
NPS-CS-05-007

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

 Prepared for: Missile Defense Agency
7100 Defense Pentagon
Washington, D.C. 20301-7100

Formal Specification and Run-time Monitoring

within the Ballistic Missile Defense Project

by

Dale S. Caffall, Thomas Cook, Doron Drusinsky, James Bret Michael,
Man-Tak Shing and Nicholas Sklavounos

August 2005

 NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RDML Patrick W. Dunne, USN Richard S. Elster
President Provost

This report was prepared for Missile Defense Agency and funded by the Missile Defense
Agency.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Man-Tak Shing, Associate Professor
Department of Computer Science

Reviewed by: Released by:

________________________ ___________________________
Peter J. Denning, Chairman and Professor Leonard A. Ferrari
Department of Computer Science Associate Provost and Dean of Research

REPORT DOCUMENTATION PAGE

Form Approved

 OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank)

2. REPORT DATE

8/15/2005

3. REPORT TYPE AND DATES COVERED

Technical Report

4. TITLE AND SUBTITLE
Formal Specification and Run-time Monitoring within the Ballistic
Missile Defense Project

5. FUNDING NUMBERS

BMDO0137389189
6. AUTHOR(S)

Dale S. Caffall. Thomas Cook, Doron Drusinsky, James Bret
Michael, Man-Tak Shing, and Nicholas Sklavounos

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Department of Computer Science. Naval Postgraduate School
833 Dyer Road, Monterey, CA 93943-5118

8. PERFORMING ORGANIZATION
 REPORT NUMBER

NPS-CS-05-007

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Missile Defense Agency, 7100 Defense Pentagon
Washington, DC 20301-7100

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Missile Defense Agency position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report describes the application of formal specifications and run-time monitoring within the U.S. Ballistic
Missile Defense Advanced Battle Manager (ABM) project in an effort that is amongst the most comprehensive ap-
plication of formal methods to a large-scale safety-critical software application ever reported. This project is unique
in the following aspects: (i) formal specification assertions are being developed during the UML modeling phase,
that is, before code development, (ii) all specification requirements are simulated under a variety of input and timing
scenarios before being deployed, (iii) requirements are written in metric temporal logic with time-series constraints,
(iv) run-time monitoring is used as the primary verification technique, and (v) temporal assertions are used for run-
time recovery from formal requirement violations.

14. SUBJECT TERMS

Missile Defense, Formal Specifications, Temporal Assertions, Run-time Monitoring,
System-of-Systems, Safety-critical software

15. NUMBER OF PAGES

 19

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)
 Prescribed by ANSI Std. 239-18

 298-102

THIS PAGE IS INTENTIONALLY LEFT BLANK

 1

Formal Specification and Run-time Monitoring
within the Ballistic Missile Defense Project

Dale S. Caffall1, Thomas Cook1,2, Doron Drusinsky2,3, James Bret Michael2,
Man-Tak Shing2 and Nicholas Sklavounos4

1. Introduction

In spite of more than a quarter of a century of research in the field, there has been limited appli-
cation of formal methods to large-scale commercial and defense software projects. This report
describes a formal methods-based specification and verification approach to the development of
the U.S. Ballistic Missile Defense System (BMDS) battle-management (the Battle Manager,
BM), an effort that is likely amongst the most comprehensive application of formal methods to a
large-scale safety-critical software development effort ever reported5.

Besides its scale, this effort is unique in the following aspects:

• Formal specification assertions were developed during the requirements elicitation phase
before the code development and testing phases.

• Formal specification assertions, written in Metric Temporal Logic with Time-Series con-
straints (MTL/TLS) [CP, D1] were simulated under a variety of scenarios and real-time
constraints using an assertion simulator [DS1]. Simulated scenarios were communicated to
the customer (a domain expert) and to the modeling team, and were stored for later use (e.g.,
inside a test suite).

• Formal specification assertions were associated with UML statechart models using a
heterogeneous statechart and temporal logic specification environment [DS2].

• Specification assertions span a wide variety of property categories such as interface safety
and liveness assertions, capacity and throughput assertions, and statechart assertions. Run-
time Verification (RV) was chosen as the primary verification method [D2].

• Temporal assertions are used for run-time recovery from formal requirement violations
[DW].

This paper is organized as follows. Section 2 describes reported applications of formal methods
to large commercial and government software projects. Section 3 describes software dependabil-
ity issues pertaining to the U.S. Department of Defense acquisition process for a complex sys-
tem-of-systems, such as the Ballistic Missile Defense Systems (BMDS). Section 4 describes the
BMDS and Battle Manager (BM), and section 5 describes the BM assertion lifecycle, namely

1 Missile Defense Agency, 7100 Defense Pentagon, Washington, D.C. 20301-7100, USA.
2 Department of Computer Science, Naval Postgraduate School, 833 Dyer Rd., Monterey, CA 93943, USA.
3 Time Rover, Inc. 11425 Charsan Ln, Cupertino, CA, 95014.
4 The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102-7508.
5 The description of the ABM provided in this paper does not necessarily reflect the architecture, technical opinions,

or techniques used by of the U.S. government or any of the contractors working on the ABM project or any other
project. Project details provided in this paper can be found in [Ca].

 2

from assertion specification, via simulation of assertions and ending in deployment and moni-
toring. Section 6 describes tools used for specification, simulation, and monitoring within the
BMDS, and is followed by conclusions.

2. Background: The Application of Formal Methods in Industry and Government

The use of formal methods has been particularly successful in the computer hardware industry
[KG]. For example, Chen et al. at Fujitsu used the SMV model checker to debug an error in a
VLSI chip responsible for high-speed switching operations. The chip has 111K gates and SMV
finds a counter-example identifying the error in 50 clock cycles, which is much less than what it
would take to reproduce the abnormal behavior through simulation [CY1]. Computation Tree
Logic (CTL) based model checkers have also been used by Raimi et al. at the IBM-Motorola
Somerset Design Center to debug a design error discovered during hardware testing of the
PowerPC 620 microprocessor [RL]. Asgaard et al. at Intel Corporation’s Strategic CAD Labs
used a combination of symbolic trajectory evaluation model checking and lightweight theorem
proving techniques to verify the correctness of an instruction-length marker (IM), a large,
complex (12K gates and 1100 latches) circuit that detects and marks the boundaries between
Intel architecture (IA-32) instructions, against an implementation-independent specification of
IA-32 Instruction lengths [AJ]. They discovered a total of eight previously unknown IM errors,
four of which were considered by the chip design team as defects that were difficult to find and
diagnose with traditional validation techniques. Choi et al. at Samsung Electronics used the
SMV model checker to verify the RTL implementation of the functional modules in an embed-
ded system-on-a-chip (SOC) composed of the ARM920T processor core and sixteen functional
modules [CY2]. Besides finding many environment modeling errors and errors in describing the
properties to be verified, they also discovered a few but crucial design errors.

NASA was an early leader of using formal methods in the aerospace industry. There are many
examples of using formal methods to design and verify mission-critical software in the 1990s
[BC, CD]. In more recent years, the NASA Langley Formal Methods Team applied model
checking to verify the presence of the safety properties in the requirements model using the
NuSMV Model Checker [TM]. They found many errors in the original English statement of
requirements and several errors in the model itself. Glück and Holzman at NASA Jet Propulsion
Laboratory used a model extractor (called FEAVER) to create the top-level system models of
two modules of the legacy flight software of NASA’s Deep Space One mission (one containing
5166 lines of C code and the other containing 1894 lines of C code) to make direct calls to the
source code, and applied the SPIN Model Checker to verify the correctness of the software [GH].
In addition to detecting a known error of the launch version of the software, the model checker
also discovered a rare race condition that could cause the sequencing module to fail. In another
experiment conducted by NASA and Time Rover, Inc., run-time verification was used to verify
flight code for the Deep Impact mission [DW] and the Martian Rover software [BD].

Model checking has also been used by the Lucent Technologies to analyze their CDMA call-
processing library [CG]. The company created a testing infrastructure using VeriSoft to test the
call-processing software by systematically exploring the state space of the model of the wireless
network. The more than 1500 runs of the testing infrastructure uncovered several newly found
defects in the call-processing software.

 3

Despite these successes, formal methods have always been treated as a supplemental means for
quality assurance and have not been an integral part of any large-scale safety-critical software
development.

3. Background: Unpredictability of Previous System-of-Systems Acquisition
Acquisition of system-of-systems by the U.S. Government raises a multitude of issues that go
beyond the acquisition of a single system, such as the system behavior of the system-of-systems
as well as each system within the system-of-systems. We define a system-of-systems as a fed-
eration of legacy systems and developing systems that provide an enhanced capability greater
than that of any of the individual systems within the system-of-systems. The individual systems
making up of a system-of-systems are often both developed for a different context and subjected
to a different set of constraints than that of the system-of-systems. For instance, the AEGIS
weapon system was originally intended to provide area defense for naval battle groups. When
integrated into the BMDS, it is expected to interoperate with other systems within BMDS and in
contexts of use that were not envisioned when AEGIS was developed in the 1970s.

As examples to the potential impact of the U.S. Government’s current inability to confidently
predict acquisition-based system behavior and continued failings in system-of-systems acquisi-
tions, the following examples are offered:

US Central Command (CENTCOM) forces deployed six PATRIOT batteries in the Dhahran area
of operations during the Persian Gulf War of 1991. Of those six PATRIOT batteries,
CENTCOM forces assigned Alpha Battery the mission of protecting the Dhahran air base. Al-
pha Battery had been in continuous operations for over one hundred hours on February 25, 1991.
Iraqi forces launched a Scud missile at the Dhahran air base that Alpha Battery failed to track
and intercept. The Scud missile impacted at an US Army barracks and killed twenty-eight US
soldiers. Subsequent investigations into this catastrophe revealed that PATRIOT could not per-
form sustained operations beyond twenty continuous hours as potential targets would fall outside
the range gate – an electronic detection system within the PATRIOT radar that calculates the
area in the field of regard where PATRIOT should next look for the threat missile. At one hun-
dred hours of continuous operation, the shift in the range gate would be 687 meters so the
PATRIOT could not detect, track, and destroy incoming ballistic missiles [Ga, Pa]. This example
is an instance of insufficient requirements specification and verification.

From a study of 387 software errors discovered during the integration and testing phase of the
Voyager and Galileo spacecraft, Lutz [Lu] observed that the safety-related, functional faults
Voyager could be categorized as follows: 50% as behavioral faults, 31% as conditional faults,
and 19% as operating faults. For Galileo, the safety-related, functional faults could be catego-
rized as follows: 38% as behavioral faults, 18% as conditional faults, and 44% as operating
faults. The author concluded that the primary cause of safety-related, functional faults (62% on
Voyager and 79% on Galileo) was due to requirements that had not been identified by the
developers. This example is an instance of incomplete specification of desired system behavior
and limited fault tolerance.

These difficulties are by no means unique to the U.S. Government’s acquisition-based system.
Wallace and Kuhn [WK] analyzed software faults from 342 medical systems and determined that
43% of the software faults were logic-related errors such as incorrect logic in requirements speci-
fications, unexpected behavior of multiple conditions occurring simultaneously, and improper
limits. In addition, they attributed 24% of the software faults to calculation errors to include in-

 4

correct limits and ranges of computational variables as well as incorrect implementations of
mathematical expressions [WK]. This example is an instance of logic errors. Wallace and Kuhn
further suggested that software engineers should consider formal methods for highly-complex
systems with emphasis on pre- and post-conditions as well as the interaction of system functions.

4. The Ballistic Missile Defense System and Battle Manager

The Department of Defense (DoD) plans to develop a ballistic missile defense (also referred to
as a “global shield”) to defend the forces and territories of the United States, its Allies, and
friends against all classes of ballistic-missile threats. The Missile Defense Agency (MDA) will
accomplish this mission by developing a layered defense that employs complementary sensors
and weapons to engage threat targets in the boost, midcourse, and terminal phases of flight, and
incrementally deploying that capability. The Ballistic Missile Defense (BMD) program is pur-
suing a broad range of activities in order to aggressively develop and evaluate technologies for
the integration of land-, sea-, air-, and space-based platforms to counter ballistic missiles. In
parallel, sensor suites, battle management, and command and control will be developed to form
the backbone of the BMDS.

The BMDS battle-management (BM) software is a real-time set of system functionality that ad-
dresses warfighter usage. Key characteristics of the BM will include the following: (1) a globally-
distributed network, (2) an operational battlespace that includes land, sea, air, and space, (3) capabil-
ity to address multiple targets that can threaten a specific theater of operations or region of the world,
(4) management of concurrent battlespace activities, (5) some level of automated decision making
regarding the release or hold of lethal weapons, and (6) stringent requirements for high levels of
trustworthiness of the systems that provide BMD capabilities due to the fact that the threats to be en-
countered consist of weapons of mass destruction (WMD). Item number six makes unpredictable
system behavior untenable from the public-policy, functional, and safety perspectives.

To achieve the level of desired predictable battle-management behavior, the BM contains a for-
mal representation that captures the desired BM system behavior and is used to test the formal
representation against the expected battle-management properties. The BM will be deployed in a
manner similar to that depicted in Fig. 1.

Sensor_2

Theater

BMDS
 C2

Regional

BMDS
Battle Manager

BMDS
Battle Manager

BMDS
Battle Manager

Homelandd

Sensor_1

Sensor_3
Sensor_4

Sensor_5
Sensor_6

Weapon_1
Weapon_2

Weapon_3
Weapon_4 Weapon_5 Weapon_6

Figure 1. The BM deployment within the BMDS

 5

The battle managers must direct the activities in the battlespace. Typically, multiple engage-
ments are occurring concurrently in the battlespace. Oftentimes, the tasks for killing a threat
object need to be executed at such a high operations tempo (OPTEMPO) that humans experience
great difficulty in maintaining situational awareness of the entire battlespace.

The battle manager acts as “glueware” between software applications unique to each battle-man-
agement domain, and the sensors, Command and Control (C2) systems, and weapon systems in
that domain. Battle managers must rapidly make decisions to counter both enemy actions and
force movements. Battle managers must correctly cope with the fog-of-war conditions that are
ever-present during the prosecution of the war. The success or failure of the battle-management
functions will determine the success or failure of joint forces with respect to the achievement of
their assigned objectives.

Thus, the BM software is mandated to be trustworthy, real-time and distributed. The BM com-
puting will be accomplished through a network of computers that are connected to sensors and
weapons as well as other battle-management computers. The behavior of the battle-management
software cannot be predicted with confidence given the actual configuration of weapons, sensors,
and battle managers at the moment of battle. Developers cannot test the battle-management
software under realistic conditions prior to actual use of the software to determine the system be-
havior. The duration of the defense engagement will be short: it will not allow for either human
intervention or debugging the software to overcome software faults at runtime.

Fig. 2 illustrates a collaboration diagram for the Track Processing (TP) component. The Track
Processor abides by the following domain rules:

1. Track Processor polls the Track Data Store every five seconds, possibly resulting in a
track object with information about an object in flight that is being tracked.

2. Track Processor then discriminates this track, classifying it as either a threat track or a
no-kill track.

3. Track Processor then correlates threat tracks with previous instances of the same track, as
detected by the same or by other sensors.

 6

5. ABM Assertion Lifecycle: Formal Specification, Simulation, and Monitoring

An ABM assertion lifecycle process was defined in which specifications were represented for-
mally, refined and validated through simulation exercises, and monitored via code execution un-
der a spectrum of test scenarios.

Formal specification assertions were developed within the early stages of the software develop-
ment lifecycle. An initial set of assertions was defined as part of the requirements-elicitation
phase, independent of the software architecture. Assertions were derived systematically from each
of the rules of the domain, as each domain rule elicited relevant claims of safety and liveness.

During the software design phase (UML modeling), additional formal specification assertions
were defined and associated with the current software architecture. Assertions were defined as
relating to specific states, pertaining to an entire statechart (controller-level), or to a collaboration
diagram, as discussed in the sequel. This hybrid of UML statecharts and formal specifications

isEndDiscrim

Track Data

isEndDiscrim

Track
Data
Store

Track
Processing

Computation

iDiscriminate

iCorrelate

Discrimination
Computation

isEndCorrelationdiscriminated track data

isEndCorrelation

Kill
Data Store

Battlespace
Representation

Data Store

get Track Files updates to Track Files

2

3a 4a

6a7a

5b

7b 11b

12b

13b

get discriminated track data
3b

Correlation
Computation

return
Track

Suspect
Track

Discrimated
Tracks

Data Store

updates to
discriminated
Track Data

5a

return discriminated track

9b updates to threat track data

4b

10b updates to suspect track

return
Track
Files

8b

discriminated track data

6b

Figure 2, Track Processing Collaboration Diagram

Track Data

 7

resulted in an extended executable model. The extended executable model was created through
the use of automated code generation tools: they produced executable code for the control flow
of the state-based model as well as the associated armor-plating assertion-checking code.

The objectives of the extended executable model were as follows:

1. To provide a behavioral prototype early in the design process. This prototype is used for
demonstration purposes and for sanity checks. The prototype will be used in the future as
a robust oracle for developers and testers.

2. To resolve, early in the design process, possible contradictions between the UML model
and the formal specification assertions.

3. To provide a framework (timing model) in which to measure the system’s temporal
behavior under various test scenarios.

Assertions in the BM armor-plate extend executable UML-statechart models and collaboration
diagrams in the following way:

1. Formal specification assertions are capable of explicitly describing bad, or illegal,
behavior. The statechart model on the other hand tends to capture good, or legal,
behavior, with the expectation that bad behavior will be precluded by the good behavior
according to the model, but without explicitly specifying such illegal behavior. For
example, the TP component performs correlation after discrimination. Bad behavior to be
explicitly stated is that no correlation of a track is ever performed before discrimination is
performed for that track.

2. Safety-related requirements require armor-plating to increase the trustworthiness of the
software. The battle manager must ensure that its safety-related functions are correctly
executed in the BMDS. In all likelihood, a ballistic-missile attack will involve multiple
missiles; in other words the battle manager will be controlling the engagements of
multiple, concurrent engagements. The battle-management software must provide a
degree of trustworthiness that is commensurate with the critical functions of battle
management. The consequences for failed software include, for example, massive
civilian casualties or inadvertent release of weapons (e.g., interceptors targeted at benign
objects such as commercial aircraft).

3. The succinctness of some requirements lent themselves well to be expressed in formal
specification assertions rather than in UML statecharts. For example, the assertion TP
will never receive ten tracks within less than a minute is more naturally expressed
through a formal specification language than visually through a state diagram.6

Based on the BM prototype currently under development at the Naval Postgraduate School, it is
estimated that the overall system will consist of up to two hundred assertions.

Consider the following example of requirements for the track processor of Fig. 2 and its associ-
ated recovery. The following assertions about the continuity of TP are monitored by a Safety
Component (e.g., termed a “safety executive”) that monitors the processes in the battle manager:

1. A track must be pulled from Track Data Store within fifteen seconds of its appearance
in the Track Data Store.

6 In this particular example we used temporal logic with counting operators [D2].

 8

2. The first instance of a track file must appear in Battlespace Representation Data Store
within thirty seconds of the first appearance of that valid track data in the Track Data
Store.

3. If (1) and (2) are not true at the same time, then Safety Component will send reset sig-
nal to Track Processing Component. This means that the Track Processing failed to
poll data (1) within fifteen seconds of a given set of track data appearing in the Track
Data Store and Track Processing failed to discriminate and correlate the track data
within thirty seconds of a given set of track data appearing in the Track Data Store. If
both assertion violations occur simultaneously, then the Safety Component will reset
Track Processing Component.

4. If (1) and (2) are not true at the same time following a Track Processing reset that oc-
curred within the past sixty seconds, then the Safety Component will deem the BM to
be inoperable and direct the transfer of control to another battle manager.

In our approach, BM assertions are classified as either statechart assertions, of correctness prop-
erties pertaining to states in a UML statechart, or collaboration assertions, which relate to re-
quirements pertaining to a collaboration diagram.

Collaboration assertions pertaining to Fig. 1 fall into several possible categories, as follows:

1. Input assumptions, such as the requirement: a single polling iteration delivers at most one
track.

2. Capacity, such as capacity requirement for the discriminator: a new discrimination re-
quest is never received while the previous one is still being processed by the same dis-
criminator object. Every block in the collaboration diagram has a potential capacity as-
sertion.

3. Causality, such as: a track is classified as a threat only if Discriminate received an
associated track two seconds beforehand.

4. Liveness, such as: within two seconds of a track receipt the track must be identified as ei-
ther a threat or a no-kill threat, but not both.

5. Consistency, such as: a track for an object that already induced a track in the past must
always be recognized by the discriminator as an existing track.

BM assertions are also classified into three kinds of assertions (test-time, simulation-time and
run-time) according to their intended context of usage [DS1]. The most typical set of assertions
consists of test-time assertions that are intended for testing the correctness of the design and/or
implementation. Simulation-time assertions use information about the environment not present
in run-time. These are used only for and during simulation. For example, the assertion no missile
shall ever hit the Headquarters is only useful in a simulated environment. Similarly, the
following assertion can only be checked in a simulation environment: if country C initiates a
multi-threat missile launch, then BM should assign a weapon within x seconds.

Run-time, or deployed assertions are assertions that can be used during run-time, in the deployed
system. Run-time assertions are used to trigger run-time recovery from requirement violations
described in the sequel.

 9

The current formal specification language chosen for the BM is linear-time temporal logic with
real-time constraint (MTL) and time-series constraints (TLS) described in [Pn, D1]. MTL/TLS
was chosen primarily because BM related assertions contain real-time or time series constraints
and the language has available commercial monitors and code generators. Future plans for BM-
related assertions include the use of non-deterministic statecharts as a specification language
[D3].

Specification assertions written in MTL/TLS were simulated under a wide variety of scenarios.
Scenarios, which are timed sequences of conditions, vary in the sequencing order of conditions
as well as in the absolute timing of conditions. The purpose of simulation is to assure no contra-
dictions exist between three views of a specification, namely (i) the conceptual cognitive re-
quirement in the developer’s mind, (ii) the natural language formulation of that requirement, and
(iii) the formal language specification of the requirement. Hence, simulation is performed with
the following goals:

1. Full examination of each formal assertion under a plurality of scenarios.

2. Comparison of the behavior of an assertion’s MTL/TLS formal specification against the
behavior of the developer’s conceptual requirement.

3. Examine the soundness and completeness of the original conceptual requirement, namely
examine how the conceptual requirement behaves under a wide variety of scenarios.

Run-time Execution Monitoring (REM) is a class of methods for tracking the temporal behavior
of an underlying application. REM methods range from simple print-statement logging methods
to run-time tracking of complex formal requirements (e.g., written in temporal logic) for verifica-
tion purposes. Recently, NASA used REM for the verification of flight code for the Deep Impact
project [DW]. The majority of published REM methods use temporal logic as a specification
language [D1, HR].

REM was chosen as the primary verification method for the BM because of its ability to scale, in
addition to its support for assertions that include real-time and time-series constraints. In addi-
tion, REM is planned to be used: (i) as a component within an execution-based model checker
[DH] and (ii) in a closed loop, for run-time execution recovery, as described below.

Run-time Execution Recovery (RER) from violations of formal requirements is a technique that
integrates REM and the Monitored System (MS) in a closed loop so that the system, once noti-
fied of a formal specification violation, throws an exception and manages this exception in a pre-
determined manner. In [D4] Drusinsky describes a RER technique based on the heterogeneous
coupling of REM and source code Java exception handling. This method uses a two-layered ap-
proach where the REM tool manages specification and monitoring while recovery is performed
using Java exception handling.

An alternative technique, currently under development for the BM, uses non-deterministic state-
chart specifications [D3]. This method is a single-layered approach where specification, moni-
toring, and recovery are all specified with one coherent language.

An example of an assertion used for recovery is: a new discrimination request is never received
while the previous one is still being processed by the same discriminator object. The recovery
strategy consists of the prioritization of discrimination requests, handling of top-priority requests
while storing lower priority requests in a temporary buffer to be processed if discrimination ob-
jects become available within a minute.

 10

6. Tools and Environment

UML statecharts are used to model dynamic artifacts of the BM system using the StateRover en-
vironment. The StateRover is a Harel Statechart editor, code generator, and visual debug anima-
tor integrated with the Temporal Rover run-time monitoring tool [D1, D2]. The StateRover gen-
erates a Java class per statechart under design. These control classes integrated with passive
classes and stateless component code. Specification assertions are written in MTL and TLS, and
are exercised using the DBRover simulator. After simulation, an assertion A is associated with a
state S in a corresponding statechart using one of two interpretations:

1. The MTL assertion A must be true starting from the cycle in which S was reached, that is,
the LTL equivalent of Always (in S → A), where a cycle is defined as every statechart
state evaluation.

2. The assertion MTL A must be true for all cycles statechart is in S, where a cycle is
defined as every statechart state evaluation performed while inside state S.

Future tools and techniques to be introduced are:

1. A formal specification tool for non-deterministic statechart specifications [D3]. This tool
enables visual, UML-like formal specifications that are as succinct as LTL.

2. REM and RER using non-deterministic statechart specifications.

3. Two methods for white-box Automatic Test Generation (ATG), which when combined
with REM yield an executable model checker [DH]. The ATG methods are (i) model-
based (i.e., white-box test generation based on observations taken from the UML
statechart model) and (ii) specification-based (i.e., white-box test generation based on
observations taken from the formal specification, similar to the method used by the ATG-
Rover of [D2]).

7. Conclusion

In ballistic missile defense, the warfighter must have confidence that the battle manager will cor-
rectly complete critical battle-management functions in its operational environment regardless of
the conditions in the operational environment; that is, the battle manager must be a trustworthy
system and a dependable system [Mi]. We offer that the use of formal methods can increase the
level of dependability and provide evidence to the warfighters to determine the level of trust-
worthiness of the system for operational use. Rather than discovering system behavior at the end
of the development phase through intensive testing prior to fielding the completed product, we
believe that developers should apply techniques that support the design and realization of desired
system behavior from the earliest phases of concept development and requirements development.

We propose the use of assertions in the development of formal specifications. While formal
specification assertions alone will not ensure dependable software, the use of assertions can in-
crease the confidence of the level of dependability and trustworthiness of a system. The use of
assertions can significantly reduce the errors introduced in the specifying system behavior. As-
sertions can considerably increase the level of clarity in the assumptions and responsibilities of
system behavior, and reveal errors such as logic omissions and conflicting logic-statements. As-
sertions can catch common interface faults (e.g., processing out-of-range or illegal inputs) by
precisely asserting the legal interface values for variables passed in through an interface.

 11

Software developers should consider verifying the functional specifications with model check-
ing. Model checking is not a proof of correctness; instead, model checking involves creating
functional models of a system and analyzing the model against the formal representations of the
desired behavior [LC]. For the battle manager, we propose to verify the functional
specifications using an automated model-checking tool that can accept either developed
specifications or UML statecharts as discussed in [GM], and exercise the temporal-logic
assertions over a number of time cycles. Such an approach can support the identification of
inconsistencies and breaks in logic through the use of the model-checking tool. From the results
of the model checking, developers can correct our specifications and the artifacts from the
domain analysis as required.

References
[AJ] M.D. Aagaard, R.B. Jones and C.-J.H. Seger - Combining theorem proving and trajectory
evaluation in an industrial environment. In Proc. Design Automation Conf., ACM (San
Francisco, Calif., June 1998), pp. 538-541.
[BC] R.W. Butler, J.L. Caldwell, V.A. Carreno, C.M. Holloway, P.S. Miner and B.L. Di-Vito -
NASA Langley’s research and technology-transfer program in formal methods. In Proc. 10th
Annual Conf. on Computer Assurance, IEEE (Gaithersburg, Md., June 1995), pp. 135-149.
[BD] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C.
Pasareanu, W. Visser and R. Washington - Experimental evaluation of verification and
validation tools on Martian Rover software. In J. Formal Methods in System Design 25, 2
(2004).
[Ca] D.S. Caffall - Conceptual Framework Approach for System-of-Systems Software Develop-
ments, Master’s thesis, Naval Postgraduate School, Monterey, Calif., Mar. 2003.
[CD] J. Crow and B. Di Vito - Formalizing space shuttle software requirements: four case
studies. In ACM Trans. Software Engineering and Methodology, 7, 3 (July 1998), pp. 296-332.
[CG] S. Chandra, P. Godefroid and C. Palm - Software model checking in practice: an industrial case
study. In Proc. 24th Int. Conf. Software Engineering, IEEE (Orlando, Flor., May 2002), pp. 431-441.
[CP] E. Chang, A. Pnueli and Z. Manna - Compositional verification of real-time systems. In
Proc. 9th Symp. Logic in Computer Science, IEEE (Paris, Fr., July 1994), pp. 458-465.
[CT] D. Cook, R. Theron and A. Leishman - Requirements risks can drown software projects. In
CrossTalk, 15, 4 (Apr. 2002), pp. 4-8.
[CY1] B. Chen and M. Yamazaki and M. Fujita - Bug identification of a real chip design by
symbolic model checking. In Proc. Eur. Conf. on Design Automation, Eur. Test Conf., (Paris,
Fr., Feb. 1994), pp. 132-136.
[CY2] H. Choi, M.-K. Yim, J.Y. Lee, B.W. Yun and Y.T. Lee - Formal verification of an industrial
system-on-a-chip. In Proc Int. Conf. Computer Design, IEEE (Austin, Tex., Sept. 2000), pp. 453-458.
[D1] D. Drusinsky - Monitoring temporal rules combined with time series. In W. Hunt and F.
Somenzi, eds., Lecture Notes in Computer Science No. 2725, Proc. Computer Aided Verification
Conf. (Bolder, Colo., July 2003), pp. 114-117.

 12

[D2] D. Drusinsky - The Temporal Rover and the ATG Rover. In K. Havelund, J. Penix, and W.
Visser, eds., Lecture Notes in Computer Science No. 1885, Proc. Spin2000 Workshop, Berlin:
Springer Verlag, 2000, pp. 323-329.

[D3] D. Drusinsky - Run-time Monitoring and Recovery of Harel Statecharts using Prioritized
Non-deterministic Statechart Specifications, submitted for publication.
[D4] D. Drusinsky - Specs Can Handle Exceptions. In Embedded Developers Journal, November
2001, pp. 10-14. (http://i.cmpnet.com/eet/embedsub/2001/nov/Feature1.pdf).
[DH] D. Drusinsky and K. Havelund - Execution-based model checking of interrupt-based sys-
tems. In Proc. Workshop on Model-Checking for Dependable Software-Intensive Systems, Int.
Conf. Dependable Systems and Networks (San Francisco, Calif., 2003).
[DS1] D. Drusinsky, M. Shing and K. Demir - Test-time, Run-time, and Simulation-time
Assertions for RSP. In Proc. 16th IEEE International Workshop on Rapid Systems Prototyping,
Montreal, Canada, 8-10 June 2006, pp. 105-110.
[DS2] D. Drusinsky and M. Shing - TLCharts: Armor-plating Harel Statecharts with Temporal
Logic Conditions. In Proc. 15th IEEE International Workshop in Rapid Systems Prototyping,
Geneva, Switzerland, June 28-30, 2004, pp. 29-36.
[DW] D. Drusinsky and G. Watney - Applying run-time monitoring to the Deep-Impact Fault
Protection Engine. In Proc. 28th NASA Goddard Software Engineering Workshop, IEEE (Dec.
2003), pp. 127-133.
[Ga] J.G. Ganssle - Disaster. In Embedded Systems Programming, 11, 5 (May 1998), pp. 113-
117.
[GH] P.R Glück and G.J Holzmann - Using SPIN model checking for flight software verifica-
tion. In Proc. Aerospace Conf, IEEE (Big Sky, Mont., Mar. 2002), pp. 1-105 - 1-113.
[GM] L. Gnesi and M. Massink - Using hybrid automata to support human factors analysis in a
critical systems. In Proc. Fourth Int. Symposium on High Assurance Systems Engineering, IEEE
(Washington, D.C., Nov. 1999), pp. 46-55.
[HR] K. Havelund and G. Rosu - Monitoring Programs using Rewriting. In Proc. 16th Annual
Int. Conf. Automated Software Engineering, IEEE (San Diego, Calif., Nov. 2001), pp. 135-143.
[KG] C. Kern and M. Greenstreet - Formal verification in hardware design: A survey. In ACM
Trans. Design Automation of Electronic Systems 4, 2 (Apr. 1999), pp. 123-193.
[LC] G.A. Lewis, S. Comella-Dorda, D.P. Gluch, J. Hudak and C. Weinstock - Model-based
verification: Analysis guidelines. Technical Note CMU/SEI-2001-TN-028, Software Engi-
neering Institute, Pittsburgh, Penn., Dec. 2001.
[Lu] R. Lutz - Targeting safety-related errors during software requirements analysis. In Proc. 1st
ACM SIGSOFT Symposium on Foundations of Software Engineering, ACM (Redondo Beach,
Calif., Dec. 1993), pp. 99-106.
[Mi] J.B. Michael - Gaining the trust of stakeholders in systems-of-systems: A brief look at the
Ballistic Missile Defense System. In Proc. Center for National Software Studies Workshop on
Trustworthy Software, Technical Report NPS CS-04-006, Naval Postgraduate School, Monterey,
Calif., May 2004, pp. 27-29

 13

[Pa] Patriot Missile Software Problem. Report GAO/IMTEC-92-26, U.S. General Accounting
Office, Washington, D.C., Feb. 1992.
[Pn] A. Pnueli - The temporal logic of programs. In Proc. 18th Symp. Foundations of Computer
Science, IEEE (Providence, R.I., Oct. 1977), pp. 46-57.
[RL] R. Raimi and J. Lear - Analyzing a PowerPCTM 620 microprocessor silicon failure using
model checking. In Proc. Int. Test Conf., IEEE (Washington, D.C., Nov. 1997), pp. 964-973.
[TM] A. Tribble, S. Miller and D. Lempai - Software Safety Analysis of a Flight Guidance
System, NASA/CR-2004-213005, Mar. 2004.
[WK] D.R. Wallace and D.R. Kuhn - Lessons from 342 medical device failures. In Proc. 4th Int. Sym-
posium High Assurance Systems Engineering, IEEE (Washington, D.C., Nov. 1999), pp. 123-131.

 14

THIS PAGE IS INTENTIONALLY LEFT BLANK

 15

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2

Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09 1

Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. Butch Caffall 1

Missile Defense Agency
7100 Defense Pentagon
Washington, DC 20301-7100

5. Dr. James Bret Michael 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Dr. Doron Drusinsky 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Dr. Man-Tak Shing 1

Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

8. LtCol Thomas Cook 1
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

