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Abstract
Various types and techniques of on-line approximation
have been used in feedback control of uncertain non-
linear systems. In many practical applications, satu-
ration of the control input influences significantly the
performance of adaptive and learning control systems.
This article addresses the issue of control input satu-
ration in on-line approximation based control of non-
linear systems. A modified control design framework
is presented for preventing the presence of input sat-
uration from destroying the learning capabilities and
memory of an on-line approximator in feedback con-
trol systems. The stability properties of the proposed
feedback control law are obtained via Lyapunov analy-
sis. Particular emphasis is given to aircraft longitudinal
control, which extends the results to the backstepping
feedback control procedure.

1 Introduction
A variety of feedback control approaches have been
developed to deal with nonlinear systems, including
feedback linearization [5], sliding mode control [9], and
backstepping [11]. In their ideal form, both feedback
linearization and backstepping rely on cancellation of
known nonlinearities. To address the issue of uncer-
tainty, several “robustifying” techniques have been de-
veloped: (i) adaptive methods deal with parametric un-
certainty [7], where the nonlinearities are assumed to
be known but some of the parameters that multiply
these nonlinearities are unknown or uncertain; (ii) ro-
bust methods [2] deal with the case where known upper
bounds on the unknown nonlinearities are available and
therefore, they tend to be conservative, sometimes lead-
ing to high-gain feedback; (iii) robust adaptive methods
[14] combine parametric uncertainty and unknown non-
linearities with partially known bounds.

The above control techniques are based on the assump-
tion that the plant nonlinearities are either known or
can be bounded by some known functions. In many

1This research has been partially supported by the US Air
Force (F33615-01-C-3108).

applications, including control of high performance air-
craft and uninhabited air vehicles (UAVs), some of the
nonlinearities need to be approximated on-line. This
may be due to modeling errors during the identifi-
cation/modeling phase or, quite often, due to time-
variations in the dynamics as a result of changes in
the operating conditions or due to component wear or
battle damage. To address the issue of unknown non-
linearities, various control system architectures have in-
corporated various network models as on-line approxi-
mators of unknown nonlinearities.

The application of on-line approximation methods to
nonlinear systems in a feedback framework yields a
complex nonlinear closed-loop system, which is ana-
lyzed using Lyapunov stability methods. Typically, the
feedback control law and the adaptive law for updat-
ing the network weights are derived by utilizing a Lya-
punov function, whose time derivative is forced to have
some desirable stability properties (for example, nega-
tive semi-definiteness). Therefore, the stability of the
closed-loop system is obtained during the synthesis of
the adaptive control laws. Examples of this type of
approach, which is referred to as Lyapunov synthesis
method, include [3, 4, 10, 13, 15, 16].

From a practical perspective, one of the key problems
in feedback control systems is that the signal u(t) gen-
erated by the control law cannot be implemented due
to physical constraints. A common example of such
constraint is input saturation, which imposes limita-
tions on the magnitude of the control input. In some
applications this problem is crucial, especially in com-
bination with nonlinear on-line approximation based
control, which tends to be aggressive in seeking the
desired tracking performance. In aircraft control ap-
plications, input saturation is caused by limitations in
control surface deflections. For UAVs, the absence of
humans in the air vehicle may allow more aggressive
maneuvering, however the feedback control law has to
deal both with unknown nonlinearities and input sat-
uration.
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Input saturation in an adaptive linear control frame-
work has been addressed in, for example, [1, 6, 8, 12].
One possible approach is to completely stop adapta-
tion during saturation of the control input. While this
ad-hoc method does prevent the tracking error induced
by actuator constraints from corrupting parameter es-
timation, the stability properties of the closed-loop sys-
tem cannot be established. Another approach that has
been proposed, which we refer to as training signal
hedging (TSH), see e.g. [1, 8], modifies the tracking
error definition used in the parameter update laws. Fi-
nally, a third approach, referred to as pseudo-control
hedging (PCH), alters the commanded input to the
loop [6, 12]. The idea behind the PCH approach is
to attenuate the command to the loop so that the gen-
erated control signal is implementable without satura-
tion.

This article addresses the issue of control input satura-
tion in on-line approximation based control systems. A
modified control design framework is presented for pre-
venting the presence of input saturation from destroy-
ing the learning capabilities and memory of an on-line
approximator in feedback control systems. The design
method is based on the TSH approach. The stability
properties of the proposed feedback control law are ob-
tained via Lyapunov analysis. Two design schemes are
presented: the first is based on a direct learning control
scheme and the second is based on an indirect learning
control scheme. Particular emphasis is given to aircraft
longitudinal control, which extends the results to the
backstepping feedback control procedure.

2 Problem Formulation
To facilitate a more intuitive understanding of the is-
sues of input saturation in adaptive and learning con-
trol systems, we start with a simple scalar system.
Later on, the design and analysis techniques are ex-
tended to a class of higher-order systems. Consider the
scalar nonlinear system

ẋ = f0(x) + f(x) + g(x)u (1)

where x ∈ R is the measured output, f0 is a known
function, f(x) and g(x) are unknown nonlinear func-
tions to be approximated on-line, and u is the control
signal. Suppose that the control objective is for x(t) to
track xr(t), which is the output of a reference model

ẋr = −αxr + βr, (2)

where α > 0, β are known parameters and r(t) is a mea-
surable command signal. Using on-line approximation
methods, f̂(x, θ̂f ) = θ̂>f φf (x) and ĝ(x, θ̂g) = θ̂>g φg(x)
are used as approximators1 of f(x) and g(x) respec-
tively, where θ̂f , θ̂g are the adjustable parameters of

1For simplicity, in this article we use linearly parametrized
approximators. The case of nonlinearly parametrized approxi-
mators can also be considered by appropriate handling of the
higher-order terms [15].

the on-line approximator in vector form, and φf , φg,
are the coresponding regressors or basis functions. Us-
ing standard techniques from adaptive and on-line ap-
proximation based control, a feedback control law of
the form

u =
1

ĝ(x, θ̂g)

[
−f0(x)− f̂(x, θ̂f )− αx + βr

]
(3)

˙̂
θf = Γf (x− xr)φf (x) (4)
˙̂
θg = Γg(x− xr)φg(x)u (5)

can be designed to achieve the desired tracking objec-
tive (where Γf , Γg are positive definite matrices repre-
senting the learning rate of the on-line approximation).
The stability properties of the above feedback control
law can be derived under certain conditions. Specif-
ically, if: (i) the Minimum Functional Approximation
Error (MFAE) between f(x), g(x) and f̂(x, θ̂f ), ĝ(x, θ̂g)
respectively is zero; and (ii) the update law (5) is ap-
propriately modified to guarantee that ĝ(x, θ̂g) does not
approach zero (to avoid stabilizability problems), then
it can be shown using Lyapunov analysis that all the
variables remain bounded and the tracking error con-
verges to zero (see, e.g., [4, 13, 15, 16]).

In many applications (including aircraft systems), the
control law described by (3) may not always be real-
izable due to actuator constraints such as saturation.
Assume that the control input u is constrained by the
following known, constant upper/lower limit bounds:
uL ≤ u(t) ≤ uU . In a more general setting, the limit
bounds uL, uU may be functions of the state x.

Due to actuator saturation, the actual feedback learn-
ing control law being implemented is different from (3),
(4), (5) as follows:

u = sat(u0, uL, uU ) (6)

u0 =
1

ĝ(x, θ̂g)

[
−f0(x)− f̂(x, θ̂f )− αx + βr

]
(7)

˙̂
θf = Γf (x− xr)φf (x) (8)
˙̂
θg = Γg(x− xr)φg(x)u (9)

where the saturation function “sat” is linear with unity
slope between its lower and upper limits; i.e.,

sat(u0, uL, uU ) =





uL if u0 < uL

u0 if uL ≤ u0 ≤ uU

uU if u0 > uU

.

Even though the problem formulation has been sim-
plified to illustrate the key issues more clearly, it can
be readily shown that the modified control law (6)-(9),
with saturation limits, cannot guarantee the stability of
the closed-loop system. In practice, the control design
problem maybe more complicated due to the presence



of several actuators that are available in the implemen-
tation of the control signal.

A key issue is what happens to learning during satura-
tion. It is expected that during saturation the magni-
tude of the tracking error will increase, since the control
signal is not being achieved. This tracking error is not
the result of function approximation error, therefore we
need to be careful so that the approximator does not
cause “unlearning” during the period when the actua-
tors are saturated.

How do we modify the adaptive laws (8), (9) for up-
dating θ̂f , θ̂g during saturation? Clearly, the adap-
tive laws (8), (9) depend on the tracking error x− xr,
therefore if the tracking error increases due to satura-
tion, the adaptive law may cause a significant change
in the weights in response to the increase in tracking
error (the tracking error is driving the adaptation). A
very simple solution may be to turn off adaptation in
the event of saturation. However, this is not necessar-
ily the best solution. Next, we develop two modified
learning control schemes to address the input satura-
tion problem.

3 Direct Learning Control Scheme
The first approach is based on a direct learning control
framework. According to this approach, the standard
feedback learning control law (6)-(9) is modified as fol-
lows:

u = sat(u0, uL, uU ) (10)

u0 =
1

ĝ(x, θ̂g)

[
−f0(x)− f̂(x, θ̂f )− αx + βr + η

]
(11)

˙̂
θf = Γf (x− xr − χ)φf (x) (12)
˙̂
θg = Γg(x− xr − χ)φg(x)u (13)

χ̇ = −αχ + ĝ(x, θ̂g) (u− u0) (14)

The above modified control law involves the utilization
of the χ signal, which is a filtered version of the effect
of input saturation on the variable being controlled.
Note that in the case of no input saturation, then χ
remains zero and the control law becomes the same
as the standard learning control law described in the
previous section. In the presence of input saturation,
χ is non-zero, thus giving rise to a modified tracking
error x̄ = x− xr − χ. The signal η in the specification
of u0 in equation (11) will be used later on to deal with
the presence of functional approximation error.

Next, we proceed to investigate the stability proper-
ties of the closed-loop system, based on the learning
control law described by (10)-(14). Consider the Lya-
punov function V = 1

2 x̄2 + 1
2 θ̃>f Γ−1

f θ̃f + 1
2 θ̃>g Γ−1

g θ̃g,
where θ̃z = θ̂z − θ∗z and z ∈ {f, g}. The “optimal”
parameter vector θ∗f is defined as the weight vector of
the on-line approximator that minimizes the functional

approximator error between f(x) and f̂(x, θf ) over a
compact (i.e., closed and bounded) operating envelope
D (correspondingly for g(x)):

θ∗z = arg min
θz

(
sup
x∈D

|z(x)− ẑ(x, θz)|
)

, z ∈ {f, g}

The minimum possible distance between f(x) and
f̂(x, θf ) over D is referred to as minimum functional
approximation error (MFAE) over D and is denoted by
εz(x,D) = z(x)− ẑ(x, θz)|θz=θ∗z

for z ∈ {f, g}. The
bound on εz is denoted by ε̄z = supx∈D |εz(x,D)|. It is
noted that εz, θ∗f , θ∗g are required only for the theoret-
ical analysis, not for the design of the learning control
law. On the other hand, the bound ε̄z is required also
in the design in order to robustify the learning scheme
with respect to the possible presence of MFAEs. The
requirement of assuming a known bound on the MFAE
can be relaxed by using adaptive bounding techniques
[13], where the bound is estimated on-line using adap-
tive methods.

By taking the time derivative of V along the solutions
of (1), (2), (12)-(14) and taking into consideration the
implemented control law (10), (11), we obtain

V̇ = x̄ (f0 + f + gu + αxr − βr + αχ− ĝ(u− u0))

+
(
θ̃>f φf + θ̃>g φgu

)

= −αx̄2 + x̄ (εf + εgu + η)
≤ −αx̄2 + |x̄|ε̄ + x̄η (15)

where ε̄ is a bound on the combined approximation
error εf + εgu over the operating envelope D.

In the ideal case of zero approximation error, η can be
set to zero, thus yielding V̇ = −αx̄2. If the approxima-
tion error is non-zero, but an upper bound ε̄ is available
(known), then the robustifying term η could be chosen
as η = −k sgn(x̄), where sgn denotes the sign function
and k > 0 is a constant gain function satisfying k ≥ ε̄.
In this case, |x̄|ε̄+ x̄η = −(k− ε̄)|x̄| ≤ 0. Alternatively,
η could be chosen as η = −k0q(x̄), where k0 > 0 is a
positive constant and q is an odd function of x̄. In this
case, it can be readily shown that |x̄|ε̄ + x̄η ≤ 0 for
all x̄ outside the region Q = {x̄ | sgn(x̄)q(x) ≥ ε̄/k0 },
which can be made arbitrarily small by increasing the
value of the design constant k0. This second approach
has the advantage of avoiding the use of the discontin-
uous sign function, which can cause chattering in the
feedback loop.

Since the time derivative V̇ is negative semi-definite and
V̇ = −x̄2, we obtain that x̄, θ̃f , θ̃g remain bounded
and, using Barbalat’s Lemma, x̄(t) converges to zero
as t goes to ∞. It is important to note that these
results are based on the assumption that θ̂>g φ(x) does
not approach zero. In order to achieve that, some type
of projection modification [15] is required in the update



of θ̂g(t). This required modification is independent of
the saturation issue since it would have been needed
even in the absence of any saturation constraints.

4 Indirect Learning Control Scheme
In the previous section we considered a direct type of
learning scheme, in the sense that the tracking error is
driving the adaptation. Another approach is to con-
sider an indirect learning control scheme where the
adaptation (learning) is driven by the identification er-
ror instead of the tracking error. Intuitively, it appears
that such a scheme may be more robust to actuator
saturation.

Based on the simple system (1), consider the identifi-
cation model

˙̂x = −αx̂ + αx + f0(x) + f̂(x, θ̂f ) + ĝ(x, θ̂g)u− η, (16)

where η is to be designed to address the robustness
issue in the presence of approximation errors. Let the
identification error be defined as eI(t) = x(t) − x̂(t).
From (1), (16) we obtain

ėI = −αeI+
(
f(x)− f̂(x, θ̂f )

)
+

(
g(x)− ĝ(x, θ̂g)

)
u+η.

(17)
We proceed to design a feedback control law which in-
corporates input saturation, similar to the scheme de-
veloped in Section 3, and then we will analyze the sta-
bility properties of the indirect learning control scheme.
The overall indirect scheme is described by

u = sat(u0, uL, uU ) (18)

u0 =
1

ĝ(x, θ̂g)

[
−f0(x)− f̂(x, θ̂f )− αx + βr + η

]
(19)

˙̂
θf = Γf (x− x̂)φf (x) (20)
˙̂
θg = Γg(x− x̂)φg(x)u (21)

˙̂x =αx− αx̂ + f0(x) + f̂(x, θ̂f ) + ĝ(x, θ̂g)u− η(22)

In the above indirect scheme, we note that the adap-
tation is driven by the identification error eI(t) in-
stead of the modified tracking error used in the di-
rect scheme. Furthermore, the χ-filter of the direct
scheme has been replaced by the identification esti-
mator (22). To investigate the stability properties
if this scheme consider the Lyapunov function VI =
1
2e2

I + 1
2 θ̃>f Γ−1

f θ̃f + 1
2 θ̃>g Γ−1

g θ̃g. The time derivative of
VI along the solutions of (17), (20), (21) satisfies

V̇ = −αe2
I + eI (εf + εgu + η)

≤ −αe2
I + |eI |ε̄ + eIη (23)

To obtain the desired stability properties η can be cho-
sen as η = k0q(eI), where k0 > 0 and q is an odd
function. Therefore, V̇ ≤ −αe2

I , which implies that the
parameter estimates remain bounded and the identifi-
cation error eI(t) converges to zero. Note that, since

this is an indirect scheme, the results are obtained in-
dependent of whether saturation is reached or not.

Now lets investigate what happens to the tracking error
x̃ = x−xr. By combining (1), (2) and using the control
law (18), (19) we obtain

˙̃x = −αx̃ +
(
f(x)− f̂(x, θ̂f )

)
+

(
g(x)− ĝ(x, θ̂g)

)
u

+ η + ĝ(x, θ̂g)(u− u0) (24)

Note that the tracking error dynamics for x̃(t) are sim-
ilar to the identification error dynamics eI(t), with the
exception of the last term ĝ(x, θ̂g)(u − u0). In fact, it
can be readily shown that for appropriately chosen ini-
tial conditions x̂(0), we have eI(t) = x̃(t)−χ(t), where
χ(t) is generated (same as previously) by

χ̇ = −αχ + ĝ(x, θ̂g)(u− u0), χ(0) = 0. (25)

To verify this relationship, let z = eI − x̃(t) + χ(t).
From (17), (24), (25) it can be easily shown that the
z-dynamics satisfy ż = −αz. Therefore if x̂(0) = xr(0),
then z will be zero, which implies that eI(t) = x̃(t) −
χ(t). Note that even if the initial conditions are not
satisfied, the difference between eI(t) and x̃(t) − χ(t)
will exponentially decay to zero.

Since, as shown earlier, eI(t) converges to zero, this
implies that x̃(t)− χ(t) converges to zero, which is the
same result as obtained in the previous section using
the direct learning scheme method. In conclusion, the
direct and indirect learning schemes are implemented
differently but they yield the same stability properties.

5 Saturation in Backstepping
In this section, we extend the previous results to the
case of a backstepping feedback control procedure.
Specifically, we consider the backstepping control of the
(γ, α,Q) loops of an aircraft model [17], where γ is the
flight path angle, α is the angle of attack and Q is the
pitch rate. The tracking error dynamic equations are
described by

˙̃γ =
q̄S (CL + CLα (αc + α̃))

mVt cos(β)
+ fγ − γ̇c (26)

˙̃α = − q̄S (CL + CLαα)
mVt cos(β)

+ Qc + Q̃ + fα − α̇c(27)

˙̃Q = c5P R− c6(P 2 −R2)
+ c7 q̄ S c̄ (CM + uQ)− Q̇c (28)

where γc, αc, Qc are the commanded flight path angle,
commanded angle of attack and commanded pitch rate
respectively, and γ̃, α̃, Q̃ are the corresponding track-
ing errors. For exact definition of the variables and
constants in the aircraft model dynamics, please refer
to [17]. The objective in this section is to incorporate
the modified learning control scheme of Section 3 for



dealing with saturation of the actuator signals and in-
vestigate its effect on the learning algorithms.

The functions CL, CLα
and CM are unknown and

are approximated on-line by the following linearly-
parameterized approximators: ĈL = θT

CL
φ(x); ĈLα =

θT
CLα

φ(x); ĈM = θT
CM

φ(x), where x is the vehicle state
vector that contains the most dominant elements.

Let γ̄(t) = γ̃(t) − χγ(t) be the modified tracking error
of the γ dynamics, where χγ(t) is generated by

χ̇γ = −kγχγ +
q̄S

mVt cos(β)
ĈLα

(
αc − α0

c

)
.

where αc(t) = sat(α0
c , α

L
c , αU

c ), and αL
c , αU

c are the
lower and upper limits, respectively, of the control sig-
nal αc. The dynamics of the modified tracking error
γ̄ = γ̃ − χγ satisfy

˙̄γ =
q̄S (CL + CLα

(αc + α̃))
mVt cos(β)

+ fγ − γ̇c + kγχγ

− q̄S

mVt cos(β)
ĈLα

(
αc − α0

c

)
(29)

The nominal control law is given by

α0
c =

1

ĈLα

(
m Vt cos(β)

q̄ S
(−fγ + γ̇c − kγ γ̃)

)

− ĈL

ĈLα

− χα. (30)

For simplicity, in this section we do not consider the ro-
bustness issue with respect to residual approximation
errors, however, it can be directly addressed using the
η term as in Section 3. Specifically, we assume that the
residual approximation error is zero and the robustify-
ing term νγ = 0.

Note that the term χα, which appears in the control
law (30) is the saturation filter for the α-dynamics, and
it will appear in the next step of the backstepping pro-
cedure. By substituting (30) in (29) we obtain after
some algebraic manipulation

˙̄γ = −kγ γ̄ +
q̄ S ĈLα(α̃− χα)

m Vt cos(β)

− q̄ S

m Vt cos(β)

(
θ̃T

CL
φ(x, y) + θ̃T

CLα
φ(x, y)α

)
.

Define the γ-Lyapunov function as Vγ = 1
2 γ̄2 +

1
2

(
θ̃T

CL
Γ−1

CL
θ̃CL

+ θ̃T
CLα

Γ−1
CLα

θ̃CLα

)
. The derivative of

Vγ along solutions of the γ̄ dynamic equation is

V̇γ = −kγ γ̄2 + γ̄
q̄ S ĈLα(α̃− χα)

m Vt cos(β)

+ θ̃T
CL

Γ−1
CL

(
θ̇CL

− ΓCL

q̄ S

m Vt cos(β)
φγ̄

)

+ θ̃T
CLα

Γ−1
CLα

(
θ̇CLα

− ΓCLα

q̄ S

m Vt cos(β)
φαγ̄

)

Since the unknown functions CL and CLα also appear
in the α dynamics, we delay the selection of the up-
date laws for θCL

and θCLα
until the next step of the

backstepping procedure.

Next we proceed to the α-dynamics. Let ᾱ(t) = α̃(t)−
χα(t) be the modified tracking error of the α dynamics,
where χα(t) is generated by

χ̇α = −kαχα +
(
Qc −Q0

c

)
.

where Qc = sat(Q0
c , Q

L
c , QU

c ) and QL
c , QU

c are the lower
and upper limits, respectively, of the control signal Qc.

The dynamics of the modified tracking error ᾱ = α̃−χα

satisfy

˙̄α = − q̄S (CL + CLα
α)

mVt cos(β)
+ Qc + Q̃ + fα − α̇c + kαχα

− (
Qc −Q0

c

)
(31)

The nominal (non-saturated) control law for the α-
dynamics is given by

Q0
c =

q̄S
(
ĈL + ĈLαα

)

mVt cos(β)
− kαα̃− fα + α̇c

− γ̄
q̄ S ĈLα

m Vt cos(β)
− χQ (32)

In practice, α̇c is not available for measurement and
hence is approximated by a signal of the form ˙̄αc =

s
ταs+1αc. For notational simplicity we avoid this ap-
proximation in the current analysis and assume that
α̇c is available. By substituting (32) in (31), the mod-
ified tracking error dynamics for ᾱ satisfy

˙̄α = −kαᾱ + Q̃− χQ − γ̄
q̄ S ĈLα

m Vt cos(β)

− q̄ S

m Vt cos(β)

((
CL − ĈL

)
+

(
CLα − ĈLα

)
α
)

.

Define the (γ, α) Lyapunov function as V(γ,α) = Vγ +
1
2 ᾱ2. After some algebra, it can be shown that the
derivative of V(γ,α) along solutions of the (γ, α) dy-
namic equations is

V̇(γ,α) = − (
kγ γ̄2 + kαᾱ2

)
+ (Q̃− χα)ᾱ

+ θ̃T
CL

Γ−1
CL

(
θ̇CL

− ΓCL

q̄ S

m Vt cos(β)
φ (γ̄ − ᾱ)

)

+ θ̃T
CLα

Γ−1
CLα

(
θ̇CLα

− ΓCLα

q̄ S α̃

m Vt cos(β)
φα (γ̄ − ᾱ)

)

Based on the above Lyapunov function derivative, we
now select the adaptive laws for θCL

and θCLα
:

θ̇CL
= ΓCL

q̄ S

m Vt cos(β)
φ (γ̄ − ᾱ) (33)

θ̇CLα
= ΓCLα

q̄ S

m Vt cos(β)
φα (γ̄ − ᾱ) (34)



In the third and final step we proceed to the Q-
dynamics. Let Q̄(t) = Q̃(t) − χQ(t) be the modified
tracking error of the Q dynamics, where χQ(t) is gen-
erated by

χ̇Q = −kQχQ + c7 q̄ S c̄
(
uQ − u0

Q

)
,

and uQ(t) = sat(u0
Q, uL

Q, uU
Q). The dynamics of the

modified tracking error Q̄ = Q̃− χQ satisfy

˙̄Q = c5P R− c6(P 2 −R2) + c7 q̄ S c̄ (CM + uQ)

− Q̇c + kQχQ − c7 q̄ S c̄
(
uQ − u0

Q

)
(35)

The nominal (non-saturated) control law for the Q-
dynamics is given by

u0
Q = −ĈM+

−kQQ̃− ᾱ + Q̇c −
(
c5P R− c6(P 2 −R2)

)

c7 q̄ S c̄
.

(36)
By substituting (36) into (35) the modified tracking
error dynamics for Q̄ satisfy

˙̄Q = −kQQ̄− ᾱ + c7 q̄ S c̄
(
CM − ĈM

)
.

Define the (γ, α, Q) Lyapunov function as

V(γ,α,Q) = V(γ,α) +
1
2
Q̄2 +

1
2

(
θ̃T

CM
Γ−1

CM
θ̃CM

)
.

The derivative of V(γ,α,Q) along solutions of the
(γ, α, Q) dynamic equations and update laws for the
weights of the on-line approximators is

V̇(γ,α,Q) = − (
kγ γ̄2 + kαᾱ2 + kQQ̄2

)

+ θ̃T
CM

Γ−1
CM

(
θ̇CM − ΓCM c7 q̄ S c̄φQ̄

)

Therefore, we select the adaptive law for θCM
as fol-

lows:
θ̇CM = ΓCM c7 q̄ S c̄φQ̄.

If (kγ , kα, kQ) are all positive then V̇(γ,α,Q) is nega-
tive semi-definite. Therefore, using Barbalat’s Lemma
the modified tracking errors γ̄, ᾱ, Q̄ converge to zero
asymptotically.

6 Conclusions
This article has presented an approach for dealing with
control input saturation in uncertain nonlinear system,
where the uncertainty is approximated on-line with
learning techniques. A key issue has been the modifica-
tion of the update laws associated with the weights of
the on-line approximator, such that the presence of sat-
uration limits do not cause instability in the closed-loop
system nor “unlearning” in the on-line approximation
process. The presented design and analysis procedure
first considered the case of a first-order plant, and later
was extended to a backstepping control scheme based
on an aircraft vehicle model.
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