Award Number: DAMD17-03-1-0031

TITLE: Analysis of the Role of the Wnt/B-catenin Pathway in Prostate Development and Tumorigenesis

PRINCIPAL INVESTIGATOR: Bart O. Williams, Ph.D.

CONTRACTING ORGANIZATION: Van Andel Research Institute
 Grand Rapids, MI 49503-0000

REPORT DATE: April 2005

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
 Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
 Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
4. TITLE AND SUBTITLE
Analysis of the Role of the Wnt/B-catenin Pathway in Prostate Development and Tumorigenesis

6. AUTHOR(S)
Bart O. Williams, Ph.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Van Andel Research Institute
Grand Rapids, MI 49503-0000

E-Mail: bart.williams@vai.org

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited

13. ABSTRACT (Maximum 200 Words)
We have continued studies which are focused on understanding how dysregulation of the Wnt/B-catenin signaling pathway are causally associated with prostate tumorigenesis. We have created a mouse model in which B-catenin signaling is activated and found that these mice develop prostate tumors with 100% penetrance. This process initiates with small areas of prostatic hyperplasia as early as 4.5 weeks of age, continues on to lesions resembling prostatic intraepithelial neoplasia (PIN), and progresses to invasive prostate carcinoma by 7 months of age. We are currently examining these mice at older ages to determine if the tumors metastasize. In addition, we have found that these tumors are initially androgen sensitive, based on the apoptotic response of these tumors to surgical castration. Finally, we are embarking on studies to determine if activation of B-catenin signaling can synergize with other genetic lesions in prostate cancer progression.

14. SUBJECT TERMS
Prostate cancer, Wnt, B-catenin, Apc, metastasis, PIN, hyperplasia

15. NUMBER OF PAGES
20

16. PRICE CODE
Unlimited

17. SECURITY CLASSIFICATION OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION OF ABSTRACT
Unclassified

20. LIMITATION OF ABSTRACT
Unlimited
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVER</td>
<td>1</td>
</tr>
<tr>
<td>SF 298</td>
<td>2</td>
</tr>
<tr>
<td>Introduction</td>
<td>4</td>
</tr>
<tr>
<td>BODY</td>
<td>5</td>
</tr>
<tr>
<td>Key Research Accomplishments</td>
<td>13</td>
</tr>
<tr>
<td>Reportable Outcomes</td>
<td>14</td>
</tr>
<tr>
<td>Conclusions</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>17</td>
</tr>
<tr>
<td>Appendices</td>
<td>19</td>
</tr>
</tbody>
</table>

Page size copy of the relevant poster presented at the recent AACR meeting in Anaheim, California (April 2005)

Abstract of recent poster presented at the AACR meeting in Anaheim, California (April 2005)
4. Introduction/Overview

To determine the role of dysregulated Wnt signaling in the development and progression of prostate cancer, we have successfully generated several mouse models. We have made the most progress using the cre-lox system to generate mice lacking the Apc gene in the prostate. Apc normally controls the level of β-catenin protein in the cytoplasm of cells. Loss of Apc leads to increased levels of the β-catenin protein and subsequent activation of downstream signaling pathways. We have found that mice lacking Apc in the prostate develop early onset prostate hyperplasia that is visible as early as four weeks of age. The tumors then show progression to full prostate carcinoma within 4 months, and show invasion into the surrounding stroma by seven months. We are currently evaluating whether these tumors metastasize to the lung and/or bone. We have also made progress in characterizing tetracycline-inducible systems to allow for temporally regulated expression of genes in the prostate epithelium. This work was delayed because of exposure to mouse hepatitis virus (as a result of exposure of this room to mice shipped in from the NCI), but we have now rederived the relevant strains and have re-initiated this work.
5. Body

Rationale (taken from original grant application)

Prostate cancer causes over 40,000 deaths per year in the United States (1). Most deaths are due to the metastatic spread of prostate cancer throughout the body. Currently, the only effective therapy for advanced prostate cancer is androgen depletion by surgical or chemical castration. This often causes temporary remission of the tumor. Unfortunately, prostate cancer commonly recurs in these patients in a form that is androgen-independent. There is currently no effective treatment for androgen independent prostate cancer and there is an urgent need to develop effective therapies for this disease.

β-catenin is a protein that plays multiple roles in regulating cell growth and function (2). Normally, the cytoplasmic level and nuclear localization of β-catenin is tightly regulated. In many tumors, however, this regulation is lost, either due directly to mutations in the β-catenin gene or by mutations in genes whose protein products are necessary for this regulatory process (2). One example is colon cancer, where the vast majority of tumors display increased cytoplasmic levels and nuclear localization of β-catenin due to loss of the APC gene (3). Over 20% of advanced prostate tumors have elevated levels of β-catenin, and mutations in the β-catenin gene have been identified in prostate tumors (4, 5). β-catenin can specifically associate with the androgen receptor (AR) (6-8). This interaction alters the signaling capabilities of the AR, making it more promiscuous in its ability to be activated by steroid hormones other than androgens (9). Based on these observations, β-catenin activation represents is a viable target for therapeutic intervention in advanced prostate cancers.

Objective/Hypothesis. The hypothesis underlying this proposal is that activation of β-catenin signaling contributes to the progression of prostate cancer to a malignant state.

Specific Aims. We will directly test the effects of activated β-catenin on 1.) prostate development and homeostasis and 2.) progression of prostate cancer in a mouse model that normally develops prostate hyperplasia and dysplasia.

Study Design. We have created and analyzed transgenic mouse strains that overexpress β-catenin in the prostate epithelium. We have systematically analyzed these mice at various ages at the anatomical and histological level for abnormalities in prostate development and histology. We are assisted in these experiments via collaboration with Dr. Wade Bushman. Dr. Bushman has extensive experience in the analysis of mouse models of prostate development and tumorigenesis (12-15), and this proposal represents the continuation of an established collaborative relationship between our laboratories. In support of this work, a post-doctoral fellow in my laboratory has traveled to Madison, Wisconsin to spend time in the Bushman laboratory to learn more about techniques in prostate analysis. This fellow, Dr. Troy Giambernardi, devotes 50% of his effort towards this project and is funded by a grant from the American Cancer Society. A full time technician, Holli Charbonneau, will begin has worked on this project since April of 2004. Holli had previously worked on this project as an undergraduate intern from April 2003-March 2004.
Objective 1: To determine the effect of transgenic activation of β-catenin on prostate morphology.

Task 1. Develop a plasmid construct that directs the expression of an activated form of β-catenin under the control of the ARR2PB promoter (ARR2PB-S37A β-catenin), sequence confirm, and prepare for microinjection (Months 1-2)

Task 2. Perform pronuclear microinjection (in collaboration with Bryn Eagleson) and screen resulting offspring for the presence of the transgene (Months 3-5)

Task 3. Generate offspring from each founder line to establish strains (Months 6-10)

Progress:

Mice carrying a transgene directing the expression of an activated form of β-catenin under the control of the modified probasin promoter (ARR2PB) (10, 16) were created by pronuclear microinjection. This was performed by Bryn Eagleson, director of the VARI Transgenic Core Facility. Twelve potential founders were created and nine of those transmitted the transgene through the germline. We have established breeding lines for each of these and have begun to screen the males in each line for proper expression. This work has been delayed recently because the room that these lines were being maintained in was exposed to mice that arrived from the NCI-Frederick mouse facilities that carried mouse hepatitis virus (MHV) (17). These mice were sent to numerous facilities throughout the country. Luckily, our vivarium is a shower-in; barrier facility in which each of the cages is maintained in an isolated environment. Our vivarium staff tested every cage and found that the MHV infection was contained within two cages in that room. We made the decision to sacrifice most of the animals in the room and maintain a small number of cages in an isolated room so that we could rederive the strains back into our facility in a clean manner. We have done this for three of the lines (partly based on the initial screening of these lines described below). We have now re-initiated the work using these strains.

Task 4. Screen males from founder lines for proper expression of activated β-catenin (Months 11-14)

We have collected samples from the nine lines for analysis. We have performed Western analysis on lysates from these lines. Our preliminary analysis suggested that at least two of the lines, 1655 and 1764, expressed the TetON protein at high levels in the dorsal and ventral lobes of the prostate. Initial analysis of the other lines suggested that they did not express the proteins to the same level. We have also collected samples for immunohistochemical analysis. We have not been able to use the antibody we used for Western analysis to detect the TetON protein in formalin-fixed paraffin sections. We are in the process of evaluating in situ hybridization based approaches for cell-specific expression of the TetON protein.
Figure 1. Mice carrying a transgene directing the expression of a the Tet-ON protein express the TetON protein in the prostate. Samples from a cell line not expressing TetON (HeLa), cell lines expressing the TetON protein (HeLa TetON), and tissue lysates from various transgenic mice were obtained. (AP=anterior prostate or coagulating gland; DVP=pooled Dorsal-ventral glands) 1888, 2318, and 2319 were three independent transgenic mice from the 1764 line.

We have also begun to evaluate the functionality of the two best strains, 1764 and 1655, by crossing these strains to strains which express various reporter genes under the control of the tetracycline responsive element (TRE). Compound transgenic mice, upon exposure to doxycycline either in the drinking water or the food, should express the gene under the control of the TRE. We have obtained a strain of mice that expresses both the Wnt1 oncogene and the luciferase reporter (18). This strain was generously provided by Dr. Lewis Chodosh (University of Pennsylvania). We have crossed this strain with the 1764 strain and generated compound transgenic male mice. We have exposed these mice to doxycycline for three months and then taken samples of the prostatic lobes. Our initial analysis suggested that this does not induce significant changes in the prostate epithelial. We have also initiated crosses to the 1655 strain and will collect samples from them for analysis to confirm our results.

In addition to crossing the 1764 strain to the Wnt1-luciferase strain, we have also crossed it to a strain that expresses an oncogenic version of K-ras. We chose this because we had access to this strain at the beginning of the year and knew the strain worked in other contexts (for example, modeling lung cancer (19)). Induction of K-ras in compound transgenic mice resulted in prostatic dysplasia. This further supports the functionality of the 1764 strain for prostate cancer modeling in the mouse.

Task 5. Generate increased numbers of mice for analysis (Months 14-19)

Task 6. Analyze mice at the desired ages for prostate morphology at the gross anatomical and histological level (Months 20-36)

Progress:
We have begun to cross the 1764 strain to a strain of mice that expresses an activated,
oncogenic version of B-catenin (S37A B-catenin). Analysis of this mouse strain in other
contexts revealed that B-catenin could be induced with doxycycline treatment. We are
generating the relevant mice on which to evaluate the effect of oncogenic B-catenin on
prostate growth. We have generated compound transgenic mice for the 1764 strain and
the TRE-Bcatenin strain. Our analysis has not shown any detectable phenotypic
abnormalities, although we have only looked at mice in which B-catenin was ectopically
expressed for less than four months.

We have also pursued an alternative approach to alter Wnt signaling specifically in the
prostate. This was done by creating mice in which the Apc gene was specifically
inactivated in prostate tissue via the use of the cre/lox system. In this approach, mice are
genetically engineered which contain genes in which genetic regions required for
function are flanked by loxP sites or “floxed.” These floxed alleles retain normal
function until they are exposed to cre recombinase. Upon exposure to cre, the genetic
elements between the loxP sites are excised, leading to inactivation of the specific gene
(20). We have created mice carrying a floxed allele of Apc via generation of chimeric
mice (and subsequent breeding) using embryonic stem cells obtained from Dr. Tetsuo
Noda (Japan) (21). Mice expressing cre in a prostate specific manner (Probasin-cre or
PB-cre) were obtained from Dr. Pradip Roy-Burman (University of Southern California)
(22). Through several rounds of mating, we have created mice that are homozygous for
the floxed allele of Apc and also carry the PB-cre transgene (PB-cre;Apc-flox/flox).

Our analysis has shown that such mice enlarged develop prostatic hyperplasia as early as
four and a half weeks of age (Table 1). We have allowed a cohort of such animals to age
and found via analysis of animals at 4 and 7 months of age that these mice continue to
progress to more aggressive states of hyperplasia displaying widespread prostatic
intraepithelial neoplasia (PIN) and areas of microinvasion (Figure 2). We have also
noted the presence of enlarged lymph nodes in these animals and are currently assessing
whether these represent areas of metastasis (Figure 3).

Table 1. Summary of Phenotypes Seen in PB-cre;Apc-flox/flox mice.

<table>
<thead>
<tr>
<th>4.5 Weeks</th>
<th>7 Weeks</th>
<th>3 Months</th>
<th>7 Months</th>
<th>11 Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperplasia & small amount of PIN developing</td>
<td>PIN & stromal reaction (thickening and edema)</td>
<td>PIN & squamous metaplasia</td>
<td>Small areas of locally invasive adenocarcinoma</td>
<td>More extensive invasive adenocarcinoma</td>
</tr>
</tbody>
</table>
Figure 2. Prostate tumors in PB-cre: Apc-flox/flox mice are locally invasive by seven months of age. Shown is a tumor in which areas of invasion into the normal stroma (arrow) are shown.

Figure 3. PB-cre: Apc-flox/flox mice develop enlarged lymph nodes associated with the development of prostate tumors. Shown is a gross dissection of the lumbar lymph node region. Note the obvious enlargement of the right lumbar lymph node (LN).
We have also examined whether androgen deprivation (via surgical castration) can inhibit the development of these tumors and whether the tumors ever become androgen independent. Analysis showed that castration lead to an immediate regression of these tumors associated with an induction of apoptosis (Figure 4). We are currently aging cohorts of these mice to determine if tumors return after a latency period in an androgen-independent state.

Objective 2: To examine the effect of transgenic activation of β-catenin on inducing prostate cancer in the Nkx3.1-deficient mouse.

Task 1. Order Nkx3.1-deficient mice from the Mouse Models of Human Cancer Consortium repository and establish a colony in the Van Andel Institute mouse facility. (Sometime within the first 12-14 months)

Task 2. After identifying which ARR2PB-S37A β-catenin transgenic strains exhibit the desired expression patterns of β-catenin (Objective 1, Task 4), breed these strain(s) to the Nkx3.1-deficient mice. It will require two generations of crosses to generate ARR2PB-S37A β-catenin transgenic mice with varying Nkx3.1 genetic status. (Months 14-19).

Task 3. Analyze mice at the desired ages for prostate morphology at the gross anatomical and histological level (Months 20-36)

We have obtained Nkx3.1-deficient mice (11) from the MMHCC repository in Frederick, Maryland and successfully rederived them into our barrier facility at VARI. We have crossed them with the PB-cre;Apc-flox/flox mice to generate mice carrying a prostate-specific deletion of Apc that are also deficient for Nkx3.1. We will evaluate whether
dysregulation of these two pathways results in synergistic effects on prostate tumor progression and metastasis. Finally, we are also generating mice that are deficient for both the Apc and Pten genes in the prostate by creating mice of the following genotype: PB-cre;Apc-flox/flox;Pten-flox/flox. Given that prostate-specific deletion of Pten leads to prostate cancer in the mouse that metastasizes to the lung (23), and that our work on this grant has shown that mice lacking Apc also develop prostate cancer, we are interested in determining whether there may be a synergistic effect of loss of these two genes. Given the role of Wnt signaling in bone development (24), we are especially keen to determine whether a mouse model of prostate cancer that metastasizes to the bone can be developed in any of these contexts. We have some initial analysis that suggests a dramatic enhancement of tumorigenesis in such mice lacking both Apc and Pten in the prostate epithelium (Figure 5). We are currently generating cohorts of mice to confirm the synergism in tumorigenesis caused by deletion of both genes.
Figure 5. Prostate-specific loss of both Apc and Pten induces tumorigenesis in a synergistic manner. Shown are whole mount images of prostates dissected from wild type (top) and PB-cre:Apc-flox/flox;Pten-flox/flox five month old males. Note the extensive overgrowth and discoloration of the mutant prostate.
6. Key Research Accomplishments

We have produced what, in my opinion, are several key research accomplishments. These are described in the previous section and can be summarized as the following:

1. We have created and completed initial characterization of strains of mice that expresses the TetON protein specifically in the prostate. These strains (PB1764 and PB1655) will not only allow us to progress in our experiments for the completion of the work proposed for this grant, but should also be an important resource for others in the field of prostate cancer to conditionally express other genes in a prostate-specific manner.

2. During our characterization of the PB1764 strain, we showed that ectopic expression of an activated K-ras gene leads to the development of prostatic dysplasia. This result was obtained by doing a small pilot control experiment for the work to eventually dysregulate the Wnt signaling pathway in the prostate, but is interesting in and of itself. This is due to the fact that several publications have linked ras activation to some prostate cancers. Perhaps most interesting is that ras mutations are associated more commonly with prostate cancer in Japanese populations relative to American populations (25). Thus, further work on this observation may reveal insights into genetic background differences and the development of prostate cancer.

3. We have also developed a mouse model for dysregulated Wnt signaling in the prostate. In this model, loss of Apc leads to the development of early onset prostate cancer. Furthermore, this model appears to develop a metastatic version of the disease upon aging.

4. We have demonstrated that that prostate-specific deletion of Apc leads to prostate cancer that remains androgen-dependent for growth. We are currently aging castrated males to determine whether these tumors are ever capable of recurring in an androgen-independent manner.

5. We have preliminary evidence that loss of both Apc and Pten leads to a significant enhancement of prostate tumorigenesis and metastatic progression.
7. Reportable Outcomes

A. Abstracts (see attached information in the Appendix)

B. Presentations

The abstracts included in the Appendix were all submitted as poster presentations for the indicated meetings. In addition, I also presented an oral presentation at the Michigan Prostate Colloquium Meeting on May 1, 2004. A summary of events at which this work (or portions of this work) was presented in the past twelve months is included below.

We are also currently preparing a manuscript on this work for submission to a peer-reviewed publication (we have been waiting for the completion of the androgen-deprivation experiments before submitting).

Oral Presentations

2.

Poster Presentations

1. Wnt Meeting, Ann Arbor, Michigan, May 2004
2. AACR Pathobiology of Cancer Meeting, Snowmass, Colorado, July 2004
3. AACR Annual Meeting, Anaheim, California, April 2005

C. Animal Models

As can be determined by reading the body of this report, the vast majority of work in support of this grant award is focused on the generation of mouse models for human prostate cancer. A summary of these is provided below in this section.

1. We have created a mouse in which the TetON protein is expressed specifically in the prostate. This mouse strain is useful for not only some of our studies outlined in this report, but should also be useful to the field in generally as it allows for prostate specific expression of any transgene that is controlled by a tetracycline responsive element.

2. In a pilot study to determine the functionality of the Probasin-TetON strain, we have shown that mice that express activated K-ras specifically in the prostate develop prostatic dysplasia.

3. We have also created mice that lack the Apc gene specifically in the prostate and shown that they develop early onset prostate cancer which progresses to a metastatic state.
4. Other models of Wnt signaling dysregulation in the prostate are currently being developed based on the strains outlined above.

5. In preliminary work, we have found that loss of both Apc and Pten leads to significantly enhanced prostate tumorigenesis.
8. Conclusions

We can already conclude based on our mouse models that alterations in the Wnt signaling pathway lead to early onset prostate cancer. We have found that these tumors develop in a very consistent pattern of progression and occur in all PB-cre;Apc-flox/flox mice examined. Also, preliminary work indicates a substantial synergistic effect between Apc and Pten mutations in the development of prostate cancer.

In terms of the “so-what” factor, we believe these observations important as a scientific products. In the past, human prostate tumors had been shown to contain mutations in genes of the Wnt signaling pathway. However, it was not clear if these mutations had anything to do with the initiation or progression of the tumor. Two other recent reports have suggested that alterations in the Wnt pathway can induce changes in the prostate (26, 27). However, we have created a model system in which invasive prostate tumors develop as a result of inactivating Apc, representing the first demonstration of induction of invasive prostate cancer by dysregulation of the Wnt pathway. We believe this observation has important implications in examining patients with human prostate cancer and in developing treatments to inhibit progression of the disease. Our ongoing work on synergism between Apc and Pten mutations in the prostate also has the potential to provide important insights into the progression of prostate cancer and its metastatic progression.
9. References

Prostate-specific Deletion of Apc Leads to Early Onset Prostate Cancer

Troy A. Giambardelli, Holli M. Charbonneau, Jose A. Toro, JC Goolsby, Pradip Roy-Burman, Aubie Shaw, Ruth Sullivan, Wade Bushman, Bree D. Buckner-Berghuis, James H. Resau, and Bart O. Williams

1Van Andel Research Institute, Grand Rapids, MI, 2University of Southern California, Los Angeles, CA, 3University of Wisconsin-Madison, Madison, WI

Introduction: Prostate cancer occurs over 2,000 deaths per year in the United States. Most deaths due to the metastatic spread of prostate cancer through the body. Currently, the only effective therapy for advanced prostate cancer is engraftment by surgical or clinical means. This often causes unnecessary treatment of the body. Unfortunately, prostate cancer cannot easily occur in these patients in a form that is endocrine-independent. There is currently no effective treatment for prostate-independent prostate cancer and there is an urgent need to develop effective therapies for this disease. Apc-deficiency may alter the growth and function. Normally, the epithelial cells and nuclear localization of Apc is tightly regulated. In many tumors, however, this regulation is lost, either due to inhibition of the Apc-dependent or by mutations in genes whose prostate-specific promoters are not. This may also occur in the bladder, where the rate of mutations sharply increased chromosomal levels and nuclear localization of Apc because of loss of the Apc gene. The majority of advanced prostate tumors have elevated levels of Apc, and reductions in the Apc levels have been identified in prostate tumors. Apc expression can specifically associate with the xenograft receptor (PR). This interaction alters the apical localization of the PR, resulting in more pro-apoptotic and anti-fibrosarcoma activity. Based on these observations, our studies continue to use the xenograft receptor as a target for therapeutic intervention in endocrine prostate cancer. We are pursuing experiments to address the effect of restoring Apc expression in the xenograft prostate. We have created mouse carrying a prostate-specific deletion of the Apc gene and found that such mice develop early onset prostate cancer. Hyperplastic changes are evident as early as 4.5 weeks of age, and evidence ofTake Down: To contribute to a better understanding of the molecular mechanisms underlying Apc signal transduction (especially downstream target genes involved in tumor progression).

Figure 1. Western Blot

Figure 2. Dysregulation of β-catenin in the prostate can be analyzed by creating a model in which the Apc tumor suppressor gene is specifically eliminated in prostate tissue. This system is based on the use of two mouse strains, one of which expresses cre recombinase in a prostatic-specific manner while the second contains an allele of Apc that upon expression of cre recombinase creates an allele of Apc that is non-functional. We have obtained a strain of mice containing a floxed allele of Apc and a strain from Dr. Pradip Roy-Burman that contains a transgene expressing cre recombinase under the control of the AREG2B promoter.

Figure 3. To address the effect of inappropriate activation of the canonical Wnt signaling pathway on the prostate, we have created mice carrying a prostate-specific deletion of the Apc gene and found that such mice develop early onset prostate cancer at 6 months of age. Characteristics of these tumors are ongoing.

Figure 4. H&E Staining of Prostate from Apc+/+ (A) and Apc−/− (B) mice at 12 months of age. (C) Immunohistochemical staining of prostate from Apc+/+ (A) and Apc−/− (B) mice at 12 months of age.

Figure 5. Adenocarcinoma in Prostate from Apc−/− mice with areas (yellow arrows) of invasive cancer.

Figure 6. c-kit Staining of Prostate from Apc+/+ (A) and Apc−/− (B) mice at 12 months of age.

Figure 7. β-catenin localization in wild type mouse prostate (A) and Prostate from Apc+/+ (B) and Apc−/− (C) mice at 12 months of age.

Figure 8. Axial Sectioning of Prostate from Apc+/+ (A) and Apc−/− (B) mice at 12 months of age.

Figure 9. Apc has been shown to play a role in regulating the cell cycle and chromosomal stability (Mishke et al. 1996; Fodde et al. 2004). To address microfilament organization in Apc-deficiency in the prostate, we performed immunohistochemistry on sections of Apc-deficient tumors and monitored Apc-deficient tumors staining with a monoclonal antibody specific for Apc. We have noted lower expression levels of anti-hydroxyproline receptor in the prostatic tumors from Apc-deficient mice. The tumor in Apc−/− mice shows a lower expression of this receptor in the Apc-deficient tumors. The data also demonstrates that Apc-deficiency results in increased nuclear localization of β-catenin in the prostate tumors.

Conclusions:

- Mice carrying a prostate-specific deletion of the Apc gene were found to develop hyperplasia at 4.5 weeks of age, developing squamous metaplasia at 7 weeks, then progressing to early onset prostate cancer at 3 months of age and locally invasive prostate carcinomas at 7 months of age.
- Apc-deficiency in the prostate leads to β-catenin stabilization which results in increased nuclear localization of β-catenin.
- We have noted lower expression levels of anti-hydroxyproline receptor in the prostatic tumors from Apc-deficient mice. The tumor in Apc−/− mice shows a lower expression of this receptor in the Apc-deficient tumors. The data also demonstrates that Apc-deficiency results in increased nuclear localization of β-catenin in the prostate tumors.
- Loss of Apc in the prostate lobes also suggests a disorderization of the actin microfilaments as evidenced with conjugation of FITC-phalloidin staining of paraffin-sections.
- Preliminary work indicates that the tumors regress after androgen ablation and are tumor-free 6 months post-castration suggesting an androgen dependence.

Future Directions:

- Assess the ability of Apc-deficiency to synergize with other genetic changes in prostate cancer progression (Pien, Nk3.3).
- Develop a conditional expression approach for activated B-catenin (Tet-inducible).

Collaborators/Contributors:

- Erik Thompson
- Van Andel Research Institute staff
- Tantri Setiadi
- Tammy Wall (Table 1)

For help provided by the Department of Indiana University Cancer Research Program, Van Andel Institute, and American Cancer Society.
Prostate-specific deletion of Apc leads to early onset prostate cancer

Troy A. Giambenedardi, Holli M. Charbonneau, Jose Toro, J. C. Goolsby, James H. Resau, Pradip Roy-Burman, Aubie Shaw, Wade Bushman, Bart O. Williams. Van Andel Research Institute, Grand Rapids, MI, University of Southern California, Los Angeles, CA, Division of Urology and McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI.

Prostate cancer causes over 42,000 deaths per year in the United States. Most deaths are due to the metastatic spread of prostate cancer throughout the body. Currently, the only effective therapy for advanced prostate cancer is androgen depletion by surgical or chemical castration. This often causes temporary remission of the tumor. Unfortunately, prostate cancer commonly recurs in these patients in a form that is androgen-independent. There is currently no effective treatment for androgen independent prostate cancer and there is an urgent need to develop effective therapies for this disease. β-catenin plays multiple roles in regulating cell growth and function. Normally, the cytoplasmic levels and nuclear localization of β-catenin is tightly regulated. In many tumors, however, this regulation is lost, either due directly to mutations in the β-catenin gene or by mutations in genes whose protein products are necessary for this regulatory process. One example is colon cancer, where the vast majority of tumors display increased cytoplasmic levels and nuclear localization of β-catenin due to loss of the APC gene. The majority of advanced prostate tumors have elevated levels of β-catenin, and mutations in the β-catenin gene have been identified in prostate tumors. β-catenin can specifically associate with the androgen receptor (AR). This interaction alters the signaling capabilities of the AR, making it more promiscuous in its ability to be activated by steroid hormones other than androgens. Based on these observations, β-catenin activation represents is a viable target for therapeutic intervention in advanced prostate cancers. We are pursuing experiments to address the effect of inappropriate activation of β-catenin in the prostate. We have created mice carrying a prostate-specific deletion in the Apc gene and found that such mice develop early onset prostate cancer. Hyperplastic changes are evident as early as five weeks of age, and evidence of carcinoma is present in all animals older than four months examined to date. Preliminary work suggests that the tumors regress after androgen ablation. Ongoing work is aimed at assessing the ability of these tumors to metastasize, and to determine how loss of Apc interacts with other mutations associated with prostate cancer to affect tumor progression.