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ABSTRACT

The DARPA-sponsored Polymorphous Computing Architectures (PCA) program is developing
advanced computer architectures that have the capacity to adapt, or morph, to obtain better per-
formance on specific problems. The key to the success of this program is the proper development
of the morphing concept. One of MIT Lincoln Laboratory’s contributions to this effort is the In-
tegrated Radar-Tracker (IRT) application. The IRT consists of a Ground Moving Target Indicator
(GMTTI) radar and a Feature-Aided Tracker (FAT). In this document, we describe ways that the
morphing capabilities of PCAs could be used by the IRT.
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1. Introduction

The DARPA-sponsored Polymorphous Computing Architectures (PCA) program is developing
advanced computer architectures that have the capacity to adapt, or morph, to obtain better per-
formance on specific problems. The key to the success of this effort is the proper development of
the morphing concept. One of MIT Lincoln Laboratory’s contributions to the PCA effort is the In-
tegrated Radar-Tracker (IRT) application. The IRT consists of a Ground Moving Target Indicator
(GMTI) radar and a Feature-Aided Tracker (FAT). This application is meant to serve as an example
of the types of application that are of interest for PCA. It is described in a series of technical reports
[8,9,2,3].

In a previous document, MIT/LL described three scenarios showing ways that the GMTI por-
tion of the IRT could make use of the morphing capability of PCAs. The first scenario consisted
of a change in the number of targets and the distribution of targets being processed. The second
scenario included a change from regular, stream-based processing to data-dependent, thread-based
processing. The third scenario consisted of a change in the parameter set being used for stream
processing [4].

In this document, we describe additional morph scenarios, that is, ways in which the full IRT,
consisting of both the radar and the tracker, could make use of morphing. The primary scenario
we envision is a change from GMTI processing to FAT processing within the same hardware. We
describe a simplified implementation of this scenario, methods for mapping the scenario onto PCA
hardware, and ways to measure the cost and benefit of morphing in this scenario. We also describe
morph scenarios for the tracker. These scenarios include parameter and target density changes for
FAT, as well as changing the database used to classify targets and using morphing.

1.1 Review of the IRT

In this section we briefly review the stages and functionality of the IRT. The radar portion of
the IRT is described in Section 1.1.1, and the tracker portion is described in Section 1.1.2.

1.1.1 GMTI

The GMTI component of the IRT takes unprocessed radar data and produces a set of target
reports. GMTI processing is composed of the stages shown in Figure 1, which are numbered for
ease of reference. Steps | and 3, Time Delay and Equalization and Pulse Compression, are fi-
nite impulse-response (FIR) filters. Steps 2 and 5, Adaptive Beamforming and STAP, consist of
LQ factorization, backward and forward substitution, and matrix multiplication. Step 4, Doppler
Filtering, is essentially a fast Fourier transform (FFT). Step 6, Detection, consists of a Constant
False-Alarm Rate (CFAR) thresholding operation and three-dimensional grouping (removing du-
plicate detections by only considering local maxima). Step 7, Estimation, incorporates spline
interpolation and maximum likelihood estimation. For more details on these stages, please see the
narrowband GMTI description [9].
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Figure 1. GMTI processing chain.
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Figure 2. Feature-aided tracker block diagram.

1.1.2 FAT

The IRT’s tracker consists of a standard kinematic tracker with a feature-aided tracking (FAT)
capability. It operates in a series of cycles. On each cycle, it takes as input the target reports from
GMTTI and a set of track histories, presumed to have been produced during the previous tracker
cycle. The target reports from GMTI have been enhanced with a set of high range resolution
(HRR) profiles assumed to have been produced by an external sensor.

A block diagram of the tracker is shown in Figure 2. The gray sections correspond to the
functionality of a standard kinematic tracker: the white sections correspond to the FAT capability.
As Figure 2 shows, feature-aided tracking computations are inserted into the processing stream
associated with the kinematic tracker.

The tracker extrapolates track history information forward to form a set of hypotheses about
the target reports that should be associated with each track history. For each hypothesis, the tracker
computes a likelihood value, called a chi-squared (x 2) value, that reflects confidence in the hypoth-
esis. The kinematic portion of the tracker computes this value based on the kinematics of the target
reports and tracks, and so it is referred to as the kinematic \? value.

The feature-aided tracking block computes an additional x? value which is combined with the
kinematic y* value. As shown in Figure 2, feature-aided tracking is composed of two activities,
signature-aided tracking (SAT) and classification-aided tracking (CAT). SAT matches the profile
of the detection against the last profile associated with the track. CAT relies on a database of high-
range resolution profiles against which it matches the profiles of the targets detected in this cycle.




Each of these activities produces a y* value that enhances the tracker’s overall ability to associate
tracks and targets.

After each hypothesis has been assigned a y? value, the Munkres algorithm is used to find
a set of hypotheses which results in an optimal assignment of target reports to tracks. For each
track, a Kalman filter is then used to update the tracks and compute a new position and velocity
based on the history and the assigned target report. More details of the kinematic tracker and the
feature-aided tracker can be found in additional reports [2, 3].

1.2 Review of Morphing

The basic idea of morphing is to change the configuration of a processor to maximize per-
formance of a given operation. Performance can be measured in various ways, depending on the
overall requirements of the system. Example performance metrics include operations per second
or power used to perform the operation. This document describes examples of the ways that the
IRT may use morphing. For a more complete description of morphing, see the documents of the
PCA morphware forum [1].

For consistency with terms used to describe GMTI morph scenarios, we refer to a particular
configuration of the processor as a morph state and the act of moving from one configuration
to another as a morph change [4]. In this report, we will need to describe the morph state of a
PCA system with r distinct resource groups. A resource group is an architecture-dependent and
application-dependent concept. For example, the MIT Raw chip consists of 16 tiles. We could
consider Raw as a set of 16 resource groups of one tile each, a set of 4 resource groups of 4 tiles
each, or some other division appropriate to the application. The morph state of a PCA system

divided into r resource groups will be represented by an ordered r—tuple (C'y, Cy, ... ("), where
(’; is the configuration of resource set z. In general the morph state is a function of time, and
changes in response to the changing needs of the application.

1.3 Overview of Morph Scenarios in this Document

The purpose of a morph scenario is to illustrate ways that an application such as the IRT could
make good use of morphing. To that end, each of the morph scenarios listed here describes a
workload that changes from cycle to cycle and points out how morphing could be used to adapt to
this changing workload. In this document, we describe details of a full IRT morph scenario, and
general parameters of four tracker morph scenarios.

The IRT morph scenario described in Chapter 2 provides details of the way in which the work-
load changes, similar to the details of the GMTI morph scenarios [4]. We greatly simplify the IRT
processing chain to allow easy implementation of this scenario on PCAs, and we describe methods
for mapping this scenario onto PCAs. Finally, we suggest concrete measurements that quantify the
benefit and cost of morphing in this scenario.

The tracker morph scenarios in Chapter 3 are described in more general terms than the IRT
morph scenario. These scenarios are very similar to those associated with GMTI and so our dis-
cussion here is limited to pointing out interesting ways that the tracker might use morphing and
the challenges involved in doing so.




2. IRT Morph Scenario

In this chapter, we define a morph scenario for the full IRT, that is, both the radar and tracker
components. This morph scenario is a compact subset of the IRT that can be used as a benchmark
for morphing. It defines computationally relevant subsets of the IRT that would need to perform
well for the overall application to perform well, and a changing workload that adjusts the balance
between the radar and the tracker.

The amount of resources used by an application such as the IRT — that is, its mapping to a PCA
chip — is dependent on the workload of the operations performed, the real-time requirement of the
operations, and the speed at which the PCA can perform those operations. To allow the scenario
definition to be independent of the particular PCA, we describe in Section 2.1 the operations per-
formed in the scenario. We describe the mapping of those operations onto PCAs in Section 2.2. In
Section 2.3, we define the measurements that are of interest for this benchmark, and in Section 2.4,
we describe additional, related experiments that would tell more about the PCA under test.

2.1 Computational Components

The IRT is a large application with many different stages. To facilitate implementation of
the morph scenario on PCAs, we define two components that are extremely simple and that are,
respectively, computationally significant subsets of the radar and the tracker. The radar component
consists of the beamforming operation from the space-time adaptive processing (STAP) phase of
GMTI (Step 5a in Figure 1 on page 2). The tracker component consists of the pattern-matching
operation from the classification-aided tracking (CAT) phase of the tracker. We assume that other
phases of the computation are mapped onto other parts of a larger system. The computational
components are described in Sections 2.1.1 and 2.1.2. The tracker component description is longer
because the operations involved are less familiar.

2.1.1 Radar Component

The radar component consists of beamforming, which is a series of matrix multiply operations
involving complex matrices. To simplify the computation for the benchmark, we assume that only
a single beam is being formed. Given a number of channels A, a number of range gates Ny,
and a number of Dopplers A'p, the radar component is defined as a set of A’y multiplies of a size
Npr x Mp matrix with a vector of size Mp. The workload of the radar component 11 is therefore
simply

”'H = 81\[[{1‘\/'”[\’[{.

2.1.2 Tracker Component

The tracker component corresponds to the function used to calculate mean-square error (MSE),
calculateMSE (). This function is the pattern match kernel, one of the PCA kernel benchmarks
[7]: it is also described in Section 2.2 of the feature-aided tracker report [3]. It is used by the
classification-aided tracker to provide an additional y* value (see Figure 2 in Section 1.1.2).
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Figure 3. Description of the Tracker Component of the Full IRT Morph Scenario.

The mean-square error € is a metric used to determine the degree to which two patterns a and ¢
match. It may be calculated as
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where wg, k= 1,2,...,! N is a vector of weights. The optimal weights for the feature-aided tracker
have been computed empirically. In this morph scenario, we assume a generic weighting vector is
being used.

Matlab pseudo-code for the tracker component, adapted from the feature-aided tracker re-
port [3], is shown in Figure 3. Notes on optimizing this function on a parallel processor are
provided in Section 4 of the feature-aided tracker report: we will not dwell on these details here.

In Figure 3, we have made one simplification for the sake of the benchmark. In the real feature-
aided tracking application, each association would need to be matched against a set of aspect angles
based on the assumed aspect angle of the association. In the benchmark, we simplify the data sets
involved by reusing the same set of aspect angles for each association. For more details on the
original operations, please see the tracker report [3].

For the tracker component in this scenario, we use a (G value of 13. Given this value of GG, a
pattern length My, a set of N templates, and a set of A’y associations, the workload of the tracker
component can be written as

¢
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2.1.3 Baseline Workload Values

Having defined the computation performed and the workload values for the radar and tracker
components, we can now define specific parameter values that create a baseline workload for each
component. The parameters that constitute a baseline workload for the radar and the tracker are
summarized in Table 1. The parameters are chosen so that the workload for the radar component
and for the tracker component are each approximately 1.6 Mflop.




Table 1.

Baseline Workloads for the Radar and Tracker Components.

Component || Parameter Name | Description Value
Radar Mp Channels 16
Ng Range gates 800
Kg Dopplers 16
Tracker My Pattern length 32
Nr Number of templates 20
Ky Number of associations 16

2.2 Mapping the Full IRT Morph Scenario to PCAs

In this section, we describe how to map the radar and tracker components of the full IRT morph
scenario onto different PCAs. The scenario consists of three cycles that must be executed, each
with a different set of operating parameters. The first cycle, called the balanced cycle, uses half of
the PCA to execute the radar component and half of the PCA to execute the tracker component. The
second cycle, called the radar-only cycle, uses the entire PCA to perform the radar component. The
third cycle, called the tracker-only cycle, uses the entire PCA to perform the tracker component.

We assume that a PCA consists of » > 1 resources, and divide the resources into 2 groups of
r/2 resources: for example, 8 tiles of a 16-tile Raw chip would constitute one resource group. Each
resource group can be configured into either a “radar configuration,” (', that is more efficient for
the radar component, or a “tracker configuration,” C'p, that is more efficient for the tracker com-
ponent. We define that a group of r/2 resources obtains a throughput 7 on the radar component
when in configuration C'g. Similarly, define 7% to be the throughput that a group of /2 resources
obtains on the tracker component when in configuration C'7. These throughput values, 7% and
T’r, must be obtained by measurement. For either component i € {7, R}, define the component
latency as L; = W;/T;.

The process of mapping the full IRT morph scenario on a PCA consists of three steps.

1. Measure the value of T’y for the baseline radar workload and 7’; for the baseline tracker
workload.

2. Adjust the parameter values of the baseline workload so that the latencies L and Ly are ap-
proximately equal on the given PCA. These parameter values constitute the balanced cycle.

3. Adjust the parameter values of the balanced cycle workload to obtain the parameter values
of the radar-only and tracker-only cycles.

These steps are specific to a given PCA, and reflect the load balancing that would occur in the
mapping of a real application to a PCA. The steps are described in more detail below.

The first step in the mapping process, obtaining throughput values for a given implementation
of the radar and tracker components, is very straightforward. Simply measure the latency L, of the
baseline workload for component 2 and compute

Wi 16 x10°

1;
L; L;




In step 2 of the mapping process, after the throughput values have been obtained, parameters
of the workload are adjusted so that Ly ~ L. The two parameters we adjust are Ny and K;:
the adjusted parameter values constitute the balanced cycle parameters. If T > T, then the
architecture is performing more efficiently on the radar component. We therefore increase the
workload of the radar component to make the two latencies equal. Specifically, we adjust the
number of range gates in the radar component by setting

Np = TI\’JVR.
In this case we also define 1;'»,« = K. That is, the value of the number of associations for the
balanced cycle is the value from the baseline workload.

Similarly, if T > T, the architecture is performing more efficiently on the tracker component.
In this case, we increase the workload of the tracker component to make the two latencies equal.
The specific parameter adjusted is the number of associations: we set

5 T.I,[\"T
Ky Th ; (3)
In this case we also define ;\A",{ = Np, that is, the number of range gates for the balanced cycle is
the value from the baseline workload.

In step 3 of the mapping process we obtain the parameters for the radar-only and tracker-only
cycles. In the radar-only cycle, the entire chip is being used to process the radar component. Thus
we increase the radar component workload to twice the amount used in the balanced cycle, that is,
we give the chip 2Ng range gates to work on. Similarly, in the tracker-only cycle, the entire chip is
being used to process the tracker component. Thus we give the chip 2K associations to perform.

To summarize, the scenario consists of three cycles that must be executed. Each cycle consists
of a different balance of radar uses between radar and tracker. In the balanced cycle, the workload
is balanced between the radar and the tracker, and the PCA is given the configuration (C'y, C'y):
that is, half of the chip is working together on the “radar” component and half is working on the
“tracker” component. In the radar-only cycle, we put the chip into a configuration (C'z, C'z) and
set the number of range gates in the radar component to 2Nk range gates. Similarly, in the tracker-
only cycle, we put the chip into a configuration (C'r, C'r) and set the number of associations in
the tracker component to 2K . The configurations and workloads used in each of the cycles are
summarized in Table 2.

2.3 Measuring Performance

The benefit of using a PCA in the full IRT morph scenario is assumed to be its ability to
reconfigure to execute each component of the scenario well. The workload (operation count) of
the operations in cycle 1 has been balanced so that each portion executes with approximately the
same latency, L. The ratio of the tracker throughput 7’y to radar throughput 7y on this cycle
therefore gives an interesting figure of merit about the “balance” that the system is able to achieve.
For an ideal system, the ratio of 7’y to Tz should be close to 1. If the PCA is much better at
radar-style processing than tracker-style processing, then the ratio will be greater than 1, and vice




Table 2.

Configurations and Workloads for the Full IRT morph scenario.

Configuration Data Size Parameter
Cycle Cycle Resource | Resource || Radar Range Tracker
Number, ¢z | Type Group I | Group 2 Gates, Ny | Associations, Ay
1 Balanced Cr Cr Np Ky
2 Radar-Only Cr Cr 2Ng 0
3 Tracker-Only Cr Cr 0 ‘21;",

versa. This ratio is related to the stability metric defined by Kuck [5] and discussed in the kernel
benchmark definition report [7].

Consider the PowerPC G4 whose performance on kernel benchmarks was described in a previ-
ous report [6]. That chip obtained an average throughput on QR factorization of about 600 Mflop/s
and an average throughput on pattern matching of about 110 Mflop/s. If we assume that the QR
factorization throughput is indicative of the matrix multiply throughput then this would lead us to
believe that the ratio for a PowerPC G4 for this benchmark would be 0.18 or less. A goal for PCAs
would be to exceed the value of this ratio for conventional architectures.

Another important metric to be observed from this scenario is the total latency to execute the
three cycles compared to the base latency, L, to execute any one of the three cycles. If the workload
is truly balanced and a morph change takes zero time, then the total latency will be 3L. The latency
may be greater than 3L because of the time necessary to implement the morph change, that is, to
reconfigure the processor resources. The latency may also be greater because of inefficiencies in
the sharing of problems among resources. This scenario can therefore be used to demonstrate the
overhead of morphing on a particular PCA. This overhead may include aspects of both hardware
and software overhead.

2.4 A Further Morph Scenario

An interesting exercise if the PCA consists of 7 > 4 resources would be to change the mix of
workloads from 50% radar and 50% tracker to 75% radar and 25% tracker and then to 25% radar
and 75% tracker. To handle this, the resources would be configured as, respectively, (C'r, C'r, C'p, Cr)
for the first workload, (C'y, C'r, C'r. C'r) for the second workload, and (C'i, C'p, Cp, Cp) for the
third workload. This could be implemented, for example, on the Raw processor by configuring
four of the 16 tiles as a unit. The advantage of this scenario over the original scenario is that each
cycle includes some radar processing and some tracker processing.




3. Feature-Aided Tracker Morph Scenario

In this chapter, we briefly describe additional morph scenarios for the feature-aided tracker. These
scenarios are very similar to the scenarios previously described for GMTI [4]. Their purpose is
to bring up additional issues that will need to be considered in implementing applications using
PCAs.

3.1 Target Density Morph Change

GMTI morph scenario “A” explored a change in the number of targets in a given area from a
low number to a high number. This caused the portion of the PCA performing target parameter
estimation to have to cope with a data-dependent load balancing problem. A similar problem
could be devised for the feature-aided tracker. In this case, the entire tracker would need to be
re-balanced.

The tracker can be parallelized either by distributing the detections coming out of GMTTI or by
distributing the tracks from the previous tracker cycle. If the parallelism comes from distributing
the tracks, then the distribution, while data-dependent, can be determined ahead of the arrival of
detections. Such a scheme would allow the latency of reconfiguring the chip to efficiently distribute
the data to be hidden from the overall latency to process the tracks.

3.2 Parameter Mode Morph Change

GMTI morph scenario “C” explores a change in parameters in GMTI from one cycle to the
next. A similar morph change could be defined for FAT. However, because the tracker maintains
state information and GMTI does not, implementing this morph change for the tracker imposes
additional challenges for the system designer.

If the state is to change whenever parameters are switched, then the PCA system must provide
a way to save state information before the morph change and to restore it after the morph change.
This is very similar to standard operating system mechanisms used to implement multi-tasking or
multi-threading.

A harder problem is to somehow preserve the state while switching parameters. This is really
a challenge for the application designer. For example, if the area under surveillance changes size,
or the pattern length changes to reflect a different resolution, the application would have to know
how to handle this. The PCA system might be able to provide tools for the application designer to
deal with these cases. However, assuring correct behavior in these cases is beyond the scope of the
PCA program.

3.3 Database Morph Change

FAT makes use of a pre-computed database of templates. These templates are chosen to reflect
the targets that the platform will see during its mission. If we assume that the platform on which the
tracker resides moves from one geographic region to another during the mission, then the template
database might change during the mission.



The FAT database includes statistics about how well patterns in the database match other pat-
terns in the database. In the current implementation of FAT, generating a database takes a very
long time due to the need to generate these statistics. Therefore, it is logical to assume that these
databases would be generated ahead of time, and the feature-aided tracker merely switches be-
tween them during the mission. This is therefore very similar to GMTI morph scenario “C™ and so
it is not described in detail in this document.

3.4 Mean-Square Error Calculation Morph Change

One unique opportunity presented by the morphing capability of PCAs is the potential to per-
form data-dependent run-time optimization of a calculation. An example of this occurs in the
mean-square error (MSE) calculation of the feature-aided tracker. As has previously been pointed
out, the MSE calculation is performed many times. It is performed for each association between a
track and a target, for each template in the library, and for each aspect angle in a range around the
assumed aspect angle of the track-target pair.

If a particular target is associated with two or more tracks, and the aspect angles of the tracks
are similar, then many redundant MSE calculations will be performed. Designing the application
to understand where these redundant calculations occur and can be optimized is a significant chal-
lenge. The amount of overlap is not known until run-time, so any optimization cannot be performed
until then. However, performing such optimization could allow the system to dynamically adjust
its resource use. The possibility of performing such optimization leads one to ask what hardware
mechanisms the PCA system could provide to allow such optimization to be done.
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4. Summary

We have described in detail a morph scenario reflecting a subset of the PCA integrated-radar
tracker. The application subset we describe consists of a radar component and a tracker com-
ponent. Each component is designed to be small enough to implement easily as well as scalable to
match the specific PCA under test. We have described a workload mix for the application subset
that tests the ability of the PCA under test to reconfigure for different situations. We have also
described additional ways that the IRT’s feature-aided tracker could use the morphing capabili-
ties of PCAs. These scenarios can serve to focus additional discussion of morphing in the PCA
community.
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