) | λ ∈ C}.

The bracketed coordinate notation on the left side of the above equality is known as the

homogeneous coordinate of the representative point in projective space and is used to denote

the class of equivalent points in affine space.

4.2 Projective Conics

Definition 3. A complex projective conic is the locus of roots [x : y : z] of a degree-two

homogeneous polynomial F (x, y, z) : ax2 + by2 + cz2 + dxy + exz + fyz = 0 in P2 with

coefficients a, b, c, d, e, f ∈ C where not all of the coefficients are zero [C],[SKKT],[SC],[W].

This locus of roots is often referred to as a vanishing set and is denoted V(F ).

Our above definition asserts that a plane curve is a conic if and only if it satisfies the

general equation. There are several types of planar varieties that satisfy this equation. Not

all of them, however, have similar geometric interpretations. The next two definitions will

break the set of all conics into two important classes: singular and non-singular.

Definition 4. A conic V(G) ⊂ P2 is said to be non-singular or smooth, if its defining

polynomial G cannot be represented as the product of two linear factors.
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Example 5. The parabola x2−yz = 0 is a non-singular conic since the polynomial (x2−yz)

does not factor into two linear factors. The parabola is a canonical example of a smooth

conic. It is smooth since it has a well defined tangent line at every point.

Definition 6. A conic V(F ) ⊂ P2 is said to be singular if its defining polynomial F can be

reduced to the product of two linear factors. That is, V(F ) = V(G1G2) where G1 and G2

are degree-one polynomials [FS].

A singular conic can be thought of as the set of points in the plane that lie on two crossed

lines. This geometric interpretation fits nicely with the definition because when we speak

about conics we are speaking about vanishing sets. Note that G1G2 = 0 precisely when

either G1 is zero or G2 is zero, so a point lies on the conic V(G1G2) if and only if it lies one

one of the lines V(G1) and V(G1).

Example 7. The conic V(20x2 + 3y2 + 19xy− 35xz− 7yz) is singular since the polynomial

factors and we have V((4x + 3y − 7z)(5x + y)). This variety can be viewed as the set of all

points that lie on either the line 4x + 3y − 7z = 0 or the line 5x + y = 0, as in Figure 2.

Example 8. The conic V(9x2 + 36xy + 36y2) is singular since it is equivalent to the conic

V((3x + 6y)2). This is an example of a double line conic, a special type of singular conic. It

can be thought of as two crossed lines that have come together as in Figure 1.

Figure 1: Rotating the crossed lines produces a double line conic

We see that in the case of degree two, there is only one type of degenerate curve, namely

crossed line conics. This is not true of curves of a higher degree. Smooth conics are the
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curves that mathematicians and scientists are often most interested in. These are the “nat-

ural” conics that exhibit curvature. The distinction between smooth and singular conics is

important to understand since singular varieties pose many difficulties when struggling with

problems involving the intersection of projective curves. We can see this when we consider

the intersection of specific conics.

In a typical situation, two smooth conics will intersect each other in four distinct points.

This can be seen by laying two real ellipses E1 and E2 on top of one another with their

respective major axis at right angles. This situation can be expressed algebraically with the

defining polynomials of the two ellipses. By parameterizing the curve E2, the intersection

of E1 and E2 can be represented by a degree four polynomial which is the restriction of E1

to E2. This polynomial will have four distinct roots. Each distinct root corresponds to an

intersection of the algebraic varieties.

Two conics are said to be tangent to one another if they intersect in fewer then four

distinct locations. If two smooth conics are tangent to one another, as in Figure 2, then this

tangency can be seen algebraically by examining the restriction of one curve to another. The

resulting polynomial will have a multiple root corresponding to the point of tangency.

Fig. 2: Tangent Ellipses

This idea of tangency is quite clear when we are dealing only with smooth conics. It can

be interpreted as two curves coming together and touching at a point. What if we consider

a double line conic like the one introduced in Example 8? Every double line conic intersects

a smooth conic in only two distinct places. Therefore, within the complex projective plane,
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every double line conic is tangent to every smooth conic. This illustrates just how careful

we must be when addressing problems involving the intersection of plane conics.

4.3 A Parameter Space for Conics

In the previous section we gave a formal definition for the projective conic that will help us

to classify and work with individual plane curves. The definition also leads us in a natural

way to a method by which we can examine large groups of conics.

We consider a conic V(ax2 +by2 +cz2 +dxy+exz+fyz) ⊂ P2 with coefficients a,b,c,d,e,f

and assume that not all of the coefficients are zero. If the order of variables in this general

equation is kept consistent, then every possible degree 2 curve in the plane can be represented

by six complex coefficients. We observe that this induces a one to one correspondence

between the set of conics in P2 and the points [a : b : c : d : e : f ] in P5. For example, consider

the conic x2−5y2 +3xz = 0. We can describe this conic with the point [1 : −5 : 0 : 0 : 3 : 0],

a point in P5.

Our parameter space for plane conics can be constructed with the following mapping

{Conics in P2} −→ P5

V(ax2 + by2 + cz2 + dxy + exz + fyz) 7−→ [a : b : c : d : e : f ].

This is a powerful observation, for it allows us to classify large families of plane conics by

noting relationships between points in a higher dimensional projective space. An important

property of P5 is that points are unaffected by scalar multiplication. That is, The point

[1 : 0 : 1 : 0 : −1 : 0] is equal to the point [2 : 0 : 2 : 0 : −2 : 0]. This makes sense since

the the corresponding conics have equations x2 + z2 − xz = 0 and 2x2 + 2z2 − 2xz = 0 but

describe the same set of points in the plane.

An algebraic variety in P5 corresponds to a set of degree 2 curves in the complex projective

plane. Each point on the variety corresponds to a conic in P2. We refer to P5 as the moduli

space of conics embedded in P2. Lemma 10 gives insight into how we will use this moduli

space to better understand enumerative problems involving conics.
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Before we prove Lemma 10 we need to prove a very short but important result that we

will make use of throughout the paper.

Lemma 9. If a conic C contains three points that all lie on a line L, then it must have a

linear factor.

Proof. Assume that C is a smooth conic. We know that it intersects L in at least three

points. But this is a contradiction to the fact that a line can only intersect a conic in at

most two points. Thus C is a singular conic.

Lemma 10. Given an arrangement of n points in P2, the set of all conics passing through

each of the fixed points forms a hyperplane condition in the moduli space of plane conics.

Moreover, if no four of the points are collinear then these hyperplanes H1, H2, ...Hn are

linearly independent for n ≤ 5.

Proof. Begin by fixing a point P0 : [x0 : y0 : z0] in P2. The condition that a conic pass

through the point P0 is given by the equation

ax0
2 + by0

2 + cz0
2 + dx0y0 + ex0z0 + fy0z0 = 0

or

x0
2a + y0

2b + z0
2c + x0y0d + x0z0e + y0z0f = 0.

We can see this is a codimension-one linear subvariety, or hyperplane in P5.

Two hyperplanes are linearly independent if their corresponding normal vectors are lin-

early independent. Consider three hyperplanes in P5 that are formed by the set of all conics

passing through three points P0, P1, P2 ∈ P2 and assume that the three hyperplane are lin-

early dependent. Therefore we know that one of the hyperplanes, say H2, contains the

intersection H0 ∩H1. The codimension-two intersection corresponds to the set of all conics

that pass through the points P0 and P1. The fact that the third hyperplane contains this

space implies that any conic passing through P0 and P1 must also pass through P2. This is

a contradiction: since if the three points are not all collinear, then we can choose a double

line conic that passes through P0 and P1 but will not pass through P2. On the other hand,
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if the three points are all collinear then any non-singular conic that passes through P0 and

P1 does not pass through P2 or else it would be a product of linear factors. Thus any three

points in P2 form three linearly independent hyperplanes in P5.

Let H0, H1, H2 and H3 be four hyperplanes in P5 formed by the set of conics passing

through points P0, P1, P2, P3 ∈ P2 respectively. Assume that the hyperplanes are linearly

dependent. Therefore we know that the fourth hyperplane, say H3, contains the intersection

of H0, H1 and H2 since we showed that any three hyperplanes are linearly independent in P5.

This implies that conics that pass through P0, P1 and P2 must also pass through P3. For the

first case assume that P0, P1 and P2 are not all collinear. Then there is a set of crossed line

conics that pass through P0, P1 and P2 but do not pass through P3: namely a line passing

through P0 and P1 and another line that passes through P2 but does not pass through P3.

This is a contradiction to the assumption that the four hyperplanes are dependent. For the

second case, assume that three of the fixed points are collinear. We can choose a conic that

passes through the three collinear points but does not pass through the fourth point, namely

a double line. For the third case assume that P0, P1, P2 and P3 are all collinear. The only

conics that can pass through the first three points are conics that can be represented as the

product of linear factors. In this case the set of conics that pass through the first three of the

fixed collinear points must also pass through P3. Thus we have established that four points

in the plane that are not all collinear form four linearly independent hyperplanes in P5. And

if the four points are collinear if and only if there is a dependence condition between the

corresponding hyperplanes in P5.

Let H0, H1, H2, H3 and H4 be five hyperplanes in P5 formed by the set of conics passing

through points P0, P1, P2, P3, P4 ∈ P2 respectively. Assume that no four of the points are

collinear and that the hyperplanes are linearly dependent. The fifth hyperplane, H4, therefore

contains the intersection of the other four.

Assume that no three of the points P0, P1, P2 and P3 are collinear. Our linear dependence

assumption implies that all conics that pass through these four points must pass through a

fifth point P4. This is not true since we can consider a crossed line conic that contains P0
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and P1 on one line and P2 and P3 on the other. Such a conic probably does not contain

P4. If this conic does happen to contain P4, then we can choose a new pair of crossed lines,

say one line containing P0 and P2 and the other containing P1 and P3, and this conic will

definitely not contain P4 since no three of the points P0, P1, P2 and P3 are collinear.

If three of the five points are collinear then we have a one dimensional space of conics

that pass through four of the points but do not contain the fifth. Namely, conics that are

formed by a line that passes through the three collinear points and a P1 of lines that pass

through the fourth point. We can thus choose one of these lines such that we now have a

pair of crossed lines that do not contain our fifth point.

We have therefore established that by fixing n ≤ 5 points in the plane such that no four

of the points are collinear, we form n linearly independent hyperplanes in P5.

We can make use of P5 and Lemma 10 to solve our first enumerative problem. The fol-

lowing result is known as the Five Points Theorem and is fundamental to our understanding

of plane conics. It was known to the ancient Greeks that five points in the plane determine

a conic. There are many classical constructions for producing the unique conic that passes

through five fixed points. The proof of the following theorem shows the power of modern

algebraic geometry and the concept of the moduli space.

Theorem 11. Given any five points in P2 such that no four points are collinear, there exists

a unique conic that contains them all.

Proof. Consider the fixed point [x1 : y1 : z1] ∈ P2. The set of all conics passing through this

point form the hyperplane H1 ⊂ P5 in variables a, b, c, d, e, f .

H1 : V(x1
2a + y1

2b + z1
2c + x1y1d + x1z1e + y1z1f)

Similarly, the hyperplanes H2, H3, H4, H5 ⊂ P5 corresponds to the set of all conics that pass

through respective points in P2. If five points in the plane are chosen such that no three of the

points are collinear, then the hyperplanes H1, H2, H3, H4, H5 ⊂ P5 are linearly independent

by Lemma 10. This intersection of codimension-one linear subvarieties is a zero dimensional
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linear space and thus contains one point in P5. Hence there is exactly one conic that passes

through five points in P2.

4.4 The Degree of a Variety

A fundamental invariant of a projective variety is its degree. When dealing with plane

algebraic curves the degree of a variety may be obvious from the magnitude of the exponents

in its defining polynomial equations. We can think of the degree as the magnitude of the

curvature. A curve of degree eight embedded in P2 will generally have more curvature, or

bend, then a simple conic. It is important to develop a more rigorous notion of this property

so that we can determine and discuss the degree of a variety generated by several complicated

polynomial equations.

Definition 12. The degree of the projective variety V in Pn is the greatest possible finite

number of intersection points of V with a linear subvariety L ⊂ Pn of dimension equal to

the codimension of V .

This definition captures our intuition quite nicely. The maximal number of intersection

points of some variety V and a linear subvariety of the proper codimension will increase as

the variety bends more and more. The degree of a conic in the projective plane is two since

a codimension-one linear subvariety (a line) intersects the conic in at most two points. We

can see this algebraically since a conic is described by a degree two polynomial. A line in P2

is degree-one since any other line intersects it at one point.

The degree of a conic and a linear subvariety is easily determined. We are, however,

interested in the degrees of more complicated algebraic varieties. Just as the set of all conics

passing through a point form a hyperplane in P5, the set of all conics tangent to a fixed line

in P2 form a codimension-one subvariety in P5. Ascertaining the degree of this subvariety is

the first step to understanding conics tangent to lines.

Lemma 13. Given a line L : V(Ax+By +Cz) ⊂ P2, the set of all conics tangent to L form

a degree-two hypersurface TL ⊂ P5.
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Proof. Begin by considering the line L defined by the equation z = 0 and a general conic

C = V(ax2 + by2 + cz2 + dxy + exz + fyz).

The restriction of the conic C to line L is denoted C |L and is given by the equation

C |L: ax2 + by2 + dxy = 0.

We de-homogenize the equation to a new variable t = x/y and are left with

at2 + dt + b = 0.

Solving this equation for t yields

t =
−d±√d2 − 4ac

2a
.

The conic C is tangent to L when the discriminant of the above expression is zero. Thus the

hypersurface formed by the condition that a conic is tangent to the line z = 0 is described

by the degree 2 equation

d2 − 4ac = 0.

We can choose a specific line L without a loss of generality since any two lines in P2 differ

only by a linear change of coordinates, and this will not change our degree.

The Five Points Theorem established that there is a unique conic that passes through

five fixed points in P2. With the help of Lemma 13 we can tackle slightly more complicated

enumerative problems.

Theorem 14. Given any four non-collinear points P1, P2, P3, P4 ∈ P2 and any line L1 ⊂ P2

there exist at most two non-degenerate conics that contain the four fixed points and are

tangent to the fixed line.

Proof. Consider first the set of all conics tangent to the fixed line L1. This condition forms the

degree-two hypersurface S1 ⊂ P5. If we now consider the set of all conics that pass through

the points P1, P2, P3, P4 we see that this constraint forms an intersection of hyperplanes
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H1 ∩H2 ∩H3 ∩H4 ⊂ P5. This intersection, call it S2, is a one dimensional surface of degree-

one. The intersection S1 ∩ S2 ⊂ P5 contains points corresponding to the set of conics that

contain P1, P2, P3, P4 and are tangent to L1. Since S2 is a one dimensional line and S1 is a

codimension-one surface of degree-two, we know that the intersection S1 ∩ S2 must contain

at most two points. Therefore there are at most two conics that satisfy the set conditions.

Later on we will see that in general, there are precisely two.

At the end of the proof of theorem 14 we made use of the fact that a line intersects

a degree-two surface at two points. This is quite clear since we are dealing with a linear

variety. Bezout’s Theorem is a famous result in algebraic geometry that allows us to fur-

ther understand the intersection of two algebraic varieties when we have knowledge of their

respective degrees. For a proof of this theorem see Shafarevich [S, p.173].

Before we proceed to the theorem we need to define an important term that will be used

throughout the paper. The geometric locus of points on lines tangent to a projective variety

X at the point x is called the tangent space to X at x. It is denoted by ΘX,x. Varieties

Y1, . . . , Yr are said to intersect transversely at a point x ∈ ⋂
Yi if

codimΘX,x
(

r⋂
i=1

ΘYi,x) =
r∑

i=1

codimXYi.

[S]

Theorem 15 ([S]). If n hypersurfaces of degrees d1, d2, . . . , dn intersect transversely in Pn

then the intersection consists of ((d1)(d2) · · · (dn)) points.

This result provides a fundamental tool for determining the number of points of intersec-

tion of two algebraic varieties. When working in P5, the intersection of five codimension-one

subvarieties will yield a finite number of points. In this case intersection consists of a number

of points equal to the the product of the degrees of the varieties. Each point corresponds to

a conic in the plane. However if the codimension of the intersection space is less than five,

then Bezout’s Theorem tells us the degree of the space of intersection, but it is not possible

to interpret this number in terms of conics in the plane.
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Theorem 16. Given three points P1, P2, P3 ∈ P2 and two lines L1, L2 ⊂ P2, there exist at

most four conics that pass through the three points and are tangent to the two lines.

Proof. The set of all conics that pass through the three fixed points in the plane corresponds

to the intersection of hyperplanes H1 ∩ H2 ∩ H3 ⊂ P5. We call this intersection S1. By

Lemma 10 it is clear that S1 is a degree-one linear surface of dimension-two. The set of

conics that are tangent to L1 and the set of conics tangent to L2 form hypersurfaces S2 and

S3 respectively. The intersection S1 ∩ S2 ∩ S3 ⊂ P5 is the set of all degree-two curves that

satisfy our given constraints. S2 ∩ S3 ⊂ P5 is a degree four variety of dimension-three. By

intersecting S1, S2 and S3 we form a zero dimensional space satisfying the given constraints.

By invoking Bezout’s Theorem we observe that S1 ∩ S2 ∩ S3 contains four distinct points.

Each point corresponds to a conic, so there are four conics satisfying the conditions.

The set of all conics that are tangent to a fixed conic form a hypersurface in P5. This

surface however is very different than the one formed by conics tangent to a fixed line. The

following lemma establishes the degree of another very important subvariety in P5.

Lemma 17. Let Q be a conic in P2. The set of all conics tangent to Q form a degree six

hypersurface in P5.

Proof. Without loss of generality we can fix the conic Q : xz − y2 = 0 in P2. We dehomog-

enize this conic to x − y2 = 0. Similar to the proof of Lemma 13 we restrict the general

dehomogenized conic ax2 + by2 + cxy + dx + ey + f = 0 to Q by substituting y2 for x in the

general equation. This yields the equation

ay4 + by2 + cy3 + dy2 + ey + f = 0.

A conic is tangent to Q when this polynomial and its derivative

4ay3 + 2by + 3cy2 + 2dy + e = 0

have a common root. Two polynomials have a common root when the resultant of the

two is zero [CLO]. We computed the resultant using the computer algebra program Maple.



4 PROJECTIVE VARIETIES 21

This computation produced a large degree-six polynomial in the variables a, b, c, d, e, f . This

hypersurface vanishes over the set of all conics that are tangent to Q.

4.5 Duality

At this point its important to introduce a fundamental correspondence between points and

lines in the projective plane. If we consider both points and lines in the projective plane we

recognize that the two geometric objects are dual elements of one another. Just as a line

can be thought of as an uncountable stretch of points, we can view a point in the plane as

an intersection of an infinite number of lines.

Consider the equation describing a line in P2:

ax + by + cz = 0,

where a, b, c ∈ C are constant coefficients. If a point [x0 : y0 : z0] ∈ P2 lies on the line, then

the following condition must be satisfied:

ax0 + by0 + cz0 = 0.

A simple rearrangement shows that if we fix [x0 : y0 : z0] then this condition forms a line in

the variables a, b, c:

x0a + y0b + z0c = 0.

We see that there is a one dimensional space of lines in P2 passing through the point [x0 :

y0 : z0] [SC]. These observations lead us in a natural way to the following definition.

Definition 18. For any projective space Pn, the dual of Pn, denoted P̌n, is the moduli space

of all hyperplanes in Pn. A hyperplane in Pn with coefficients y0, y1, ..., yn is regarded as a

point [y0 : y1 : ... : yn] in P̌n.

The idea of duality applies not only to statements involving points and linear subspaces,

but also to non-linear algebraic varieties. The following result illustrates the important

relationship between a conic in P2 and the dual projective plane.
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Lemma 19. Given a non-singular conic Q ⊂ P2, there exists a dual non-singular conic

Q̌ ⊂ P̌2 where the set of lines tangent to Q form the conic Q̌. Moreover, the set of all lines

tangent to Q̌ correspond to the locus of points that form the conic Q.

Proof. We begin with a conic Q : ax2 + by2 + cz2 + dxy + exz + fyz = 0 and a line

L : Ax + By + Cz = 0. Since one of A, B, C is not equal to zero, without loss of generality

we can assume that A 6= 0. By rearranging terms in the equation of the line we can solve

for the x variable and then restrict our general conic Q to L:

Q |L: (
aB2

A2
− dB

A
+ b)y2 + (

2azCB

A2
− dC

A
− eB

A
+ f)yz + (

aC2

A2
− eC

A
+ c)z2.

The expression can now be dehomogenized to a new variable y/z yielding a quadratic equa-

tion. A conic and a line are tangent to each other when the discriminant of this quadratic

equation vanishes, or when

(
2azCB

A2
− dC

A
− eB

A
+ f)2 − 4(

aB2

A2
− dB

A
+ b)(

aC2

A2
− eC

A
+ c) = 0.

After expanding this expression and appropriately factoring the numerator we have the

following equation:

(f 2−4bc)A2+(4dc−2ef)BA+(4be−2df)CA+(e2−4ac)B2+(4af−2de)CB+(d2−4ba)C2 = 0.

This vanishing set is a conic Q̌ in the variables A,B,C and corresponds to the set of all lines

tangent to Q. Figure 3 will help the reader to visualize this duality.

Now we show that ˇ̌Q = Q. Begin with our conic Q and its dual Q̌. Let P be a point

on Q and let L denote the tangent line to Q at P . Then Ľ is a point on Q̌ and P̌ is a line

through Ľ. Suppose P̌ is not tangent to Q̌. Then P̌ intersects Q̌ at another point Ľ2 whose

dual is a line L2. L2 goes through P , since Ľ2 is on P̌ . Since Ľ2 is on Q̌, L2 must be tangent

to Q. Since L2 goes through P and is tangent to Q,

L2 = L ⇒ Ľ2 = Ľ.

This implies that Ľ2 is tangent to Q̌. Now we can show that ˇ̌Q = Q.
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L

P

C C

P L

Fig. 3: Duality

Fix Q in the plane and mark five points that lie on the conic. We showed that each of

these points gets taken to a unique line tangent to Q̌. The dual of these five lines is a set

of five points in P2. By the five points theorem there is one conic that passes through them

and hence ˇ̌Q = Q.

We can immediately make use of this lemma to prove a rather counterintuitive result.

The five points theorem showed that we can determine exactly one conic by fixing five points

in P2. The following theorem shows that a unique conic can also be determined by five lines

in the projective plane.

Theorem 20. Given five fixed lines in general position in P2 there is exactly one conic that

is tangent to all five of them.

Proof. By the principle of duality we know that the five fixed lines in P2 can be regarded

as five points in P̌2. Theorem 1 tells us that there is one conic Č that passes through these

points. Invoking Lemma 19 we see there is one conic C that is tangent to five fixed lines in

P2.

4.6 Excess Intersection

The proof of Theorem 20 is of a completely different form than the proofs for Theorems 14

and 16. The argument does not make use of the hypersurfaces formed under the condition
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that a conic be tangent to a fixed line. In fact, if we were to attempt to prove Theorem 20

by considering the intersection of the five hypersurfaces formed by the fixed lines in P2, then

we would be led to an erroneous conclusion.

The variety formed in P5 by the set of all conics tangent to a line is degree-two by Lemma

13. Naively applying Bezout’s Theorem we assume that the intersection of the hypersurfaces

contains (2)(2)(2)(2)(2) = 25 = 32 points in P5. This clearly contradicts the valid proof of

Theorem 20, given above. We must check the hypothesis of the theorem carefully. This

discrepancy is an elementary example of Excess Intersection.

The double line introduced in Example 8 is fundamental to our understanding of enu-

merative problems involving conics. When we ask questions involving tangency and plane

conics, how do we take into account that every double line conic is tangent to every other

curve in the plane? By considering each double line conic in P2 by its representative point

in P5, we can view the set of all double line conics as a surface in our moduli space. By

better understanding this variety we can hope to gain insight into how degenerate conics are

affecting our counting. We will examine this variety in the following section.

5 Varieties Within the Moduli Space of Conics

This section is dedicated to describing the two most important subvarieties that lie within

P5, the Veronese surface, and the Segre embedding. We examine how these geometric objects

relate to problems of enumeration involving plane conics.

5.1 The Veronese Surface

The Veronese surface is the variety in P5 that corresponds to the set of all double line conics

in the plane. Consider the double line conic V((Ax + By + Cz)2).We see that

V((Ax + By + Cz)2) = V(A2x2 + B2y2 + C2z2 + 2ABxy + 2ACxz + 2BCyz).
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Thus the Veronese surface of double lines is the image of the mapping

P2 −→ P5,

[A : B : C]
V7−→ [A2 : B2 : C2 : 2AB : 2AC : 2BC].

To show that this mapping is one-to-one we consider two points

[A1
2 : B1

2 : C1
2 : 2A1B1 : 2A1C1 : 2B1C1], [A2

2 : B2
2 : C2

2 : 2A2B2 : 2A2C2 : 2B2C2] ∈ P5

and assume that they are equal. Therefore the following equalities must hold

A1
2 = λA2

2, B1
2 = λB2

2, C1
2 = λC2

2

for some λ 6= 0

2A1B1 = λ2A2B2, 2A1C1 = λ2A2C2, 2B1C1 = λ2B2C2.

From these conditions it is not difficult to show that

A1 =
√

λA2, B1 =
√

λB2, C1 =
√

λC2.

Multiplication by a scalar does not change the point in projective space so our map is one-

to-one. Our mapping is therefore an embedding of P2 into P5.

This map provides a parametrization of the surface in P5, but we can derive a set of six

polynomial equations in variables a, b, c, d, e, f that vanish on this subvariety. We can see

from the above parametrization that a point lying on the Veronese surface must satisfy the

following equations

f 2 − 4bc = 0, e2 − 4ac = 0

4dc− 2ef = 0, 4af − 2de = 0

4be− 2df = 0, d2 − 4ba = 0.

These six polynomials generate what is known as a radical ideal, which is the algebraic

representation of this subvariety in P5.
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5.2 The Segre Variety

The image of the Segre embedding is the moduli space of projective crossed line conics that

are embedded in P2. The variety is the embedding

P̌2 × P̌2 −→ P5.

The Veronese variety is contained within the Segre. This conforms with our intuition since

we can view the set of double line conics as a subset of the crossed lines. A double line is

simply a pair of crossed lines that have come together and now lay on top of one another.

We can parameterize the Segre just as we parameterized the Veronese surface. Consider

the pair of crossed lines

(aX + bY + cZ)(dX + eY + fZ)

that are embedded in P2. When we expand this polynomial out and drop the variables, we

are left with the appropriate parametrization

[ad : be : cf : ae + bd : af + cd : bf + ce] ∈ P5.

The remainder of this section is dedicated to establishing the degree of the Segre. Lemma

21 and Lemma 22 will be a necessary lead up to the this important result. Since the Segre

is a codimension-one subvariety inside of P5, it is very difficult to visualize. Knowing the

degree of the variety will give a large amount of insight into how the set of points is shaped

within our moduli space.

Lemma 21. For every conic Q in P2 there is a set of conics that are tangent to Q. These

conics form a dimension-four subvariety TQ in P5. For any point S ∈ TQ the line that passes

through the points S and Q is completely contained in TQ. This is equivalent to saying that

any point in P5 that lies on the line joining Q and S represents to a conic that is tangent to

Q.

Proof. Without loss of generality we can let R be the projective conic xz − y2 = 0 and let

TR denote the variety in P5 that corresponds to the set of all conics that are tangent to R.
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Choose a point S : [a : b : c : d : e : f ] that is contained in TR. We describe the line LRS

containing both R and S with the following parametrization:

LRS : [(1− t)a1 : −t + (1− t)b1 : (1− t)c1 : (1− t)d1 : t + (1− t)e1 : (1− t)f1].

Thus a conic lies on this line if it satisfies:

(1−t)(a1)x
2+(−t+(1−t))(b1)y

2+(1−t)(c1)z
2+(1−t)(d1)xy+(t+(1−t))(e1)xz+(1−t)(f1)yz = 0.

We need to check if this conic is tangent to R. We do so by dehomogenizing the above

curve and restricting it to R to yield

(1− t)(a1)y
4 + (1− t)(d1)y

3 + (1− t)(b1 + e1)y
2 + (1− t)(f1)y + (1− t) = 0.

We then differentiate the polynomial to obtain

(1− t)(4a1)y
3 + (1− t)(3d1)y

2 + (1− t)(2b1 + 2e1)y + (1− t)f1 = 0.

These two polynomials have a common root when the determinant of the following Sylvester

Matrix vanishes

(1− t)




a 0 0 4a 0 0 0

c a 0 3c 4a 0 0

d + b c a 2b + 2d 3c 4a 0

e d + b c e 2b + 2d 3c 4a

f e d + b 0 e 2b + 2d 3c

0 f e 0 0 e 2b + 2d

0 0 f 0 0 0 e




.

But since the conic S was chosen to be tangent to R we know that the determinant of

this matrix vanishes by Lemma 17 and the definition of the resultant. Thus every point on

the line LRS corresponds to a conic that is tangent to R.
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Lemma 22. A generic line in P5 is the intersection of four linearly independent hyperplanes,

each corresponding to the set of plane conics that pass through a fixed point in P2.

Proof. Let L be a line in P5 and let [a0 : b0 : c0 : d0 : e0 : f0] and [a1 : b1 : c1 : d1 : e1 : f1]

be two points that lie on this line. Consider their corresponding conics in P2. In general the

two conics will intersect in four distinct points P1, P2, P3 and P4. Now consider the set of

all conics that pass through one of these intersection points, say P1. Each of the two conics

are members of this set. Since the set of all conics passing through P1 forms a hyperplane

H1 ∈ P5, our two points [a0 : b0 : c0 : d0 : e0 : f0] and [a1 : b1 : c1 : d1 : e1 : f1] are

contained in H1 as well as each of the hyperplanes H2, H3 and H4. We know that four

linearly independent hyperplanes intersect in a line and we know that this is precisely the

line L.

We must show that we can choose a generic line in P5 such that pairs of points on the

line correspond to conics that intersect in four distinct points. We compute the dimension

of the set of lines in P5 as follows. We have 5 dimensions of freedom to choose a point in P5.

Two points determine a line in P5. However, each of the two points has a one dimensional

space of freedom to move and yet still determine the same line. This freedom of movement

must be subtracted from the total dimensionality. Thus the dimension of the space of all

lines in P5 is 5 + 5− 2 = 8.

By Lemma 21 we know that we can choose a line in P5 that is completely contained in

a subvariety that is formed by the set of all conics that are tangent to some conic that is

contained in our chosen line. Such a line would not be generic and would be insufficient

for determining the degree of a codimension-one subvariety in P5. We need to show that

it is possible to choose a line in P5 that is not contained in the above subvariety. We have

five dimensions of freedom to choose a point Q in P5. Upon choosing this point we have

four dimensions of freedom in choosing a point that determines a line which is completely

contained in the variety TQ. When choosing two points to determine a line, there is a two

dimensional space of points that fix the same line. Thus the dimension of the space of lines,

each of which corresponds to a set of conics that are tangent to one another, is 5+4−2 = 7.
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Since the space of lines in P5 is eight dimensional we have the freedom to choose a generic

line that does not correspond to set of conics in the plane that are tangent to one another.

Lemma 23. The degree of the Segre Variety in P5 is three.

Proof. From the definition of degree we know that the degree of the Segre variety in P5 is

equivalent to the number of points on the Segre lying on a generic line in P5. Choose a

generic line in P5. By lemma 22 we know that we can choose four points in the plane such

that conics passing through these points correspond to linearly independent hyperplanes

that intersect on our chosen line. This line will intersect the Segre variety precisely when

a singular conic in P2 contains the four fixed points. There are only three possible pairs of

crossed lines that can contain four points in the plane. Thus the degree of the Segre variety

is three.

6 The Blowup of P5

6.1 Definition of the Blowup

From the equations of the six hypersurfaces that intersect on the Veronese we are able to

define the following birational morphism F on P5:

P5 F−→ P5

[a : b : c : d : e : f ] → [f 2 − 4bc : e2 − 4ac : d2 − 4ba : 4dc− 2ef : 4be− 2df : 4af − 2de]

We see that F is not well defined for the set of points in P5 that lie on the Veronese

surface. Points in P5 that correspond to double line conics are mapped to the vector [0 : 0 :

0 : 0 : 0 : 0], which is not a point in projective space.

Definition 24. If we let F be the above function, we define the Blowup of P5 along the

Veronese surface, denoted BlV (P5), to be the closure of the graph of the map F in P5 × P5.
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BlV (P5) can be thought of as a stretching of the moduli space conics. BlV (P5) preserves

all properties of non-singular and crossed line conics, but adds additional information to the

Veronese surface.

Definition 25. The Exceptional divisor E, in BlV (P5) is the set of points added by taking

the closure of the graph of F . It is an irreducible and codimension-one subvariety of BlV (P5).

If we let V denote the Veronese surface in P5, then the projection map

BlV (P5)
π→ P5

(x, F (x)) 7→ x

defines an isomorphism between the open sets

BlV (P5) \ π−1(V ) → P5 \ V.

If Z is an irreducible variety in P5 then π−1(Z) is what is referred to as the total transform

of Z. If π−1(Z) is reducible and has a multiple of the exceptional divisor, mE as a component,

then π−1(Z)\mE is called the proper transform of Z [H]. The closure of the set of points on

the variety π−1(Z) that lie off of the exceptional divisor is referred to as the strict transform

of Z.

The isomorphism described above fits in nicely with our intuition about the blowup of

P5. Conics lying outside of the Veronese are unchanged by blowing up the space.

6.2 The Exceptional Divisor

The exceptional divisor E is a codimension-one variety in BlV (P5) and is the preimage

π−1(V ) of the Veronese surface. We defined the blowup of P5 along the Veronese to be

the closure of the graph of a map defined by the generating polynomials of the Veronese

embedding. The exceptional divisor can be thought of as the set of points on the graph that

are added to close out the space. Every point on the exceptional divisor is therefore the limit

of a sequence of points that lie off of this variety. So by examining a sequence of points that
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converge to a point in the closure, we can better understand the set of points that form the

exceptional divisor.

There is a large open set NS in BlV (P5) that lies outside of the exceptional divisor. The

coordinates of each point p ∈ NS are given by a row vector with twelve entries. The first

six entries are coefficients of a smooth conic C ⊂ P5 while the second six entries are the

coefficients of the smooth conic Č ⊂ P̌5.We know this because the polynomials that generate

the ideal which corresponds to the Veronese surface are precisely the polynomials that define

the coefficients of the dual conic.

E is the preimage of the Veronese under our map

BlV (P5)
π1−→ P5

(c1, c2) 7−→ (c1).

So we know precisely the first factor of the coordinate describing a point p ∈ E. The first

six entries are the coefficients of a double line conic in P2. The second factor of the point is

not so easy to discern since within P5, duality is not well defined for points on the Veronese.

We can attack this problem by making use of the definition of set closure.

Consider a sequence of points {pi} ∈ NS that converges to a point p ∈ E. The first factor

of each element in the sequence is composed of the coefficients of some non-singular conic

Ci, while entries in the second factor are the coefficients of the non-singular conic Či. By

the definition of a graph we know that the first factor converges to the coefficients of a point

on the Veronese. This can be thought of as the deformation of a smooth conic in P2 into a

double line. At each instant of this deformation we have a conic in the plane that has a well

defined dual. The limit of this sequence of dual conics {Či} as the sequence {Ci} approaches

a double line, is a conic whose coefficients are the last six entries of the coordinate describing

the point p.

Now we will evaluate this limit. We begin by choosing a set of non-singular conics that

can be deformed into a double line. Let V be the image of the Veronese embedding in P5

and choose a point v ∈ V . v is a point of the form [A2 : B2 : C2 : 2AB : 2AC : 2BC]
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where A,B,C ∈ C. Now consider the line segment Lvq ⊂ P5 that connects v to some point

q = [a : b : c : d : e : f ] which corresponds to a non-singular conic Q ∈ P2. We can maneuver

along this line segment with the following parametrization:

q(t) : [A2(1−t)+at : B2(1−t)+bt : C2(1−t)+ct : 2AB(1−t)+dt : 2AC(1−t)+et : 2BC(1−t)+ft]

where the parameter t is a real number ranging from zero to one. As t approaches zero, the

family of non-singular conics degenerates into a double line, and q(0) = v. We have already

established by lemma 19 the following mapping which takes a point in P5 to its dual point

P5 −→ P̌5

[a : b : c : d : e : f ] 7−→ [(f 2−4bc) : (e2−4ac) : (d2−4ba) : (4dc−2ef) : (4be−2df) : (4af−2de)].

The limit of q̌(t) as t approaches zero is the second factor in the coordinate describing a

point on E. The computation of this limit can be done using the computer algebra system

Maple. We can now regard this limit point in P5 as a conic in the variables X, Y, Z. This

conic factors giving

V([
√

c(B− f

2c
C−

√
f 2 − 4bc

4c2
C)X+

√
a(C− e

2a
A−

√
e2 − 4ac

4a2
A)Y +

√
b(A− d

2b
B−

√
d2 − 4ab

4b2
B)Z]

[
√

c(B− f

2c
C+

√
f 2 − 4bc

4c2
C)X+

√
a(C− e

2a
A+

√
e2 − 4ac

4a2
A)Y +

√
b(A− d

2b
B+

√
d2 − 4ab

4b2
B)Z]).

We see that the second factor of a point on E is the coefficients of a crossed line conic, or a

point on the Segre embedding.

6.3 Duality and The Blowup

We can now construct a bijection from the exceptional divisor to P5 with the following

mapping:

BlV (P5) −→ P5

[a : b] ∈ E 7−→ b ∈ P5
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where a is a point on the Veronese and b is a point on the Segre such that b̌ equals a.

This bijection shows us that the second factor of E is isomorphic to the variety of crossed

line conics in P5. Therefore, a point on the exceptional divisor can be described by choosing

a point on the Segre variety and then computing the dual of that point.

The dual map introduced in Lemma 19 is well defined for all points in P5 that lie off of

the Veronese surface, because every non-singular and crossed line conic is taken to a unique

dual. The map is not well defined for points on the Veronese since a point corresponding to a

double line conic is mapped to [0 : 0 : 0 : 0 : 0 : 0]. We have just seen that blowing the space

of conics seems to complete the dual mapping. A point v on the Veronese surface is now

identified with the set of all crossed lines that are sent to v under the mapping introduced

in Lemma 19.

7 Resolution of Steiner’s Problem

7.1 The Chow Ring and Rational Equivalence

Before we attempt to resolve further enumerative problems we need to develop a formal

set of algebraic operations that will allow us to work with the underlying geometry of the

blowup of P5. We begin the construction of these algebraic operations by first examining an

important property of subvarieties in projective space. The property of rational equivalence

gives algebraic geometers a method of classifying two subvarieties that may look different,

but share many essential intersection properties.

Definition 26. A codimension-k cycle on X is a finite formal sum of irreducible codimension-

k subvarieties of a projective space X. We denote by Zk(X) the set of all codimension-k

cycles of X.

Both the zeros and the poles of a rational function are cycles. For example, a zero of

order three corresponds to three copies of a linear subvariety.
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We see that each element of ZkX is a finite linear combination irreducible subvarieties

a1Y1 + a2Y2 + · · · anYn

such that each ai is an integer and each Yi is an irreducible subvariety of X of codimension

k.

We introduce the operation of addition to ZkX by
m∑

i=1

aiYi +
n∑

i=1

biYi =
∑

i

(ai + bi)Yi.

The zero element can be thought of as the empty set. For each
∑m

i=1 aiYi ∈ ZkX there

is an element −∑m
i=1 aiYi such that

∑m
i=1 aiYi + (−∑m

i=1 aiYi) = 0. Associativity holds

within the set since the addition of integers is associative. Thus Zk(X) is a group under the

operation of addition.

Definition 27. Let Y1 and Y2 be codimension i cycles within an ambient space X. These

two cycles are said to be rationally equivalent if there is a codimension i − 1 cycle W of X

containing Y1 and Y2, and a rational function f on W such that

Y1 = zeros of f

and

Y2 = poles of f.

We illustrate this concept with an example. Let Y1 = V(y2 + x2) and Y2 = V(yz − x2)

be conics in P2. Y1 and Y2 are rationally equivalent since P2 contains the curves and we can

construct a rational function f(x, y, z) = y2+x2

yz−x2 which clearly has Y1 as its zeros and Y2 as its

poles. In fact, any two varieties of the same degree in Pn are rationally equivalent. This is

an important point since we can now say that nonlinear varieties are rationally equivalent to

linear varieties. For example, a hypersurface of degree three is rationally equivalent to three

copies of a codimension-one linear cycle.

If Y is a cycle of some projective space, then the set of all cycles that are rationally

equivalent to Y is called the rational equivalence class of Y , and is denoted [Y ]. We are now

ready to construct what is known as the Chow Ring.
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It is easily show that the cycles that are rationally equivalent to zero form a subgroup of

Zk(X).

Definition 28. If X is a projective space of dimension n we define AkX to be the quotient

of Zk(X) by the subgroup of cycles that are rationally equivalent to zero. Thus Ak(X) will

be the group of linear combinations of rational equivalence classes of codimension k cycles.

We define A∗X =
⊕5

k=0 AkX.

Multiplication of elements in A∗X reflects the way that cycles intersect in Pn. We can

now introduce the formal multiplication operation of A∗X.

Definition 29. We define the multiplication of two elements [Y1] ∈ AkX and [Y2] ∈ AlX as

[Y1] • [Y2] ∈ Ak+lX = [Yα ∩ Yβ] such that there are two subvarieties Yα ∈ [Y1] and Yβ ∈ [Y2]

that intersect transversely.

We see that the multiplicative identity in our ring is the rational equivalence class of

the entire space X. This multiplication operation can be carried out if we can find two

appropriate subvarieties that intersect transversely. But as we know, projective varieties do

not always intersect transversely. We can only multiply two rational equivalence classes when

we can choose two elements that are not tangent, or do not contain a common component.

Fortunately, we know that we can always choose the appropriate cycles.

Lemma 30 ( [F]). Let Y1 and Y2 be subvarieties in a projective space X. There exist

subvarieties Y ′
1 and Y ′

2 that are rationally equivalent to Y1 and Y2 respectively and intersect

transversely.

For a proof of this result we refer the reader to [F].

7.2 The Cohomology of the Blowup

We can establish a variety of results about rational equivalence classes of cycles in a large

projective space that will allow us to understand subvarieties in both P5 and the blowup of



7 RESOLUTION OF STEINER’S PROBLEM 36

P5 along the image of the Veronese embedding. Let Z be an irreducible closed subset of a

projective variety X and let U = X \ Z be its complement.

Theorem 31 ([F]). There exists a surjective homomorphism from A1X to A1U .

Proof. Let D be a codimension-one cycle of a projective space X with [D] ∈ A1X. We

construct a map

g : A1X −→ A1U

[D]
g7−→ [D ∩ U ].

Thus if D = mZ where m ∈ Z then

D
g−→ ∅.

We can show that the map is well defined. Let D1 and D2 be rationally equivalent cycles in

X. We see that g(D1) and g(D2) are rationally equivalent since we can restrict a rational

function f which has D1 as its zeros and D2 as its poles to the space X \ Z.

Our map g is a homomorphism since [D1 + D2] = ¯[D1] + ¯[D2] and D1 •D2 = D̄1 • D̄2.

To show that the map is surjective we consider a class [F ] of a representative cycle F of U .

Let F̄ be the closure of F in X. We see that

g[F̄ ] = [F ].

Hence the map g is surjective.

Corollary 32. Let Z be a codimension-one variety and assume that Z is irreducible in the

ambient space X. The kernel of the map g above, which takes elements of A1X to elements

of A1(X \ Z), is Z[Z].

Proof. It is clear that Z[Z] is in ker(g). We need to show that ker(g) ⊂ Z[Z]. Let [W ] ∈ A1X

such that [W ] is not an integer multiple of [Z]. If D is a cycle in [W ], then it is codimension-

one and cannot be contained in Z and thus must contain points in X \Z. We have therefore

guaranteed that the map g takes points in [W ] to points on U and hence [W ] /∈ ker(g). Thus

ker(g) ⊂ Z[Z] and ker(g) = Z[Z].
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Corollary 33. Let the codimension of Z be greater than one. The map introduced in theorem

31 is an isomorphism.

Proof. Given a projective space X, the surjective map g takes elements from A1X to elements

in A1(X \ Z).

Let D1, D2 be codimension one cycles in X \ Z such that D1 and D2 are rationally

equivalent to each other, and let D̄1 and D̄2 be their respective closures in X.

Since g maps only elements of A1X to X \ Z any cycle D that we can pick is too big

to be contained in Z. Thus the kernel of g is zero and our map g is injective and hence an

isomorphism.

We now need to incorporate the above results into the context of BlV (P5), the blowup of

P5 along the image of the Veronese embedding. We let E be the closed exceptional divisor

of BlV (P5) and let U be its open complement.

Theorem 34. A1(BlV (P5)) is isomorphic to A1(U)⊕ Z[E].

Proof. By Theorem 31 we know that there exists a surjective map g that takes elements in

A1(BlV (P5)) to elements in A1(BlV (P5) \E). Let f be the map that takes integer multiples

of the exceptional divisor into A1(BlV (P5)). Since E is codimension-one in BlV (P5) we know

that Ker(g) = Z[E] by corollary 32. (The only elements of A1(BlV (P5)) that are not mapped

to A1(BlV (P5) \ E) are multiples of [E] itself).

Consider the following sequence of homomorphisms

0 −→ Z[E]
f−→ A1(BlV (P5))

g−→ A1(BlV (P5) \ E) −→ 0.

The kernel of the map f is zero since every integer multiple of the exceptional divisor is

mapped into A1(X). We have established by corollary 32 that the kernel of the map g is the

set of integer multiples of the exceptional divisor. Thus the image of f is equal to ker(g).

By Theorem 33, g is surjective. Our set of maps above is therefore a short exact sequence.
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Because there is a homomorphism from A1(BlV (P5) \ E) to A1(BlV (P5)), namely the

morphism obtained by taking the closure of a divisor, we know that our short exact sequence

splits and A1(BlV (P5)) = A1(BlV (P5) \ E)⊕ Z[E].

Theorem 35 ([FS]). Let H be a hyperplane in P5, and let H̃ = π−1(H). The ring A1(BlV (P5))

is isomorphic to Z[H̃] + Z[E].

Proof. By theorem 34 we know that

A1(BlV (P5)) ∼= A1(BlV (P5) \ E)⊕ ZE

and we have established in section 6.1 the isomorphism A1(BlV (P5) \ E) ∼= A1(P5 \ V ).

By invoking corollary 33 we see that A1(P5 \ V ) is isomorphic to A1(P5). Each element of

A1(P5) is an integer multiple of some general hyperplane class [H]. By linking this chain of

isomorphisms we conclude

A1(BlV (P5)) ∼= Z[H̃]⊕ Z[E].

If two varieties X1 and X2 are rationally equivalent in P5, then their inverse images under

our map π are rationally equivalent. We know this because there is a rational function, say

g, with zeros X1 and poles X2. The function g ◦ π has π−1(X1) as its zeros and π−1(X2) as

its poles. It follows that as cycles, nπ−1(X1) = π−1(nX1) where n is an integer.

Let TQ be the set of all conics tangent to some fixed conic Q. Let H̃ equal π−1(H), where

H is some arbitrary hyperplane in P5. π−1(TQ) ∼ π−1(6H) and π−1(6H) ∼ 6H̃ So we now

know that π−1(TQ) is equivalent to 6H̃.

We define T̃Q to be the strict transform of TQ under the map π. π−1(TQ) is not irreducible

as a cycle since it can be broken into two components, namely T̃Q and nE where n is some

integer. We will now prove a very important result.

Lemma 36. π−1(TQ) = T̃Q + 2E
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Proof. Let fQ be the polynomial whose vanishing set is the variety TQ. We first need to

show that I(π−1(TQ)) ⊂ I(E)2.

It can be shown using Macauley or a similar computer algebra system, that I(TQ) ⊂
I(V )2 and I(TQ) 6⊂ I(V )3. Since fQ generates I(TQ), fQ 6∈ I(V )3.

Now consider the zeros of the function (fQ ◦ π) on the blowup BlV (P5). For any point

p̃ ∈ π−1(TQ),

π(p̃) ∈ TQ ⇐⇒ fQ(π(p̃)) = 0 ⇐⇒ (fQ ◦ π)(p̃) = 0.

Therefore (fQ ◦ π) generates I(π−1(TQ)).

(1)

Because fQ is in I(V )2 we can choose functions f1, f2 such that f1, f2 ∈ I(V ) and

fQ = f1, f2. By the same reasoning as in 1, f1 ◦ π and f2 ◦ π are in I(π−1(V )) = I(E). Note

that for any point p̃ in BlV (P5),

(fQ ◦ π)(p) = fQ(π(p̃)) = f1(π(p̃))f2(π(p̃)) = (f1 ◦ π)(p̃)(f2 ◦ π)(p̃).

And thus, (fQ ◦ π) = (f1 ◦ π)(f2 ◦ π).

We know then that (fQ ◦ π) ⊂ I(E)2. This implies that the zeros of (fQ ◦ π) include

2E. Note that neither f1 nor f2 can be in I(V )2, so the zeros of (fQ ◦ π) do not include 3E.

Away from E, the zeros of fQ ◦ π = T̃Q by the definition of T̃Q.

Thus, the zeros of fQ ◦ π are T̃Q + 2E. Hence π−1(TQ) = T̃Q + 2E.

[T̃Q] = 6[H̃]− 2[E]

Proof. This follows from the fact that π−1(TQ) is rationally equivalent to 6H̃ and by Lemma

36 is rationally equivalent to T̃Q + 2E.
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By a similar proofs, we can show that the strict transform of the variety TL, which is the

set of all conics tangent to some line L, is rationally equivalent to 2H̃ − E, and also that

[T̃L] = [2H̃]− [E].

7.3 Solution to Steiner’s Problem

We now have all of the tools necessary to understand a key relationship between varieties

in BlV (P5). The following identity gives the fundamental relationship between cycles T̃P ,T̃L

and T̃Q.

Theorem 37. The cycles T̃P , T̃L and T̃Q on BlV (P5) are related by the following identity:

T̃Q = 2T̃P + 2T̃L

Proof. We know that T̃Q = 6T̃P − 2E. It is also clear that T̃L = 2T̃P − E. By solving for E

in this equation we obtain the following relation:

T̃Q = 6T̃P − 2(2T̃P − T̃L) = 2T̃P + 2T̃L.

We can make use of this powerful result and our previous theorems to solve a variety

of enumerative problems involving conics and lines. We will now make frequent use of

the multiplication operation defined for the Chow ring. Consider the multiplication of two

divisors (T̃L)3 and (T̃P )2. Evaluating the expression

(T̃L)3(T̃P )2

is equivalent to asking the question: How many conics pass through two points and are

tangent to three given lines? We know by the principle of duality and Theorem 16 that the

answer is four.
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Before we proceed with the final calculations to the various enumerative problems, we

need to answer two central questions. Given the conics that satisfy the conditions to a

particular variation of Steiner’s problem: When are all of these conics non-singular? And

in the case that they are all non-singular, is our solution set of conics composed of unique

curves, or are we dealing with conics that have some multiplicity?

We first need to show that in general, there will be only non-singular conics tangent to

five fixed non-singular conics. Let TQi
be the hypersurface in P5 formed by the set of all

conics tangent to some non-singular conic Qi ⊂ P2.

Lemma 38. The set {(Q1, Q2, Q3, Q4, Q5)} ⊂ (P5)5 such that
⋂5

i=1 T̃Qi
consists only of

isolated points, is open.

Proof. We begin by defining a set

V = {(Q1, Q2, Q3, Q4, Q5, P ) : P ∈
5⋂

i=1

T̃Qi
}

where V ⊂ (P5)5×BlV (P5). Also we define the function K such that K(Q1, Q2, Q3, Q4, Q5, P )

is equal to the dimension of the tangent space to
⋂5

i=1 T̃Qi
at P . Let∇F1(P ),∇F2(P ), . . . ,∇F5(P )

be the respective normal vectors to each of the five hypersurfaces at the point P . We know

that any vector in the tangent space at P is perpendicular to this set of vectors. Any such

vector is in the kernel of J , the Jacobian matrix defined as



∇F1(P )

∇F2(P )

∇F3(P )

∇F4(P )

∇F5(P )




.

We know that rank(J)+nullity(J) is equal to the number of variables. We can rearrange

this equality to see that K(P ) = 6 − rank(J). We see here that the maximal rank of the

matrix J is five. So therefore, if the matrix is of full rank then the function K will tell us

that the dimension of the tangent space is one. It is one dimensional in affine space, but
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when projectivized, the dimensionality is dropped to zero. We are interested in determining

when the output of the function K is greater than or equal to one. If the output of the

function K is greater than zero then we know that the multiplicity at the point is greater

than one.

A well known result from linear algebra tells us that all of the maximal minors of J will

vanish if and only if J is not of full rank. Each row within the matrix J is the gradient

vector ∇Fi(P ) to some hypersurface T̃Qi
⊂ BlV (P5) at the point P . Given a conic Qi in P2

the hypersurface TQi
⊂ P5 formed by the set of all conics tangent to Qi is the vanishing set

of a polynomial in the standard variables a, b, c, d, e, f of P5. The hypersurface T̃Qi
is the

strict transform of TQi
under our well defined projection map π.

Depending on the location of the point P in BlV (P5), a particular gradient vector,∇Fi(P )

will be defined by a polynomial in the variables giving the coordinates of P with coefficients

a, b, c, d, e, f . In short, each entry of our matrix J is a given by a polynomial. Thus the

condition that the determinants of the 5×5 minors of our Jacobian matrix J vanish, is given

by polynomial equations. It is a closed set in the Zariski topology.

This closed set lies within the space (P5)5 × BlV (P5). This is not sufficient to complete

the proof, since we must show that the image of our set V , under the projection to (P5)5,

is closed. Fortunately, we are working within projective space, where it is known that the

projection from one space onto another maps closed varieties to closed varieties. Thus our

closed variety within (P5)5 ×BlV (P5) remains closed when projected onto (P5)5.

We have shown that the set {(Q1, Q2, Q3, Q4, Q5)} ⊂ (P5)5 such that there is a non-

isolated point P in
⋂5

i=1 T̃Qi
, is closed in (P5)5. Thus the complement of this set is open.

We now need to show that this set is non-empty, since the empty set is defined to be

open in the Zariski Topology.

We will now show that the solution set for Steiner’s Problem will in general consist only

of non-singular conics.

Lemma 39. The set {(Q1, Q2, Q3, Q4, Q5)} ⊂ (P5)5 such that
⋂5

i=1 T̃Qi
consists only of

points lying off of the exceptional divisor, is open.
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Proof. Let V denote the set {(Q1, Q2, Q3, Q4, Q5, P )} : P ∈ ⋂5
i=1 T̃Qi

. This set is closed in

the space (P5)5 ×BlV (P5). Consider now the space W : [(P5)5 ×E]. This set is closed since

both P5)5 and E are closed sets. V ∩W is the set {(Q1, Q2, Q3, Q4, Q5, Ps)} : Ps ∈
⋂5

i=1 T̃Qi

where Ps is described by the coefficients of a double line conic, and a crossed line conic.

V ∩W is a closed set since both V and W are closed and the projection from V ∩W onto

(P5)5 is therefore closed.

Thus the set {Q1, Q2, Q3, Q4, Q5} such that there exists some P ∈ ⋂5
i=1 T̃Qi

where P is

described by the coefficients of a singular conic, is closed in (P5)5. We now must show that

its open complement is non-empty.

The proofs of both Lemma 38 and 39 depend on the existence of some arrangement of

five conics that give rise to 3264 non-singular conics of multiplicity one. Fortunately the

mathematicians Ronga, Tognoli, and Vust have constructed such an arrangement in their

paper The number of conics tangent to five given conics: the real case[RTV].

Lemma 38 and Lemma 39 establish the general case for the solution set of conics in

Steiner’s problem. An identical proof can be used to establish similar results for all variations

of Steiner’s Problem involving points, lines and conics. One just needs to be careful to work

with the appropriate varieties in P5.

7.4 General Position

During the course of the final calculations that yield the solutions to the various problems, we

will introduce the appropriate definition of general position for a particular set of problems.

It is not sufficient merely to say that a point, line, conic set is in general position if it gives rise

to a set of conics that have no multiplicity. The conditions in P2 must also give rise to sets of

curves that are composed of non-singular conics. We now take a look one specific problem,

namely Steiner’s Problem, and examine how general position fits into this example. This

will help the reader to understand the motivation behind the definitions for general position

given in the following section.
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Consider five conics C1, C2, C3, C4, C5 ∈ P2. We know that for each Ci there is a corre-

sponding hypersurface TCi
⊂ P5. Let T̃Ci

⊂ BlV (P5) be the the pre-image of TCi
under our

defined blowup mapping. Let E denote the exceptional divisor as usual. If the set of conics

tangent to the five fixed conics are non-singular, then we know that {⋂5
i=1 T̃Ci

} ∩ E = ∅.
Consider a point P that lies on the intersection of {⋂5

i=1 T̃Ci
} and the exceptional divisor,

then we know that its coordinates can be thought of as the coefficients of a double line

together with the coefficients of some pair of crossed lines. The double line conic giving the

first factor of P is tangent to each Ci in P2. Also, the pair of crossed line conics giving the

second factor of P , must be tangent to each Či in P̌2.

Now we know that every double line conic is tangent to each Ci, so our problem is reduced

to finding configurations of five conics such that a fixed pair of crossed lines is tangent to

each plane curve. We can then take the dual of the configuration to decern proper locations

for each of the five fixed conics in Steiner’s Problem.

7.5 Calculations

Definition 40. A configuration of points and lines in the plane is in special position if:

1. Three or more points are co-linear.

2. Three or more lines pass through a single point.

3. One or more points lie on a given line.

The configuration is in general position if it is not in special position.

Theorem 41. Given any two points P1, P2 ∈ P2 and any three lines L1, L2, L3 ⊂ P2 such

that the points and lines are in general position, there exist four conics that pass through the

set of fixed points and are tangent to the fixed lines.

Proof. We begin by considering the dual of our fixed point-line configuration. Thus we have

three points and two lines in P̌2. By Theorem 16 we know that there are four conics in
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P̌2 that satisfy these conditions. Invoking Lemma 19 we see that there are four conics that

satisfy our given constraints.

Theorem 42. Given four lines and one point in P2 in general position, there are two conics

that pass through the point and are tangent to the lines.

Proof. Considering the dual of our given configuration. We have four points and one line

fixed in P̌2. Theorem 2 established that there are two conics that pass through these points

and are tangent to the line. Hence by Lemma 19 there are two conics in P2 that pass through

one point and are tangent to four lines.

Definition 43. A configuration of points, lines, and conics in the plane is in special position

if:

1. Three or more points are co-linear.

2. Three or more lines pass through a single point. A point lies on a given line or a given

conic. Three or more conics intersect each other in a single point.

3. A given conic and line are tangent to one another.

4. A conic is tangent to the line defined by the intersection points of two other conics.

5. Three or more conics have a common tangent line.

The configuration is in general position if it is not in special position.

Theorem 44. Given four points P0, P1, P2, P3 ∈ P2 and a conic C0 ⊂ P2 in general position,

there are six conics that are tangent to C0 and pass through the four given points.

Proof. The statement is equivalent to the evaluation of (TQ)(TP )4.

(TQ)(TP )4 = (2TP + 2TL)(TP )4 = 2TLTP
4 + 2TP

5 = 6.
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Theorem 45. Given four lines and a conic C0 in general position there are six conics that

are tangent to both C0 and the four given lines.

Proof. This follows from 44 and duality.

Theorem 46. Given three points and two conics C0, C1 ⊂ P2 in general position, there are

36 conics that are tangent to C0 and C1 and pass through the three given points.

Proof. The statement is equivalent to the evaluation of (TQ)2(TP )3.

(TQ)2(TP )3 = (2TP + 2TL)2(TP )3 = 4TL
2TP

3 + 8TLTP
4 + 4TP

5 = 36.

Theorem 47. Given three lines L0, L1, L2 ∈ P2 and two conics C0, C1 ⊂ P2 in general

position, there are 36 conics that are tangent to C0 and C1 and the given lines.

Proof. This follows from theorem 46 and duality.

Theorem 48. Given three points one line and one conic in general position, there are 12

conics that pass through the given points and are tangent to both the given line and conic.

Proof. The statement is equivalent to the evaluation of (TL)(TQ)(TP )3.

(TL)(2TP + 2TL)(TP )3 = 2TL
2TP

3 + 2TLTP
4

Theorem 49. Given three lines one point and one conic in general position, there are 12

conics that pass through the given point and are tangent to both the given lines and conic.

Proof. The proof follows directly from the principal of duality and Theorem 48

Theorem 50. Given two points two lines and one conic in general position, there are 16

conics that pass through the two points and are tangent to the two lines and one conics.
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Proof. The statement is equivalent to the evaluation of (TL)2(TQ)(TP )2.

(TL)2(2TP + 2TL)(TP )2 = 2TL
3TP

2 + 2TL
2TP

3 = 16.

Theorem 51. There are 184 conics tangent to 3 fixed conics and tangent to 2 fixed lines in

general position.

Proof. The statement is equivalent to the evaluation of (TQ)3T 2
L.

[2TP + 2TL]3T 2
L = 8T 3

P T 2
L + 24T 2

P T 3
L + 24TP T 4

L + 8T 5
L

(TQ)3T 2
L = 8(4) + 24(4) + 24(2) + 8(1) = 184

Theorem 52. There are 184 conics tangent to 3 fixed conics and passing through 2 fixed

points such that the points and conics are in general position.

Proof. The result follows from Theorem 51 by duality.

Theorem 53. There are 880 conics tangent to 4 fixed conics and tangent to 1 fixed line such

that the line and conics are in general position.

Proof. The statement is equivalent to the evaluation of (TQ)4TL.

[2TP + 2TL]4TL = 16T 4
P TL + 64T 3

P T 2
L + 96T 2

P T 3
L + 64TP T 4

L + 16T 5
L

(TQ)4TL = 16(2) + 64(4) + 96(4) + 64(2) + 16(5) = 880

Theorem 54. There are 880 conics tangent to 4 fixed conics and passing through 1 fixed

point where the conics and point are in general position.

Proof. This follows from Theorem 53 by duality.
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Theorem 55. There are 224 conics passing through one point tangent to one line and tangent

to three conics where the point, line and conic are in general position.

Proof. The statement is equivalent to the evaluation of T 3
QTP TL.

T 3
QTP TL = 8TL

4TP + 24TL
3TP

2 + 24TL
2TP

3 + 8TLTP
4

T 3
QTP TL = 8(1) + 24(4) + 24(4) + 8(1) = 224.

Theorem 56. There are 56 conics passing through two points tangent to one line and tangent

to two conics in general position.

Proof. The statement is equivalent to the evaluation of TP
2TLTQ

2.

TP
2TLTQ

2 = 4TL
3TP2

2 + 8TL
2TP3 + 4TLTP2

4

4(4) + 8(4) + 4(2) = 56.

Theorem 57. There are 56 conics passing through one points tangent to two lines and

tangent to two conics in general position.

Proof. This follows from theorem 56 and duality.

We can utilize this method to settle the famous Steiner Problem.

Theorem 58. There are 3264 plane conics that are tangent to five fixed conics that are

arranged in the plane in general position.

Proof. We need to compute (T̃Q)5. We know that (T̃Q)5 = [2T̃P + 2T̃L]5 and

[2T̃P + 2T̃L]5 = 32(T̃P
5
+ 5T̃P

4
T̃L + 10T̃P

3
T̃L

2
+ 10T̃P

2
T̃L

3
+ 5T̃P T̃L

4
+ T̃L

5
)

(T̃Q)5 = 32(1 + 5(2) + 10(4) + 10(4) + 5(2) + 1) = 3264.
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Table 1 lists the number of conics passing through P points, tangent to L lines, and

tangent to C conics. We can see the glaring discrepancy between the expected number of

conics one would expect from naively applying Bezout’s Theorem and the actual number of

conics that satisfy the given conditions.

P L C Expected Number Actual Number

5 0 0 1 1

4 1 0 2 2

3 2 0 4 4

2 3 0 8 4

1 4 0 16 2

0 5 0 32 1

4 0 1 6 6

3 0 2 36 36

2 0 3 216 184

1 0 4 1296 880

0 4 1 96 6

0 3 2 288 36

0 2 3 864 184

0 1 4 2592 880

1 1 3 432 224

2 1 2 72 56

3 1 1 12 12

1 3 1 48 12

2 2 1 24 16

1 2 2 144 56

0 0 5 7776 3264

Table 1: Solutions to Variations on Steiner’s Problem
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8 Application to a Classical Problem

A famous problem in classical geometry is Appolonius’ Problem. Appolonius of Perga was

a Greek geometer who studied at Euclid’s School in Alexandria. His seminal work Conics is

considered one of the greatest mathematical books of all time.

Appolonius’ Problem is concerned with the possibility of constructing circles that are

tangent to three fixed geometric structures in the plane. For example, a version of the

problem asks for the construction of circles that passes through a fixed point, are tangent

to a fixed line, and are tangent to a fixed circle. The most difficult variation is know as the

Appolonius circle problem. In this problem, three circles are drawn in the plane and the

challenge is to construct all circles that are tangent to the given circles. This was solved in

the sixteenth century by the French mathematician Francois Viete. He was able to construct,

with a straight edge and compass, eight circles that are all tangent to the three given circles.

The constructed curves have become known as Appolonius Circles [EW].

We can make use of some modern methods in Algebraic Geometry and revisit the famous

circle problem. Suppose we are not interested in actually constructing circles, but only wish

to count the number of Appolonius Circles that exist in the complex projective plane. By

working within the more general projective space, as well as over the field of complex numbers

we will have a complete view of all possible Appolonius Circles.

Circles are easily visualized in Euclidean space where there is a well defined notion of

distance. We understand circles to be the set of all points that are equidistant from a fixed

point. A slightly different definition is needed when working with circles in the projective

plane.

Definition 59. A circle is a conic that passes through the points [1 : i : 0] and [1 : −i : 0]

in P2 [F].

For example, begin with the affine plane circle x2 + y2 = 1 and homogenize to obtain the

defining equation x2 + y2 = z2. We see that this meets the line at infinity (z = 0) at the two

points [1 : i : 0] and [1 : −i : 0]. P5 is the natural moduli space when working with general



8 APPLICATION TO A CLASSICAL PROBLEM 51

conics of the form ax2 + by2 + cz2 + dxy + exz + fyz = 0. From our above definition we

see that circles are special conics that pass through two fixed points on the line at infinity.

By constraining general conics and forcing them to pass through two points in P2 we form

two linearly independent hyperplanes in P5. The intersection of these codimension-one linear

surfaces is the three dimensional moduli space of all circles.

We can now derive the general equation for a projective circle. Consider the general

equation for a conic

ax2 + by2 + cz2 + dxy + exz + fyz = 0.

When we force this conic to pass through our two special points at infinity we arrive the two

linear conditions

a− b + di = 0

and

a− b− di = 0.

From here we see that a must equal b and d = 0. Thus projective circles are of the form

ax2 + ay2 + cz2 + exz + fyz = 0.

We parameterize the circle Q : x2 + y2 = z2 with the following function:

P1 −→ P2

[s : t] 7−→ [
t2 − s2

2
: st :

s2 + t2

2
].

Restricting the set of all circles to Q by evaluating our general equation at the image of

the above function we obtain:

(−1/4)(s2 + t2)(−s2c− s2a + s2e− 2fst− ct2 − at2 − t2e) = 0.

Immediately we see that the expression vanishes when (s2+t2) vanishes, ie. when s = ±it.

This accounts for the fact that the line at infinity intersects all projective circles at the points

[1 : i : 0] and [1 : −i : 0].
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If we assume that s 6= 0, then we can dehomogenize the quantity on the right to a new

variable k = t/s and derive the the expression

(−a− c− e)k2 − 2fk + (e− c− a) = 0.

The discriminant of this equation vanishes along a subvariety that corresponds to the

set of all circles that are tangent to our fixed circle Q. This is a degree 2 hypersurface in P3

given by the equation

T̃Q : 4f 2 − 4(−a− c− e)(e− c− a) = 0.

This hypersurface T̃Q is rationally equivalent to 2H for some codimension-one linear sub-

variety H. Evaluating (T̃Q)3 will generate the moduli space of circles that are simultaneously

tangent to three fixed circles. Since we are utilizing P3 as our moduli space of all circles, the

transverse intersection of three hypersurfaces reduces to a finite number of points. Thus

(T̃Q)3 = (2H)3 = 8.

This verifies the solution to the classical problem proposed by Appolonius.
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