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Discrete Conformal Approximation of Complex

Earthquake Maps

by

ERIC M. MURPHY

Texas Tech University

Using the techniques of circle packing, we construct discrete conformal approxi-
mations for complex earthquake maps on the Teichmiiller spaces of compact, hy-
perbolic Riemann surfaces developed by William Thurston and Curtis McMullen,
and we show that these approximations are convergent. We then describe earth-
quake maps on the Teichmiiller spaces of compact, Euclidean Riemann surfaces,
extending the work of Thurston and McMullen. Using the discrete conformal
approximations developed for hyperbolic surfaces, we approximate the action of
these new maps with circle packing.
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ABSTRACT

Using the techniques of circle packing, we construct discrete conformal approxima-

tions for complex earthquake maps on the Teichmiiller spaces of compact, hyperbolic

Riemann surfaces developed by William Thurston and Curtis McMullen, and we show

that these approximations are convergent. We then describe earthquake maps on the

Teichmiiller spaces of compact, Euclidean Riemann surfaces, extending the work of

Thurston and McMullen. Using the discrete conformal approximations developed for

hyperbolic surfaces, we approximate the action of these new maps with circle packing.
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CHAPTER I

INTRODUCTION

The concept of shearing maps as generalizations of Dehn twists and transforma-

tions on points in Teichmiiller space was first developed by Thurston [49, 51], and

has been used by Kerckhoff in proving the Nielsen Realization Conjecture [32] and

Bonahon in his investigations into Thurston's boundary of Teichmiiller space [6].

These earthquakes have been extended by McMullen [35] to include another geologic

action, that of grafting, on points in Teichmiiller space. Taken together, through

composition, we have complex earthquakes.

Essentially, Thurston's shearing earthquake opens a hyperbolic surface (point in

Teichmiiller space) along a measured geodesic lamination, shears the surface along

the seam in a manner determined by the measure, and re-attaches the surface. Mc-

Mullen's grafting maps, rather than shearing along the lamination, insert or remove

a cylinder and re-attach the surface. In Chapter II, we describe these earthquake

actions in detail, giving several examples paying particular attention to the geometric

nature of the transformations.

A circle packing is a collection of circles with a prescribed pattern of tangencies.

Of course, given a collection of circles, there is no guarantee that they can be "fit

together" in a particular pattern; in fact, some patterns may not be possible. For

example, given that all the circles have the same radius, one circle cannot be tangent

to more than six other circles. The "prescribed pattern," is a strictly combinatorial

structure with no inherent geometry. As the circles adjust their radii, trying to

meet the constraints of the pattern prescribed, a rigid geometry is realized. The

interplay between the combinatorial structure and the rigid constraints inherent in

the geometry of the circles provides a deep link to geometric function theory and

the structure of Riemann surfaces which we will exploit in describing the relationship

between earthquakes and circle packing.

Imposing the geometry of a circle implies the existence of a metric; thus we can
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speak about circle packings on any surface with a metric. Consequently, we may

discuss circle packing on any Riemann surface. In fact, it is known that given any

reasonable pattern of tangencies there exists a unique Riemann surface which sup-

ports a circle packing having that pattern of tangencies [4]. Not all surfaces, though,

support a circle packing. It has been shown by Brooks [12] and by Bowers and

Stephenson [10, 8], however, that these packable Riemann surfaces are dense in Te-

ichmiiller space. To go beyond this notion of density and enter into a deterministic

discussion of how the pattern of tangencies affects the geometry of the surfaces and

their circle packings can be very difficult [4, 8, 10, 42].

In Chapter III, we outline the essential background material in the theory of circle

packing. We then prove two results regarding circle packings and surfaces. First, we

prove a proposition of independent interest regarding the interaction between the

pattern of tangencies and the geometry of a surface and the unique packing on that

surface. We then prove a lemma regarding the density of a subclass of packable

surfaces; specifically, we show that we can approximate any Riemann surface with

a sequence of packable surfaces such that the radii of the circles in the packings

admitted on the surfaces tend toward zero.

In Chapter IV, we turn to our main result, using techniques developed by Williams

[53, 54] to describe a discrete, conformal (combinatorial or circle packing) version

of the earthquakes developed by Thurston and McMullen. This process involves

opening a packing along the pattern of tangencies, shearing or grafting within the

combinatorics and repacking to obtain a new surface. We then prove that if we have

a compact hyperbolic Riemann surface R and a sequence of packable surfaces Rk

converging to R with mesh going to zero, then we may approximate the action of

a complex earthquake on R through combinatorial earthquakes on the sequence Rk.

Further, we show that this sequence of approximations is convergent.

Having constructed approximation methods for earthquakes on hyperbolic Rie-

mann surfaces, we note that the literature contains no reference to earthquake actions

on Euclidean surfaces, such as tori. In Chapter V, we extend the work of Thurston
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and McMullen by developing a theory of earthquakes on compact tori. Once we have

these earthquake actions defined and we demonstrate that the action thus described

is a transformation on the Teichmiiller space of tori, we develop discrete conformal

(combinatorial or circle packing) approximations for these Euclidean earthquakes sim-

ilar to those described in Chapter IV, and show that these approximations are again

convergent. Finally, we discuss earthquakes on the one-point Teichmiiller spaces of

the remaining compact surfaces, giving a complete characterization of earthquakes

on compact Riemann surfaces.

The views expressed in this article are those of the author and do not reflect the

official policy or position of the United States Air Force, Department of Defense, or

the U.S. Government.
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CHAPTER II

REAL AND COMPLEX EARTHQUAKES

2.1 Preliminaries and Definitions

We begin by describing the action of finite left earthquakes on the Poincar6 unit

disk. We use a definition for finite laminations of the unit disk, D = {z G C": Jz < 1},

from the excellent exposition of finite left earthquakes by Gardiner and Lakic [23, 24]

rather than the original definition for a more general lamination used by Thurston

and others [21, 35, 49, 51, 54]. This definition is used here as it is more accessible to

geometric and graphical examples, and, as we shall see, this more "accessible" finite

definition suffices to demonstrate the results germane to this investigation.

Definition 2.1.1. Let S be a subset of the unit circle consisting of n > 4 points. A

finite geodesic lamination L of the unit disk D associated with S is a collection

of n - 3 disjoint hyperbolic lines (geodesics) joining the points of S so that no line in

L joins adjacent points of S. More generally, a geodesic lamination of D is a, not

necessarily finite, collection of pairwise disjoint (in ID) hyperbolic geodesics.

The collection of disjoint geodesics in a finite geodesic lamination is maximal in the

sense that we may place at most n - 3 such geodesics. Note that a finite geodesic

lamination divides D into n-2 disjoint hyperbolic triangles. Given such a lamination,

we may place a weight (measure) on each geodesic.

Definition 2.1.2. For a finite set S C 0D with n > 4 points and a lamination

L = f{Li}in- associated with S consisting of n - 3 disjoint hyperbolic geodesics, Li, let

a be a non-negative measure on L. That is, a : Li ý-4 pi G [0, oc), i = 1, 2,..., n - 3.

We call the 2-tuple (L, a) a finite measured geodesic lamination on D.

In Figure 2.1 we see three examples of finite laminations of D. These are clearly

not the only finite geodesic laminations on the given number of points in each case. So,

given that we can construct these laminations, we ask the natural question. "How
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(a) Lamination on 4 Points (b) Lamination on 6 Points (c) Lamination on 16 Points

Figure 2.1: Examples of Finite Geodesic Laminations

many distinct laminations are there on a given set of points?" This question is

essentially a restatement of Euler's polygon division problem, Proposition 2.1.1. In

placing the n points of S on the unit circle, we divide it into n subarcs; that is, we

induce an n-sided polygon. Then, in constructing a lamination through the inclusion

of n - 3 geodesics connecting points of S, we divide this polygon into three-sided

figures or generalized triangles.

Proposition 2.1.1 (Euler's Polygon Division). A plane convex polygon of n > 4

sides can be divided into triangles by diagonals in

Cn-2 = 1 (2n - 4)211
n1 \n-24

distinct ways, where C0 -2 is the Catalan number on n - 2.

This answer to the question of how many distinct finite laminations are possible

on n points has been noted by Gardiner, Hu, and Lakic [23, 24]. See D5rrie [19] for

the classic elementary proof of this result. The laminations thus generated will fall

into classes of laminations that are unique up to rotations. In Figure 2.2 we see the

topological classes of laminations possible on n = 7 vertices. Note that there are six

distinct classes of lamination and seven laminations possible in each class, obtained

by rotations of a representative of the class. Thus, we have 5 = 42 total possible

finite laminations on those seven vertices.
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(a) Simple Fan (b) Right Accordion-Fan (c) Left Accordion-Fan

(d) Accordion (e) Right Triangle-Fan (f) Left Triangle-Fan

Figure 2.2: Topological Types of Finite Laminations on n = 7 Vertices

Definition 2.1.3. Given a set S C OM with n > 4 points and a lamination L, the

dual graph for the lamination is called the tree of triangles.

Figure 2.3: Finite Lamination with Dual Graph/Tree of Triangles

In Figure 2.3 we see an example of a finite geodesic lamination and the correspond-

ing dual graph or tree of triangles. To call this dual graph a tree makes combinatorial

6



sense, since the standard definition of a combinatorial tree from graph theory is a con-

nected graph that contains no subgraph isomorphic to a cycle [26]. The constraints

placed upon the definition of a finite lamination guarantee that the dual graph will

satisfy this definition.

Definition 2.1.4. Let £ be a finite geodesic lamination of D on a set S containing

n > 4 points. If a triangle T induced by this lamination has two sides that are arcs

of OD, then T is called a border triangle.

Again, this definition of a border triangle comes from Gardiner and Lakic [23, 24].

We have a useful, and necessary, result regarding these border triangles.

Proposition 2.1.2. If £ is a finite geodesic lamination of D on a set S containing

n > 4 points, then C contains at least two border triangles.

2.2 Shearing Maps and Real Earthquakes

The following proposition is frequently used or implied in work on finite earth-

quakes since it allows an explicit description of a disk automorphism used to construct

those earthquakes [23, 24]. Due to the relatively elementary nature of the proposition,

however, no proofs appear in the literature. In the interest of a complete exploration

of the properties and construction of finite left earthquakes, we prove it here.

Proposition 2.2.1. Let L C ID be a hyperbolic geodesic with endpoints a, b E OD, a =

b; call a and b the left and right endpoints, respectively, of L. Let p > 0. The map

C(z) (aeP - b)z + ab(1 - eP) (2.2.1)(et, - 1)z + (a - be/)

is a disk automorphism with exactly two fixed points at a, b E 9ID) such that C(L) = L

and points on L are translated a fixed hyperbolic distance p to the left along the

geodesic (away from b and toward a).

Proof. To show that C(z) has exactly two fixed points at a, b E YD is a simple exercise

in algebra; we simply solve the equation C(z) = z for z. This immediately gives that
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C(z) has exactly two fixed points at a, b E MI1. To prove that the transformation

C(z) is a disk automorphism, we recall [38] that a M6bius transformation

M(z) - + W2 (2.2.2)
W3 Z + W4

where w1w4 - w2w3 0 0, is a disk automorphism if and only if there exist constants

a E D and 0 E JR such that

M(z) = ei z a (2.2.3)

Since (ae" - b)(a - beP) - (eA - 1)(ab(1 - eA)) = e"(a - b) 2 = 0 if and only if a = b,

C(z) is indeed a M6bius transformation. We can express 0(z) as

(ae -b)z +ab(1 - e") ae -b z- ab(e | -21)

a -______ ae-i - (2.2.4)
(eP-1)z+(a-beA) = a-be - 1-z "

Therefore, in order to show that C(z) is a disk automorphism we need only verify

that the right-hand side of Equation (2.2.4) satisfies the necessary criteria.

ae - b (ae -b)(aea - b) /e 2 -2e"Re(ab) 1 1
a-- be" (a - ae/--(-- e) 2  Re ab) +1=1 (2.2.5)

ab(e" - 1) e" - 1 e" - 1 e" - 1- -___ <__ _ _ _ _ _ _ _ _ _______ = 1 (2.2.6)
ae" - b Ilae" - bI Vre2A - 2eRe(ab) +1 /e 2 " - 2e± + 1

ab(e& -1) A =b(e& -1) _a(1- e") I - e" 1 - e_
aeg -b a e-b -a- &el - a- e - a-be"

Thus, C(z) is a disk automorphism preserving the unit circle. Now, since C(z) is

a M6bius transformation, the image of a circle is a circle. Further, since C(z) is

analytic except for a single simple pole in C \ ]I, C(z) is conformal in a neighborhood

of each fixed point. Thus, any circle F passing through a and b must have as its

image under C(z) a circle through a and b meeting the unit circle in the same angle

as F. This is sufficient to ensure that C(F) = F for any circle F through a and b;

in particular, C(L) = L. Finally, to show that points on L are translated a fixed

hyperbolic distance M to the left along the geodesic (away from b and toward a) recall

8



[2] that the translation length p(z, M(z)) of a hyperbolic M6bius transformation of

the form given in Equation 2.2.2 is given by the relation

1 tr(M)I = cosh 1pzM(z)) ), (2.2.8)
2 (

where

[tr(M)]2 - (W1 ± w 4)2  (2.2.9)
W1 W4 - w02 W3

Applying this relation to C(z) we have

h1 M )) el +(2.2.10)

and this reduces to

(e/j + 1
p(z,M(z)) = 2cosh-' , 2 ) = In (el)l=j. (2.2.11)

This completes the proof. El

Now, given a finite measured geodesic lamination (L, a) on DI2, we use the hyper-

bolic Mbbius transformation described in Proposition 2.2.1 to construct a discontin-

uous map h, : D -- ]D (which extends to a continuous map on MD) with the following

properties.

1. h, (D) = D.

2. h : S -+ DID defined by h = h, Is is a cyclic and order-preserving.

3. On the interior of any triangle induced by C, h, is a hyperbolic isometry.

4. If L E L is the common hyperbolic geodesic between neighboring triangles T1

and T2, then the points of T2 move to the left relative to the points of T1.

We will call the map h, a finite left earthquake on DI. Note that if we fix the

orientation of the geodesics as given in the finite lamination £ (i.e., we continue to

consider left and right endpoints as above) and globally replace the positive weights

in the measured geodesic lamination with negative weights, we obtain a finite right
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earthquake. All of the results and characteristics pertaining to left earthquakes

also hold for these right earthquakes. In addition, if we relax the restriction that all

weights be either positive (to induce a finite left earthquake) or negative (to induce

a finite right earthquake) and allow both positive and negative weights, we have

legitimate finite earthquake actions at the expense of uniqueness results to be given

in Proposition 2.2.2. This more general class of finite "mixed" earthquakes will be the

class we consider in constructing discrete conformal approximations (circle packing

approximations) for the earthquake actions in Chapter IV.

We now explicitly construct the map h,. Let T1 be any triangle induced by the

finite measured geodesic lamination (L, a). At least one side of T1 must be a geodesic

L1 in L with left and right endpoints a, and bl, respectively, as seen from the interior of

T1, and having weight a(Li) = pi. Using these parameters, construct the hyperbolic

M~bius transformation C1, called the comparison map, defined in (2.2.1), and apply

C, "down the tree of triangles." That is, apply C1 to all edges (geodesics) and nodes

(triangles) below T1 in the tree. In a sense, we apply the discontinuous, piecewise

function

CC (z) if zis "below" T1 on the tree of triangles (2.2.12)

z otherwise

to the closed unit disk.

Now, choose any triangle adjacent to T1. (If T1 has more than one neighbor in the

tree of triangles, choose one, follow the construction down that branch of the tree,

return to T1, and continue down any other branches associated with those additional

neighbors.) Call this neighbor T2. If T2 is a border triangle, then the earthquake

action is complete on this branch of the tree of triangles. If T2 is not a border

triangle, then one side of T2 is a geodesic L 2 not equal to L1. Note that this is not

necessarily a geodesic in the lamination 4; it may, rather, be the image of one such

geodesic under the action of C1. Since C, is a M6bius transformation, though, we are

assured that L2 is, in fact, a geodesic, and we may repeat the construction above. As
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with L1, L2 has left and right endpoints a2 and b2, as seen from the interior of T2 , and

weight a(L 2) = A 2; the weights on our geodesics are not changed by the application

of prior comparison maps. Note that exactly one of a2 and b2 is equal to exactly one

of a, and bl, while the other of a2 and b2 is equal to either Cl(a,) or Cl(b1 ). As

before, construct the hyperbolic disk automorphism C2 defined in (2.2.1) from these

parameters, and apply C2 down the tree of triangles. Continue in this manner down

every branch of the tree of triangles until reaching a border triangle, at each step

constructing comparison maps from the images points in S under applications of the

preceding comparison maps. Thus, if there are n points in S, there will be n - 3

comparison maps, one for each geodesic in the lamination L.

When the tree of triangles has been exhausted, we have a map h, from the closed

unit disk to the closed unit disk such that the restriction of h, to 09D is a cyclic,

order-preserving homeomorphism from the unit circle to itself. Clearly the map h, is

discontinuous on the interior of IDl, but our main concern will be the action of h, on

the MD.

In Example 2.2.1 we construct an explicit finite left earthquake from a given finite

measured geodesic lamination.

Example 2.2.1. Let S = {s1 , 82 , S3, s 4 , s5 } { 1, ei,,e4 , -1}. Let 1 ILIL2},

and let T1, T2, and T3 be as shown in Figure 2.4a. Define a by u(Li) ln(2) and

a(L 2) = ln(3). These values for the weights on L1 and L 2 may appear arbitrary, but

they were chosen for reasons of computational convenience. Notice that in Figure

2.4a an additional dashed circle is drawn, and we have included two additional points

on the geodesics L1 and L2 . These objects have no direct bearing on the action of

the finite left earthquake; they do serve, however, as a reference and to illustrate that

action. Using the triangle labeled T1 as the "top" of the tree of triangles, we construct

the map
l(z) =(2 - i)z - i

z + (1 - 2i) (2.2.13)

from the left and right endpoints and the weight associated with L1 . We apply this

11



disk automorphism in the piecewise manner described above; the result is shown in

Figure 2.4b. Note that the shaded portion of the closed disk is unchanged, while

points in the unshaded portion have been translated to the left as seen from T1.

S4~ ~ ~ g3' , 3 S

L2 L , LI •

"-4 L2

S4
S

(a) Lamination on IDI (b) Action of C1 (z) (c) Action of C2 (z)

Figure 2.4: Finite Left Earthquake

Now, we construct a second map using the new endpoints of the geodesic L2 . The

explicit map thus constructed is given by
C2(z) - z- 1 (2.2.14)

z - 21

We apply this transformation down the tree of triangles to obtain the result shown

in Figure 2.4c. Again, the shaded portion of the closed disk is unaffected by the

piecewise application of the comparison map C2, and points in the unshaded region

have been translated to the left relative to T2 .

In Example 2.2.1 we illustrated the action of a simple finite left earthquake. In

doing so, however, we chose a triangle from the lamination to act as the "first"

in the tree of triangles induced by the lamination. Thereafter, the action of the

earthquake was determined, but the requirement that we choose a starting point for

the execution of a finite left earthquake raises the question of uniqueness. Would a

different choice for the initial triangle result in a different earthquake? The answer is

that the fundamental action of a finite left earthquake is independent of the choice

of initial triangle. This result and an explanation of what is meant by "fundamental

action" is given in Proposition 2.2.2.
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Proposition 2.2.2. The effect of a finite left earthquake on S C DD induced by

a finite measured lamination (C, a) associated with S is uniquely determined, up to

post-composition by a disk automorphism, by the measured lamination.

For a proof of this result see the work of Gardiner, Hu, and Lakic [23, 24]. We

do not include their proofs here since a concrete example of this property is perfectly

illustrative and demonstrates beautifully the essential mechanism of their proofs, the

explicit formulation of an appropriate M6bius transformation. As such, we rather

include Example 2.2.2 as a illustration of the essentially unique determination of the

action of a finite left earthquake on the points of S.

S2,(k-l) 16
Example 2.2.2. Suppose that S = Ie 16 1k__, and let C be the finite geodesic

lamination associated with S as shown in Figure 2.5a. We have numbered the fourteen

triangles induced by the lamination as T 1, T2,... , T14 for reference, without necessarily

implying any a priori decisions regarding the manner in which the finite left earth-

quake(s) are executed. Place a uniform weight of p I in (Q) on each geodesic of the

lamination.

T 1 T,

T'7

(a) Lamination on D (b) Start with T1  (c) Start with T4

Figure 2.5: "Uniqueness" of Finite Left Earthquakes

In Figures 2.5b and 2.5c we show the action of the finite left earthquakes induced

by placing T1 and T4 at the top of the tree of triangles, respectively. The action

of the earthquake appears very different in each case. As Gardiner, Hu, and Lakic

[23, 24] point out, however, if we construct a M6bius transformation by composing
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the comparison maps associated with the unique sequence of geodesics separating the

two triangles T1 and T4 as simple disk automorphisms rather than as piecewise func-

tions, we obtain immediately the desired M6bius transformation. In this example,the

desired maps are
(.79 -. 71i)z - (.35 + .35i) (2.2.15)

Ci (z) • .5z - (.06 + 1.06i) (

(1.46 - i)z - (.02 + .5i)
C 2 (Z) .5z + (.94 - 1.5i) , and (2.2.16)

(2.49 + .16i)z + (.49 + .08i) (2.2.17)
C3 (z) • .5z + (2.48 + .24i)

Note that the Mbbius transformations shown in (2.2.15), (2.2.16), and (2.2.17) are

each created based on the images of their endpoints under the previous comparison

maps applied in the application of the finite left earthquake induced by placing T1 at

the top of the tree of triangles. We do not use the endpoints of those geodesics in the

original lamination, though any geodesic that forms a side of the initial triangle in

the tree is always fixed by the action of a finite left earthquake, and we will thus use

the initial values for the endpoints of those geodesics. Composing these three Mdbius

transformations we have
M(Z) =(03 0 02 0 C)(Z) (1.95 - 5.57i)z - (4.28 + 1.19i) (2.2.18)

(2.64 - 3.57i)z - (4.97 + 3.19i)"

A few routine calculations show that the image points of S under the two earthquake

maps shown in Figure 2.5 differ only by post-composing the disk automorphism M(z)

given in (2.2.18) with the finite left earthquake action resulting from placing T1 at

the top of the tree of triangles. Note that should we wish to alter the order here,

that is begin with the earthquake induced by placing T4 at the top of the tree and

post-compose by a Mdbius transformation, then we do not simply reorder the maps

C1, C2 and C3; rather, we must calculate a completely new set of maps based on the

images of geodesics in that finite left earthquake.

Thus we have seen that given a finite measured geodesic lamination on D, we

can explicitly construct and describe the action of the (essentially) unique finite left
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earthquake induced by that lamination. The next natural step is to ask whether or

not given the action of a finite left earthquake we can determine the lamination which

induced it. That is, given a finite set of points S C MD and their images under a

finite left earthquake, can we find a finite measured geodesic lamination (4, a) that

induces the given map on S? The answer was given by Thurston [49].

Theorem 2.2.1 (Thurston's Finite Earthquake Theorem). Suppose that h is a

given order-preserving map from a finite subset S of the unit circle into the unit circle.

Then there exists a unique finite measured geodesic lamination (4, a) associated with

S such that, up to post-composition by a Mibius transformation, h is the restriction

to S of the finite left earthquake induced by (4, a).

Gardiner and Lakic [24] and Gardiner, Hu, and Lakic [23] give excellent proofs of

this theorem. Their proofs are of particular value and interest in that they are espe-

cially constructive; their proofs suggest, inductively, a method to explicitly calculate

the desired (unique) finite measured geodesic lamination given the sets S and h(S).

We do not describe the algorithm here, but we have implemented the algorithm in

Mathematica, and the code used is provided in Appendix C.

Example 2.2.3. We take a "random" set of five points on the unit circle and another

set of "random" points to act as their images under h. To say that the points used

are random is somewhat misleading. In fact, the points in this example were chosen

randomly within the constraints that we require that h is cyclic and order-preserving.

The points used in this example are shown (to six significant figures) in Table 2.1. Us-

ing the Mathematica code given in Appendix C, we find the two appropriate geodesics

and weights on each as shown in Figure 2.6.

Observe that any finite left earthquake on this finite measured geodesic lamination

fixes the three points in the triangle placed at the top of the tree of triangles. Thus,

the earthquake induced by the calculated lamination does not give the correct images

in h(s); in fact, no finite left earthquake can do so alone. The three points fixed by

the earthquake point out a choice for the Mdbius transformation which will map the
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Table 2.1: The Points S and h(S) Used to Compute a Lamination

S h(S)

s8 0.259205 + 0.965822i h(si) -0.485661 + 0.874147i

82 -0.294304 + 0.955712i h(s 2) -0.932807+ 0.360375i

83 -0.410866 - 0.911696i h(s 3) -0.171589 - 0.985169i

S4 0.733058 - 0.680167i h(s 4 ) 0.8436120 - 0.536941i

S5 0.887984 - 0.459873i h(s5 ) 0.987219 - 0.159371i

h(s2) "

T1
pl=0.24 /-1 =0.256

h(ss•

Figure 2.6: Measured Geodesic Lamination on S Given h(s)

points as desired. We calculate the unique Mdbius transformation sending the three

points in the first triangle to their images; in fact, the algorithm used to compute the

lamination makes this the necessary choice of Mbbius transformation. Thus, in this

case we have three possible finite left earthquakes and three corresponding Mbbius

transformations given in (2.2.19), (2.2.20), and (2.2.21), corresponding to the finite

left earthquakes induced by placing the triangles T1, T2, and T3, respectively, at the

top of the tree of triangles, as shown in Figure 2.6.

MI(Z) -(1.470 + 1.478i)z + (0.0489 + 0.496i) (2.2.19)
(0.472 - 1.580i)z - (1.950 + 0.738i)
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(2.287 + 3.370i)z - (0.211 + 0.611i) (2.2.20)(-0.628 + 0.152i)z + (3.571 + 1.957i)

M 3 (Z) (-0.807 + 0.640i)z + (0.107 - 0.189i) (2.2.21)
(0.173 - 0.132i)z - (0.524 - 0.886i)

2.3 Grafting Maps and Complex Earthquakes

In geologic terms, earthquakes do not only involve lateral "shearing" along a fault

line. Earthquakes may also involve a separation in which two tectonic plates move

apart and new surface rises to fill the gap or a subduction in which one tectonic plate

slides beneath another, and surface is lost. Just as we have maps which mimic a

geologic shearing action, so we have maps which mimic these separation and subduc-

tion actions. We will consider these together as "grafting" actions which are positive

or negative, respectively, in their behavior. Shearing and grafting maps, combined

through composition, comprise what we will call complex earthquakes.

In this section we first revisit the shearing actions developed in Section 2.2, giving

an alternate description through their local projective behavior. We then use this

local projective structure to describe a new form of earthquake, a grafting action

rather than a shearing action, introduced by McMullen [35], from whom much of the

discussion below originates, and investigated by others [40, 41].

Ine(z) Trn~z

M(b) Rez 0b ez

(a) Geodesic (b) Project to H (c) "Scale" in lH[ (d) Return to D

Figure 2.7: Local Projective Description of a Shearing Map

First, we revisit the action of a shearing map. Suppose a, b c lD such that

a = b, and L C D is the unique hyperbolic geodesic connecting a to b. Apply the

M~bius transformation M(z) which takes the unit disk D to the upper half plane H

so that the image of L is the positive imaginary axis, the image of MD is the real axis,
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M(a) = co, and M(b) = 0. Now, we apply a simple scaling, rz, where r > 0, in one

quadrant of H and the identity map on the other. Finally, we apply the inverse of the

M6bius transformation M. As we can see in Figure 2.7, the effect of thus composing

these maps is that of a hyperbolic shearing. In fact, should we perform this general

composition and simplify the resulting function, we will find that the composition

map is the comparison map given in (2.2.1).

Before we turn ourselves to the description of grafting maps and earthquakes, we

need to recall some properties of the upper half plane H as a model for the hyperbolic

plane [2]. First, recall that the density we use to define a hyperbolic metric on

IH = {z E C: Im(z) > 0} is given by

1 (2.3.1)

Jm(z)

As a consequence, what we think of as a strip in a Euclidean sense may not be a strip

in H. Similarly, a strip in the upper half plane may not appear, to our Euclidean eye,

as a strip at all. Specifically, we note that a Euclidean wedge in ]H with its corner

touching the real line, as shown in Figure 2.8, is a strip in the hyperbolic metric on

H, since the distance from edge to edge of the wedge is constant in the hyperbolic

metric. The circular arcs shown in Figure 2.8 are all of equal length in the hyperbolic

metric on H.

Im(z)
- -------

Re(z)

Figure 2.8: Hyperbolic Strip in ]H-

To define the grafting maps and imaginary earthquakes described by McMullen

[35], we use the approach thus described. The difference is that rather than a piecewise

scaling action given as multiplication by a real number, we apply a piecewise rotation
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by some angle a given as multiplication by the complex number eia. This piecewise

rotation leaves a gap; we fill this gap by grafting in a hyperbolic cylinder, as shown

in Figure 2.9c. Now, we can map the image of the upper half plane under the maps

so far applied back to the upper half plane with a power map zA, where
7r

7r + .a (2.3.2)

This map restores the real axis, and allows us to directly map the image region back

to the unit disk and see the action of the earthquake on the disk. This is illustrated

in Figure 2.9.

b

hIn(Z)

!IiiRezz
a/

M~) Re(z)\., II / Mb)
M•(b) Re(z)

(a) Geodesic (b) Project to H (c) "Rotate" in H
b

Ira(z)

*

"M(b) R :5

(d) Power Map (e) Return to D

Figure 2.9: Local Projective Description of a Grafting Map

Note that in the application of the power map zO, the arcs of circles and geodesics

in Figure 2.9c are taken to curves which are no longer either geodesics or circles in

Figure 2.9d. This is especially clear as we return to the unit disk B in Figure 2.9e.

The two curves connecting the points a, b C ID are clearly not geodesics, and the

two disjoint halves of the dashed reference circle shown in Figure 2.9a are no longer
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circles. This failure to preserve geodesics and circles is key. Given a finite lamination

of the disk, we may execute shearing maps on those geodesics sequentially since the

maps involved are hyperbolic isometries and thus preserve the geodesics. In the case

of grafting maps, however, we cannot perform the grafting actions in such a sequence,

since the first application transforms the other geodesics of the lamination into curves

which are no longer geodesics. To make the action of these grafting maps computable

is the major motivation of this research.

Now we simply define a complex earthquake as the composition of shearing and

grafting maps, applied in that order. Consider the shearing and grafting maps devel-

oped in Figure 2.7 and Figure 2.9. This composition is illustrated in Figure2.10.

bb

SIM(z) Imz)

aa

',, / / /

M~b) R-M)b)

(d) "Rotate" in H (e) Power Map (f) Return to D

Figure 2.10: Local Projective Description of a Complex Earthquake Map

To call such a map a "complex" (as opposed to real or imaginary) earthquakes is

quite natural. A real weight indicated a scaling, multiplication by a real number, and

an imaginary weight indicated a rotation, multiplication by an imaginary number

with unit modulus. Now, a complex weight x + iy on the geodesic indicates that the
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transformation applied to points in one quadrant of H amounts to multiplication by a

complex number ex+iy = exeiy. From this point, when we refer to measured geodesic

laminations, we allow the measure to take complex values. We will, in the case of

earthquakes on compact hyperbolic surfaces, restrict the imaginary part of complex

measures to non-negative values. Otherwise, we place no a priori restriction on the

weights in a measured geodesic lamination.

2.4 Riemann Surfaces and Teichmiiller Theory

Our eventual goal is to define, discuss the properties of, and approximate the

action of earthquakes, both grafting and shearing maps, on the Teichmiiller spaces of

Riemann surfaces. Here we review some of the important definitions and properties

of Riemann surfaces and their Teichmiiller spaces [14, 15, 24, 29, 30, 33, 48].

Definition 2.4.1. A Riemann surface is a one complex-dimensional manifold

with charts whose overlap maps are analytic. The maximal collection of charts on a

Riemann surface is the conformal structure for that surface.

The conformal structure for Riemann surface R (that is not the sphere) gives a

convenient way of representing the surface in the complex plane C, if R is Euclidean,

or in the hyperbolic plane D, if R is hyperbolic.

Definition 2.4.2. Let R be a Riemann surface with fundamental group rl(R). A

closed, connected subset P = of C (or D) is called a fundamental region for R if

1. for each z C C (or z C] D) there exists at least one w C P such that z = g(w),

where g E ii-(R) (we say z , w); and

2. for every wI, w2 E P, there does not exist an element g C irl(R) such that

g(wl) = w2.

A torus T with fundamental group given by < z + 1, z + (1 + i) > has as a fundamental

region the one shown in Figure 2.11. Here we have zi - w2 for each i = 1, 2, 3, 4, 5,

and w, = g(w2) for any g E< z + 1, z + (1 + i) >.
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hn(z)

Z3  z5

P 1 2 - Re(z)

Figure 2.11: Fundamental Region for a Torus

Two Riemann surfaces R1 and R 2 are said to be conformally equivalent if and

only if there exists a conformal homeomorphism f f R1 --+ R2. The set of equivalence

classes of surfaces of the same topological type as R1 under this equivalence relation is

the moduli space of R1. The equivalence relation defined by conformal equivalence

which determines the moduli space of R1 is not adequate for our purposes. We will

require that for surfaces R1 and R2 to be considered equivalent they must first be

conformally equivalent (the same point in moduli space) and we will further require

that the generators of their fundamental groups correspond.

Definition 2.4.3. Let R be a Riemann surface, and let E be a collection of canonical

generators for 7r, (R). The collection E is called a marking for R. Two markings on

R are equivalent if and only if they differ by the choice of their base point.

This now gives us a new equivalence relation which we use to describe another

space of surfaces.

Definition 2.4.4. Two marked Riemann surfaces (R, E) and (f?,) are said to be

equivalent if and only if there exists a conformal map f : R -- f for which the

marking f(E) is equivalent to Z. The Teichmiiller Space of R is the set of these

equivalence classes.

An illustration of how two surfaces may be conformally equivalent, and thus equiv-

alent points in moduli space, while differing in their markings, making them different
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points in Teichmiiller space, is given in Figure 2.12. The tori (or fundamental regions

and markings for the tori) T and T shown in Figure 2.12a and Figure 2.12b, respec-

tively, are conformally equivalent [30, 45]. As points in Teichmiiller space, however,

they differ in the choice of markings. The generator z + 1 corresponds to "going

through" the hole in the torus once, and the generators z + w and z + Co each corre-

spond to "going around" the hole in the torus once. Each of z+w and z + , however,

correspond to closed loops on the torus in different homotopy classes, since z+w does

not "go through" the hole and z + Co "goes through" the hole once, as illustrated in

Figure 2.12c.

Im(z)

Ira(z)

Re(z) /e

- Re(z)

(a) Torus, T (b) Torus,

Im(z)

W

- ___-___ Re(z)

(c) Marking for z + LZ on T

Figure 2.12: Moduli Space vs. Teichmiiller Space

Another useful description of the Teichmiiller space of a surface involves equiva-

lence classes of maps from a reference or base surface. First we require a generalization
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of the concept of a conformal map.

Definition 2.4.5. Let f be a continuous, orientation-preserving map from a domain

Q C C into the complex plane, and fix zo E Q. Define L, and f by

Le=max{If(z) - f(z0O)I Iz- zo0 El},

and

f=m min {f(z) - f(zO)I Iz - zo01,

as shown in Figure 2.13. The dilatation of f at zo is

Df(zo) = limsup Le

If SUpzEQ {Df(z)} • K, then we say that f : Q -+ C is K-quasiconformal.

f

Figure 2.13: Action of a Map f with Dilatation Df(zo) > 1

Before moving on, we state as Lemma 2.4.1 a well-known and useful property of

quasiconformal maps.

Lemma 2.4.1. Iff : Q -+ A is Ki-quasiconformal and g: A -+ C is K 2-quasiconformal,

then their composition g o f : Q -+ C is (K 1)(K 2)-quasiconformal.

Note that the class of quasiconformal maps contains those maps which are conformal.

Since a conformal map sends infinitesimal circles to infinitesimal circles [18], the

limit of the ratios described in Definition 2.4.5 is 1. That is, a conformal map is

1-quasiconformal. Now, the class of quasiconformal maps allows us to define a new

equivalence relation of the set of Riemann surfaces.

Definition 2.4.6. Quasiconformal maps fi and f2 defined on a Riemann surface R

are Teichmiiller equivalent if and only if f2 o f7 1 is homotopic to a conformal map.
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Now, Proposition 2.4.1 establishes the equivalence of these two characterizations of

points in Teichmiiller space.

Proposition 2.4.1. Fix a Riemann surface R, and suppose fi and f2 are maps from

R to Riemann surfaces R1 and R2, respectively. R1 and R2 are equivalent in the

Teichmiiller space of R if and only if fl and f2 are Teichmiiller equivalent.

Thus, points in the Teichmiiller space of a Riemann surface R may be considered

as either points or as functions. There is a natural metric on Teichmiiller space as

a function of how close to conformal (or how quasiconformal) maps which preserve

the markings might be. If we fix a Riemann surface R and a marking E on R, the

distance between two points R1 = fl (R) and R 2 = f2 (R) in the Teichmiiller space of

R is given by

d(f, R2 ) 1 log(K*),
2

where K* is the infimum of the dilatation of 92 0 g9-i where g, and 92 are equivalent

to fi and f2, respectively. This infimum is attained, by definition, by the unique

Teichmiiller map.

Remark 2.4.1. The Teichmiiller maps on the space of tori are linear transformations.

That is, the Teichmiiller map from the torus T to the torus T is affine.

2.5 Earthquakes on Surfaces

Now, we describe the action of earthquakes on compact Riemann surfaces with

genus g > 2 (i.e., n-holed tori, n > 2) and their Teichmiiller spaces. To do so, we

must describe the constructions on these surfaces necessary to the earthquake actions.

That is, we need measured geodesic laminations consisting of simple closed geodesics

on the surface (though they will not necessarily be finite) and hyperbolic shearing

and grafting maps.

Let R be a compact Riemann surface with genus g > 2, (i.e., R is a compact,

hyperbolic Riemann surface). Just as in the disk, a finite geodesic lamination on R

is a finite, pairwise disjoint collection of geodesics in the intrinsic metric on R, but
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how do we define these geodesics? Well, we know that a geodesic in the Poincar6

model of the hyperbolic plane is an arc of a circle which intersects IJD orthogonally.

Further, we know that for any hyperbolic Riemann surface, the universal cover for

that surface is the hyperbolic plane where R is related to the universal cover through

its conformal structure [14, 15, 29, 30, 45]. So, given a curve -y C R, -y is a geodesic on

R if and only if -y lifts to a geodesic in the hyperbolic plane [45]. Thus, a lamination

on the Riemann surface R lifts to a geodesic lamination in the hyperbolic plane,

as illustrated in Figure 2.14, where we lift a geodesic lamination from a compact

surface of genus 2 to the disk. The tiling is accomplished through the application of

transition maps which, in this case, are hyperbolic isometries with axes perpendicular

to corresponding sides of the fundamental region. The lift of geodesic segments are

shown as dashed curves. For more detailed information on the structure of geodesics

and laminations on surfaces, see the work of Bonahon [5, 7]. Take a collection of

simple closed geodesics in R, and place on each geodesic in R a real (for shearing),

imaginary (for grafting), or complex (for shearing then grafting) weight. This gives us

"a measured geodesic lamination (C, o) on R. Note, however, that while we began with

"a finite lamination on R, through the lift we obtain a countably infinite lamination

on D.

(a) A Fundamental Region (b) One Layer of Tiling (c) Two Layers of Tiling

Figure 2.14: Geodesics on Surfaces Lift to Geodesics on ID1

Now, we can define an earthquake on R in terms of the mechanisms already

described in Section 2.2 and Section 2.3. A finite measured geodesic lamination on
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R lifts to a measured geodesic lamination on D comprising a sequence of geodesics

{Ln}nCN. To this point, we have only defined finite earthquakes on the disk, so how

do we define an earthquake on a countably infinite set of geodesics? We do so just as

a limit of finite earthquakes.

On the surface itself, this earthquake action has a nice geometric interpretation.

Shearing along a geodesic in the disk induced by a geodesic on the hyperbolic Riemann

surface R is equivalent to simply cutting open the surface along the geodesic, twisting

by an amount prescribed by the weight on the geodesic, and gluing the two ends back

together, as illustrated in Figure 2.15. Similarly, grafting along a geodesic in the disk

induced by a geodesic on the surface R is equivalent to cutting open the surface along

the geodesic, inserting a hyperbolic cylinder with a height prescribed by the weight

on the geodesic, and gluing the ends together, as illustrated in Figure 2.16.

(a) Cut Along a Geodesic and Twist (b) Glue the Ends Together

Figure 2.15: Shearing Action on a Hyperbolic Surface

The question now becomes whether or not the resulting object is a Riemann

surface. Are the objects illustrated in Figure 2.15b and Figure 2.16b Riemann sur-

faces? That is, is the action of an earthquake on a hyperbolic surface a map in the

Teichmiiller space of that surface?

To answer this question, we now turn to some technical definitions and results
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(a) Cut Along a Geodesic and "Separate" (b) Insert a Cylinder and Glue Together

Figure 2.16: Grafting Action on a Hyperbolic Surface

regarding the action of earthquakes, culminating, in Section 2.6, in the explicit con-

struction of a conformal structure on the image of a Riemann surface under an earth-

quake (involving positive and negative shearing and positive grafting), demonstrating

that earthquakes are maps in the Teichmiiller space of the hyperbolic surface R.

Definition 2.5.1. An orientation-preserving homeomorphism q$: OlD -+ OlD is called

a k-quasisymmetry if and only if

1 , (ei(x+t) - (eX < k, (2.5.1)
k-• _o(eix) - ýo(ei(_t)) _

for all x and for all t G (-2, 2)"

Quasisymmetries and quasiconformal maps are closely related in that the boundary

values of a quasiconformal map give a quasisymmetry, and a quasisymmetry on aID

induces a quasiconformal map on D.

Definition 2.5.2. Let (,C, a) be a measured geodesic lamination, not necessarily finite,

in ID; say L {L= }. Let I be a curve in D with unit hyperbolic length such that Ifl Ln

contains no (non-empty) open subsets for every Ln G L, and I intersects any geodesic

Ln E C at most finitely many times. Define the quantity re(I) as

m(I) E E (kn mod 2) Ia(Ln)l, (2.5.2)
nENI
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where N, {n C N: InL L= A 0} and kn is the number of times I intersects Ln. The

transverse measure of the measured geodesic lamination (4, a) is given by

m = sup {m(I)}. (2.5.3)

Ic]

In computing the quantity m(I), the first time we cross a geodesic, we call that

orientation positive, and for each successive crossing of the geodesic in that direction

we add the associated weight. Crossing in the other direction is given a negative

orientation, and such a crossing subtracts the associated weight from our measure.

Thus, crossing a geodesic an odd number of times adds the associated weight to m(I)

and crossing an even number of times adds zero.

Now, we establish the intimate link between quasisymmetries and the transverse

measure of a measured lamination on D. One direction of Theorem 2.5.1 was proven

by Thurston [49], and versions of the complete theorem have been proven indepen-

dently by Gardiner, Hu, and Lakich [23], Gardiner and Lakic [24], Hu [25], and Sari•

[40].

Theorem 2.5.1. Let (4, o) be a measured geodesic lamination on D and let E be

the earthquake on D induced by (4, o). The continuous extension of E to 1D is a

quasisymmetry if and only if the transverse measure of (4, o) is bounded.

Note that a single measured geodesic lamination may give rise to more than one earth-

quake, as illustrated in Example 2.2.2. As stated in Proposition 2.2.2, however, the

extension of these earthquakes to their boundaries differ by a Mdbius transformation.

As a conformal map, this M6bius transformation has no effect of the nature, in terms

of the quasisymmetry constant k, of the boundary quasisymmetry. That is, we are

justified in speaking of the unique earthquake E in Theorem 2.5.1. Thus, an appro-

priately measured lamination gives an earthquake which induces a quasisymmetry on

MD. This quasisymmetry induces, in turn, a quasiconformal map on D. Now, this is

how we described the relationship between points in Teichmiiller space.
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2.6 A Conformal Structure on the Images of Hyperbolic

Riemann Surfaces under Complex Earthquake Maps

Let R be a compact, hyperbolic Riemann surface, and suppose that we apply to R

a finite complex earthquake E induced by a finite measured geodesic lamination (4, a)

on R, where the lamination consists of n geodesics with complex weights o-(Li) =

pi + iAj, 1 < i < n, where pi E R and Ai E ]R such that Ai > 0. This earthquake

thus involves both shearing maps and (positive) grafting maps composed to form the

complex earthquake.

Since R is a fixed Riemann surface, it has a conformal structure associated with

it; say {9V}vET is the atlas for the conformal structure on R. Further, since each

grafting map involves the insertion of a cylinder cj, we have a conformal structure

associated with each such cylinder such that the coordinate charts map cj to subsets

of a hyperbolic wedge. We do this by mapping first to an infinite strip and then

applying the exponential map ez to that strip. For each of cj, 0 < j < m, where

m gives the number of geodesics in the lamination £ which have non-zero imaginary

components for their weights, let {•bk}keK be the atlas associated with each such

cylinder.

Define a pullback map P on R, the image of R under the complex earthquake E,

so that the image of a point r E ft under P is the unique point (on R or on one of

the cylinders cj) whose image under the complex earthquake E is r.

With this information we now define a conformal structure on the Riemann surface

ft. To define this conformal structure we need only describe a set of coordinate charts

mapping open regions in the surface R to C so that the transition maps associated

with the coordinate charts are analytic. It is sufficient to construct for every point

r E ft a map from an open neighborhood U C Rt to C so that these maps satisfy

the analyticity condition. It is sufficient to consider open sets of the following four

classes.

1. UA is the collection of all open sets U, c ft such that U, does not intersect the
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image under the earthquake E of any geodesic Li, 1 < i < n, and is disjoint

from every inserted cylinder E(cj), 1 < j < m.

2. UB is the collection of all open sets U, C f? such that Up C E(cj) for some

3,1 <j <m.

3. Ur is the collection of all open sets Uy C R such that U7 intersects E(Li) for

exactly one value i, 1 < i < n, where o-(Li) E R, (i.e., the only map on that

geodesic is a shearing operation).

4. UA is the collection of all open sets U6 C R such that U6 intersects both P- (R)

and E(cj) for some j, 1 < j < m.

An illustration of representative sets from these classes is given in Figure 2.17.

Figure 2.17: Open Sets to Define a Conformal Structure on R

Case I: Let Ua E UA, and note that P(Ua) is an open set in R. From the conformal

structure on R and corresponding to this open set P(U,) we have a coordinate chart

W, such that V,(P(Uc)) C HI = {z G C: Im(z) > 0}. We thus define a coordinate

chart 0, :ft -*- C on the open set U, by Oc = Wa o P. In this way we define a family

of coordinate charts XPA on Rt by XFA = {¢aCA"

Case II: Let Up E UB. In this case, Up C Int(E(cj)), for some 1 < j K m, and

the pullback map P takes this set to an open set on the finite cylinder cj as shown in

Figure 2.18a. Now, from the conformal structure on cj we have a coordinate chart (Y

corresponding to P(UP) such that ¢Y,(P(Up)) is a subset of an infinite hyperbolic strip
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of uniform width determined by the complex part of the weight on the appropriate

geodesic in L. We then have a grafting map g• that opens the upper half-plane

along the imaginary axis and glues in the hyperbolic strip as shown in Figure 2.18b.

Following this with the conformal map Mj that transforms the result into the upper

half-plane, we have a map Op : R -+ C, shown in Figure 2.18c, on the open set Up

defined by Mj = M 3 oa o0,1 o P. In this way we define a family of coordinate charts

XFB on fR by XFB

(P(U6)

(a) Image of U0 c R•under P (b) Image of U, CR under g o 3 o P

(c) Image of U6 C R under 0,3

Figure 2.18: Construction of Coordinate Charts for Open Sets U'3

Case III: Let Uy E Ur, and note that P(Uy) is a set as shown in Figure 2.19a. From

the conformal structure on R and corresponding to an open set containing P(U,7 ) we

have a map p. such that W,(P(Uy)) C H. Now, we have disjoint sets that differ

by the application of a hyperbolic shearing map, Sy, along the vertical axis shown

32



in Figure 2.19b. We have thus defined a coordinate chart Ob :• R -+ C on the open

set Uy by O = Sy o a o P. In this way, we define a family of coordinate charts

Tr=

S( •o',(P(U•,))

(a) Image of U.y C under P (b) Image of U,, C f under o0y 0 P

/sy(v,(P(Uy)))

(c) Image of U7 C R under Sy o W,, o P

Figure 2.19: Construction of Coordinate Charts for Open Sets U.7

Case IV: Let U6 E UA, and note that P(U j ) is divided between two distinct

Riemann surfaces cj, as shown in Figure 2.20a, and R, as shown in Figure 2.20b. To

define coordinate charts on set of the form U6 we define a pair of maps from these

surfaces to the upper half-plane H. Beginning with the cylinder, we have a map V

such that ¢Y(P(E(cj) n U6)) is a hyperbolic strip of uniform width determined by

the complex part of the weight on the appropriate geodesic in LC. We then have a

grafting map g, that opens the upper half-plane along the imaginary axis and glues in

the hyperbolic strip as shown in Figure 2.20c. At the same time, from the conformal

structure on R we have a map ,06 such that Vb(P((E(cj))c n U6)) C H as shown in

Figure 2.20d. Applying the grafting map g. we put the pieces back together in C.

Now, we may need to shear along the hyperbolic geodesic whose image to this point is

the imaginary axis in Figure 2.20d; this will depend upon whether or not the geodesic
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associated with this grafting action had a weight with non-zero real part. Note that

the shearing will take place along that portion of the set not intersecting E(cj), since

we define complex earthquakes as the composition of shearing and grafting maps, in

that order. Finally, we know that there exists a conformal map Mj that takes the

opened half-plane to the upper half-plane.

{Mu' o g oqoP(r) if r c E(cj) n U6 CR (2.6.1)
MjoS 6 og o oP(r) ifre (E(cj))cnU, c

This function now defines a map f? •t -+ C on the open set U6 , as shown in

Figure 2.20f. Taking all such functions over the set of possible sets U6 E UA, we define

a family of coordinate charts TA = 'JV)}'E.

Define a collection of open sets, U UA U UB U Ur U UA, and a collection of maps

from R to C, IF= TAU TBU'TrUT.

Proposition 2.6.1. The transition maps in the structure (U, P) are analytic.

Proof. Let U be the intersection of two open sets in U. We need only consider those

intersections for which U E U. This gives four cases for the overlap region U in which

we must verify the analyticity of the transition maps.

Case I: Suppose that U E UA. There are four possible ways in which U may occur

as the result of intersections of sets in U.

Case Ia: U = Ual n u, 2 , where UQI, U12 E UA. Associated with Ua, and U 2 we

have coordinate charts Oai, Oa 2 E TA. Say 'z = Val o P and 0-2 = Va2 o P. Now,

consider the transition maps ?'012 o a-1 and V) o 0-'

-l12

Oa2 0o•-1 _- (V-,2o0P) o (V•aloP)-I

= V 112 o p o p - 1l o V al1

= oa a-

Thus, 012 a°Oall : C -+ C is analytic, since Vai, i = 1, 2, were taken from the conformal

structure on R, making Pa 2 a Val analytic. Similarly, Vl o 1 is analytic.
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I ~~P(E(cj)n U,,) (i".

P(E~ 3 )n 6)t ~I3DP((E(cj))c n U,5)

(a) Image of U6 fl E(cj) under P (b) Image of U, N(E(cj))C under P

0, (P(E(cj)n U6))

st,V(P((E(cj))cnf U6)

(c) Image of P(U6 n(E(ce))) under 0$' (d) Image of P(Us N(E(cj))C) under ýo6

Sg~j(0,1,(P(E(cj)N U,0)))

g, (ýq,(P((E(cj))c n U,)) 5.. fi(U )

(e) Image under the Grafting g' (f) Image of U6 C 1 under 06

Figure 2.20: Construction of Coordinate Charts for Open Sets U6

Case Ib: U = U, n U7 , where U, E UA and Uy E Up. Associated with U, and U.7

we have coordinate charts V,, E TA and Oy E Tr, respectively. Say 0, = W, o P and

0,y = Sy o V, o P. Now, consider the transition maps V),, o O)-1 and 0, o 0-a

0a 0 0--1 = ((oa 0 P) o (S,-,o0 (/ 0o P))- 1

= (oPopao lPoSi0 1

Note that the transition map 0. o O,-1 is defined only on the set U. Since the set U

does not itself intersect the geodesic associated with the shearing map S7, on U the

shearing map acts as either the identity map or a hyperbolic M6bius transformation.
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In either case, the action of S. is (locally) analytic. Next, we note that since •

and V are taken from the conformal structure on R, V,, o V-' is analytic, where

defined. Thus, the transition map 0, o Oa-1 is the composition of analytic maps, and

is therefore analytic. Similarly, Oy o 0.' is also analytic.

Case Ic: U = U. n U6, where U, E UA and U6 E UA. Associated with each

of Ua and U6 we have coordinate charts 0,, E TIA and j E IP'A, respectively. Say

0, = ap, o P and Oj of the form given in (2.6.1). We note that since U does not

intersect the geodesic associated with the grafting of the cylinder, for every r E U

we have r E (E(cj))c n U6 C R?, where j denotes the cylinder associated with the

grafting. Thus, on U we have Oj = Mj o S6 o g. o aoj o P. Now, consider the transition

maps 0, o 0/1 1 and /6 o Oa

COa 0 OV = (v- oP) A(M oS 6 ogio95oP)-1

= o P o p-1oo-1o(gj)-ioý - 1 0 M3 1

-10(i-1 10= o o~~a~~ oS~ a¢oMj

Note that we define the transition map 0, o a -1 only on the overlap region U. Since

the set U does not itself intersect the inserted cylinder (or the boundary along which

we weld the cylinder to the Riemann surface R via the grafting map (g)- 1 ), on U

the inverse of the grafting map acts as either the identity map or as multiplication by

an exponential map. In either case, the action of (gj)- is (locally) analytic. For the

same reason, on U we have that Si-1 acts as either the identity map or a hyperbolic

M6bius transformation, and is therefore (locally) analytic. Next, we note that since

the maps ma and W6 were borrowed from the conformal structure on the original

Riemann surface R, 'p, o ýp.- is analytic, where defined. Finally, the map M was

chosen as the conformal map taking the region shown in Figure 2.20e to the upper

half plane. Thus, the transition map O a 0 - is the composition of analytic maps on

U, and is therefore analytic. Similarly, V56 o 0. 1 is also analytic.

Case Id: U = U nl U6, where U7 E Ur and U6 E UA. Associated with each

of U, and U6 we have coordinate charts Oy E Tr and 06 E TA, respectively. Say
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Oy = Sy o V,, o P and Oj of the form given in (2.6.1). We note that since U intersects

neither the geodesic associated with the grafting of the cylinder nor the geodesic

associated with the simple shearing, for every r E U we have r E (E(cj))c n Uj c I?,

where j denotes the cylinder associated with the grafting. Thus, on U we have

6= Mj o S6 o g. o co6 o P. Now, consider the transition maps Oy o V 'b1 and Oj o 07-1.

= S'Y 0 (Pv 0 P 0 p-' 0 (P-1 0 (gi) -1 0 10_ o 1
-~~~~ Sy~oo ~~(4l SýjMT1

= SY o O' o ;(gj 0Si1 o M;1

Note that we define the transition map CV o 0.-1 only on the overlap region U. Since

the set U does not itself intersect the inserted cylinder (or the boundary along which

we weld the cylinder to the Riemann surface R via the grafting map (gj)-'), on U

the inverse of the grafting map acts as either the identity map or as multiplication

by an exponential map. In either case, the action of (g) is (locally) analytic. For

the same reason, on U we have that Sý-1 and Sy each act as either identity maps or

hyperbolic M6bius transformations; they are thus (locally) analytic. Next, we note

that since the maps ýoy and Vj were borrowed from the conformal structure on the

original Riemann surface R, cop, o W.- is analytic, where defined. Finally, the map

M was chosen as the conformal map taking the region shown in Figure 2.20e to the

upper half plane. Thus, the transition map V) o 0.1 is the composition of analytic

maps on U, and is therefore analytic. Similarly, 0, o 0.-1 is also analytic.

Case II: Suppose that U E UB. There are two ways in which U may occur as the

result of intersections of sets in U.

Case Ha: u = Upfl nU#2, where U, 1 , U,62 e UB. Associated with Ul and U,2

we have coordinate charts 011, 002 E T B. Say Vp = Mj o gj 1 o 03 o P and ,3 2 =

Mb o go 03 o P. Note that since both Up, and U, 2 must necessarily lie in the

same finite inserted cylinder, the grafting maps g3 l and g 2, are the same map. Now,
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consider the transition maps V, 2 o 4ý11 and Oo, o a•.

.22

¢ 8 2 O ¢ -11 : ( j o g J• o • 2 P ) o (M j o g 'j ~l 0 C J o p ) - l

= Mi o-q32o0032o0Po0p-1 o (WPl)-l (•l-qlo M31

M jgift2 o 0'02 oJ ( 01- (9j~ -1M

i MjgP2 o (¢P2 o W¢1)-) (1-1 J

Now, notice that the maps Mj and M3-1 are analytic. Next, notice that the maps g1.

and gj have no effect on the analyticity of the maps involved, since both U6, and UZ2

are on the interior of the cylinder E(cj). These maps merely indicate that we consider

the infinite hyperbolic strip in a different context. The action affecting analyticity

takes place in the conformal structure on the cylinder cj, and a12 (03,) is analytic

since these maps were taken from this conformal structure. Thus, as a composition

of analytic maps, 06,2 o -1 is analytic. Similarly, 0,6, o 0/'1 is analytic.

Case Ilb: U = Uo n U6, where Up E UB and U6 E UA. Associated with each

of Up and U6 we have coordinate charts Op E XNB and Oj E TA, respectively. Say

OP = Mjagto, o0, o P and 0, of the form given in (2.6.1). Note that since U does not

intersect any geodesic associated with the grafting of the cylinder, for every r G U we

have r G E(cj) nl U6 C R, where j denotes the cylinder associated with the grafting.

Thus, on U we have 6  Mj o ga o0 o P. Now, consider the transition maps 00o 01

and Oj o ob.

0, 0 Oil A 0 gjo 0 o P) 0 A 0 l 0 6 0 P)-

This case, thus reduces to Case Ila, and the transition maps Op o 0- 1 and V5,5 o 1

are analytic.

Case III: Suppose that U E Ur. Then, U = U71 fl ,U 2, where U71, Uy2 E Ur.

Associated with each of U71 and U.2 we have coordinate charts O-7, ?ý7 2 E Tr. Say

OY = Sy o vay o P and O72 = Sy o Vy2 o P. Note that the earthquake (shearing) map

in each of these coordinate charts is the same, since this earthquake is defined by

intersection with a particular weighted geodesic rather than a particular set U. Now,
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consider the transition maps 7p2 o V); and Oy, o O•1.

0 • 0 ---,=-Y 0(S°O• 2 0P)0(SoY 0°,°P)-1

= SYWo'Y 2 oPoP-1 oW 1 oS7'1

= S o 7 ° W1 o S7 1

The action of the transition map here reduces to a hyperbolic isometry, and is thus

analytic.

Case IV: Suppose that U G UA. U = U61 n U6,, where U61, U62 E UA. Associated

with each of U6, and U62 we have coordinate charts 6, ,06 2 , TA. Say 06, and 062

are each of the form given in (2.6.1). The set U can now be decomposed into three

disjoint sets, U = U, U L U U,, where U,, E UA, U,6 E UB, and L = 9 U nfl Uai,

as shown in Figure 2.21. We have already shown that the transition maps 06, o 0-1

and V),2 o V)- are analytic on each of the sets U, and Up. These transition maps,

though, are also clearly continuous on all of U. Since the image of L C U in the plane

has measure zero, any map which is K-quasiconformal on the image of U \ L is also

K-quasiconformal on L [33]; special cases of this result are often given in texts on

complex analysis [18]. Thus, since the transition maps are analytic (1-quasiconformal)

on the images of U,, and Ufi, the transition maps are analytic on all of U.

L

i UO U.,

Figure 2.21: Partition of U into Uc,, Up, and L

Thus, the transition maps in the structure (U, '1!) are analytic. E
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Since the structure defined above describes a cover for the surface R and a set

of maps on that cover so that the transition maps are analytic, we have defined a

sufficient conformal structure on the surface R; we simply include any other sets and

maps compatible with this structure.
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CHAPTER III

CIRCLE PACKING

3.1 Preliminaries and Definitions

A circle packing is a configuration of circle with a prescribed pattern of tangencies.

William Thurston conjectured in 1985 that these circle packings might be used to

approximate the action of conformal maps [50]. These circle packings have since been

widely studied, with applications in many different areas of mathematics. We begin

here with some basic definitions and a general discussion of circle packing. Several

excellent resources are available with much greater detail [20, 42, 45, 46].

Definition 3.1.1. A vertex is called a 0-simplex. An edge is called a 1-simplex.

A face is called a 2-simplex.

We use these simplexes to describe a combinatorial object called a 2-complex.

Definition 3.1.2. A simplicial 2-complex K is a topological space represented

as a countable (possibly finite) union of 0-, 1-, and 2-simplexes with the following

properties.

1. Every face of a simplex in K is itself a simplex in K.

2. 2-simplexes of K intersect either in the empty set or in a simplex of K.

3. No O-simplex (vertex) of KC is in more than a finite number of simplexes of K.

4. K is connected.

We will consider a subset of all possible simplicial 2-complexes in which the 2-

simplexes (faces) are combinatorial triangles.

Definition 3.1.3. A bounded degree abstract triangulation K is an abstract

simplicial 2-complex which triangulates an orientable topological surface such that
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1. the set of interior vertices (vertices such that every incident edge belongs to two

faces) is non-empty and edge-connected;

2. no interior edge (an edge belonging to two faces) in IC has both vertices on the

boundary;

3. no vertex in IC belongs to more than two boundary edges;

4. there is an upper bound on the degree of vertices in 1.

It is this combinatorial object, the abstract triangulation, which encapsulates the

"prescribed pattern of tangencies" in our circle packing. We refer to these trian-

gulations as abstract to emphasize the fact that in the definition we have implied

no concrete geometric realization. A 2-complex and, by extension, the associated ab-

stract triangulation are purely combinatorial objects; they have no inherent geometric

structure until they are realized as a circle packing.

(a) An Abstract Triangulation (b) Violates Condition 1.

(c) Violates Condition 2. (d) Violates Condition 3.

Figure 3.1: An Abstract Triangulation and Pathological Triangulations

An example of a simple valid abstract triangulation is shown in Figure 3.1; we also
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show how triangulations may fail to meet conditions (1) through (3) from Definition

3.1.3. In Figure 3.1b we see two interior vertices which are not edge connected;

in Figure 3.1c we see an edge whose endpoints are both boundary vertices; and

in Figure 3.1d we see a vertex belonging to four boundary edges. Note that since

the triangulations shown are all finite, they must also satisfy the bounded degree

condition.

Definition 3.1.4. A circle packing is a configuration of circles with a specified

pattern of tangencies. In particular, if KC is an abstract triangulation of a topological

surface, then a circle packing P for I is a configuration of circles such that

1. P contains a circle C, for every vertex v c K;

2. if [u, v] is an edge of K, then Cv is externally tangent to Cu;

3. if (v, u, w) is a positively oriented face of C, then (Ce, C•, C.) forms a positively

oriented mutually tangent triple of circles in P.

Realizing such a configuration is, at its most essential, a problem in computing the

necessary radii of each circle in the packing. Examples of such algorithms are given

by Collins and Stephenson [17, 42] and Mohar [37]. A simple example of an algorithm

implemented in Mathematica for computing the radii is also given in Appendix D.

All of these algorithms amount to numerically solving a boundary value problem in

which the radii of the boundary circles are fixed and the remaining radii are computed

algorithmically. A circle packing is called univalent if the circles in the packing have

mutually disjoint interiors. That is, the packing is univalent if no two circles intersect

in more than one point. This univalent circle packing represents a geometric real-

ization of the underlying abstract triangulation K. Vertices in the triangulation may

be realized in this packing as the centers (in some particular geometry, hyperbolic,

Euclidean, or spherical) of the circles, and the edges as geodesic segments connecting

the centers. This embedding is called the carrier of the circle packing.
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If K is embedded in C in two different ways (e.g., by giving two different sets of

values for the radii of the boundary circles), there is a natural piecewise map from the

carrier associated with one packing to the other achieved by sending triangles of one

packing to their counterparts in the other using affine maps. These piecewise affine

maps are referred to as discrete conformal maps.

In Figure 3.2 we have a graphic description of a bounded degree abstract trian-

gulation, K. This triangulation comprises 27 vertices, with edges between vertices

indicating tangencies.

Figure 3.2: An Abstract Triangulation KI

We can produce a geometric realization (as a circle packing) of this combinatorial

structure in any number of ways. Two different circle packings, obtained using the

algorithm in Appendix D and displayed using the Mathematica code in Appendix E,

are shown in Figure 3.3. In each of Figure 3.3a and Figure 3.3b, a triangle is shaded

for reference; the triangle in each case corresponds to a face determined by the same

three vertices from the triangulation shown in Figure 3.2.

The packings P1 and P2 in Figure 3.3 are embedded in C and are normalized by

placing the center of a circle (Circle 1) in each packing at the origin and placing the

center of an adjacent circle (Circle 2) on the real axis. The shaded triangles illustrate

how the discrete conformal map from P1 to P2 is described. The map which takes

the shaded triangle in 3.3a to the shaded triangle in 3.3b is given by

f(z) = f(x + iy) = 1.67628x + 0.808753y. (3.1.1)

It is easy to verify that this map is k-quasiconformal with k = 2.07267, since it
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1, 2

(a) Euclidean Carrier for P1  (b) Euclidean Carrier for P2

Figure 3.3: The Carriers of Two Different Circle Packings of K

maps gross circles, not just infinitesimal circles, to ellipses with k = 2.07267 the ratio

between their major and minor axes.

Definition 3.1.5. A chain of circles in a packing P for an abstract triangulation

K is a collection of circles (CG1, CV2, .. . , CVn) in P such that vi and vi+1 share an edge

in K for i = 1, 2,... , n - 1, and vi = vj, if i 5 j. Thus, a chain of circles describes

a non-self-intersecting edge path in K. Similarly, a closed chain is a collection of

circles corresponding to a closed non-self-intersecting edge path in KC.

(a) A Closed Chain of Circles in P 2  (b) A Flower in P 2

Figure 3.4: Chains of Circles and Flowers
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Examples of closed chains of circles in the packing P 2 are shown (as shaded circles)

in Figure 3.4. A special category of chains leads to a building-block for our circle

packings. A flower consists of a central circle and some number of petal circles,

the closed chain of successively tangent neighbors surrounding the central circle. An

example of a flower from the packing P2 is shown (as shaded circles) in Figure 3.4b.

One particularly useful circle packing is the regular hexagonal packing, a pack-

ing in which every interior vertex has degree 6 and each circle has the same radius. An

example of a regular hexagonal packing, sometimes also referred to as a penny pack-

ing, is shown in Figure 3.5a. Another packing commonly seen is the ball-bearing

packing, shown in Figure 3.5b.

(a) A Regular Hexagonal Packing (b) A Ball-Bearing Packing

Figure 3.5: Two Important Types of Circle Packings

3.2 Discrete Function Theory

The important characteristic of the discrete conformal maps induced by circle

packings is not that they are quasiconformal; the key fact, suggested by Thurston [51]

and proven by Rodin and Sullivan [39], is that these maps are "nearly conformal."

This is the result given in Theorem 3.2.1, the Rodin-Sullivan Theorem. Before we

state this theorem, however, we first state some geometric results associated with

circle packing that are interesting in themselves and required for the proof of Theorem

3.2.1.
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Lemma 3.2.1 (Length-Area Lemma). Let P be a univalent packing in D and C.,

a circle in P with Euclidian radius r. Assume there exist m disjoint chains of circles

in P having combinatorial lengths n1 , n2,..., nm, such that each chain separates C,

from 0 and a point on OD. Then
4

r < (3.2.1)

As the number of generations separating a circle in a packing from the boundary

increases Lemma 3.2.1, the Length-Area Lemma, has the effect of forcing the radius

of this circle to zero (in the limit). For a more detailed discussion of Lemma 3.2.1,

the Length-Area Lemma, see [39, 42].

Lemma 3.2.2 (Ring Lemma). Given a univalent flower (CvO; Cl,, C, ... , Cv) in

C there is a lower bound Cn, depending only on n, on the ratio of the radius ri of C,,

to the radius ro of Cvo for each i = 1, 2, . . ., n; that is

Cn < i , (3.2.2)
r0

i = 1, 2,...,n.

Lemma 3.2.2, the Ring Lemma, guarantees that central angles in the carrier on a

flower are bounded away from zero and ir. That is, suppose we are given a complex

I in which the degree of each vertex, the number of adjacent vertices, is bounded;

also suppose we have two (different) packings P1 and P2 associated with I. The Ring

Lemma guarantees that the quasiconformality of the induced conformal map from P1

to P 2 is bounded.

Lemma 3.2.3 (Hexagonal Packing Lemma). There is a sequence {sn}n C N,

decreasing to zero, with the following property. Let cl be a circle in a univalent

Euclidean circle packing P, and suppose the first n generations of circles about cl are

combinatorially equivalent to n generations of the regular hexagonal packing around

one of its circles. Then for any circle c E P tangent to cl,

1 -rcr <sn, (3.2.3)
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where r, is the radius of the circle c in P and r, 1 is the radius of the circle cI in P.

The immediate value of Lemma 3.2.1, Lemma 3.2.2, and Lemma 3.2.3 is their

use in proving Theorem 3.2.1, the Rodin-Sullivan Theorem, one of the fundamental

results in the study of circle packing.

Theorem 3.2.1 (Rodin-Sullivan Theorem). Fix a simply connected domain Q C

C and points p, q E Q. Let Pk be the portion lying in Q of the infinite regular hexagonal

packing whose circles all have radius -, and let Kk be the underlying complex for the

packing Pk. Suppose Pk is a packing in UD for Kk with all boundary circles tangent to

aI), and let fk : carr(Pk) -+ carr(Pk) be the induced discrete conformal map. If each

Pk has been normalized so that fk(P) = 0 and fk(q) > 0, then {fk} converges locally

uniformly to the unique Riemann map f : Q -+ UD satisfying f(p) = 0 and f(q) > 0.

An illustration of the use of circle packing to approximate the action of the unique

Riemann map from a simply connected domain to the disk is shown in Example 3.2.1.

Example 3.2.1. Let Q {z E C: -z < 1 and Re(z) > 0}. That is, Q is the upper

half unit disk. We wish to map Q to the unit disk D with the unique Riemann map f,

normalized so that f(i(v- 2- 1)) = 0 and f maps the imaginary axis to the imaginary

axis. In this case, we may explicitly construct the desired map: f(z) = -i 2iz+"

(a) Upper Half Disk (b) Image under f

Figure 3.6: Unique Riemann Map f: Q -+ U)

The action of this map is illustrated in Figure 3.6. For reference, we have included an
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orthogonal grid on Q2, shown in Figure 3.6a, and the image of this grid in D, shown

in Figure 3.6b.

(a) Circles in Q (b) Packing in the Disk

Figure 3.7: Approximate Riemann Map with Circle Packing (171 Circles)

(a) Circles in Q (b) Packing in the Disk

Figure 3.8: Approximate Riemann Map with Circle Packing (342 Circles)

(a) Circles in 9 (b) Packing in the Disk

Figure 3.9: Approximate Riemann Map with Circle Packing (684 Circles)
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We now illustrate, in Figure 3.7, Figure 3.8, and Figure 3.9, the approximation

of this map through successively finer circle packings, showing the result given by

Theorem 3.2.1, the Rodin-Sullivan Theorem. Clearly, the action of the explicit map

described in Figure 3.6 is emerging; the image of the orthogonal grid in Figure 3.6

appears in chains of circles. The shaded circle in each of Figure 3.7a, Figure 3.8a,

and Figure 3.9a represents the point mapped to the origin. In the images under f

shown in Figure 3.7b, Figure 3.8b, and Figure 3.9b, the shaded circles are centered

at the origin.

The requirement that the packings used in Theorem 3.2.1, the Rodin-Sullivan

Theorem, all be of uniformly degree 6 is quite restrictive. Since the initial proof

of Theorem 3.2.1, however, Stephenson [43] relaxed the degree 6 condition using

techniques of random walks, and He and Rodin [27] showed that only a uniform bound

on the degree is necessary. To thus relax the requirement on the combinatorics of the

packing, we require Lemma 3.2.4, sometimes referred to as the Packing Lemma.

Lemma 3.2.4 (Packing Lemma). Let {Kn}flEN be a sequence of combinatorial

closed disks such that

1. there exists a uniform bound on the degree of the vertices in K, for each n E N,

and

2. the sequence {Kn}IEN is either a nested sequence which exhausts a parabolic

combinatorial disk or is asymptotically parabolic.

There exists a sequence {Sm}mEN C R, decreasing to zero, with the following property.

Suppose that for some n, u and v are adjacent interior vertices of Kn whose combi-

natorial distance from 9Kn are both at least m, and suppose that Pn and Pn are two

univalent, Euclidean circle packings for Kn. Then

_ r. s•m, (3.2.4)
r,, rv

where ru and r, are the radii of the circle in P1, corresponding to u and v, and ?u and

f are the radii of the circle in PF corresponding to u and v.
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Essentially, Lemma 3.2.4, the Packing Lemma, states that for a circle "deep" in a

packing, the ratio of its radius to any given neighbor is nearly the same in the packings
P,, and P5; in other words, the triangles in Pa, and P• are nearly similar triangles. This

gives us that away from the boundary, the induced discrete conformal map between

P, and P, is nearly conformal. This fact will play an important role in the proof of

our main result in Chapter IV.

3.3 Hex Refinement

In order to obtain the various approximation results for circle packing and dis-

crete analytic function theory, we need a method to refine given circle packings. The

primary requirement in any such refinement is that we maintain some uniform con-

trol over the degree of the complexes generated by the refinement algorithm since

we require that Lemma 3.2.2, the Ring Lemma, applies at each successive level of

refinement. The hex refinement method developed by Bowers and Stephenson [11] is

especially nice.

Definition 3.3.1. If )C is a 2-complex, the hex refinement of IC is the complex

formed by adding a vertex to each edge and adding an edge between any two vertices

lying on the same face, as shown in Figure 3.10.

(a) Two Triangles Before Hex Refinement (b) Two Triangles After Hex Refinement

Figure 3.10: Hex Refinement

Note that hex refinement, and refinement in general, is really a combinatorial pro-

cess, refining the combinatorics of the complex I; one must repack the new complex
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obtained by refining IC in order to realize the effect of the refinement in a circle pack-

ing. Hex refinement has a number useful characteristics described by Bowers and

Stephenson [11] and summarized in Proposition 3.3.1.

Proposition 3.3.1 (Bowers and Stephenson). Any new interior vertices added to

a 2-complex C by hex refinement have degree 6, while the degree of the original vertices

remain unchanged. If KC is embedded in C in such a way that the edges correspond

to Euclidean line segments, then its hex refinement may be realized by adding line

segments joining the midpoint of each edge within every face. In this case, each face

in K is subdivided into four new faces, each similar to the original face in which it is

contained and having edges one-half as long.

Notice that refining only one edge in a complex is not permitted, since this would

result in a complex that is not a triangulation; the faces bordering the refined face

will have an extra vertex along the common edge they share with the refined face,

giving combinatorial quadrilaterals rather than triangles. We can, however, locally

refine only those triangles in the complex which present some difficulty with respect

to desired characteristics of the complex, then correct the introduced problems on

adjacent faces by adding a single edge from a vertex to the midpoint of the opposite

side, as shown in Figure 3.11.

Figure 3.11: Hex Refinement and Correction on Adjacent Triangle

This process of hex refinement of individual faces (or subsets of the triangles in

a triangulation) and the addition of edges to absorb extra vertices can be used to

locally refine an abstract triangulation in order to improve the discrete conformal
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approximation in troublesome areas. Local refinement will play a key role in the

discrete conformal approximation of earthquakes in Chapter IV.

3.4 Combinatorial Welding

We now describe the process of combinatorial welding developed by Williams

[53, 54]. Suppose two abstract triangulations 1C, and IC2 are embedded in a surface

S and suppose h : B1 C 0IC 1 --+ B2 C 1K92 is a homeomorphism. The map h will

be used to attach the triangulations 1C, and IC2 along the subsets of their respective

boundaries B 1 and B2 and form a new triangulation 1C. In Chapter IV, h will be

taken as a discrete version of the map defining an earthquake along a geodesic, and

the attaching described here will act as a combinatorial shearing and/or combinatorial

grafting in the construction of combinatorial earthquakes.

If the map h respects the combinatorial structures of C1 and C2, that is, if h sends

vertices and edges in B1 and B2 to vertices and edges, respectively, the combinatorial

welding process is trivial. We simply identify vertices and edges in B1 C 09 1 with

their images in B 2 C 09C 2, as shown in Figure 3.12. Note that the action of h on the

vertices in B 1 is sufficient to determine the combinatorial action of h on all of B 1.

Figure 3.12: Welding Action when h Respects the Combinatorics of IC1 and IC2

Much more interesting is the case in which h does not respect the combinatorics of

K1 and IC2 in this way. In general, the images of vertices in B 1 under that action of h

will not be vertices in B2 . In order that the map h be well-defined in these cases, it is

necessary to modify the triangulations 1IC and KI2 so that h will respect the modified
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combinatorial structure. This modification is accomplished using a refinement similar

to that shown in Figure 3.11. Specifically, for each boundary vertex v c B1 we refine

B2 by adding a vertex to B2 embedded at the point h(v). Likewise, for each boundary

vertex w E B2 we refine B1 by adding a vertex to B1 embedded at the point h- (w).

When vertices are thus inserted, however, )CI and K 2 will not necessarily remain

triangulations. To maintain the characteristics of a triangulation, we must further

refine each of ICI and AC2. If we add a vertex h(v) or h-'(w) to an edge [a, b] of a

triangle (a, b, c), we refine the original complex (of 1, or KC2) by adding an edge from

c to the new vertex. An example of this process is shown in Figure 3.13.

Figure 3.13: Welding Action with Combinatorial Refinement of AC1 and AC2

Note that this refinement process is well-defined and produces new triangulations

since, by definition, each face in the triangulations may have at most one edge con-

tained in the boundary. We therefore add vertices to only one edge in any given face

which might interfere with the refinement process.

It is important that in the course of executing these combinatorial weldings and

then embedding the resulting combinatorics in a circle packing to realize a geometry

that we maintain control over the combinatorial and geometric characteristics of the

process. Specifically, we must ensure that

1. the degree of the complex resulting from the combinatorial welding is bounded,

and
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2. the new edges added to the carriers of )C1 and K 2 do not result in triangles with

arbitrarily small angles.

Condition (1) will then guarantee that we can apply Lemma 3.2.2, the Ring

Lemma, to the packing associated with the new complex which results from the com-

binatorial welding, thus giving bounds on the angles in the new packing. Condition

(2) will ensure the existence of similar bounds for the packing prior to welding and

repacking; when we artificially insert edges in the carrier of the initial packing so that

there is a bijection between triangles in the two carriers, we must not create triangles

with arbitrarily small angles. Thus, with these two conditions satisfied we may con-

struct quasiconformal discrete maps between the carriers in the surfaces associated

with the initial packing and the post-welding packing. These technical considera-

tions are easily overcome through the use of local hex refinement (Condition (1)) and

through "rounding off" the refinement to existing vertices if the new vertex added in

the welding refinement is too close to an existing vertex (Condition (2)). The details

of these processes, and verification of their validity, are given in [53, 54]. Once we have

welded the two sides of the complex together in this way, we may pack the resulting

complex. Now, we have a bijection between the triangles in the carrier of the original

packing (after it has been suitably refined) and the new packing which results once

the shearing operation is completed; we use these triangles to construct a piecewise

affine, and thus quasiconformal, map from the original packing to the new packing.

Thus, the discretization of the map along the boundary leads to a discretization of

the map on the entire surface. This now leads us to Proposition 3.4.1, proven in [54].

Proposition 3.4.1 (Williams). Combinatorial attachment by h induces a piecewise

linearization h of h. If h is bilipschitz, then the linearization h will be bilipschitz as

well.
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3.5 Density of Packable Surfaces

Demonstrations of the existence of circle packings have been given variously by

Thurston [51], Minda and Rodin [36], and Beardon and Stephenson [4]. Brooks [12]

showed that compact packable surfaces are dense in moduli space, and Bowers and

Stephenson [8, 10] extended this result to include surfaces of finite analytic type.

Other results on the density of packable surfaces have been given by Barnard and

Williams [1] and Williams [54]. The results thus demonstrated which are germane to

this research are summarized in Theorem 3.5.1.

Theorem 3.5.1. Let IC be an abstract triangulation of a surface of type (g, n, m).

There exists a unique surface in moduli space which supports a packing for K. A com-

plex, along with a choice of marking, then determines a unique point in Teichmiiller

space. Moreover, the collection of all packable surfaces is dense in Teichmiiller space.

The density of merely packable surfaces as given in Theorem 3.5.1 is extremely

useful and powerful. Of equal interest is the density of other subsets of packable

surfaces and the characteristics of convergent sequences of packable surfaces.

Proposition 3.5.1. Let R be a compact Riemann surface that is not packable. If

{Rn}nl1 is any sequence of compact, packable Riemann surfaces such that Rn -4 R

in the Teichmiiller metric where each admits a packing Pn with degree uniformly

bounded through the sequence, then the radii in the circle packings { P}nl 1 tend to

zero as n -+ oo.

Proof. First note that since the circle packings {Pn}njL are assumed to be of bounded

degree, Lemma 3.2.1 guarantees that the radius of one circle in a packing is arbitrarily

small if and only if the radii of all circles in that packing are small. Proceeding by way

of contraposition, suppose that the radii of circles in Pn are bounded away from zero

by some fixed positive constant for each n E N. For every n e N, R1 is a compact

Riemann surface, and therefore has finite area. Since 1& -+ R and R is compact, there

exists a uniform upper bound on the area of the Riemann surfaces RP. Hence, there
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exists a uniform bound on the total number of circles in each packing P.. There are

thus only a finite number of abstract triangulations possible among the circle packings

{P, }n°'. By the pigeonhole principle, there exists a subsequence {Pnkj}k•_l _R =

such that for each k E N the circle packing realized in P,, corresponds to a single

abstract triangulation IC, (i.e., there exists a subsequence of packings each having the

same combinatorial structure). Since the abstract triangulation uniquely determines

a surface for which that triangulation is realized as a packing, we find that {Pnk }k=1

is a constant sequence of Riemann surfaces. Now, Pt -+ R as n -+ co, so every

subsequence of { }~nl must likewise converge to R; that is Rnk -4 R as k -+ 00.

Thus R is an element of the sequence {Rt}I=l; in fact, R is equivalent to infinitely

many elements of this sequence. Therefore, R is a compact, packable Riemann surface.

Thus, by our contrapositive argument, if a sequence of packable surfaces, Pt, with

degree uniformly bounded through the sequence converge to a Riemann surface that

is not, itself, packable, then the mesh of the packings on the surfaces goes to zero. LI

We now introduce another class of compact Riemann surfaces called equilateral

surfaces which will be useful in constructing sequences of packable Riemann surfaces

while maintaining control over the combinatorics of their underlying complexes.

Definition 3.5.1. Suppose S denotes a compact, orientable topological surface and

let K denote a triangulation of the surface S. If we paste together equilateral triangles

(triangles conformally equivalent to equilateral triangles) in the pattern of K to impose

a piecewise affine structure on S, this affine structure defines a conformal structure

on S, guaranteeing that S is a Riemann surface. Riemann surfaces thus constructed

are called equilateral surfaces.

Just as has been shown for compact surfaces by Brooks [12] and for surfaces of finite

analytic type by Bowers and Stephenson [8, 10], if we fix a genus g > 0 this seemingly

very restrictive class of (compact) equilateral surfaces of genus g is dense in Teichmiiler

space of genus g, as shown by Bely1 [3]. We state this result as Theorem 3.5.2.
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Theorem 3.5.2 (Belyl). If S is a Riemann surface of genus g > 0, the set of

equilateral surfaces of genus g is countable and dense in the Teichmiiller space of S.

This result guarantees the existence of sequences of packable Riemann surfaces with

underlying combinatorial structures over which we may exercise a significant degree

of control. This ability to control the underlying combinatorics allows us the ability

to manipulate the geometry of our packings in that we may force the circles in a

sequence of packable (and packed) surfaces to decrease in size.

Corollary 3.5.1. Let S be a Riemann surface and let R be an arbitrary point in the

Teichmiiler space of S. There exists a sequence of points {RJ} in the Teichmiiller

space of S such that Rn -+ R in the Teichmiiller metric as n --+ o, Rn is packable

for every n, and the radii of the circles in Pn go to zero as n --+ o, where Pn is the

unique packing on the surface Rn for every n.

Proof. First note that since the set of equilateral surfaces on S is dense in the Te-

ichmiiller space of S, there exists a sequence of equilateral surfaces {En} in the Te-

ichmiiller space of S such that En -+ R as n --+ o. Corresponding to the equilateral

surface El we have a triangulation K1. This triangulation corresponds to a unique

packable surface R1, distinct from E,. An example of an equilateral surface and the

packable surface it induces is shown in Figure 3.14. (This figure appeared in [11] and

is used with permission of the authors.)

Now, refine the triangulation KI using hex refinement to create a new triangula-

tion K•. Note that refining this triangulation has no effect on the structure of the

surface Ell; that is, the equilateral surface E' corresponding to K12 is the same as E',

since hex refinement on an equilateral triangle divides that face into 4 new equilat-

eral triangles. So, K'2 corresponds to a unique packable surface R', distinct from E'

(and El). Continuing in this manner, we construct a sequence of packable surfaces

{R'}•=1. As m -+ co, the triangles in the carrier of the packing Pl' on R' converge

to equilateral triangles, and the sequence {Rm}•= converges to a surface confor-

mally equivalent to El. Thus, Ry -+ Ell as m -4 co in the Teicmiiller metric. Note,
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Figure 3.14: An Equilateral Surface and the Induced Packable Surface

however, that the degree of each packing in the sequence {Pn}=l is bounded by

the same constant, since the hex packing does not change the degree of any vertex in

the initial packing and every new vertex has degree 6 since all vertices in the packing

are interior vertices. Now, a standard application of Lemma 3.2.1, the Length-Area

Lemma, guarantees that the radii of the circles in the sequence {P-}J-- 1 go to zero as

k -+ oo. We repeat this process for each equilateral surface E1, generating for each a

sequence of packable surfaces {Rnm}' 1 such that Rm, -+ E, in the Teichmiiller metric

and the radii of the circles in the sequence of packings {PM}-m corresponding the

packable surfaces go to zero as m -- oo.

R R1.......

1 R
El E21 . .. R

Now, for each n E N, choose a surface RP from the sequence {Rn},•=1 such that

the Teichmiiller distance from R/ to En' is less than 2' and the maximum radius of

any circle in the packing on RP (in the intrinsic metric on the surface) is similarly less

than 2-. We now have a sequence {R1}' 1 such that R/ --* R in the Teichmiiller
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metric as n -4 oo, R. is packable for every n, and the radii of the circles in Pk go to

zero as n -+ oc, where Pn is the unique packing on the surface Rn for every n. El
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CHAPTER IV

PACKING EARTHQUAKES

Throughout this chapter let (L, a) be a finite measured geodesic lamination of

D associated with a set of points S c D. Suppose L consists of n disjoint, simple,

closed geodesics {L' In 1. Note that throughout this chapter we suppose that the real

(shearing) part of the weight on any geodesic L' may assume any real value, while the

imaginary (grafting) part may assume only non-negative real values. This indicates

that the shearing maps we consider may shear to either the left or the right, and the

grafting maps we consider involve only the insertion of cylinders of positive height.

Much of the construction below is taken from [54]; we reproduce it here in the interest

of making this exposition as self-contained as possible.

4.1 Discrete Laminations

Let {Pn}kIl be a sequence of packings in D with uniformly bounded degree and

mesh decreasing to zero. Let Dk denote the Euclidean carrier of Pk for each k E N.

Note that the construction of a "combinatorial" earthquake Ek of this Euclidean

carrier as an approximation of the finite earthquake E is complicated by the fact that

Dk is not equal to D for any fixed k E N.

Note that any given geodesic in the lamination L will pass indiscriminately through

the points and triangles of the Euclidean carrier Dk. Thus, shearing and grafting

Dk along the geodesics of the lamination is not directly possible. In order to ap-

proximate the action of the earthquake E, therefore, we construct a combinatorial

lamination of Dk that respects the combinatorial structure and converges to the finite

geodesic lamination £ as k -4 oc. This combinatorial lamination comprises combi-

natorial "geodesics" {t }I corresponding to the true hyperbolic geodesics {L' }I,

constructed in the following manner.

We consider packings that are hyperbolic in D; that is, we consider packings that

fill the disk. Let ak and bM be the endpoint of the geodesic L' C OD. We construct t4
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as an edge path which, in the limit, connects ak and bi, whose Hausdorff distance to

L' is minimal, and which satisfies the following three conditions.

1. Every vertex in f' must have a neighbor in both components of Dk \ 4.

2. The combinatorial geodesics {4f} are disjoint, except possibly at their common

endpoints.

3. Any hyperbolic geodesic perpendicular to V intersects 4' in exactly one point.

It is not immediately clear that we can in general construct such a rigidly character-

ized edge path through the combinatorics of Dk. Lemma 4.1.1 guarantees that such

constructions are, in fact, possible.

Lemma 4.1.1 (Williams). By taking k sufficiently large and possibly modifying

On near L', we can find paths 4 so that conditions (1) through (3) are satisfied.

Moreover, 4 --+ L uniformly as k -- oo.

In Figure 4.1 we see successively finer packings in the disk and increasingly more

accurate piecewise linear combinatorial approximations of the hyperbolic geodesic L.

(a) Combinatorial Geodesic (b) Combinatorial Geodesic (c) Combinatorial Geodesic

with 19 Circles with 127 Circles with 547 Circles

Figure 4.1: Approximating a Geodesic L with Combinatorial Geodesics 4k
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4.2 Hyperbolic Projections

Having described a discrete analog of the finite measured geodesic lamination

(L, u), we now must describe discrete analogs for the hyperbolic shearing maps and

grafting maps associated with each geodesic. We cannot, of course, use the shearing

and grafting maps associated with the lamination (4, o) directly; rather, we construct

hyperbolic projections pk which take the combinatorial geodesic f4 to L'. Thus,

by pre-and post-composition with the map pk, we may construct an appropriate

transformation to give a discrete shearing and/or grafting along 4 using the shearing

and/or grafting map on Li.

Notice that the collection of hyperbolic geodesics perpendicular to the geodesic

L' in the lamination fill D. By the construction of the discrete geodesic 4', each

such perpendicular geodesic 77 intersects 4' exactly once. We may thus define a map

pk : Dk n DI -+ D by the requirement that P•kl be the unique hyperbolic M6bius

transformation with axis 7 and translation length equal to the hyperbolic distance

from 4i n 77 to Li n 7. The action of such a map on a segment of a discrete geodesic

in D corresponding to the geodesic between 1 and i is shown in Figure 4.2. Note that

this map is clearly a quasisymmetry.

Figure 4.2: Action of a Hyperbolic Projection pk

We have constructed discrete geodesic approximations A to the geodesic L' and

the corresponding hyperbolic projections pk, and Lemma 4.1.1 guarantees that f -+
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L' as k -- oo. We now ask how the hyperbolic projections pk behave as k -4 o0. The

answer is given by Proposition 4.2.1.

Proposition 4.2.1 (Williams). The sequence {p'} is uniformly bilipschitz on U

and converges uniformly to the identity map on 5.

4.3 Discrete Shearing Maps

With the hyperbolic projections {pik} we now define discrete shearing operations

{h'} which approximate the hyperbolic shearing maps {h'} such that hM -- h' as

k --+ c. For each k E N, define h' by

h= (p)- o h' o (p4). (4.3.1)

(a) A Combinatorial Geodesic (b) Local Refinement, Shearing, and

Welding

Figure 4.3: Combinatorial Shearing and Welding

By Lemma 4.3.1, this map behaves in the manner we require, simulating the action

of a hyperbolic shearing and converging to that hyperbolic shearing.

Proposition 4.3.1 (Williams). The discretized maps h' are bilipschitz on f' with

bilipschitz constants bounded independently of i and k, and h'k converges uniformly to

the hyperbolic shearing map h' on D• as k --+ oo.

4.4 Discrete Grafting Maps

As we did for discrete shearing maps in Section 4.3, we may use the hyperbolic

projections {p'} to define discrete grafting operations {g'} which approximate the
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hyperbolic grafting maps {gi} such that g' -+ g' as k -+ oo. First, we need to

understand the action of the grafting map, g'. The action of this map is to open the

disk along the geodesic L', creating two copies of the geodesic. We then parameterize

each copy of the geodesic and the boundary of an infinite hyperbolic strip by arc length

and identify corresponding points in the parameterizations. The only difference in

the discrete grafting is that the discrete geodesic il and L' do not agree. So, for each

k E N, define gk by
g= (pA) o gi o (pt). (4.4.1)

I I t

/ I/

10 
t

(a) A Combinatorial Geodesic (b) Local Refinement, Grafting, and

Welding

Figure 4.4: Combinatorial Grafting and Welding

Proposition 4.4.1. The discretized maps g' are bilipschitz on 4k with bilipschitz con-

stants bounded independently of i and k, and gk converges uniformly to the hyperbolic

grafting map gi on ID as k -* 0o.

Proof. The fact that the maps g' are bilipschitz on 4' follows directly from Proposition

3.4.1. As for convergence, Proposition 4.2.1 guarantees that p• converges uniformly

to the identity. Thus, gi converges uniformly to gi as k --+* . E

We now define a combinatorial earthquake as the composition of a discrete grafting
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map with a discrete shearing map, Ek = gk o hk, just as we defined continuous

earthquakes as the composition of grafting and shearing maps, E = g o h.

4.5 Convergence of Discrete Earthquake Maps on Hyperbolic

Riemann Surfaces

Thus far, we have described a family of transformations on the Teichmiiller space

of a hyperbolic Riemann surface and a process whereby we may discretely mimic the

action of those transformations through circle packing. In Theorem 4.5.1 we show

that this "mimicry" is in fact a convergent numerical method.

Theorem 4.5.1. Let R be a compact hyperbolic Riemann surface with a finite mea-

sured geodesic lamination (, a). Let {Pk} be a sequence of finite bounded degree

packings with mesh decreasing to zero corresponding to Riemann surfaces {JRk} such

that Rk -+ R as k -+ oo in the Teichmiiller metric. Then the surfaces Ek(Rk) = Rk

induced by the discrete earthquake maps Ek converge to the surface E(R) = R under

the earthquake map E induced by (4, a).

Proof. Let R be a compact hyperbolic Riemann surface, and let (4, a) be a finite

measured geodesic lamination on R. In a sense, the proof of this result reduces to

showing that the diagram (4.5.1) commutes.

{R,cc .C2..c ) Cm

Ak Ifik 1]k (4.5.1)

{Rk, Clk,ýC2k I... ICMk} I &i

Note that requiring the mesh of the sequence of bounded degree packings {Pk} to

approach zero as k -- oc is equivalent to requiring that the radii of the circles in the

packings approach zero. Thus, we are guaranteed the existence of such a sequence

by Corollary 3.5.1. Further, the construction of the surfaces in the proof of Corollary

3.5.1 allows the freedom to control the degree of vertices adjacent to the geodesics

along which we shear and graft.

66



The Teichmfiller distance between the packable surfaces Rk and R is going to zero,

so for each k E N there exists a map fk : Rk -+ R that respects the markings on

Rk and R and is 1 + Ck-quasiconformal, where Ek -+ 0 as k -+ oo, (i.e., as k -+ oo,

fk -+ f, where f is conformal). More precisely, the map fk consists of a map from

the disk (or other model of the hyperbolic plane) to the disk through a map between

the surfaces and their respective conformal structures. Where no ambiguity arises,

however, we will speak about the map as fk : Rk -+ R.

Let {cj}jl, be the cylinders grafted into the Riemann surface R by the finite

earthquake E. For each j = 1, 2, ... , m, let {Cjk }kCN be a sequence of cylinders

admitting a circle packing of finite, uniformly bounded degree so that CJk -+ cj as

k ---> c in the Teichmiiller metric. Further, require that the mesh of the packing

on cj, goes to zero as k -+ oc for each j = 1, 2, ... , m. Thus, for each k E N there

exists a map fak : Ck -+ cj that is 1 + ejk-quasiconformal, where Eik -4 0 as k -+ 00,

j = 1, 2,..., m, (i.e., as k -+ 0c, fik -+ fj, where fj is conformal).

Let R be the image of R under the action of the earthquake E, and for each k E N
let Rk be the image of Rk under the action of a combinatorial earthquake Ek. We

construct these combinatorial earthquakes by describing laminations on the surfaces

Rk corresponding to the lamination on R. Since on a hyperbolic Riemann surface

there is exactly one simple closed geodesic in each non-zero homotopy class [14, 29],

corresponding to each geodesic in the lamination £ on R there is a unique geodesic

on Rk in the corresponding homotopy class. Taking the collection of these geodesics,

we have a finite measured geodesic lamination (Lk, a) on Rk. Notice that we have left

the weights a unchanged; we simply assign to each geodesic in Lk the weight on the

corresponding geodesic in R. Now, we have finite measured geodesic laminations on

each Rk, k E N, and we may carry out the discrete shearing and welding operations

of combinatorial earthquakes.

Around each geodesic LV, i = 1, 2, . .. , n, in the lamination L on R we place a

collar, a neighborhood of uniform width isometric to a cylinder, so that no two such

neighborhoods intersect. Call this collar Ci. Since the geodesics in the finite lamina-
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tion are disjoint by construction, the Collar Theorem [14] guarantees that there exists

such a collar about each geodesic. Similarly, about each geodesic L', i = 1, 2,..., n

in the lamination Lk on Rk there exists a collar Ck such that the collection of collars

on Rk is disjoint. We require that the collar Ck on Rk have width less than 1 the2

width of the corresponding Ci on R. Now, since Rk --+ R in the Teichmiiller metric,

the maps between Rk and R are going to conformal maps and the markings on Rk

are converging to the markings on R. Thus, for k sufficiently large, the image of

the collar Ck under the map fk is contained in the collar C', and, by construction,

this containment is proper, (ie., fk(Ck) ; C' for all k sufficiently large). Further,

since the mesh of the packings on Rk goes to zero, for k sufficiently large, the discrete

geodesic 4l corresponding to L', i = 1, 2,..., n, lies strictly within the interior of the

collar CkL.

Consider the images of the collars Ck under the action of the discrete earthquake

Ek. If the geodesic LV about which we built the collar Ck has real weight, and

thus induces only a discrete shearing action on the discrete geodesic, then there is

no difficulty in defining what we will call a quasicollar on Rk as the image of Ck

under Ek. The image of the discrete geodesic f4 and the image of the geodesic Li

are contained in this quasicollar. This is shown in Figure 4.5, where the geodesic

L' is shown as a solid gray curve, the discrete geodesic A is shown as a solid black,

piecewise linear curve, and the collar Ck is denoted by dashed curves.

The case in which the weight on L' has non-zero imaginary part is somewhat

more problematic. The action of the earthquake in this case will divide the collar

into two disjoint sets. Since the grafting (imaginary) component of the earthquake

involves the insertion of a non-trivial cylinder, however, we may extend these disjoint

regions at least one generation of triangles deep into the interior of the cylinder to

create quasicollars about the ends of the inserted cylinder. (Note that since the mesh

of the packing is going to zero, the region occupied by one generation of triangles is

getting arbitrarily small.) Since the inserted cylinder has non-zero height, we may

construct these quasicollars so that they are disjoint.
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(a) Geodesic, Discrete Geodesic, and Collar on Rk (b) Images under a Discrete Shearing Map

Figure 4.5: Geodesics, Discrete Geodesics, and Quasicollars

Define a pullback map Pk Rk -+ {Rk, Cik,. . . , Cm,'} by letting Pk(?) be the unique

pre-image r E Rk of the point ý G Rk under the combinatorial earthquake Ek. Note

that since the degree of the vertices in the complex on Rk is bounded and since, by

construction, the angles in the packing on Rk are bounded away from zero, the map

Pk is 1 + tk-quasiconformal. Further, at any point isolated from the combinatorial

geodesics, as k -4 oo the number of generations of circles on the packed surfaces

between that point and the combinatorial geodesics goes to infinity; thus, at any such

point, Lemma 3.2.4, the Packing Lemma, guarantees that the dilatation of the maps

Pk goes to 1 as k -+ cc, (i.e., as k -+ oo, on points isolated from the combinatorial

geodesics, Pk -+ P, where P is conformal).

Since each of R, Rk, and Rk are Riemann surfaces, they each have a conformal

structure; in the case of Rk and Rk, they inherit their conformal structures from

their packings. Let {I'v}veT, {1v}vcN, {•kv}jTk, and { 4 'kv}kENk be the collection

of coordinate charts in the conformal structure on R, R, Rk, and Rk, respectively.

Note that the structure on f? will be the structure described in Section 2.6. Now,
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we consider a collection of maps fk Rk --* R, each defined on open sets in Rk. Let

UCRk.

Case I: Suppose U C Rk is an open set such that U does not intersect the interior

of any quasicollar, and U does not intersect any cylinder inserted by the earthquake

Ek. Associated with this open set in Rk we have a coordinate chart 'Ok.- Now, the

map P` o fk o Pk o V)-' takes an open subset of the unit disk D corresponding to

the pair (U, 'kv) to an open subset Uc, C R so that U,, E UA, as described in Section

2.6. Corresponding to U, we take from the conformal structure on f? described in

Section 2.6 a coordinate chart 0,. Thus we have the following:

opofkoPk o -' = , o P op- o fko Pk O k-1

= (o0AopkoA 1.

Since Va and 0-1 are conformal (or 1-quasiconformal) and the maps fk and Pk are

(1 + Ek)-quasiconformal and (1 + 4k)-quasiconformal, respectively, the map thus de-

scribed is (1 +±k)(1I+?k)-quasiconformal, by Lemma 2.4.1. Note that ek and 9k are in-

dependent of the set U, since they depend only on the maps fk and Pk, which are glob-

ally (1 + Sk)-quasiconformal and (1 + tk)-quasiconformal, respectively. By construc-

tion, U is isolated in Rk from the images of the geodesics defining the earthquake Ek,

and Ek, ek -+ 0 as k - oco. Thus, as k -- oo, the map 0, o P-1 o fk o Pk o ac -' : -k -

approaches a conformal map.

Case II: Suppose U C Rk is an open set such that U does not intersect the interior

of any quasicollar, and U is contained in the interior of some cylinder inserted by the

earthquake Ek. Associated with this open set in Rk we have a coordinate chart Ok,-

Now, the map P-1ofj, oPkO-k1 takes an open subset of the unit disk D corresponding

to the coordinate pair (U, ek,) from the conformal structure on Rk to an open subset

Ufi C f? so that Up E UB, as described in Section 2.6. Corresponding to Up, we take

from the conformal structure on R described in Section 2.6 a coordinate chart Oa.
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Thus we have the following:

V#0oP-1 o fj, oPko 0-0 = Mjog•00oPoP-ofJk 0oPko'0/-1

=MjogJi¢of ~~ -1.

Since Mj o gj o 03 and V)-1 are conformal (or 1-quasiconformal) and the maps fj,

and Pk are (1 + ' )-quasiconformal and (1 + tk)-quasiconformal, respectively, the

map thus described is (1 + E)(l + Mk)-quasiconformal. Again, we note that the

constants describing the deviation from conformality, Ei and 4k, are independent of

the choice of U. By construction, U is isolated in Rk from the images of the geodesics

defining the earthquake Ek, and -jk,9k -+ 0 as k -+ o0. Thus, as k -+ oo, the map

V8 0 P-1 0 fa 0 Pk a : "Rk -+ f? approaches a conformal map.

Case III: Suppose that U is a small open subset of Rk such that U intersects

Ek(f') for some i = 1, 2,... , n, and U intersects the boundary of the quasicollar C7

associated with Li. Corresponding to U we have a coordinate chart eke. Now, we

have two cases to consider depending on whether the weight on the geodesic L' has

non-zero imaginary part.

Case IIIa: Suppose Im(u(L2)) = 0; that is, the earthquake action on the geodesic

Li involves only a shearing action. This gives that the map Pk takes U to a subset of

Rk such that Pk(U) C C and Pk(U) n Fi = 0, as shown in Figure 4.6.

(a) An Open Set U C Rk (b) Image of U Under Pk

Figure 4.6: Pullback of Geodesics, Discrete Geodesics, and Quasicollars
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Note that in Figure 4.6b we have included the refining edges associated with the

shearing so that there is a bijection between individual triangles in Figure 4.6a and

Figure 4.6b.

Now, we wish to send this set Pk(U) to a subset of R, but there is a geometric

difficulty to be resolved. The "halves" of Pk (U) have as one portion of their boundaries

a segment of the discrete geodesic f4. We need these segments of their boundaries to

lie on the actual geodesic L' in Rk. The problem is easily resolved, at the expense of

admitting some quasiconformality in our eventual transformation, by the application

of the hyperbolic projection pk described in Section 4.2, as illustrated in Figure 4.7.

(a) The Pullback of U, Pk(U) (b) The Projection of Pk(U), pk(Pk(U))

Figure 4.7: Projection of Geodesics, Discrete Geodesics, and Quasicollars

This pA map on the set Pk(U) is 1 + gk-quasiconformal, but Proposition 4.2.1 guar-

antees that p• converges uniformly to the identity; so gk -ý 0 as k --+ c. Further,

the constant jk is independent of the choice of U. This independence is a result of

two facts. First, the projection associated with any given geodesic L and the ac-

companying discrete geodesic f4 has a quasiconformality constant uniform across the

entire geodesic. Second, there are only finitely many geodesics for which we must use

these projections. Taking the maximum such quasiconformal constant as jk, we have

independence of the choice for U.

Corresponding to the set p' (Pk (U)) C Rk, or more precisely to some open subset of

Rk containing p%(Pk(U)) C R?, we have a coordinate chart 9k, which takes pk(Pk(U))
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to a subset of a fundamental region for Rk in the Poincar6 unit disk, D. The image

of pikPk(U))f L' under this map is thus an arc of a hyperbolic geodesic in D. There
exists a disk automorphism Mvj : D -+ D such that MVU'(Pk,(j4(P k(U)))) Lk) is

a small arc of a hyperbolic geodesic in DID that is the projection of the geodesic L'

in R. We may choose this arc of the projection of L/ sufficiently small that the set

MVk ( j4k,,p(Pk(U)))) is contained in a single fundamental region for R.

Now, a second difficulty arising from the projection operation must be addressed.

If we were to apply a shearing map on the lift of the geodesic L' which separates the

"halves" of MkU (cpk, (p4(Pk(U)))) using the weight associated with LV, the sides will

not necessarily match along the geodesic, as illustrated in Figure 4.8.

(a) Before Shearing (b) After Shearing

Figure 4.8: Misalignment under Pullback, Projection, and Shearing

The difference along the geodesic is a quasisymmetry on one half of the intersection

with LV, however, and extends to a 1 +Ek-quasiconformal map, Qu, in the correspond-

ing half of MkU(cpk,(p4(Pk(U)))) [24, 33]. Recall, however, that the quasisymmetry

and associated quasiconformal map arise as a result of the need for a hyperbolic pro-

jection p' to correct the difference between the geodesic L' and the discrete geodesic

f. Lemma 4.1.1 guarantees that i -* L' uniformly as k -+ oo. Thus, Ek -ý 0 as

k -+ oc. Further, since the quasiconformality of Mku depends only on the quasisym-

metry associated with the projection pk, •k is independent of the choice of U.

Corresponding to the set Qk (Mk (ý (Pkv (PkP(U))))) C D, we have a map from the
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conformal structure on R, VV1, taking this set to an open set on R intersecting the

geodesic Li. (Again, the coordinate chart really comes from an open set containing

the set of interest.) Notice that as a result of applying the correction Qu, the two

halves of this image (on either side of the lift to D of the geodesic LV) now match

the action of the shearing caused by P- 1 . We now apply P-1, to obtain a set V C

R. Corresponding to this open set we have a coordinate chart from the conformal

structure on R defined in Section 2.6. Since V E Ur, as described in Section 2.6, we

have a coordinate chart Oy corresponding to V. This gives the following:

o - 1 0 QU 0 Mvj 0 WkA 0P a Pk 0 W-a

= ~ ~ ~ ~ - 0 op o op l~ l l QU o0M kU o0(Plk , p1 O O~ -1

This map is (1 + Ek) (1 + jk) (1 + tk)-quasiconformal, where this quasiconformality is

independent of the choice for U. Now, consider the dilatation at a point u E U. If u

is not contained in the set Ek(4i), then Lemma 3.2.4, the packing Lemma, guarantees

that the dilatation at u goes to 1 since each of Ek, 9k, ek -ý 0 as k --+ oo. Thus, this

map from Rk to R converges to a conformal map, except perhaps on the image of the

discrete geodesic f4 under the earthquake Ek. But this set has measure zero, and the

map is continuous. Thus, the limit map is conformal on all of U [33].

Case IIIb: Suppose Im(u(L')) > 0; that is, the earthquake action on the geodesic

Li is a grafting action (and potentially a shearing action as well). The situation here

is somewhat more complicated than the previous case since the map Pk takes the

portion of U on the inserted cylinder to a cylinder cAk and the remaining points of U

to a subset of Rk. We will deal with the maps on these two subsets of U separately.

First, consider that subset of U which is taken to Rk. Call this subset U1. Pk (U,) =

CQ and Pk(Ul) nfl4 0 . We wish to send this set Pk(U,) to a subset of R, but there

is a geometric difficulty to be resolved. Pk(Ul) has as one portion of its boundary

a segment of the discrete geodesic 4•; we need this segment of the boundary to lie

on the actual geodesic L' in Rk. As before, this problem is easily addressed, at the
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expense of admitting some quasiconformality into our eventual transformation, by

the application of the hyperbolic projection pi described in Section 4.2. This map

on the set Pk(Ul) is 1 + ik-quasiconformal, but Proposition 4.2.1 guarantees that pk

converges uniformly to the identity; so Ek -- 0 as k -+ oc. As in Case IIIa, 9k is

independent of the choice of U.

Corresponding to the set P'(Pk(Ul)) C Rk, or more precisely to some open sub-

set of Rk containing p'(Pk(U1)) c Rk, we have a coordinate chart cOkv which takes

Pk (Pk (U1)) to a subset of a fundamental region for Rk in the Poincar6 unit disk, DI. The

image of p (Pk(U1)) ln L' under this map is thus an arc of a hyperbolic geodesic in ID.

There exists a disk automorphism MU: ID -- D such that Mf (•k, (pk(Pk(Ul)))) fl Lk)

is a small arc of the hyperbolic geodesic in DI that results from the lift of the geodesic

L' in R. We may choose Mvj such that the set MV(•kv(Ppk(Pk(U1)))) is an open set

intersecting this geodesic in a fundamental region for R.

Again, we will require a correction to compensate for the effect of the hyperbolic

projection pk. Call this correction Qu, and note that this map is a quasisymmetry

on the intersection with the lift of the geodesic Li and is (1 + ek)-quasiconformal, as

in Case IlIa. Again, the quasiconformality constant fk is independent of the choice

for U.

Corresponding to the set QkU (MkUf(Wký (pk(Pk(Ul))))) C D, we have a map from the

conformal structure on R, W-1, taking this set to an open set on R intersecting the

geodesic Li. (Again, the coordinate chart really comes from an open set containing

the set of interest.) We now apply P- 1 , to obtain a set V1 C jt adjoining the edge of

an inserted cylinder cj.

Now, consider that subset of U which is taken into cA . Call this subset U2 .

Pk(U 2 ) C cji and Pk(U 2 ) intersects the boundary of the cylinder cjk. We take this set

into the cylinder cj via the 1 + Ek-quasiconformal map fik, where Ek is independent of

the choice of U, since we may choose Ek as the maximum of the constants associated

with the finitely many cylinders {cj}. We then apply the map P- 1 to obtain a set

V2 C .
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The way we have constructed these maps, in particular the application of the

map pA, ensures that the set V = V1 U V2 C R is an element of the collection UA

as described in Section 2.6. Corresponding to this set V we have a coordinate chart

0 6 from the conformal structure on R given in Section 2.6. This gives the following

piecewise map Ilk • k -- R:

k0 QU 0 Mv 0 (Pk, 0 Pk 0 Pk 0 (U) if u EU 1 C Rk
Hk Mu ) J {:P-' 0 V okoj (u)

So l f oif u G U2 C Rk.

The first of these maps, for u G U1, is (1 + Ek)(1 + Jk)(1 + ?k)-quasiconformal. The

second map, for u E U2 , is (1 + ek)(1 + gk)-quasiconformal. As we have shown, each

of these constants is independent of the choice of U. Now, consider the dilatation at

a point u E U. If u is not contained in the set Ek(4), then Lemma 3.2.4, the packing

Lemma, guarantees that the dilatation at u goes to 1 since each of Ek, ek, ek, Ejk -4 0

as k -+ oc. Thus, this piecewise map I1 k from Rk to R converges to a conformal

map II, except perhaps on the image of the discrete geodesic 4l under the earthquake

Ek. But this set has measure zero, and the map is continuous. Thus, the map H is

conformal on all of U [33].

Thus, as k -+ oo the maps from R, to R are becoming conformal, and, by con-

struction, the markings on surfaces R and Rk are consistent. Therefore, the surfaces

Rk converge to a surface conformally equivalent to R with equivalent markings; but

this is equivalent to saying Rk -- f R (in the Teichmiiller metric) as k -- cc, and the

result is shown.
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CHAPTER V

EARTHQUAKES ON EUCLIDEAN SURFACES

In the work of Thurston [51], McMullen [35], and others [16, 21, 23, 24, 25, 40, 54],

earthquake maps are confined to hyperbolic Riemann surfaces. To this point, we have

similarly limited the scope of our attention, examining only the approximation of these

complex earthquakes, shearing and grafting maps on hyperbolic Riemann surfaces.

We now turn our attention to the question of whether or not we can meaningfully

define earthquake maps on the Teichmiiller space of Euclidean Riemann surfaces. In

this chapter we address four basic issues related to earthquakes on tori. Initially, we

have a question of definition; we must define those earthquakes. Given this definition,

we have three problems we must address. First, we must determine whether or not

the earthquakes thus defined are transformations of points in the Teichmiiller space

of tori. That is, is the image of a torus under a Euclidean earthquake another torus?

Second, we must determine whether or not the Euclidean earthquakes thus defined

exhibit properties similar to those of the hyperbolic earthquakes. Finally, can we

approximate the action of these Euclidean earthquakes using circle packing?

5.1 Defining Earthquakes on the Torus

From the perspective of shearing and grafting maps on the Riemann surface, we

define (Euclidean) earthquakes on tori in a manner analogous to the manner in which

those maps were defined on hyperbolic surfaces. That is, we define a shearing by

opening the torus along a geodesic, twisting by a prescribed amount, and gluing the

surface back together along the seam of the geodesic. Similarly, we define a grafting

by opening the torus along a geodesic, inserting a cylinder of some prescribed height,

and gluing the surface together.

To define such an action, we first need to discuss finite measured geodesic lam-

inations of tori. Recall that in constructing earthquakes on hyperbolic surfaces we

used the Poincar6 unit disk and the upper half plane (with appropriate metrics) to
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describe the earthquake action. We have a similar construction here, where we use

the Euclidean (rather than hyperbolic) upper half-plane ]HI as a lifting cover for the

Euclidean surface, the torus. We restrict ourselves to the upper half-plane so that

each point in the Teichmiiller space of tori is uniquely defined (after normalization)

by a single point w E H [29, 30]. We now define a finite Euclidean geodesic lamination

on a torus.

Definition 5.1.1. A finite geodesic lamination L of the Euclidean torus T is a

collection of finitely many disjoint geodesics on T which lifts to a collection of disjoint

(and thus parallel) Euclidean lines in the upper half-plane H.

Note that the structure of the Euclidean plane dictates that in a finite geodesic

lamination of the plane consisting of more than a single geodesic, those geodesics must

all be parallel (in a Euclidean sense). This limits substantially the forms that such a

lamination may take in the Euclidean case; we have less freedom in constructing these

laminations than in the hyperbolic case since we have only one "point at infinity."

Just as in the hyperbolic case, we place a measure on the lamination £.

Definition 5.1.2. A finite geodesic lamination £ of the Euclidean plane C is a

collection of finitely many disjoint Euclidean lines (geodesics). In this way, L divides

JHl into disjoint strips.

Recall that the construction of complex earthquakes on hyperbolic surfaces re-

quired the use of hyperbolic isometries. In the Euclidean complex plane, the isome-

tries we need are simply translations z + ca, a E C. A shearing map arises from a

translation with axis parallel to the geodesic along which we wish to shear, and a

grafting map arises from a translation with axis perpendicular to the geodesic along

which we intend to graft. In grafting, we insert finite cylinders, and in the plane this

is represented by the insertion of a finite strip into the gap created by the piecewise

application of the grafting translation (with axis perpendicular to the geodesic). Note

that we may select this finite strip (essentially a Euclidean parallelogram) so that its
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generators (and thus the marking) are consistent with the generators (and thus the

marking) that defines the Teichmiiller space under examination.

We model the actions of shearing and grafting on a torus on the fundamental

regions for the tori in the upper half-plane, just as we used the upper half-plane (and

the Poincar6 unit disk) to model hyperbolic earthquakes. These four actions, left

and right shearing and positive and negative grafting, are illustrated in Figure 5.1.

We then define complex Euclidean earthquakes, earthquakes with complex weights,

as the composition of Euclidean shearing and then Euclidean grafting operations.

Recall that in the hyperbolic case we claimed that the term complex earthquake

was illustrative in that the earthquake action was described as multiplication by a

complex number in the local model on H. A similar idea holds in the case of Euclidean

earthquakes; rather than multiplication by a complex number, we now transform

defining points in the fundamental region through the addition of a complex number.

Im(z) im(z) Im(z)

Re(z) -Re(z) -Re(z)

(a) Fundamental Region and (b) Right Shearing (c) Left Shearing

a Geodesic
im(z) Im(z)

Re(z) - Re(z)

(d) Positive Grafting (e) Negative Grafting

Figure 5.1: Earthquake Actions on the Fundamental Region of a Torus

Note that in constructing these Euclidean earthquake maps, we place some re-

strictions on the weights. First, consider the imaginary part (grafting component) of
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the complex weights. In [35], positive grafts of any size were permitted, but negative

grafts (amounting to removal of portions of the surface) required some restrictions

for obvious geometric reasons. We must restrict negative grafting weights similarly

in the Euclidean case. There are two reasons for this restriction. First, we do not

want to remove so much in a negative graft along a particular geodesic that we re-

move another geodesic. Second, we must not remove all of the torus remaining in one

direction.

5.2 A Conformal Structure on the Images of Tori under

Complex Earthquake Maps

We can now turn to the first of our outstanding problems, Problem 5.2.1.

Problem 5.2.1. Do earthquakes on Euclidean surfaces, and in particular compact

tori, result in Riemann surfaces? That is, are shearing and grafting maps defined on

tori transformations in the Teichmiiller space of tori?

Suppose that we apply a finite complex Euclidean earthquake E induced by a finite

measured geodesic lamination (4, a) to the torus T (a compact Euclidean Riemann

surface), where the lamination consists of n geodesics with complex weights a(Li) =

IJq + iAq, I < q < n, where liq E R and Aq G R such that Aq, if negative, is sufficiently

small so that the execution of the negative grafting operation does not remove another

geodesic in the lamination and does not reduce the torus to a degenerate surface. This

earthquake thus involves both shearing maps and grafting maps composed to form

the complex earthquake.

Since T is a fixed Riemann surface, it has a conformal structure associated with it;

say {•v}veT is the atlas for the conformal structure on T. Further, since each grafting

map with positive imaginary weight involves the insertion of a cylinder cj, we have a

conformal structure associated with each such cylinder so that the coordinate charts

map cj to subsets of a Euclidean strip. For each of cj, 0 < j • m, where m gives the

number of geodesics in the lamination L which have positive imaginary components
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for their weights, let {1} kEK be the atlas associated with each such cylinder.

Define a pullback map P on T so that the image of a point T- E T under P is the

unique point (on T or on one of the cylinders cj) whose image under the complex

earthquake E is T.

With this information we now define a conformal structure on the Riemann surface

T, the image of T under the complex earthquake E. To define this conformal structure

we need only describe a set of coordinate charts mapping open regions in the surface T

into C so that the transition maps associated with the coordinate charts are analytic.

It is sufficient to construct for every point r E T a map from an open neighborhood

U C T into C so that these maps satisfy the analyticity condition. We consider open

sets of the following five classes.

1. UA is the collection of all open sets U, C T such that U, does not intersect the

image under the earthquake E of any geodesic Li, 1 < i < n, and is disjoint

from every inserted cylinder cj, 1 < j < m.

2. UB is the collection of all open sets Up C T such that Up C E(cj) for some

j,l <j < m.

3. Ur is the collection of all open sets U. C T such that U7 intersects E(Li) for

exactly one value i, 1 < i < n, where a(Li) E R, (i.e., the only map on that

geodesic is a shearing operation).

4. UA is the collection of all open sets U6 C T such that Uj intersects both P-1 (R)

and E(cj) for some j, 1 < j < m.

5. U= is the collection of all open sets UC C T such that UC intersects the image

of the boundary of some cylinder removed by the action of a negative grafting

action.

An illustration of representative sets from these classes is given in Figure 5.2.
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Y 
----

U, Removed Cylinder

Inserted Cylinder

Figure 5.2: Open Sets to Define a Conformal Structure on the Torus T

Case I: Let U, E UA, and note that P(Ua) is an open set in T. From the conformal

structure on T and corresponding to this open set P(U,,) we have a coordinate chart

c such that po(P(Ua)) C C. We thus define a coordinate chart '1 : T -+ C on the

open set U, by 0, = V o P. In this way we define a family of coordinate charts TI/A

on T by T A = {3}aEA"

P(Ufl)

(a) Image of Ug C T under P (b) Image of U0 C T under g o ¢YoP

Figure 5.3: Construction of Coordinate Charts for Open Sets U,6

Case II: Let Up E UB. In this case, U# C Int(E(cj)), for some 1 < j < m, and

the pullback map P takes this set to an open set on the finite cylinder cj as shown in

Figure 5.3a. Now, from the conformal structure on cj we have a coordinate chart
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corresponding to P(Up) such that Oý(P(Up)) is a subset of an infinite Euclidean strip

of uniform width determined by the complex part of the weight on the appropriate

geodesic in L. We then have a grafting map g• that opens the plane along the

corresponding geodesic in C and glues in the strip as shown in Figure 5.3b. This gives

us a map T-+Con the open set Uo defined by 0,8 = o ,, o P. In this way we

define a family of coordinate charts T'B on T by TJiB B

P(U1 ývY(P(U 7))

(a) hnage of U• cT under P (b) Image of Uy C Tunder oy o P

SI(VY(P(U,))) :
(c) hnage of U., C Tunder Sy o.yoP

Figure 5.4: Construction of Coordinate Charts for Open Sets Uy

Case III: Let Uy G Ur, and note that P(Uy) is a set as shown in Figure 5.4a. From

the conformal structure on T and corresponding to an open set containing P(U.Y)

we have a map m such that V((P(U,)) C C. Now, we have disjoint sets that differ

by the application of a Euclidean shearing map (a piecewise translation), S., along

the axis determined by the geodesic shown in Figure 5.4b. We have thus defined a

coordinate chart Vb • T -+ C on the open set U7 by Oy = Sy o w o P. In this way, we
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define a family of coordinate charts Tr I = { }•r-

P((E(cj))c n U

(a) Image of U, fl E(cj) under P (b) Image of U6 n(E(cj))c under P

ý5(P((~cj))c n U,)

¢b•(P(E(cj)n U6))

(c) Image of P(Ud n(E(cj))) under q5 (d) Image of P(U6 n(E(cj))C) under Vo

(e) Image of Uy C R under T,5

Figure 5.5: Construction of Coordinate Charts for Open Sets U6

Case IV: Let U, G UA, and note that P(U6 ) is divided between two distinct

Riemann surfaces cj, as shown in Figure 5.5a, and T, as shown in Figure 5.5b. To

define coordinate charts on set of the form U5 we define a pair of maps from these

84



surfaces to the upper half-plane H. Beginning with the cylinder, we have a map (Y.

such that qV,(P(E(cj) n U6)) is a Euclidean strip of uniform width determined by the

complex part of the weight on the appropriate geodesic in C as shown in Figure 5.5c.

At the same time, from the conformal structure on T we have a map Vj such that

(p6(P((E(cj))C UI u6)) C H as shown in Figure 5.5d. Applying the grafting map gi we

put the pieces back together in H. Now, we may need to shear along the hyperbolic

geodesic whose image to this point is the imaginary axis in Figure 5.5d; this will

depend upon whether or not the geodesic associated with this grafting action had

a weight with non-zero real part. Note that the shearing will take place along that

portion of the set not intersecting E(cj), since we define complex earthquakes as the

composition of shearing and grafting maps, in that order.

s (01) :{s g;:(•o P(T) if T E E(c)nuCT (5.2.1)
S, o Vo if E(E(cj))c n c

This function now defines a map 06 : T --+ C on the open set U6, as shown in Figure

5.5e. Taking all such functions over the set of possible sets UQ E UA•, we define a

family of coordinate charts IP = {06}6E.

Case V: Let U6 E Us, and note that P(UC) is a set as shown in Figure 5.6a. From

the conformal structure on T and corresponding to an open set containing P(U6) we

have a map V such that VC(P(Uc)) C C. Now, we have disjoint sets that differ by the

application of a negative Euclidean grafting map (a piecewise translation), gc, along

the axis perpendicular to the geodesic shown in Figure 5.6b and a negative Euclidean

shearing map (piecewise translation) along the axis shown in Figure 5.6b. We have

thus defined a coordinate chart Oc : T -+ C on the open set Ut by Oc = Se o g ' o p o P.

In this way, we define a family of coordinate charts TI= }

Define a collection of open sets, U = UA U UB U Ur U UA U Uz, and a collection

of maps from T to C, ý = TA U TB U Tr U TA U Ts. Given this collection of open

sets and corresponding coordinate charts on the image T, Proposition 5.2.1 provides
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/-7

(a) Image of Ue C T under P (b) Image of UC C T under ýoC o P

gj(W(P(Ud)))

(c) Image of U C T under Sý ogý ooyoP

Figure 5.6: Construction of Coordinate Charts for Open Sets Uý

an answer to Problem 5.2.1; we prove that T is, in fact a Riemann surface. This leads

us immediately to Corollary 5.2.1, that Euclidean earthquakes are transformations

on the Teichmiiller space of tori.

Proposition 5.2.1. The transition maps in the structure (U, 'Ii) are analytic.

Proof. Let U be the intersection of two open sets in U. We need only consider those

intersections for which U E U. This gives five cases for the overlap region U in which

we must verify the analyticity of the transition maps.

Case I: Suppose that U E UA. There are nine ways in which U may occur as the

result of intersections of sets in U.

Case Ia: U = U01 f- Ua2, where Ual, Ua2 E UA. Associated with Ua1 and U, 2 we

have coordinate charts ýb1, Ib 2 E X1 A. Say Oa = p o P and Vb02 = (Pa2 o P. Now,
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consider the transition maps 0a,2 o 0-1 and 0,, o 0-1.

¢a2 o O-1 = (Va 2 o P) o (cPal o P)-I
'Pa

= (Pa2 0 P o P-1 o (

(P2 Pal

Thus, 012 o Oj' : C -+ C is analytic, since Vap, i = 1, 2, were taken from the conformal

structure on T, making V112 o cpa analytic. Similarly, ', o- is analytic.

Case Ib: U = Ua n U7 , where U, E UA and U, E Ur. Associated with Ua and U7

we have coordinate charts 0,a E XA and 0., E Tr, respectively. Say Oa = Va o P and

V, = Sy o a o P. Now, consider the transition maps 0',a o 0-1 and Oy oa

Oa00-1, = (Va 0°P)0(S0° o0P)-I

= ýO o p op-lov 10•- S'-Y1

- Va 0 V 10 7'a1 7

Note that the transition map Oa o 7P-l is defined only on the set U. Since the set

U does not itself intersect the geodesic associated with the shearing map S., on U

the shearing map acts as either the identity map or as a translation. In either case,

the action of S,7 is (locally) analytic. Next, we note that since V~, and VP7 are taken

from the conformal structure on T, 'Pa 0 ý0-1 is analytic, where defined. Thus, the

transition map Oa o 0-1 is the composition of analytic maps, and is therefore analytic.

Similarly, Oy o a b 1 is also analytic.

Case Ic: U = Ua n Uj, where Ua E UA and Uj E UA. Associated with each

of Ua and Uj we have coordinate charts 0, C TA and V56 E TI, respectively. Say

0, = ,a o P and 06 of the form given in (5.2.1). We note that since U does not

intersect the geodesic associated with the grafting of the cylinder, for every T E U

we have T E (E(cj))c n U6 c T, where j denotes the cylinder associated with the

grafting. Thus, on U we have Oj = Sj o ao V5 o P. Now, consider the transition
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maps ¢& o -i and Oj o'i.

¢Oa =0' (ý(oP)o(S5o o3 op)-1

= 0o P o P-1 o •01 o (g-' 0oSi)

= 0 o 1 o (_,)-1 o ST'

Note that we define the transition map V), oa061 on only on the overlap region U.

Since the set U does not itself intersect the inserted cylinder (or the boundary along

which we weld the cylinder to the Riemann surface T via the grafting map (g)-1), on

U the inverse of the grafting map acts as either the identity map or as a translation.

In either case, the action of (g)-1 is (locally) analytic. For the same reason, on U

we have that Si-1 acts as either the identity map or a translation, and is therefore

(locally) analytic. Next, we note that since the maps V and V were borrowed from

the conformal structure on the original Riemann surface T, V o 0-1 is analytic, where

defined. Thus, the transition map 0, o ¢[1 is the composition of analytic maps on

U, and is therefore analytic. Similarly, 0 6 o 0,-1 is also analytic.

Case Id: U = U, n U6 , where U.y E Ur and U6 E UA. Associated with each

of U., and U5 we have coordinate charts Oy E Tr and 06 E T, respectively. Say

O• =S.=S o ,oy o P and l5 of the form given in (5.2.1). We note that since U intersects

neither the geodesic associated with the grafting of the cylinder nor the geodesic

associated with the simple shearing, for every T E U we have T E (E(cj))c n U,5 C T,

where j denotes the cylinder associated with the grafting. Thus, on U we have
'il)= S• g~o g yo o P. Now, consider the transition maps y o 0l-1 and l6 o V)'-1.

0-006-1 = (Soy.0,oP) o(Sogo5 oP)-1

= SO o O.o --)o Wo ( - g o 1

Note that we define the transition map l) o 'i-1 only on the overlap region U. Since

the set U does not itself intersect the inserted cylinder (or the boundary along which

we weld the cylinder to the Riemann surface T via the grafting map (g)-1), on U
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the inverse of the grafting map acts as either the identity map or as a translation. In

either case, the action of (g•)- is (locally) analytic. For the same reason, on U we

have that Sý-1 and S7 each act as either identity maps or translations; they are thus

(locally) analytic. Next, we note that since the maps V. and 'o3 were borrowed from

the conformal structure on the original torus T, ', o V,1 is analytic, where defined.

Thus, the transition map Oy o 0. 1 is the composition of analytic maps on U, and is

therefore analytic. Similarly, V¢j o 0-a is also analytic.

Case le: U = U, n uo, where U, E UA and Uý E Us. Associated with U" and UC

we have coordinate charts 0,,, G XIA and Oý G *z, respectively. Say V),, = W,, o P and

V€ = SC og o g t o P. Now, consider the transition maps 0,, o0<- and c o .

V)6 = Oa (SC o gc o0 'o P) o ('W o P)-1

Scogco'pCoPoP-'o'pa'

Note that we define the transition map OC o 0; -1 only on the set U. Since U does not

itself intersect either the geodesic associated with Uý, on U the shearing and grafting

maps act as either identity maps or as translations. In either case, the action of gý

and Sý are (locally) analytic. Next, we note that since the maps VPa and 'p• were

borrowed from the conformal structure on the original torus T, 'pý o 'pd' is analytic,

where defined. Thus, the transition map OC o 1 is the composition of analytic maps

on U, and is therefore itself analytic. Similarly, 0, o <-1 is also analytic.

Case If: U = u. n Ut, where U7 E Ur and UC E Us. Associated with U7 and UC

we have coordinate charts Vy E xr and OC E x--, respectively. Say O- = S 0 o V. o P

and ¢• = gý o Wa o P. Now, consider the transition maps 0&7 0 -1 and o o0 1.

•oCK,• = (SCog~o'PoP)o(S'YO'pYoP)-'

= Sýogýo'pCoPoP-1'op1ioSi7-1

= SýOgý0o0p0o0 7 1 0Sj,7'

Note that we define the transition map OC o 0i- 1 only on the set U. Since U does not
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itself intersect either the geodesic associated with the set U• or the geodesic associated

with the set UC, on U the maps Sf-1, gC, and SC each act as either identity maps or

translations. In either case, the action of each on U is (locally) analytic. Finally, we

note that since the maps m and C were borrowed from the conformal structure on

the original torus T, ýoc o V-' is analytic, where defined. Thus, the transition map

V) o '•- 1 is the composition of analytic maps on U, and is therefore itself analytic.

Similarly, 0,, o 1 is also analytic.

Case Ig: U = U6 n Uo, where Uj E UA and UC E UE. Associated with U6 and UC

we have coordinate charts 06 E TA and OC E T=', respectively. Say V) = SC o gC o

p o P and Oj is of the form given in (5.2.1). Since U intersects neither the geodesic

associated with U6 nor the geodesic associated with UC, for every T E U we have

"T E (E(cj))C n U6 c T, where j denotes the cylinder associated with the grafting.

Thus, on U we have ?P = S6 o gi o •o o P. Now, consider the transition maps o 1

and 0 0

¢6 0 01 = (S6 oqg6 oýPof) o (SC ogC o (PC )-1

= C
= S 6 og0 o ,oPop-lo- og- l 1

=S og ov o' og l'oS(1

Again, the transition map V)6 o a-1 is defined only on the overlap region U. Since

this set intersects neither the geodesic associated with U6 nor the geodesic associated

with UC, on U the maps S6 , S(-, g , and g-i each reduces to either the identity map

or a translation, and thus each is (locally) analytic. Since the maps q5 and V were

borrowed from the conformal structure on the original torus T, P6 o W-1 is analytic,

where defined. Thus, the transition map 0 6 o- is the composition of analytic maps

on U, and is therefore itself analytic. Similarly, OC o V)- is also analytic.

Case Ih: u = Uci n U 2 , where UC,, UC, E U=. Associated with UC1 and UC, we

have coordinate charts O• E T=, i = 1, 2. Say OC, = S•, o g, o aj o P, i = 1, 2. Now,
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consider the transition maps OC, o 1 and OC, 2  C2

06 1 oA = (S 1 0og (oP, o P) o (SC2 og92 0o2P)
- SC1 o gC1 o (, o P o p-1o g~ ' o S-1

- S gI 0 gC, 0 WCg, 0 W 0 %1

The transition map OC, o 0-1 is defined only on the overlap region U. Since this set

intersects neither the geodesic associated with UCI nor the geodesic associated with

UC2, on U the maps SC1, S%1, gC1, and g-1 each reduces to either the identity map or

a translation, and thus each is (locally) analytic. Since the maps W, and C2 were

borrowed from the conformal structure on the original torus T, V o W1 is analytic,

where defined. Thus, the transition map 0C o1 0-1 is the composition of analytic maps

on U, and is therefore itself analytic. Similarly, OC2 0 061 is also analytic.

Case II: Suppose that U E UB. There are two ways in which U may occur as the

result of intersections of sets in U.

Case Ila: U = U, n U,2 , where U, 1, U8 2 C UB. Associated with Up, and U,2
we have coordinate charts O1, V)02 E TBB. Say 0#1 = g 0 P and (Y2 = 0

a3 o P. Note that since both U#I and UP2 must necessarily lie in the same finite

inserted cylinder, the grafting maps g•1 and 912, are the same map. Now, consider

the transition maps 0,2 o 7W and Oa, o OW-.

= '• o g2 o a -j a

02 0 ~2 00 0~) a*g 1 >

= 0 o V62o (00)- a (gi)-1

Now, notice that the maps gi and I have no effect on the analyticity of the maps

involved, since both Ufl and U 2 are on the interior of the cylinder E(cj). The action

affecting analyticity takes place in the conformal structure on the cylinder cj, and

-a (k• 1)-1 is analytic since these maps were taken from this conformal structure.
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Thus, as a composition of analytic maps, 002 o 0ý,1 is analytic. Similarly, ?Pp o a- is

analytic.

Case Ilb: U = up n u6, where Up E UB and U6 E UA. Associated with each

of Up and U6 we have coordinate charts 00 E TB and 6 E TA, respectively. Say

¢ -- g o P and , 6 are of the form given in (5.2.1). Note that since U is does not

intersect any geodesic associated with the grafting of the cylinder, for every T E U we

have T E E(cj) n U6 C T, where j denotes the cylinder associated with the grafting.

Thus, on U we have V56 = a o a1 o P. Now, consider the transition maps 08 o V),

and 06 o'i•1.

0 3 ,06 =(gj60'O 0P)o0 W"o0 0P) 1

This case, thus reduces to Case Ila, and the transition maps 0,6 o V),- 1 and ¢• o a,1

are analytic.

Case III: Suppose that U E Ur. Then, U = U.. n u7 2 , where U,,, Uy2 E Ur.

Associated with each of U,,, and U.2 we have coordinate charts O•1, Vy2 E Tr. Say

O•1 = Sy o ay o P and 072 = SY 0 •72 o P. Note that the earthquake (shearing) map

in each of these coordinate charts is the same, since this earthquake is defined by

intersection with a particular weighted geodesic rather than a particular set U. Now,

consider the transition maps Oy2 o a,1 and '-y1 o a,-2.

012 071 = (S-a aY° P)°(S-ay()(° P)-1

= 0 S o,2oPoP- o P a 7oS1

The action of the pre-composition and post-composition by grafting and shearing

maps has no effect on the analyticity; these maps each essentially undo the local

behavior of the other. Thus, the transition map Oy, o 0-1 is analytic. Similarly,

o 0-1 is also analytic.

Case IV: Suppose that U E U.. U = U6, n u, 2, where U 1, UI6 2 E UA. Associated

with each of U6, and U62 we have coordinate charts 61, V)6 E 'A. Say •61 and 62
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are each of the form given in (5.2.1). We may decompose the set U into three disjoint

sets, U = U, U L U U8, where U,, E UA, Up E UB, and L = 0 Un 19U#, as shown in

Figure 5.7. We have already shown that the transition maps 0j, o b-1 and 5,2 o 0-1

are analytic on each of the sets U, and Up. These transition maps, though, are also

clearly continuous on all of U. Since the image of L C U in the plane has measure zero,

any map which is K-quasiconformal on the image of U \ L is also K-quasiconformal

on L [33]; special cases of this result are often given in texts on complex analysis [18].

Thus, since the transition maps are analytic (1-quasiconformal) on the images of Us,

and Up, the transition maps are analytic on all of U.

Figure 5.7: Partition of U into U,c, Up3, and L

Case V: Suppose that U E Ua. Then, u =~ fl nUC21 where UCI I UC2 E Uý.

Associated with each of UC, and UC, we have coordinate charts O ~C,, E~ Say

V)ý=SC o go ýC o P and 'k = SC2092 o apC o P. Note that since the geodesic

intersected by each of UC, and UC, is the same, we have SC, = SC, and gC, = gC,. Now,

consider the transition maps 4'C2 o - and 'i/i o P

OC 0'0-' (SC, 0 gC1 0 ýoF'0) 0 (4S0 ~9C2 OC2 0P-

= oCI0gC1 o (C, oPo0P-1 (P 1 o 1 0 S1
C2 g2 C2
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The maps oc and p2 were borrowed from the conformal structure on T, so V6 0 C21

is analytic. The action of the pre-composition and post-composition by grafting and

shearing maps has no effect on the analyticity; these maps each essentially undo the

local behavior of the other. Thus, the analyticity of the transition map V)C o z.1 is

shown. Similarly, 02 o 0ý11

Thus, the transition maps in the structure (U, 'I') are analytic. LI

Corollary 5.2.1. Complex earthquakes are maps on the Teichmiiller space of tori.

Proof. Proposition 5.2.1 guarantees that the image T of a torus T under a complex

earthquake is a new torus. That is, the earthquake has mapped a point in the

Teichmiiller space of tori to a new point in that space. LI

5.3 Density of Euclidean Earthquakes

Having shown that given a point T in the Teichmiiller space of tori and a finite

complex Euclidean earthquake on that surface, the earthquake produces a new surface

T in the Teichmiiller space of tori, we turn to Problem 5.3.1.

Problem 5.3.1. Is there an analogue to Thurston's Earthquake Theorem for tori?

That is, can we produce any surface in the Teichmiiller space of tori by applying an

earthquake to the torus T? If so, is it possible to do so under the restrictions of

Thurston's theorem, using exactly one class of these transformations (positive shear-

ing, negative shearing, positive grafting, negative grafting)? Finally, is the earthquake

in some sense unique?

Taking the components of Problem 5.3.1 one at a time, in Theorem 5.3.1 we show

that we may, in fact, apply an earthquake to a given torus T and obtain as the image

any given surface in the Teichmiiller space of tori.

Theorem 5.3.1. Let T and T be arbitrary fixed points in the Teichmiiller space of

tori. There exists a finite lamination (C, a) on T and an associated earthquake E

onT induced by this lamination such that E(T) = T. Moreover, there also exists a
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sequence of measured geodesic laminations {((k, ak) }k'=ko on T and earthquake maps

{Ek}k=ko on T induced by these laminations such that Ek(T) -- T as k -- 00 and

the generators of the surfaces Ek(T) converge uniformly to the canonical generators

of T.

Proof. Let T and T be arbitrary fixed points in the Teichmiiler space of tori. In this

space, we normalize so that one generator for the fundamental group of all tori in

the group is z + 1. Thus the fundamental regions for the surfaces T and T are each

determined by the complex numbers w and Co in H, respectively, as shown in Figure

5.8 [29, 30].

n(z) IM(z)

LOZ

Re(z) - Re(z)

(a) Fundamental Region for T (b) Fundamental Region for

Figure 5.8: Fundamental Regions in the Normalized Teichmiiller Space of Tori

To demonstrate the result we explicitly describe a sequence of finite measured

geodesic laminations {(4, Uk)}1k 0 on the fundamental region for T. We construct

these laminations so that the image of T under each associated earthquake is the

surface T and the sequence of images of T have generators converging uniformly to

the canonical generators of T. For each k > k0 E N, let

£k ={L}kjj=l = {( Re(w) + t) i(J Im(w)): 0 < t • 1}
k + 1 + I j=1

Examples of such laminations are shown in Figure 5.9.

To complete the construction of the finite measured geodesic lamination, we need

only define the measure Uk. Let 6' = •(Re(c2)-Re(w)), and let 62 (Im()-Im(w)).
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Im(z) Im(z) Im(z)

Re(Z) -Re(z) Re(z)

(a) £L on T (b) L 2 on T (c) L5 on T

Figure 5.9: Laminations on a Fundamental Region for a Torus

We will require that k be large enough that

I• <1 (5.3.1)

and
2 > Im(w)
k Re(w) (5.3.2)

Clearly, we can always chose k large enough that these relations are satisfied, since

51, 62 -- 0 as k -* wo. Let k0 be the smallest natural number such that (5.3.1) and

(5.3.2) are satisfied. Now, let k > k0 and define uk : 4 -ý C by ak(L~k) = 61 + i62

for each j = 1, 2, ... , k. The effect of the constraints given in (5.3.1) and (5.3.2) is

two-fold. First, inequality (5.3.1) ensures that we never shear so far that the resulting

fundamental region is "split," and no shearing will twist the surface a full revolution.

This requirement is certainly not necessary, since shearing lengths greater than one

will simply indicate that the generators change homotopy classes. We impose the

restriction here for convenience and clarity of the construction. The second constraint

is similar in its effect, ensuring that the fundamental regions remain contiguous.

Notice that if 0 < Im(Co) < Im(w), and the grafting actions defined by the lami-
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nations thus described are negative, then for j = 1, 2,.. , k - 1, we have

j~l +j( 1 1lm(w) _ k(im(•) _ im(w))k+ k -+ Im k k + Ik
> 1 (Im(w) - Im()Im(w))

= k(Im(w) - Im(L))

> 0.

Thus the weights have been constructed so that the earthquake is always well-defined.

That is, we avoid the complications which arise if too much of the surface is removed

in the execution of a grafting associated with a negative imaginary weight; removing

"too much" may interfere with the action of other geodesics (by removing them) or

reduce the torus to a degenerate surface.

We have defined a sequence {(4k, Uk)}k=k of finite measured geodesic laminations

on the fundamental region for T. Associated with each lamination (Lk, Uk) we have an

earthquake Ek. Applying the finite earthquakes associated with these laminations, we

obtain a sequence of tori, {Tkj _; more precisely, we have a sequence of fundamental
k=ko

regions, each determining a torus. An illustration of the action of the earthquakes on

T determined by the laminations described is shown in Figure 5.10, where we have

k0 = 2. The resulting regions are clearly fundamental regions for the image surface

T, so the first part of the theorem is shown.

IM(z) IMW(z) In(z)

- Re(z) -ReWz - - Re(z)

(a) T N T2  (b) T N T3  (c) T - iT4

Figure 5.10: Convergent Euclidean Earthquakes on a Torus T
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Now, as points in the (normalized) Teichmiiller space of tori the sequence {Tk}

is a constant sequence. We wish to show that generators in this sequence of tori, which

are not constant, converge uniformly to the canonical generators of the given torus T,

z + 1 and z + Co. Define a "distance" between the surface Ek(T) = Tk and E(T) =T

in terms of their respective fundamental regions by

d(Ek(T),T) = supIEk(T) - E(T)I
r-ET

= maxlEk(T) - E(T)I
rET

1

From this, uniform convergence of the fundamental regions as k -- oc is clear since

lim (sup Ek(T) - E(T) I
ko<k--co kTET

- lim maxk Ek(T) - E(T)I)ko<k----oo \ TET

- i k< -*o ( 3(k)2 - (61k)2)

- ko<k-li 2/3(Im(L2) - Im(w))2 -(Re(c) -Re(w))2)

- 0.

Thus, the fundamental regions for the tori {Tk} converge uniformly to the fun-

damental region of T defined by the canonical generators z + 1 and z + w; that is, the

generators converge uniformly to the canonical generators of T as desired. Thus, the

result is shown. 0

We notice that in the construction used to prove Theorem 5.3.1 we had a sequence

of distinct earthquakes on the torus T, each producing T as the image of T under

the earthquake action. This leads immediately to the fact that the earthquakes

transforming one surface into another are not unique in the Euclidean case as they

were in the hyperbolic case, when we allow all of left and right shearing and positive

and negative grafting. The construction used in Theorem 5.3.1 requires both real
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and imaginary parts (shearing and grafting maps) taken from both the positive and

negative reals. In order to translate w to cý (for arbitrary Co) with shearing and grafting

maps, we must have the freedom to move along both axes of translation and in both

directions along each. We are thus led to Conjecture 5.3.1.

Conjecture 5.3.1. Let two arbitrary points, T and T, in the Teichmiiller space

of tori be given. There does not exist, in general, a sequence of measured geodesic

laminations {(Lk, ak) }k=1 of T and earthquake maps {Ek}k 1 on T induced by these

laminations such that Ek(T) -+ T as k -4 oo, where Uk " -+ A C C, for A equal to

any one of

{z E C. Re(z) > 0, Im(z) =0}, (5.3.3)

{z c C: Re(z) 0 0, Im(z) = 0}, (5.3.4)

{z E C: Re(z) =0, Im(z) > 0}, or (5.3.5)

{z c C: Re(z)= 0, Im(z) < 0} (5.3.6)

for every k G N.

This conjecture, together with Theorem 5.3.1 and the failure of uniqueness in the

earthquakes used to transform one torus into another completes our consideration of

Problem 5.3.1.

As an aside, an interesting element of the proof is the constant k0 chosen to satisfy

the inequalities (5.3.1) and (5.3.2). Defined as it is by the relationship between the

real and imaginary parts of w and •, this constant depends upon the Teichmiiller

distance between T and T. That is, k0 provides an easily calculated indication of the

Teichmiiller distance between the two surfaces.

5.4 Discrete Complex Earthquake Maps on Tori

Since Euclidean complex earthquake maps on tori are easily constructible, we do

not have the pressing need for a numerical method to reproduce their actions as in

the case of complex earthquakes on hyperbolic surfaces. In the interest of a complete
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description of earthquakes on compact Riemann surfaces and a complete character-

ization of the action and convergence of discrete earthquakes on those surfaces, we

have Problem 5.4.1.

Problem 5.4.1. Can we approximate the action of complex earthquakes on tori with

discrete conformal maps (circle packing), as we did for earthquakes on hyperbolic

Riemann surfaces in Chapter IV?

An (affirmative) answer to the question thus posed is given in Theorem 5.4.1. This

theorem is an analogue of Theorem 4.5.1, in which we proved the convergence of

discrete earthquakes on hyperbolic surfaces. Note that we construct these discrete

Euclidean earthquakes in exactly the same manner as we constructed discrete earth-

quakes on hyperbolic surfaces.

Theorem 5.4.1. Let T be a compact Euclidean Riemann surface of genus g = 1 (a

torus) with a finite measured geodesic lamination (, a). Let {Pk} be a sequence of

finite bounded degree packings with mesh decreasing to zero corresponding to Riemann

surfaces {Tk} such that Tk -+ T as k --+ o in the Teichmiiller metric. Then the

surfaces Ek(Tk) = Tk induced by the discrete Euclidean earthquake maps Ek converge

to the surface E(T) = T under the Euclidean earthquake map E induced by (, a).

Proof. Let T be a compact Euclidean Riemann surface (a torus), and let (4, a) be

a finite measured geodesic lamination on T. Note that requiring the mesh of the

sequence of bounded degree packings {Pk} to approach zero as k -+ oo is equivalent

to requiring that the radii of the circles in the packings approach zero. Thus, we

are guaranteed the existence of such a sequence by Corollary 3.5.1. Further, the

construction of the surfaces in the proof of Corollary 3.5.1 allows the freedom to

control the degree of vertices adjacent to the geodesics along which we shear and

graft.

The Teichmiiller distance between the packable surfaces Tk and T is going to zero,

so for each k E N there exists a map fk : Tk -+ T that respects the marking on T
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and is 1 + Ek-quasiconformal, where Ek -+ 0 as k -+ oo, (i.e., as k -+ 00, fk -+ f,

where f is conformal). Note that we choose a consistent set of generators (markings)

for each surface, so that the Teichmiiller space is well defined. More precisely, the

map fk consists of a map from the Euclidean plane to itself through a map between

the surfaces and their respective conformal structures. Where no ambiguity arises,

however, we will speak about the map as fk : Tk -+ T.

Let {cj J} 1, be the cylinders grafted into the Riemann surface T by the finite

earthquake E. For each j = 1, 2,... , m, let {Cik}keN be a sequence of surfaces admit-

ting a circle packing of finite uniformly bounded degree so that cjk -+ cj as k -•+ o

in the Teichmfiller metric. Further, require that the mesh of the packing on cj, goes

to zero as k -- oo for each j = 1,2,... ,m. Thus, for each k E N there exists a

map fik "ck -C cj that is 1 + EJk-quasiconformal, where Eik -+ 0 as k --+ o, (i.e., as

k -+ 0o, fjk -+ fj, where fj is conformal).

Let T be the image of T under the action of the earthquake E, and for each k E N

let Tk be the image of Tk under the action of a combinatorial earthquake Ek. We

construct these combinatorial earthquakes by describing laminations on the surfaces

Tk corresponding to the lamination on T. Let k E N. Corresponding to each geodesic

on L' on T, we choose a geodesic Li on Tk in the same homotopy class as L' such

that the Hausdorff distance between L' and fk' (Li) is minimized. For k sufficiently

large, the geodesics {L kInI thus constructed will be pairwise disjoint. Taking the

collection of these geodesics, we have a finite measured geodesic lamination (4k, a)

on Tk. Notice that we have left the weights a unchanged; we simply assign to each

geodesic in 4k the weight on the corresponding geodesic in T. Now, we have finite

measured geodesic laminations on each Tk, k E N, and we may carry out the discrete

shearing and welding operations of combinatorial earthquakes. We also construct a

set of secondary geodesics on Tk describing the second side of cylinders to be removed

by a negative grafting action. On the torus T there is a geodesic LI corresponding to

the end of the cylinder to be removed opposite L'. This is illustrated in Figure 5.11.

By construction, the set of geodesics and secondary geodesics are pairwise disjoint,
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and no geodesic or secondary geodesic is contained in the portion of the torus (to be

removed) between L' and LV. We then construct secondary geodesics L' just as we

constructed the geodesics L'.

Cylinder to be
Removed

Figure 5.11: Secondary Geodesics on T

Let T be the image of T under the action of the earthquake E, and for each k E N

let Tfk be the image of Tk under the action of the combinatorial earthquake Ek.

Around each geodesic L' and each secondary geodesic L', i = 1, 2,..., n, on T we

place a collar, a neighborhood of uniform width, so that no two such neighborhoods

intersect. Call these collars C0 and C'. Since the geodesics in the finite lamination are

disjoint by construction, we know that there exists such a collar about each geodesic.

Similarly, about each geodesic L' and each secondary geodesic L', i = 1, 2,..., n in

the lamination 1 k on Tk there exist collars Ck and Ck such that the collection of these

collars on Tk is pairwise disjoint. We require that the collars Ck and C. on Tk have

width less than 1 the width of the corresponding collars on T. Now, since Tk -+ T2

in the Teichmiiller metric, the maps between Tk and T are going to conformal maps

and the markings on Tk are converging to the markings on T. Thus, for k sufficiently

large, the images of the collars Ck and Ck under the map fk are contained in the

collars Ci and C', respectively, (i.e., fk(Ck) • C' for all k sufficiently large). Further,

since the mesh of the packings on Tk goes to zero, for k sufficiently large, the discrete
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geodesics 4 and 4 corresponding to L' and Lk, i 1, 2,..., n, lie strictly within the

interior of the collars C• and Ck, respectively.

Consider the images of the collars Ck under the action of the discrete earthquake

Ek. If the geodesic Li about which we built the collar Ck has real weight, and

thus induces only a discrete shearing action on the discrete geodesic, then there is no

difficulty in defining what we will call a quasicollar on Tk as the image of Ck under Ek.

The image of the discrete geodesic 4• and the image of the geodesic L' are contained

in this quasicollar. This is shown in Figure 5.12, where the geodesic L' is shown as

a solid gray curve, the discrete geodesic 4 is shown as a solid black, piecewise linear

curve, and the collar Ck is denoted by dashed curves.

(a) Geodesic, Discrete Geodesic, and Collar on Tk (b) Images under a Discrete Shearing Map

Figure 5.12: Geodesics, Discrete Geodesics, and Quasicollars

The case in which the weight on Li has non-zero imaginary part is somewhat

more problematic. The action of the earthquake when the imaginary component is

positive will divide the collar into two disjoint sets. Since the grafting (imaginary)

component of the earthquake involves the insertion of a cylinder, however, we may

extend these disjoint regions into the interior of the cylinder in such a way that we
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create quasicollars about the ends of the inserted cylinder. Since the inserted cylinder

has non-zero height, we may construct these quasicollars so that they are disjoint.

The action of the earthquake when the imaginary component of the weight is negative

removes a portion of the surface, but our construction is such that this removal simply

creates a new quasicollar, and the image of the discrete geodesic 4' and the image

of the geodesic L' are contained in this quasicollar. When the imaginary part of the

weight is negative, the action of the combinatorial earthquake removes the surface

between the discrete geodesics, removing one side of the collar about each geodesic.

The remaining portions of each collar join together along the seam created by joining

the two discrete geodesics, to create a quasicollar.

Define a pullback map Pk : Tk -4 {Tk, Clk, ... , Cmk by letting Pk(f) be the unique

pre-image -r E Tk of the point f E Tk under the combinatorial earthquake Ek. Note

that since the degree of the vertices in the complex on Tk is bounded and since, by

construction, the angles in the packing on Tk are bounded away from zero, the map

Pk is 1 + gk-quasiconformal. Further, at any point isolated from the combinatorial

geodesics, as k -+ oo the number of generations of circles on the packed surfaces

between that point and the combinatorial geodesics goes to infinity; thus, at any such

point, Lemma 3.2.4, the Packing Lemma, guarantees that the dilatation of the maps

Pk goes to 1 as k -+ oo, (i.e., as k -+ oc, on points isolated from the combinatorial

geodesics, Pk -+ P, where P is conformal).

We showed in Theorem 5.2.1 that T is a Riemann surface. Thus, since each of

T, T, Tk, and Tk are Riemann surfaces, they each have a conformal structure; in the

case of Tk and Tk, they inherit their conformal structures from their packings. Let

{I -}vT, {IV•}N, {(PkV}.VT, and {Ik.1}kvENk be the collection of coordinate charts

in the conformal structure on T, T, Tk, and Tk, respectively. Note that the structure

on T will be the structure described in Section 5.2. Now, we consider a collection of

maps fk: Tk -+ T, each defined on open sets in Tk. Let U C Tk.

Case I: Suppose U C Tk is an open set such that U does not intersect the interior of

any quasicollar, and U does not intersect any cylinder inserted by the earthquake Ek.
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Associated with this open set in Tk we have a coordinate chart 4
'k, from the conformal

structure on Tk. Now, the map P` o fk o Pk oo-1 takes an open subset of the plane

C corresponding to the pair (U, Ok.) to an open subset U0, C ft so that U0, E UA, as

described in Section 5.2. Corresponding to U, , we take from the conformal structure

on T described in Section 5.2 a coordinate chart 0,. Thus we have the following:

'0 0 P- 0 o A o Pk o 04- P = 0,o P 0 P-1o0 A o Pko -0,1

(p 0, ofkoPko'Okv..

Since W, and 0b- 1 are conformal (or 1-quasiconformal) and the maps fk and Pk are

(1 + Ek)-quasiconformal and (1 + tk)-quasiconformal, respectively, the map thus de-

scribed is (1±+k)(1±+k)-quasiconformal, by Lemma 2.4.1. Note that Ek and tk are in-

dependent of the set U, since they depend only on the maps fk and Pk, which are glob-

ally (1 + -k)-quasiconformal and (1 + tk)-quasiconformal, respectively. By construc-

tion, U is isolated in &k from the images of the geodesics defining the earthquake Ek,

and Ek, 9k -4 0 as k -+ cc. Thus, as k -+ oc, the map V, o P`lo fk o Pk o :o-1 • lRk -+ ft

approaches a conformal map.

Case II: Suppose U C Tk is an open set such that U does not intersect the interior

of any quasicollar, and U is contained in the interior of some cylinder inserted by the

earthquake Ek. Associated with this open set in Tk we have a coordinate chart 'kv.
Now, the map p-lo f pk a Pok1 takes an open subset of the plane C corresponding to

the pair (U, 4'k,) to an open subset Up C ft so that Up E UB, as described in Section

5.2. Corresponding to Up, we take from the conformal structure on T described in

Section 5.2 a coordinate chart V. Thus we have the following:

P
1 

op fjkOPkO1 g o oPop-
1  

fJk Pk Ok-

= g of 3 o k.Pk 0 Ok

Since g o 0, and 0k-1 are conformal (or 1-quasiconformal) and the maps fik and

Pk are (1 + 'J )-quasiconformal and (1 + gk)-quasiconformal, respectively, the map

thus described is (1 + ek) (1 + Mk)-quasiconformal. Again, we note that the constants
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describing the deviation from conformality, -j, and ek,are independent of the choice

of U. By construction, U is isolated in Tk from the images of the geodesics defining

the earthquake Ek, and Ej•,?k -+ 0 as k --+ cc. Thus, as k -+ oo, the map 00 o P-1 o

fak 0 A 0 (k-1 : Tk -4 T approaches a conformal map.

Case III: Suppose that U is a small open subset of Tk such that U intersects

Ek(4) for some i = 1, 2, ... , n, and U intersects the boundary of the quasicollar Ck

associated with Li. Corresponding to U we have a coordinate chart ?/k,. Now, we

have three cases to consider depending on the imaginary part of the weight on the

geodesic Li.

Case MIIa: Suppose Im(u(L')) = 0; that is, the earthquake action on the geodesic

Li involves only a shearing action. This gives that the map Pk takes U to a subset of

Tk such that Pk(U) C= C and Pk(U) nfi o 0, as shown in Figure 5.13.

(a) An Open Set U CiTk (b) Image of U Under Pk

Figure 5.13: Pullback of Geodesics, Discrete Geodesics, and Quasicollars

Note that in Figure 5.13b we have included the refining edges associated with the

shearing so that there is a bijection between individual triangles in Figure 5.13a and

Figure 5.13b.

Now, we wish to send this set Pk(U) to a subset of T, but there is a geometric

difficulty to be resolved. The "halves" of Pk (U) have as one portion of their boundaries

a segment of the discrete geodesic f. We need these segments of their boundaries to

lie on the actual geodesic L' in Tk. The problem is easily resolved, at the expense of
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admitting some quasiconformality in our eventual transformation, by the application

of a Euclidean projection p., as illustrated in Figure 5.14.

(a) The Pullback of U, Pk(U) (b) The Projection of Pk(U), PA(Pk(U))

Figure 5.14: Projection of Geodesics, Discrete Geodesics, and Quasicollars

This pk map on the set Pk(U) is 1 + Ek-quasiconformal, but Proposition 4.2.1 guar-

antees that pA converges uniformly to the identity; so Ek -+ 0 as k --+ cc. Further,

the constant Ek is independent of the choice of U. This independence is a result of

two facts. First, the projection associated with any given geodesic V and the ac-

companying discrete geodesic fl has a quasiconformality constant uniform across the

entire geodesic. Second, there are only finitely many geodesics for which we must use

these projections. Taking the maximum such quasiconformal constant as Ek, we have

independence of the choice for U.

Corresponding to the set P'(Pk (U)) C Tk, or more precisely to some open subset of
Tk containing p (Pk(U)) C Tk, we have a coordinate chart 0 k, which takes p•(Pk(U))

to a subset of a fundamental region for Tk in the plane C. The image of p(Pk(U)) n Li

under this map is thus an arc of a Euclidean geodesic (a line) in C. There exists a

conformal map (comprising translation,rotation, and scaling) Mkv : C --+ C such

that Mf(•pk, (Pk(Pk(U)))) mm L) is a small arc of a Euclidean geodesic in C that is

the projection of the geodesic Li in T. We may choose this arc of the projection

of L' sufficiently small that the set MkV(•k(P~kP(Pk(U)))) is contained in a single
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fundamental region for T.

A second difficulty arising from the projection operation must be addressed. If

we were to apply a shearing map on the lift of the geodesic Li which separates the

"halves" of Mv(vk, (pi(Pk(U)))) using the weight associated with L', the sides will

not necessarily match along the geodesic, as illustrated in Figure 5.15.

(a) Before Shearing (b) After Shearing

Figure 5.15: Misalignment under Pullback, Projection, and Shearing

The difference along the geodesic is a quasisymmetry on one half of the intersection

with L', however, and extends to a 1 + k-quasiconformal map, QU, in the correspond-

ing half of MV(Pk.(p'(Pk(U)))) [24, 33]. Recall, however, that the quasisymmetry

and associated quasiconformal map arise as a result of the need for a Euclidean pro-

jection pl to correct the difference between the geodesic L' and the discrete geodesic

f4. Lemma 4.1.1 guarantees that il -+ Ll uniformly as k -+ cc. Thus, •, -+ 0 as

k -+ oc. Further, since the quasiconformality of MvU depends only on the quasisym-

metry associated with the projection pk, Ek is independent of the choice of U.
Corresponding to the set Qk (M, ('k (pk(Pk(U))))) C C, we have a map from the

conformal structure on T, VV, taking this set to an open set on T intersecting the

geodesic L'. (Again, the coordinate chart really comes from an open set containing

the set of interest.) Notice that as a result of applying the correction Qu, the two

halves of this image (on either side of the lift to C of the geodesic L') now match
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the action of the shearing caused by P- 1 . We now apply P-', to obtain a set V C

T. Corresponding to this open set we have a coordinate chart from the conformal

structure on T defined in Section 5.2. Since V G Ur, as described in Section 5.2, we

have a coordinate chart Oy corresponding to V. This gives the following:

¢• o f-1 o tp•10 QU 0 MkU 0 (Pk,, oA 0• Pko k-

= S'0opýyPo0P-locpQ oQ0MMo o Pk 0 V-1-
= /,7oP o~§ oQo f ,o P

This map is (1 + k) (1 + k) (1 + 4k)-quasiconformal, where this quasiconformality is

independent of the choice for U. Now, consider the dilatation at a point u E U. If u

is not contained in the set Ek(fi), then Lemma 3.2.4, the packing Lemma, guarantees

that the dilatation at u goes to 1 since each of 4, 9k, ek -- 0 as k -+ 0o. Thus, this

map from Tk to T converges to a conformal map, except perhaps on the image of the

discrete geodesic f4 under the earthquake Ek. But this set has measure zero, and the

map is continuous. Thus, the limit map is conformal on all of U [33].

Case IIIb: Suppose Im(a(L')) > 0; that is, the earthquake action on the geodesic

L' is a positive grafting action (and potentially a shearing action as well). The

situation here is somewhat more complicated than the previous case since the map

Pk takes the portion of U on the inserted cylinder to a cylinder c3 , and the remaining

points of U to a subset of Tk. We will deal with the maps on these two subsets of U

separately.

First, consider that subset of U which is taken to Tk. Call this subset U1. Pk(U1 ) •

Ck and Pk(Ul) i fl4 0. Now, we wish to send this set Pk(Ul) to a subset of T, but

there is a geometric difficulty to be resolved. Pk(Ul) has as one portion of its boundary

a segment of the discrete geodesic 4'; we need this segment of the boundary to lie

on the actual geodesic Li in Tk. As before, this problem is easily addressed, at the

expense of admitting some quasiconformality into our eventual transformation, by

the application of a Euclidean projection pk. This map on the set Pk(Ul) is 1 + Ek-

quasiconformal, but Proposition 4.2.1 guarantees that p• converges uniformly to the
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identity; so jk -+ 0 as k -h 0o. As in Case MIIa, jk is independent of the choice of U.

Corresponding to the set pk(Pk(U1)) C Tk, or more precisely to some open sub-

set of Tk containing p•(Pk(Ul)) C Tk, we have a coordinate chart POk. which takes

Pk(Pk(Ul)) to a subset of a fundamental region for Tk in the plane C. The image of

p(Pk( (U1)) fl L under this map is thus an arc of a Euclidean geodesic in C. There

exists a conformal map (comprising a translation, rotation, and scaling) MU1 : C -+ C

such that MV1((Pk,, (i4(Pk(Ul)))) L fi ) is an arc of the Euclidean geodesic in C that

is the lift of the geodesic L' in T. We may choose this arc small enough that the set

M(kU,(pVk,(J(Pk(U1)))) is contained in a single fundamental region for T.

Again, we will require a correction to compensate for the effect of the Euclidean

projection pk. Call this correction Qu, and note that this map is a quasisymmetry

on the intersection with the lift of the geodesic L' and is (1 + Ek)-quasiconformal, as

in Case Illa. This quasiconformality constant •k is independent of the choice for U.

Corresponding to the set QVU(MU(Jk(P'k.((Pk(UL))))) C C, we have a map from the

conformal structure on T, V9j-I, taking this set to an open set on T intersecting the

geodesic L'. (Again, the coordinate chart really comes from an open set containing

the set of interest.) We now apply P-1, to obtain a set VI C T adjoining the edge of

an inserted cylinder cj.

Now, consider that subset of U which is taken into cjk. Call this subset U2.

Pk (U2) C Cjk and Pk (U2) intersects the boundary of the cylinder cj,. We take this set

into the cylinder cj via the 1 + Ek-quasiconformal map fik, where Fk is independent of

the choice of U, since we may choose ýk as the maximum of the constants associated

with the finitely many cylinders {cj}. We then apply the map P- 1 to obtain a set

V2 C T.

The way we have constructed these maps, in particular the application of the

map Qu, ensures that the set V = V1 U V2 C T is an element of the collection UA

as described in Section 5.2. Corresponding to this set V we have a coordinate chart

ýk6 from the conformal structure on T given in Section 5.2. This gives the following
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piecewise map Ilk : Tk -+ T:

11k(u) = { W-P-l° 0QUv°Mul ck °p-'Pk -(u) ifuEU1 cTk

Ilko(U) =o/' 0 of O 1k(U) if UE U2 CTk.

The first of these maps, for u E U1, is (1 + Wk)(1 + Ek)(1 + ek)-quasiconformal. The

second map, for u E U2, is (1 + ijk)(1 + ek)-quasiconformal. As we have shown, these

constants are independent of the choice of U. Now, consider the dilatation at a point

u e U. If u is not contained in the set Ek(f'), then Lemma 3.2.4, the packing Lemma,

guarantees that the dilatation at u goes to 1 since each of ýk, Ek, tk, ejk -+ 0 as k -- cc.

Thus, this piecewise map Ilk from T, to T converges to a conformal map II, except

perhaps on the image of the discrete geodesic 4'k under the earthquake Ek. But this

set has measure zero, and the map is continuous. Thus, the map H is conformal on

all of U [33].

Case IIc: Suppose Im(u(Li)) < 0; that is, the earthquake action on the geodesic

V is a negative grafting action (and potentially a shearing action as well). Here, the

map Pk divides the set U into two disjoint sets, separated by an inserted cylinder;

essentially, the first step in this action is the inverse of the action described in Case

111b. As in Case IlIb, we will consider these sets separately.

Consider the subset of U whose image borders the discrete geodesic f; call this

subset U1. Pk (U1) C Ck and Pk,(U 1) fo n 0. Now, we wish to send this set Pk (U1 )

to a subset of T, but there is a geometric difficulty to be resolved. Pk(Ul) has as one

portion of its boundary a segment of the discrete geodesic 4'; we need this segment

of the boundary to lie on the actual geodesic L' in Tk. As before, this problem is

easily addressed, at the expense of admitting some quasiconformality into our eventual

transformation, by the application of a Euclidean projection pj. This map on the set

Pk(Ul) is 1 + Ek-quasiconformal, but Proposition 4.2.1 guarantees that p' converges

uniformly to the identity; so 5, -- 0 as k -+ cc. As in Case Ila, 4k is independent of

the choice of U.

Corresponding to the set pk(Pk(U1)) C Tk, or more precisely to some open sub-
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set of Tk containing pk(Pk(U1)) C Tk, we have a coordinate chart which takes

p'k(Pk(Ul)) to a subset of a fundamental region for Tk in the plane C. The image of

p•(Pk(U1)) f nLk under this map is thus an arc of a Euclidean geodesic in C. There

exists a conformal map (comprising a translation, rotation, and scaling) MkUI : C -+ C

such that Mvx(, (Pk (pi(Pk(Ul)))) fL) is an arc of the Euclidean geodesic in C that

is the lift of the geodesic L' in T. We may choose this arc small enough that the set

Mt" (ýPk,1 (Pk(Pk(U1)))) is contained in a single fundamental region for T.

Again, we will require a correction to compensate for the effect of the Euclidean

projection p'. Call this correction Qkv, and note that this map is a quasisymmetry

on the intersection with the lift of the geodesic Li and is (1 + i'k)-quasiconformal, as

in Case I11a. Again, the quasiconformality constant •k is independent of the choice

for U.

Corresponding to the set Qk f(M k (Vkv1 (pj(Pk(U1))))) C C, we have a map from

the conformal structure on T, •oj•I, taking this set to an open set on T intersecting the

geodesic Li. (Again, the coordinate chart really comes from an open set containing

the set of interest.) We now apply P-', to obtain a set V1 C T.

Now, consider the subset of U whose image borders the discrete (secondary)

geodesic il; call this subset U2 . We map this- set to T in essentially the same manner

as we mapped U1 to T. The differences lie in distinct choices from the conformal

structures on Tk and T, a different choice for the conformal map M, and in not ap-

plying a correction map Q (since we need only correct on one side of the geodesic).

Thus we will have a map

p-l o ' oMk2 0 Vk,2 Op Pk OCk-

which takes U2 to a set V2 C T

The way we have constructed these maps, in particular the application of the

map QU, ensures that the set V = V1 U V2 C T is an element of the collection U--

as described in Section 5.2. Corresponding to this set V we have a coordinate chart

V$' from the conformal structure on T given in Section 5.2. This gives the following
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piecewise map Ilk Tk --+ T:

r() 0Pog-lo)(VIok ok 0 Pikog0ok-'(U) ifUCU1CTk

rlk(U) ==

I o o fp-1 0 fjk o Pk o'Ik-,(U) if U C U2 C Tk.

The first of these maps, for u E U1, is (1 + Ek)(1 + jk)(1 + 9k)-quasiconformal. The

second map, for u E U2, is 1 + k) (1 + ek)-quasiconformal. As we have shown, each of

these constants is independent of the choice of U. Now, consider the dilatation at a

point u E U. If u is not contained in the set Ek(fi), then Lemma 3.2.4, the packing

Lemma, guarantees that the dilatation at u goes to 1 since each of Ek, Ek, Ek, ijk -40

as k -- cx. Thus, this piecewise map '
1 k from Tk to T converges to a conformal

map H, except perhaps on the image of the discrete geodesic i under the earthquake

Ek. But this set has measure zero, and the map is continuous. Thus, the map II is

conformal on all of U [33].

Thus, as k -+ oo the maps from Tk to T are becoming conformal, and, by con-

struction, the markings on surfaces T and Tk are consistent. Therefore, the surfaces

Tk converge to a surface con rrnally equivalent to T with equivalent markings; but

this is equivalent to saying 7:k -4 T (in the Teichmiiller metric) as k --+ o, and the

result is shown.

We now give several examples of finite earthquakes, both shearing and grafting,

on a compact torus T, and we approximate these earthquakes using the circle packing

techniques given.

Example 5.4.1. Let T be the point in the normalized Teichmiiller space of tori

defined by the generators z + 1 and z + w, where w = + ÷ iL•-E H. We place a

geodesic L on this surface such that the segment between L1 +i 13V0 and L3 80 13v3 is an

arc of the lift of that geodesic through the canonical fundamental region for T. This

fundamental region for T and the geodesic arc described are shown in Figure 5.16a.

Place a weight of o (L) = -§ on the geodesic. The action of the (right) earthquake
10

induced by this finite geodesic lamination on T is shown in Figure 5.16b. Note
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that though the generators of the image surface T are not the canonical generators

associated with the image point in the Teichmiiller space of tori, the position in

Teichmiiller space is determined by the point LZ' 1 + i 11- 1 H [29, 30].
5

Ii`(z)

1In2)

(a) The Torus T and a Geodesic (b) E (T) =f

Figure 5.16: Explicit Shearing Action on a Torus

in(z)

: . . .. .,CO

.Re(z)

(a) Packing and Discrete Lamination on T1 (b) E1 (T1 ) T1

Figure 5.17: Packing, Discrete Lamination, and Earthquake on a Torus

The torus T shown in Figure 5.16a is itself a packable surface, so we may place

a packing on the surface as shown in Figure 5.17a. To remain consistent with the

notation of Theorem 5.4.1, we will call this packed surface T, though there is no

difference between T, and T itself. Also in Figure 5.17a we show the geodesic L (as

a dashed segment) and the discrete geodesic approximating L (as a solid segment).

Now, we execute the discrete (combinatorial) earthquake E1 determined by the dis-
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crete geodesic and the weight on L to obtain the surface T1 shown in Figure 5.17b.

Note that the discrete earthquake, in this case a right shearing action, respects the

combinatorics of the packing on T1 , as described in Figure 3.12. The discrete earth-

quake results in a normalized point in the Teichmiiller space of tori determined by

the point 1 + 2-Ai E H. Thus, the discrete approximation exactly mimics the action

of the true earthquake. This will always occur when the packing on our surface is as

regular as the packing shown (a regular hex packing) and the shearing respects the

combinatorics of the triangulation.

Example 5.4.2. In this example, we repeat the process given in Example 5.4.1,

changing only the weight; here we use a (L) = ý. All other parameters for the

surface and (right) earthquake described in Example 5.4.1 are unchanged. When we

execute the earthquake E induced by these parameters, we obtain the surface T in

the normalized Teichmiiller space of tori determined by the point w 1 + ± E H.

Iln~z)rz)Ira(z)

"•Re(z) Re(z)
2

(a) Packing and Discrete Lamination on T1  (b) E1 (T1 ) --T

Figure 5.18: Discrete Shearing Map on a "Coarsely" Packed Torus

Again, the surface T is itself packable, and we place a packing on the surface as

shown in Figure 5.18a to obtain the surface T1 , identical to T. Now, the seemingly

minor change in the weight on L results in a combinatorial earthquake which does

not respect the combinatorics of the triangulation on T1. Thus, we must refine the

packing, as shown in Figure 4.3. This results in new circles added to the packing

when we execute the combinatorial earthquake El, which should alter the result
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obtained in Example 5.4.1. In Figure 5.18b we see that, after normalization, the

action of the E1 on the packable torus T1 results in a torus determined by the point

c~j = 1.1 + 0.615973i E H.

Since the combinatorial earthquake E1 did not result in the desired image T,

we refine the packing to obtain a new packable surface T2. While we continue with

notation consistent with Theorem 5.4.1, T2 is again identical to T. The refinement we

use is the hex refinement described in Section 3.3. This new packing, the geodesic,

and discrete geodesic are shown in Figure 5.19a. Note that the refinement results

in the selection of a new edge path for the discrete geodesic which is closer to true

geodesic. Now, we execute the combinatorial earthquake E 2 on T2 to obtain a new

torus determined, by the point C2 = 1.05 + 0.654396i E H, as shown in Figure 5.19b.

Ina~z)
1him(z)

1

i Z)

,•Re(z) - f "f f Re~z)

(a) Packing and Discrete Lamination on T2 (b) E 2 (T 2 ) = t2

Figure 5.19: Discrete Shearing Map on a "Finely" Packed Torus

Note that we are now "closer" to the desired destination surface T. That is, if

we denote the Teichmiiller distance between two points S and S in the normalized

Teichmiiller space of tori by dT (S, S), and we recall that this distance corresponds

to the hyperbolic distance between the points Ws, w§ E H [29], we have the following:

dT T, T1 =dH(w, Col)=dn 41-+----, 1.1+0.615973i =0.1641895

( 40 10±500607
dT T, T2) (w 2) = 41 + 2, 1.05+0.654396i ) .06806798.

40 5
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Thus, one iteration of hex refinement improves our approximation by a factor of

approximately 2.41214. In these computations, we use the formula

dH (z, w) =cosh-l 1 + ( I _ W12m-) ) (5.4.1)

giving the hyperbolic distance in the half-plane model between points z, w E H [2].

Example 5.4.3. As in Example 5.4.1 and Example 5.4.2, we let T be the point in

the normalized Teichmiiller space of tori defined by the generators z + 1 and z + w,

where w = + E H. We place a geodesic L on this surface such that the segment

between '3 + i"-- and 2 + 0 is an arc of the lift of that geodesic through the

canonical fundamental region for T. This fundamental region for T and the geodesic

arc described are shown in Figure 5.20a. Place a weight of a (L) = 1 on the geodesic.

The action of the (grafting) earthquake induced by this finite geodesic lamination on T

is shown in Figure 5.20b. Note that though the generators of the image surface T are

not the canonical generators associated with the image point in the Teichmiiller space

of tori, the position in Teichmiiller space is determined by the point c? = + 5+8-3i
5 20

[29, 30].

In(z) Wz)

Re1 Re(z)

(a) The Torus T and a Geodesic (b) E (T) =

Figure 5.20: Explicit Grafting Action on a Torus

The surface T is itself packable, and we place a packing on the surface as shown

in Figure 5.21a to obtain the surface T1 , identical to T.
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Inez)

- R__Re(z)

(a) Packing and Discrete Lamination on T, (b) Packing on Inserted Cylinder

Figure 5.21: Packing and Discrete Lamination on a Torus and a Packed Cylinder

Now, using the technique shown in Figure 4.4, we graft together the combinatorics

in the packings in Figure 5.20a and Figure 5.20b. That is, we execute the discrete

earthquake E1 to obtain the packed torus T1 shown in Figure 5.22a. The torus T1

is normalized so it is uniquely described by the point Col = .499124 + 1.00916i E H.

Thus we may calculate the distance in the Teichmiiller metric between T and T1,

dT (T, T) = 0.122204.

IrA(z) AAa(z)

(a) El (TI) T, (b) E2 (T2) T2

Figure 5.22: Discrete Grafting Maps on a Torus T

As in Example 5.4.2, we may improve our approximation of T through a refinement

of the original surfaces. We hex refine the circle packing on T to obtain a new

surface T2; as before, T2 is identical to the original torus T, but we wish to remain
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consistent with the notation of Theorem 5.4.1. Note that we have only refined the

packing on the torus; the packing on the cylinder remains unchanged in the grafting

earthquake E 2 on T2. The image, E 2 (T2) = T2 , of the earthquake E 2 is shown in

Figure 5.22b. The torus T2 is normalized so that it is uniquely described by the

point C2 = 0.404856 + 0.899675i 1 H. The Teichmiiller distance between T and T2

is given by dT (T, T2) = 0.0471377. Thus, one iteration of hex refinement improved

our approximation of T by a factor of 2.5925.

5.5 Earthquakes on Other Surfaces

We are now in a position to give a complete characterization of earthquakes on

compact Riemann surfaces. We recall that, as a consequence of the Uniformization

Theorem [15], compact Riemann surfaces fall into a finite number of categories. We

have described the action of earthquakes on the Teichmiiller spaces of compact tori

and compact hyperbolic Riemann surfaces (n-holed tori with n > 2). Among the

remaining surfaces, only the sphere is compact. The Teichmiiller space of the sphere

is the trivial (one-point) space. We may thus easily define an earthquake on the

Riemann sphere and obtain trivial transformations in the Teichmiiller space of the

sphere.
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APPENDIX

APPENDIX A: DRAWING THE LAMINATION ON D

A well known property of cross-ratios found in most complex analysis textbooks (see,
for example, [13]) states that the relation

(w - w 1)(w 2 - w 3 ) (z - z1 ) (z 2 - Z3 )
(w - w3)(w 2 - W1) (z - Z -z)(2 - z()

implicitly defines the unique M6bius transformation (or fractional linear transfor-
mation) which maps distinct points z1 , z2 , and z3 in the finite complex plane onto
distinct points w1, w2 , and w3 in the finite complex plane. Solving this relation for w,
we obtain an explicit expression for this unique M~bius transformation. This action
is realized in the Mathematica code below. In the notation of the code given, the map
obtained has the property that a = z1 , b = z2, c = z3 , d = wl, e = w2 , andf = w3 .

Mobius [{a_ ,b_,c_,cjd_,{e_,ef_}]:f =
Chop [N [

((ade-dbe-adf+bef+dcf-ecf) z+ (-adec+dbec+adbf-abef-dbcf+aecf)) /
((-db+ae+dc-ec-af+bf) z+ (adb-abe-adc+bec+acf-bcf))]]

The Mathematica code below takes two points m and n on the unit circle and
computes a parametric description for the unique hyperbolic geodesic between the
two points. We do this by composing a parametrization of the diameter between
z = -1 and z = 1, -y(t) = -1 + 2t, 0 < t < 1, and the appropriate M6bius transfor-
mation sending this diameter to the desired hyperbolic geodesic, computed using the
command Mobius[] from above.

Eqn[m_,n_]:=
Block[{p,q,r},
p=Exp[I(Min[Arg[m],Arg[n]])];
q=Exp[I(Min[Arg[m],Arg[n]])];
r=Exp [I (Arg [m] +Arg [n] )/2];
FullSimplify[{Re[Mobius[{1,I,-1},{p,r,q}]/.z->(-1+2t)],

Im[Mobius[{1,I,-1},{p,Exp[Ir],q}]/.z->(-1+2t)]}]]

The following Mathematica function takes a list of n > 1 pairs of distinct points
on the unit circle, {{z 1,1, z1,2} , {z2,1, z2,21 , •. , {zn,1, Zn,2}}, and draws the lamination
consisting of the geodesics connecting zi,1 and zi,2 , 1 < i < n.

Lamination [pts_] : =
ParametricPlot [Evaluate [

Union[{{Cos[2 Pi t], Sin[2 Pi t]}},
Table[Eqn[pts[[i]]],{i,1,Length[pts]}]]],{t, 0, 1},

AspectRatio->Automatic, Axes->None,PlotRange->All]
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APPENDIX B: ACTION OF A FINITE LEFT EARTHQUAKE

The following Mathematica code explicitly defines, as a function of z, the compar-
ison map associated with the ith geodesic having left and right endpoints x and y,
respectively, and weight u.

ComparisonMap[i_,{{_x ,y_ ,u_,z_]:=
Simplify [( (yExp [ul -x) z+yx (l-Exp [u] )) / ( (Exp [u] -1) z+ (y-xExp [u]))]

The following code defines a piecewise function for the application of the shearing
map for a left earthquake. Note that this map is the comparison map, above, on one
domain and the identity map elsewhere.

M~i_,z_] :: Which[

Arg[Q[[i,1,2]]]<Arg[Q[[i,1,1]]],
Which[

Or[Arg[z]<Arg[Q[[i,1,2]] ],Arg[z]>Arg[Q[[i,1,1]]]],
ComparisoniMap [i,{{Q [ [i, I,l]], Q[ [i, i, 2]] , Q[[i, 2]] , z],

True,z],
Arg[Q[[i,1,2]]]>Arg[Q[[i,1,1]]],

Which[
And[Arg[z]<Arg[Q[[i,1,2]] ],Arg[z]>Arg[Q[[i,1,1]]]],

ComparisonlMap[i,{{fQ[[i,l,l]],Q[[i,1,2]]},Q[[i,2]]},z],
True,z]]

The Mathematica function below takes as its input a list of points S C 1IDl and
a description, L, of the finite measured geodesic lamination associated with S. S -

{sI, s2 ,... , s,} is a list of complex numbers and may be expressed in either polar or
rectangular form. L is a list of the form

L = {{{P1,1,P1,2}, Ik}, {{P2,1,P2,2},2, ... , {{Pn-3,1,Pn-3,2},Jtn-31},

where {PJi,, Pi,2} describes the ith geodesic in the tree of triangles, and Ai is the weight
associated with the ith geodesic. (Recall that a finite lamination on n vertices is com-
prised of n - 3 disjoint, hyperbolic geodesics.) In this notation, pi,i and Pi,2, 1 < i <
n - 3, are the left and right endpoints of the ith geodesic, respectively. Note that this
code calls the function M0, above, which then calls the function ComparisonMap[.

Earthquake [S_,L_] : =
Block [{P=S,Q=L},
Do[

Do[P[[kl]]=M[j,P[[k]],{k,1,Length[P]]n;
Do[Q[[k,1,1]]=M[j,Q[[k,1,1]]],{k,l,Length[Q]}];

{j, 1, Length [Q] }];
{P,Q}]
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APPENDIX C: COMPUTING A MEASURED GEODESIC LAMINATION

The Complement[] command in Mathematica delivers the complement of one
set relative to another. The result returned by the function is sorted in canonical
order. The following function returns the list x \ y without altering the original order
of elements in x. [55]

UnsortedComplement [xList, yList] : =
Replace[x,Dispatch[(#:->Sequence [] )&/@Union[y] ],1]

The following Mathematica function is a cross-ratio given in [24] linked to the
amount points of S are moved to the left by a finite left earthquake. This command
is used in computing the lamination and associated measure.

cr[a_,b_,c_,d_.]:=((d - c)(b - a))/((c - b)(a - d))

Now, given a set of points S = {s1 , S2,... sn} and their images h(S) the algorithm
below generates the unique finite lamination C and a non-negative measure a associ-
ated with S such that, up to post-composition by a Mdbius transformation h is the
restriction to S of the finite left earthquake h,. This inductive algorithm is suggested
as an exercise in [24] and examined in more detail in [23].

FindLam[pre_,post_ : =
Block[{StartPts,ImagePts,T,a,b,c,al,bl,cl,L,A,q,test,i,j,k,s,K,TTemp},

StartPts=pre; ImagePts=post ;L={};
While [Length [StartPts] >=4,
K=Table [

{Mod[i,Length[StartPts]]+1,
Mod [i+1,Length [StartPts]] +1,
Mod[i+2,Length[StartPts]]+}, {i,O,Length[StartPts]-1}];

T=Table [
{{StartPts[[K[k,]]]] ],StartPts[[K[[k,2]]]],
StartPts[[K[[k,3]]]]},
{ImagePts[[K[k,l] ]] ,ImagePts[[K[[k,2]]]],
ImagePts [[K[[k,3]]]]}},{k, 1,Length[K]}];

dist=
Table [Table [

Log[
Chop [N [

cr[T[[i,2,1]] ,T[[i,2,2]] ,T[[i,2,3]],
UnsortedComplement [ImagePts,T[[i,2]]] [[j]]] /

cr[T[[i,l,1l]],T[[i,l,2]] ,T[[i,1,3]],

UnsortedComplement [StartPts,T[[i,1]]] [[j]]]]]],
{j,i,Length[StartPts]-3}] ,{i,1,Length[T]}];
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q=Infinity;test=Table [True, i,l, Length [diet [[]]]}

DoI[WhichI[
And[Table[dietI[ ,i]]>=0,i,{I,Length[dist[[j]]]}]===test,

Min [dist [ [j] ] <q],
q=-Min [diet [ j ] ]; ], {j,1, Length [dist] }];

AppendTo [L, {{TE[[Posit ion [diet, q] [ I, i]], , 3] ,

T[[Positionf[dist,q] [[1,1]] ],i,1 I },q];

ImagePts=Drop [ImagePts,
{Position[StartPts,

T[[Position[dist,q] [[1]] [[1]] ,1,21]] U[1,1]1}1;

StartPts=Drop [StartPts,
{Positionh[StartPts,T[[Position [dist, q] [U1] [Ell] ,1,2]]] U1i,11]11;

];L3
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APPENDIX D: COMPUTING THE PACKING LABEL

One of the fundamental results in the theory and practice of circle packing is that
given any assignment of positive numbers to the boundary vertices of a triangulation
K, there exists an essentially unique locally univalent circle packing for K) whose
boundary circles have these numbers as their radii [42]. This essentially unique circle
packing is determined by the so-called packing label, a list of the vertices in the
triangulation KI and an associated radius for each. The first difficulty in programming
a circle packing algorithm is the calculation of these radii.

The following Mathematica function is an implementation of the law of cosines
giving the angle determined by two legs of a triangle created by connecting the centers
of three mutually tangent circles. The values x,y,and z represent the radii of the three
circles. The angle calculated is the angle at the center of the circle with radius x.

T[x_,y_,z_] :=N[ArcCos[((x+y)+(x+z)-(y+z))/(2(x+y) (x+z))]]

The Mathematica function below takes a description of the complex KC and a
list of boundary vertices along with an assigned radius for each boundary vertex,
and it returns the essentially unique Euclidean packing label associated with those
inputs. The algorithm which this function implements was suggested by the meta-
code described in Practicum I of [44].

PackingLabel[K_,B_]:= Block[{e,n,m,R,A,o,G,c,t},
e=.00001;
n=Length [K];
m=Length [B] ;
R=Table[1.,{i, 1, n}];
Do[R[[B[[i,1]]]]SB[[i,2]] ,{i,l,m}];
A=Complement[Table[i,{i,1l,n}],Table[B[[i,]] ],{i,l,m}]];
o=n-m;
G=Table[2*Pi,{i, 1,o}];
Do[G[[i]]=

T[R[[K[[A[[i]] .1]]]] ,R[ [Last [K[[A [[i] ],2]]]]],

R[[First [K[[A [[i] ] ,2]]]]]]+
Sum[T[R[[K[[A[[i]] ,1]]]] ,R[[K[[A[[i]] ,2,j]]]]

R[[K[[A[[i]] ,2,j+1]]]]],
{1,Length[K[[A[[i]] ,2]Y -I}],

{i,1,o}] ;

c=2;
t=Max[Table[Abs[2*Pi-G[[i]]] ,{i,1,o}]];
While[t>e,

Do[If [G[[i]]<2*Pi,R[[A[[i]]]]=R[[A[[i]]]]-l/c,
R[ [A [[i]] ] ]=R[ [A[ [i] ]] ]+I/c],

{i, 1,o]1;
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Do[If [R[[A[[i]]]]<O,R[[A[[i]]]]=N[11(2c)]] ,{i,l,o}]
C=C+1;
Do[GE[U]]=

T[R[[K[[A[[i]],]]]] ,1ER[Last [K[[A[[i]] ,2]]]]],
R[[First[K[[A[[i]] ,2]]]]]]+

Sum[T[R[[K[[A[[i]] ,1]]]] ,R[[K[[A[[i]] ,2,jil],
RE[K[[A[[i]] ,2,j+1]]]]],

{j,1,Length[K[[A[[i] ],2]]]-1}],
{i, 1,o];
t=Max[Table[Abs[2*Pi-G[[i]] ],{i,,o}]]];];

RI

The key to this algorithm is the adjustment of the radii at each step. In the
implementation shown, we add and subtract terms in a harmonic series as appropriate
to correct the angle sum; a correction step is included to prevent negative radii.
This method, chosen for simplicity, is quite slow. There are, however, many other
algorithms for the computation of packing labels [17, 37, 44].

Figure D.I: A Triangulation K;

In Figure D.1, we see a triangulation K• with 20 vertices. If we give each of the
boundary vertices a positive radius, in order to achieve a locally univalent packing
we need to compute the remaining radii. We assign each boundary vertex a radius of
1, and we use the algorithm described to generate a complete list of the radii in the
packing, given in the second column of Table D.1. As stated above, the algorithm
is very slow; 448397 iterations were required to achieve results to within 10-s. If we
assign different radii to the boundary vertices, we obtain a different set of values for
the radii of the interior vertices. That is, the packing label is, as we have already
stated, unique. For example, if we assign a radius of 1 to the vertices 1,11,13, and
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20 and a radius of 5 to the vertices 2,4,7,10,12,14,17, and 19 we obtain the packing
2

label given in the third column of Table D.1.

Table D.A: Computed Packing Labels for K
Vertex Computed Radius for B1  Computed Radius for B2

1 1 1
2 1 1

2
3 0.663959 0.377904
4 1 22

5 0.767825 0.394196
6 0.502727 0.253292
7 1 22

8 0.409361 0.205468
9 0.493900 0.247294
10 1 1

2
11 1 1
12 1 1

2
13 1 1
14 1 22

15 0.461162 0.231158
16 0.645202 0.324809
17 1 2

2

18 0.154701 0.093836
19 1 22

20 1 1

As we have already stated, there are other algorithms by which we may calcu-
late the packing label. While the algorithm given above is certainly convergent, its
convergence rate is extremely slow. The Mathematica command PackingLabel2fl,
given below, takes as its input the same arguments as the PackingLabelo, but the
convergence is significantly faster. The radii computed above (requiring 448397 passes
through the algorithm coded in PackingLabel[]) are recalculated using the algorithm
coded in PackingLabel2a, requiring only 96 passes through the modified algorithm.
In this new algorithm, rather than changing the radius associated with every interior
vertex on each pass through the algorithm, here we make only one change with every
pass through the algorithm. Also, rather than changing the radii by an amount
determined by a convergent alternating series, at each step we solve the equation

n

2-r = ZOi(r), (D.1)
i=~1

where r is the radius of the circle at the center of a flower and Oi (r) is the central
angle of a triangle created by joining the legs of three adjacent circles in the circle
packing. This is illustrated in Figure D.2.
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Figure D.2: Angle Sums

PackingLabel2[K_,B_]:= Block[{e,n,m,R,AsoGlc~tid~r~i~j ,a},

e=.O0001; n=Length[K]; m=Length[B];

R=Table[1.,{i, 1, n}1;

Do[R[[B[[i,1]]]h=B[[i,2]] ,{i,l,m}ZI;

A=Complement[Table[i,{i,1,n}] ,Table[B[[i,] ] ,{i,1,m}]];

o=n-m;
G=Table[2*Pi,{i,1,o}]; Do[G[[i]]=

T[R[[K[[A[[i]] ,I]]] ,R[[Last [K[[A[[i]] ,2]]]]],

R[[First[K[[A[[i]] ,2]]]]]]+

Sum [TT[R[[K[[A[[i]] ,1]]]] ,R[[K[[A[[i]] ,2,j]]]],

R[[K[[A[[i]] ,2,j+l ]]]]],
{i,Length [K[[A[[i]] ,2]]I-1I}],

{i,I, o}1 ;

t=Max [Table [Abs [2*Pi-G[[ill] ,{i,l,o}]];

While [t>e,
d=Position[Table[Abs[2*Pi-G[[i]] ,{i,I,o}] ,t] [[1,1]];
R [[K [[A [[d]] ],12]]] ] = ..

FindRoot [2*Pi==T[r,R[[Last [K[[AI[ [d]] ,2]]]]],

R[[First[K[[A[[d] ],2] ]] ]]+

Sum[T[r,R[[K[[A[[d]] ,2,j]]]] ,R[[K[[A[[d]] ,2,j+1]]111,

{j,1,Length[K[ [A[I[d]] ,2]]]-1i],

{r,R[[K[[A[[d] ],1]]]] ,e,Infinityl] [[1,21];

Do[G[[i3]=
T[R[[K[[A[[i]] ,1]]]] ,R[[Last[K[[A[[i]] ,23]]3],

R[[First[K[[A[[i]] ,2]]]]]]+
Sum[T [K[[K[[A[[i]] ,I]]]] ,R[[K[[A[[i] ,2,jj]]]],

R[[K[[A[[i]] ,2,j+l]]ll]],
{j,1,Length[K[[A[[i] ],2]]]-1}],

t=Max[Table[Abs[2*Pi-G[[i]] ,{i,I,o}]] ;] ;R]
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We note that both PackingLabelo and PackingLabel2[] can accommodate
and compute valid packing labels for triangulations which have no boundary vertices.
That is, we may compute packing labels associated with triangulations on surfaces.
For example, Figure D.3 shows a simple triangulation on a torus.

-------- 4
3

- ----

-----------

( / x / \ 14L ' / I // '. I

12 -... .- .- -. 10 12- -- 9 -

/ F,:

I~17

16 '6

18

13 15 I3

14'' , '

412 -- - 2 - -4 - - -. -

,I.t I II • l '-• '

I / ' ' "- I

/ / / '1i I ' /

Figure D.3: A Triangulation on a Torus

The packing label for this triangulation gives radius 2.4142 to the vertices labeled
12, 2..., 112 and a radius of I to the remaining vertices (from the initialization values
used in our algorithms).
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APPENDIX E: LAYING OUT THE CIRCLE PACKING

Given a packing label R associated with a complex K, we wish to construct a
graphical representation of the essentially unique circle packing they induce. This
process is not a numerical process; we merely lay out the circles in their respective
positions in the complex plane C. This is achieved through an accumulation process
implemented in the Mathematica function Layout [. This function takes as its argu-
ments the variables K, R, B, a, and g. K is a description of the complex KI as a list
of vertices and their neighbors in the form

K I, I, V'.. ilII ~ ' ~o n....n
{{ 1, 2v,•..v } .. kv• 1v ,2 , n

Note that each vertex is simply identified as an integer 1, 2,... ,n. The vertices
{V~, V2,•.. ,. i } surrounding the ith must be listed in counterclockwise order to ensure
that the orientation remains consistent. R is a row vector listing, in order, the radii
of each vertex in the packing. B is a subset of {1, 2,..., n} naming the boundary
vertices. This information would be enough to generate a packing, unique up to
rotation and translation (i.e., essentially unique). The remaining parameters, a and
g, are elements of {1, 2,... , n} that place the center of a circle in the packing at the
origin (the circle associated with the vertex a) and place the center of an adjacent
circle in the packing on the real axis (the circle associated with the vertex g). The
function determines the unique set of centers for the circles in the packing under the
normalization imposed by a and g. This algorithm was suggested by meta-code given
in Practicum I from [44].

Layout[K_,R_ ,B_,a_ ,g_ :=Block[{n,S,P,L,Q,q,u,i,j,b,m,l,p},
n=Length[R]; S=Table[Circle[{O, O},R[[i]]],{i, 1, n}];
S[[g]]=Circle[{R[[a]]+R[[g]],O},R[[g]]]; P={a,g}; While[Length[P]<n,

L=Complement [Table [i, i, l,n}] ,P];

Do[
Q=Table[{L[[j]] ,K[[L[[j]] ,2,i]] ,K[I[L[[j]] ,2,i+1]]},

{i,1,Length[K[[L[[j] ,2]]]-1}] ;
If [Not [MemberQ [B,L [[j]]]] ,AppendTo [E,

{L[[j]] ,Last[K[[L[[j]] ,2]]] ,First [K[[L[[j]] ,2]]]}];];
u=Length [Q];
i=1;
q=O;
While [And [i<=u,q===O],

If[And[MemberQ[P,Q[[i,2]] ],MemberQ[P,Q[[i,3]]]],
b=T[R[[Q[[i,2]]]],R[[Q[[i,3]]]], R[[Q[[i,1]]]]];
m=N [S[E[Q [[i,2]2]]] [ [1, 1]]+I*S [[Q [[i, 2]]]] [ [1,2]]]
1=N [S[[ Q[[ i,3]]]] E[[1, 1]]+I*S [[E E[i, 3]]]] [ [1,2_]]]

If[m===O.,
p= (R [ [Q [ [i, ]]]] +R [ [Q [ [i, 2]]]] ) *Exp [I* (Arg [1] +b) ];
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S [[L[[j]]]] =Circle [{Re [p] Irm[p]},R[[L[[j]]]]]
P=Sort[AppendTo [P,L[[j]]]];

p=(R[ [Q[[i,] ]]]+R[[Q[[i,2]]]])*Exp[I*(Arg[l-m]+b)]+m;
S[[L[[j]]]]=Circle[{Re[p] ,Im[p]},R[[LI[[j]]]]];
P=Sort [AppendTo [P,L [[j]]]];
q=1;

i=i+1;]

{j, 1, Length [L}];
] ;S]

IM(z) Im(z)

8

2

-4 -2 2 4 Re(Z) 2R

(a) Packing Defined by Column 2 of Table D.1 (b) Packing Defined by Column 3 of Table D.1

Figure E.1: Distinct Circle Packings Induced by Different Boundary Radii

As an example of this packing, consider the complex K, described in Figure D.1
and the two sets of associated radii given in Table D.1. If we let a = 1 and g = 2 in
each case, the function Layout(] gives the arrangements of circles shown in Figure
E.1.

We may also lay out a packing on a surface. Consider the complex described in
Figure D.3 and the associated radii computed in Appendix E. As when we "cut open"
a surface along generators of a fundamental group in order to lay out a fundamental
region for that surface, we open the complex by removing tangencies, then use the
Layout[] (with a = 1 and g = 2) to arrange the circle packing in the plane. The
result is shown in Figure E.2.
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Figure E.2: Circle Packing on a Torus
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