4.2 W Cr2+:ZnSe FACE COOLED DISK LASER

Jason B. McKay, Won B. Roh, and Kenneth L. Schepler

2002

Approved for public release; distribution is unlimited.

STINFO FINAL REPORT

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

SENSORS DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7320
NOTICE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Office of Public Affairs (ASC/PA) and is releasable to the National Technical Information Service (NTIS). It will be available to the general public, including foreign nationals.

PA Case Number: ASC-02-1178, 09 May 2002.

THIS TECHNICAL REPORT IS APPROVED FOR PUBLICATION.

/s/ Kenneth L. Schepler
Principal Scientist
EOCM Technology Branch

/s/ William R. Taylor, Acting Chief
EOCM Technology Branch
EO Sensors Technology Division

/s/
ROBERT D. GAUDETTE, Colonel, USAF
Chief, EO Sensors Technology Division
Sensors Directorate

This report is published in the interest of scientific and technical information exchange and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.
1. REPORT DATE (DD-MM-YY) 2002
2. REPORT TYPE Conference Paper Summary
3. DATES COVERED (From - To) 02/01/2001 – 11/01/2001

4. TITLE AND SUBTITLE
4.2 W Cr2+:ZnSe FACE COOLED DISK LASER

5a. CONTRACT NUMBER In-house
5b. GRANT NUMBER
5c. PROGRAM ELEMENT NUMBER 61102F
5d. PROJECT NUMBER 2301
5e. TASK NUMBER EL
5f. WORK UNIT NUMBER 01

6. AUTHOR(S)
Jason B. McKay and Won B. Roh (AFIT)
Kenneth L. Schepler (AFRL/SNJW)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology (AFIT)
2950 P Street 2241
WPAFB, OH 45433

Electro-Optical Countermeasures Technology Branch
(AFRL/SNJW)
Electro-Optical Sensors Technology Division
Sensors Directorate
Air Force Research Laboratory, Air Force Materiel Command
Wright-Patterson Air Force Base, OH 45433-7320

8. PERFORMING ORGANIZATION REPORT NUMBER
AFRL-SN-WP-TP-2005-110

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Sensors Directorate
Air Force Research Laboratory
Air Force Materiel Command
Wright-Patterson AFB, OH 45433-7320

10. SPONSORING/MONITORING AGENCY ACRONYM(S)
AFRL/SNJW

11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S)
AFRL-SN-WP-TP-2005-110

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States. Published in Lasers and Electro-Optics, 2002, CLEO ‘02 Technical Digest.

14. ABSTRACT
We report on a 10-kHz Cr2+:ZnSe cooled laser using the face-cooled disk approach which produced 4.27 W at 2.5 microns with 47 percent optical efficiency when pumped by a Q-switched Tm,Ho:YLF laser.

15. SUBJECT TERMS
Infrared lasers, chromium, wavelength tuning, solid-state lasers

16. SECURITY CLASSIFICATION OF:
a. REPORT Unclassified
b. ABSTRACT Unclassified
c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT: SAR

18. NUMBER OF PAGES 10

19. NAME OF RESPONSIBLE PERSON (Monitor)
Kenneth L. Schepler

19b. TELEPHONE NUMBER (Include Area Code)
(937) 904-9661
4.2 W Cr$^{2+}$:ZnSe Face Cooled Disk Laser

Jason B. McKay and Won B. Roh
Air Force Institute of Technology, 2950 P. St., WPAFB OH 45433
Phone: (937) 255-3922 x267, Email: Jason.mckay@wpafb.af.mil

Kenneth L. Schepler
Air Force Research Laboratory, 3109 P St., WPAFB, OH 45433
Phone: (937) 255-3804 x274, Email: kenneth.schepler@wpafb.af.mil

Abstract: We report a 10-kHz Cr$^{2+}$:ZnSe laser using the face-cooled disk approach which produced 4.27 W at 2.5 μm with 47% optical efficiency when pumped by a Q-switched Tm,Ho:YLF laser.

©2001 Optical Society of America
OCIS Codes: (140.5680) Rare earth and transition metal solid-state lasers; (140.3070) Infrared and far-infrared lasers

1. Introduction

The Cr$^{2+}$ laser is a promising candidate for tunable mid-IR applications. However, thermal effects have prevented the typical end-pumped, side-cooled rod laser design from producing more than 2 watts in output power[1, 2]. A resonator designed for maximum suppression of thermal effects is required for further power scaling. An attractive approach for power scaling the Cr$^{2+}$ laser is the face-cooled disk laser design used to demonstrate high-power (>100 W) Yb lasers[3, 4]. Although intended for high-power lasers, this approach easily lends itself to power scaling the Cr$^{2+}$ laser at more modest power levels. This paper reports demonstration of 4.27 W output from a face-cooled Cr$^{2+}$:ZnSe disk laser.

2. Face Cooled Disk Laser

The face cooled disk is essentially a longitudinally pumped active medium, which is also cooled longitudinally through its polished faces. By using a pumped spot larger in diameter than the disk thickness, the pump-induced heat is primarily extracted longitudinally. This design therefore reduces radial thermal gradients in the active medium, thus reducing thermal lensing effects.

![Figure 1. Cr$^{2+}$:ZnSe Disk Laser Setup](image-url)
The Cr2+:ZnSe disk laser, shown in Fig. 1, consisted of a pump laser, the Cr2+:ZnSe disk, an output coupler, and multi-pass pumping optics. The pump laser, which was a Q-switched Tm,Ho:YLF laser with 9 W average power at 2.05 μm, 10-kHz pulse repetition rate, was focused to a radius of 0.5 mm at the disk. The Cr2+:ZnSe disk was 1 mm thick and doped to 2.3x1019 cm-3 Cr2+ concentration. The disk was AR coated on one face and HR coated on the other face for both pump and Cr2+ laser wavelengths. The HR coated face was soldered to a water-cooled heat sink. The output coupler was a 90% reflecting, 10-cm concave radius of curvature mirror placed 8 cm from the surface of the disk. Multi-pass pumping optics consisted of a 10-cm focal length lens, a flat mirror, and a 30-cm concave radius of curvature mirror that were used to image the pump laser back onto the disk with unity magnification four times to yield eight one-way passes. Eight-pass pumping provided 95% pump light absorption. The pump beam was aligned off axis to eliminate the need for dichroic mirrors in the resonator and produced an elliptical [2 mm x 1 mm] gain region.

The Cr2+:ZnSe laser produced up to 4.27 W of output with 9 W input (see Fig. 2). Threshold was 610 mW (61 μJ/pulse), and slope efficiency was 50% with respect to incident pump power. Overall optical efficiency at full power was 47%. This Cr2+ laser was stable and ran for over six hours with less than 2% variation in average output power. This configuration showed no sign of efficiency rolloff at higher pump power, the typical effect of thermal lensing. A smaller pump beam diameter led to increased radial thermal gradients and thus thermal instability. Thus the ~1-mm diameter incident pump spot size represents the smallest useful pump spot size with respect to the 1-mm thick disk for this system.

![Figure 2. Cr2+:ZnSe Laser Performance](image)

The Cr2+ output beam was elliptical in shape with divergence that was 3 and 6 times diffraction limited along the minor and major beam axes, respectively. Output beam quality did not significantly change as a function of pump power. Laser bandwidth at full power was 56 nm FWHM — typical for a free-running pulsed Cr2+ laser with broadband mirrors. Output pulse width was 220 ns, consisting of several short gain-switched pulses followed by a longer pulse which lasted for the duration of the remainder of the 290-ns FWHM pump pulse.

This resonator configuration did not allow for CW Cr2+ laser operation. Cr2+ laser threshold for CW pumping is expected to be on the order of 16 W for a 1-mm beam diameter. This is more power than is available from our Tm,Ho:YLF pump laser. Continuous wave operation with 9 W pump power would require a smaller beam diameter and thus thinner disks.
3. Summary

We have shown that the face-cooled disk laser can effectively reduce thermal effects in Cr$^{2+}$ lasers by demonstrating a 4.2-W, Cr$^{2+}$:ZnSe, face-cooled disk laser with output power limited only by the available pump power. The difficulty of compensating for thermal lensing inside a resonator is traded for the less difficult task of efficiently absorbing the pump laser in a thin laser crystal. For this demonstration, efficient absorption of the 2.05-μm pump power required a 1-mm thick disk, which required pulsed operation and resulted in multi-mode output given the available optics. We intend to achieve better performance in the future by using thinner disks, which should allow a smaller pump beam diameter to be used, improving beam quality and enabling CW operation. To maximize pump absorption in the thinner disks, higher Cr$^{2+}$ doping density, additional pumping passes, and pumping at wavelengths closer to the Cr$^{2+}$ absorption peak will be used.

4. References