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Abstract

In this report we describe some computer classification experiments with a
database of sidescan sonar images. This database consists of 383 swaths of
sidescan sonar data extracted by the authors from sea trial data collected over
the last few years by DRDC Atlantic. The effects of the filtering and image
segmentation processes on the resultant classification rates are considered.
A number of kernel-based and nearest-neighbour classification schemes are
examined. It is found that despite the complexities of the database considered
in this report that high classification/low false alarm rates can be achieved.

Résumé

Dans le présent rapport, nous décrivons quelques essais de classification avec
une base de données d’images sonar a balayage latéral. Cette base de données
consiste en 383 fauchées de données de sonar a balayage latéral extraites par
les auteurs a partir des données sur les essais en mer, recueillies pendant les
quelques dernieres années par RDDC Atlantique. Les effets des processus de
filtrage et de segmentation d’images sur les taux de classification résultants
sont pris en considération. On examine un certain nombre de systémes de
classification basés sur la méthode du noyau et sur le voisin le plus proche. On
constate que, en dépit des complexités de la base de données examinée dans
ce rapport, il est possible d’atteindre des taux élevés de classification et de
faibles taux de fausse alarme

DRDC Atlantic TM2004-272 i
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Executive summary

INTRODUCTION

The use of computer-aided detection and classification techniques in mine-
hunting is very important. The amount of data which is typically collected
from a sidescan sonar during a minehunting survey is very large and thus
it is hoped that computer algorithms can help a human operator with the
workload. For autonomous vehicles the use of computer-aided detection and
classification techniques may be even more important if (1) the vehicle is to
change its survey on the basis of target detections (2) the amount of data to
be transmitted, perhaps by underwater modem, is to be reduced.

RESULTS

It is shown that the values of classification features computed for sidescan
images may depend significantly in some instances upon the prior filtering
and segmentation algorithms used. Various algorithms will work better in
different cases depending upon the target and seabed conditions. It is shown
that a large number of features can be effectively used with a Kernel-based
classifier. For the challenging set of sidescan images described in this report
a classification rate of 90% could be obtained with approximately a 20% false
alarm rate.

SIGNIFICANCE OF RESULTS

It has been shown that a totally automated approach of segmentation /feature
extraction and classification can yield good classification and false alarm rates
for sidescan sonar images from a database containing images with a large
variety of objects and seabed backgrounds.

FUTURE WORK

It is hoped that a version of this classifier can be implemented for in-field trials.
The sidescan sonar swaths used for this report were extracted manually. In
the future we would like to combine this with a low-level automated detector
providing the swaths for classification. Presently, computer-aided detection
algorithms are being integrated with the Canadian Navy Route Survey Data
Analysis Facility (RSDAF) software and it is hoped that the methods of this
report will also be integrated with this software in the future.

Fawcett, J. & Myers, V., 2005. Computer-aided classification for a database
of minelike objects. DRDC Atlantic TM 2004-272, Defence R&D Canada -
Atlantic.
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Sommaire

INTRODUCTION

L’utilisation de techniques de détection et de classification assistées par ordi-
nateur pour la chasse aux mines revét une grande importance. Etant donné
la tres grande quantité de données habituellement obtenues a l'aide d'un
sonar a balayage latéral au cours d’une campagne de chasse aux mines, on
espere que des algorithmes informatiques peuvent alléger la charge de travail
de 'opérateur. Pour des véhicules autonomes, 'utilisation de techniques de
détection et de classification assistées par ordinateur peuvent s’avérer encore
plus importantes (1) si le véhicule doit modifier ses levés selon les détections
de cibles (2) si la quantité de données a transmettre, peut-étre par modem
sous-marin, doit étre réduite.

RESULTATS

Il est démontré que les valeurs des caractéristiques de classification calculées
pour les images sonar a balayage latéral peuvent dépendre, de facon importante
dans certains cas, des algorithmes de filtrage et de segmentation utilisés au
préalable. Divers algorithmes seront plus appropriés dans différentes situations
en fonction de I’état de la cible et du fond marin. Il appert qu’un grand nombre
de caractéristiques peuvent étre utilisées efficacement avec un classificateur
basé sur la méthode du noyau. Pour le compliqué jeu d’images sonar a balayage
latéral décrit dans le présent rapport, un taux de classification de 90 % pourrait
étre obtenu avec un taux de fausse alarme d’environ 20 %.

PORTEE DES RESULTATS

Il a été démontré qu'une approche entierement automatisée pour la segmenta-
tion et l'extraction des caractéristiques, ainsi que pour la classification, peut
donner de bons taux de classification et de fausse alarme pour des images sonar
a balayage latéral a partir d’'une base de données renfermant des images qui
comportent une grande variété d’objets et de fonds marins d’arriere-plan.

TRAVAUX A VENIR

On espere qu’une version de ce classificateur pourra étre mise en uvre pour
des essais pratiques. Les fauchées du sonar a balayage latéral utilisées pour
le présent rapport ont été extraites manuellement. A I’avenir, nous aimerions
combiner cette méthode avec un détecteur automatique de faible puissance
fournissant les fauchées pour la classification. Actuellement, des algorithmes
de détection assistée par ordinateur sont intégrés au logiciel du centre d’analyse
des données de levés des fonds marins (Route Survey Data Analysis Facility,

v DRDC Atlantic TM2004-272



RSDAF) de la Marine canadienne et on espeére en outre que les méthodes
présentées dans le rapport y seront éventuellement intégrées.

Fawcett, J. & Myers, V., 2005. Computer-aided classification for a database
of minelike objects. DRDC Atlantic TM 2004-272, Defence R&D Canada -
Atlantic.
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1 INTRODUCTION

There are a variety of stages in the processing and classification of sidescan
sonar imagery. Initially the sonar data may be preprocessed - this includes
the normalization of the data in the across-track direction to compensate for
geometrical and attenuation effects, possibly scaling the data to lie within
some range of values, and smoothing or median-filtering the data. The second
stage in the process is often a low-level detection method. For example, this
could consist of cross-correlating a set of simple highlight /shadow templates
with the sidescan sonar data [1] and using a fairly low threshold to identify
many possible minelike objects. This process will, in general, yield many false
alarms, but it is hoped that many of these false alarms can subsequently be
eliminated by a more sophisticated classification method.

To start the classification process, a small window around the detected object is
defined. A number of features are then computed. Typically these features are
defined in terms of the shadow and highlight regions of the image. For example,
the length of an object’s acoustic shadow on the seabed yields information
about the height of that object. It is possible to define a number of features
based on the dimensions and statistics of the shadow and highlight regions
[2],[3],]4]. It is also possible to use the image pixels themselves, or the cross-
correlation of the images with various templates as features [5].

In order to define the shadow/highlight/background regions of an image it is
necessary to segment the image into these 3 regions. The subsequent accuracy
of the feature extraction (for those features based on these regions) is highly
dependent on this segmentation. Unfortunately, as will be seen, this is a non-
trivial task and the optimal parameters for this segmentation may depend
upon the seabed type and even the object itself.

In Ref.5 an approach was described which avoided the detailed segmentation
of an image and instead used the cross-correlations of the images with an
appropriate set of templates as the features. This method was very successful
in the task of differentiating cylindrical targets (the MOG 5 cylinders, which
are also in this database) from clutter. In this report, we will also consider
this approach, but extended to the case of several target types.

Over the last few years, DRDC Atlantic has collected many sidescan sonar
images of minelike objects placed upon the seabed. The sonar used was a Klein
5500 sidescan sonar. As part of the development of the DRDC Atlantic Sonar
Image Processing System (SIPS) [6], tools were developed which allow an user
to click on an object of interest during playback, and to extract a specified
number (usually 21) of pings of data containing the target and associated

DRDC Atlantic TM2004-272 1



ancillary data. This tool was used by the authors to construct the database
of swaths studied in this report. This process is a manual detection process.
However, for the data set discussed below we made sure that various rocks,
logs, etc were also included to test the classification process.

In June 2001, the Canadian Navy deployed 4 cylinders on the seabed of Herring
Cove, Halifax and data was collected for these cylinders at a variety of aspects
and across-track ranges. In July 2001, this site was revisited as part of the
joint DRDC Atlantic/SACLANT Centre (now NURC) MAPLE trial [7] where
in addition to the original cylinders, a number of additional targets, including
dummy Mantas, additional cylinders, and moored spheres were deployed. In
addition, many of these targets were also deployed at a site in St. Margaret’s
Bay. Also, as part of the trials of the Remote Minehunting System (RMS) off
Esquimalt, B.C. a variety of well-known minelike objects were deployed. The
database which is considered in this report used data from all these trials.

During the RMS trials, the speed of the towfish was approximately 8 knots. At
this speed, typically all or 4 of the 5 beams of the Klein 5500 were used for each
ping. The “despeckle” switch (an internal smoothing performed by the Klein
beamforming) was off. For the Herring Cove data, the towspeed was usually
about 4 knots which means that 2 or 3 of the Klein beams were “redundant”:
that is, they are not required to build up a complete image of the seabed as the
towfish travels. Also, the “despeckle” switch was set at its lowest (non-zero)
value. In general, because of the different geographical locations, the different
deployment vessels and tow speeds, there is quite a variation in the seabed
backgrounds and image quality for the swaths contained within this database.
As well there is a large variety of the types of objects.

The swath files and database information which were formed from the data
from these trials was distributed to the TTCP nations as part of the collabo-
rative CAD/CAC project. Thus, we shall refer to this as the TTCP-database.
We will use this database to examine some of the issues associated with feature
extraction and the subsequent impact on classification. We will also investi-
gate the use of template features which do not rely on a detailed segmentation
of the object.

2 DRDC Atlantic TM2004-272



2 DESCRIPTION OF THE DATABASE

In the original definition of the swath image database considered in this report,
the various objects were divided into different classes by the authors. These
classes correspond to the different target types or types of clutter. The target
classes were further subdivided according to the geographical location of their
deployment. The different classes are described in Table I and the number
of instances of swaths for each particular class is specified in the “Number”
column. Some of the classes, such as the Mark 36 have only a few swaths in
the database (8). This may be somewhat problematic during the training of
the classifiers, as we do not insist in the random partitioning of the data for
training and testing that there are a minimum number of occurrences for each
class. Thus, it is possible that for some partitions of the training/testing set
that there are no instances of a particular target type (especially one with only
a small number of swaths) in the training set. The emphasis of this report is,
in fact, on classifying the swaths as minelike or non minelike. Thus, all the
target types will be assigned the label (+1) and all the clutter and curiosity
swaths will be labelled as (-1). Due to their large image sizes, the Shipwreck
class is not used in the present study. The labels +1 which are assigned to

the swaths of the various classes for the purposes of this report are shown in
Table 1.

DRDC Atlantic TM2004-272 3



pended in water column

eter, 1 to 4 m above
seabed

Class description Dimensions Number | New Label
Clutter: Various rocks and objects | Various 112 -1
on the seafloor that are not mines

Horizontal Concrete Cylinder: | Unknown 82 1
Horizontal concrete cylinders

Vertical Concrete Cylinder: | Unknown 8 1
Vertical concrete cylinders

MK-56 RMSB3 T1: MK-56 | 2.75m by 59c¢m diame- 7 1
cylindrical mines deployed during | ter

RMS trial- same as Class 7 below

Manta RMSB3 T2: Manta shape | 1.02m base diameter 10 1
deployed for RMS trial - same as | by 0.45m height

Class 11 and Class 16.

MK-52 RMSB3 T3: A MK52 | 1.72m by 40 cm diam- 9 1
cylindrical mine. eter

MK-25 RMSB3 T4: MK-25 | 2.02m by 47 cm diam- 12 1
mine deployed for RMS trial - same | eter

as Class 10.

MK-56 RMSB3 T5: Same as | 2.75 m by 59 cm diam- 11 1
class 3. eter

MK-62 RMSB3 T6: MK-62 air- | 1.65 m by 25 cm diam- D 1
craft laid seabed mine. eter

MK-36 RMSB3 T7: MK-36 | 1.71 m by 45 cm diam- 8 1
cylindrical seabed mine. eter

MK-25 RMSB3 T8: Same as | 2.02 m by 47 cm diam- 7 1
Class 6 eter

Manta RMSB3 T9: Same as | 1.02 base diameter x 11 1
Class 4 and 16 0.45 m height

MK-62 RMSB3 T10: Same as | 1.65 m by 25 cm height 2 1
Class 6.

Shipwreck: Various shipwrecks. Various 9 N/A
Curiosity: Various interesting ob- | Various 12 -1
jects

MOG5 Cylinder: Water-filled | 1.83 m by .61m diam- 51 1
cylinder, Herring Cove eter

Q260 Manta: Same as Class 2 and | 1.02 base diameter X 19 1
9 but deployed at Herring Cove 0.45m height

Sphere: Spherical objects sus- | 0.45 and 0.62 m diam- 8 1

Table 1: A description of the swath images. The column Number is the number
of swaths in each class, column New Label is the label assigned to each class for

the study of this report.
4
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Q260 Manta MOG 5 Cylinder

Figure 1: Some photographs of some of the targets included in the database
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3 PREPROCESSING AND
SEGMENTATION

As discussed previously we will assume that a small window about the initial
detection is extracted. We use the visible beams: for example, if all beams are
visible and there are 21 pings the extracted data would have an along-track
length of 105. In the cross-track direction, 121 points before the detection
and 171 after are used, for a total of 293 points. However, this number may
be adjusted so that: (a) the first point corresponds to the seabed (not the
water column) and (b) the last point is not outside the range of data points.
There are images from moored spheres present in the database and although
these are an interesting target of interest and are included in the study of this
report, they pose some unique challenges to the automated processing used.
They often have little highlight and a very long shadow (due to the rather
high elevation of the target off the seabed) which is often separated by a large
across-track distance from the highlight (if there is any). In this report, where
we fix the size of our window about the target, part of the image of the sphere
may extend past its limits.

The success of subsequent feature extraction and classification depend upon
the output of the preprocessing and segmentation stages. There will be cases
where the segmentation stage is poor and thus the computed features will
be very inaccurate. Also, the optimal preprocessing and segmentation may
depend upon the seabed type and the target itself.

One of the segmentation methods we use in this report is based upon the
work of [8] which uses an iterative approach. A pixel is declared to be
shadow(highlight) if its value is less(greater) than a specified threshold. How-
ever, this threshold is allowed to increase (decrease) depending on the local
connectivity with other shadow(highlight) pixels. Algorithmically, the thresh-
old is increased in steps and each pixel considered. However, after a sweep
through the thresholds, the connectivity between the pixels has, in general,
changed and one must sweep through the pixels again. This is continued for
a maximum of 10 sweeps or until the segmented image does not change.

A similar approach is to define threshold levels and acceptable local connec-
tivities (measured by using a convolution with a 3 x 3 filter of ones). The
segmented image is then obtained by combining the images (one or zero)
which have the required connectivities at the various thresholds. This is a
non-iterative approach. For both these segmentation approaches there are var-
ious parameters to be defined: the starting threshold and the final maximum
threshold (requiring the maximum connectivity) and for the second approach

6 DRDC Atlantic TM2004-272



we use 4 different thresholds with required connectivities of at least 2,3,4 and
6. One would expect the iterative method would allow for more “growing” of
the shadow region. This is often the case, but not always. The non-iterative
method does not require that the pixel value itself is low, just that the local
connectivity is acceptable.

It is not clear apriori which segmentation method will yield the best results
and what are the best values of the various parameters. In general, we expect
that the most appropriate method will depend upon the characteristics of the
seabed background and the target’s highlight and shadow. Thus, the approach
we take in this report is to compute a set of 38 features with respect to shadow
and highlight regions and to repeat this basic set using 5 different segmentation
methods. This yields 5 different sets of features. However, we emphasize that
the definition of these features is the same for each of the 5 sets. It is only
the segmentation method and the details of the filtering of the original data
which vary and as a result the subsequent computed values of the features. In
general, the segmentations used to determine the shadow regions range from
segmentation methods (or parameters) defining shadows with only very low
pixel values to methods which allow for rather loosely-defined shadow regions.

In this report we will always median filter our data (within the window as
discussed above) in the cross-track direction. For Method 4 of segmentation,
we will also normalize this data in the along-track direction by the median
value of each along-track vector of values. This was done because we found
it to be beneficial in the cases that the seabed surrounding the target was
quite “bright”. The threshold values for the first 4 segmentation methods are
defined in terms of percentiles of the data values. For example, one might
define the lower shadow threshold as the 10% values of the sorted data values.
In this manner, the absolute level of the data under consideration should not
be important. The fifth segmentation method (and the corresponding feature
set, Set 5) used for the shadow segmentation is based upon determining a
hard threshold which minimizes an entropy measure of the data (based upon
an implementation used in the SIPS[6] system). After the image has been
segmented, there will be, in general, many regions of shadow and highlight. A
region labelling algorithm is then used to group the shadow (highlight) regions
into connected, labelled groups. Our method allows for pixels a specified
distance § away to be defined as connected.

In the Appendix, we list the 38 basic features (non-templates) which are com-
puted. As well, a summary of the filtering and segmentation parameters for
the 5 filtering/segmentation methods is also given. As discussed above, the
5 sets of filtering and segmentation parameters which are used prior to the
computation of the 38 features yields 5 sets of features which we will denote

DRDC Atlantic TM2004-272 7



as Set 1 - Set 5 respectively for the remainder of the report. We will refer
to the 5 different filtering/segmentation methods as Methods 1-5. In some
cases when we are discussing a particular feature value which results from the
feature computation after the application of one of the Methods (e.g. Method
3), we will refer to the value as computed by, for example, Method 3.

8 DRDC Atlantic TM2004-272



4 TEMPLATES

As was discussed in [5] another set of useful features are the values of the
cross-correlations between simple ray-generated templates of the targets and
the image. A ray-tracing algorithm was written in Fortran to generate the
model images of a target on the seabed. The algorithm uses a triangular facet
model of an object. It determines the points on the seabed from which a line to
the sonar intersects the object (and thus these points correspond to shadow).
A simple cosine rule is used to compute the amplitude of the reflection from
the object. For each target type these highlight/background/shadow images
are computed for 3 towfish altitudes (12, 15 and 18 m) and for 13 possible
seabed ranges 15 < r < 75 m. For the cylindrical targets, the templates
are also computed at 12 azimuths. For the 6 target types considered, a large
number of templates are generated. These are all saved in a single file. During
the feature computations, the templates for the nearest altitude and nearest
range are extracted from the file. As well, the cross-correlations between the
edge-masks, etc are also computed. In [5] only the MOGS5 cylinders from
Herring Cove were used. Here will use templates for (1) Manta class (2)
vertical cylinder 0.8 m (high) x 0.6 m (diameter) (3) cylinder 2.75 m (long)
x 0.6 m (diameter) (4) cylinder 1.8 m (long) x 0.6 m(diameter) (5) cylinder
1.65 m x 0.25 m (6) cylinder 1.7 m x 0.42 m. In Fig. 2 we show 3 of the facet
models used in generating the ray highlight /shadow images.

For the template matching the image data is byte-scaled using the top 99th
percentile of the data. The mean of this scaled image is subtracted off and only
values below the 20% and above the 95% levels are used in the matching. In
determining the optimal matching template, some care must be taken. First
for each cylinder class, the cross-correlations between all the different aspects
are computed. However, as was discussed in [5] it seems best to normalize
the result by the Ly norm of the template; this favours somewhat bigger tem-
plates over the smaller ones. (For smaller templates it is easier to get obtain a
good cross-correlation value without necessarily overlapping most of the tar-
get image.) For the cylinder classes the optimal aspect template is then used
for the computation of the additional features. For the Manta and vertical
cylinder classes this aspect determination is not required. A total of 15 fea-
tures for each target type is computed. These features include the value of the
cross-correlation, the cross-correlation between the differenced template and
the differenced data (in the across-track and along-track directions), the per-
centage of template shadow pixels overlapping data shadow pixels, etc. These
features are outlined in the Appendix and the total of 90 template features
are denoted as Set 6.
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Figure 2: Facet models for ray-tracing for (1) Manta (2) Vertical Cylinder (3)
Mark 56 at angle of 45 degrees
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5 CLASSIFICATION ALGORITHMS

We have described a large number of possible features: there are 5 sets of 38
features (corresponding to using the 5 different sets of filtering/segmentation
parameters, Methods 1-5) and an additional 90 template features. In the nu-
merical examples, we will consider these as 6 sets of features. We will consider
these sets of features individually and combined into larger sets. We will also
consider combining the outputs from the classifier working on the individual
sets. In this paper, we emphasize the basic two-class problem: target class
or clutter. One can consider the multi-class problem as a sequence of 2-class
problems, or after we have classed the object as a target, we could simply use
the closest target class to classify it. The main classification methods we uti-
lize in this report are Kernel-based classification methods [9,10]. We will also

consider the simpler and computationally faster nearest-neighbour approach
[11].

5.1 Kernel-based classifier

The basic concept of this type of classifier is quite straightforward. The set of
features which constitute the training can be thought of as a set of vectors f_;
where f; denotes the set of features for swath i. There will also be a label —1
(clutter class) or +1 (target class) associated with it. The original features are
then transformed into a new set of features by a non-linear mapping ¢. We will
not explicitly deal with these mapped features ¢;( ﬁ), as they are implicitly
defined by the choice of the Kernel Function, which in general, will induce an
infinite number of feature vectors (the eigenfunctions of the kernel operator)
(note that j denotes the jth feature of the mapped feature vector f:) There
are many possible Kernel Functions. The one we use is the exponential Kernel

K(7,2) = exp(=|7 = Z[li/p); (1)

where || — 2|, = Zf\il |#; — Z;| and M is the number of features. We also
tried the kernels

K(7,2) = exp(= |7 - Z3/p"),  K(&,2) = eap(-|IZ - Zl2/p)  (2)
but found that the kernel of Eq.(1) performed best for this particular problem.

A common classification approach in a two-class classification problem is to
determine the plane in feature space which best separates the two classes. Be-
low, we describe the method in the mapped domain ¢(Z). Once the coefficients
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of this plane (the vector @) (and possibly a constant or bias term) have been
determined to yield the discriminant function,

FO@)=a (@) +b (3)

then the classification of a new swath (after the transformation to the new
feature space) is based upon the sign of this discriminant function.

There are a variety of methods or criteria which can be used to determine the
coefficients @, b in Eq.(3). Let us suppose that for the one class, we wish that
a- $+ b > 1 and that for the other class a - $+ b < —1, then the distance
between the 2 planes for which the equality, @ - $+ b = +£1, holds is given by
1/]|@||2- The basic support vector classification problem is then

min (,;’b)||d’||2
with y;(@-¢) +b>1.Vi (4)

This problem can be solved by using the method of Lagrange multipliers and
Quadratic programming. In order to allow the optimizing solution of Eq.(4)
to be more robust to noise one can introduce the concept of slack variables
which allow the inequalities of Eq.(4) to be violated somewhat. After some
derivation [9] it can be shown that the optimization problem in the dual space
(i.e., after using Lagrange multipliers) is given by

N N N
max Z a; —1/2 Z Z yiyjoic K (%, ;)
i=1

i=1 j=1

N
with Z Yo = 0, 0<; <C (5)
i=1

where the number of swaths in the training set is N. In deriving Eq.(5) use
has been made of the important relation that the inner product of the mapped
features vectors,

$(@) - 6(2) = K (3, 2). (6)

Once the values of a; have been determined the discriminating function is
given by

N
=1
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where the bias term b is found by the condition
N
D yieaK (%, #) +b=1 (8)
i=1

for values of j such that 0 < a; < C. It is interesting to note that the
discriminating function involves only those values of a which are non-zero (and
the corresponding feature vectors are called the support vectors) . Thus only
the data points which correspond to the these values of a have any influence on
the future classification. Those training points which are more distant from
the separating plane have no influence. If the number of “support” vectors
is small then the required computations (and the storage for the data points
corresponding to the support vectors) for classification is also small. This
is certainly advantageous for very large size classification problems for which
there may be thousands or even millions of datapoints used in the training.

In the above approach, the solution of Eq.(5) requires some form of a quadratic-
programming algorithm. One can also use least-squares formulations to esti-
mate the parameters o and b. In this case, we will simply minimize the Lo
error between the predicted label values and their true values, Y. A regulari-
sation parameter v can also be included. There are 2 basic formulations, one
including the bias term in the estimation and one not including it. In the first
case, the system of equations has the form

0 1.--1 b 0
(i) (2) = () L
or where the bias term is not considered, simply
1
(K+-TIa=Y (10)
8

Once « (and perhaps b) have been determined, the discriminating function
has a form similar to Eq.(3),

(@) = ZaiK(fi,f) +b. (11)

We have coded the 3 above algorithms, the first was coded in FORTRAN
and used a general purpose optimization routine from the IMSL library[12] to
solve the problem of Eq.(5) and the 2 least-squares approaches were coded in
MATLAB. We found the performance was similar for all three methods and
for the results shown here we use the least squares approach of Eq.(10).
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There are three parameters which can be varied in the algorithm (besides
the choice of the Kernel Function itself): (1) the scalar which is added to
the diagonal of the Kernel matrix, (2) the value of p in the Kernel Function,
(3) and a bias term, b, when the discriminant function is applied. We found
that the classification results did not depend significantly on the scalar added
to the diagonal and we used a value of 0.005 in all our computations. The
performance of the classifier can vary significantly with the parameter p and
we will optimize the choice of this parameter by minimizing the classification
error as averaged over random partitions of the data set into training and
testing sets. The last parameter is not obvious. However, by varying the
constant b from negative values (e.g. -1.5) to positive values (e.g 1.5) in the
classification test (recall that in the determination of the weights ¢ that bis
assumed equal to zero)

N
> oy (i) 2 b (12)
1=1

one can compute a ROC curve (probability of detection vs. probability of false
alarm).

5.2 Nearest-neighbour classifier

This approach is a standard, simple classifier [11]. One considers a set of
known swaths (training set) with their computed features. A new swath is
then assigned the label of the closest swath with respect to the distance (using
some distance measure) between the vectors of features. It is not difficult to see
that this estimator can be considered as the limit as p — 0 of the exponential
Kernel-based classifier. As p — 0 the matrix used in the training set becomes
diagonal and the determined weights simply become the labels of the members
of the training set. For a new swath, the computed exponential weightings
to the elements of the training set will become increasingly dominated, as
p — 0, by the exponential with the smallest distance and thus this new swath
will obtain the label of the closest swath in the training set (multiplied by
the exponential weighting term). A generalization of the nearest-neighbour
approach is to consider the N-nearest swaths in the training set and take the
label of the majority. We will use N=1 and N=3 in our simulations.
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6 NUMERICAL RESULTS

6.1 Some examples of segmentation and feature
computation

In Fig. 3 we show 4 example images from the database, the resulting seg-
mented images and the corresponding optimal template. This is the template
from all possible templates which has the maximum cross-correlation with the
data when normalized by the L, norm of the template. The segmentation
results shown are for the fourth set of shadow/highlight segmentation param-
eters (Method 4 as described in the Appendix). The highlights shown were
determined using a method whereby any highlight clusters whose centres fell
within an acceptable distance of the leading edge of the shadow are accepted
as highlight. For these swaths, it can be seen that the segmentations and the
optimizing templates are good. There are other swaths for which the segmen-
tations or optimizing templates are not as good (it should be noted that this
optimal template is not used in the classification code, the features consist of
the cross-correlations with all the target types). For example, for some of the
Manta images an endon cylinder provides a good template match with the
image.

In Fig. 4 we show the segmentations of the Manta of Swath 8 using the 5 dif-
ferent segmentation methods. The various segmentation methods use different
parameters in terms of the length of median filtering (in the across-track direc-
tion), the thresholds for the shadow and highlight segmentation, and whether
the iterative or non-iterative shadow determination was used. The fifth seg-
mentation method used an entropy criteria for determining a hard threshold
to use with the segmentation. Basically Method 1 considers only pixel values
less than the 6% percentile as potential shadow pixels, whereas Method 4 has
the loosest constraints on the shadow pixels. The details of these methods are
given in the Appendix. There is a small highlight in the shadow region of the
Manta. The shadow segmentations of Method 1 and 3 do not “make it” past
this highlight whereas the other 3 methods do. Based upon the classification
results discussed later, we found that Method 4 provided the best feature val-
ues. However, there are certainly examples where one of the other methods
provides a better segmentation. In Fig. 5 we show the segmentation results
for a dummy Manta deployed in Herring Cove. In this case the background
contains a small linear shadow which is connected to the Manta shadow. This
causes all the methods with the exception of Method 1 to associate this seabed

DRDC Atlantic TM2004-272 15



Figure 3: Some representative target images and their segmentations using
segmentation Method 4 and the automatically determined templates

feature with the target.

The reason for using different parameter settings is to handle the effect of vary-
ing seabed and target conditions. In some instances the shadow/background
contrast is not good and one needs to allow for a higher threshold on the
shadow values to allow the shadow region to be sufficiently large. Also, the
length of the median filter applied seems to have a significant effect. By in-
creasing this length, a greater amount of speckle of the shadow regions can
be reduced, thus improving the performance of the segmentation. It is hoped
that by employing a variety of filtering and segmentation schemes, that at
least one of the methods will produce good feature estimates. Of course, it is
not known apriori which method will yield the best feature estimate and it is
also not clear how to best utilize these various values for a particular features.

We now look at some of the feature values for some of the targets in detail.
First we consider the MOGS5 cylinders of which there are 50 instances (ac-
cording to Table 1 there are 51 but one swath was rejected because it was at
a different resolution setting). In Fig. 6 we show the computed lengths and
heights of these cylinders after the application of the 5 filtering /segmentation
methods. As can be seen the first method tends to underestimate the height
somewhat, while the values corresponding to Method 5 are poor in some cases.
Methods 2, 3, and 4 all provide reasonable estimates.

The estimation of the object length is somewhat problematic in the case of
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Figure 4: The 5 different segmentations for the Manta of Swath 8, (b)-(f),
original filtered image shown in (a)

Figure 5: The 5 different segmentations for the Manta (Herring Cove) of Swath
314, (b)-(f), original filtered image shown in (a)
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Figure 6: The estimated heights and lengths for MOG 5 cylinders (0.61 m high
x 1.83 m long) using the 5 sets of segmentation parameters (Methods 1-5
described in the Appendix)

3
2.51
+
2
+ &
— + EL
£
= +43
515 . ?,
3 4+
+ R 1
l.
+ +*
+
0.51
0 T T T T
0 0.2 0.4 0.6 0.8 1
Height (m)

Figure 7: The estimated heights and lengths for MOG 5 cylinders (0.61 m high
x 1.83 m long) using the optimal of the 5 features for each swath
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cylindrical objects. For cylinders with a significant aspect it is necessary to try
to account for the difference in the across-track pixels (for example, if we con-
sider the leading edge of the shadow). This estimate can be difficult however
if, for example the leading edge is “ragged”. One can also use the highlight
to estimate the length. However, there may also be problems in obtaining a
reliable highlight segmentation. For the plots shown here we are using the
length as computed from the leading edge of the shadow. Using Method 4,
the computed mean height of the MOG5 cylinder is 0.641 meters (standard
deviation of 0.118 m) and a mean length of 1.51 m with a standard deviation
of 0.399 m. The height estimate agrees well with true height (diameter) of
0.61. The mean length is a little small and the standard deviation relatively
higher than for the height. In Fig. 7 we show the distribution of heights and
lengths obtained by selecting from the 5 methods, the estimates which are
closest to the true values. This does significantly reduce the distribution of
the heights (with respect to the values of, for example, Method 4), but does
not significantly reduce the scatter of the lengths. The results of Fig. 7 are
unrealistic in the sense that a computer algorithm does not “know” which is
the best segmentation method to use for a particular swath. However, the fig-
ure does indicate that part of the scatter in the results of Fig. 6 may be due to
not using the best set of filtering/segmentation parameters prior to computing
the heights and lengths.

In Figs. 8 and 9 we repeat these computations for the Manta targets, two of
which were deployed in the Esquimalt trials and all the instances of Manta
targets from Herring Cove. Here there is a relatively large distribution in
the height estimates. One reason for this is that it seems that the second
Manta in Esquimalt may not have been lying flat on the bottom (perhaps,
the deployment cable was pulling upwards on it) and the heights from this
location seemed consistently too large. The mean height using Method 4 was
0.589 metres with a standard deviation of 0.147 m and a mean length of 0.872
meters with a standard deviation of 0.273 m.

In Figs. 10 and 11 we show the same results for the Mk 56 target. This was the
largest minelike target and the estimates from Method 4, mean height .679 m
(standard deviation .101m) and mean length 2.44m (standard deviation 0.383
m), are good (compared to the true values of 0.6m and 2.75m, respectively).
Finally in Fig. 12, we show the height and length distribution of all the objects
in the database which were labeled as clutter or curiosity. It can be seen that
this class has a very wide distribution in height and length and thus it is
not possible to eliminate many of the clutter/curiosity swaths on the basis of
simple dimensions alone.
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Figure 8: The estimated heights and lengths for Manta shapes (0.45 m high x
1.02 m diameter) using the 5 sets of segmentation parameters
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Figure 9: The estimated heights and lengths for Manta shapes (0.45 m high x
1.02 m diameter) using the optimal of the 5 estimates for each swath
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Figure 10: The estimated heights and lengths for Mark 56 targets (diameter
59 cm x 2.75 m length) using the 5 sets of segmentation parameters
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Figure 11: The estimated heights and lengths for Mark 56 targets (diameter
59 cm x 2.75 m length) using the optimal of the 5 estimates for each swath
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Figure 12: The estimated heights and lengths for clutter (and curiosity) objects
using the 5 sets of segmentation parameters

6.2 Classification Results

We now consider, in more detail, the classification of swaths using various
sets of features. As discussed in section 5 we will use Kernel-based feature
sets with a least-squares method. As well, we will also give the error rates
for the N = 1 and N = 3 nearest neighbour classifiers. We will consider a
variety of different combinations of features and also the combinations of the
outputs from classifiers. First, we consider the 6 sets of features separately: the
first five sets are the sets of 38 features obtained after using the five different
segmentation schemes and the set of template-based features. We also consider
a set constructed from combining: (a) the first 4 sets of features (Set 7), (b) a
set from the first 4 sets of features and the template features (Set 8), (¢) Set 4
and the template features (Set 9), (d) all the features (Set 10), and finally (e)
2 sets (Sets 11-12) of features which are determined using Backwards Features
selection [11].

In order to compute the following results, we first read in 383 swaths and their
feature files. In the processing, some swaths which were large in size were
skipped and we do not include any shipwreck swaths in this study. Any swaths
which were identified as “Curiosity” were considered as a clutter event as well
as those originally identified as “ Clutter”. All other swaths were considered as
“Target”. This includes the spheres and the horizontal and vertical concrete
cylinders. Thus there are a wide variety of target types. After the elimination
of the shipwreck files and the other swaths which were originally too large,
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there was a total of 371 swaths to consider. This feature set and associated
label were then randomly partitioned into 246 files for training and 125 files for
testing. The features for this training set were then demeaned and normalized
to have unit length. The computed feature means and normalizations were
then applied to the testing set. After training the classifiers, the testing stage
provided the number of targets which were misclassified as clutter (missed
targets) and clutter misclassified as target (false alarm). As well, there is the
total error rate. The missed target and false alarm rates were computed by
summing all the missed targets and false alarms over all the simulations and
normalizing these numbers by the total number of target (label 1) and clutter
(label -1) events over all the simulations. There are, in fact, more targets
than clutter in this dataset so that the total error rate is dominated by the
missed target rate. The random partitioning of the files is repeated many (e.g.
301) times to yield fairly robust estimates of the error rates. We used the
same partitionings for the different specified sets of features to compute the
performance of several classifiers using the same set of simulations. We made
no attempt during the partitioning to make sure that certain percentage of
targets was represented. Thus, for some of the target classes with only a few
instances, there could be particular partitions where none of them were in the
training set.

We used backward feature selection to select an “optimal” set of features.
In order to do this we start with the set of the first 280 features and start
dropping the features in sets of 4 consecutive features (i.e, there are originally
70 groups of 4 features). This is clearly suboptimal in terms of finding an
optimal feature set, but we did this to speed up the computations. We average
the error results over 21 random partitions of the training and testing sets. In
the discrimination test we set a threshold of 0.05 in an attempt to lessen the
false alarm rate of the classifier at each stage. The parameter p was linearly
decreased as the number of features decreased using the formula p = No. of
features/280 x1.5. The set of N-4 features which has the lowest average error
is kept and then the process of determining the next set of 4 features which
can be discarded is continued. In Fig.13 the average error rate as a function
of the number of features discarded is shown. As well an optimized set was
determined for the N = 1 nearest-neighbour classifier and that curve is also
shown. From Fig. 13, it can be seen that the Kernel-based classifier has a
minimum after about 200 features have been deleted, resulting in a set of 80
features. It is interesting to note that in this set there is a distribution of
features from the different sets of features; there are 2 from Set 1, 10 from Set
2, 8 from Set 3, 20 from set 4, 16 from Set 5 and 24 from the template features.
The nearest-neighbour classifier curve has a minimum at about 160 features
deleted, resulting in a set of 120 features. Once again, this optimized set has

DRDC Atlantic TM2004-272 23



0.25

0.2

Error rate

0.15+1

0.1 r . . . .
0 50 100 150 200 250

Number of features deleted
Figure 13: The error rate as a function of the optimizing feature set size for
Kernel-based approach, red, with a decreasing value of p starting at p = 1.5 and

blue, the N1-nearest neighbour classifier

a distribution of features from Sets 1-6. It can be seen that the kernel-based
curve has a lower minimum error rate than the nearest-neighbour classifier.
However, as will be seen the performance of the nearest-neighbour classifier,
using its optimized feature set, is very good relative to classifiers using other
features sets.

To investigate the performance of the kernel-based classifier as a function of
the parameter p in the exponential kernel, we simply varied p and used 81
Monte Carlo simulations with respect to the partitioning of the training and
testing sets to compute an average error rate for each feature set as a function
of p. The error rate curves for Sets 4,6,8, and 11 are shown in Fig. 12. As can
be seen, there are in fact 2 local minima in the curves. The optimized feature
set, Set 11, has a significantly lower error rate than the other feature sets. Set
8 is the next best with a slightly smaller error rate than Set 4. The feature set
4 which results from using the filtering/segmentation parameters of Method 4
is the best of the individual feature sets (Sets 1-5, and the template features
set 6). The feature sets 7-10 are all large feature sets with, for example, set
10 having 280 features and it is interesting to note that this not caused a
deterioration in the classification results as compared to the smaller set, set
1-6. However, it is clear that the optimized feature set, set 11, definitely
yields the best classification results. It is interesting to note that in the limit
as p — 0 the Kernel-based classifier should approach the nearest-neighbour
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Figure 14: The error rate for 4 sets of features as a function of p

classifier. That is, a new swath is simply assigned the label of the swath in the
training set which is closest with respect to the distance measure used in the
exponential. Thus, for example, for Set 8 where the error rate for small values
of p is quite close to the optimal error rate, we expect a nearest neighbour
approach to work well.

Using the optimal values of p for each Feature Set we can compute ROC curves
by varying b in Eq.(12) between —1.5 and 1.5 with 801 steps. For example,
for b = —1.5 then almost all swaths are classed as targets. The resulting ROC
curves for features sets 4,6,8, and 11 are shown in Fig.15. From the data
for these curves, the probability of false alarm for different probabilities of
detection can be determined. In Table 2 below we give the false alarm rates for
the feature sets for probabilities of target classification of 80%,90% and 95%.
The results for feature Set 12 (the optimized set for the nearest neighbour
classifier) are not shown. The optimal value of p for this set was 0.013 and
because of this small value, many of the discriminant values (i.e. predicted
label values) for the test set were very close to zero and the resulting ROC
curve appears discontinuous for the spacing of p we used in the computation
of the curves. It can be seen from this Table, that the classification rates
using feature set 11 are very good, with a false alarm rate of 26.2% for a 95%
target classification rate. Feature sets 8 and 10 were the next best sets. Of
the individual feature sets, Set 4 was particularly good.

From the data used in the computation of the ROC curves we can find the
smallest overall total error rate for each of the classifiers. These rates are
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Figure 15: The computed ROC curves for feature sets 4,6,8, and 11 using 246
swaths for training and 125 swaths for test (averaged over 301 realizations)

Feature Set | FAR(80%) | FAR(90%) | FAR(95%)
1 0.329 0.542 0.663
2 0.223 0.346 0.538
3 0.239 0.370 0.525
4 0.155 0.277 0.430
) 0.342 0.534 0.675
6 0.222 0.401 0.533
7 0.186 0.290 0.420
8 0.142 0.247 0.379
9 0.153 0.280 0.423
10 0.146 0.257 0.389
11 0.127 0.191 0.267

Table 2: False alarm rates for the various feature sets and for 80%,90% and
95% rates of target classification.
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Feature Set | error rate (KC) | NN1 | NN3
1 0.234 0.271 | 0.273
2 0.179 0.237 | 0.237
3 0.189 0.237 | 0.241
4 0.157 0.224 | 0.220
3 0.241 0.328 | 0.306
6 0.197 0.217 | 0.207
7 0.160 0.203 | 0.216
8 0.148 0.170 | 0.191
9 0.159 0.197 | 0.203
10 0.150 0.183 | 0.198
11 0.121 0.205 | 0.205
12 0.138 0.137 | 0.176

Table 3: Error rates obtained from kernel-based and nearest-neighbour classifiers

shown in Table 4 with the error rates which were obtained using N = 1 and
N = 3 nearest-neighbour classifiers during the same simulations. As can be
seen, the error rate for the kernel-based classifiers are better for all feature
sets except Set 12 which was constructed to optimized the nearest neighbour
performance. However, it is interesting to note that for some of the feature
sets, such as Set 8, the nearest neighbour performance is only slightly poorer
than the kernel-based classifier. This was predicted from the curves of Fig. 12
which indicated that a small value of p also yielded a good error rate for feature
set 8.

All these results were obtained by using 246 swaths for training and 125 for
testing. In the results below, we use the same parameters, but use 370 swaths
for training and one for testing. However, we sequentially test all possible
combinations by using each swath in turn for testing with the remainder of the
set for training. The parameters are not re-optimized for this bigger training
set - we use the same values of p as for the smaller training set (246 swaths).
Since the training set is now bigger, we would expect that for most of the
classifiers that we should obtain at least as good results as before. This is
always true for the 90% target classification rate; for the 80% classification
rate the improvement was small or non-existent in some cases. For the 95%
classification rate, the improvement was also smaller with the exception of Set
11 where the false alarm rate fell significantly from 26.7% to 19.7%. In Fig. 16
we show the ROC Curves for sets 4,6,8, and 11. As can be seen the resulting
curves are not smooth and although Table 4 indicates that, for example, the
classifier using set 8 is superiour to using set 4, it can be seen that within
statistical uncertainty, that the 2 ROC curves for these feature sets appear to
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Feature Set | FAR(80%) | FAR(90%) | FAR(95%)
1 0.287 0.508 0.656
2 0.221 0.295 0.443
3 0.246 0.320 0.467
4 0.139 0.213 0.393
5) 0.262 0.500 0.631
6 0.213 0.369 0.508
7 0.197 0.238 0.393
8 0.139 0.205 0.369
9 0.139 0.238 0.418
10 0.131 0.213 0.344
11 0.115 0.172 0.197

Table 4: False alarm rates for the various feature sets and for 80%,90% and
95% rates of target classification using all but one swath for training

be very close.

For the results of Tables 2 and 3, we “tuned” the parameters, particularly p in
the exponential kernel to obtain good results. We did investigate for Feature
Set 8 (Features sets 1-4 combined with the template features) the classification
performance obtained when first estimating the value of p from a validation
set and then using that value to train for a test set. In this case we used 200
features for training, 100 for validation, and 71 for testing. We took a random
partition of the swaths to obtain the training/validation set, estimated p* from
the validation set using 7 random partitions of the training/validation set, then
retrained the classifier using the combined training/validation set with p* and
then tested on the testing set. This process was repeated 301 times and yielded
an error rate of 0.145 (missed rate =0.063 and false alarm rate = 0.312) which
is close to the value obtained when the tuned value was used in Table 2.

Instead of simply combining the features to make a large feature set, there are
a variety of other techniques which can be used to combine the classification
results from the feature sets. For example, we will consider using features sets
3,4, and 6. The default labels will be those from using the classifier with Set
4. However if both the discriminant values, ws and wg (i.e. the value from
the function of Eq.(12)), from the classifier using sets 3 and 6, are such that
both w3, wg < —t then we assign a label of —1 for the overall classification.
Similarly if both values are great then +¢, then a label of =1 is assigned. In
Fig. 17 the resulting error rate is shown as a function of ¢ with a minimum
error rate of 0.1534. The corresponding error rate for this simulation using
just the set 4 classifier (using b = was 0.160, so we can see that by using
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Figure 16: The computed ROC curves for feature sets 4,6,8, and 11 using all
but one swath for training

Feature Set | error rate (KC) | NN1 | NN3
1 0.213 0.248 | 0.267
2 0.148 0.216 | 0.213
3 0.170 0.213 | 0.208
4 0.132 0.210 | 0.199
d 0.205 0.323 | 0.291
6 0.175 0.218 | 0.197
7 0.143 0.186 | 0.191
8 0.121 0.142 | 0.178
9 0.143 0.189 | 0.202
10 0.129 0.159 | 0.167
11 0.089 0.189 | 0.183
12 0.108 0.094 | 0.140

Table 5: Error rates obtained from kernel-based and nearest-neighbour classifiers
using all but one swath for training
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Figure 17: The variation of classification error rate as the outputs from the
classifier for Set 4 is combined with the outputs from the classifiers using Sets 3
and 6. The outputs from Set 3 and 6 are only used if both their discriminant
values are below the negative discriminant threshold or above the discriminant

threshold

the outputs from the other 2 classifiers has improved the overall error rate by
4.0%. This does not seem to be better than combining the features from sets
1-4 and 6 as was done to construct Set 8, but it does provide another means for
improving the performance of a classifier. There are, of course, many different
ways the outputs from the classifiers using different features could be combined
and we will study more of these in future work. For example, the concept of
“bagging” and “boosting” [11] are methods for constructing a set of classifiers
each of which concentrates on a portion of the overall classification process.
In our case, it would also be reasonable to construct classifiers which were
particularly good for a particular target type.
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7 SUMMARY

The TTCP database of sidescan images is a challenging dataset for computer
classification. There are several different target types with images from dif-
ferent locations. In this report we have considered the case of total automa-
tion. That is, the image initial segmentation and labelling of shadow and
highlight regions is done without human guidance. Because of this, there
are instances where any one particular set of segmentation parameters might
fail because of the particular target/seabed conditions. In order to mitigate
this problem somewhat, we defined 5 sets of segmentation parameters (and
some differences in filtering). We gave examples of the shadow/highlight seg-
mentations which resulted from various segmentation schemes for some of the
swaths from the database. We also showed the distributions of height and
length estimates which resulted for some of the target types of the database
using the various filtering/segmentation methods. These distributions had a
fairly significant standard deviation about the mean values. We also defined
a set of model(template)-based features. We examined the classification per-
formance which resulted when using these sets of features individually and in
various combinations. It was found that using a kernel-based classifier yielded
very good classification/false alarm rates. For some of the feature sets, the
nearest-neighbour classifier also yielded very good classification results. We
also showed that backwards feature selection could be used to determine op-
timized sets of features for both the exponential kernel-based and nearest-
neighbour classifiers. For the case of 246 swaths for training and 125 swaths
for testing, the optimized feature set for the kernel-based classifier yielded a
false alarm rate of 19.1% for a 90% probability of target classification. Some of
the feature sets were quite large so that a fairly large training set was required.
However, these large sets did not seem problematic for the classifiers of this
report. This is significant because it suggests that when the optimal set of fil-
tering and segmentation parameters are not known apriori for a minehunting
survey, one can simply combine the features obtained from a variety of filter-
ing/segmentation methods without suffering a significant loss in performance.
Another classifier strategy that was tried was to combine the outputs from the
classifiers using the individual sets of features. This approach was successful
in the sense that the resultant classification rates were, in general, superiour
to using one of the single sets of features. However, this approach did not
seem to be superiour to simply combining the individual sets of features into
larger sets before the classification.

The database described in this report has proved to be a very valuable tool
for providing a challenging testbed for classification methods. It is anticipated
that we will continue to use this data for future studies and also acquire new
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data to test against the classifiers of this report.
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Appendix A: Details of features and
filtering /segmentation parameters

Al.

Non-template Features

These are features which are computed first by filtering the image, followed
by segmentation, followed by region labelling and then perhaps some more
filtering. Once the highlight and shadow regions have been defined, a variety
of height, length and statistical measurements of the highlight and shadow
regions are computed as features. These 38 features are now listed. Some of
these features are also described in [3].

1.
2.
3.

10.
11.

12.

Feature 1 - Fourier Descriptor (1) - real part of shadow perimeter
Features 2-7- Fourier Descriptors (2-4) - real and imaginary parts.

Feature 8 Standard Deviation of shadow lengths (as function of along-
track coordinate) normalized by mean value.

Feature 9 Number of pixels in designated shadow region

Feature 10 Area as defined by Feature 9 normalized by area of ellipse
which fits shadow

Feature 11 Along-track length of shadow as defined by ellipse fit

Feature 12 Estimated height of target from shadow length using the
maximum of the profile shadow lengths

Feature 13 Estimated height of target from shadow length using the
maximum profile shadow length which is contained within shadow el-
lipse

Feature 14 Ratio of major axis/(minor axis +1) for fit ellipse (unity is
included in denominator to prevent singularities)

Feature 15 Angle of ellipse that is fit to shadow

Feature 16 Length of target as estimated from leading edge of shadow
profile - if along-track dimension is sufficiently large ( > 7 along-track
profile lengths are greater then 33% the maximum length) then across-
track difference is included in computation.

Feature 17 A measure of the convexity of the shadow perimeter - the
ratio of the perimeter of the shadow /perimeter of the convex hull
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13.

14.

15.

16.
17.

18.
19.
20.

21.
22.
23.

24.
25.

26.
27.
28.

29.
30.
31.

Feature 18 Along-track length of target (using the distance of those
which are greater than 33% the maximum length

Feature 19 Lacunarity of pixel values within defined shadow area - the
shadow area is redefined before the computation of lacunarity, so that
the pixels between leading and trailing edges of shadow profile are also
defined as shadow.

Feature 20 Area of designated highlight region - this is for the single
connected region which is the highlight region [there are some simple
criteria the highlight region must obey, such as the highlight is located
before the shadow in across-track direction)

Feature 21 Mean along-track (divided by 2) length of highlight ellipse

Feature 22 Length of highlight using along and across-track coordinates
from fit ellipse

Feature 23 Mean across-track (divided by 2) length of highlight ellipse
Feature 24 Aspect angle of fit ellipse to highlight

Feature 25 Ratio of number of pixels in highlight region to area of fit
ellipse

Feature 26 Ratio of major axis to minor axis of ellipse
Feature 27 Lacunarity of highlight region

Feature 28 The next 6 features are the same as the previous 6 but now
the highlight region is defined as all highlight clusters which lie within
a specified region in front of the leading edge of the shadow. Area of
this highlight region

Feature 29 Mean along-track (divided by 2) length of highlight ellipse

Feature 30 Length of highlight using along and across-track coordinates
from fit ellipse

Feature 31 Mean across-track (divided by 2) length of highlight ellipse
Feature 32 Aspect angle of fit ellipse to highlight

Feature 33 Ratio of number of pixels in highlight region to area of fit
ellipse

Feature 34 Ratio of major axis to minor axis of ellipse
Feature 35 Lacunarity of highlight region

Feature 36 The highlight region (using the definition of highlight for
the previous 6 features) and shadow region are combined into one large
region with pixels lying between the two regions also associated. The
pixels of this region which are not in either the shadow or highlight
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32.

33.

region are the counted (below, we refer to this region as the remain-
der region). The ratio of this number to the number of pixels in the
combined region is the feature. It is hoped that this feature will be
a measure of the transition zone between the highlight and shadow
regions and also will measure any ringing or echo features within the
shadow.

Feature 37 The number of pixels in this remainder region that are higher
than 99.8% level mark of data.

Feature 38 the lacunarity of data values in this remainder region

Above, we have described the 38 features that are computed, all based upon
the first determining shadow and highlight pixels and then performing a re-
gion labelling to define the shadow and highlight pixels to associate with the
object. Thus the values of these features depend significantly upon the filter-
ing and segmentation parameters that are used in the shadow and highlight
determination. Below we describe the 5 sets of parameters which were used
to compute the 5 sets of 38 features.

1.

Method 1. - a 9-point median filter in the across-track direction is first
applied to the data. For both shadow and highlight, the iterative seg-
mentation method is used. For the definition of the shadow, the limits
on the pixel values are quite restrictive. The starting value (requiring
the pixel to be connected to at least 3 others) is the 3% level of the data
and the upper value requiring connections to all other 8 is the 6% level.
The highlight values start at the 99% level and go down to the 96%
level. The determined highlight pixels are then median filtered with a
3-point across-track filter. The shadow pixels are median filtered with
a 5-point median filter. The highlight and shadow masks are input into
a region labelling algorithm. The two largest highlight and shadow
regions are considered to determine the correct shadow/highlight pair
based upon the sizes of each and the position of the highlight region
relative to the shadow region.

Another method of determining the highlight region is to consider all
highlight regions whose centres are within a predefined distance of the
leading edge of the shadow. This means several highlight regions can
be considered as the target highlight. For this definition of highlight
we used a more restrictive definition for the highlight segmentation and
the non-iterative method was used. For all 5 methods, the highlight
levels varied from 99.5% to 98%. However, it should be noted that the
determined highlight regions will vary somewhat, as the leading edge
of the shadow will differ for the different sets.
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2. Method 2. - a 9-point median filter in the across-track direction is first
applied to the data. For the shadow the non-iterative segmentation
method is used and for the highlight the iterative method. The shadow
values are now less restrictive than for Set 1 - varying from the 5% level
for the lowest connectivity 3 to the 20% level for connectivity of at least
7. The highlight values start at the 99% level and go down to the 96%
level which is the same as Set 1. The remainder of the operations is
the same as Set 1.

3. Method 3. - a 5-point median filter in the across-track direction is first
applied to the data. The iterative method is used for both the shadow
and highlight. The shadow thresholds vary from a low value of 10% to
the 30% level. The highlight values vary from a high of 99% to 96%
level. The remainder of the operations are the same as the previous
sets.

4. Method 4. - a 9-point median filter in the across-track direction is used.
Another filter is applied in the along-track direction in which the data
for each across-track index is normalized by the median of the data
in the along-track direction for that index. This was done to help the
segmentation in cases where the levels might be relatively high due to
the local seabed and even the shadow values might have some speckle in
them. This was often the case for the concrete cylinders in Esquimalt.
The iterative method was used for both the shadows and highlight. The
shadow thresholds are fairly “loose” with a starting level of 10% and a
finishing level of 40%. The highlight levels vary from 99% to 95%. The
remainder of the operations are the same as for previous Sets.

5. Method 5. - a 9-point median filter in the along-track direction is
used. The shadow is determined by using a single hard threshold. This
threshold is found by finding the threshold which minimizes the entropy
of the image and we based our algorithm on the one developed for the
SIPS segmentation [6]. The highlight used the iterative method and its
levels varied from 99% to 97%.

A2 Template Features

In order to compute the template features, the swath image is first roughly
segmented into highlight(positive values above the mean), background (zero),
and shadow regions (negative values below the mean). This image is cross-
correlated with simple target highlight /shadow templates representing the pos-
sible target types at various ranges, altitudes, and aspects(for non-symmetric
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targets). In particular a ray-tracing code written in Fortran was used to com-
pute the templates for the target classes: (1) Manta (2) vertical cylinder (taken
to be 0.8 m high and 0.6 m diameter) (3) Mk 56 - cylinder 2.75 m long, 0.6 m
diameter (4) MOG 5 cylinder 1.8 m long, 0.6 m diameter (5) Mk 62 cylinder
1.65 m long, 0.25 m diameter and (6) 1.7 m long, 42 cm diameter which rep-
resents the Mk 52 and 36 classes. These templates are computed for ranges
(along the seabed) from 15 to 90 m in 5 m steps and for 3 different altitudes,
12,15, and 18 m. For the cylindrical objects 12 aspect angles are computed,
from -90 degrees to 75 degrees in steps of 15 degrees. As discussed previously
in the paper, for the cylindrical targets, the optimizing aspect is determined
by maximizing the cross-correlation between the templates and the normalized
image, with the cross-correlation normalized by the Ly norm of the template.
A set of 18 features are computed for each of the 6 template types, resulting
in 108 features. The 18 basic features are listed below.

1. Feature 1 - Maximum cross-correlation of template with data, normal-
ized by L; norm of template. In the case of cylindrical targets, the
template is first matched with respect to aspect.

2. Feature 2 - Maximum cross-correlation of template with data, normal-
ized by Ly norm of template. In the case of cylindrical targets, the
template is first matched with respect to aspect.

3. Feature 3 - Maximum cross-correlation of absolute value of template
with absolute value data, normalized by L; norm of template. In the
case of cylindrical targets, the maximizing aspect (determined on the
basis of the standard cross-correlation) is used.

4. Feature 4 - Maximum cross-correlation of template with data, normal-
ized by Ly norm of template. In the case of cylindrical targets, the
template is first matched with respect to aspect.

5. Feature 5 - The cross-correlation map between the template and the
data is thresholded to 85% of the maximum value and the results region-
labelled. The along-track length of the largest region is the feature.

6. Feature 6 - The cross-correlation map between the absolute value of
template and absolute value of the data is thresholded to 85% of the
maximum value and the results region-labelled. The along-track length
of the largest region is the feature.

7. Feature 7 - The number of shadow pixels in the image which fall in the
shadow portion of the template normalized by the number of shadow
pixels in the template.

8. Feature 8 - The number of highlight pixels in the image which fall in the
highlight portion of the template normalized by the number of highlight
pixels in the template.
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10.

11.

12.

13.

14.

15.

Feature 9 - The number of shadow pixels in the image which fall in the
highlight portion of the template normalized by the number of shadow
pixels in the template.

Feature 10 - The number of highlight pixels in the image which fall
in the shadow portion of the template normalized by the number of
highlight pixels in the template.

Feature 11 - The number of non-zero pixels of the absolute value of
image which overlap the absolute value of the template normalized by
the number of non-zero pixels in the absolute value of the template.

Feature 12 - The normalized image data is smoothed with a 25-point
two-dimensional Gaussian filter (i.e., 5x5 pixels) and then differenced
in the along-track direction. The same operations are performed upon
the template and the cross-correlation is computed.

Feature 13 - The normalized image data is smoothed with a 25-point
two-dimensional Gaussian filter (i.e., 5x5 pixels) and then differenced
in the across-track direction. The same operations are performed upon
the template and the cross-correlation is computed.

Feature 14 - The normalized image data (absolute value) is smoothed
with a 25-point two-dimensional Gaussian filter (i.e., 5x5 pixels) and
then differenced in the along-track direction. The same operations are
performed upon the absolute value of template and the cross-correlation
is computed.

Feature 15 - The normalized image data (absolute value) is smoothed
with a 25-point two-dimensional Gaussian filter (i.e., 5x5 pixels) and
then differenced in the across-track direction. The same operations
are performed upon the absolute value of the template and the cross-
correlation is computed.
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