ON THE CONVERGENCE OF A DUAL-PRIMAL SUBSTRUCTURING METHOD

JAN MANDEL and RADEK TEZAUR

January 2000

Abstract. In the Dual-Primal FETI method, introduced by Farhat et al. [5], the domain is decomposed into non-overlapping subdomains, but the degrees of freedom on crosspoints remain common to all subdomains adjacent to the crosspoint. The continuity of the remaining degrees of freedom on subdomain interfaces is enforced by Lagrange multipliers and all degrees of freedom are eliminated. The resulting dual problem is solved by preconditioned conjugate gradients. We give an algebraic bound on the condition number, assuming only a single inequality in discrete norms, and use the algebraic bound to show that the condition number is bounded by $C(1 + \log^2(H/h))$ for both second and fourth order elliptic selfadjoint problems discretized by conforming finite elements, as well as for a wide class of finite elements for the Reissner-Mindlin plate model.

1. Introduction. This article is concerned with convergence bounds for an iterative method for the parallel solution of symmetric, positive definite systems of linear equations that arise from elliptic boundary value problems discretized by finite elements. The original Finite Element Tearing and Interconnecting method (FETI) was proposed by Farhat and Roux [9]. The FETI method consists of decomposing the domain into non-overlapping subdomains, enforcing that the corresponding degrees of freedom on subdomain interfaces coincide by Lagrange multipliers, and eliminating all degrees of freedom, leaving a dual system for the Lagrange multipliers. The dual system was solved by preconditioned conjugate gradients with a diagonal preconditioner. Evaluation of the dual operator involves the solution of independent Neumann problems in all subdomains, and of a small system of equations for the nullspace component.

Farhat, Mandel, and Roux [8] recognized that this system for the nullspace components plays the role of a coarse problem that facilitates global exchange of information between the subdomains, causing the condition to be bounded as the number of subdomains increases. They also replaced the diagonal preconditioner by a block preconditioner with the solution of independent Dirichlet problems in each subdomain and observed numerically that this Dirichlet preconditioner results in a very slow growth of the condition number with subdomain size. Mandel and Tezaur [13] proved that the condition number grows at most as $\log^3(H/h)$, where $H$ is subdomain size and $h$ is element size, both in 2D and 3D. Tezaur [19] proved that a method by Park, Justino, and Felippa [16] is equivalent to the method of [9] with a special choice of the constraint matrices, and proved the $\log^2(H/h)$ bound for this variant. For further comparison, see Rixen et al. [18].

Klawonn and Widlund [10] have used preconditioned conjugate residuals to solve a saddle problem keeping both the original degrees of freedom and the Lagrange multipliers, and obtained the asymptotic bound $\log^2(H/h)$ using an extension of the theory of [13]. The saddle point approach has the advantage that approximate solvers can be used for both the Neumann and the Dirichlet subdomain problems, at the cost

*This work was supported by NSF grant ECS-9725504 and by ONR grant N-00014-95-1-0663.
†Department of Mathematics, University of Colorado at Denver, Denver, CO 80217-3364, USA, and Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309-0429, USA. Email: jmandel@colorado.edu
‡Center for Aerospace Structures and Department of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309-0429, USA. Email: rtezaur@colorado.edu
In the Dual-Primal FETI method, introduced by Farhat et al. [5], the domain is decomposed into non-overlapping subdomains, but the degrees of freedom on crosspoints remain common to all subdomains adjacent to the crosspoint. The continuity of the remaining degrees of freedom on subdomain interfaces is enforced by Lagrange multipliers and all degrees of freedom are eliminated. The resulting dual problem is solved by preconditioned conjugate gradients. We give an algebraic bound on the condition number, assuming only a single inequality in discrete norms and use the algebraic bound to show that the condition number is bounded by $C(1+\log_2(H/h))$ for both second and fourth order elliptic selfadjoint problems discretized by conforming finite elements as well as for a wide class of finite elements for the Reissner-Mindlin plate model.
of solving a larger indefinite problem instead of a small positive definite problem. In [10], Klawonn and Widlund have proposed new preconditioners, proved uniform bounds for modifications of the method for the case of coefficient jumps, which include an earlier algorithm of Rixen and Farhat [17], and provided further theoretical insights.

The original method of [9, 8] does not converge well for plate and shell problems, and the existence and the form of the coarse space depend on the singularity of the subdomain matrices. Therefore, Mandel, Tezaur, and Farhat [14] and Farhat, Mandel, and Chen [7] proposed to project the Lagrange multipliers in each iteration on an auxiliary space. An auxiliary space chosen so that the corresponding primal solutions are continuous on crosspoints made it possible to prove that the condition number does not grow faster than \( \log^3(H/h) \) for plate problems [14], and fast convergence was observed for plate [7] as well as shell problems [4]. This method is now called FETI-2. For related results for symmetric positive definite problems, see [6, 18] and references therein.

The subject of this paper is the Dual-Primal FETI method (FETI-DP), introduced by Farhat et al. [5]. This method enforces the continuity of the primal solution at crosspoints directly by the formulation of the dual problem: the degrees of freedom on a crosspoint remain common to all subdomains sharing the crosspoint and the continuity of the remaining degrees of freedom on the interfaces is enforced by Lagrange multipliers. The degrees of freedom are then eliminated and the resulting dual problem for the Lagrange multipliers is solved by preconditioned conjugate gradients with a Dirichlet preconditioner. Evaluating the dual operator involves the solution of independent subdomain problems with nonsingular matrices and of a coarse problem based on subdomain corners. The advantage of this method is a simpler formulation than the methods of [14, 7], there is no need to solve problems with singular matrices, and the method was observed to be significantly faster in practice for 2D problems. However, the design of a good 3D variant of the method is an open problem [5].

In this paper, we prove that the condition number of the FETI-DP method with the Dirichlet preconditioner does not grow faster than \( \log^2(H/h) \) for both second order and fourth order problems in 2D. By spectral equivalence, the result for fourth order problems extends to a large class of Reissner-Mindlin elements for plate bending as in [11, 12, 14]. After few initial definitions, which are substantially different, the analysis is related to the analysis developed in [13, 14]. Just as the formulation of the present method is simpler, the analysis is simpler and more elegant than in [13, 14].

The paper is organized as follows. The notation and assumptions are introduced in Section 2. In Section 3, we review the algorithm from [5]. Section 4 gives the algebraic condition number estimates; these estimates apply to partitioning any symmetric positive definite system, not necessarily originating from partial differential equations. Finally, in Section 5, we prove the polylogarithmic condition number bounds for two model problems of the second and fourth order.

2. Domain partitioning, notation, and assumptions. We are concerned with iterative solution of symmetric, positive definite linear algebraic systems. Partitioning of the system is motivated as follows. Let \( \Omega \) be a domain in \( \mathbb{R}^2 \) decomposed into \( N_s \) non-overlapping subdomains \( \Omega^1, \Omega^2, \ldots, \Omega^{N_s} \), and each of the subdomains be a union of some of the elements. Let \( u^s \) be the vector of degrees of freedom for the subdomain \( \Omega^s \) corresponding to a conforming finite element discretization of a second order elliptic problem or a fourth order plate bending problem defined on \( \Omega \). Let \( K^s \) and \( f^s \) be the local stiffness matrix and the load vector associated with the subdomain \( \Omega^s \). We denote the edges of the subdomains by \( \Gamma^{st} = \partial \Omega^s \cap \partial \Omega^t \). Corners
are endpoints of edges.

The subdomain vectors are partitioned as

\[ u^s = \begin{bmatrix} u^s_i \\ u^s_r \\ u^s_c \end{bmatrix}, \]

where \( u^s_i \) are the values of the degrees of freedom in the subdomain interior, \( u^s_r \) the values of the degrees of freedom at the corners of the subdomain, and \( u^s_c \) are the remaining values of the degrees of freedom, i.e. those located on the edges of the subdomains between the corners. The subdomain matrices are partitioned accordingly,

\[ K^s = \begin{bmatrix} K^s_{ii} & K^s_{ir} & K^s_{ic} \\ K^s_{ri} & K^s_{rr} & K^s_{rc} \\ K^s_{ci} & K^s_{cr} & K^s_{cc} \end{bmatrix}. \]

We use the block notation

\[ u = \begin{bmatrix} u^1 \\ \vdots \\ u^{N_s} \end{bmatrix} \quad \text{and} \quad K = \text{diag}(K^s) = \begin{bmatrix} K^1 & \ldots & \ldots \\ & \ddots \end{bmatrix}. \]

The block vectors \( u_i, u_c \) and \( u_r \) of all internal, all corner, and all remainder degrees of freedom, respectively, are then defined similarly,

\[ u_i = \begin{bmatrix} u_i^1 \\ \vdots \\ u_i^{N_s} \end{bmatrix}, \quad u_r = \begin{bmatrix} u_r^1 \\ \vdots \\ u_r^{N_s} \end{bmatrix}, \quad \text{and} \quad u_c = \begin{bmatrix} u_c^1 \\ \vdots \\ u_c^{N_s} \end{bmatrix}. \]

Vectors of values of degrees of freedom on the whole \( \partial \Omega^s \) and the corresponding block vectors will be written as

\[ v^s_{r,c} = \begin{bmatrix} v^s_r \\ v^s_c \end{bmatrix}, \quad v_{r,c} = \begin{bmatrix} v_{r,c}^1 \\ \vdots \\ v_{r,c}^{N_s} \end{bmatrix}, \quad \text{and also} \quad v_{r,c} = \begin{bmatrix} v_r \\ v_c \end{bmatrix}. \]

Let the global to local map be a \( 0 \rightarrow 1 \) block matrix

\[ L = \begin{bmatrix} L^1 \\ \vdots \\ L^{N_s} \end{bmatrix}. \]

That is, for a global vector of degrees of freedom \( u^g \), \( L^s u^g \) is the vector of corresponding degrees of freedom on \( \Omega^s \). The map \( L \) is introduced so that we can state the problem to be solved,

\[ L^T K L u^g = L^T f, \]

independently of the solution algorithm. Note that \( \text{Im} L \) is the space of all vectors \( u \) that are continuous across the subdomain interfaces and that \( L \) is of full column rank.

We assume that each matrix \( K^s \) is symmetric positive semidefinite and that \( K^s \) is positive definite on the subspace of vectors that are zero at subdomain corners, \( \{ u^s | u^s_c = 0 \} \). We also assume that the global stiffness matrix \( L^T K L \) is positive definite, or, equivalently, that \( K \) is positive definite on \( \text{Im} L \). These assumptions are satisfied in the intended finite element applications.
3. Formulation of the algorithm. In this section, we review the algorithm proposed in [5] in a form suitable for our purposes.

The degrees of freedom from both sides of each edge $\Gamma_{st}$ should coincide,

$$u_s^r|_{\Gamma_{st}} - u_t^r|_{\Gamma_{st}} = 0.$$  

(3.1)

In (3.1), each pair of subdomains $\{s, t\}$ is taken only once, with the order $(s, t)$ chosen arbitrarily. We write the constraints (3.1) as

$$B_r u_r = 0, \quad B_r = [B^1_r, \ldots, B^N_r].$$  

(3.2)

Note that it follows immediately from the definition of $B_r$ that

$$B_r B_r^T = 2I$$  

(3.3)

and, for any edge $\Gamma_{st}$,

$$(B^T_r B_r u_r)^s|_{\Gamma_{st}} = \pm (u_s^r|_{\Gamma_{st}} - u_t^r|_{\Gamma_{st}}).$$  

(3.4)

Let $B_c$ be a matrix with 0, 1 entries implementing the global-to-local map on subdomain corners. That is, the equation

$$u_c = B_c u_g^c, \quad B_c = \begin{bmatrix} B^1_c \\ \vdots \\ B^N_c \end{bmatrix},$$

determines the common values of the degrees of freedom on subdomain corners from a global vector $u_g^c$.

From the construction, the space of all vectors of degrees of freedom continuous across the interfaces can be written as

$$\text{Im} L = \{ u | B_r u_r = 0, u_c \in \text{Im} B_c \}.$$  

(3.5)

The problem (2.3) is reformulated as the equivalent constrained minimization problem

$$\frac{1}{2} u^T K u - u^T f \to \min,$$

subject to $B_r u_r = 0$ and $u_c = B_c u_g^c$ for some $u_g^c$,

which is in turn equivalent to finding the stationary point of the Lagrangean

$$\mathcal{L}(u, u_r, u_g^c, \lambda) = \frac{1}{2} v^T K v - v^T f + u_r^T B_r^T \lambda, \quad v = [v^s], \quad v^s = \begin{bmatrix} u^s_r \\ u^s_t \\ B_c^s u_g^c \end{bmatrix}.$$  

(3.6)

Eliminating $u^s_r$, $u^s_t$, and $u_g^c$ from the Euler equations, we obtain a dual system of the form, cf. [5, Eq. (14)],

$$F \lambda = g,$$

(3.7)

and solve it using the preconditioned conjugate gradients method with the preconditioner

$$M = B_r S_{rr} B_r^T,$$

(3.8)

where

$$S_{rr} = \text{diag}(S^s_{rr}), \quad S^s_{rr} = K^s_{rr} - K^s_{ri} K^{-1}_{ii} K^s_{ri}.$$  

(3.9)

For details of the implementation and numerical results, see [5].
4. Algebraic bounds. In this section, we prove bounds on the condition number of the iterative method defined by Eqs. (3.4) and (3.5). Denote \(|u| = \sqrt{u^T u}\) and, for a symmetric positive semidefinite matrix \(A\), denote the induced matrix seminorm \(|u|_A = \sqrt{u^T A u} = |A^{1/2} u|\). If \(A\) is known to be positive definite, we write \(|u|_A\) instead of \(|u|_A\), because the seminorm is then known to be a norm.

From the minimization property of the Schur complement, we immediately obtain the following lemma, which characterizes the bilinear form associated with the preconditioner.

**Lemma 4.1.** It holds that \(u^T S_{rr} u_r = \min \{ v^T K v | v_r = u_r, v_c = 0 \} \).

The next lemma gives a more specific description of the matrix of the dual equation (3.4).

**Lemma 4.2.** It holds that \(F = B_r \tilde{S}^{-1} B_r^T\), where the positive definite matrix \(\tilde{S}\) is defined by

\[
(u^T \tilde{S} u_r) = \min \{ v^T K v | v_r = u_r, v_c \in \text{Im} B_c \}.
\]

**Proof.** Let

\[
\tilde{L}(u_r, \lambda) = \min_{u_i, u_c^T} L(u_i, u_r, u_c^T, \lambda)
\]

Then,

\[
\tilde{L}(u_r, \lambda) = \frac{1}{2} u_r^T \tilde{S} u_r + u_r^T B_r^T \lambda - u_r^T h_r,
\]

with some \(h_r\). Minimizing over \(u_r\), we get \(u_r = \tilde{S}^{-1}(h_r - B_r^T \lambda)\). Substituting \(u_r\) into (4.2) and taking the variation over \(\lambda\) gives (3.4) with \(F = B_r \tilde{S}^{-1} B_r^T\). \(\square\)

We can now characterize the norm induced by the dual matrix \(F\).

**Lemma 4.3.** It holds that

\[
\lambda^T F \lambda = \max_{v_r \neq 0} \frac{|v_r^T B_r^T \lambda|^2}{\|v_r\|_{\tilde{S}}^2}.
\]

**Proof.** From Lemma 4.2,

\[
\lambda^T F \lambda = \| \tilde{S}^{-1/2} B_r^T \lambda \|^2 = \max_{w_r \neq 0} \frac{|w_r^T \tilde{S}^{-1/2} B_r^T \lambda|^2}{\|w_r\|^2}.
\]

The substitution \(w_r = \tilde{S}^{1/2} v_r\) yields (4.3). \(\square\)

Let \(V = \mathbb{R}^p\) be the space of Lagrange multipliers. In this space, define the norm

\[
\|\mu\|_V = \|B_r^T \mu\|_{S_{rr}}
\]

and also the dual norm,

\[
\|\lambda\|_{V'} = \max_{\mu \neq 0} \frac{|\mu^T \lambda|}{\|\mu\|_V}.
\]

Since \(V = \text{Im} B_r\), substituting \(\mu = B_r w_r\), we can rewrite (4.4) as

\[
\|\lambda\|_{V'} = \max_{B_r w_r \neq 0} \frac{|w_r^T B_r^T \lambda|}{\|B_r^T B_r w_r\|_{S_{rr}}}.
\]
The main result of this section is the following theorem, which gives a bound on
the minimal and maximal eigenvalues of the preconditioned operator $MF$.

**Theorem 4.4.** If there exists a constant $c_1$ such that for all $w_r$,
\[ \|B_r^T B_r w_r\|_{S_{rr}}^2 \leq c_1 \|w_r\|_{\tilde{S}}^2, \]
then
\[ \frac{\lambda_{\text{max}}(MF)}{\lambda_{\text{min}}(MF)} \leq c_1, \]

**Proof.** The proof is based on a comparison of (4.5) and (4.3). Using Lemma 4.3,
the substitution $v_r = B_r^T B_r w_r$, and the property (3.2), we find that
\[
\lambda^T F \lambda = \max_{v_r \neq 0} \frac{|v_r^T B_r^T \lambda|^2}{\|v_r\|_{\tilde{S}}^2} \geq 4 \max_{B_r w_r \neq 0} \frac{|w_r^T B_r^T \lambda|^2}{\|B_r^T B_r w_r\|_{S_{rr}}^2}.
\]
Since, by definition, $\|B_r^T B_r w_r\|_{\tilde{S}}^2 \leq \|B_r^T B_r w_r\|_{S_{rr}}^2$, we conclude, comparing with (4.5),
that
\[
(4.6) \quad \lambda^T F \lambda \geq 4 \|\lambda\|_{V'}^2.
\]
On the other hand, from the assumption, we obtain
\[
(4.7) \quad \lambda^T F \lambda = \max_{w_r \neq 0} \frac{|w_r^T B_r^T \lambda|^2}{\|w_r\|_{\tilde{S}}^2} \leq \max_{B_r w_r \neq 0} \frac{|w_r^T B_r^T \lambda|^2}{\|B_r^T B_r w_r\|_{S_{rr}}^2} = c_1 \|\lambda\|_{V'}^2.
\]

Trivially from the definition of $M$ and the norm in $V$, we have
\[
(4.8) \quad \|\mu\|_{V}^2 = \mu^T M \mu.
\]
Using (4.6), (4.7), and (4.8) in [13, Lemma 3.1] completes the proof. □

We now show how to verify the assumption of Theorem 4.4 from inequalities of a
form that is more usual in substructuring and easier to estimate for boundary value
problems.

Denote by $E_{s,t}$ the operator that extends the vector of values of degrees of freedom
on $\Gamma_{st}$, not including corners, by zero entries to a vector of values of degrees of freedom
on the whole $\partial \Omega_s$, and let $E_s$ be the set of all indices of neighbors $\Omega_t$ of the domain $\Omega_s$, with a common edge $\Gamma_{st}$. Denote by $S_s$ the Schur complement on $\partial \Omega_s$ obtained
by eliminating the interior degrees of freedom of $\Omega_s$, i.e.,
\[
u_s^T S_s \nu_s = \min \{ \nu_s^T K_s \nu_s | \nu_s^e = \nu_s_c \}.
\]

Our estimate is based on an a-priori bound of the error of approximating a vector
of interface degrees of freedom that is continuous across the corners by a vector that
is continuous also across the edges. In the applications in Sec. 5, the approximating
vector will be chosen as the natural interpolation on the edges from the corners.

**Theorem 4.5.** Suppose there is a constant $c_2$ such that for every $w_{r,c}$, $w_c \in \text{Im} B_c$, there exists $u_r$ such that $B_r u_r = 0$ and, for all $s$ and all $t \in E_s$,
\[
|E_s^r (w_i - u_i)|_{S}^2 \leq c_2 |w_{r,c}|^2_{S'}, \quad i = s, t.
\]
Then,

\[ \frac{\lambda_{\text{max}}(MF)}{\lambda_{\text{min}}(MF)} \leq c_2 n_e, \]

where \( n_e \) is the maximum number of the edges of any subdomain.

Proof. Let \( w_r \) be given and define \( w_c \) to be the optimal corner degrees of freedom from the definition of \( \tilde{S} \), cf. (4.1). Then

(4.10) \[ \|w_r\|_{\tilde{S}}^2 = \sum_{s=1}^{N_s} |w_{r,c}^s|_{\tilde{S}}^2. \]

Let \( u_r \) be as in the assumption of the theorem. Then \( B_r^T B_r u_r = 0 \), and, consequently,

\[ B_r^T B_r w_r = B_r^T B_r (w_r - u_r). \]

Extending \( B_r^T B_r w_r \) by zero values of all corner degrees of freedom, we get using the definition of \( S_{rr} \), cf., (3.6), that

(4.11) \[ \|B_r^T B_r w_r\|_{S_{rr}}^2 = \sum_{s=1}^{N_s} |v_{r,c}^s|_{S_r}^2, \]

where \( v_{r,c}^s = (B_r^T B_r (w_r - u_r))^s \), \( v_{r,c}^s = 0 \).

Using the definition of \( E^{s,t} \), we have

\[ v_{r,c}^s = \sum_{t \in E_s} E^{s,t} v_{r,c}^t. \]

Hence, from the triangle inequality, and then using the property (3.3) of \( B_r \) and the triangle inequality again, it follows that

\[ |v_{r,c}^s|_{S_s} \leq \sum_{t \in E_s} |E^{s,t} v_{r,c}^t|_{S_s} \]

\[ \leq \sum_{t \in E_s} (|E^{s,t} (w_{r,c}^s - u_{r,c}^s)|_{S_s} + |E^{s,t} (w_{r,c}^t - u_{r,c}^t)|_{S_t}). \]

Squaring the the last inequality, using the inequality \((a + b)^2 \leq 2(a^2 + b^2)\), and the a-priori bound (4.9) yields

\[ |v_{r,c}^s|_{S_s}^2 \leq 2c_2 \sum_{t \in E_s} (|w_{r,c}^s|_{S_s}^2 + |w_{r,c}^t|_{S_t}^2). \]

By the summation over the subdomains and using (4.11) and (4.10), we can conclude that

\[ \|B_r^T B_r w_r\|_{S_{rr}}^2 = \sum_{s=1}^{N_s} |v_{r,c}^s|_{S_s}^2 \leq 4c_2 n_e \sum_{s=1}^{N_s} |w_{r,c}^s|_{S_s}^2 = 4c_2 n_e \|w_r\|_{\tilde{S}}^2. \]

It remains to use Theorem 4.4. \( \square \)
5. Applications. In this section, we verify the assumption of Theorem 4.5 for two model problems. The Sobolev seminorm, denoted by $|u|_{m,p,X}$, is the $L^p(\Omega)$ norm of the generalized derivatives of order $m \geq 0$ of the function $u$. The Sobolev norm is then defined by $||u||_{m,p,X} = \|\{|u|_{0,p,X}, \ldots, |u|_{m-1,p,X}\}\|_p$. Sobolev norms for noninteger $m$ are defined by interpolation. Cf., e.g., [2, 15] for details and references. In particular, $|u|_{0,p,X} = ||u||_{L^p(\Omega)}$, and, on the boundary $\Gamma$ of a domain in $\mathbb{R}^2$,

$$|u|^2_{2,2,\Gamma} = \int_{\Gamma} \int_{\Gamma} \frac{|u(x) - u(y)|^2}{|x - y|^2} \, dx \, dy.$$  

5.1. A second order elliptic problem. Consider the boundary value problem

$$Au = g \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$

where

$$Av = \sum_{i,j=1}^d \omega(x) \frac{\partial}{\partial x_i} \left( \alpha(x) \frac{\partial v(x)}{\partial x_j} \right),$$

with $\alpha(x)$ a measurable function such that $0 < \alpha_0 \leq \alpha(x) \leq \alpha_1$ a.e. in $\Omega$.

We assume that model problem (5.1) is discretized using conforming P1 or Q1 elements and denote by $V^h_{P1}(\Omega)$ the corresponding finite element space that satisfies the usual regularity and inverse properties [2]. Let $h$ denote the characteristic element size. Assume that all functions in $V^h_{P1}(\Omega)$ vanish on the boundary of $\Omega$. Assume that each subdomain is the union of some of the elements and denote the space of restrictions of functions from $V^h_{P1}(\Omega)$ to subdomains by $V^h_{P1}^i(\Omega^i)$. For every vector of degrees of freedom $u^s$, denote by $I_{P1} u^s$ the corresponding finite element function. The trace of this function is determined by degrees of freedom on the boundary only and we often abuse the notation to define the trace from the boundary values only.

For simplicity, we assume that the subdomains $\Omega_i$, $i = 1, \ldots, N$, form a quasi-regular triangulation of the domain $\Omega$. Denote the characteristic size of the subdomains by $H$. Finally, let $C$ denote a generic constant independent of $h$ and $H$.

**Theorem 5.1.** For the model second order problem, it holds that

$$\frac{\lambda_{\max}(MF)}{\lambda_{\max}(MF)} \leq C \left(1 + \log \frac{H}{h}\right)^2,$$

where the constant does not depend on $H$ and $h$.

**Proof.** We only need to verify the assumptions of Theorem 4.5. For a given $w_{r,c}$, define $u_{r,c}$ by linear interpolation from $w_{r}$; that is, $I_{P1} w_{r,c}^s = w_{r,c}$ is linear on all edges of $\Omega^s$, and $u_c = w_c$. Writing $w_{r,c} = (w_{r,c} - u_{r,c}) + u_{r,c}$, we get from [1, Lemma 3.5] that

$$|I_{P1} E^{s,t}(w_{r,c} - u_{r,c}^s)|_{2,2,\partial \Omega^s} \leq C \left(1 + \log H \right)|w_{r,c}^s|_{S^1}.$$

Using the uniform equivalence of the seminorms $|I_{P1} w_{r,c}^s|_{2,2,\partial \Omega^s} \approx |w_{r,c}^s|_{S^1}$, cf., e.g., [1], and the uniform equivalence of the seminorms $|v|_{2,2,\partial \Omega^s} \approx |v|_{2,2,\partial \Gamma^s}$ for functions with support on the edge $\Gamma^s$, which follows from the fact that the subdomains are shape regular, we get (4.9) with $c_2 = C \left(1 + \log H \right)^2$. \qed

**Remark 5.2.** The assumptions that the subdomains have straight edges can be relaxed to accommodate the case of only shape regular subdomains with edges that are not straight in a standard way by mapping from one or more reference subdomains.
5.2. A fourth order problem. Consider a biharmonic boundary value problem in a variational form: Find \( u \in H_0^2(\Omega) \) such that
\[
(a(u, v) = f(v), \quad \forall v \in H_0^2(\Omega),
\]
where
\[
a(u, v) = \int_{\Omega} \partial_{11} u \partial_{11} v + \partial_{12} u \partial_{12} v + \partial_{22} u \partial_{22} v, \quad \forall u, v \in H_0^2(\Omega).
\]

Let the model problem (5.2) be discretized by reduced HCT elements [2]. We use the same assumptions on the decomposition as in Section 5.1; in particular, the subdomain edges are straight. Let \( V_h^{\text{HCT}}(\Omega) \) be the finite element space of HCT elements satisfying the usual regularity and inverse properties and the essential boundary conditions. Note that \( V_h^{\text{HCT}}(\Omega) \subset C^1(\Omega) \cap H_0^2(\Omega) \). On each element, a function \( v \in V_h^{\text{HCT}}(\Omega) \) is determined by the values \( v(a_i) \) and the values of its derivatives \( \partial_n v(a_i) \), \( j = 1, 2 \), at the vertices of the element. Denote by \( t, n, \partial_t \), and \( \partial_n \) the tangential and normal directions, and the tangential and normal derivative, respectively. The traces of functions from \( V_h^{\text{HCT}}(\Omega) \) on \( \partial \Omega \) are pairs of functions \( (u, \nabla v) \) such that \( u \) is piecewise cubic, \( u \cdot \nabla v \) is piecewise linear, and \( u \) and \( \nabla u \) are consistent, \( \partial_n u = t \cdot \nabla v \).

We will abuse notation and write the trace functions simply as \( (u, \nabla u) \) or just \( u \). The space of HCT trace functions is denoted by \( V^{\text{HCT}}(\partial \Omega) \). Denote the finite element interpolation operator by \( I_{\text{HCT}} \). As in Section 5.1, we abuse the notation by defining the trace of the interpolation from the boundary degrees of freedom and write, e.g., \( I_{\text{HCT}} u_{c,t} \in V_h^{\text{HCT}}(\partial \Omega^*) \). We adopt the convention that all functions are understood extended by zero outside of their stated domain; e.g., \( u|_{\Gamma} \) is zero outside of \( \Gamma \).

The following lemma gives a bound on the interpolation from subdomain corners to edges.

**Lemma 5.3.** For every \( w \in V_h^{\text{HCT}}(\partial \Omega^*) \), define \( u \in V_h^{\text{HCT}}(\partial \Omega^*) \) by HCT interpolation from the corners of \( \Omega^* \) to the edges; that is, \( u = v \) and \( \nabla u = \nabla v \) at the corners of \( \Omega^* \), and, on each edge \( \Gamma^{st} \), \( u \) is a cubic polynomial and \( n \cdot \nabla u \) is linear. Then
\[
|\nabla (w - u)|_{\frac{1}{2}, 2, \partial \Omega^*} \leq C \left( 1 + \log \frac{H}{h} \right) |\nabla w|_{\frac{1}{2}, 2, \partial \Omega^*}.
\]

**Proof.** Denote \( v = w - u \in V_h^{\text{HCT}}(\partial \Omega) \). Then \( v = 0 \) and \( \nabla v = 0 \) on the corners of \( \Omega^* \), so from [12, Lemma 4.1], it follows that
\[
|\nabla v|_{\Gamma^{st}} \leq |\nabla u|_{\frac{1}{2}, 2, \partial \Omega^*} + C \left( 1 + \log \frac{H}{h} \right) \|\nabla w\|_{0, \infty, \Gamma^{st}}.
\]

Since \( \nabla u|_{\Gamma^{st}} \) is from a space of dimension 6 and all norms on a finite dimensional space are equivalent, we have in the case when the length of \( \Gamma^{st} \) is one that
\[
|\nabla u|_{\frac{1}{2}, 2, \Gamma^{st}} \leq \|\nabla u\|_{0, \infty, \Gamma^{st}} \approx \|\nabla u\|_{0, \infty, \Gamma^{st}}.
\]

Since \( \nabla u|_{\frac{1}{2}, 2, \Gamma^{st}} \) and \( \|\nabla u\|_{0, \infty, \Gamma^{st}} \) are invariant to stretching the edge, we get
\[
|\nabla u|_{\frac{1}{2}, 2, \Gamma^{st}} \leq C \|\nabla u\|_{0, \infty, \Gamma^{st}}
\]
in the general case by scaling. We will show at the end of the proof that
\[
|\nabla w|_{0, \infty, \Gamma^{st}} \leq 5 |\nabla w|_{0, \infty, \Gamma^{st}}.
\]
From the discrete Sobolev inequality as generalized by [12, Lemma 4.2], we have

\begin{equation}
\|\nabla w\|_{0,\infty,\Gamma^*}^2 \leq C \left( 1 + \log \frac{H}{h} \right) \left( \| \nabla w \|_{0,2,\Gamma^*}^2 + \frac{1}{H} \| \nabla w \|_{0,2,\Gamma^*}^2 \right)
\end{equation}

Combining (5.4), (5.6), and (5.7), we obtain

\begin{equation}
|\nabla v|_{\frac{1}{2},\partial \Omega}^2 \leq C \left( 1 + \log \frac{H}{h} \right) \left( |\nabla \nu|_{\frac{1}{2},\partial \Omega}^2 + \frac{1}{H} \| \nabla \nu \|_{0,2,\partial \Omega}^2 \right)
\end{equation}

First consider the case when \( \partial \Omega^* \cap \partial \Omega = \emptyset \). Then (5.3) is invariant to adding a linear function to \( w \) because \( v \) is the error of linear interpolation of \( w \) and this adds only a constant to \( \nabla w \). So, without loss of generality, let \( \int_{\partial \Omega^*} \nabla w = 0 \). Then by the Poincaré-Friedrichs inequality

\begin{equation}
\frac{1}{H} \| y \|_{0,2,\partial \Omega^*} \leq C |y|_{\frac{1}{2},2,\partial \Omega^*},
\end{equation}

proved first on a reference domain and then scaled [3, 20]. Now (5.9) and (5.8) give (5.3). In the case when \( \partial \Omega^* \cap \partial \Omega \neq \emptyset \), there are some essential boundary conditions on \( \partial \Omega^* \). Since (5.3) has already been proved in the absence of essential boundary conditions on \( \partial \Omega^* \), it is sufficient to restrict (5.3) onto the subspace defined by the boundary conditions, noting that \( u \) satisfies the boundary conditions as well.

It remains to prove (5.6). The inequality is trivial for \( n \cdot \nabla u \) because the normal derivative is interpolated linearly between the corners. Let \( u_L \) be the linear function on the edge \( \Gamma^* \) defined by the values of \( u \) on the corners. Then, using the triangle inequality,

\begin{equation}
\| \partial_t u \|_{0,\infty,\Gamma^*} \leq \| \partial_t (u - u_L) \|_{0,\infty,\Gamma^*} + \| \partial_t u_L \|_{0,\infty,\Gamma^*}.
\end{equation}

By a simple computation, we see that the Hermite basis function \( \phi, \phi(0) = 0, \phi'(0) = 1, \phi(1) = \phi'(1) = 0, \phi \) a polynomial of order 3, attains the maximum of \( |\phi'| \) at 0. Mapping the interval \((0,1)\) on the edge \( \Gamma^* \) and noting that \( u - u_L \) is zero at the endpoints \( x_1 \) and \( x_2 \) of \( \Gamma^* \), we get using the triangle inequality that

\begin{equation}
\| \partial_t (u - u_L) \|_{0,\infty,\Gamma^*} \leq |\partial_t (u - u_L)(x_1)| + |\partial_t (u - u_L)(x_2)|
\leq 2\| \partial_t w \|_{0,\infty,\Gamma^*} + 2\| \partial_t u_L \|_{0,\infty,\Gamma^*},
\end{equation}

because \( \partial_t w(x_i) = \partial_t u(x_i), i = 1, 2 \). From the mean value theorem and the fact that \( u_L(x_i) = w(x_i), i = 1, 2 \), it follows that

\begin{equation}
\| \partial_t u_L \|_{0,\infty,\Gamma^*} \leq \| \partial_t w \|_{0,\infty,\Gamma^*},
\end{equation}

hence (5.11) gives

\begin{equation}
\| \partial_t (u - u_L) \|_{0,\infty,\Gamma^*} \leq 4\| \partial_t w \|_{0,\infty,\Gamma^*}.
\end{equation}

Now (5.10), (5.12), and (5.13) give (5.6).

**Theorem 5.4.** For the fourth order model problem,

\[
\frac{\lambda_{\text{max}}(MF)}{\lambda_{\text{min}}(MF)} \leq C \left( 1 + \log \frac{H}{h} \right)^2,
\]

*where the constant does not depend on \( H \) and \( h \).*
Proof. The proof follows immediately from Theorem 4.5, with (4.9) being a consequence of Lemma 5.3 and the uniform equivalence of seminorms $|\nabla_{HCT}w_r,c|_{s,w} \approx |w_r,c|_{s,w},$ cf., [12].

**Remark 5.5.** The result extends, by spectral equivalence, to DKT elements and a certain class of non-locking elements for the Reissner-Mindlin plate model as in [12]. The result also extends to the case when the subdomain edges are not straight by considering the subdomains to be images of a reference domain.

**REFERENCES**


