Fully Reflexive Intensional Type Analysis

Bratin Saha

Valery Trifonov

Zhong Shao

Department of Computer Science
Yale University
New Haven, CT 06520-8285

{saha,trifonov,shao}@cs.yale.edu

Technical Report YALEU/DCS/TR-1194

Abstract

Compilers for polymorphic languages can use runtime type in-
spection to support advanced implementation techniques such as
tagless garbage collection, polymorphic marshalling, and flattened
data structures. Intensional type analysis is a type-theoretic frame-
work for expressing and certifying such type-analyzing computa-
tions. Unfortunately, existing approaches to intensional analysis
do not work well on types with universal, existential, or fixpoint
quantifiers. This makes it impossible to code applications such as
garbage collection, persistency, or marshalling which must be able
to examine the type of any runtime value.

We present a typed intermediate language that supfdhys
reflexiveintensional type analysis. By fully reflexive, we mean that
type-analyzing operations are applicable to the type of any runtime

We support fully reflexive type analysis at the term level.
Consequently, programs can analyze any runtime value such
as function closures and polymorphic data structures.

We support fully reflexive type analysis at the type level.
Therefore, type transformations operating on arbitrary types
can be encoded in our language.

We prove that the language is sound and that type reduction
is strongly normalizing and confluent.

We show a translation into a type erasure semantics. In a
type preserving compiler this provides an approach to typed
closure conversion which allows generation of certified object
code.

value in the language. In particular, we provide both type-level and 2 Motivation

term-level constructs for analyzing quantified types. Our system
supports structural induction on quantified types yet type checking
remains decidable. We show how to use reflexive type analysis to
support type-safe marshalling and how to generate certified type-
analyzing object code.

Keywords: certified code, runtime type dispatch, typed intermedi-
ate language.

1 Introduction

Runtime type analysis is used extensively in various applications
and programming situations. Runtime services such as garbage col-
lection and dynamic linking, applications such as marshalling and
pickling, type-safe persistent programming, and unboxing imple-
mentations of polymorphic languages all analyze types to various
degrees at runtime. Most existing compilers use untyped intermedi-
ate languages for compilation; therefore, they support runtime type
inspection in a type-unsafe manner. In this paper, we present a stat-
ically typed intermediate language that allows runtime type analy-
sis to be coded within the language. This allows us to leverage the
power of dynamically typed languages, yet retain the advantages of
static type checking.

Supporting runtime type analysis in a type-safe manner has
been an active area of research. This paper builds on existing
work [8] but makes the following new contributions:

*This research was sponsored in part by the Defense Advanced Research Projects
Agency I1SO under the title “Scaling Proof-Carrying Code to Production Compilers
and Security Policies,” ARPA Order No. H559, issued under Contract No. F30602-
99-1-0519, and in part by NSF Grants CCR-9633390 and CCR-9901011. The views
and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

The core issue that we address in this paper is the design of a stati-
cally typed intermediate language that supports runtime type anal-
ysis. Why is this important? Modern programming paradigms are
increasingly giving rise to applications that rely critically on type
information at runtime, for example:

Java adopts dynamic linking as a key feature, and to ensure
safe linking, an external module must be dynamically verified
to satisfy the expected interface type.

A garbage collector must keep track of all live heap objects,
and for that type information must be kept at runtime to allow
traversal of data structures.

In a distributed computing environment, code and data on one
machine may need to be pickled for transmission to a different
machine, where the unpickler reconstructs the data structures
from the bit stream. If the type of the data is not statically
known at the destination (as is the case for the environment
components of function closures), the unpickler must use type
information, encoded in the bit stream, to correctly interpret
the encoded value.

Type-safe persistent programming requires language support
for dynamic typing: the program must ensure that data read
from a persistent store is of the expected type.

Finally, in polymorphic languages like ML, the type of a value
may not be known statically; therefore, compilers have tradi-
tionally used inefficient, uniformly boxed data representation.
To avoid this, several modern compilers [24, 20, 26] use run-
time type information to support unboxed data representation.

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
2005 2. REPORT TYPE _
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER

Fully Reflexive Intensional Type Analysis £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Defense Advanced Resear ch Projects Agency,3701 North Fairfax REPORT NUMBER
Dr,Arlington,VA,22203-1714

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Compilersfor polymorphic languages can use runtime type inspection to support advanced
implementation techniques such as tagless gar bage collection, polymor phic mar shalling, and flattened data
structures. Intensional type analysisis a type-theoretic framework for expressing and certifying such
type-analyzing computations. Unfortunately, existing approachesto intensional analysis do not work well
on typeswith universal, existential, or fixpoint quantifiers. Thismakesit impossible to code applications
such as gar bage collection, persistency, or marshalling which must be able to examine the type of any
runtime value. We present a typed inter mediate language that supportsfully reflexive intensional type
analysis. By fully reflexive, we mean that type-analyzing oper ations ar e applicable to the type of any
runtimevaluein the language. In particular, we provide both type-level and term-level constructs for
analyzing quantified types. Our system supportsstructural induction on quantified typesyet type checking
remains decidable. We show how to usereflexive type analysisto support type-safe mar shalling and how to
gener ate certified typeanalyzing object code.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF; 17.LIMITATION OF | 18 NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 34
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

When compiling code which uses runtime type inspections, (kinds) r 1= Q | k — K/
most existing compilers use untyped intermediate languages, and

reify runtime types into values at some early stage. However, dis- (cons) T u=int|7—7 || kT |77
carding type information during compilation puts this approach | Typerec T of (Tint; 7—)
at a serious disadvantage when it comes to generating certified
code [14]. (types) o =7 | Vaik.o
Code certification is appealing for a number of reasons. One
need not trust the correctness of a compiler generating certified Figure 1: The type language of Harper and Morrisett

code; instead, one can verify the correctness of the generated code-
Checking the correctness of a compiler-generated proof (of a pro-
gram property) is much easier than proving the correctness of the
compiler. Secondly, with the growth of web-based computing, pro- . . . L . . .
grams are increasingly being developed at remote sites and shippedrn us-,rtyﬁ?\?e tg;foiﬂaseci;p;eg?ﬂg; E Tﬁre;nﬁiieiggg’rrgscijse it
to clients for execution. Client programs may also download mod- int — real, andVa. boxedarray (@) — int — . To assign a type

ules dynamically as they need them. For such a system to be prac-, ; :
tical, a client should be able to accept code from untrusted sources to the subscript function, we need a construct at the type level that

P . ; .~ “'parallels thetypecase analysis at the term level. In general, this
buF have a means of verifying it be_f_ore execution. This again re facility is crucial since many type-analyzing operations like flatten-
quires compilers that generate certified code.

. o e o ing and marshalling transform types in a non-uniform way. The
A necessary step in building a certifying compiler is to have the subscript operation would then be typed as
compiler generate code that can be type-checked before execution.

The type system ensures that the code accesses only the provided sub : Vo.Array (o) — int — a
resources, makes legal function callsc A certifying compiler where Array = Ao Typecase a of
can support runtime type analysis only in a typed framework. int = intarray
The safety of such a system depends not only on the down- real = realarray
loaded code, but also on the correctness of all the code that is ex- B = boxedarray 3
ecuted by the system after type checking. This typically includes
the runtime services like garbage collection, linkiatg; This code The Typecase construct in the above example is a special case of

constitutes the trusted computing base of the system. Reducing thehe Typerec construct in [8], which also supports primitive recur-

trusted computing base makes the system more reliable; for this,sion over types.

we must independently verify the correctness of this code. This

im_plies_that as many of the runtimq service_s as possible shoul_d be2_2 The problem

written in a type-safe language, which requires support for runtime

type analysis in a typed framework. The language of Harper and Morrisett only allows the analysis of
Finally, why is it important to have fully reflexive type anal- monotypes; it does not support analysis of types with binding struc-

ysis? Why do we want to analyze quantified types? Many type- ture (.g.,polymorphic, existential or recursive types). Therefore,

analyzing applications mentioned above must handle arbitrary run- type analyzing primitives that handle polymorphic code blocks,

time values. For example, a pickler must be able to pickle any closures (since closures are represented as existentials [12]), or re-

value, including closures (which have existential types), polymor- cursive structures, cannot be written in their language. The types

phic functions, or recursive data structures. A garbage collector hasin their language (in essence shown in Figure 1) are separated into

to be able to traverse all data structures in the heap to track live ob-two universesgonstructorsandtypes The constructor calculus is

jects. Therefore the language must support type analysis over anya simply typed lambda calculus, with no polymorphic types. The

runtime value in the language. Typerec operator analyzes only constructors of base knd
int : Q
2.1 Background L L 05050

Harper and Morrisett [8] proposed intensional type analysis and
presented a type-theoretic framework for expressing computations
that analyze types at runtime. They introduced two explicit type-
analysis operators: one at the term lewsipécase) and another

at the type level Typerec); both use induction over the structure
of types. Type-dependent primitive functions use these operators Typerec int of (Tint; T—) ~> Tint
to analyze types and select the appropriate code. For example, a

polymorphic subscript function for arrays might be written as the ~1YPerec (11 = 72) of (Tint; 7—) ~
following pseudo-code: 7— 71 72 (Typerec 11 of (Tint; 7)) (Typerec 72 of (Tint; 7—))

The kinds of these constructors’ arguments do not contain any neg-
ative occurence of the kin@, soint and— can be used to define

Q inductively. TheTyperec operator is essentially an iterator over
this inductive definition; its reduction rules can be written as:

Here theTyperec operator examines the head constructor of the

int = intsub type being analyzed and chooses a branch accordingly. Ifthe type is

real = realsub int, it reduces to the;,. branch. If the type is; — 2, the analysis

B = boxedsub 3] proceeds recursively on the subtypgsand,. The Typerec op-
erator then applies the., branch to the original component types,

Heresub analyzes the type of the array elements and returns the @nd to the result of analyzing the components; thus providing a
appropriate subscript function. We assume that arrays ofitype ~ form of primitive recursion.

andreal have specialized representations (defined by types, say, = Types with binding structure can be constructed using higher-
intarray andrealarray), and therefore special subscript functions, order abstract syntax. For example, the polymorphic type construc-
while all other arrays use the default boxed representation. tor V can be given the kindQ2? — Q) — , so that the type

sub = Aa. typecase «a of

Va: Q.a — «ais represented 8¢ (Ao : Q.a — «). It would
seem plausible to define an iterator with the reduction rule:

Typerec (V1) of (Tint; 7—; Tv)
~ 1y T (Aa: Q. Typerec 7 o of (Tint; T—; 7v))

However the negative occurencefin the kind of the argument
of ¥ poses a problem: this iterator may fail to terminate! Consider
the following example, assuming = Aa: Q. « and

Tv=A01:Q — Q. AG2:Q — Q. B2 (V3)
the following reduction sequence will go on indefinitely:

Typerec (V1) of (Tint; 7—; Tv)

~ 1y T (Aa: Q. Typerec 7 a of (Tine; 73 7v))
Typerec (7 (V7)) of (Tine; T—; Tv)
Typerec (V1) of (Tint; T—; Tv)

>
~>

Clearly this makes typecheckifiyperec undecidable.

Another serious problem in analyzing quantified types involves
both the type-level and the term-level operators. Typed interme-
diate languages like FLINT [21] and TIL [25] are based on the
calculusF, [5, 19], which has higher order type constructors. In a
quantified type, sa¥a: . 7, the quantified variable is no longer
restricted to a base kind, but can have an arbitrary kind Con-
sider the term-levelypecase in such a scenario:

sub = Aa. typecase o of
int = €int

do:k.T=e3

To do anything useful in thes branch, even to open a package of
this type, we need to know the kind We can get around this by
having an infinite number of branches in tiypecase, one for each
kind; or by restricting type analysis to a finite set of kinds. Both of
these approaches are clearly impractical. Recent work on typed
compilation of ML and Java has shown that both would require an
F,-like calculus with arbitrarily complex kinds [22, 23, 10].

2.3 Requirements for a solution

Before we discuss our solution, let us look at the properties we want
it to have.

First, our language must support type analysis in the manner of
Harper/Morrisett. That is, we want to include type analysis prim-
itives that will analyze the entire syntax tree representing a type.
Second, we want the analysis to continue inside the body of a quan-
tified type; handling quantified types parametrically, or in a uniform
way by providing a default case, is insufficient. As we will see later,
many interesting type-directed operations require these two prop-
erties. Third, we do not want to restrict the kind of the (quantified)
type variable in a quantified type; we want to analyze types where
the quantification is over a variable of arbitrary kind.

Consider a type-directed pickler that converts a value of ar-

bitrary type into an external representation. Suppose we want to
pickle a closure. With a type-preserving compiler, the type of a

closure would be represented as an existential with the environment

held abstract. Even if the code is handled uniformly, the function
must inspect the type of the environment (which is also the witness
type of the existential package) to pickle it. This shows that at the
term level, the analysis must proceed inside a quantified type. In
Section 3.2, we show the encoding of a polymorphic equality func-
tion in our calculus; the comparison of existential values requires a
similar technique.

The reason for not restricting the quantified type variable to a
finite set of kinds is twofold. Restricting type analysis to a finite
number of kinds would bad hocand there is no way of satisfacto-
rily predetermining this finite set (this is even more the case when
we compile Java into a typed intermediate language [10]). More
importantly, if the kind of the bound variable is a known constant
in the corresponding branch of tigperec construct, it is easy to
generalize the non-termination example of the previous section and
break the decidability of the type system.

2.4 Our solution

The key problem in analyzing quantified types such as the poly-
morphic typeVa : Q. a — « is to determine what happens when
the iteration reaches the quantified type variabler (in the gen-
eral case of type variables of higher kinds) a normal form which is
an application with a type variable in the head.

One approach would be to leave the type variable untouched
while analyzing the body of the quantified type. The equational
theory of the type language then includes a reduction of the form
(Typerec a of ...) ~ « so that the iterator vanishes when it
reaches a type variable. However this would break the confluence
of the type language—the application X : Q2. Typerec « of . ..
to 7 would reduce in general to different types if we perform the
[B-reduction step first or eliminate the iterator first.

Crary and Weirich [1] propose another method for solving this
problem. Their language LX allows the representation of terms
with bound variables using deBruijn notation and an encoding of
natural numbers as types. To analyze quantified types, the iterator
carries an environment mapping indices to types; when the iterator
reaches a type variable, it returns the corresponding type from the
environment. This method has several disadvantages.

e [t is not fully reflexive, since it does not allow analysis of
all quantified types—their analysis is restricted to types with
quantification only over variables of kir{d.

The technique is “limited toparametrically polymorphic
functions, and cannot account for functions that perform in-
tensional type analysis” [1, Section 4.1]. For example poly-
morphic types such aso : Q2. Typerec « of ... are not ana-
lyzable in their framework.

The correctness of the structure of a type encoded using de-
Bruijn notation cannot be verified by the kind language (in-
dices not corresponding to bound variables go undetected, so
the environment must provide a default type for them), which
does not break the type soundness but opens the door for pro-
grammer mistakes.

To account for non-parametrically polymorphic functions, we
must analyze the quantified type variable. Moreover, we want
to have confluence of the type languageseduction should be
transparent to the iterator. This is possible only if the analysis gets
suspended when it reaches a type variable, or its application, of
kind 2, and resumes when the variable gets substituted. Therefore,
we conside(Typerec « of ...) to be a normal form. For example,
the result of analyzing the body (— int) of the polymorphic type
Va:k.a — intis

Typerec (o — int) of (7ine; 73 7v) ~
7— aint (Typerec & of (7ine; 7 7v)) (int)

We formalize the analysis of quantified types when we present the
type reduction rules of th€yperec construct (Figure 5).

The other problem is to analyze quantified types when the quan-
tified variable can be of an arbitrary kind. In our language the so-
lution is similar at both the type and the term levels: we use kind

polymorphism! We introduce kind abstractions at the type level (inds) = Q |k — k' | x | Vx. &
(Ax.7) and at the term Ievel/‘(+x. e) to bind the kind of the quan-

tified variable. (See Section 3 for details.) s=int | — | V| v

(types) T
Kind polymorphism also ensures the termination of the | | Ax.7 | da:k.7 | T[k] | 77
Typerec constructor. Consider again the analysis of the polymor- | Typerec[s] 7 of (Tint; o3 Tv; Tut)
phic type:
. +)
Typerec (V) of (rint: 7 7+) (values) v ==1d | A x.e | Aa:k.e | Az:T.e | fixz:T.v
~ 1y 7 (Aa: Q. Typerec 7 v of (Tint; T—; Tv)) n
(terms) e m=wv |z | e[k] | e[r] | e€
Informally, we must ensure that the type being analyzed decreases | typecase[r] 7" of (eint; e—; ev; eur)
in size at every iteration. That isx is smaller tharV/7. (Note that
the previous non-terminating example violates this requirement). Figure 2: Syntax of tha” language
This will be true if we can ensure thatis always substituted by a
single variable. Therefore, we make the kinchadibstract by using
kind polymorphism;a now has the kind bound in the, branch. T =((=)7)7
The only way to construct another type of this kind is to bind a Va:k.T= (VK] Aa:k.7)
type variable of the same kind in the branch. This ensures that V+X- ;= V+(AX. 7)

« can only be substituted by another type variable.

It is important to note that our language provides no facilities
for kind analysis. Analyzing the king of the bound variablex
in the typeV (Aa : k. 7) would let us synthesize a type argument
of the same kind, for every kind. The synthesized type can then
be used in the style of the non-termination example of the previous
section. Intuitively, we would not be able to guarantee that the type The Typerec operator analyzes polymorphic types with bound vari-
being analyzed decreases at every step. ables of arbitrary kind. The corresponding branch of the operator
must bind the kind of the quantified type variable; for that purpose
the language provides kind abstractidn(7) and kind application
(7 [x]) at the type level. The formation rules for these constructs,
excerpted from Figure 4, are

Figure 3: Syntactic sugar for!” types

The rest of the paper is organized as follows. Section 3 de-
scribes the languagk!” supporting analysis of polymorphic and
existential types. Section 4 presents the Iangwefﬁehat also in-
cludes support for analysis of recursive types. Section 5 shows a
translation into a language with type erasure semantics. ExiAFT K EAFT:Vy.k EE

ESAFAX.T VXK EAF TR ¢ k{K'/x}

3 Analyzing polymorphic types
Similarly, while analyzing a polymorphic type, the term-level con-

In the impredicativel,, calculus, the polymorphic typeésx : k. 7 structtypecase must bind the kind of the auantified type variable.
can be viewed as generated by an infinite set of type constructorsTherefore, we introduce kind abstractiah f. ¢) and kind appli-
Vs of kind (x —) — €, one for each kind. The typeva: . 7 cation ¢ [x]) at the term level. To type the term-level kind abstrac-

is then represented &g (Aa: . 7). The kinds of constructors that

. 4 . . .
can generate types of kirfdthen would be tion, we need a type construgty. 7 that binds the kind variablg

in the typer. The formation rules are shown below.

int : Q N
— . 0=-0-0Q Ex;AThw T EsANTRe:Vx.m EFEK

Vo : () -0 5;A;FI—A+x.v : V+X.T 5;A;F|‘6[KJ]+ s m{k/x}

However, since our goal is fully reflexive type analysis, we need
to analyze kind-polymorphic types as well. As with polymorphic

+ . .
We can avoid the infinite number of, constructors by defininga tyPes, we can represent the typey. T as the application of a type
single constructoW of polymorphic kindvy. (x —) — Q and constructo’v of kind (V. Q) — € to a kind abstraction\x. .

then instantiating it to a specific kind before forming polymorphic Thus the kinds of the constructors for types of kindre
types. More importantly, this technique also removes the negative

VH s (k> Q)= Q

occurrence of2 from the kind of the argument of the constructor int : Q

Va. Hence in our\l calculus we extend,, with polymorphic — : Q—-0-0
kinds and add a type constanof kind V. (x — Q) — Qto the V i Vx.(x—Q) —Q
type language. The polymorphic type:: . 7 is now represented v o (Vx.Q) — Q

asV [k] (A\a: k. 7).
We define the syntax of the” calculus in Figure 2, and some ~ None of these constructors’ arguments have the @ifta negative

derived forms of types in Figure 3. The static semantica dfis position; hence the kinf can now be defined inductively in terms
shown in Figures 4 and 5 as a set of rules for judgements using the©f these constructors. ThEyperec construct is then the iterator
following environments: over this kind. The formation rule foFyperec follows naturally

from the type reduction rules (Figure 5). Depending on the head

kind environment & = ¢|&x constructor of the type being analyzdyperec chooses one of the
type environment A = ¢ | A, a:k branches. At thént type, it returns thes.. branch. At the function
term environment I' == ¢ | [,z:7 typer — 7/, it applies ther_. branch to the componentsandr’

)

and to the result of the iteration overandr’.

|Kindformation EFk Term formation E;A;Tke : 7
x€EE EFr EFK ExFr EATFe:T EAFT~T 1 Q EART
EFQ EFx Erk— K EFVYX. K ENTEFRe: 7 E AT i int
Type environment formation £ - A EAFT z:7inT ExiATRw T
SEA £k EANT Rz T S;A;F"A+X.UZV+X.T
ke EFAak EAN a:k Ty o T ENT,x:ThHe: 7
Type formation & AF 7 : EATHFAa:kv : Va:rk.t EATEFM:Te:T—T
EFA ENT,x:thv o T
SAFInt - Q 7':V+x1...Xn.Voelzm...am:f-cm:ﬁ—>7'2.

EAF(—>): Q—-0—-Q

EFA a:kinA

n>0m>0

EARY V. (x— Q) —=Q EAFa:k EAN T Hfixz:t.vo . 7
EARY L (Vy.Q) —Q N
EATHe: VT EFkR
EX;AFT : E;AF T Vx. EFK
X TR ! TR n 5;A;FF€[H}+:T[H]
EAFAx.T :Vx.k EAFRTIE] : w{k/x}
E;ANThe:VklT EAFRT 1k
SN a:kbT K EAFT K =k EAFT K

E;NTRel[r] i 77

ESAF Xk T 1 k— K EAFTT 1 K
EANTrFe: T =17 EATEE 7
ESAFT 1 Q :
E;Al_'rint:l‘i £7A7F|—66 s T
5;A|_T_,ZQ—>Q—>K,—>,{_>H
EAFTy V. (x— Q)= (x— k) — kK ?ﬁ::'r/:geﬂ
o () = Ber) E;A;T ke @ Tint

E; A Typerec[k] T of (Tint; T—; Tw; Tt) : K

Term environment formation &;ART ‘

EFA

ESAFT E AT :

EAT el : Va:Q.Va : Q.7 (a —)
E;NTFey :V+X.Vozzx—>Q.T(V[x]a)
EATFen: Va:(VX.Q).T(\fa)

Q

E;AFe

EAFTD, x:7

Figure 4: Formation rules off’

E; A;T = typecase[r] 7' of (eint; e—; ev;) = TT

/

‘Type reduction & AF T~ T n‘

ENakFT:ik EAFT K
EAF Qaik.T)T ~ {7t Ja} : K

EX;AFT :Vx.k EFK
EAF (Ax.7) [k~ r{s'/x} + v{x'/x}
EAFT a ¢ ftu(r)

EAFda:k.Ta~T

k— K

!/
K — KR

EAFT VY .k x € fho(T)
EAFAx.T[x]~ T :

VX' K

E; A+ Typerec[k] int of (Tint; T—; Tv; TH) PR

E; A+ Typerec[] int of (Tint; T—; Tv; Tt) ~ Tint : K

v

E; A+ Typerec[s] 1 of (Tint; 75 Tv; Tp) ~ 71 ¢ K
E; A+ Typerec[s] 72 of (Tint; T—; Tv; Tr) ~> T3 : K

E; A+ Typerec[s] ((—) 71 72) of (Tint; T—; Tv; Tp) ~ T TI T2 TL T3 : K

E; A, a:k' = Typerec[k] (T a) of (Ting; 75 Tv; Tp) ~ 7' 1 K

E; A+ Typerec[x] (V [£'] 7) of (Tint; T3 Tv; Tt)
~ 1y [R]T Ak’ T 1 K

E,x; A F Typerec[s] (7 [x]) of (Tint; T—; Tv; Tp) ~ 7" 1 K

£ A+ Typerec[r] (V'7) of (Timt; T} Tv; Tt) ~ T T (A7) R

Figure 5: Selected? type reduction rules

When analyzing a polymorphic type, the reduction rule is

Typerec[r] (Yo: k. 7) of (Tint; T—; Tv; Tp) ~
v [K'] (Aa: k' T) (Aa: k. Typerec[] T of (Tint; 75 Tv; Tt))

Thus theV-branch of Typerec receives as arguments the kind of

the bound variable, the abstraction representing the quantified type,
and a type function encapsulating the result of the iteration on the

body of the quantified type. Sinee must be parametric in the kind

k' (there are no facilities for kind analysis in the language), it can
only apply its second and third arguments to locally introduced type
variables of kinds’. We believe this restriction, which is crucial
for preserving strong normalization of the type language, is quite
reasonable in practice. For instangecan yield a quantified type
based on the result of the iteration.

The reduction rule for analyzing a kind-polymorphic type is

Typerec|[x] (V+X. 7) of (Tint; T3 Tw; Tup) ~
T+ (Ax- T) (Ax. Typerec[x] T of (Tin; 75 Tv; T4))

The arguments of the_ are the kind abstraction underlying the
kind-polymorphic type and a kind abstraction encapsulating the re-
sult of the iteration on the body of the quantified type.

For ease of presentation, we will use ML-style pattern matching
syntax to define a type involvin@yperec. Instead of

7 = Aa: Q. Typerec[k] a of (Tint; T—; Tv; v+)

where 7 = Aap:Q. a2 Q. a1k ok T
v =Ax. da:x — Qo 1 x — k. T
T = da: (Vx. Q). A’ (Vx. k). TV'/+

we will write
T(int) = Tint
T(Oél i OlZ) = 7';{7' (al),T(O‘?)/a/lfa/Q}
T (ij] a1) = mo{da:x. T (a1 a@)/a’}
(V' aq) = 7M. 7 (1 [x])/a'}

To illustrate the type-level analysis we will use thgperec opera-

tor to define the class of types admitting equality comparisons. To
make the example non-trivial we extend the language with a prod-
uct type constructox of the same kind as», and with existential
types with type constructat of kind identical to that o, writing

Ja: k. 7 for A [k] (Aa: k. 7). Correspondingly we extentlyperec

with a product branchy and an existential brancty which be-
have in exactly the same way as the branch and they branch
respectively. We will us®ool instead ofint.

A polymorphic functioreq comparing two objects for equality
is not defined on values of function or polymorphic types. We can
enforce this restriction statically if we define a type oper&igof
kind Q — €, which maps function and polymorphic types to the
type Void = Va : Q. «a (a type with no values), and require the
arguments otq to be of typeEq 7 for some typer. Thus, given
any typer, the functionEq serves to verify that a non-equality type
does not occur inside.

Eq(BooI) = Bool
(Otl — 042) = Void
Eq(a1xaz) = Eq(a1)xEq(az)
Eq(V[x]a) = Void
Eq (V) = Void
Ea(@[]) = F[x](Aea:x.Eq(aen))

The property is enforced even on hidden types in an existentially
typed package by the reduction rule fdyperec which suspends

Az:T.v~e{v/z}
Aa: k. V)]~ v{r/a}

(fixz: 7.) v ~ (v{fixz:T.v/2}) '
(vffixz:T. v/2})[7]
(v{fixz:T. v/av})[/@']+

/
€~ €

(fixz: 1. 0)[7]~
(A+X. v) [K]Jrv v{r/x} (fixx:71.0) [nrv

e~re e~ e

eer~ € e ve~ve' e[r] ~ €'[7] e[ﬁ]+'v> e'[ﬁr
typecase[7] int of (eint; e—; ev; e r) ~ €int

typecase[T] (11 — T2) of (eint; e—; ev; er) ~ e [11] [T2]
typecase[7] (V [k] 7) of (eint; €—; ev; ev+) ~ ey [lﬁr [7]
typecase|[] (V+7') of (eint; e—; ev; et) ~ s [7]

gek T ~*V:Q v is a normal form

typecase[r] 7’ of (6|nt: € ev; egt) ~
typecase[T] v of (emt, €3 €ev; 6\7,4—)

Figure 6: Operational semantics bf

its action on normal forms with variable head. For instance a term
e can only be given type

Eq(Fa:Q.ax a) =3a:Q.Eqa x Eqa

if it can be shown that is a pair of terms of typ&q = for some
T, i.e., terms of equality type. Note th&iq ((Bool — Bool) x
(Bool — Bool)) reduces taVoid x Void); a more complicated
definition is necessary to map this typeMoid.

At the term level type analysis is carried out by tiypecase
construct; however, it is not iterative since the term language has a
recursion primitivefix. Theey branch oftypecase binds the kind
and the type abstraction carried by the type constrittarmile the

e+ branch binds the kind abstraction carried\ﬂy

) of (€int; €—; ev; er) ~ ey [’ir [7']
typecase[r] (V' ') of (eint; e—; ev; egt) ~ et [7]

typecase[r] (V [s] T’/

The operational semantics of the term languagk!ofs presented
in Figure 6.

The language\! has the following important properties (for
detailed proofs, see Appendix B).

Theorem 3.1 Reduction of well-formed types is strongly normal-
izing.

We prove strong normalization of the type language following
Girard’s method of candidates [6], using his definition of a candi-
date. The standard set of neutral types is extended to include types
constructed byTyperec. We defineRq as the set of types of
kind 2 such that the typ@yperec[x] T of (Tint; 7—; Tv; T, +) be-
longs to a candidate for kind whenever the branches belong to
candidates of the corresponding kinds from Tiygerec formation
rule. We then prove that this set is a candidate. Next we define
the setS,[C/X] of types of kindx (for given candidate€ corre-
sponding to the free kind variablgsof x), equal toRg, for kind
2, and defined inductively as in [6] for function, polymorphic, and
variable kinds. We show tha,.[C/X] is a candidate. Finally we
prove thatS.[C/¥] is closed under substitution of types for free
type variables; strong normalization is an immediate corollary.

Theorem 3.2 Reduction of well-formed types is confluent. For completeness in our system we also need to handle kind poly-

o morphism and remote kind applications:
Confluence of type reduction is a corollary of local confluence,

which we prove by case analysis of the type reduction relatioh (Kid : Vao: (V. Q). (V. T T v
We consider type contexts with two holes and show that the reduc- newkid : Vo (V.). (¥ x. ian(a [Xlr)) — Tran(V)
tion is locally confluent in each case. rkapp : Var: (Vx. ©2). Tran (V) — V x. Tran (a [x])
t\/\/e say that a termiis stuck ife is not a value and ~» e for Operationally, thenewid's take a function between transmissible
no terme’.

values and generate a new, globally unique identifier and tell the
name server to associate that identifier with the function on the lo-
cal machine. The remote applications take a proxy identifier of
a remote function and a transmissible argument value. The name

We prove soundness of the system using a contextual semantic$€/Ver IS contacted to get the site where the remote value exists;
in Wright/Felleisen style [27] using the standard progress, subject the argument is sent to this machine, and the result of the function
reduction, and substitution lemmas as well as the confluence andtfansmitted back as the resuit of the operation.
strong normalization properties of thé type system. Marshalling and unmarshalling of values from transmissible

representations are performed by the mutually recursive functions

M:Va:Q.a — Trana andU : Va: Q. Trana — «. They are

defined below by a pattern-matching syntax and implicit recursion

instead oftypecase andfix. We assume that a type or a kind does
ghot need to be transformed in order to be transmitted.

Theorem 3.3 (Soundness o%! for Type Safety)
Ife;e; ek e:mande~* ¢ in AL, thene’ is not stuck.

3.1 Example: Marshalling

One of the examples that Harper and Morrisett [8] use to illustrate
the power of intensional type analysis is based on the extension o

ML for distributed computing proposed by Ohori and Kato [15]. [int] — \z:int.z

The idea is to convert values into a form which can be used for M [, — as] = Az:oq — as.

transmission over a network. An integer value may be transmitted newid [a1] [aa]

directly, but a function may not; instead, a globally unique identi- (Az’: Tran 1. M [az] (z (U [aa] 27)))
fier is transmitted that serves as a proxy at the remote site. Thesep V[x]a] =Az:V[x]a.

identifiers are associated with their functions by a name server that

. t ’. ’ /
may be contacted through a primitive addressing scheme. The re- newpid [x] [o] (Aa’:x. M[aa/] (2 [a]))

T

i+ + . +

mote sites use the identifiers to make remote calls to the function. M [V o] = Az:V o newkid [o] (A x. M [a [X]] (z [x]))
Harper and Morrisett show how to define types of transmissible val- M [Id o] =Az:lda.z

ues as well as functions for marshalling to and unmarshalling from y [int] = Az:Tran (int). z

these types using intensional type analysis. However, the predica-y [o; — as] = Az:Tran (a1 — ag). Az’ ;.

tivity of their calculus prevents them from handling the full calculus U [or2] (rapp [a1] [ae2] & (M [on])

of Ohori and Kato, which also includes the remote representation y v [y]a] = Az:Tran (¥ [x]a). Ao’ x.

of polymorphic functions and remote type application.

In A marshalling of polymorphic values is straightforward; in U
fact it offers more flexibility than the calculus of Ohori and Kato U
needs, since polymorphic functions become first-class values, and
polymorphic types can be used in remote type applications. Adapt-
ing the constructs of [8] ta”, we introduce a type constructor
Id: Q — Q. Avalue of typer has a global identifier of typkl 7. 3.2 Example: Polymorphic equality
The Typerec and typecase operators are extended in an obvious
way. For example, the following type reduction relation is added: ~Another view at the term-level analysis of quantified types is pro-

vided by an example involving the comparison of values of exis-
Typerec[] (Id7) of (Tynt; 73 Tv; Tyrs Tra) ~ tential type. The term constructs for introduction and elimination
1a 7 (Typerec[r] 7 of (Tjng5 73 Tv3 Tyrs Tra)) of existential types have the following formation rules.

The type of the remote representation of values of tygeTran 7,
defined in [8] using intensional analysisafValues of typélran 7

X Ufore] (rtapp [x]' [o] # [2']) i
[V o] = Az:Tran (V «). A x. Ua [x]] (rkapp [o] z [x])
[Id & =Xz:Tran(lda). z

EATFRe: Qaik.7)7

do not contain any abstractions; all the abstractions are wrapped EANTH{a:k=""e:7) : Ja:k. T
inside anld constructor. We can extend the Harper/Morrisett defi-
nition of Tran to handle the quantified types &f as follows: E;NT ke : Fr|T EAFT Q
T . . ENakl,z:Take : 7
ran (int) = int
Tran (an — a2) = Id(Tranai — Tranaz) E; AT -openeas(aik, z:7a)ine’ : 7/
Tran (VJX} o =MW (vf‘ /’X‘ (Ao :x. Tran (aai))a) The polymorphic equality functiorq is defined in Figure 7 (we
Tran (V «a) = 1d (¥ x". (Ax. Tran (a[x])) [X]) use aletrec construct derived from ouix). The domain type of
Tran (Id @) = lda the function is restricted to types of the forfg = to ensure that
At the term level the system provides primitives for creating global ©nly values of types admitting equality are compared.
identifiers and performing remote invocations: Consider the two packages= («:) = Bool, false:) and

v" = {a: Q = Bool x Bool, (true, true) : o). Both are of type
Ja: Q. o, which makes the invocatios [3a:: Q. o v o' legal. But
when the packages are open, the types of the packaged values may

newid : Va1 Q. Vaz: Q. (Tran a1 —Tran a2)—Tran (a1 —az)
rapp : Vai : Q. Vas: Q. Tran (an—az)—Tran as—Tran az

. hs
newpid : V x. Va: x — Q. (Vo' : x. Tran (aa’)) — Tran (¥ [x] @) (as in this example) turn out to be different. Therefore we need the
rtapp : V' x. Ya:y — Q. Tran (V[x] @) — Va':x. Tran (a ') auxiliary functionheq to compare values of possibly different types
*Ohori and Kato [15] define one primitive for creating identifiers for both term and by comparing their types first. The function corre_sponds to a ma-
type abstraction. trix on the types of the two arguments, where the diagonal elements

letrec
heq:Va:Q.Va':Q. Eqa — Eqa’ — Bool
= Aa:Q. Ao’ : Q.
typecase[\y:Q. Eqy — Eqa’ — Bool] a of
Bool = Ax:Bool.
typecase[A\y: Q. Eqy — Bool] o’ of
Bool = Ay:Bool. primEqBoolxy
e = ...false
81X 2=)\X:Eqﬂl XEqﬁz.
typecase[\y:Q2. Eqy — Bool] o’ of
B1x B = \y:EqB] xEq 5.
hea [51] 3] (x.1) (y.1) and
hea (8] [84] (x.2) (v.2)
e = ...false
3[x] B = Ax:(3B1:x-Eq (8 B1)).
typecase[\y:Q2. Eqy — Bool] o’ of
31 '= Av: (381’ Ea (8 B1)).
open x as (f1:x, xc:Eq (8 61)) in
openyas (31:x/, yc:Eq (8’ f1)) in
heq [3 81] [3' B1] xcyc

= ...false

in leteq = Aa: Q. Ax:Eqa. A\y:Eq a. heq [a] [a] xy
in...

Figure 7: Polymorphic equality ix?

compare recursively the constituent values, while off-diagonal ele-
ments returrfalse and are abbreviated in the figure.

The only interesting case is that of values of an existential type.
Opening the packages provides access to the witness fiypasd
3; of the arguments andy. As shown in the typing rules, the ac-
tual types of the packaged valuesindy, are obtained by applying
the corresponding type functiorsand 3’ to the respective wit-

operation onr is its application to the witness type of the package,
which is the only available type of kind. As we saw above, this
operation will produce the same result (nam@bpl) in both cases.
Thus, since the two arguments ¢q are indistinguishable by.”
contexts, the above result is perfectly sensible.

3.3 Discussion

Before we move on, it would be worthwhile to analyze #jelan-
guage. Specifically, what is the price in terms of complexity of
the type theory that can be attributed to the requirements that we
imposed?

In Section 2.3 we saw that an iterative type operator is essen-
tial to typechecking many type-directed operations. Even when re-
stricted to compiling ML we still have to consider analysis of poly-
morphic types of the fornva : 2. 7, and theirad hocinclusion in
kind Q2 makes the latter non-inductive. Therefore, even for this sim-
ple case, we need kind polymorphism in an essential way to handle
the negative occurrence 6f in the domain ofV. In turn, kind
polymorphism allows us to analyze at the type level types quanti-
fied over any kind; hence the extra expressiveness comes for free.
Moreover, adding kind polymorphism does not entail any heavy
type-theoretic machinery—the kind and type languagafis a
minor extension (with primitive recursion) of the well-studied cal-
culusF;; we use the basic techniques developed#p[6] to prove
properties of our type language.

The kind polymorphism oA is parametrici.e., kind analysis
is not possible. This property prevents in particular the construction
of non-terminating types based on variants of Giratti'sperator
using a kind-comparing operator [7].

For analysis of quantified types at the term level we have the

new construch. e. This does not result in any additional com-
plexity at the type level—although we introduce a new type con-

structorV+, the kind of this construct is defined completely by the
original kind calculus, and the kind and type calculus is still es-
sentially F». The term calculus becomes an extension of Girard’s

ness types. This yields a perhaps unexpected semantics of equalityy;; calculus [5], hence it is not normalizing; however it already

Consider this invocation of they function which evaluates toue:

eq[Ta: Q. o]
(a:Q=36:Q.8, (3:Q = Bool, true:Eq 3) : Eq «)
(a:Q=36:Q — Q.3 Bool,
(B:Q — Q = A\y:Q.7, true: Eq (3 Bool)) :Eq a)

At runtime, after the two packages are opened, the chlkgds
heq [38:Q. 5] [38:Q — Q. 8Bool|
(8:9 = Bool, true:Eq 3)
(B:2 — Q = Ay:Q.~, true:Eq (8 Bool))

This term evaluates torue even though the type arguments are

includes the general recursion constrfixtnecessary in a realistic
programming language.

Restricting the type analysis at the term level to a finite set of
kinds would help avoid the term-level kind abstraction. However,
even in this case, we would still need kind abstraction to implement
a type erasure semantics, which can simplify certain phases of the
compiler (Section 5). On the other hand, having kind abstraction at
the term level of\I” adds no complications to the transition to type
erasure semantics.

4 Analyzing recursive types

different. The reason is that what is being compared are the actualNext we turn our attention to the problem of analyzing recursive
types of the values before hiding their witness types. Tracing the types. Following the general scheme described in the previous sec-

reduction of this term to the recursive callq [3 1] [8’ 31] xcyc
we find out it is instantiated to

heq [(AG:92. B) Bool] [(AB:Q — Q. 3Bool) (Ay:Q.v)] true true

which reduces tbeq [Bool] [Bool] true true and thus tarue.

tion, we need to introduce a type construgigrielding a type iso-
morphic to the least fixpoint of a given type function. Since the
types we analyze are of kirfd, the kind ofp of interest is

p: (2= Q) - Q
Unfortunately there is a negative occurrence{bfn the domain

However this result is justified, since the above two packages of this kind, which—as it was with universally-quantified types in

of type Ja : Q. a will indeed behave identically in all contexts.

Section 3—prevents defining an iterator over this kind while main-

An informal argument in support of this claim is that the most any taining strong normalization of the type language. In the case of
context could do with such a package is open it and inspect the typequantified types we were able to resolve this problem by general-
of its value usingtypecase, but this will only provide access to a izing the negative occurrence ©6f to an arbitrary kind; however
type functionr representing the inner existential type. Since the such an approach is doomed in the case of recursive types since the
kind of the domain ofr is unknown statically, the only non-trivial ~ argument ofx must have identical domain and range.

One possibility is to follow the approach outlined by Crary and (pinds) «
Weirich in [1] for quantified types; since type variables bound by

X |bie| k=K | VXK

the fixpoint operator must be of kin@, an environment can be - ; RN RV

used to map them to types of kirfd without kind mismatches. (bypes) 7 = | i\éCM'III:tTH TTL T/‘\; T' ‘“T‘ [;Iace
While plausible and perhaps efficient, this approach (as pointed out | Typerec[r] 7 of (Tint; T} Tv; Tt T)
in Section 2.4) gives no protection against some programming er- ey T T Tt T
rors, and it is unclear how to combine it wi{’.

(values) v == 1 | Ax.v | Aa:k.v | Az:T.e | fixz:T.v
| foldvasT
4.1 Arestricted Typerec N
(terms) e uw=wv | x| els] |elr]]|ee€

To handle recursive types, we introduce a new construRtare | foldeasT | unfoldeasT

that acts as the right inverse of thigperec. We will first give an | typecase[r] 7’ of (€int; €—; ev; ests eu)

informal explanation of how th@lace constructor is used in our

solution by considering a restricted form of tligperec. This ap-

proach does not guarantee termination; we use it to ease the pre-

sentation of the* calculus.
Consider the iteratiolyperec[Q] T of (Tint; 75 Tv; Tt Tu) Q

in the case whenm is a recursive type, sgy(Aa: .int — «). In 87

many cases, the desired result will be another recursive type, say ., _, ./

p(Aa: Q.7') wherer' is the result of analyzing the body. If we

followed the approach we used in the case of polymorphic types

Figure 8: The\® language

<
>
R gy
>

Ax.m[X] (7' [x]) forx & fho(7) U fho(7)
(=)
Va:k. 1=V K] (Aa:k. T)

(i.e., if the iterator’s action on the type variable is suspended until V+x. T= V+(Ax~ 7)
the variable is replaced by a type upon unfolding the fixpoint), then (=) Q- Q-0 = Aa: A’ Q. ((=)$a)$a’
the result would be: VoVx. (x — Q) — Q= Ax. daiy — Q. Ay
p(Aa: Q.7 int a7ine (Typerec[Q] aof ...)) v X7 Ix] (A :x.ad [X])
v ((Vx. Q) — Q = da: (Vx. Q). Ax'.

In this case, the iterator ends up being apptietimes to thenth i
unfolding of the fixpoint, which does not correspond to the de- vV IX] (Ax-a[x] [X'T)
sired fixpoint. Instead the iterator must be applied to the body of p :(Vx.fx — fx) — Q = da: (Vx. ix — bx). pSa
the type function, but—in contrast with the behavior in the case
of a quantified type—the iterator shoutiisappearwhen applied Figure 9: Syntactic sugar for?
to the type variablex. Since the fixpoint notation represents a ‘
type isomorphic to an infinite unfolding of the body, the traver-
sal of the entire infinite tree is complete with one iteration over
the body. In other words the iterator must satisfy an equation like
Typerec[Q] a of ... = a so that the result of analyzing the body Typerec[x] (Place 7) of (fint; 7—; Tv; Tbs Tu) o T
IS Aa: Q. 7 int @ Tine . Typerec[] (4 7") of (Tint; T—; Tv; Tt Tu) ~

Therefore, we need to distinguish between type variables bound Tt
by a polymorphic or existential quantifier and those bound in a re- (Aa: k. Typerec[s] (7" (Place @) of (Tint; T} v Tuti Tu))
cursive type. This reasoning leads us to a solution based on the v
work of Fegaras and Sheard on catamorphisms over non-inductiveThe constructoPlace can now be applied to a type of arbitrary
datatypes [4]. The main idea is to introduce an auxiliary type con- kind, but its return result must i@. This implies thatPlace has
structorPlace of kind Q — Q which is the right inverse of the the kindvy. x — €. Butthis is unsound since we can not constrain

case, the type reductions are:

iterator,i.e., it holds that the kind ofr above (the argument &ace) to match the result kind
 of the Typerec.
Typerec[Q2] (Place 7) of (Tint; T3 Tv; Tyt Tu) ~> T Adopting the solution given by Fegaras and Sheard, we modify
The iterator processes the body of a recursive type with nd the domain of intensional analysis: in place{®ofwe introduce a
teu arameterized king, and require that the type being analyzed
type variable protected undBtace. While processing the body, the 4 d 9 ype g y

.) in Typerec[s] 7 of (Tint; T—; Tv; Tp; 7o) is Of kindfix. The con-

iterator eventually reduces to instances of the form structorPlace must then have the polymorphic kiftk. x — fy,
Typerec[Q)] (Placea) of ..., and the fix-point constructgrthe kindvx. (bx — tx) — bx.

We define theA? calculus in Figures 8 and 9. Figures 10, 11,

which reduce tax. The reduction rule for the iterator over a recur- and 12 show the static semantics. Figure 13 shows the dynamic

sive type is semantics.

Types which had kind2 in AF could be analyzed by Byperec

/
Typerec[Q] (p7') of (Tint; T—; Tv3 Tyt; Tu) ~ with an arbitrary result kind:’. In our new language?, a type

T , that can be analyzed by an arbitrafyperec construct must have
(Aar: Q. Typerec[Q] (7' (Place) of (Tine; 75 Tv; Tyt; Tu)) the kindy for all possibles. Thus the kind2 of A7 is represented
by the kindvy. fix in A%,
4.2 The general case To be able to analyze function and polymorphic types, we now

have to modify their kinds as well; to avoid confusion with the
&onstructors based @i, we denote the new constructors By, V,
and\?(Figure 8). The kind rules for these constructors are shown

The previous approach does not generalize to the case when th
result of theTyperec may be of an arbitrary kind. In the general

| Kind formation £+ & | ‘Term environment formation & AFT ‘

xe& EFk EFki EFka & xkk EFA EAFT EAFRT:Q
EbEx EFtk EF k1 — Ko EFVx. K EAFe ESAFT z:T
‘Type environment formation &+ A‘ ‘Term formation &;A;Tke: 7-‘
EFA EFk EAFT z:7inT
Eke EFA ok EA TRz o T
‘Typeformation E;A}—T:n‘ EART EATERe: 7 EAFT~T 1 Q
EFA E;A;T i int ENTFe: 7
E;AFRint : Vx.hx S ATV N & ATFe: ur
LA ainina S v =i — i ; X-Ix —ix &4 y
a:kin ARV VY (X — bY) — bx E;A;T HunfoldeasT : 7$(pT)
EAFair ARV v (VX) = i
’ ;) ’) ESAFT Vx.bx — E;N;T e : 78(pr
EAF[VX (5 — By) — ix XX X (b7)
E; A F Place : Vx.x — bx E;A;T'foldeasT : pr
EN a:kbT K EAFT K=Kk EAFT K Ex;iATFv: 7 S;A;FI—e:V+T Sk
EAF k. T k—K EAFTT 1k

5;A;F|_A+X.’UZV+X.T 5;A;F}—e[li]+:7[fc]
EX;AFT K EAFT V.6 EFK
ESAFAx.T V. EAFTIE] : k{K'/x}

EANa:k;THe: T ENT,zithe: 7
EANTFAak e : Yokt EATHFIM:T.e:T— T

g:ﬁt;miﬂ EANThRe Vst EART @k
g;A'—T_):ﬂHHhHHH*)H—)/{ 5;A;F|—e[r']:r7-'
EAFTy Vx.(x = k) = (X = K) — K

EAF T (VX-iR) — (VX K) = K EATFer :mm—11 EATFe i

EAFT, (b —tK) = (k> K) — K EATFeres : 7

E; A+ Typerec[] T of (Tint; T—; Tv; Tyrs Tu) & K
ENT,x:Thw T
+
T=V X1.--Xn-VA1:K1...Qm Km:T1L — T2.
Figure 1O:>\f2 type formation rules n>0m2>0

E;N T Hfixx:Tov @ 7

in Figure 10. We can define equivalents of i types(—), V, EAFT : Q—=Q

andV' starting from—>, ¥, andV' respectively. The key intuition EART Q-

in the definition (Figure 9) is that we thread the same kind through E AL e o Tint ,

all components of kind2. For example, expanding the definition EATHes VféiQ-VOé Q1 (a1 — az)
of 7 — 7/ we obtain its equivalent\x. = [x] (7 [x]) (7' [x]). Ex- EAThey 1 Vx.Varxy — Q.7(Vx]a)
préessed in tgrms of thesg deriyed types, the typing rules fqr most E AT F e : Yoi (Vx.Q). 7 (V+a)

A¥ terms (Figure 11) are identical to those)ff. Compared with E;AT e, : Va:(Vx.ox — bx). 7 (pa)

AP, the term language df? has two new constructsfeld e as T
andunfold e as 7 — to implement the isomorphism between a re-
cursive type and its unfolding.

Each of these constructors must first be applied to kibdfore
being analyzed, whereis the kind of the result of the analysis. In
all other aspects the type-level analysis proceeds a$ iby iter-
ating over the components of the type and then passing the results
of the iteration and the original components to the corresponding typecase does not iterate over the structure of a type, its reductions
branch of the iterator. For example, consider the analysis dhthe do not introduce thélace constructor; thus the type analyzed by
andV constructors (Figure 12): Typerec[x] must be of kindgx, but atypecase can only analyze
types of kind(2, i.e., Vx.fx. It is easy to see that there are no
closed types of this kind constructed usiRface. Thus there are

E; AT typecase[7] 7' of (eint; e—; ev; ers) + 77

Figure 11:A% term formation rules

Typerec[x] (int [k]) of (Tint; T—; Tv; Tk Tu) ~ Tint

Typerec[x] (¥ [s] [K'] 7) of (Tint; T3 Tv; Tups Tu) ~ no reduction rules fotypecase analyzing thePlace constructor.
v [K'] T (Aa: k. Typerec[s] (7 @) of (Tine; T3 Tv; Tyt Tu)) We show this (in Section C.1) when proving the soundne9§0f
The reduction rules fotypecase are similar to those in”, with The language\? enjoys the properties off " listed in Section 3

the recursive type handled in an obvious way (Figure 13). How- (for detailed proofs, see Appendix C). For instance, we prove
ever, there is one subtlety in thgpecase reduction rules. Since Strong normalization using Girard's method of candidates [6] as

10

Type reduction &A1~ T : K E N aikbETi~ T2 K

EAF K. T~ Ak To @ k— K

. Lo . / roL
EAFT K EAF T~ K EAFTI~1 kK — kK ESAFTI~ 15 0 K

EAFT~T K EEAF T ~T L K

EAFTIT ~TaTh i K

&; A+ Typerec[x] (int [x]) of (Tine; 75 Tv; Tyr; Tu) & K

EAFTI~ Tt K EiAFT~>T3 L R

ESAFTI~T3 0 K

&; A & Typerec[x] (int [s]) of (Tint; T Tv; Tb; Tu) ~ Tine © K

E; A+ Typerec[k] 71 of (Tint; T Tv) Tt Tu) ~> 71 & K
A / . ’ ’ ’ y Iyt T 1
£ x; TR &; A F Typerec[s] 72 of (Tine; T Tv; Tups Tu) ~> 75 K

EAFAx. T~ Ax. T Vx. Kk

E; A+ Typerec[s] (=) [k] 71 T2) of (Tint; T—; Tv; Tts Tu) o T TITeTI Ty & K
EiAFTI~ T2 VXK EFFK

E; A, a: k' = Typerec[s] (T @) of (Tint; T—; Tv; Tr; Tu) ~ 7' 1 K
EAF T[]~ 2 [k 1 w{K/x} ’ b Tk

E; A+ Typerec|x] (V (K] [K']7) Of (Tint; T—; Tv; T Tw) ~ 7v [K']T Ak’ 7') K
EAN ok FT K EAFT K
EAF Qa:k.T)T ~1{r'Ja} K

&, x; A F Typerec[s] (7 [x]) of (Tint; 73 T Tps Tu) > 7' 1

E; A+ Typerec|«] (V+[/<a] 7) of (Tint; T3 Tv; Tts Tu) ~> T T(AX.T') & K
E,X;AFT VX Kk EFK
EAF (Ax.7) [K] ~ m{r' /x} : kK /x} E; A, ok = Typerec[x] (7 (Place [k]) of (Tint; 75 Tv; Tps Tu) ~ 7' 1 K

E; A+ Typerec[r] (p [k] 7) of (Tint; T—; Tv; TS Tu) ~ T T Ak T') 1 K
EAFT Kk — K a ¢ fto(r)

EAF k. Ta~ T k— K

&; A+ Typerec|k] (Place [k] T) of (Tint; T—; Tv; T4y Tu) 1R

&; A = Typerec[k] (Place [k] 7) of (Tint; T Tv; Tup; Tu) ~ T 1 K
EAFT VY K X & fkv(T)

EAFAx.TIX]~>T VX K

Figure 12: SelectediQ type reduction rules

unfold (fold v as T) as 7~ v (value) v =14 | Ax:7.e | foldvasT | unfoldvast
+ .
PO, oo e | Aa:k.v | Ax.v | fixz:mv
fold e as 7~ fold ¢’ as T unfold e as 7 ~» unfold ¢’ as T (context) E == [] | Ee | vE | E[r] | E[“r

) fold E as 7 | unfold E as T
typecase[r] int of (eint; €—; ev; et) ~* Cint

typecase[7] (11 — 72) of (€int; €—; ev; er; eu) ~ e [11] [12] (redex) r (Az:7.e)v | (Aa:k.v)[7] | (A+X. v) [nr

(fixz:1.v)v" | (fixz:7.0) [7]

(fixz:1.v) [f@]Jr

unfold (fold v as 7) as 7

typecase[7] 7’ of (€int; e—; ev; et eu)

typecase[7] int of (eint; e—; ev; e s eu)

typecase[7] (7" — ") of (eint; e—; ev; s €p)

typecase[7] (V [£] ') of (eint; e—; ev; ers ep)

typecase[7] (¥ [£] 7') of (eint; e—; ev; er; eu) ~ ey [nf [7']
typecase[7] (V+Tl) of (€int; €—; ev; e eu) ~ e [1]
typecase[7] (u7") of (€int; e—; ev; eyr; en) ~ eu 7]

gekFT ~*1V:Q v’ is a normal form

typecase[7] 7' of (eint; e—; ev; et en) ~
typecase[7] ' of (eint; e—; ev; et eu)

(
+
typecase[r] (V' ') of (eint; e—; ev; eyt eu)
typecase[r] (p7’) of (eint; €—; ev; eyt eu)

Figure 14: Term contexts

Figure 13: Selected® term reduction rules

. o 4.3 Limitations
for A7, with a few adjustments: Since our “base” kinds para-
metric, we defineR,C,. as the set of types of kind g« for which The approach outlined in this section allows the analysis of recur-
Typerec[s] 7 ... belongs to a candidatg, of kind x whenever the sive types within the term language and the type language, but im-
branches belong to candidates of the respective kinds, and the seposes severe limitations on combining these analyses. While one

Six[C/X] is defined ask; (S.[C/X]). can write a polymorphic equality function of typéx : Q. —

11

(kinds) k2= Q|T|r—k | x|k
(types) 7 u=int| — |V | V+\ R
| Tine | T | Tw | Tyr | T
| a| Ax.7 | T[] | dazs.T | 77
| Tagrec[k] 7 of (Tint; T—; Tv; T Tr)
(firtype) o == —>77 | V[k] Aa:k.0) | V+(Ax.a)
(values) v == 1 | A+X.U | Aa:k.v | Az:T.e | fixz:ov
+
| vlr] | v[x]
| Ri"t ‘ R (T,T/,U,'Ul) | RV (577_77—/71}/)
| Ryt (m0) | Ry (7,0)
(terms) e z=ov |z | e[nr | e[r] | e€

repcase[7] e of (eint; €—; ev; et er)
Rint | Ro (7,7",e,¢') | Ry (8, 7,7, €")
Ry (1.€) | Rp (7€)

Figure 15: Syntax of tha% language

a — Bool, and one can write a type operatBg as in Sec-
tion 3, it is not possible to write polymorphic equality of type
Va:Q.Eqa— Eqa — Bool. The reason is that althoudy (p)
reduces to a recursive type, its unfolding is &at(r$(p 7)), the
type needed for the recursive invocation of the equality function.
Indeed the types’ (p7) andr’ (7$(p 7)) are not bisimilar in gen-
eral, sincer’ may analyze its argument and produce different re-
sults depending on whether it is a recursive type or not. Thus the
problem can be traced back to our decision to defiies a “con-
structor” for kind, which makes recursive types observably dis-
tinct from their unfoldings. Alternatives are to limit the result kind
of Typerec to 2, or to regain transparency fifby eliminating the

7, branch ofTyperec and providing a reduction rule which always

EFA EAFay : x—Q
EEAFRo=R:T—Q EAFRy=ay : x — 0
EAFR.=7: |kl =0 &EAFR=7: || —Q

EAF R = da:|k — K| VB:|kl. 7B — 7 (aB)

e — K —Q
Ex;Ayoyix = QF R =7

E;AF Ryy. v =)\(XZ|VX.H,|.V+X.VO£X2X — Q.7 (ax] By)
2 |Vx. k] — Q

x| — Q

Figure 16: Types of representations at higher kinds

the kindy. Therefore, we use a dictionary passing style at the type
level. For every kind argument at a kind application, we supply
the type functionR,. (bound by the variablev,) mapping types

of kind « to the types of their representation terms. We show the
mapping in Figure 16.

In AP, theV and theV' constructor bind a kind. But the lan-
guage\’ requires that every construct binding a kind should also
bind the corresponding type dictionary. We therefore introduce tags
at the type level corresponding to every type constructéyirand
a corresponding kind@'. The type-level analysis operatoFagrec)
now operates on tags. Therefore, we get the following translation
of AP kinds toA% kinds.

Q=T
Ix| = x

Ik — &'| = |K| = ||
IVx. k| = ¥x. (x — Q) — ||

The formation rule for the tags (Figure 17) follows directly
from the kind translation and th&” kind of the corresponding
type constructor. The mapping af types toAk tags (Figure 20)
is also straightforward. The only interesting case is that of a kind
function Ay. 7; the \}, translation also binds a type dictionay,.
Since we do not have the constructor in\”", we only need to fill

maps recursive types to recursive types; since the analogous transi, 3 type of the appropriate kind for the, branch of theTagrec.

formation at the term level in the latter case will require combining
typecase with recursion, the resulting language exceeds the scope
of the current paper.

5 Type-erasure semantics

We give a type erasure semantics for our calculi following Crary
et al. [2]. This embedding simplifies certain stages of the com-
piler, most notably typed closure conversion. The basic idea is to

construct term-level representations of types and pass these rep-

resentations at runtime. The term-level type analysis operator is
modified to analyse these representations.

5.1 Type-erasure for A\’

Since only types of kind are analysed, we provide representation
constants for types of kin€; the representations for other kinds
will be constructed inductively. Thus the; language (Figure 15)
has the constamR;,: corresponding to the typet, and representa-
tion constants likd&k_, corresponding to eack? type constructor.
Consider the problem of typing these representations. We intro-
duce the type constructdt to type the representation for types of
kind Q. Types of higher kind are translated as functions from rep-
resentations to representations. However, the kind polymorphism
in A’ complicates this. For example, consider the type: x. o
To get the type of the runtime representatiorngofve must know

12

The Tagrec construct provides primitive recursion at the type
level. Its reduction rule (Figure 18) is similar to that of thgperec
in A7, Consider the reduction for thg [«'] 71 72) constructor.
Herer is the type dictionary for the kind’ andr corresponds
to the body of thé/ constructor of\”. The Tagrec applies thery
branch to the kind:’, the dictionaryr;, the bodyr., and the result
of the iteration over the body.

E; A, a:k' = Tagrec[x] (12) of (Tine; 73 Tv; Tup; Tr)
=7k

E; A+ Tagrec[s] (Ty ['] 71 72) of (Tine; T—; Tv; Tups Tr)
=1y k)T (Qaik’ . T) K

The term level in\E contains term-level tags corresponding
to the type constructors of”. We introduce the constructd®
at the type level to type the term-level tags. Figure 17 shows the
formation rules for the term-level tags. Giver\A type r of kind
Q, its term tag has the typB (|7|) where|r| is the type tag of-.
Intuitively, it makes sense since thepcase analyzes the term tag
and theTagrec analyzegr|. Therepcase has the obvious reduction
rule (Figure 19); every branch is applied to the components of the
corresponding term tag.

In Figure 21, we show the representation)gt types as\h
terms. The key point is to maintain the invariant that every kind
abstraction introduces the corresponding type tag and every type
abstraction introduces the corresponding term tag. Therefore, the

kind and type abstractions are translated as:
R(Ax.7) = A+x. Aoy x — Q.R(7)
R(Aa:k.T) = Aa:|k|. Aza : Ry . R(7)

The kind application and the type application must supply the cor-
responding tags. The type taghs (Figure 16) and the term tag is
the translation itself. Therefore, the kind and type applications are
translated as:

R(7 [5]) = R(7) [|5]]" [Re]
R(r7') = R(7) [|7'] (R(+))

The translation of type constructors follows from their kind. Con-
sider the translation of thé constructor. This constructor binds a
kind x and a typer. Therefore, the translation introduces a kind
and the corresponding type tag énda,) and a type and the cor-
responding term tagy(andz,). The Ry denotes that this is the
term tag for thev constructor.

R(V) = A+X. Aay:x — QAa:x — T.Aza: Ry—a ().
RV (X7 RX7a7 1‘0‘)

The Typerec translation uses eepcase, and a fixpoint to simulate
the recursion.

We show the translation of terms toAL terms in Figure 22.
The interesting part of the translation is the use ofTagrec con-
struct to define the type of the translated term. This is possible
only because our system is fully reflexive, but this is crucial for
the term translation. In particular, to prove that the translation of a
type application and a kind application are of the correct type, the
type reduction relation must commute with respect to type and kind
substitution which is enforced by the definition of our type analysis
operators.

In Appendix B, we give the detailed semantics)d} and the
translation from\” to \L.

We can prove the following propositions about the translation
of A to AL The propositions always extend the original type
environmentA with a type environmenf\(£) which binds a type
variablea,, of kind x — € for eachy € £. Similarly the term-
level translations extend the term environmEnwith T'(A), bind-
ing a variabler,, of type R,.« for each type variable bound inA
with kind .

Proposition5.1 If &A + 7 : &k holds in AP, then
IEI; 1Al AE) F |7 = |x| holds inA%.

The runtime representatidd(7) of aA! typer in AL is computed
as shown in Figure 21.

Proposition 5.2 If &;A F 7 : kand&; A F I hold in A7, then
IEL; 1A, AE);|T|, T(A) F R(7) : R. |7| holds in\E.

Figure 22 gives the translatiga| of A" terms toAL terms. The
operational semantics of; is summarized in Figure 19.

Proposition 5.3 If &;A;T F e : 7 holds in AL, then
IEL; 1AL, AE);|T|, T(A) F |e| : Type|r| holds inAE.

5.2 Type erasure for A9

We saw in Section 4.1 that by restricting the result of Tggerec
to kind Q, we can handle the analysis of recursive types witf’a

13

like calculus (with the addition of @ constructor of kind? —

Q — Q). In practice, this is sufficient. Ayperec is used only for
typing a term-levetypecase. Since the type of every branch of the
typecase must be of kind, the result of thélyperec must also be

of kind 2. The method in Section 5.1 can then be used to define a
type erasure calculus fdl?.

6 Related work

The work of Harper and Morrisett [8] introduced intensional type
analysis and pointed out the necessity for type-level type analysis
operators which inductively traverse the structure of types. The do-
main of their analysis is restricted to a predicative subset of the type
language, which prevents its use in programs which must support
all types of values, including polymorphic functions, closures, and
objects. This paper builds on their work by extending type analysis
to include the full type language. Craeyf al. [1] propose a very
powerful type analysis framework. They define a rich kind calcu-
lus that includes sum kinds and inductive kinds. They also provide
primitive recursion at the type level. Therefore, they can define new
kinds within their calculus and directly encode type analysis oper-
ators within their language. They also include a novel refinement
operation at the term level. However, their type analysis is “limited
to parametrically polymorphic functions, and cannot account for
functions that perform intensional type analysis” [1, Section 4.1].
Our type analysis can also handle polymorphic functions that an-
alyze the quantified type variable. Moreover, their type analysis
is not fully reflexive since they can not handle arbitrary quantified
types; quantification must be restricted to type variables of Kind
Duggan [3] proposes another framework for intensional type anal-
ysis; however, he allows the analysis of types only at the term level
and not at the type level. Yang [28] presents some approaches to
enable type-safe programming of type-indexed values in ML which
is similar to term-level analysis of types. Our solution for recursive
types is based on the idea proposed by Fegaras and Sheard [4] for
extending theold operation to non-inductive datatypes. Meijer and
Hutton [11] also propose a method for extending catamorphisms
to datatypes with embedded functions; however, their method re-
quires the definition of an anamorphism for every such catamor-
phism. The type erasure semantics follows the idea proposed in [2]
of constructing term-level representation of types and passing them
at runtime. This idea is similar to dictionary passing used in the
implementation of type classes [16, 9].

Necula [14] proposed the ideas of a certifying compiler and im-
plemented a certifying compiler for a type-safe subset of C. Mor-
risettet al. [13] showed that a fully type-preserving compiler gen-
erating type-safe assembly code is a practical basis for a certifying
compiler.

The idea of programming with iterators is explained in Pierce’s
notes [18]. Pfenning and Mohring [17] show how inductively de-
fined types can be represented by closed types. They also construct
representations of all primitive recursive functions over inductively
defined types.

7 Conclusions

We presented a type-theoretic framework for fully reflexive inten-
sional analysis of types which includes analysis of polymorphic,
existential, and recursive types. We can analyze arbitrary types
both at the type level and at the term level. Moreover, we are not
restricted to analyzing only parametrically polymorphic functions;
we can also handle polymorphic functions that analyze the quan-
tified type variable. We proved the calculus sound and showed
that type checking still remains decidable. We gave an encoding

of our calculus into a type erasure semantics. Since we can ana{17]
lyze arbitrary types, we can now use these constructs to write type-
dependent runtime services that can operate on values of any type;
as an example we showed how to use reflexive type analysis to sup-
port type-safe marshalling. [18]

Acknowledgments [19]
We are grateful to the anonymous referees of ICFP 2000 for their
insightful comments and suggestions on improving the presenta-

tion. [20]

References [21]

[1] K. Crary and S. Weirich. Flexible type analysis. fnoc. 1999 ACM
SIGPLAN International Conf. on Functional Programmjngages

233-248. ACM Press, Sept. 1999.

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism in
type-erasure semantics. Rroc. 1998 ACM SIGPLAN International
Conf. on Functional Programmingages 301-312. ACM Press, Sept.
1998.

D. Duggan. A type-based semantics for user-defined marshalling in [24]
polymorphic languages. In X. Leroy and A. Ohori, editoPspc.
1998 International Workshop on Types in Compilatisolume 1473
of LNCS pages 273-298, Kyoto, Japan, Mar. 1998. Springer-Verlag.

L. Fegaras and T. Sheard. Revisiting catamorphism over datatypes
with embedded functions. 123rd Annual ACM Symp. on Principles
of Programming Languagepages 284—-294. ACM Press, Jan. 1996.

[22]

(2] (23]

(3]

[25]
(4]

J. Y. Girard.Interprétation Fonctionnelle eflimination des Coupures ~ [26]
dans I'Arithnetique d’Ordre Sugrieur. PhD thesis, University of

Paris VII, 1972.

J.-Y. Girard, Y. Lafont, and P. TayloiProofs and TypesCambridge
University Press, 1989.

R. Harper and J. C. Mitchell. Parametricity and variants of Giraid’s
operator.Information Processing Letterg0(1):1-5, April 1999.

(3]

1€ [27]

(7]

28
[8] R. Harper and G. Morrisett. Compiling polymorphism using inten- (28]
sional type analysis. IRroc. 22nd Annual ACM Symp. on Principles

of Programming Languagepages 130-141. ACM Press, Jan. 1995.

[9] M. P. Jones.Qualified Types: Theory and Practic®hD thesis, Ox-
ford University Computing Laboratory, Oxford, July 1992. Technical

Monograph PRG-106.

C. League, Z. Shao, and V. Trifonov. Representing Java classes in a
typed intermediate language. froc. 1999 ACM SIGPLAN Interna-
tional Conf. on Functional Programming (ICFP’99)ages 183-196.
ACM Press, September 1999.

E. Meijer and G. Hutton. Bananas in space: Extending fold and un-
fold to exponential types. IRunctional Programming and Computer
Architecture 1995.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conversion.
In Proc. 23rd Annual ACM Symp. on Principles of Programming Lan-
guagespages 271-283. ACM Press, 1996.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to
typed assembly language. froc. 25th Annual ACM Symp. on Prin-

ciples of Programming Languagepages 85-97. ACM Press, Jan.
1998.

G. C. NeculaCompiling with ProofsPhD thesis, School of Computer
Science, Carnegie Mellon University, Pittsburgh, PA, Sept. 1998.

[10]

[11]

[12]

(23]

[24]

[15] A. Ohori and K. Kato. Semantics for communication primitives in
a polymorphic language. IRroc. 20th Annual ACM SIGPLAN-
SIGACT Symp. on Principles of Programming Languagages 99—

112. ACM Press, 1993.

J. Peterson and M. Jones. Implementing type classeBroln ACM
SIGPLAN Conf. on Programming Language Design and Implementa-
tion, pages 227-236. ACM Press, June 1993.

[16]

14

F. Pfenning and C. Paulin-Mohring. Inductively defined types in the
calculus of constructions. IRroc. Fifth Conf. on the Mathematical
Foundations of Programming Semantiggages 209-228, New Or-
leans, Louisiana, Mar. 1989. Springer-Verlag.

B. Pierce, S. Dietzen, and S. Michaylov. Programming in higher-order
typed lambda-calculi. Technical Report CMU-CS-89-111, Carnegie
Mellon University, 1989.

J. C. Reynolds. Towards a theory of type structurePioceedings,
Colloque sur la Programmation, Lecture Notes in Computer Science,
volume 19pages 408-425. Springer-Verlag, Berlin, 1974.

Z. Shao. Flexible representation analysis.Phoc. 1997 ACM SIG-
PLAN International Conf. on Functional Programmirgages 85—98.
ACM Press, June 1997.

Z. Shao. An overview of the FLINT/ML compiler. |Rroc. 1997
ACM SIGPLAN Workshop on Types in Compilatidnne 1997.

Z. Shao. Typed cross-module compilation.Aroc. 1998 ACM SIG-
PLAN International Conf. on Functional ProgrammingCM Press,
1998.

Z. Shao. Transparent modules with fully syntactic signatures. In
Proc. 1999 ACM SIGPLAN International Conf. on Functional Pro-
gramming (ICFP’99) pages 220-232. ACM Press, September 1999.

Z. Shao and A. W. Appel. A type-based compiler for Standard ML.
In Proc. ACM SIGPLAN "95 Conf. on Programming Language Design
and Implementatiorpages 116—-129, New York, 1995. ACM Press.

D. Tarditi. Design and Implementation of Code Optimizations for
a Type-Directed Compiler for Standard MLPhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA, Dec.
1996. Tech Report CMU-CS-97-108.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: A type-directed optimizing compiler for ML. IProc. ACM
SIGPLAN '96 Conf. on Programming Language Design and Imple-
mentation pages 181-192. ACM Press, 1996.

A. Wright and M. Felleisen. A syntactic approach to type soundness.
Technical report, Dept. of Computer Science, Rice University, June
1992.

Z. Yang. Encoding types in ML-like languages. Pnoc. 1998 ACM
SIGPLAN International Conf. on Functional Programmingages
289-300. ACM Press, 1998.

A Semantics of AL and Translation from \F
|Kindf0rmation SF,%|
EFT
‘Typeformation S;AFT:K‘
EFA
SEAFR T—Q
E,A}—T]nt:T
EAFT . . T—-T—->T
EAFT, :Vx.(x—=>Q) = (x—T)—>T
EAFTH: (WX (Xx—= Q) —T)—=T
SAFT, :T—T
EAFT T
E;AF Tine t K
EAFTL : T>T—oKk—>K—K
EAFTy Vx.(x—= Q) = Kx—-T)—=(x—kK) —kK
EAFTH: (W (Xx =) —=T) = (Vx.(x = Q) = r) =k

:T—kKk—k

E; A Tagrec[x] 7 of (Tin; 75 Tv; Tps Tp) & K

Term formation &;A;T ke : ’7'|

EART
E; AT F R :

RT‘int

E;NTHe:
EANTHR

RT

~(r,7,e€)

EANTFE : RT
: R(T-.77")

ESAFT : ENT e
E;N;T FRy (6], 7,7, ¢)

: Rua (T)
C R(Ty |k T7)

k| —Q

E;A;TFe : Ryy.ol(r)
&M TRy (re) : R(Y'7)

EAN;THe: RT
E;NTER, (1,e) : R(RT)

AT :T—-Q

A; Fl—e R

A Fl—e.nt : Tﬂnt

A;Fl—eﬂ :Va1:T.Rai — Vag:T.Ras — 7 (T a1 a2)
A

A

A

&;
&;
&;
&
E AT Fey :V+X.Vaxzx—>§2.

Vaiy — T. Ry (a) — 7 (Tv [
EATEFen : VarVx. (x = Q) = T.Ryx.o (o) =7
EATFe, :Va:T.Ra— 71 (Ty a)

x Q)
TV+ Oé)

E; AT - repcase[7] e of (eint; e—; ev; er; er) T

Figure 17: Formation rules for the new constructsifp

15

Type reduction E;AF7T— 1" : K,‘

&; A = Tagrec[k] Tint of (Tint; T3 Tw; T Tp) * K

&; A& Tagrec[k] Tine of (Tint; T T Tups Tp) F Tint & K
&; A+ Tagrec[s] 11 of (Tine; T—; Tv; Trs Tg) — Tl DR
&; A+ Tagrec[s] 72 of (Tint; T—; Tv; Tts TR) =Ty R

&; A+ Tagrec[x] (T — T 72) of (Tint; T3 Tv; Tt Tg)
ST TIT2 T T ¢ K

E; A, ok’ F Tagrec[s] (12 @) of (Tint; T—; Tv; s Tr)
—7 kK

E; A+ Tagrec[k] (T [£'] 71 72) of (Tint; T—; Tv; Tts Tr)
=1y [T (Qaik’. T 1k

Ex;Ayoxix — QF
Tagrec[s] (7 [x] ax) of (Tint; T Tv; T Tx) K

E; A+ Tagrec[k] (T 7) of (Tin; T Tv; Turs Tx)
= 1A T (Ax- dayix = Q.7') 1 R

E; A+ Tagrec[k] T of (Tint; T—; Tv; Ty Tr) kK

E; A Tagrec[k] (T 7) of (Tint; T—; Tv; Tts Te) = TpTT

Figure 18: Non-standard reduction rules #df types

K

repcase[T] Rint of (€int; €—; ev; eyts €R) ~ €int

repcase[] R, (7,7, e,€) of (eint; e—; ev; ex; €r) ~
e, [t][r]e€

repcase[7] Ry (k,7,7',€") of (eint; e—; ev; e s €r) ~

ev [w] 1] 7] ¢
repcase[T] R+ (7, €) of (eint; €—; ev; er; er) ~ et [T] e
repcase[T] Ry, (7, ¢) of (eint; e—; ev; er; er) ~ ep [T]e

e~ e

repcase[T] e of (eint; €—; ev; euts eR) ~
repcase[r] €' of (eint; e—; ev; e +; er)

Figure 19: New term reduction rules af,

la] = @

lint| = Tine [Ax. 7| =Ax. Aoy :x — Q. 7|
|—=|=T- |7 [s]] = 7] [|]] R

V| = Tv [Aa:k.7|=Aa: k| |7

V1= 7| = Il 17|

[Typerec[x] T of (Tint; T—; Tv; Tt
= Tagrec|[|s|] |7] of
(I7inels 17 13 I7ols 17l Ao T AZe &) |7ine])

Figure 20: Mapping oh\! types to\L; tags

nt) = Rint
R(—)=Aa:T. Aza:Ra. AB:T. Axg: R[.
RH (Oé,ﬂ,l'a,l'ﬂ)

R(V) = A+X. Aay:x — Q. Aa:x — T. Azq: Ry—a (o).
Rv (x, Ry, @, Ta)
SEE(V+) =Aa:(Vx.(x = Q) = T). Aza: Ryy. o a.
Rv* (o, za)
R(a) =
R(Ax.7) = X Aay i x — Q.R(7)
R(r [s]) = R(r) [|]]" [Rx]
RAa:k.7) = Aa:|k|. Axo: R . R(T)
R(r7') = R(7) |71} (R(7"))

R(Typerec[s] T of (Tint; T—; Tw; Tr))
(fixf:Va:T.Ra — R, (7").
Aa:T. Azo:Ra.
repcase[Aa: T. Ry (7" a)] zo of
R|nt = §R(mt)
R =Aa:T. Aza:Ra. AB:T. Axg: R 3.
R(r—) [a] za [0]
7"l (la)a) [8] (F[8120)
Rv = A x. Aay:x — Q Aa:x — T. Aza: Ry—a (o).

R(rv) b [Ra] o] 2a [AB: x. 7* (a B)]
(AB:x- Azg: Ry B.flaf] (za [B] z5))
Ry = Aa:(Vx. (x = Q) — T). Aza: Ryy. 0.
R(7.0) [0] o
[Azr(. Aay i x — Q.77 (a[x] Ry)] N
(A x- Aoy x — Q. fla[x] Ry (za [X] [Rx]))
R, = Aa:T. Aza: Ra. R(Tint))

[I71]
R(7)

= |Aa: Q. Typerec[] o of (Tint; T—; Tv; Tt

Figure 21: Representation af types as\% terms

B Properties of A\’

B.1 Soundnessof A’

The operational semantics faf” are in Figure 6. The reduction
rules are standard except for ttygecase construct. Thaypecase

li| =1
|lz| = =
\A+X.v| = A+X.Aax ix — Q.|
+ +
le[s]'| = lel [|<]]" [Rx]
|[Aa: k. v| = Aa:|K]. Azo: R o |v]
le[r]] = lel [I7]] R(7)
[Az:T.e| = Axz: Type|7|. |e|
lee’| = lel|€'|

|typecase[7] 7" of (eint; e—; ev; er)]
= repcase[Aa: T. Type (|7] a)] R(7') of
Rint = ‘eint‘
R_ = |e—]
Ry = ‘eﬂ
RV+ = ‘€v+‘
Ry = Aa:T. Az: Ra. |eint]
where
Type = Aa:T. Tagrec[Q?] o of
Tine = int
T, = AT AT Aar: Q. Ao : Q.
a1 — Q2
Ty =Ax.day:x = QL Ax—T.
Ay — Q. Va:x. Rya — o «
(Vx. (x = Q) —=T).
Aa: (Vx. (x — Q) — Q).
V+X.VO¢X ix — Q. ax] Ry
T, =int

TV+ = A

Figure 22: Translation okl terms toxl

=i | Az:iT.e | fixx:T.v | Aa:k.v | A+x.v

(value) v =

(context) E == [] | Ee | vE | E[r] | E[x]

(Az:me)v | (Aaikv)[r] | (Nx.e)[s]"
(fixz:r.v)v" | (fixz:7.0) [7]

(redex) r

(fixx:7.v) [K;]+

typecase[r] 7’ of (eint; e—; ev; eur)
typecase[r] int of (e.n»E7 e_; ey; W)
typecase[r] T — 7’ of (eint; €—; ev; V+)
typecase[7] V [k] T of (eint; €—; ev; e)

typecase|[T] Vi1 of (€int; €5 ev; er)

chooses a branch depending on the head constructor of the type

being analyzed and passes the corresponding subtypes as argu-

ments. For example, while analyzing the polymorphic tyge] =

it chooses they branch and applies it to the kindand the type
function 7. If the type being analyzed is not in normal form, the
typecase reduces the type to its unique normal form.

We prove soundness of the system by using contextual seman-¢ =

tics in Wright/Felleisen style [27]. The evaluation contekisre
shown in Figure 23. The reduction rules for the redexase shown

Figure 23: Term contexts

Lemma B.2 (Decomposition of terms)If - e: 7, then eithere is
a value or it can be decomposed into unigtieand r such that

Elr].

This is proved by induction over the derivationtet: , using

in Figure 6. We assume unique variable names and our environ-Leémma B.1 in the case of thgpecase construct.

ments are sets of variables. The notatioa: 7 is used a shorthand
fore;e;ebe:r.

LemmaB.1l If ;e - v : Q, thenv is one ofint, 1 — s,

V [K] vy, Or V+1/1.

Proof Sincev is well-formed in an empty environment, it does
not contain any free type or kind variables. Thereforean not
be av® since the head of a° is a type variable. The lemma now
follows by inspecting the remaining possibilities fer O

16

Corollary B.3 (Progress) If + e : 7, then eithere is a value or
there exists am’ such thate — ¢’.

Proof By Lemma B.2, we know that if e : 7 ande is not a
value, then there exist sonie and redex; such thaie = E [e1].
Sincee; is a redex, there exists a contractignsuch thate;, ~ es.
Thereforee +— €’ for e’ = E [es]. o

LemmaB.4 If - E[e]: 7, then there exists & such thatt- e: 7/,
and for alle’ such thatt ¢’ : 7" we haver E [¢/]:T.

s=a | Vv | VO [K]
| Typerec[s] v° of (Vint; v—; 1v; Vt)
s= 0 [int | = | (=)v | (=)vY
|V Vs | VIR [V | Vo
| Aa:k.v, whereV?. v £ 1% aora € fiv(v°)
| Ax.v, wherevr®. v # 10 [x] or x € fkv(v°)

Figure 24: Normal forms in tha? type language

Proof The proof is by induction on the derivation bf E [¢] : 7.
The different forms oft’ are handled similarly; we will show only
one case here.

e caseE = FEjei: We have that (E;[e])e1 : 7. By the
typing rules, this implies that E; [e]: 7, — 7, for somer;.
By induction, there exists & such that- e: 7" and for alle’
such that- ¢’ : 7/, we have that E; [¢/]: 71 — 7. Therefore
= (E1 [6’])61:7'. O

As usual, the proof of soundness depends on several substitu-
tion lemmas; these are shown below. The proofs are fairly straight-
forward and proceed by induction on the derivation of the judg-
ments. The notion of substitution is extended to environments in
the usual way.

LemmaB.5 If £, x F xand€& + &/, thenE - k{x'/x}.

LemmaB6 If &, x;AF T :
m{k'/x} + K{K"/x}.

kand& F k', then&; A{x'/x} -

LemmaB.7 If &, ;AT F e @ 7 and & + k, then
EAMr/xET{k/x}Fe{s/x} 7{r/x}.

LemmaB8 If &;A,a:x" F 7 : kand& A F 7 @ &/, then
EAFT{T/a} : k.
LemmaB9 If &;A,a: ke : Tand&;A F 7' : k, then

E;NT{r' Ja} Fe{r'/a} : T{r'/a}.

Proof We prove this by induction on the structure @f We
demonstrate the proof here only for a few cases; the rest follow
analogously.

e casee = e; [11]: We have that; A 7' : k. and also that
E;A a: kT F ei[r1] : 7. By the typing rule for a type
application we get that

E;A a:k;T'Fer : VB:k1. 72 and

E;A a:k 71 : k1 and

T =72{m/B}
By induction ones,

EN;T{T Ja} Fe{r' /a} : VB:k1.T2{7"/a}
By LemmaB.8&; A+ {7’ /a} : k1. Therefore

& AT fa} b (ea{r' fa}) [{7 Ja}] :

(ro{"fa}){m{r"/a}/B}

But this is equivalent to

&N {7 Ja} k- (a7’ /a}) [mfr/ad] =

(r2{m/BI7 [}

17

e casee = e; [mr: We have that; A, a:x; T Fer [m]+ i T
and&; A+ 7' . k. By the typing rule for kind application,
E;A a:k; T Fer : Vx.m1 and
T = Tl{l/il/X} and
5 [K1
By induction oney,
E;N;TFe{r'/a} : Vx.11{r'/a}
Therefore
EATE (eafr'/a})]+ (7' /a}){m/x}
Sincex does not occur free in’,

(ri{r’JaP){r1/x} = (m{m/xD{7"/a}

case e typecase[ro] T1 of (eint; e—; ev; er): We
have that&; A F 7/ k and & A, a KTk
typecase[ro] 71 of (eint; e—; ev; e) To71. Using
Lemma B.8 on the kind derivation of, and 71, and the in-
ductive assumption on the typing rules for the subterms we
get,
EAFTo{r' /a} : 2 — Qand
E;AF m{r' /a} : Qand
E;N;T{7 /Ja} + em{T'/a} : (1oint){r’/a} and
ENT{r Ja} ke {T"/a} :

(Va1 :Q2.Vas : Q.10 (1 — a2)){r'/a} and
E;NT{r' Ja} - ev{T'/a} :

(Vx.Va:x — Q.70 (¥ [x] @){r'/a} and
E;N;T{r Ja} F e\#{T//a} :

(Vo:¥x. Q.70 (V' @) {7'Ja}
The above typing judgments are equivalent to
E;AFTo{r'Ja} : © — Qand
E;AF m{r' /a} : Qand
E;NT{r' Ja} + em{T'/a} : (10{7'/a})intand
E;NT{r' Ja} e {r'/a} :

Vog : Q. Voo Q. (To{Tl/a}) (Oél — CMQ) and
E;N;T{7' Ja} +ev{T'/a} :

V'x.Va:x — Q. ({7’ /a}) (¥ [x] @) and
ENT{T Ja} e /a} :

Ya:¥y. Q. (o{7'/a}) (Y a)
from which the statement of the lemma follows directly™)

cT,

LemmaB.10 If &;A;T,z: 7" F e :
then&; A;T Fe{e'/z} : 7.

Tand&; AT F €

Proof Proved by induction over the structure«f The different
cases are proved similarly. We will show only two cases here.

e casee = Aa:k.v: We have that
EN T, z:7 - Aok v : Ya: k. T and
ENTEFE 7

LT
Sincee can always be alpha-converted, we assumedhiat
not previously defined id\. This implies&; A, a: ;T x :
7' v : 7. Sincex is not free ine’, we have; A, a: ;T -
e’ : 7'. Byinduction,&; A, a: ;T F v{e’/x} : 7. Hence
E; AT F Aa:k.v{e Jx} : Yaik. T

casee = typecase[1o] 71 of (€int; €—; ev; ev+): We have

that
E AT e " and
E; AT, x:7' - typecase[ro] 71 of (eint; e—; ev; e t) -
T0 T1

By thetypecase typing rule we get

(kinds) k:u=Q |-k | x| VYK

T

=int| —> | V|V
| a| Ax.7 | dak.7 | T[] | 7T

| Typerec[x] T of (Tint; T Tv;)

(types)

Figure 25: The\! type language

EAFT : Q— Qand

E;AF T : Qand

ENAT,2:7" F ent @ Tointand

EAT,z:7' Fe, : Var:Q.Vaz: Q.79 (a1 — a2) and
EANT,z:7" ey : V+X.Vazx—>Q.To(V[X}a) and
E AT x:m' Fey : Va:¥x. Q1o (V+a)

Applying the inductive hypothesis to each of the subterms
€int, €, €Y, €t yields directly the claim.]

Definition B.11 e evaluates t@’ (writtene — ¢’) if there existE,
e1, andes such thate = E'[e1] ande’ = E [es] ande; ~ es.

Theorem B.12 (Subject reduction) If - ¢ : 7 ande +— ¢/, then
Fe:r.

Proof By Lemma B.2, can be decomposed into unigéieand
unique redex; such that = E'[e1]. By definition,e’ = E [e2]
ande; ~» ea. By Lemma B.4, there exists such thatk e; : 7.

By the same lemma, all we need to prove is that : 7’ holds.
This is proved by considering each possible redex in turn. We will
show only two cases, the rest follow similarly.

e casee; = (fixz:71.v)v": Thenes = (v{fixz:m1.v/x})v'.
We have that- (fixz : 71.v) v’ : 7/, By the typing rules for
term application we get that for some,

Ffixe:m.v:me — 7 and
Fo'im
By the typing rule forfix we get that,

Fr=m—71 and

€ 66,x:Te > T Fuv:
Using Lemma B.10 and the typing rule for application, we
obtain the desired judgment

F (v{fixz:mi.v/z}) v : 7

T — T

case e; typecase[ro] T1 of (eint; e—; ev; ev+): If
71 IS not in normal form, the reduction is tes
typecase[7o] 11 of (eint; e—; ev; e), wheree;e - 71 ="
vy : Q. The latter impliess;e = o171 = 1011 : 2, hence
F e : 7’ follows directly from- e : 7.

If 7 is in normal formwy, by the second premise of the typ-
ing rule fortypecase and Lemma B.1 we have four cases for
v1. In each case the contraction has the desiredtype, ac-
cording to the corresponding premises of thygecase typing
rule and the rules for type and kind applications. |

B.2 Strong normalization

The type language is shown in Figure 25. The single step reduction
relation ¢ ~» 7') is shown in Figure 27.

LemmaB.13 If &;A 7 : kandr ~ 7/, then&; A - 77 ¢ k.

18

Proof (Sketch) The proof follows from a case analysis of the re-
duction relation{). a

Lemma B.14 If 7, ~ 7o, thenri {7/a} ~ m{7/a}.

Proof
71 10 T9.

casef:: In this caser;
This implies that

n{r/a} = (\B:k.7'{7/a}) T"{r/a}
This beta reduces to
(r'{r/a){r"{7/a}/B}
Sinceg does not occur free in, this is equivalent to
(r'{7" /B T/}
casef:: In this caser; = (Ax.7')[k] andme = 7' {x/x}.

We get that
m{r/a} = (Ax. 7' {r/a}) [x]
This beta reduces to

T{r/a}{r/x}

Sincey is not free inr, this is equivalent to
(r'{x/x){r/a}
casen:: Inthis caser; = A\3:k. 7' 8 andr: = 7’ andg does
not occur free inr’. We get that
mi{r/a} = AB:k.(7'{7/a}) B

Since this is a capture avoiding substitutighstill does not occur
free int'{7/a}. Therefore this eta reducest6{r/a}.

casens: In this caser; = Ax. 7' [x] andm = 7’ andy does
not occur free inr’. We get that

ni{r/a} = Ax. (7'{r/a}) [X]

Since this is a capture avoiding substitutignstill does not occur
free int'{7/a}. Therefore, this eta reducestt{r/a}.

The proof is by enumerating each possible reduction from

(A\B:k.7') 7" andre = 7' {7"/3}.

caseti: T = Typerec[x] int of (7in; T—; 7v; 7+) and
T2 = Tint- We get that
m{r/a} =

Typerec[x] int of
(mmf{7/a}; 7o {7/a}; ~v{7/a}; Ti{7/0})
But this reduces by thg reduction torin {7/a}.
casety: 71 = Typerec[s] (7" — 7") of (Tint; 7—; Tv; T)
and
o =7, 7' 7" (Typerec[k] 7" of (Tine; T—; Tv; Tt))
(Typerec[s] 7" of (Tint; T—; Tv; Tt))

We get that
n{r/a} =

Typerec[s] (7' {7/a} — 7"{7/a}) of
(tne{7/a}; T {7/a}; vl /a}; T {T/a})

This reduces by, to

m—{r/a} (t'{r/a}) (r"{1/a})
(Typerec[s] (7'{7/a}) of
(mne{T/}; T {T/a}; v{T/a}; T{T/a}))
(Typerec[s] (7"'{7/a}) of
(rne{7/a}; T {7/a}; ~v{r/a}; ra{T/}))

But this is syntactically equal te; {7/« }.
casets: 71 = Typerec[s] (V [x'] 7") of (7int; 7—; 7v; T,+) and
T2 = 7y [K'] 7' (AB: K. Typerec[] (1" B) of (Tint; T—; Tv; 7))
We get that

n{r/a} =
Typerec[s] (V ['] 7' {T/a}) of
(tine{T/}; T {T/a}; v{T/a}; T {T/a})

This reduces bys to

mv{r/a} [l (v'{r/a})
(A\B:k'. Typerec[x] ((t'{7/a}) B) of
(Tne{7/a}; T {7/a}; re{T/a}; Ti{T/0}))
But this is syntactically equivalent ta {7/a}.
casets: 71 = Typerec[x] (V+7") of (Tint; 7—; Tv; T+) and
72 =7 7' (Ax. Typerec[s] (7' [x]) of (Tint; 75 7v3 T+))
We get that

nifr/a)=
Typerec[s] (V 7'{7/a}) of
(mine{7/}; T {T/a}t; mo{T/a}; T{T/a})

This reduces by, to

Te{r/a} (F'{r/a})
(Ax. Typerec[x] ((7'{7/a}) [X]) of
(rne{7/a}; T {7/a}; ro{T/a}; Ti{T/0}))

But this is syntactically equal te; {7/c}. O
Lemma B.15 If 7y ~ 72, thenmi {x'/x'} ~ 72{K'/X}.

Proof
tion.

casef:: Inthis caser; = (\3:k.7') 7" andr = 7' {7 /3}.
This implies that

mi{w /X' = O8:6{w /XY 7K X D) TR XY
This beta reduces to
(T {&" XD K /X3 8}
But this is equivalent to
(r'{7" /BH{R"/X}

casefz: In this caseri = (Ax.7")[x] andme = 7'{x/x}.
We get that

m{w' /XY = (M. T {K'/X}) [{K"/X'}]
This beta reduces to
m{& /X Hr{s' /XY /x}
Sincey is not free inx’, this is equivalent to

(' {m/xH{x'/x'}

This is proved by case analysis of the type reduction rela-

19

casen:: Inthis caser; = A\3:k. 7' B andr: = 7’ andf3 does

not occur free inr’. We get that
m{w' /XY = A8:k{K /XY (TR XY B

Again 3 does not occur free in’{x’/x'}. Therefore this eta re-
duces tor’{x’/x’}.

casens: In this cases; = Ay. 7' [x] andm2 = 7’ and does
not occur free inr’. We get that

m{k'/X"} = M. (7K /X' [X]

Since this is a capture avoiding substitutignstill does not occur
free inT'{x'/x’}. Therefore, this eta reduces#6{x'/x'}.

caseti: T = Typerec[x] int of (7i; T—; 7v; 7+) and
T2 = Tint- We get that
m{s'/X'} =

Typerec[k{x'/x"}] int of
(mned &' /X Y5 7= AKX} oK XY T AR/ X D)

But this reduces by the reduction tor..{x’/x’}.
casets: 71 = Typerec[] (7" — 7") of (Tine; T—; Tv; TV+)
and

12 = 7. 7' 7" (Typerec[x] 7" of (Tint; T—; Tv; T4t))
(Typerec[s] 7" of (Tint; T Tv; Tt))
We get that
m{r'/x"} = Typerec[s{r/x'}] (7'{x'/X'} — 7"{K"/x'}) of
(mne{ s’ /X }s T AKX} AR /XY TR /XD
This reduces by, to
T A{s" /X (R XD (7R XD
(Typerec[r{r’/x'} (7'{K'/X'}) of
(Te{ K"/ }s T AR /XY oK /X Y T R /X))
(Typerec[s{x’/x'} (7"{/X'}) of
(T K"/ }s T AR /X Y oK /XY T R /X))

But this is syntactically equal te;{x’/x’}
casets: 71 = Typerec[s] (V[k1]7") of (Tin; T—; Tv; Tt)
and

T2 = 7y [k1] 7" (AB: k1. Typerec[x] (7' B) of (Tint; 7 Tv; 7))
We get that
n{x/x'} =
Typerec[r{r’/x'}] (¥ [m1{r"/x'} 7'{K"/X}) of
(mned{ K" /X'}s 7= AKX} AR XY T {R /X Y)
This reduces bys to

T {&" /X' } [k &/ X3 (7 {7 /X D)
(AB:x1{K"/X'}. Typerec[s{x'/x'} ((T'{K'/X'}) B) of
(Tned /X }5 T AKX} AR /XY T AR /XTY)
But this is syntactically equivalent ta {x’/x’}.

casets: 71 = Typerec[x] (V+7") of (Tint; 75 Tv; T +) @nd

72 = 707 (Ax. Typerecl] (' [x]) of (i 7—; 7v; 7y4))
We get that
m{'/x'} =

Typerec[s{x'/x'} (¥ 7'{x'/x'}) of
(Tined K" /X Y5 T= AKX s AR X Y T AW/ X Y)

This reduces by, to

TR /X T (T /X'})
(Ax. Typerec[s{x"/x"}] ((T"{x'/x'}) [X]) of
(mned{ K" /X s T= AR /X Y5 AR X s T AR /X))

But this is syntactically equal te;{x’/x’}. o

Definition B.16 A typer is strongly normalizable if every reduc-
tion sequence from terminates into a normal form (with no re-
dexes). We use(7) to denote the length of the largest reduction
sequence from to a normal form.

Definition B.17 We define neutral types, as
Ax.7 | da:k.T

a | not | nT | nolk] | n[k]
| Typerec[s] T of (Tint; T—; Tv; Tt)

no i=
n =

Definition B.18 A reducibility candidate (also referred to as a
candidate) of kindk is a setC of types of kind: such that

1. if 7 € C, thenr is strongly normalizable.
2. ifreCandr ~ 7/, thent’ €C.

3. if 7 is neutral and if for allr’ such thatr ~» 7/, we have that
7' € C, thent € C.

This implies that the candidates are never empty sinachids
kind , thena belongs to candidates of kind

Definition B.19 Let x be an arbitrary kind. LeC, be a candi-
date of kindx. LetCqo—.q—x—r—x b€ a candidate of kin@d —
Q— Kk —k— kK LetCyy. (x—0)—(x—r)—~ D€ a candidate of
kindvx. (X — Q) — (X — K,) — K. LetC(vX‘ Q) —(Vx. K)—kK be a
candidate of kindVx. Q) — (Vx. k) — k. We then define the set
Rq, of types of kind2 as
T € Rq iff
VTint € Cn
VT—> € C(Z—>$Z—>K)—>K—>KJ
V7v € Cux. (x—Q)— (x—r)—r
VT, v S C (Vx. Q2)—(Vx. k)—K
j Typerec[s] 7 of (Tine; T—; Tv; Tit) € Cae
Lemma B.20 Rq, is a candidate of kind.

Proof Supposer € Rq. Supposeint, 7—, 7v, andr,_+ belong to
CN! Cﬂﬂﬂﬂnﬂmﬂnv CVX.(XHQ)H(XHN)HKJ C(Vx.ﬂ)—»(Vx.m)—»m

respectively, where the candidates are of the appropriate kinds (see

definition B.19).

Considerr’ = Typerec[k] T of (Tint; T—; Tv; 7.+). By defi-
nition this belongs tc,,. By property 1 of definition B.187’ is
strongly normalizable and thereforemust be strongly normaliz-
able.

Considerr’ = Typerec[s] T of (Tint; T—; Tv; T+). Suppose
T ~» 11. Thent’ ~ Typerec[x] 71 of (Tint; T—; Tv; T+). Since
7' € Cx, Typerec[s] 71 of (Tine; 7—; Tv; T,4) belongs toC,. by
property 2 of definition B.18. Therefore, by definition, belongs
to Rq.

Supposer is neutral and for all;, such thatr ~ 7, 11 €
Rg. Considerr’ = Typerec[k] 7 of (Tint; T—; Tv; T+). Since
we know thatrin, 7—, 7v, andr,_+ are strongly normalizable, we
can induct oveten = v(Tint) +v(7—) +v(1v) + v (7). We will
prove that for all values den, Typerec[x] T of (Tint; T—; Tv; T+)
always reduces to a type that belongg€to given thatrn., 7, 7v,
andr\# belong taCx, Ca—a—r—r—r: Cuy. (x—Q)—(x—r)—r, @aNd
Cvx. ©)—(vx. n)—« F€Spectively (see definition B.19).

20

e len = 0 Thent' ~ Typerec[s] 71 of (Tint; T—; Tv; T 4) IS
the only possible reduction sineds neutral. By the assump-
tion onry, this belongs t@...

e len = k + 1 For the inductive case, assume that the
hypothesis is true foien = k. That is, forien =k,
Typerec[s] 7 of (7in; T—; Tv; T,+) @lways reduces to a
type that belongs taC.; given that 7in, 7, 7v, and
TV+ bE|0ng tocn; CQ—>Q—>N—>I€—>N! CVx.(x—>SZ)—>(x—>n)—>n1
and Ciyy. 0)—(vx. n)—r respectively. This implies that for
len = k, Typerec[s] T of (Tint; T—; Tv; T4) belongs to
C.. (by property 3 of definition B.18). Folen =k + 1,
consider 7/ = Typerec[s] T of (Tint; T—; Tv; Tp).
This can reduce toTyperec[s] 71 of (Tint; T—; Tv; Tt)
which belongs toC The other possible reductions are
Typerec[r] 7 of (Ti; 75 Tv; T+) Where 7y ~» Tmt, or
Typerec[s] T of (Tin; T Tv; V+) wheret_, ~ 77, or
Typerec[k] T of (Tint; T—; Tv; T+) wherery ~ T\é, or
Typerec[s] T of (Tint; T—; Tv; T;+) WherET e TV+ By
property 2 of definition B.18, each of.,, 7., 7, andr\#
belongs to the required candidate dad = k for each of the
reducts. Therefore, by the inductive hypothesis, each of the
reducts belongs t6,..

Therefore Typerec[x] 7 of (7in; 7—; 7v; T,4) always reduces
to a type that belongs t6,.. By property 3 of definition B.18,
Typerec[x] 7 of (Tine; T—; 7v; Tt @lso belongs t@... Therefore,
T € Rg O

Definition B.21 LetC; and(C- be two candidates of kinds, and
k2. We then define the sét — Ca, of types of kindk; — k2, as

T€C —»C iff V(' eCi=17€C)

Lemma B.22 If C; andCs are candidates of kinds; andk., then
C1 — Cs is a candidate of kind; — xo.

Proof Supposer of kind k1 — k2 belongs tacC1 — Cz. By def-
inition, if 7' € C1, thent 1’ € C>. SinceCs is a candidater 7’ is
strongly normalizable. Therefore,must be strongly normalizable
since for every sequence of reductians» 7 ... 7 ..., thereis a
corresponding sequence of reductions ~» 7 7 ... 7 T
Supposer of kind k1 — k2 belongs taC; — C2 andt ~ 7',
Supposer; € C;. By definition,7 71 € C2. ButT 7 ~ 7/ 7. By
using property 2 of definition B.18 ofi;, 7' 71 € Ca; therefore,
7' el — Co.
Consider a neutrat of kind k1 — k2. Suppose that for ait’
such thatr ~ 7/, 7' € C1 — C>. Considerr 71 wherer; € C;.
Sincer; is strongly normalizable, we can induct ovefr).
v(m1) = 0, thent 7 ~ 7’71, Butr' 7 € Co (by assumption
on 7’), and sincer is neutral, no other reduction is possible. If
v(m1) # 0, thent; ~ 71. In this casey 71 may reduce to either
7' or toT7{. We saw that the first reduct belongsde. By
property 2 of definition B.187; € C; andv(r{) < v(m1). By
the inductive assumption over(r;), we get thatr r{ belongs to
C2. By property 3 of definition B.187 71 € C». This implies that
T€C1 — Ca. O

Definition B.23 We usey to denote the set, ..., xn» of x. We
use a similar syntax to denote a set of other constructs.

Definition B.24 Let x[x] be a kind wheréy contains all the free
kind variables ofx. Letx be a sequence of closed kinds of the
same length and be a sequence of candidates of the correspond-
ing kind. We now define the s8t[C/¥] of types of kind«{%/X}

as

. ifk = Q, thenS,[C/X] = Ra.
L ifk = Xis thenS, [E/Y] =C;.
if & = k1 — K2, thenS,[C/X] = Sx,[C/X] — Sk,[C/X).

AW N P

. if k = Vx.«/, thenS,[C/X] = the set of types of kind
x{%/x} such that for every kin&"’ and reducibility candi-
dateC” of this kind,r ["] € S./[C,C" /X, X]-

Lemma B.25 S, [C/X] is areducibility candidate of kind{%/x}.

Proof Forx = €, the lemma follows from lemma B.20. For
k = ¥, the lemma follows by definition. Ik = k1 — k2, then
the lemma follows from the inductive hypothesisionandx- and
lemma B.22. We only need to prove the casedor Vy'. x’. We
will induct over the size ok with the’x containing all the free kind
variables ofs.

Consider ar € Sy, .+[C/X]. By definition, for any kindk:
and corresponding candidaf®, 7 [x1] € S./[C,C’'/X,X']. Ap-
plying the inductive hypothesis otf, we get thatS,./[C, C’ /X, X']
is a candidate. Therefore,[x1] is strongly normalizable which
implies thatr is strongly normalizable.

Consider ar € Sy, [C/x] and 7 ~ 7. For any
kind 1 and corresponding candidafé, by definition, 7 [k1] €
S.[C,C' /X, x']. Butt [k1] ~ 71 [k1]. By the inductive hypoth-
esis onx’, we get thatS,./[C,C’ /X, x] is a candidate. By prop-
erty 2 of definition B.18;m1 [s1] € Sk/[C,C’/X,X']. Therefore,
T1 € SV)(', K’ [C/Y]

Consider a neutrat so that for all7, such thatr ~ 71,
71 € Syy. w[C/X]. Considerr [k1] for an arbitrary kindx; and
corresponding candidat®. We have that [r1] ~ 71 [x1]. Thisis
the only possible reduction sineds neutral. By the assumption on
71 71 [k1] € Sw[C,C’' /X, X']. By the inductive hypothesis o,
we get thatS,./ [C, C’ /X, x] is a candidate. By property 3 of defini-
tion B.18,7 [r1] € S./[C,C’ /X, X]. Thereforer € Sy, /[C/X]-

O

Lemma B.26 Sm{n’/x’} [E/Y} =8 [E, St [E/X]/Y, X/]

Proof The proof is by induction over the structure of We
will show only the case for polymorphic kinds, the others fol-
low directly by induction. Supposes = Vx”.x”. Then
the LHS is the set of types of kind (Vx".x"{x"/x'){E/x}
such that for every kindx”’ and corresponding candi-
date C", 7[x"'] belongs t0S.r e /x3[C.C" /X X"]. Ap-
plying the inductive hypothesis tax’, this is equal to
S.[C,C", S [C.C" /x,x"1/%, X", x']. Butx” does not occur
free in x’ (variables ink’ can always be renamed). Therefore,
T[] belongs taS.~ [C,C"", S/ [C/X]/X, X", X']. The RHS con-
sists of typesr” of kind (vx”. &”"){%, x'{E/X}/X, X'} such that
for every kindx"’ and corresponding candida€’, v’ [x"] be-
longs t0S,.~[C, S [C/X],C" /X, X', X"]. Also, the kind ofr’ is
equivalent toVx”. k" {x’ /X' }){%/X}- o

Proposition B.27 From lemma B.25, we know thas,.[C/X]
is a candidate of kindk{%/X}, that So .o .x_x—x[C/X]
is a candidate of kind(2 — Q — k — &K
k){E/Xx}, that Syy. (x—o)—x—r—=x[C/X] is a can-
didate kind (Vx.(x — Q) — (x — &) —){E/Xx}

of
and Sy 0)—(vx.x)—x[C/X] is a candidate of kind
In the rest of the sec-

("x-Q) — (x.k) — w){E/X}
tion, we will assume that the types:, 7—, 7v, andr, ;. belong to
the above candidates respectively.

—

21

LemmaB.28 int € Ro = Sa[C/X]

Proof Considerr = Typerec[x{&/X}] int of (Tint; T—; Tv; Tt)-
The lemma holds ifTyperec[x{%/X}] int of (Tint; T—; Tv; Tr)
belongs to S.[C/R] is true; given that
Tt € Sx[C/X], and T € So—0—n—nx[C/X],
and v € Svx. (x=2)—(x—r)—r[C/X]s and
T+ € Sevx. Q)—(vx. r)—r|C/X]-

Since i, 7, 7v, and 7, are strongly normaliz-
able, we will induct overlen = v(nn) + v(r=) +
v(rvy) + v(ry). We will prove that for all values ofien,
Typerec[x{K/X}] int of (Tin; 7—; Tv; 7 +) always reduces to a
type that belongs t6,; given that the branches belong to the can-
didates as in proposition B.27.

e len = 0 ThenTyperec[x{R/X}] int of (Tint; T—; Tv; Tpt)
can reduce only tori: Which by assumption belongs to
S:[C/R].

e len = k + 1 For the inductive case, assume that
the hypothesis holds true foten = k. That is, for
len =k, Typerec[s{F/X}] int of (Tiw; 7 Tv; T4)
always reduces to a type that belongs &.[C/X];
given that 7ne, 7—, 7v, and 7 belong to S,.[C/x],

Sa—a—n—r—r[C/X], Svx. (x~2)—(x—r—x[C/X], and to
Svx.)= (vx. r)—=[C/X]. This implies that forlen = k,
the type Typerec[x{F/X}] int of (Tin; 7—; Tv; Tr)
belongs t0S.[C/xX] (by property 3 of definition B.18).
For len=k+1, 7 can reduce tom, which be-
longs to S.[C/x]. The other possible reductions are
to Typerec[x{R/X}] int of (7 7—; 7v; Tr) Where
Tint ~ Tine, OF 10 Typerec[s{%/X}] int of (Tine; 7205 Tv5 Tt)
where T 7', or to
Typerec[x{F/X}] int of (Tin; T—; Ty; T) Wherery ~ 7,

or to Typerec[x{/X}] int of (7ine; T—; 7v; 7/) Where
T4~ 7-\;+. By property 2 of definition B.18, each of,,,
™, T, T\;+ belongs to the same candidate. Moreover,
len = k for each of the reducts. Therefore, by the inductive
hypothesis, each of the reducts belong§1C/x].

>

Therefore,Typerec[x{%/X}] int of (Tine; T—; Tv; Tt) Always re-
duces to a type that belongs &[C/X]. By property 3 of defi-
nition B.18, Typerec[x{x/X}] int of (7in; 7—; Tw; 7 +) also be-
longs t0S.[C/X]. Thereforejnt € Rq. O

LemmaB.29 — € Rq — Ra — Ra = Sa—a-a[C/X].

Proof — € Rq — Rq — Rq if forall m € Rq,
we get that(—)m € Rq — Rq. This is true if for all
T2 € Rq, we get that(—)m 72 € Rq. This is true if
Typerec[x{K/X}] (—)T1 72 of (Tin; T—; Tv; T4#) belongs to
S.[C/X] is true with the conditions in proposition B.27. Since
T2, Tint, T, Tv, &Nd7, 1 are strongly normalizable, we will induct
overlen = v(71) + v(72) + V(i) + v(7=) + v(1v) + v(74).
We will prove that for all values oflen, the type
Typerec[x{F/X}] ((—)m172) of (7in; 7—; Tv; T4) always
reduces to a type that belongse[C/X]; given thatr; € Rq, and
72 € Ra, and 7ine € Sx[C/X]), and 7 € Sa—a—n—n—x[C/X],
and v € Svx. (=)~ (x—r)—r[C/X], and
T+ € Sevx. @)= (vx. 1) —r[C/X]- Consider
7 = Typerec[k{%/X}] ((—=)71 72) Of (Tint; T3 7v; Tt).

e len = 0 The only reduction of is

7" = 7, 71 72 (Typerec[s{7/X}] 71 of (Tint; 75 Tv; Tt))
(Typerec[k{R/X}] T2 of (Tint; T—; Tv; T4))

Since both = and 7 belong to Rq,
Typerec[x{®/X}] 71 of (Ti; 7—; 7v; 7+) and
Typerec[s{®/X}] T2 of (7i; 7—; 7v; T,+) belong to
S.[C/X]. This implies that~’" also belongs t&,. [C/X].

e len = k + 1 The other possible reductions come from the
reduction of one of the individual types, 72, Tint, 7—, Tv,
andr_+. The proof in this case is similar to the proof of the
corresponding case in lemma B.28.

Sincer is neutral, by property 3 of definition B.18, belongs to
SklC/X]- o

LemmaB.30 If for all 71 € S.,[C/x], T{1/a} € S, [C/X],
then\a:k1{R/X}. T € Sky—rs[C/X]-

Proof Consider the neutral type’ = (Ao : ki{K/X}.7) 1.
We have that is strongly normalizable and{a’/a} is strongly
normalizable. Thereforer is also strongly normalizable. We
will induct overlen = v(r) 4+ v(r1). We will prove that for
all values oflen, the type(Aa:x1{K/X}.7) 1 always reduces
to a type that belongs 8., [C/X]; given thatr; € S,, [C/x] and

m{n/a} € 8,[C/X].

e len = 0 There are two possible reductions. A beta reduction
yields {71 /a} which by assumption belongs ., [C/X].
If = 70 o anda does not occur free iny, then we have an
eta reduction tao 7. Butin this case {71 /a} = 70 71.

e [en = k + 1 For the inductive case, assume that the hypoth-
esis is true folen = k. There are two additional reduc-
tions. The typer’ can reduce t¢\a: x1{%/X}. 7) 71 where
71 ~ 71 . By property 2 of definition B.187;" belongs to
S«, [C/X]. Thereforer{r{'/a} belongs taS.., [C/X]. More-
over,len = k. By the inductive hypothesig)a:x1.7) 71
always reduces to a type that belongsStg [C/X]. By prop-
erty 3 of definition B.18(\a: k1. 7) 7{' belongs taS.., [C/X].
The other reduction of’ is to (Aa: k1{k/X}. ") 71 where
T ~ 7. By lemma B.14,7{m /a}~ 7"{7mi/a}. By
property 2 of definition B.18r" {11 /a} € S.,[C/X]. More-
over,len = k for the typer’. Therefore, by the inductive
hypothesis(\a:x1{%/X}.7"") 1 always reduces to a type
that belongs taS,., [C/X]. By property 3 of definition B.18,
(a:k1{R/X}. ") 71 belongs taS,, [C/X].

Therefore, the neutral type always reduces to a type that belongs
to S.,[C/X]. By property 3 of definition B.187" € S,,[C/X].
Therefore, Ao : k1{%/X}.T belongs taS,,[C/X] — Skx,[C/X].

This implies that\a : k1 {K/X}. T belongs taS.., .., [C/Xx]. O

LemmaB.31 VY € Syy. (x—0)—a[C/X].

Proof This is true if for any kind xi{%/X},
V[k1{F/X}] € Sx—a)—alC, Cxy /X, x]. This implies that

v [Hl {E/X}] € SXﬂQ[Ea Ciy /X, X} — Sa [Ev Cm/Yv X]

This
is

true if for all 7€ Sy—alC,Cu /X, x|, it
that V[xi{%/X}] T € SalC,Cx, /X X]- This

is
true

22

implies that V[x1{k/X}]T € Ra. This is true |if
Typerec[x{R/X}] (V[xi{R/X}T) of (Tin; 703 Tv; Tp)
belongs taS, [C/X] is true with the conditions in proposition B.27.
Since each of the types, 7, 7—, 7v, and Tt belongs to

a candidate, they are strongly normalizable. We will induct

over len = v(1) + v(Tie) + v(7=) + v(1v) + v(14)
We will prove that for all values oflen, the type
Typerec[s{®/x}] (V[k{®/X}7) of (Tint; 7= 7vi Tr)
always reduces to a type that belongs to
S«[C/x]; given that 7€ S—alC,Ci/X,x], and
Tint € SN[C/YL and T— € §QHQHK*’I{HK[C/Y}1
and v € Svy. (X:’Q)A'(X*’“)*’H[C/y]' and
Tyt € Svx. 2)—(vx. 0)—r[C/X]- Consider

7 = Typerec[s{R/X}] (¥ [x1{R/X}] T) Of (Tint; T—; Tv; 1)
e len = 0 Then the only possible reduction ofis

vt = s (R /)] 7
(Aar: k1 {7 /). Typerecs (R /X)] 7 o of (rin; 75 7 7))

Considerr” = Typerec[s{F/X}] T @ of (Tint; T—; Tv; Tt)-
For all 7 €C.,, the type 7'{mi/a} reduces to
Typerec[s{r/X}] 771 of (Tint; 7—; 7v; 4). By as-
sumption,r belongs taSy [C, Cr, /X, X] — SalC; Cry /X X)-
Therefores belongs tdC.., — Rq which implies that- r €
Rq. ThereforeTyperec[x{E/X}] 7 71 of (Tint; T—; Tv; Tt)
belongs to S.[C/X]. Therefore, by lemma B.30,
(replacing S.,[C/x] with C., in the lemma),
Xa:k1{R/X}- Typerec[s{K/X}] T a of (Tint; T—5 Tv; Tt)
belongs ta.., — Sx[C/X]-

By assumption;y belongs toSy,,. (X_,Q)_,(Xﬁ,{)_m[ﬁ/ﬂ
Therefore, 7v [k1{F/X}] belongs to
Six—2)—(x—r)—r[C: Crr /X X]- This implies that
7v [k1{F/X}] T belongs taS(y—x)—«x[C, Cxy /X, X]-
ConsiderC = S(y—w)—«[C,Cx, /X, x]. ThenC is equal to
Sx—rl[C,Cry /X, X] — SxlC,Cx, /X, x]. This is equivalent
to (Cx; — Sx[C,Chy /X,X]) — 8x[C,Cxy /X, x]. BUt x
does not occur free im. So the above can be written as
(Cry — SkIC/X]) — Sx[C/X]. This implies that belongs

to Sx[C/X].
e len = k + 1 The other possible reductions come from the
reduction of one of the individual types 7, 7, 7v, and

7+ The proofin this case is similar to the proof of the corre-
sponding case in lemma B.28.

Sincer’ is neutral, by property 3 of definition B.18] belongs to
Sa[C/X). 0

Lemma B.32 If for every kind n’_and reducibility candidate
C’ of this kind, 7{x'/x'} € Sx[C,C"/x,x'], then AX'.7 €
SV)(C K [C/Y} .

Proof Consider the neutral type’ = (Ax’.7) [x'] for an ar-
bitrary kind x’. Sincer{x"'/x'} is strongly normalizabler is
strongly normalizable. We will induct ovéen = v(7). We will
prove that for all values ofen, the neutral typdAx’. 7) [«'] al-
ways reduces to a type that belongsSidC, C’/x, x']; given that

K /X'} € S:[C,C /%, X]-

e len 0 There are two possible reductions. A beta re-
duction yieldsT{x'/x'} which by assumption belongs to

S:[C,C' /X, x']. ¥ 7 =70 [x'] andx’ does not occur free in
7o, then we have an eta reduction#g[«’]. But in this case
{K&'/X'} = 70 [K'].

e len = k + 1 For the inductive case, assume that the hy-

pothesis is true foien = k. There is one additional re-
duction, (Ax'.7) ['] ~ (Ax".71) [s'] whereT ~» 71. By
lemma B.15, we know that{x'/x'} ~ mi{x'/x'}. By
property 2 of definition B.187: {x'/x'} € Sx[C,C’ /X, X']-
Moreover,len = k for this reduct. Therefore, by the induc-
tive hypothesis(Ax’. 1) [«'] always reduces to a type that
belongs taS,[C,C’/X, x']. By property 3 of definition B.18,

(Ax'.m1) [<'] belongs taS.[C,C’ /X, x'].

Therefore, the neutral type’ always reduces to a type that
belongs t0S..[C,C’ /X, x']- By property 3 of definition B.18,
7' € Sk[C,C' /X, X']. Therefore,Ax’. T belongs toSy,/ .[C/X].
|

LemmaB.33 If 7 € SVX__K,[?/Y], then for every kinds'{x/x}
7 [K'{R/X} € Sutwr /3 [C/XI-

Proof By definition, [’ {%/X}] belongs taS.[C,C’ /X, x], for
every kindx'{%/x} and reducibility candidaté’ of this kind. Set
C' = S./[C/X]. Applying lemma B.26 leads to the result. O

Lemma B.34 V+e S(vyx. Q)—0 [E/Y]-

Proof Thisistrueifforallr € Sy, o[C/X], we haved' € Ro.
This is true if Typerec[x{%/X}] (V+7') of (Tint; T—3 Tw; Tut)
belongs t0S,[C/X] with the conditions in proposition B.27.
Since all the types are strongly normalizable, we will induct
over len = v(1) + v(Tm) + V(1) + v(Tv) + v(1,).
We will prove that for all values oflen, the type

Typerec[x{K/X}] (V+T) of (Tine; 73 Tv; T+) @lways reduces to
a type that belongs t&,[C/X]; given thatT € Sv,.[C/X]

and Tint € Sk [E/X]‘ and T € §QHQHKHHHK[E/X]‘
and v € Svx. (x=2)—(x—r)—r[C/X]: and
T+ € Sevx. Q)—(vx. r)—r|C/X]- Consider

7' = Typerec[s{7/X}] (V' 7) of (tine; 75 7v; 74)
e len = 0 Then the only possible reduction ofis
T+ T (Ax. Typerec[r{r/X}] (7 [x]) Of (Tint; 73 7v; 7))

Consider” = Typerec[s{%/X}] (7 [x]) of (Tint; T—; Tv; 7).
For an arbitrary kind x’, 7"{x'/x} is equal to
Typerec[{R/X}] 7 [&'] of (Tint; T—; Tv; Tt)- By the
assumption o, we get that [+'] € Rq. Therefore, by def-
inition, 7""{x’/x} € Sx[C/X]. Sincex does not occur free
in x, we can write this asr”{x'/x} € S.[C,C" /X, X]
for a candidateC’ of kind «'. By lemma B.32
Ax. Typerec[r{r/X}] (7 [X]) of (Tint; 7—; 7v; 7#) be-
longs to Sv,.[C/X]. By the assumptions o+ and
T T+ T (Ax. Typerec[s] (7 [x]) of (Tint; T—; 7v; T4))
belongs taS,[C/%].

e [en = k + 1 The other possible reductions come from the
reduction of one of the individual types 7, 7, 7v, and
7+ The proofin this case is similar to the proof of the corre-
sponding case in lemma B.28.

23

SirLceT’ is neutral, by property 3 of definition B.18, belongs to
Sx[C/X]- O
We now come to the main result of this section.

Theorem B.35 (Candidacy) Let 7 be a type of kinds. Sup-
pose all the free type variables ef are in a; ... «a, of kinds
K1 ... Kn and all the free kind variables of, ; . . . K, are among
X1-.-Xm. If Ci...Cyn are candidates of kinds ..., and
T1...7, are types of kinde1 {x’/X} ... ko {&’/X} Which are in
Sk, [C/X] - .- Sk, [C/X], thent{x’ /X }{7/a} belongs taS, [C/X].

Proof The proof is by induction over the structurexaf

The cases oint, —, V, V+are covered by lemmas B.28 B.29
B.31 B.34.

Supposer = a; andk = k;. Thent{x’/x}{7/a} = 7. By
assumption, this belongs &), [C/X].

Supposer = 71 13. Thent{ : & — & for some kinds' and
75 : k', By the inductive hypothesis; {x’/x}{7/a} belongs to
Sw—x[C/x]) andry{x’ /X } {7 /a} belongs taS, [C/X]. Therefore,
(7 {w" [XH7/@}) (75{w /X }{7/}) belongs taS.[C/].

Supposer = 7'[k']. Thent' : Vxi.k1 and k =
k1{x’/x1}. By the inductive hypothesis; {x’/x}{7/a} belongs
0 Suxy. wa [C/X]- By lemma B33 {7/ }{7/a} ['{w’ /x}] be-

longs toS,., (' /x,}[C/X] Which is equivalent t&,. [C/X].

Suppose 7 = Typerec[s] 7' of (Tin; T—; Tv; T#)-
Then 7' : Q, and 7ine @ K, AN 7.:Q > Q> K — K — K,
and vV (X = Q) = (x = K) — K, and

T+ (VX Q) — (Vx. K) — K. By the inductive hypothesis
7' {k" /x}{7/a} belongs toRq, andr.{x’/X}{7/a} belongs to
S«[C/x), andT— {x’/x}{7/a} belongs taSo—.o—x—r—x[C/X],
and v {x’/x}{7/a} belongs 10 Svy. (x—a)—(x—r)—rlC/X],

and TV+{?/Y}{F/E} belongs tOS(vX_ Q)— (Vx. NP&[E/X]. By
definition of Rq,

Typerec[w{x’/X}] 7'{+"/X}{T/a} of
(rne{ s /XHT /@l 7AW XHT/a);
ro{w’ [XHT /e m K /X HT/a)

belongs taS, [C/X].

Supposer = Ao’ : «'.7. Thent : &” where the free
type variables ofr; are inai,...,an, a0’ andx = & —
&". By the inductive hypothesisri{x’/X}{7, 7' /@, o'} be-
longs toS,.[C/x] wherer’ is of kind x’{«//X} and belongs to
S./[C/x]. This implies that(r: {x’/x}{7/a}){r’'/a’} (sincea’

occurs free only inr;) belongs toS,[C/X]. By lemma B.30,
X & {K/x}. (i {K /X {7 /a}) belongs taS,: ... [C/X].

Supposer = Ax'.7'. Thenr' : k" and x =
vx'.x"”. By the inductive hypothesist’{x’, ' /X, x' H{T/a}
belongs toS,.»[C,C’ /X, x'] for an arbitrary kindx’ and candi-
date C’ of kind x’. Sincex’ occurs free only inr’, we get
that (7' {x’/x}{7/a}){x'/Xx'} belongs toS..~[C,C'/X,X']. By
lemma B.32Ax'. (7'{x’/X}{7/a}) belongs taSy, . .~ [C/X]. O

SupposeS N; is the set of strongly normalizable types of kind
Ki.

Corollary B.36 All types are strongly normalizable.

Proof Follows from theorem B.35 by putting; = SN; and
Ty = Q. m|

c [—=C|—=(C1) | —(,C)
V(K C | V'C | Ax.C | C[K]
Aa:k.C | Ct | 17C

Typerec[s] C of (Tint; T—; Tv; Tpt)
Typerec[s] 7 of (C; 7—; Tv; T +)
Typerec[k] T of (7int; C; Tv; TV+)
Typerec[x] T of (Tine; T—; C5 T 4)
Typerec|[k] 7 of (Tint; 7—; Tv; C)

(context)

Figure 26: Type contexts

Ma:k.7) T~ {1 Ja}

(Ax.7) [5] ~ 7{r/x}

AQK. T~ T a é ftu(r)

Ax.tx]~>7 x ¢ fho(r)

Typerec[x] int of (Tint; T—; Tv; Tt) ~ Tint

Typerec[s] (11 — 72) of (Tint; T—; Tw; Tip) ~
T T1T2
(Typerec[s] 71 of (Tint; T—; Tv; Tt))
(Typerec[s] 72 of (Tint; T—; Tv; Tt))

Typerec[s] (V [r1] 71) of (Tint; T—; Tv; Tr) ~
"2 [,‘ﬂ] T1
(Aa: k1. Typerec[] (11 «) of (Tint; T—; Tv; Tt))

Typerec[x] (V+T1) of (Tint; 75 Tvs Tt) ~
Tyt T1

(Ax. Typerec[x] (71 [x]) of (Tine; T3 Tvi Tt))

Figure 27: Type reductions

B.3 Confluence

The type contextg’ are shown in Figure 26. The reduction rules
are shown in Figure 27.

Definition B.37 7, — 7 iff there exists ar; and 5 and C such
thatr, = C'[r{] andr2 = C [r3] and7{ ~ 75.

Lemma B.38 If 71 — 72, thenmi{7/a} — mo{7/a}.

Proof This requires us to prove that if’ ~s 7', then
7'{7/a} ~ 7"{T/a}. This follows from lemma B.14.]

LemmaB.39 If 7y — 72, thenti{x/x} — m2{k/x}

Proof This requires us to prove that if’ ~s 7', then
7{K/x} ~ 7"'{k/x}. This follows from lemma B.15.]

Lemma B.40 If 11 — 72, thent{r1 /a} — 7{r2/a}.

Proof This is proved by induction over the structureofand
then defining an appropriate type contéxt

Supposer = Ax.7’. Thent{r/a} = Ax.7{r1/a}. By
induction assume that' {71 /a} + 7'{r2/a}. This implies that
for some contexC, 7'{7i/a} = C[r{] and1'{m2/a} = C [13]
andr ~ 75. Consider the contexto = Ay. C. Then we get that
Ax.7'{m1/a} = Co [ri] andAx. 7' {m2/a} = C [13].

Supposer = A\3:k.7". Thent{r/a} = A\3:k.7'{m1/a}.
By induction assume that'{r/a} ~— 7'{r2/a}. This
implies that for some contextC, 7'{ri/a}=C|r{] and

24

7{r2/a}t =C[r] and 7~ 7. Consider the context
Co = A\B:x.C. Then we get thad3:x. 7' {m1/a} = Co [r{] and
AB:k. 7' {r2/a} = Co [13].

Supposer = 7' [k]. Thent{r/a} = ('{mi/a})[k]. By
induction assume that' {r;/a} — 7'{m2/a}. This implies that
for some contextC, 7'{7i/a} = C[ri] and 7' {r2/a} = C [73]
andr{ ~» 5. Consider the contexty = C [x]. Then we get that
(r'{m1/e}) [s] = Co [r1] and(r'{r2/a}) [5] = Co [r2].

Suppose T = ' Then
m{ri/a} = (7'{m/a}) ("{r/a}). By induc-
tion assume that 7'{r/a} — 7{r2/a} and

7" {r/a} — 7"{m/a}. This implies that for some con-
text C, 71{m/a}=C][ri] and 7'{r2/a}=C][r] and
T~ T Consider the context Co = C (7"{r1/a}).
Then we get that (7'{r/a})("{n/a})=Co[r{] and
(t'{m2/a}) (r"{m1/a}) = Co [r3]. Repeating the same process,
but this time starting with(7'{m2/a}) ('{1/a}) leads to the
lemma.

Supposer = Typerec[x] 7' of (Tint; 7—; 7v; T4). Then

T{n/a} =
Typerec[x] (7'{m1/a}) of
(Tine{T1/}; T {1 /a}; v{mi/a}; T{Ti/a})

By induction assume thatr'{ri/a}+— 7'{m2/a} and
Tine{T1/a} = Tie{T2/a} and 7_{m/a}+— 7_{m2/a} and
mv{r/a} — mv{r2/a} and 7 {m/a} — 1 {r2/a}. This
implies that for some contextC, 7'{7m/a}=C|r] and
{2 /a} = C[r3] andr{ ~» 73. Consider the context

Co =
Typerec[x] C of
(Tne{m1/a}; T {m1/a}; ~v{m/a}; ra{Ti/a})

Then we get that

Co[ri] =
Typerec[x] (7'{m1/a}) of
(mme{m1/a}; T {71 /a}; ~v{m/a}; Ta{T1/a})

and

Co [13] =
Typerec[] (7'{m2/a}) of
(Tne{m1/a}; T {m1/a}; v{m/a}; Ta{T1/a})

Repeating this process with the other subtypes leads to the lemma.
O

Theorem B.41 If 7 is strongly normalizing and locally confluent,
thenr is confluent.

Proof This is proved by induction over(r). O

To prove local confluence, we consider types with two holes.
The contexts are specified in Figure 28. Given a tyhave may
write it asC1 [1] or asCs [12]. The two holesy; andr; are said
to overlap if one is a subterm of the other. If the two holes do not
overlap, therr’ may be written a [r”, 7"”’] and it is obvious that
the reduction is locally confluent.

We therefore need to consider only overlapping holes, that is
7' = Cy[r] andT = C> [r1]. Without loss of generality, we may
discard the outer context; .

The local confluence is now proved by considering each pos-
sible reduction ofr according to the reduction rules and for each
case, showing that there exists another set of reductions that guar-
antees local confluence.

(context) D —(C1,C2) | C1C

| Typerec[s] C1 of (Ca; 75 Tv; T +)
| Typerec[x] C1 of (Tint; Co; Tv; Tr)
| Typerec[n] Ch of (7—|nt7 T—3 CQ, v+)
| Typerec[k] C1 of (Tint; T—; Tv; Co)
| Typerec[s] 7 of (C1; C2; 7v; Tp)

| Typerec[s] 7 of (C1; 7—; C2;5 T +)
| Typerec[s] 7 of (C1; 7—; 7v; C2)

| Typerec[x] 7 of (7int; C1; Ca; 7t
| Typerec[k] 7 of (Tint; C1; 7v; C2)

| Typerec[k] T of (Tin; 7—; C1; Ca)

| Clp]

Figure 28: Type contexts with two holes

We show that ifr ~ 7", then for each rule such that ~» 74,
there exists a”’ and a sequence of reductions that taKeto 7'
andC; [r{] to r"’. We use a diagram to prove this. The left arrow
represents the reduction fronto 7'/ and the right arrow shows the
reduction fromC5 [1] to C> [1]. The dashed arrows are then used
to show the reductions that complete local confluence.

The set of reductions is shown in Figure 27. We Tide denote
the complete set of reductions.

case;: Supposer is a beta redeXAa : k. 71) 2. Suppose
further thatm; ~+ 7 through any reduction i” apart from an
eta-redex.

n

(Aa:k. 1) T2

/ "
mi{r2/a} (Aa:k.71)
~ ~
—~
~ —~
Lemma B.%\ N 2" /51

Ti{m2/t}
Suppose that; ~+ 71 through an eta-redex. Assume= 7 a.

(Aa:k.71) T2

/
T1 T2
Suppose that, ~ 4 through any reduction iff".

(Aa:k. 1) T2

o
sl {Tg/ai

~ -

~
Lemma B.40
~ N 2 e 61

mi{rz/a}

25

case(.: This is similar to thes; case. Whenr reduces by
(n2), assume that = 7’ [x].

(Ax. 1) [K]

T

T{H/x} Ax ') [K]

~ -~

~N
Lemma B.39~ -~ B2
A

{r/x}
(Ax.7) [k

o

m{r/x}t =7"[x]

casen:: When the right arrow denotes a beta-reduction, assume

thatr = \G:kx. 71

Ao k. (
/ Aa:k. (77 a)

~
~ ~

~
T—-B81 ~ -7 m
A

/
T

o

AB:k.T1 =a Aa:k.T1{a/B}

casernp: This is similar to then; case. When the right arrow
denotes a beta-reduction, assume that Ay;. 1.

Ax- (7 [x])

X- (T [x))
n2 < >ﬁ2

AX' 11 =a Ax. i {x/x'}

caset;: We consider only the case of: ~ ... The other
possible reductions are locally confluent in an obvious way.

Typerec[x] int of (Tin; T—; Tv; Tut)

PN

Tint Typerec[k] int of (Tiy; T—; Tv; T,)
~ e
~ -
~ -
T N P
N ~

/
7—int

casete: There are six possible subcases from the reduction
The case for reduction

of either 71, 72, 7int, 7, Tv, OF T +.

of 71 andr» are similar; we will show only the case for the re-

duction of 7. We useTyperec[x] 7' of 7 as a shorthand for
Typerec[x] 7' of (Tint; T—; Tv; T4).

Typerec[] (11 — T2) of T

/
T T1T2

(Typerec[k] 71 of T)
(Typerec[k] 72 of T)
N

AN
T* N\

T

Typerec[s] (71 — 72) of T
;
;
;

/
ta
Y

T T T2
(Typerec[x] 11 of T)
(Typerec[k] T2 of T)

We will only show the reduction of_,, in which 7/ stands for
(Tint; T3 Tv5 Tt)-

v
Typerec[k] (11 — 72) of T

:2/
T— T1T2

(Typerec[] 71 of T)
(Typerec[k] 72 of T)
N
N

* N\
T
\

T

Typerec[x] (11 — T2) of 7/
7/
,
s/
7t

PRl

TL, T1 T2
(Typerec[s] 71 of 77)
(Typerec[k] 2 of 77)

casets: There are five possible subcases from the reduction of

eitherry, 7int, 7—, Tv, orr . We first show the reduction of..

Typerec[x] (V [k1] 71) of 7

" [(’31(17'[1{1 Typerec[k] (11 &) of T) Typerec[/-i/] (V[ka]7i) of 7

% N\
N

v k1] T
(Aa: k1. Typerec|x] (11 @) of T)

We will only show the reduction ofv, in which 7/ stands for
(Tint; T3 T; Tut)-

Typerec[x] (V [k1] 71) of T

v [1‘61] T1 —
(Aa: k1. Typerec[k] (11 &) of T) Typerec[/-cl (V[r1] 11) of 7

h N
T* N N

e

e

t
~ 3

Ty [k1] 71 B
(Aa: k1. Typerec[k] (71 a) of 77)

26

caset4. There are five possible subcases from the reduction of
eitherr, Tint, 7—, 7w, OF 71 First, the reduction of,.

Typerec[x] (V+7'1) of 7

N

Tyt T - _
(Ax. Typerec[s] (r1 [x]) of 7) Typerecls] (V 71) of 7
N _ -
N s
T* N N 4 7oty
Tk T1

(Ax. Typerec[x] (71 [x]) of T)

We will only show the reduction of, +, in which 7’ stands for
(Tines T3 Tvi T/4).

Typerec[x] (V+7'1) of 7

PN
Typerec[x] (V+T1) of 77

d
7

(Alx. Typerec[x] (11 [x]) of 7)

N
N

PN
RN

s
ya

/
T+ T
vt 1

(Ax. Typerec[x] (71 [x]) of T/)

C Properties of A%

C.1 Soundness of X9

Lemma C.1 (Normal form of types) If ;¢ F v : Q, thenv is

. 5
one ofint, v’ — v,V [k] V',V v/, or pv/'.

Proof Sincev is kind checked in an empty environmentcan

not be a since the head of 2° is a type variable. From the kind,

v must be dnt or of the formAx. v1 ande, x;e - v1 @ fx. From

the kind, it is obvious that the only possible forms farareint [x],
(=) D vh v, ¥ Ix] [] 04, V' [x] v, filx] v It can not have a
Place constructor because of the following reason. The only way it
can have @lace constructor is if it is of the fornPlace [x] v1. But

this requires/; to have the kindy. This is not possible since none
of the v normal forms can have this kind amg can not have an
occurence of° since the kinding is in an empty type environment.

The normal formAy. (int[x]) is equivalent toint by eta
reduction. The normal form\x. ((-=») [x] v1 v2) is equivalent
to (Ax.v}) — (Ax.v4). The normal formAx. (V [x][x] v})
is equivalent toV [s] (Aa : k.Ax.via). The normal form
Ax. (\?[X] v1) is equivalent tdf(AXl. Ax.vi [x1]). The normal
form Ax. (ji [x] v1) is equivalent tqu(Ax. v1). (See the rules at the
bottom of Figure 11). a

Lemma C.2 (Decomposition of terms)If - e: 7, thene is either
a value or can be decomposed into a unidueand a unique redex
e’ such thate = E [¢/].

Proof Proved by induction over the structure ef Each of the
cases follows similarly. We will consider only the interesting cases.

(Az:T.e)v~ e{v/z} (fixz:m.v) v ~ (v{fixz:T.v/2}) 0’

(Aa:k.v) [T] ~ v{T/a} (fixz:7.0)[7] ~ (v{fixz:T.0/2}) [T]

(Aer. v) [/@'r ~ v{r/x} (fixz:7T.v) [/@'r ~ (v{fixx:T.v/2}) [&]Jr

unfold (fold v as 7) as 7 ~ v

typecase[7] int of (eint; €—; ev; et €u) ~ Eint

typecase[7] (11 — T2) of (eint; e—; ev; er; en) ~ e [T1] [T2]
typecase[7] (V [x] 7') of (eint; e—; ev; er; eu) ~ ey [K]+ (7]
typecase[r] (V+7") of (eint; e—; ev; et eu) ~ et [7']
typecase[7] (u7”) of (eint; e—; ev; eyt en) ~ ey [7]

e~ €1

e~ e1 e~ eq e~ ey

ee ~ere ve~ ver e[r] ~ e1[7] e[n]Jr'\» e1 [/<c]+

e~ €1 e~ €1

fold eas 7~ fold e; as T unfold e as 7 ~» unfold e; as 7

gekFT ~*V:Q v’ is normal form

typecase[r] 7' of (eint; e—; ev; er; eu) ~
typecase[] v/ of (eint; e—; ev; er; ep)

Figure 29: Operational semantics)o?

(value) v =14 | Ax:7.e | foldvasT | unfoldvas T

Aa:k.v | A+X.’U | fixz:7.v

"
[J| Ee|vE | Elr] | E[x]
fold E as 7 | unfold E as T

(context) E ::

Az:1.e)v | (Aa:k.v)[7] A+X.’U) [/ﬁ]+

(fixz:r.v)v" | (fixz:T.v) |

(redex) r | (
7]
(fixz:7.v) [mfr

unfold (fold v as 7) as 7
typecase[7] 7’ of (eint; e—; ev; e t; eu)

typecase[7] (7" — ") of (eint; e—; ev; er; €p)

\

\

\

|

} typecase[7] int of (eint; e—; ev; es; eu)
| typecase[7] (¥ [k] 7') of (eint; e—; ev; er; eu)
|

\

(
typecase[T] (V+7") of (eint; €—; ev; eyt ep)
typecase[7] (u7’) of (eint; e—; ev; eurs en)

Figure 30: Term contexts

Supposes = e; e2. By assumptionf- ej es : 7. Therefore
Fe1:m1 — 7andk es: 71 for some typer;. Apply the inductive
hypothesis now t@; andes. If both e; ande; are values; and
v2, then the only possible reduction i§[v1 va]. If e2 = E2 [e5],
then setE to bev; F> ande’ to bees. If e; = Ej [e]], then setF
to be E; e2 ande’ to bee’.

Suppose = typecase[] 7’ of (eint; e—; ev; e r; eu). If 7'is
not a normal form, thet is the empty context anelis the redex.
If 7" is a normal form, then by lemma Celis still a redex and®
is therefore the empty context. a

27

<

= a | Vv | VO [K]

| Typerec[s] v° of (Vint; v—; vy Vt)
VO [int [int[s] | <> | <> [6] | (<) [s]v
() sl |V [VIRl | Vs)) | VIR] [
VIV [VIslv | pldls] [pls]v
Place | Place[x] | Place[k]v
Aa: k. v, whereVi®. v # 1 aora € fto(1°)
Ax.v, wherevo?. v # 10 [x] or x € fho(v°)

Figure 31: Normal forms in thaiQ type language

Lemma C.3 If - E [¢]: 7, then there exists & such thatt- e: 7/,
and for alle’ such thatt ¢’ : 7" we haver E [¢']:T.

Proof The proof is by induction over the derivation éf E [e] :
7. All the cases are proved similarly. We will consider only one of
the new cases.

SupposeE = fold E; as 7. Then we have that E; [e]: 7 for
some typer;. Applying the inductive hypothesis iB;, we get that
there exists a’ such that- e: 7" and and for alk’ of type 7/, we
have that- E; [e']:71.]

Corollary C.4 (Progress) If + e: 7, then eithere is a value or
there exists am: such thate — e;.

Proof By lemma C.2, we know that if e: 7, then either is a
value or there exists afi and a redex’ such that = E [¢']. Since
e’ is aredex, there exists a reduttsuch that’ ~» e”. Therefore,
ers e fore; = Efe”].

We now prove a bunch of substitution lemmas.

LemmaC.5 If £, x - kand€ + ', then& + k{x'/x}.

LemmaC.6 If &, x;A 7 : kand& + &/, then&; A{x'/x} F

&' /x} + k{K/x}

Proof The proof is by induction over the structurexf All the
cases follow in a straightforward manner by applying the inductive
hypothesis to the subtypes. |
kand& A - 7

LemmaC.7 If &;Aa: k' F 7 : %', then

EAFT{r"/a} : k.

Proof The proof follows in a straightforward way by induction

over the structure of. O
LemmaC.8 If &;Aa:x; T Fe : Tand&;A F 7' : k, then
E;N;T{r Ja} Fe{r'/a} : T{r'/a}.

Proof The proof is by induction over the structure efand is
similar to the proof of this lemma fox!. o
LemmaC.9 If &;A;T,z:7 Fe: 7and&; A; T e’ : 7/, then

E;N;T +efe [z}« 7.

Proof

The proof is by induction over the structure ofand is
similar to the proof of this lemma fox?.

O

LemmaC.10If £, x;A;T + e : 7 and £ + &k, then
EAMr/x:T{k/x} - eln/x} : 7{x/x}-

(kinds) k u=1tr |k—K | x| Vx. & (Br) == (Aaik.)7 ~ {1/}
(B2) == (Ax.7)[K] ~ 7{rx/x}
(types) 7 == int | = (m) w= Aak.Ta~T1 a ¢ ftu(r)
|Ot|AXT|)\OéHT|T[KL]|TT/ (m2) == Ax.tlx]~7 X ¢fho(r)
| Typerec[x] T of (Tint; 75 Tv; Tut; Tu) (t1) u= Typerecls] (int[x]) of (Tine; 73 Tvi Tyt; Tu) ~ Tine
(t2) == Typerec[s] (= []T172) of (Tint; T3 7v; Tt; Tu) ~

T— T1 T2
(Typerec[s] T1 of (Tint; T—; Tv; Trs Tu))
(Typerec[x] T2 of (Tint; T—; Tv; Tr; Tu))

Figure 32: The)\? type language

Proof ~ The proof follows in a straightforward way by induction (¢;) .= Typerec[x] (V [x] [£] T) of (Tint; T Tv; Tyt Tu) ~
over the structure of and is similar to the proof of the other sub- v [T
stitution lemmas. O ok’

—_ / . N . Typerec[x] (T &) of (Tine; T—; Tv; T)
Definition C.11 e evaluates te@’ (writtene — ¢') if there existE,

e1, ande; such thate = E'[e1] ande’ = Efez] ander ~ e». (t) == Typerecls] (VK] 7) of (Ti; 73 Tvi Tt; Tu) ~>

T A+ T

Theorem C.12 (Subject reduction) If - e : 7 ande — ¢, then (Ax. Typerec[s] [x] of (Tint; 75 Tvi T 7))

Fe':T.
t n= Typerec[x] (p [&]T) of (Tint; T—; Tv; Tt Tu) ~
Proof By lemma C.2, we know that there exists a uniquiand (ts) yT ’ (<] (1 [<]7) of (7 i Ty Tu)
a unique redex; such thakt = E [e1]. Sincee — ¢’, there exists ()\a k. Typerec[] ((Place [k] a)) of
ane] such thate’ = FE[e}] ande; ~ ¢}. By lemma C.3, we (Tt T T3 Tt T

know that for some~ we have that e; : /1. By the same lemma,
we only need to prove that e} : 1. We prove the theorem by ¢ = T Pl £ (m e .
considering each possible redex. (bs) yferec[ﬁ] (Place] 7) of (min 75 7v; Tyt 7)
Supposee; = (Ax: 7.e)v. Theney = e{v/z}. We know
thate;e;e,2: 7 - e : 7' for some typer’ ande;e;e - v @ 7.
Applying lemma C.9 leads to the result.
Supposes; = (Aa: k.v) [7]. Thene] = v{r/a}. We know
thate;e, o : k;e F v : 7/ for some typer’ ande;e - 7 @ k.
Applying lemma C.8 leads to the result.

+ + . L .
The case ot = (A x.e)[x] is similar to the previous two Proof (Sketch) The proof follows from a case analysis of the re-

Figure 33: Type reductions

LemmaC.13 If &;AF 7 : kandT ~ 7/, then; A -7/ : k.

cases and requires lemma C.10. duction relation). a
All of the fix reduction cases are proved similarly. We will
consider only one case here. Suppese= (fixz:7.v)v'. Then Lemma C.14 If y ~ 7, thenmi {7/a} ~ {1 /a}.
el = (v{fixz:7.v/x})v'. We have that (fixz:7.v) v :71. By
the typing rules for term application we get that for sorag Proof The proof is by enumerating each possible reduction from
Ffixzirvim — 7 and 71 to 2. We will only show the cases that are different froif.
Fo'im caset:: 11 = Typerec[x] (int [k]) of (Tine; T—; Tv; Tts)
By the typing rule forfix we get that, andrz = 7ine. We get that
Fr=m—m and m{r/a} =
g;€;6,x:T2e > TIHEV T2 —> T Typerec[x] (int [«]) of
Using Lemma C.9 and the typing rule for application, we obtain (tme{7/a}; T—{7/a}; v{r/a}; T 4{T/0}; Tu{T/C})

the desired judgment
F (v{fixz:m.v/z})v 11
Theunfold case follows trivially from the typing rules.

But this reduces by thg reduction torin:{7/a}.
casetz: 71 = Typerec[s] (=) [k]7'7") of (Tint; 75 Tv; Tups Tu)

n
Supposee; = typecase[7] T1 of (eint; e—; ev; er; eu). If and .y
71 is in normal formuy:, by the second premise of the typing rule r2 =77 7" (Typerec[x] 7' of (Tint; T3 Tv; T Tu))
for typecase and Lemma C.1 we have five cases far In each (Typerec[x] 7" of (Tint; T—; Tv; Tts Tu))
case the contraction has the desired type, according to the cor-
responding premises of thgpecase typing rule and the rules for e get that
type and kind applications. H; is not in normal form, the@l m{r/a} =
reduces tatypecase[7] v1 of (eint; e—; ev; e r; eu) wherevy is Typerec[x] ((=) [&](7'{r/a}) (7" {T/a})) of
the corresponding normal form. Since the type system is strongly (rme{T/a}; To{r]a}; oir/a}; Talr/a}; TuiT/a})
normalizing, this reduction always terminates and since the type nt T T It T
system is confluent; 7 = 7 v4. a This reduces by, to
"
C.2 Strong Normalization of A% Tag;é?;];[(ﬁ] ET/{();_]})OE} {r/a})

The type language is shown in Figure 32. The single step reduction (TyéTe':i%OE} E;/{;{)a} rir/at rpdr/ods Tu{r/a})

relation ¢ ~ 7') is shown in Figure 33. (rne{7/a}; T {7/a}; ~v{r/a}; na{T/a}; T {T/}))

28

But this is syntactically equal te; {7/« }.
casets: 71 = Typerec[x] (V [K] [£'] 7) of (Tint; T Tv; Tks Tu)
and

T2 = 7y [K'] 7' (AB: K. Typerec[] (1’ B) of (Tin; T—; Tv; Tt i)

We get that
m{r/a} =

Typerec[x] (¥ [k] [&'] 7'{7/a}) of
({7 /}; To{T/a}; v{T/a}; Ta{T/a}; Tu{T/a})

This reduces bys to

mv{r/a} [K] (T'{1/a})
(AB:k'. Typerec[r] ((7'{T/a}) B) of
(rne{ 7/t T {7/} ~o{7/a}; rp{T/a}; Tu{T/a}))
But this is syntactically equivalent te{7/a}.
casets: 71 = Typerec[x] (V+M ") of (Tint; T—; Tv; Tuprs Tw)
and
72 = 7 7' (Ax- Typerec[s] (7' [x]) of (7int; 75 7v; Tots 7))
We get that
nirja}=
Typerec[s] (V [s] 7' {T/a}) of
(tne{r/a}; T={7/a}; v{r/a}; T{T/a}; Tu{T/a})

This reduces by, to

{7/} (T'{7/a})
(Ax. Typerec[x] ((7'{7/a}) [x]) of
(rne{7/}; T {1/}t mo{T/a}; T {T/a}; T{T/a}))
But this is syntactically equal te; {7 /a}.
dcaset5: 71 = Typerec[x] (i [5] 7') of (Tint; T—; Tv; Tk Tu)
an

(AB: k. Typerec[s] (7" (Place [k] B)) of (Tint; T—; Tv; Tuts Tu))
We get that

m{r/a} =
Typerec[x] (fi [x] 7'{7T/a}) of
(tine{7/a}; T={1/a}; ~v{r/a}; Ta{T/a}t; Tu{T/a})

This reduces bys to

mu{r/a} (7'{7/a})
(A\B: k. Typerec[x] (('{T/a}) (Place [x] B)) of
(rine{T/}; T {T/a}; mv{T/a}; T {T/a}; T{T/a}))

But this is syntactically equal te; {7/c}.
casels: 1 = Typerec|x] (Place [K] 7') of (Tint; T—; Tv; Tp; Tu)
andr, = 7’. We get that

n{r/a} =
Typerec[r] (Place [s] 7'{7/a}) of

(ne{T/a}; T-{1/a}; ~o{T/a}; {7 /}; Tu{T/})

This reduces bys to 7' {7/a}.]

Lemma C.15 If 7y ~ 7o, thenti {x'/x'} ~ m2{x"/X}.

29

Proof This is proved by case analysis of the type reduction rela-
tion. We will only show the cases that are different frod.

caseti: 11 = Typerec[x] (int[s]) of (Tine; 75 Tv; Trs Tu)
andrz = 7ine. We get that

n{r'/x'} =
Typerec[r{x'/x'}] (int [k{x'/x"}]) of
(T K"/ s TR /XY oKX Es T R /XY TR XCY)

But this reduces by the reduction torn.{x’/x’}.
casetz: 71 = Typerec[s] (=) [k]7'7") of (Tint; T Tv; Tups Tu)

and

T = 7, 7' 7" (Typerec[k] 7" of (Tine; T—; Tv; Tuts Tu))

(Typerec[x] 7" of (Tint; T—; Tv; Tyts Tu))

We get that

m{x'/x'} =
Typerec[s{r'/x'}] (=) [{r" /X' N7 {x"/X'}r"{"/X}) of
(roe{ &' /X' 7= AR IX Y AR XY m AR /XY TR /XD

This reduces by, to

A& /XF (TR XD (TR XY)
(Typerec[r{x'/x'}] (T'{x"/X}) of
(T K"/ X 5 T AR X Y AR IX Y T AR X Y TR /X))
(Typerec[r{x'/x'}] (7" {x"/X'}) of
(red R /X }5 7= AKX Y oK /XY T AR XY TR /X))
But this is syntactically equal te;{x’/x’}.
dcasetg: 71 = Typerec[r] (V¥ [K] [k1] ') Of (Tint; T—; Tv; T+)
an

To = 7y [k1] T’
(AB: k1. Typerec[s] (7' B) of (Tint; T—; Tv; Ts Tu))

We get that

e XY=
Typereci{x’ /x'}] (V [r{x’/x'}] [k1 {' /XY 7' {&' /x'}) of
(roe{K /X' F: 7= (KXY 7oA X T (R XY Tk /XD)

This reduces bys to

v {k'/X'} [k {w" /X (7' {K"/X'})
(AB:w1{r’/x'}. Typerec[w{x’/X'}] ((7'{K/x"}) B) of
(redw' /X Y5 T AR XY AR /XY T R XY TR /X))
But this is syntactically equivalent ta {x'/x’}.
casets: 71 = Typerec[x] (V+[/<e] ") of (Tint; T Tv; Tuts Tw)
and
72 = 7y 7 (Ax- Typerec[x] (7' [x]) of (Tint; 75 7v; Tots 7))
We get that
{w'/x'} = .
Typerec[r{r'/X'}] (V [{x'/X'H T'{K'/X'}) of
(red{ K" /X5 7= AR /XY o R X T R X Y TR XY
This reduces by, to
T /XY (TR /X Y)
(Ax. Typerec[r{r'/x"} ((T'{x'/X'}) [X]) of
(T & /XY T AKX s AR X E T R XY TR /X))

But this is syntactically equal te;{x’/x'}.
casets: 71 = Typerec[x] (ji [k] 7") of (Tint; T—; Tv; 75)
and

T2 =TT
(Aa: k. Typerec[x] (7" (Place [s] @)) of (Tint; T—; Tv; Tur; Tu))

We get that

m{w'/x'} =
Typerec[r{x'/X"}] (i [{x" /X T'{r"/X"}) of
(mined &' /X' s 7= AKX} AR XY T R /X Y TR /X))

This reduces bys to

Tu{r'/X'} (T{K'/X})
(Aa:r{Kk"/X'}.
Typerec[r{r'/x'}] ((7'{x"/x"}) (Place [s{x'/x}] @)) of
(Tined K" /X Y5 T AR X s AR XY T AW/ X Y T d R /XY))

But this is syntactically equal te;{x’/x’}.
casete: 71 = Typerec[x] (Place [k] 7") of (Tint; 75 7w Tuts Tu)
andr, = 7’. We get that

m{x'/x'} =
Typerec[s{r'/x'}] (Place [s{s'/x"}]| 7'{K'/X'}) of
(med & /XY 7= AR XY AR XY T R XY T AR XD

This reduces bys to 7' {x’/x'}. o

Definition C.16 A typer is strongly normalizable if every reduc-
tion sequence from terminates. We use(7) to denote the length
of the largest reduction sequence franto a normal form.

Definition C.17 We define neutral types, as
no ::

= Ax.7 | dazk.T
n =
!

a | not | nT | nolk] | nlk]
Typerec[s] T of (Tine; T—; Tv; Tp)

Definition C.18 A reducibility candidate (also referred to as a
candidate) of kindk is a setC of types of kind: such that

1. if 7 € C, thenr is strongly normalizable.
2. ifr € Candt ~ 7/, thent’ € C.

3. if 7 is neutral and if for all=’ such thatr ~» 7/, we have that
7' € C,thent € C.

This implies that the candidates are never empty sinaehiés
kind k, thena belongs to candidates of kind

Definition C.19 Let x be an arbitrary kind. LeC, be a candi-
date of kindx. LetCyr—pr—r—r—r De acandidate of kinglx —
Let Cyy. (x—tr)—(x—nr)—x D€ a candidate
of klnde (X - uK‘) - (X - H) — K. LetC(VX. hr)—(Vx. k)—k
be a candidate of kindVy.hx) (Vx.k) — k. Let
Clan—tr)—(n—r)—w b€ @ candidate of kindgr — fr) —

btk — K — K — K.

—

(k — k) — k. We then define the s&,C, of types of kindjx
as
T E RhCK iff
VTint € Cfm

VT*} S Chﬁﬂhl{ﬂhﬁﬂlﬁ*ﬂi!
V7v € Cuy. (x—tr)— (x—r)—r1
VTV+ (S C(Vx hr)—(Vx. k) —kK
VTN c C(hﬁﬂh){)*}(iﬂ*’ﬁ)*}ﬁ
= Typerec[s] T of (Tint; T—; Tv; Tp; Tu) € Ci

30

Lemma C.20 If C, is a candidate of kind;, thenR,C.. is a candi-
date of kindyx.

Proof Supposer € RyCx. SUPPOSeTint, T—, Tv, Tyt
and 7, belong toCs, Cixir—r—n—n, Cux. (x—br)—(x—r)—rs
Civx. br)— (vx. k) —r» ANAC (. —pi)— (v—w)—r FESPECtively, where
the candidates are of the appropriate kinds (see definition C.19).

Considerr’ = Typerec[s] T of (Tint; T—; Tv; Tt Tu). By
definition this belongs t@,.. By property 1 of definition C.18;’
is strongly normalizable and thereforamust be strongly normal-
izable.

Considerr’ = Typerec[x] 7 of (Tint; T—; Tv; Tt Tu). SUP-
poser ~ 1. Thenr’ ~» Typerec[s] 71 of (Tint; T—; Tv; Trs Tu)-
Since7’ € Cy, Typerec[s] 11 of (Tine; 7—; Tv; Tr; 7,) belongs
to C,. by property 2 of definition C.18. Therefore, by definition,
belongs taR;Cy.

Supposer is neutral and for all such thatr ~ 7, 11 €
RyC... Considerr’ = Typerec[k] T of (Tint; T—; Tv; Tt Ta)-
Since we know thatri, 7—, 7v, 7+, and 7, are strongly
normalizable, we can induct ovéen = v(7ine) + v(7—) +
v(ry) + v(ry+) + v(tu). We will prove that for all values of
len, the typeTyperec[k] T of (Tint; T—; Tw; T+; Tu) always re-
duces to a type that belongs &.; given thatr.. € C., and
T € Conn—n—n—r, AN Tv € Cyx (x—tx)—(x—r)—ns 2N
Tyt € Clvx. m)—(vx. w)—rr ANATL € Clini) = (k—n) -

e len = 0 Thent’ ~» Typerec[k] 71 of (Tint; T—; Tv; Tt)
is the only possible reduction sineeis neutral. By the as-
sumption onry, this belongs t@,..

k + 1 For the inductive case, assume that the

hypothesis is true folen = k. That is, forlen =k,

the type Typerec[x] T of (Tin; 7—; Tv; Tur; 7u) always

reduces to a type that belongs t.; given that 7,

Ty TV, Tyb and 7, belong t0 C, Chu—tror—r—n,

Cox. (x—tx)—=(x—m)—rr Clan—tm)—(s—m)—r, and
(hr—br)—(r—r)—r TESPECtively. By property 3 of

definition C.18, Typerec[k] T of (Tint; T—; Tv; T Tw)

belongs to C. for len=k. Consider

7" = Typerec[k] 7 of (Tint; T Tv; Ts Tu)

for len=k+1. This can reduce to

Typerec[s] 71 of (Tint; T—; T} Tp; Tu) which be-

longs to C.. The other possible reductions are to

Typerec[r] T of (Ti; T3 Tv; Tos Tu) WHereTine ~ Ty, OF

to Typerec[x] T of (Tint; 7.5 Tv; T+; Tu) Wherer—, ~ T,

or to Typerec[s] T of (Tint; T—; To; To+; Tw) Where

Tv ~ Ty, OF to Typerec[k] T of (Tin; T—; Tv; T;H_;)

where or to

Typerec[x] 7 of (Tint; T—; Tv; T 7,,) where 7, ~ 7.

By property 2 of definition C.18, each of,., 7°, 7, 7/,

and T;L belong to the same candidate as before. Moreover,

len = k for each of the reducts. By the inductive hypothesis,

each of the reducts belongsds.

e len =

’
T\v,—f» ~r TV+,

Therefore, by property 3 of definiton C.18,
Typerec[s] T of (Tint; T—; Tv; Tur; Tu) belongs taC,. Therefore,
T € RyCx. O

Definition C.21 Let(C; and(C: be two candidates of kinds, and
k2. We then define the séf — C», of types of kindk; — k2, as

T€C —C iff V(7 eCi=717€C)

Lemma C.22 If C; and(C- are candidates of kinds; andk., then
C1 — Csis a candidate of kind; — ka.

Proof Same as lemma B.22 for.]

Definition C.23 We usey to denote the setq, ..., x. of x. We
use a similar syntax to denote a set of other constructs.

Definition C.24 Let x[x] be a kind wherégg contains all the free
kind variables ofs. Let® be a sequence of closed kinds of the
same length and be a sequence of candidates of the correspond-

ing kind. We now define the s8t[C/X] of types of kind:{%/x}
as

1. ifk = fx’, thenS,[C/X] = RyS«[C/X]-

2. ifk = x4, thenS,[C/X] = Ci.

3. ifk = k1 — K2, thenS,[C/X] = Sx, [C/X] — Sk2[C/X]-
4

. if K = Vx.«/, thenS,[C/X] = the set of types of kind
k{%/x} such that for every kina’" and reducibility candi-
dateC” of this kind,r ["] € S./[C,C" /X, X]-

Lemma C.25 S.[C/x] is a reducibility candidate of kind
w{F/X}-

Proof Forx = &', the lemma follows from the inductive hy-
pothesis ons’ and lemma C.20. The rest of the proof is the same
as lemma B.25 foA?. o

Lemma C.26 SK{N//X/} [E/X} =S, [a, S,/ [E/y]/?, X/]

Proof The proof is by induction over the structure of
K. Suppose k gki. Then the LHS is equal to
RyS., («/x1[C/X]. By the inductive hypothesis oR, this is
equal to RyS,, [C,S./[C/X]/X,X']- By definition, the RHS is
equal toR; Sy, [C, S [C/X]/X, X1

The other cases are the same as lemma B.25or a

Proposition C.27 From lemma C.25, we know that
Siriror—ror|[C/X] IS a candidate of kindix — tk —

k — £ — K){E/X} that Suy (x—im)—(x—r)—x[C/X] IS @
candidate of kind(Vx. (x — tk) — (x — k) — k){E/Xx}, that
Sx. 1) —(vx. r)—x[C/X] is a candidate of kind(Vx.tx) —
(Vx. k) — &){F/X}, and S(ys—pr)—(v—nr)—x[C/X] is @ candi-
date of kind((hx — k) — (k — k) — k){F/X}. In the rest
of the section, we will refer to the above candidatesSagC/x],
Sv[C/x], S+[C/x], andS,.[C/X] respectively.

Lemma C.28 int € Svy. 1x[C/X]

Proof This is true if for all kinds x{k/x} and the
corresponding candidateS.[C/x], int[x{%K/X}] belongs
to Si[C,S<[C/X)/XX]- This is true if int[x{%/X}]
belongs to R,Sy[C,S.[C/X]/X;X]- This implies that
int [«{k/X}] belongs to R;S.[C/X]. This is true if
Typerec[k{x/X}] int [s{K/X}] of (Tint; T—; Tv; T+; Tu) belongs
to S.[C/X]; given thatr. € S.[C/X], andT—, € S_[C/x], and
v € Sv[C/x], andr+ € S +[C/x], andr, € S,.[C/x].

SinceTint, 7, Tv, T+, and, are strongly normalizable, we
will induct overlen = v(7in) + v(7—) + v(7v) + v(T4) +
v(r,). We will prove that for all values oflen, the type
Typerec[x{F/X}] int [:{F/X}] of (Tint; T—; Tv; T; Tu) always
reduces to a type that belongs &|[C/X]. The conditions for

31

We will

the hypothesis are that,. € S«[C/x], and7—. € S_[C/X], and
v € Sv[C/x], andr+ € S +[C/X], andr, € S,[C/X]. Consider
the neutral type

7 = Typerec[x{R/X}] int [&{FK/X}] of (Tint; T—5 Tv; Ts Tu)

e [en = 0 The only reduction of- is to 7, which by assump-
tion belongs teS.[C/X]-

o [en k 4+ 1 Assume that the inductive hypothesis
is true for len =k. That is, for len =k, the type
Typerec[x{K/X}] int [k{F/X}] of (Tin; T} Tv; Tur; o)
always reduces to a type that belongs &.[C/X];
given that 7. € Sk[C/X], and 7. € S_[C/X], and
v € Sv[C/x], and 7+ € S+[C/X], and 7, € S,[C/X].
By property 3 of definition B.18, foren = k, the type
Typerec[r{r/X}] int[{K/X}] of (Tint; T3 v Tyts Tu)
belongs t0S.[C/X]. Consider the case fden =k + 1.
Apart from thet; reduction, the other possible reductions are
to Typerec[r{F/X}] int [k{%/X}] of (Tine; T3 v Tyri Ta)

where Tint ~* Tints or to
Typerec[r{7/X}] int [6{F/X}] of (Tine; 725 Tv; Tt; Tu)
where T~ T, or to
Typerec[w{F/X}] int [s{R/X}] of (Tint; T 745 Tts Tu)
where Ty~ T, or to
Typerec[{%/X}] int [:{F/X}] of (Tint; T Tvs T 45 Tw)
where T~ T\;+, or to

Typerec[k{E/X}] int [{K/X}] of (Tint; T—; Tv; Tk 7,

where 7, ~ 7,,. By property 2 of definition C.18, each
of 7, T, T, r\/ﬁ, and 7, belong to the same candidate
as before. Moreoverjen = k for each of the reducts.
Therefore, from the inductive hypothesis, each of the reducts
belongs taS, [C/X].

Therefore, the neutral type always reduces to a type that be-
longs t0S..[C/X]. By property 3 of definition C.18; € S.[C/X].
O

Lemma C.29 = € Svy. sx—tx—ix[C/X]

Proof This is true if for all kinds x{%x/x} and the cor-
responding candidateS,[C/X], we have that -2 [x{%/X}]
belongs 10 Syy—tx—ix[C, S<[C/X]/X, X]- This s
true if given m € S [C,S[C/X]/X,x] and given
T2 € SiC,S:[C/X]/X,x], we have that>s [k{R/X}] 71 T2
belongs to Sy [C,Sx[C/X]/X;X]- This is true if
Typerec[s{F/X}] (= [{R/X}] 71 T2) of (Tin; T—; Tv; Tt i)
belongs to S.[C/x]; given that 7. € S.[C/x], and
T € Sﬂ[é/Y], and v € Sv[E/YL and T+ € SV+[6/Y},
and 7, € S,[C/X]. Since the typesri, T2, Tint, T—, Tv,
T, and 7, are strongly normalizable, we will induct over
len = v(m) +v(72) +v(Tine) +v(7=) +v(7v) + V(1) + V(7).
prove that for all values oflen, the type
Typerec[r{r/X}] (= [R{F/X}] T1 72) Of (Tint; T3 Tv; T 7o)
always reduces to a type that belongsStdC/x]. The conditions
for the hypothesis are that € R;S.[C/X], andr> € RyS«[C/X],
andrn € Sx[C/x], andr_, € S_.[C/X], andrv € Sv[C/x], and
T+ € S+[C/X], andr,, € S,[C/X). Consider the neutral type

7 = Typerec[n{%/X}] (= [{F/X}] 71 72) of (Tint; T—; Tv; Tyt; Th)

elen = 0 Then reduction is
T =TT
(Typerec[s{F/X}] 71 Of (Tint; T—; Tv; Tt Tu))
(Typerec[k{F/X}] 72 of (Tint; T—; Tv; Tyt o))

the only possible

By the assumption on 75 and T, both
Typerec[k{k/X}] T1 of (Tint; T35 TV Tbs Tu)
and Typerec[x{F/X}] T2 of (Tint; T—; Tvi Tt Tw)
belong to S.[C/X]. We also know that

that7’ belongs taS.[C/X].

Therefore, we get

e [en = k + 1 The other possible reductions come from the
reduction of one of the individual types, 2, Tint, 7—, Tv,
74+ andr,. The proof in this case is similar to the proof of
the corresponding case for lemma C.28.

Therefore, the neutral typealways reduces to a type that be-
longs toS,.[C/X]. By property 3 of definition C.18; € S.[C/X].
O
Lemma C.30 If for all 1 € Sk, [C/X], T{m1/a} € Sx.[C/X].

thena: k1 {R/X}. T € Swy—rs[C/X]-

Proof Same as lemma B.30 for. i

Lemma C.31 "j’ € SVX-VX’- (X/HNX)HHX[Z/Y}'

Proof This is true if for all kindsx{%x/x} and x:1{k/x} and
the corresponding candidates,[C/x] and S.,[C/x], and a
type 7 belonging 10 8, [C, Se[C/X], 8wy [C/X]/X %, X'):

we have that V[«{F/x}][x1{k/x}]T belongs to
Sex[C, Sx[C/X], Sxy [C/X1/% % X1- This implies ~ that
vV [k{%/x}] [1{%/X}] T must belong to RyS«[C/x]. This
is true if
Type(reC[f@{E/%}] (v [F»{E/)Y}] [k1{R/X}] 7) of
Tint; T—3 T35 Tyhs Tu

belongs to S.[C/X]; given that 7. € S.[C/X], and
T € Sﬂ[é/Y], and v € Sv[é/Y}, and T+ € SV+[5/Y],

and 7, € S,[C/x]. Since the typesr, T, 7, Tv, Tt
and 7, are strongly normalizable, we will induct over
len = v(1) + v(7in) + v(17=) + v(1v) + v(T4) + v(74)-
We will prove that for all values afen, the type

Typereclx{%/X} (¥ [:{%/X}] [k1{F/X}] 7) of

(Tint; T TV Tt)

always reduces to a type that belongs&p[C/X]. The con-

ditions for the hypothesis are thate S., [C/X] — RyS<[C/X],

andTine € Sx[C/X], and7_, € S_,[C/X], andr, € Sy[C/X], and

T+ € S#[C/X), and 7, € S,[C/X]. Consider the neutral type
7' = Typerec[s{%/X}] (¥ [:{%/X}] [k1{F/X}] 7) of

(Tint; T3 T Tyt Tu)
e len = 0 The only possible reduction ef is to
1 =1y [k {R/X}] T

(Aa:k1{R/x}. Typerec[c{R/X}] (T @) of

Tint; T TV; Toti Ta

Consider” = Typerec[{F/X}] (T @) of (Tint; T Tv; Tup; Tu)-

For all = € S« [C/X), we get that

32

{71 /a} = Typerecl{®/X}] (T 1) Of (Tint; T—3 Tv; Tyt To)-

By definition, TT belongs to
Six[C, Sx[C/X), Sr [C/X] /X0 % X' which is
equivalent to R;S.[C/X]. By definition then,

Typerec[x{R/X}] (771) of (Tin; T—; Tv; Tyr; Tu) be-

longs to Sx[C/x]. By lemma C.30,\a : k1{&/X}. 7"
belongs to Sy, —x[C/X]. We also know that
Sv[C/X] = Svy. (x—tr)—(x—r)—r|C/X]- Therefore,

we get thatr; belongs taS, [C/X].

e len = k + 1 The other possible reductions come from the
reduction of one of the individual types 7int, 7—, 7v, T
andr,. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral type always reduces to a type that be-
longs t0S,[C/X]. By property 3 of definition C.18;" € S«[C/X].
|

Lemma C.32 Place € Svy. y—ix[C/X]

Proof Thisis true if for all kinds<{% /X } and the corresponding
candidateS..[C/x], and a typer belonging toS.[C/x], we have
thatPlace [x{%/X}] T belongs taSy, [C, Sx[C/X]/X, X]- This im-
plies thatPlace [x{%/X}] 7 belongs toR;S,[C/X]. This is true if
Typerecl{/%}] (Place [k{F/X}] 7) of (Tint; 73 Tv; Tyt 7o)
belongs to S.[C/x]; given that 7. € S.[C/X], and
7 €8.[C/x], and 7v € Sv[C/x], and 7 € S[C/X],
and 7, € S,[C/x]. Since the typesr, Tint, T, Tv, Ty
and 7, are strongly normalizable, we will induct over
len = v(7) + v(Tine) + v(7=) + v(7v) + v(T4) + V(7).
We will prove that for all values oflen, the type
Typerec[k{x/X}] (Place [s{E/X}] T) of (Tint; T—; Tw; Tr; To)
always reduces to a type that belongsStdC/x]. The conditions
for the hypothesis are thate S.[C/x], and i € S«[C/X], and
7. €8.[C/x], and v € Sy[C/X], and 7+ € S+[C/x], and

7. € 8,[C/X]. Consider the neutral type

Typerecl{%/X}] (Place [x{F/X}] 7) of (Tiots 73 Tvi 7op:)

e len = 0 The only possible reduction of is tor. By as-
sumption, this belongs 16, [C/X].

e [en = k + 1 The other possible reductions come from the
reduction of one of the individual types 7in, 7—, 7v, T+,
andr,. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral type always reduces to a type that be-
longs toS. [C/X]. By property 3 of definition C.18;" € S..[C/X].
O

Lemma C.33 ji € Svy. (sx—t0—ix[C/X]

Proof This is true if for all kinds x{%/x} and the cor-
responding candidateS;[C/X], and a type 7 belonging
0 So—in[C,Su[C/X/X,), we have that ji [n{/x}] 7
belongs to Sy [C, Sk[C/X]/X, X]- This implies that
i [x{k/Xx}]T belongs to R;S.[C/X]- This is true if
Typerec[x{R/X}] (i [:{R/X}] T) Of (Tint; T—; Tv; Tyts Tu)
belongs to Sk[C/x]; given C

that 7 € Sc[C/X], and

T € SH[E/Y], and 7v € Sv[E/YL and 7+ € SV+[E/Y],
and 7, € Su[C/x]. Since the typesr, Tint, T, Tv, Tyt
and 7, are strongly normalizable, we will induct over
len = v(1) + v(7ie) + v(7=) + v(7v) + Z/(TVJr) + v(mu).
We will prove that for all values oflen, the type
Typerec[w{®/X}] (f [:{E/X}] 7) of (Tint; T Tvi Tyrs Tu)
always reduces to a type that belongsStdC/x]. The conditions
for the hypothesis are that € Sy —1x[C, S<[C/X]/X; X], and
Tt € Sk[C/X], and 7—. € S_.[C/X], and v € Sv[C/X], and
T+ € S+[C/X], and 7, € S,[C/x]. Consider the neutral type
' = Typerec[s{R/X} (i [6{R/X} 7) of (Tine; T T3 Tyrs 7o)

e len 0 The only possible reduction is to
1 =71, 7 Na:k{K/X}.
Typerec[s{K/X}] (7 (Place [x{K/X}] @)) of

Tint; T—3 TV Tyts Tu

Consider

7" = Typerec[k{r/X}] (T (Place [s{K/X}])) of

(Tint; T3 Tv; Tuts Tu)

belonging
we

the
that

to
get

For any !

candidate

type
Sk[C/X],

/{1 /a} = Typerecln{m/x}] (7 (Place [x{F/x}] 1)) of

Tint; T3 TV5 Tbs Tu
By lemma C.32,Place € Svy.x—ix[C/X]- Therefore,
Place [x{%/X}] 1 belongs to R;S.[C/X]. Therefore,
7 (Place [{%/X}] 71) also belongs taR;S.[C/X]- There-
fore, by definition, 7/{r1/a} belongs t0S.[C/X]. By
lemma C.30,\a:x{%/X}. 7" belongs t0S._..[C/X]. We
also know thatS,, [C/X] = Sik—tx)— (v—n)—x[C/X]. This
implies thatr{ belongs taS,[C /%]

e len = k + 1 The other possible reductions come from the
reduction of one of the individual types 7int, 7—, 7v, T
andr,. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral type always reduces to a type that be-
longs toS,[C/X]. By property 3 of definition C.18;" € S.[C/X].
a

Lemma C.34 If for every kind ' and reducibility candidate
C’ of this kind, 7{x'/x'} € Sx[C,C'/x,x'], then Ax'.T €
SVX/. K [C/?]

Proof Same as lemma B.32 for .]

LemmaC.351f 7 € Svyx[C/xX], then 7[x'{R/X}] €
Si(w/x3[C/X] for every kinds'{%/x}.

Proof By definition, 7 [’ {%/X}] belongs taS,[C,C’ /X, x], for
every kindx'{%/x} and reducibility candidaté’ of this kind. Set
C' = S./[C/x]. Applying lemma C.26 leads to the result. O

via S
Lemma C.36 V' € Svy. (vx,. ix)—ix[C/X]-

Proof This is true if for all kindsk{%/x}, and the cor-
responding candidateS.[C/x], and a type = belonging
0 Sovy.ix[C,S:C/X)/X.], we have that V[~ {F/x}] 7

belongs to Sy, [C,S<[C/X]/X, X]- This implies that
V'[k{F/x}] T belongs to R,S.[C/x. This is true if

33

Typereclw{F/X} (V' [R{R/XHT) of (T 75 7w Tpi 7o)
belongs to S.[C/X]; given that 7. € S.[C/x], and
7. €8.[C/x], and 7veSv[C/x], and 7. € S,[C/X],
and 7, € S,[C/x]. Since the typesr, Tint, 7, Tv, Tyt
and 7, are strongly normalizable, we will induct over
len = v(1) + v(7ine) + v(7=) + v(1v) + V(Ter) + v(7u).
We will prove that for all values oflen, the type
Typerecls{%/X}] (V' [{F/X}] 7) of (i 7= 7 7t 74)
always reduces to a type that belongsStdC/x]. The conditions
for the hypothesis are that € Sv,,.1x[C,S<[C/X]/X,x], and
Tt € Sk[C/X], and 7—. € S_.[C/x], and v € Sv[C/x], and
T+ € S#[C/X], and 7, € S,[C/x]. Consider the neutral type

7' = Typerecls{/xH (¥ [{R/X}] 7) of (s 73 7v; 7y 70)

o len 0 The only possible reduction of’ is to
7o+ T (Ax. Typerec[s{E/X} (7 [X]) of (Tint; 75 Tv; Tyts o))
Consider
7" = Typerec[{®/X}] (7 [x]) Of (Tint; 7—; Tv; Tt Tu)

For an arbitrary kinds" and corresponding candidafé, we
get that

7"{k'/x} = Typerec[x{R/X}] (7 [']) of (Tine; T3 Tvi Ty 7o)
By the assumption onr, we get that 7]
belongs to RyS.[C/X]. By definition,
Typerec[{R/X}] (7 []) of (Tin; T3 Tw3 Ts Ta)

belongs toS,[C/X]. Sincey does not occur free i, we
may also write that” {x’/x} belongs taS,[C,C’ /X, x]. By
lemma C.34, this implies thaty. 7’ belongs taSv,.. «[C/X]-
We also know thatr i € Svy. jx)— (vx. r)—x[C/X]. AlSO,
x does not occur free inc. Therefore, we get that
7+ 7 (Ax. ") belongs taS,[C/X].

e len = k + 1 The other possible reductions come from the
reduction of one of the individual types 7int, 7, Tv, T+,
andt,. The proof in this case is similar to the proof of the
corresponding case for lemma C.28.

Therefore, the neutral type always reduces to a type that be-
longs toS, [C/X]. By property 3 of definition C.18;" € S.[C/xX].
a

We now come to the main result of this section.

Theorem C.37 (Candidacy) Let = be a type of kinds. Sup-
pose all the free type variables ef are in a; ...a«, oOf kinds
K1...kn and all the free kind variables @f, x: ... k,, are among
X1---Xm- If Ci...Cy, are candidates of kindg’ ..., and
T1...T, are types of kinde1 {x’/X} ... xn{x’/X} Which are in
Sk1[C/X] - - - Sk, [C/X], thent{x /x} {7 /a} belongs taS, [C/X].

Proof The proof is by induction over the structuref

The cases ofnt, =, V, V', i, andPlace are covered by lem-
mas C.28 C.29 C.31 C.36 C.33 C.32.

Supposer = «; andx = k;. Thent{x’/x}{7/a} = ;. By
assumption, this belongs &, [C/x].

Supposer = 11 73. Thenr; : K — & for some kindx' and
75 : k'. By the inductive hypothesis; {~’/x}{7/a} belongs to
S.'—x[C/X] andrs {x’ /X } {7 /a} belongs taS, [C/X]. Therefore,
(ri{w'/XH7/a}) (r2{r’/X}{7/a}) belongs taS.[C/X].

Supposer 7' [k']. Thent' : Vxi.k1 and k
k1{x’/x1}. By the inductive hypothesis; {«x’/x}{7/a} belongs

10 Svy,. vy [C/X]. BY lemma C.35 {x/ /X }{7/a} [v'{K' /X }] be-

longs toS,., {«’/x,}[C/X] Which is equivalent t&5,.[C/X].

Supposer = Typerec[k] 7' of (Tint; T—; Tv; Tk 7.). Then
T i fk, and i s Kk, @Nd Ttk — Bk — K — K — K,
andry : Vx. (x — k) — (x — k) — K, and7 : (Vx.bk) —
(Vx.k) — wkand7, : (I — k) — (k—K) — K. By
the inductive hypothesis’{x’/x}{7/a} belongs t0S;.[C/X],
and7in{x’/X}{7/a} belongs taS.[C/X], and7_ {x' /X }{7/a}
belongs t0S,x —4x—r—r—x[C/X], andr{x’/X}{7/a} belongs
t0 Svy. (x—tm)—(x—r)—«[C/X], and 7+{x'/X}{7/a} belongs
0 Sewy. tr)—(vx. m—r[C/X], and 7.{x'/XH7/a} belongs to
S(ar—iin)— (n—r)—r|C/X]. By definition ofS. [C/X],

Typerece{i /X ' {7/} {7/} of
(e {7 /X} (7 /a0); 7 {7/ {730
rAw /X 7/aY: 7 (7 /X)
mu W /XHT/a))

belongs taS [C/X].

Supposer = A&’ : «'.71. Thent; : «” where the free
type variables ofr; are inay,...,an, ¢’ andx = & —
k"', By the inductive hypothesisri{x’'/X}{7, 7' /@, a'} be-
longs t0S,.»[C/x] wherer’ is of kind ' {x’/x} and belongs to
S./[C/X]. This implies that{r: {x’/x}{7/a}){r’'/a’} (sincea’
occurs free only inr;) belongs toS,/[C/X]. By lemma C.30,
A 1R X} (m{" /X {7 /a}) belongs taS, .+ [C/X].

Supposer = Ax'.7'. Thenr' : k" and k =
vx'.k"”. By the inductive hypothesisr’{x’, x"/x, X' H7/a}
belongs toS,. [C,C’ /X, x'] for an arbitrary kindx’ and candi-
date C’ of kind x’. Sincey’ occurs free only inr’, we get
that (7' {x’/x}{7/a}){x'/x'} belongs toS..~[C,C'/X,X']- By
lemma C.34Ax'. (7'{x"/x}{7/a}) belongs taSy, .~ [C/x]. O

SupposeS N; is the set of strongly normalizable types of kind
Ki.

!

Corollary C.38 All types are strongly normalizable.

Proof Follows from theorem C.37 by putting, = SN, and
Ti = Q. O
C.3 Confluence

Confluence for the\? type reduction relation is proved in the same
way as thex type reduction confluence. The additional cases
follow in a straightforward manner.

34

